
I I~ ITh IX~ I I i

NAVAL POSTGRADUATE SCHOOL
Monterey, California

4V STATS 4 ,

TIHESIS

A COMMAND AND CONTROLWARGAME TO TRAIN
OFFICERS IN THE INTEGRATION OF TACTICS AND
LOGISTICS IN A FIELD ARTILLERY BATTALION

by

Michael W. Schneider and Anthony R. Ferrara

March 1989

Thesis Advisor Samuel H. Parry

Co-Advisor William J. Walsh

Approved for public release; distribution is unlimited

6 O-2S

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Orxanization Report Number s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if Applicable) 39 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7 b Address (city, state. and ZIP :ode)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

I(f Applicable)
8c Address (city, stale, and ZIP code) 10 Source of Funding Numbers
_1______e__n____ee__rty ___asi____ion___Comnd _tn Elanam Ntrbea No I Task No Wh ni Ai. o

11 Title (include Security Classification) A Command and Control Wargarne to Train Officers in the Integration o
Tactics and Logistics in a Field Artillery Battalion
12 Personal Author(s) Michael W. Schneider, Anthony R. Ferrara
13a Type of Report I13b Time Covered I14 Date of Report (year, month,day) IS Page Count
Master's Thesis From To March 1989 1 349 •
16 Supplementary Notion The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the De artment of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field Group Subgroup Wargame; Command and Control; Command Post Exercise (CPX); Field Artillery

Abstract (continue on reverse if necessary and identify by block number
ue to peacetime training limitations, the integration of tactics and logistics as it relates to the command and

control of a field artillery battalion cannot be easily practiced. This thesis presents a computer assisted wargame
which will give battalion staff officers some experience in dealing with this shortcoming. The wargame
emphasizes the decision maker in the command and control system. Specifically, this wargame forces the
decision maker to consider numerous tactics / logistics interface issues and then make a series of command and
control type decisions. At the end of each game, the player's performance is evaluated in terms of howitzer
availability time, casualty rates, vulnerability rates, and ammunition optimization. The wargame itself is highly
flexible and is capable of being played in support of a full scale battalion command post exercise or during weekly
officer professional development time.T K e :s.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
[X unclassified/wimited ,same as report [D'nCusers Unclassified

0 22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
Samuel H.Parry (408) 646-2779 55Py
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

' i I I I I I I I l ii

Approved for public release; distribution is unlimited.

A Command and Control Wargaze to Train Of ficers in the
Integration of Tactics and Logistics

in a Field Artillery Battalion

Michael W. Schneider
Captain, United States Army

B.S., United States Military Academy, 1980

and

Anthony R. Ferrara
Captain, United States Army

B.S., United States Military Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTERS OF SCIENCE IN SYSTEMS TECHNOLOGY
(COMMAND, CONTROL AND COMMUNICATIONS)

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Authors: i
Michael W. Schneider

/'ArthnyR. Xerrara

Approved By:
Ia._efH. Par, T s Advisor

William J./alsh, Co-Advisor

I:.&eChairman,
C nd Co and Communications

Harrison Shull,
Provost and Academic Dean

ii

ABSTRACT

Due to peacetime training limitations, the integration

of tactics and logistics as it relates to the command and

control of a field artillery battalion cannot be easily

practiced. This thesis presents a computer assisted wargame

which will give battalion staff officers some experience in

dealing with this shortcoming. The wargame emphasizes the

decision maker in the command and control system.

Specifically, this wargame forces the decision maker to

consider numerous tactics / logistics interface issues and

then make a series of command and control type decisions.

At the end of each game, the player's performance is

evaluated in terms of howitzer availability time, casualty

rates, vulnerability rates, and ammunition optimization.

