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I. Introduction

The Modified Point Mass Trajectory Model ! is the primary method of trajectory
simulation used in the preparation of Firing Tables. This model requires three types
of input data: projectile mass properties, aerodynamic coefficients and the performance
parameters determined from range testing. This report discusses an initial attempt to
determine, for trajectory modeling, the aerodynamic drag of the 155mm, DPICM, M864
base-burn projectile (Figure 1) from the HAWK Doppler radar data.34 A detailed treatise
of base-burn projectile ballistic modeling technology is reported by Niles-Erik Gunners,
Kurt Andersson and Rune Hellgren in Reference 5, Chapter 16, “Base-Bleed Systems for
Gun Projectiles”.

II. Reduction of HAWK Doppler Radar Velocimeter Flight
Data

The frame of reference for all vectors is a _ground-fixed, orthonormal, right-handed
Cartesian coordinate system with unit vectors (1, 2 and 3). The I axis is the intersection
of the vertical plane of fire and the horizontal plane and poxntmg in the direction of fire.
The 2 axis is parallel to the gravity vector, §, and opposite in direction. The 3 axis
completes the right-handed coordinate system.

The slant range rate of change as measured by HAWK Doppler radar is recorded on
a digital tape. The first step is to smooth the data and determine the time derivative.
Least squares fits (second-degree polynomials) to the data are determined for 0.56 second
intervals (fifteen point smoothing) along the trajectory. The slant range rate of change (+)
and time derivative of the slant range rate of change (+) are obtained from the quadratic
fit at the midpoint of the fifteen point interval.

An estimated trajectory is generated separately using the projectile mass properties,
launch data, atmospheric conditions, estimated aerodynamic coefficients and estimated
base drag reduction factor during base-burn motor burning as a function of time. The
trajectory is adjusted, using factors on base drag reduction during motor functioning and
lift, to match the observed impact data. A trajectory velocity (u; ) is calculated using the
HAWK radar smoothed slant range rate of change (r) and the estimated trajectory slant
range rate of change (7, ) and velocity (u; ) as follows:

u, = (f/7) 4 (1)
where:

Te = upcos(re, u) = (reeuy)/my




Note: Subscript ¢ refers to quantities determined from the estimated trajectory and those
with subscript » are obtained using both the HAWK radar data and the estimated
trajectory.

A trajectory acceleration (u';) was calculated using the time derivative of the HAWK radar
slant range rate of change (7) and the estimated trajectory, time derivative of the slant
range rate of change (r;) and acceleration (u; ), using the following two formulations:

= (F/F) b + (A F = FR) /7] (2)
and
i = (F/7) u (3)
where:
Fo= {rel(feed) + (Four)) = (Feedi) A}/ nd
and
no=

The mean of the results were similar for both of the u, representations, however, the
variation (spread) of the results were significantly improved using equation 3 and it was
used for determining the results presented.

III. Determination of Aerodynamic Drag Coefficient

The mass of the projectile, atmospheric conditions, estimated trajectory data and the
Doppler slant range rate of change and time derivative of the slant range rate of change
provide the necessary inputs to determine the aerodynamic drag. The following inverse
solution of the point-mass equations of motion is then used to compute the aerodynamic

drag (Cp,).

Cp, = —[(& — @)e(i; — § ~ A)]8m/(npd?v*) (4)




IV. Determination of Base Drag Reduction Factor

The base-burn motor is int=nded to increase the range of the projectile by reducing
the base drag. An initial estimate of the aerodynamic zero yaw drag force coefficient (Cp, )
and the base drag component (Cp, ) was determined for the M864 base-burn projectile,
with an inert base-burn motor, using the semi-empirical drag estimation model known as
McDrag.6 A base drag reduction factor (fgp) was then defined to quantify the amount of
base drag reduction as follows:

fep = (Cp, — Cbp,)/Cpy, (5)

A base drag reduction factor of unity indicates that all the estimated base drag is elimi-
nated, whereas a value of zero means none of the estimated base drag is eliminated. A fgp
greater than one indicates that thrusting is present, since more than just the base drag
has been eliminated.

