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Introduction

Among our research goals is the development of “mechanical design compilers”; that is, pro-
grams which take as input a schematic (or other high-level description) of a mechanical design, plus
specifications and a cost function, and return a description of the optimal implementation of the
design, sufficiently detailed to support manufacture. Such programs should decrease design time
and cost, increase design quality, and allow designers to explore more alternatives in greater depth.

We have chosen to work initially in the domain of mechanical and hydraulic power transmission
systems built from cataloged components. For this domain we have substantially accomplished our
goal; this paper presents the evidence for that success, and discusses its limitations.

After mentioning some related work, we provide a very brief over-view of the compiler, intended
only to allow the reader to understand our performance evaluation ~For a more detailed introduction
to the compiler, and in particular the theory on which it rests, see [1}; for full details see [2]. We then
examine the capabilities of the compiler in three different respectss 1) the range of design problems
it has been tested on; 2) its reliability; and 3) its efficiency or tifhe complexity.

N w .
2 Related Work afi(’r‘(’h( ' °-N’f-“‘C»¢. .

We have found no other programs identified as “mechanical design compilers” by their creators.
(3] and [4] discuss programs which offer the designer a schematic language, but which perform
analysis only. We argue in [1] that the traditional “constraint propagation” methods they use are
inadequate to represent essential mechanical design information.

[5] and [6] discuss programs able to find the optimal selection of a single component, given
constraint and cost equations. These use “hill-climbing” optimization routines, with heuristics to
modify the hill-climbing process when they get stuck. The “hill-climbers” are called by supervisory
programs which can represent combinations of components. The supervisory programs supply the
hill-climbers with specifications, based on “expert knowledge”, and in [5] using iteration to improve
the initial guesses.

The approach these programs use has some disadvantages. They appear to require substantial
effort to set-up each configuration of components; a “domain” in [5) is equivalent to a single schematic
for our system. They use nominal values; manufacturing tolerances, and variations in operating
conditions are not explicitly represented. The “hill-climbing” search process can become stuck on
local optima. Because the set of artifacts implicitly represented by the design is continually changing,

all calculations must be repeated at each step, and correcting one deficiency can introduce others. o
For these reasons we have chosen a radically different approach.

3 Overview of the Compiler

Figure 1 illustrates our approach. Our data base is built up (block 1) from “basic sets” of
artifacts. Each basic set is represented by a single catalog number. The set consists of the individual
artifacts one might receive by ordering that catalog number. For example, on ordering Dayton motor
number 2N103, we will receive any one of an effectively infinite variety of motors, each slightly
different because of manufacturing tolerances, each with its own serial number; these motors make
up the basic set denoted by catalog number 2N103.

The basic sets are modeled by an engineer, using equations and specifications in a special “labeled
interval” specification language. For example, the speed regulating characteristics of Dayton motors

I
2N103 might be represented by (A fnﬂ RPM 1740 1800). This specification tells us that we are
assured (A) that for any motor we might get by ordering number 2N103, the the RPM will take on

P
only (‘[mi ) values between 1740 and 1800, under normal loading.
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Figure 1: The Compiler Block Diagram

The engineer groups the catalog numbers into a hierarchical structure, and the compiler ab-
stracts (block 3) the information about the basic motor sets to form descriptions for higher levels
in the hierarchy. For example, the next level up might be all the 1800 rpm three-phase motors rep-
resented; these have varying degrees of speed regulation, so the set as a whole might only guarantee

speed regulation between, say, 1700 and 1800 rpm: (A ‘(mlﬁ RPM 1700 1800). Finally, a schematic
symbol (Figure 2) represents the whole hierarchy of catalog numbers, and therefore the union of
their basic sets. The motor symbol might initially represent all of the electric motors listed in the
Dayton catalog!.

The compiler’s user, a mechanical designer, composes new designs by pointing at schematic
symbols (block 2). The system automatically makes appropriate connections, asking for help if
needed to resolve ambiguities; for example, in adding the first cylinder to the schematic of Figure 3,
the compiler would have to ask which valve to attach it to. Having defined such a design schematic,
the user may assign it a symbol of its own, for recall or use in more complex designs.

The compiler automatically eliminates catalog numbers which are incompatible with any imple-
mentation of the connected components (block 3). For example, on connecting the motor schematic
to one representing a 220-volt power supply, the system automatically eliminates any 110 volt mo-
tors.