The wargame itself is highly flexible and is capable of

being played in support of a full scale battalion command

post exercise or during weekly officer professional

development time. For
Accessin.Fo

Distribu i on/
fp Availlbility Codes

-and/or
Is% pecial

iDIi

TABLE OF CONTENTS

I. DESCRIPTION OF THE PROBLEM 1

A. INTRODUCTION 1

B. WHAT IS MEANT BY THE INTEGRATION OF
TACTICS AND LOGISTICS? 3

C. SCOPE OF THE THESIS..................... ..o...... 3

II. THE FIELD ARTILLERY BATTALION SYSTEM................ 7

A. INTRODUCTION 7

B. FIELD ARTILLERY MISSION 8

C. GOALS.................... 11

D. ENVIRONMENT 15

E. RESOURCES 17

F. MANAGEMENT 19

G. ARCHITECTURAL LINK DEPICTIONS..................20

H. SUMKARY... 30

III. THE CONCEPTUAL APPROACH 31

A. INTRODUCTION 31

B. MISSION OF THE WARGAME 32

C. GOALS OF THE WARGAME........................... 36

D. WARGAME ENVIRONMENT 38

E. WARGAME RESOURCES............................. 40

F. MANAGEMENT OF THE WARGAME 41

G. ARCHITECTURAL DEPICTIONS 41

H. SUMMARY48

iv

IV. WARGAME DESIGN 52

A. INTRODUCTION 52

B. OVERALL WARGAME DESIGN 53

C. RECORDS 55

D. GAME PLAY DESIGN 56

E. PROGRAM ILLUSTRATION 60

F. CASUALTIES 62

V. PLAYER'S MANUAL 65

A. INTRODUCTION 65

B. MEASURE OF EFFECTIVENESS 66

C. GETTING STARTED 68

D. GAME SETUP MENU 69

E. GAME PLAY 76

F. INTERPRETATION OF THE RESULTS 93

VI. SUGGESTED ENHANCEMENTS AND POTENTIAL USES 117

A. INTRODUCTION 117

B. POTENTIAL WARGAME USES 117

C. IMPROVEMENTS / ENHANCEMENTS 120

D. FINAL COMMENTS124

APPENDIX DOCUMENTED SOURCE CODE 126

LIST OF REFERENCES 339

BIBLIOGRAPHY ... 340

INITIAL DISTRIBUTION LIST 341

v

I. DESCRIPTION OF THE PROBLEM

A. INTRODUCTION

In the United States Army, combat-arms-type units have a

very difficult time finding ways to conduct fully realistic

training. In a peacetime environment there are many factors

which inhibit realistic training. Budgetary constraints

limit the scope and duration of training as well as minimize

the amount of ammunition expended. Safety considerations

limit intensity and realism in training. And, the lack of

adequate training areas compresses the size of the "training

battlefield" so that training does not take place over

realistic distances. The implication to those concerned

with the command and control of combat units is that there

is very little "hands on" experience available in the

integration of tactics and logistics as it relates to the

command and control of these units. This lack of hands on

experience by our officers is a potential deficiency which

deserves some attention.

In order to address this deficiency, there are many

options available. These options range from training

through "field training exercises" (FTX) down to classroom

instruction. An FTX would theoretically provide the best

situation for training the tactics / logistics interface.

However, FTXs rarely provide more than a start point for

1|

understanding the tactics / logistics interface issues.

This is true due to budget constraints, safety

considerations, training area limitations, and low peace

time ammunition consumption rates. In short, we are never

faced with the problems of moving enough ammunition to keep

up with tactics or slowing tactics to keep pace with

ammunition resupply rates because we rarely fire ammunition

on combined arms exercises (at least not at a realistic

rate).

Classroom instruction can serve as an introduction to

the issues related to the integration of tactics and

logistics but it lacks the critical element of hands-on

experience. An individual must confront and solve these

type of problems for himself in order to be effective at the

beginning of the next war.

The next best thing to an FTX is a command post exercise

(CPX). In the CPX, all but the command and control elements

are played notionally. Normally, some type of wargame is

played at a remote location and then the various command

posts must perform their wartime functions in accordance

with the wargame scenario. In most cases, when CPX's are

run by higher level headquarters, the resolution is such

that very little training on the integration of tactics and

logistics takes place at the battalion level. In fact, the

nature of the tactics / logistics problem is such that it is

very difficult for a wargame to provide an environment which

2

trains officers in the integration of these functions. Most

wargames either emphasize tactics or logistics but not both.

This is due to the fact that it requires much more detail

than can be generated under normal conditions in a manually

run wargame.

B. WHAT IS MEANT BY THE INTEGRATION OF TACTICS AND

LOGISTICS?

According to Army Field Manual 100-5...