V. Results

The aerodynamic drag results, obtained from the procedure described above, are
presented for a sampling of the M864 projectiles, including three M864 projectiles with
inert base-burn motors. These projectiles were fired at Yuma Proving Ground, AZ during
May 1987. The base-burn motors were designed to burn out at approximately 30 seconds.
The aerodynamic drag coeflicients for the projectiles with inert motors are presented as
a function of Mach number and for the projectiles with live motors base drag reduction
factors are presented as a function of time of flight.

The sampling includes projectiles with inert and live base-burn motors fired with
propelling charges: M4A2, charge TW; M119A2, charge 7R; and M203E2, charge 8R. The
sampling contains an inert base-burn motor fired at a quadrant elevation of 748 mils and
live base-burn motors fired at three quadrant elevations (approximately 500, 750 and 1150
mils) with each of the propelling charges.

‘Figures 2 through 4 present the aerodynamic drag coefficients versus Mach number
for projectiles with inert base-burn motors fired with each of the propelling charges at
a quadrant elevation of 748 mils. Figures 5 through 13 present the base drag reduction
factors versus time of flight for projectiles with live base-burn motors fired with each of
the propelling charges at quadrant elevations of approximately 500, 750 and 1150 mils.

Figures 2, 3 and 4 show excellent agreement of the aerodynamic drag coeflicients
for the inert base-burn motor projectiles fired with the three propelling charges. Fig-
ures 5 through 13 show a good correlation of the base drag reduction factor with time
of flight for the live base-burn motor projectiles. The base drag is consistently reduced
by approximately 50 percent and the results show an increase in this percentage for the
higher quadrant elevations indicating a possible correlation with local atmospheric pres-




sure. There is some irregularity in the base drag reduction factor for the transonic velocities
(Mach numbers: .95 to 1.05). This is identified where evident on some of the figures. The
irregularity is probably due to the error in the transonic aerodynamic inputs and/or the
Mach number determined from the HAWK radar data. The base drag reduction factors
also indicate a delay in base drag reduction at the beginning of approximately one second
and a base-burn motor burnout time of approximately 33 seconds.

The large variation in the base drag reduction factor for the high quadrant elevation
rounds is probably due to a combination of the following: the magnitude of the total
drag coefficient, the data reduction methodology including the estimated trajectory, the
estimated aerodynamic coefficients and the HAWK Doppler radar capability.

VI. Analysis of Aerodynamic Drag Results

An aerodynamic drag coefficient Cp, was determined for the M864 projectile based
on the inert base-burn motor projectile results. In addition, an estimated inert, base drag
component C’DB was determined for the M864 projectile with an inert base-burn motor
by subtracting the McDrag estimates of head, skin friction, band and boat tail drag from
the determined Cp, for the inert M864 projectile. Figure 14 presents the determined Cp,
and CDB‘ functions of Mach number.

The base drag reduction factors for times of flight between three and 33 seconds were
analyzed using a stepwise multiple regression technique.” The base drag reduction factors
were fit as a function of time of flight and the difference in a reference (standard) air
pressure (P,) , 1013.25 mb, and the local air pressure (P) divided by P, to account for
the apparent variation with quadrant elevation. A review of the residuals as a function
of Mach number suggested an additional function of Mach number, f,, which forms a
modified base drag coefficient, (Cp,. fi), for the M864 base-burn projectile. Figure 14
presents the modified base drag coefficient, (Cpy. f1), while Figure 15 presents the f,
factor as a function of Mach number. The value of (C’DB f1) is 25 percent higher for Mach
numbers less than 0.9 and 11 percent lower at Mach number 2.0 than the theoretically
determined Cp, . A theoretical discussion of drag reduction for base-burn projectiles is
presented in Reference 5, Chapter 16.