After building the schematic, the user provides specifications. These specifications describe sets
of operating conditions; (R ““Z’Y speed 0 .2) applied to a cylinder means that the speed of the
cylinder shaft is “Required” (R) to take on every value (““~Y ) in the interval from 0 to .2 feet per
second.

1The currently implemented catalogs only include a subset of the Dayton catalog.
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Figure 2: A hierarchy of motors
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Figure 3: A Hydraulic Power Train

In this example, the maximum output pressure available from any of the pumps, together with
the highest of the range of forces required, sets a minimum diameter requirement on the cylinders.
These, together with the speeds required, establish flow requirements. This use of equations and
specifications to form new specifications is propagation (block 3); it can be regarded as a general-
ization of “the constraint propagation of intervals” [7]. More specifically, the constraint propagation
of intervals corresponds to one of 21 propagation operations employed in the compiler.

The propagated specifications for flow, horsepower, torque, and so on cause further eliminations,
leaving subsets of the original catalog numbers. Descriptions for these subsets are then abstracted
to produce new specifications, which trigger further propagation and elimination.

When the cycle of abstraction, propagation and elimination ceases, a variety of alternative
combinations of catalog numbers often remains. The user then provides a cost function, for example
the weighted sum of the price and weight of the components. He also directs the compiler to split
one of the catalogs in half, for example to look at 3600 and 1800 rpm motors separately (block
4)2. The compiler then generates two daughter designs, one for each motor set; the abstraction

2Having the user guide the search in this way improves efficiency; catalogs could be selected for splitting randomly,
or by a heuristic.




operators formulate new specifications describing the new, smaller motor sets. These specifications
trigger another cycle of eliminations.

Repeating this splitting process generates a binary best-first search tree. The compiler always
splits the leaf of the tree offering the lowest possible cost. The search continues until a single catalog
number remained for each component.

The output of this compiler thus consists primarily of catalog numbers. Given these numbers
and the schematic, most mechanics could probably buy the components and construct the system
without further input from an engineer. A future, more complete compiler would provide a drawing
of the base-plate. The most complete compiler possible would instruct an automated manufacturing
system to build the design.

4 Some Examples

In this section I discuss in general terms my experience with the compiler. Figure 4 shows some
component types, with the primary variables used to model them.

The component models now used include specifications for most of the non-geometric criteria
that the vendors discuss in the “engineering” sections of their catalogs. Formulating a representation
for a component type requires the engineer to extract a precise model, in our formal specification
language, from the usually vague and often inconsistent catalog data. He must compromise between
simplicity and completeness. For example, we have chosen to represent the efficiency of mechanical
transmissions as a range of possible values, from 90 to 98 percent. We could instead have entered
an equation relating efficiency to speed; manufacturing variations would then be represented by
interval specifications on the coefficients of that equation.

Once the form of the precise model has been determined, a simple program can be instructed
to translate the manufacturer’s catalog into the labeled interval specification language. Entering
further catalog numbers for components of this type is then a typing exercise. It generally takes
about one day to decide the form of the specifications and equations for a new kind of component,
generate the transformation procedure that converts the catalog to the desired form, and test the
results.

The system has been tested on a few temperature measurement system design problems and
more than a dozen different arrangements of power transmission components. Figure 5 shows some
of these, with machines in which the power trains might be used.

Let us now consider in more detail the two-cylinder hydraulic system example of Figure 3. The
catalogs for the components shown include the following numbers of alternatives: 7 types of electrical
supply (omitted from the schematic), 36 motors, 13 pumps, 3 valves, and 12 cylinders. There are
thus 4,245,696 possible combinations; of these, because our catalogs are still sparse, only 505,440
remain after the eliminations caused by connecting the components.

After composing the schematic, the user then enters load specifications, for example:

Load-1: (R “’Z¥ speed 0 .2), (R *°ZY force 0 1000)
Load-2: (R ““2¥ speed 0 .15), (R*"S"Y force 0 3000).

For the first load, this means that the system must provide every speed from 0 to .2 feet per second,
with forces from 0 to 1000 pounds.

The compiler uses these specifications, and those built into the catalogs, to eliminate unsatisfac- -

tory alternatives and to generate further specifications. For example, the linear horsepower equation
is built into the “load” component, kp — m%”’—d)- = 0. The compiler incorporates an inference
rule which can be written
(R7ZY z 2 2a)&(R “SY yyi yn)&G(z,y,2) =0

— (R ““SY z RANGE((/, (z 21 z4), (¥ W1 w)))-
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Figure 4: Some test parts
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The left hand side of the rule matches the input data and the equation:

(R TV speed 0 .2) ~ (RJY z z; 2)
(R **SY force 0 1000) ~ (R Y y yr ya)

hp— orccsaeed =0 ~ g(z,y,z):O.