Commanders must plan tactics and logistics concurrently
to insure that the tactical scheme of maneuver and fire
support are logistically supportable. They consider the
constraints that Combat Service Support planners
identify. They modify unsupportable plans or accept the
risks involved. [ref. 1: p. 5-1]

This refers primarily to the integration of tactics and

logistics in the planning of operations. However, the

integration process does not stop there. During the conduct

of operations, the integration of tactics and logistics is a

continuous process which is driven by factors such as

expenditure rates, casualty rates, supply availability,

supply transportation capacity, and the tactical situation.

All of these factors must be carefully managed in order to

conduct a cohesive operation. Failure to integrate tactics

and logistics can result in failure to accomplish the unit's

overall mission.

C. SCOPE OF THE THESIS

This thesis describes the use of a battalion level,

computer assisted wargame, played by the battalion

3

operations and logistics staff sections, to train officers

in the integration of tactics and logistics as it applies to

the command and control of a field artillery battalion.

Limiting the discussion to the command and control of a

field artillery battalion was done only to provide a

manageable start point for exploring the larger issue of

training officers in the integration of tactics and

logistics. The field artillery battalion is a logical

choice as a start point because of the field artillery's

dependence on extremely large quantities of bulk ammunition.

In wartime, this dependence will dictate the movement of

firing batteries and the rate at which firing batteries can

shoot. Ammunition trucks will become a scarce resource that

needs to be carefully managed to ensure optimum ammunition

resupply as well as survivability. Therefore, in addition

to consideration of howitzer vulnerability thresholds, the

tactical situation, movement plans, fire plans, and casualty

projections, the commander and his staff will also have to

consider unit distribution plans or point distribution

plans, potential limitations on firing rates, ammunition

truck movement plans, and truck vulnerability thresholds.

This thesis presents a wargame that attempts to capture

these concepts in a form which will provide a learning

environment for those tasked with the command and control of

a field artillery battalion. The wargame is only computer

assisted. It is important to note that the "essential

4

ingredients of any command and control system...are the

commanders or decision makers themselves." [ref. 2: p. 618]

The computer portion of the wargame will only provide

relevant information to the decision maker, execute his

decisions, and keep track of the game's statistics. At the

end of the game, a measure of effectiveness (MOE) will be

computed which will provide an assessment of the player's

performance. The MOE is based on a computation of the

howitzer availability time, the amount of time spent at a

critical vulnerability level, the amount of time lost due to

casualties, and the amount of time spent short of sufficient

amounts of ammunition. This will force the decision maker

to plan ahead and to consider all of the relevant concepts

in order to maximize howitzer availability time, minimize

vulnerability, minimize casualties, and optimize ammunition

resupply. The intent of the wargame is to provide an

environment in which officers can learn to consider the

factors which are critical to the integration of tactics and

logistics.

In order to build such a wargame, an analysis of the

architecture of field artillery battalion is required. This

analysis is the topic of Chapter II. Using this analysis,

the approach taken to design a wargame which trains officers

in the integration of tactics and logistics as it relates to

the command and control of a field artillery battalion is

discussed in Chapter III. Chapter IV describes the

5

processes used by the computer to derive some of the more

important aspects of the wargame. A user's manual for the

wargame is provided in Chapter V. Finally, Chapter VI

discusses suggested enhancements and potential uses of the

wargame.

6

II. THE FIELD ARTILLERY BATTALION SYSTEM / ARCHITECTURE

A. INTRODUCTION

Before building a wargame that simulates the operations

of a field artillery battalion, it is critically important

to analyze the battalion in order to determine how it works.

More specifically, it is important to know not only the

internal interactions which take place within the battalion,

but also the interactions the battalion has with external

elements. It is important to understand the battalion's

environment and its mission. More importantly, it is

important to understand how the environment affects the

battalion's ability to achieve its goals and if there are

any other constraints which may hinder the achievement of

these goals.

One proven method of analysis is through the use of the

"Systems Approach." A system, as defined by Professor James

G. Taylor of the Naval Postgraduate School, is a "collection

of elements which combine together to form a whole in order

to accomplish a goal." (ref. 3] The systems approach

provides a method of developing the system by considering

the system's goals, the environment, the mission, the

resources, and the management (ref. 4: p. 44].