The stepwise multiple regression fitting function including f; is as follows:

[(Cp, — Cp,)/(Cpy, /i)] = fo + fu(P. — P)/P. (6)
Where:

e Factor f, is a function of time of flight.

e Factor f; is a constant.

Note: A factor f3 multiplying f, is added in the final formulation.




The factor, f2, as a function of time of flight, determined by the stepwise multiple
regression process for the nine M864 base-burn test projectiles (Figures 5 through 13), is
presented in Figure 16 and the constant, f;, determined simultaneously, was 0.30. The
residuals of the stepwise multiple regression fitting process are presented in Figures 17, 18
and 19 versus time of flight, Mach number and local air pressure respectively. The root
mean square error of residuals is 0.12 and the residuals show that the fitting process has
removed the symmetric biases due to time of flight, Mach number and local air pressure.

Summarizing:

e An aerodynamic drag coeflicient (Cp,) was determined for the M864 projectile
based on the inert base-burn motor projectile results.

¢ A base drag component (Cp, ) was theoretically determined for the M864 pro-
jectile with an inert base-burn motor based on Cp, minus the fore body drag
estimated by McDrag.

e A factor, f;, multiplied by the inert projectile base drag component (Cp,, ) is
used to represent an effective inert base drag coefficient for the M864 base-burn
projectile as a function of Mach number.

e A factor, f,.is used to represent the effect of time on drag reduction during the
burning phase of the M864 base-burn projectile.

e A change in drag reduction with local air pressure was assumed to account for
the observed variation of the M864 base-burn projectile base drag with quadrant
elevation. This apparent effect with local air pressure was further assumed to
take the form f4( P, — P)/ P., where the factor, f;, is a constant.

VII. Exterior Ballistic Trajectory Simulation Model

The reduction in base drag during base-burn motor functioning is shown to be a
function of time of flight and to a lesser degree a function of local air pressure. A constant,
f3 , multiplied by f, is added to create a simulation methodology containing flexibility for
matching experimental radar and impact or air burst data. The constants, f; and f,,
can then be used effectively as parameters for matching the measured impact or air burst
range firing data.

The combined base drag reduction term, — (Cpy. f1)(fo fs + fu (P — P)/P.],is
then added to the projectile’s inert total drag force coefficient term, Cp, + Cp_, (Qa.)?,
of the Modified Point Mass Trajectory Model for Rocket Assisted Projectiles.

The total drag computed by the Modified Point Mass Trajectory Model for Rocket
Assisted Projectiles is then as follows:




- w 2 0 2 —
5=-T28 o (e (Cop 1) fa fo+ f2 (P = P)/P) + Cp, (Que)} v (7

Where:

o The factor, fo, can be used as a function of quadrant elevation, instead of the
ballistic coefficient, for matching experimental impact or air burst range firing
data for projectiles without base-burn motors. A value of 1.0 was used for fo
because this parameter was not used for matching the experimental firing data of
the M864 bas=-burn projectile.

Note: The ballistic coefficient, m, /( fo d?), as a function of quadrant elevation
is currently in use as the parameter for matching experimental impact or
air burst range firing data. The use of fy, previously identified as i, has
the advantage of being a nondimensional factor.

® The term, (Cpy, fi)( f2 f3),is used to represent the drag reduction as a function
of Mach number and time of flight and for matching experimental impact or air
burst range firing data of individual or groups of projectiles.

e The factor, f;, as illustrated in Figure 15, is used to represent the change in
drag reduction as a function of Mach number. f; was determined from the
analysis of the HAWK radar data.

e The factor, f,, as illustrated in Figure 16, is used to represent the change in
drag reduction as a function of time of flight. f, was also determined froin
the analysis of the HAWK radar data.

e The factor, f3 can be used as a parameter for matching experimental impact
or air burst range firing data.

o The term, (Cpy f1)[fa (P. — P)/P.],is used to represent the drag reduction
due to an apparent effect of the local air pressure.

e The factor, f;, is a constant during base-burn motor functioning and is zero
thereafter. f; was determined to be 0.30 based on the analysis of the HAWK
radar data.

e The factor, Q, is a constant used to compensate in part for the approximations
in the Modified Point Mass Trajectory Model. A value 1.2, normally used for
artillery projectiles, was used for this parameter.