The RANGE function on the right side of the rule is one of three operations on equations and
intervals discussed in [1]. In effect, it solves the equation for the hp, forming hp = Q&“_g)égm‘_‘l_ It
then determines the range of the horsepower subject to the constraints that force and speed are
restricted to the intervals [0 1000] and [0 .2]. The numerical results of RANGE are thus identical to
those produced by the “constraint propagation of intervals”. (The other operations discussed in [1]
can be thought of as inverses to RANGE.) But the new specification which would be formulated by
the right hand side of the rule , (R “*%Y kp 0 .36), is not a “constraint” in the usual sense of a limit
on the values. Rather, it says that the cylinder must have available to it power flows from 0 to .36
horsepower; higher powers are acceptable as well.

These specifications eliminate many potential implementations; for example, motors unable to
supply the required horsepower, adjusted by the efficiency of the pumps. The designer then splits the
catalog for one of the components, for example one set of cylinders, generating daughter designs. One
daughter design has only large cylinders, the other only small; this staris a new cycle of abstraction
and elimination.

On the particular data given, the compiler searched 71 daughter designs, generating 15,663 new
specifications in the process. The cost function used was price plus one half weight. The design run
took about 20 minutes, a normal time for the program to complete a hydraulic problem of this size.
Optimization of the code will speed this considerably. The output for this problem included:

The optimum solution, with cost 441.97, is:
For POWER-SUPPLY, US-3PH-220 with cost 0
For MOTOR, 3NE93 with cost 192.72

For GEAR-PUMP, TYPE-103 with cost 133.0
For VALVE, TYPE-1 with cost 50.0

For CYLINDER, 1.25 with cost 6.26

For VALVE-2, TYPE-1 with cost 50.0

For CYLINDER-2, diameter 2.0 with cost 10.0

5 Assessing Program Reliability

We have used basic set theory, predicate calculus, and analysis to develop formal correctness
proofs of most of the individual compiler operations; see [2]. Such proofs add greatly to the reliability
of the program, and to our understanding, but they are no better than the assumptions on which
they rest; the program must still be tested empirically. We have done dozens of “runs”, with varying
specifications, on more than a dozen different arrangements of components. We evaluate these runs
by determining why particular alternatives are eliminated, and by examining the “optimal solutions”
resuiting.

The system appears to eliminate only invalid designs. It frequently surprises us, but we always
find either a correctable bug, or that our understanding of the design problem was incomplete.

We are also quite sure that the designs selected are “optimal” with respect to the cost function,
but our confidence here is based on the simplicity and clarity of the optimization process rather
than on empirical results. Finding an optimum solution by hand is extremely slow on even these
simple design problems, and no optimization program we know of can easily be set up for problems
of this kind. Even an exhaustive check of combinations of components would still involve sets of




operating conditions, hence require moet of the mechanisms of the compiler and not constitute an
independent check. The most we can say, as a human designers, is that the designs produced look
like they could well be optimal.

A subtler question is whether the program eliminates all the implementations it should—whether
its rule set is complete enough to guarantee that the designs it produces will work. It is not, in three
senses. First, we know that there are propagation operations we have not yet implemented. We
implement operations only as needed, because new operations slow the system and require testing.
Second, as we discuss later, the compiler does not propagate every specification it could.

Third, and pragmatically most important, the selected design can always be unsatisfactory
because of criteria not represented in the component models. Our formalism imposes restrictions on
the criteria it can represent. In particular, equations must be algebraic, and have three variables,
though intermediate variables can be used to break up complex equations. We must be able to solve
for each variable, and the resulting functions must be continuous and monotonic. The equations
must be “instantaneously true”; they cannot values which occur at different times. Values must be
non-negative. Specifications must be stated as equations, cost expressions to be minimized, or “hard-
edged” intervals. Finally, variables must be divided into only two “causal categories”—parameters,
which are fixed at manufacturing, and state variables, which change during operation.

These restrictions limit expreseive power. Lack of differential equations probably prevents the
system from compiling servo-system designs, or detecting vibration problems. Speed controller
catalogs often provide ratios between the highest and lowest controllable speeds, thus relating two
different operating conditions. An attempt to model automobile seat design failed because seat-back
position is neither a state variable nor a parameter.