To supplement the systems approach, the system

architecture provides a depiction of the "interconnections

' ' ' ' I I I I I I7

between elements of the system. Interconnections can be

based on time, functional, informational or spatial

relationships." [ref. 4: p. 126]

Through the use of both the systems approach and the

systems architecture, the field artillery battalion can be

thoroughly analyzed. A conscious effort has been made to

separate the analysis using the systems approach and the

systems architecture. It was felt that it would be better

to first conduct a written analysis of the battalion using

the systems approach and then fill in between the lines by

letting each graphical portrayal of the system architecture

say "a thousand words". This analysis will be helpful in

determining which aspects of the battalion will be germane

to the design of the wargame and which system

characteristics can be ignored.

B. FIELD ARTILLERY MISSION

The mission of the field artillery is to "destroy,

neutralize, or suppress the enemy by indirect fires and to

integrate all fire support into combat operations.

Successful execution of this mission demands effective

integration of field artillery fires into the scheme of

maneuver and swift, exact, execution from the time a target

is acquired until ordnance is delivered on target." [ref. 5:

p. 1-1) Field Manual 6-20-1, FIELD ARTILLERY CANNON

BATTALION OPERATIONS, goes on to say that in order for the

8

battalion to support maneuver forces on the battlefield

successfully, it must survive to perform the following 10

basic tasks:

1. Target Acquisition--Detecting and engaging targets
that threaten maneuver elements of the supported
brigade.

2. Meteorologv. Survey. Technical Fire Direction--The
battalion operations officer (S3) insures that fire
direction centers (FDC) have the information they need
to conduct effective fire direction.

3. Fire Planning--Field artillery fires are planned to
achieve one of three effects on the target:
suppression, neutralization or destruction. The desired
effect will be determined by the supported unit
commander, the fire support coordinator (FSCOORD), or
the fire direction officer.

4. Tactical Fire Control--Tactical fire direction in-
cludes selection of rounds, shell/fuze combinations, and
designation of units to fire.

5. Plans and Orders--Command and control of the field
artillery cannon battalion is established through the
assignment of tactical missions.

6. Positioning--The planning for the selection of any
position must include consideration of communication
requirements and combat service support in addition to
the mission, terrain, and tactical situation.

7. Reconnaissance--Reconnaissance is performed to se-

lect the best battalion and battery positions, march
routes, start and release points, command posts,
observation posts, and communication sites, and to
analyze the terrain where the battle will be fought.
Prior to or concurrent with reconnaissance, the field
artillery commander/S3 should coordinate with the
maneuver commander/S3 to determine what areas maneuver
units plan to occupy. Mutual agreement must be
established to make the best use of the available
terrain.

8. Displacement--Field artillery battalions must fre-
quently displace to provide continuous fire support to
maneuver units. There are three general ways that a
field artillery battalion moves; by unit displacement,

9

by echelon, and by battery. In unit displacement, the
entire battalion moves at once and no units are
available to provide fire support. In displacement by
echelon, some portion of the battalion moves and sets up
in the next position and then the other portion of the
battalion moves. In displacement by battery, one
battery at a time displaces. This method provides the
maximum amount of fire support at any given time but it
is sometimes too slow to keep up with maneuver.

9. Communications--The cannon battalion commander must
rely on communications to control elements of his
command, gather information, distribute intelligence,
and coordinate fire support. The primary means of
communications in the cannon battalion are radio and
wire.

10. Combat Service SUDnort (CSS)--CSS is the process of
keeping the maximum number of weapon systems
operational. The support functions and operations in
the battalion by the personnel officer (Si), logistics
officer (S4), or any other supervisor must be closely
coordinated with tactical operations. A continuous
exchange of information among CSS coordinators, the S3,
and battery commanders is essential to the success of
both tactical and logistical plans. [ref. 5]

The mission of the field artillery and its implied tasks

are critical to understanding how the field artillery

battalion works and how to build a wargame which simulates

the battalion. The mission can be broken into two parts.