In the above model the nondimensional factor, fo, replaces the ballistic coefficient
as the parameter used for matching experimental impact or air burst range firing data of
projectiles without base-burn. In that role, f would normally be a function of quadrant
elevation. The factors, f; through f,, should be effective parameters for representing the
HAWK radar results and matching the experimental impact or air burst range firing data
of the 155mm, M864 base-burn projectile.




VIII. Conclusions

The aerodynamic drag coefficients determined for the M864 projectiles with inert base-
burn motors show excellent agreement for the flight Mach numbers of projectiles fired with

propelling charges: M4A2, charge TW; M119A2, charge 7R; and M203E2, charge 8R.

The reduction in base drag during base-burn motor functioning correlated very well
with time of flight and to a lesser degree with local air pressure. These results support the
simplistic addition of a base drag reduction term to the acceleration due to drag equation
of the Modified Point Mass Trajectory Model for Rocket-Assisted Projectiles for simulating
the ballistic trajectory of the 155mm, M864 base-burn projectile.




155mm, DPICM, M864 Base-Burn Projectile

Sketch
Dimensions
Length of Projectile calibers 5.79
Nose Length calibers 3.42
Cylinder Length calibers 1.86
Boattail Length calibers .50
Boattail Angle -degrees 3.00

Mass Properties

Mass kgs 46.95
(1bs) 103.5
Mass of Fuel kgs 1.21
(Ibs) 2.67
Center of Gravity cm from nose 58.8
) (in from nose) 23.16

Moments of Inertia

Axial kg-m? .158
(Ib-£t2) 3.75

Transverse kg-m? 1.657
(Ib-£t2) 39.32

Figure 1. Physical characteristics of the 155mm, DPICM, M864 base-burn projectile.
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Figure 10. Base drag reduction factor versus time of flight for round number 4202 fired

with propelling charge M119A2, 7R, at a quadrant elevation of 1150 mils.
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Symbol
Cp,
Cp,

Cp

T

fo
h
f2
fs

fa

List of Symbols

Definition
zero yaw drag force coefficient

inert base-burn motor, base drag component of zero yaw drag
force coefficient

radar determined drag force coefficient
reference diameter of projectile

factor as a function of quadrant elevation, previously identified
as 1, used for matching experimental range firing data

factor used to represent the drag reduction as a function of
Mach number

factor used to represent the drag reduction as a function of
time of flight

factor used as a parameter for matching experimental range
firing data

factor used to represent the drag reduction due to an apparent
effect of local air pressure

acceleration due to gravity

fuzed projectile mass at time t

reference fuzed projectile mass

air pressure at trajectory position

reference (standard) air pressure (1013.25 mb)

yaw of repose drag term in the “Modified Point Mass Trajectory
Model”

trajectory estimated, slant range magnitude
trajectory estimated, slant range
HAWK radar determined, rate of change of slant range with time

time derivative of the HAWK radar determined, slant
range rate of change

trajectory estimated, rate of change of slant range with time

trajectory estimated, time derivative of the slant range rate of
change
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List of Symbols (Continued)

Definition

trajectory estimated, velocity of the projectile with-respect-to the
ground-fixed axes

trajectory estimated, acceleration of the projectile with-respect-to
the ground-fixed axes

velocity of the projectile with-respect-to the ground-fixed axis,
determined from HAWK radar data and estimated trajectory

acceleration of the projectile with-respect-to the ground-fixed axes,
determined from HAWK radar data and estimated trajectory

speed of projectile with-respect-to air

velocity of the projectile with-respect-to air

velocity of the air with-respect-to the ground (wind velocity)
acceleration due to Coriolis effect

density (specific mass) of air
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