Nonetheless, within the domain and problems we have implemented the system appears to
select correct designs. It is at present probably less reliable than a very skilled designer working on
familiar problems, because very skilled designers make use of information omitted from the catalogs.
However, it is probably more reliable, faster, and more likely to produce an optimal design than the
average designer.

6 Time Complexity

How long does it take to solve these design problems? “About 20 minutes for a problem involving
half a million alternatives” is correct but not very useful, since this depends mostly un implemen-
tation and hardware. What we really want to know is how the time required to solve the problem
increases as the size of the problem increases.

6.1 Theoretical Results

We will consider two measures of the size of the problem. The first is the total number of possible
alternatives, where an alternative is a combination of catalog numbers without regard to feasibility.
This is proportional to C”, where n is the number of components in the design, and C the average
catalog length for each component.

The program searches for an optimal solution by creating a binary search tree; the forks in
the tree are generated by dividing the catalog for a single component into two parts, splitting the
“artifact space”. The program then pursues the “most promising” daughter design. There is no
guarantee that the “most promising” decision will be correct, and unless it is correct most of the
time, back-tracking may require time at least proportional to the number of alternatives.

The situation grows even worse when we consider the other measure of size, that is the number
of equations involved. The compiler subsumes the conventional constraint propagation of intervals,
and it can be shown [7] that the constraint propagation of intervals can run forever. For example,
suppose we have two equations, z = y and z = 2y, and we start with intervals 0 < z < 1 and
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Figure 6: Specification generation vs alternatives for a variety of designs

y < 1. We first conclude from the second equation that 0 < y < .5, then from the first that
z < .5, then 0 < y < .25 and so on. We never arrive (barring round-off error) at the solution,
y=0.

It may be possible to avoid such pathological cases in real design problems, but even much simpler
forms of constraint propagation can require time double-exponential in the number of variables
involved, and therefore singly exponential in the number of equations|7].
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6.2 Empirical Results

Fortunately, the system actually performs much better than the worst case theoretical projec-
tions. In figures 6 and 7, we have used the number of specifications generated by the searching
compiler as the measure of time; this measure is independent of the particular hardware and soft-
ware implementation. Most of the compiler’s operations take time proportional to the number of
specifications generated. One, the elimination of alternatives, can at worst take time proportional
to the number of specifications generated times the average length of the catalogs.

Figure 6 shows a semi-logarithmic plot of the number of specifications generated against the
number of alternatives. At worst, the number of specifications generated grows according to the
logarithm of the number of alternatives.

Figure 7 shows a plot of the number of equ ations involved in the design against the number
of specifications generated; growth is no worse than linear with the number of equations. This, in
turn, is linear in the number of components in the design.
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6.3 Explaining the difference

There seem to be five principal reasons why the empirical results are so much hetter than the
worst case predictions.

First, note that eliminating a single catalog number eliminates many alternatives, since that
catalog number is involved in a combinatorial set of alternatives.

Second, the artifact space is organized, for example by horsepower. A single specification can
eliminate many catalog numbers. More importantly, the optimal solution generally involves the
smallest (or nearly the smallest) of the devices meeting the horsepower requirement. Since these
are clustered together in the search space, only a few branches of the search tree need be followed.

Third, the equations used to describ: mechanical components establish a fairly sparse network
between variables. In particular, all information passed between components is channeled into a
small number of “port variables”, such as rpm and torque. (These components have been selected
for manufacturing and cataloging in part because they have relatively simple connections with the
rest of a design.) This sparseness helps limit the growth in execution time as a function of the
number of equations.

Fourth, some of the propagation operations are correct only if each input specification is inde-
pendent of the other variables in equation used. The compiler in fact requires independence for all
propagation operations, thus preventing infinite loops of the kind discussed above.

Fifth, the compiler propagates only the “strongest” specifications, for example the tightest re-
quired limits.
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These last two reasons involve restrictions on the constraint propagation process. We have not
proven that these restrictions cannot cause failures to eliminate, but have not observed any such
errors in practice.

7 Conclusions

To summarize, the compiler has been tested on a range of mechanical and hydraulic power
transmission designs; new designs can be entered by the designer in minutes. Results have been
correct and optimal for the tested problems. Time required for solution grows reasonably slowly
as the problem grows. These results are evidence that the theory outlined in [1] is both essentially
correct, and useful.
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