The first is the requirement to be capable of delivering

timely, accurate, and effective fires and the second is to

provide those fires in a manner which supports the overall

scheme of maneuver. The ten basic tasks are the implied

tasks which any field artillery unit must be able to perform

in order to accomplish the field artillery mission. These

tasks are important because they represent functions that

the wargame will have to be able to perform to varying

degrees depending on the mission and goals of the wargame.

10

The field artillery mission clearly implies that the

field artillery battalion is a part of a larger system

which, among other things, dictates the scheme of maneuver

which must be supported. The mission also implies that in

order to provide swift, exact indirect fires, much

coordination and interaction with external elements must

take place in order to ensure that the artillery can range

the enemy, has enough ammunition on hand to support the

operations, and has coordinated positions to which it can

displace. Finally, the mission implies that the unit must

be able to survive to perform all of these tasks.

C. GOALS

The mission and its implied tasks can be boiled down to

several goals. These goals are necessary because they help

to quantify the degree to which the unit is effective in the

accomplishment of its mission. They also help to further

describe the system and the positive and negative

motivations which are inherent in the system. In this

respect, an analysis of the goals will be very useful to the

design of the wargame and particularly to the design of any

MOEs which may be necessary.

The goals were chosen to address the mission and its

implied tasks. They are stated in quantifiable terms.

These goals are closely related and some could actually be

considered as sub-goals to other goals. However, they have

11

been separated into different goals based upon the fact

that there are specific command and control actions which

can be taken to optimize each goal. In many cases these

actions serve to oppose other goals and so a set of

tradeoffs must be considered. The four goals are described

below.

1. Mazimiue Availability Time

First and foremost, the battalion must be able to

support the maneuver units. This means that the battalion

must have the maximum number of cannons in a firing status

for the maximum amount of time. It also means that the

firing units must always have ammunition to fire and that

they should minimize the number of tubes lost to maintenance

or enemy fire.

In operational terms, it means that firing units

must displace as little as possible without letting the

enemy get out of range and without letting themselves get

too vulnerable to enemy detection. This goal can be

measured in tube hours, i.e., the sum of the total number of

hours each tube is capable of providing fire support.

2. Minimize Vulnerability

A firing unit becomes more vulnerable to enemy

detection in two ways. First, the longer a unit is in

position, the more likely it is that it has been located by

aerial reconnaissance. Second, the more rounds a firing

battery fires out of a position, the more likely that unit

12

has been located by enemy counter-battery radar. These

probabilities of detection can be determined from

probability of detection versus time and versus "rounds

fired" curves, respectively. These probabilities can be

combined to derive a vulnerability factor.

In operational terms, a commander must be willing to

accept some degree of vulnerability. Some positions are

more vulnerable than others due to the amount of cover and

concealment available. A vulnerability threshold can be

specified by a commander in terms of rounds fired out of a

position when time in the position is less than some

specified maximum allowable time in that position. A unit

should move when it reaches the commander's vulnerability

threshold so that its vulnerability level is reset at zero.

Many times, due to the tactical situation or due to a lack

of prior planning, the commander can not move a unit when it

reaches the commander's vulnerability threshold. It is the

time spent above the vulnerability threshold that the

commander wants to minimize. This goal can be measured in

the number of tube hours spent above the vulnerability

threshold.

3. Minimize Casualties

Casualties can be incurred both in positions and

during displacement. In operational terms, a commander can

minimize casualties by moving often thereby minimizing

vulnerability. Or, he may take the safest but not

13

necessarily the shortest routes on displacements. This goal

to conserve assets for both current and future operations

must be balanced against the goal to maximize availability

time. This goal can be measured in terms of the tube /

truck / equipment / personnel time lost during the operation

due to casualties.

4. Optimize Logistics Operations

Logistics operations also experience vulnerability

and casualties and therefore goals two and three apply to

logistics units. More importantly, logistics units are

critical to the attainment of the first goal. Fire units

which are low on ammunition or fuel can not adequately

support maneuver forces and fire units which are out of

those supplies are not available to support maneuver units.

In operational terms, there are many different forms

of resupply operations. The battalion trains can deliver

supplies to the unit (unit distribution) or it can deliver

the supplies to a point where the fire units will have to go

to pick up their supplies (point distribution). The trains

can bundle their trucks into convoys to pick up and deliver

supplies or they can use the "trickle" method to pick up and

deliver supplies by sending as few as one truck at a time as

the trucks become available. The method used depends on the

tactical situation, the enemy situation, the terrain and the

level of training of the units.

14

Optimization refers to making the most efficient use

of the supplies and the resupply assets in order to ensure

accomplishment of the field artillery mission. This goal

can be measured in terms of the amount of time firing units

spend critically short, or out of, critical supplies.

This analysis of the field artillery battalion's

goals and especially the statements of the goals in

operational terms tells us a lot about the internal

operation of the battalion and about what motivates

operational decisions. These motivating factors must also

be present in the wargame in order to have any true training

value.

D. ENVIRONMENT

The field artillery battalion exists in an environment

consisting of both friendly and hostile elements. The

friendly environment can also be divided. It consists of

command relationships and support relationships.

Command relationships refer to the fact that the field

artillery battalion is commanded by the division artillery

which is commanded by the division and the fact that the

maneuver battalions are commanded by the maneuver brigade

which is in turn commanded by the division and finally that

the support battalions are commanded by the division support

command which is also commanded by the division. In short,

there is no command relationship between the field artillery

battalion and the maneuver units or the support units.

15

Support relationships refer to the relationship that

does exist between the field artillery battalion and the

maneuver units and the support units. The direct support

field artillery battalion has a mission to provide close

support to a maneuver brigade. With this mission, according

to Field Manual 6-20-1, comes the requirement to provide

first priority on calls for fire to the brigade and to

provide fire support coordinating personnel to the brigade.

The division artillery assigns missions to the field

artillery battalion. By the same token, the division

support command assigns missions to its subordinate units to

provide service support to various divisional units. In

this manner, the field artillery battalion will have a

support unit assigned to provide supplies to support its

mission.

The hostile side of the environment refers to the fact

that the enemy exists to prevent accomplishment of the

battalion's mission. It does this by producing casualties,

by interdicting critical supplies, disrupting the plan, and

disrupting command, control and communications. There are

many forms of hostile acts performed by the enemy. Any

wargame must consider this aspect of the environment.

Another aspect of the environment is the fact that all

the elements of the system and the elements of the external

environment exist on the battlefield. They are separated by

considerable distances and must move frequently in order to

16

stay in the battle. They are positioned so as to best

facilitate accomplishment of their mission and to assure

survivability. They are positioned on terrain which

provides some degree of cover and concealment and which may

or may not facilitate communications with other elements of

the system and environment.

Finally, a discussion of the environment would not be

complete without considering what Clausewitz called

"FRICTION." [ref. 6) This refers to the fact that

operations never occur as planned. There are many reasons

for plans going wrong which are beyond the control of the

commander. All of them are lumped together and called

friction. This requires commanders to be flexible. They

must be able to modify plans quickly and issue effective

fragmentary orders.

An understanding of the environment is necessary for a

full understanding of the field artillery battalion system.

It is also necessary to include the critical aspects of the

environment in the wargame.

E. RESOURCES

The battalion's resources primarily include its people,

its equipment, and its supplies. Its people include its

leaders and its soldiers. They are trained and work

together as a part of a team. They operate the equipment

which helps to accomplish the mission. People are the

17

battalion's most important resource. It takes people to

operate the equipment and to use the supplies. It takes

trained people who can work together as a cohesive unit to

accomplish the battalion's mission.

The field artillery battalion's most critical equipment

includes its weapon systems, fire direction systems, and

supply trucks. All are critical to accomplishment of its

mission.

The field artillery battalion's most critical supplies

are food, fuel, and ammunition. All are critical to

accomplishment of its mission. Units establish required

supply rates (RSR) which tell higher level units how much

ammunition is required to accomplish the mission. The

higher level unit then establishes the controlled supply

rate (CSR) which is based upon how much ammunition is

available. If the CSR is less than the RSR, then the unit

must curtail operations to avoid exceeding the CSR.

Resources can be easily represented by computer

simulation. However, the manipulation and expenditure and

conservation of resources to accomplish the mission, which

is the subject of the next paragraph, is best left to the

human interaction portion of the wargame.

F. MANAGEMENT

In the military, the commander is responsible for all

that his unit does or fails to do. However, he has a staff

18

to assist him in the two primary management functions of

planning and controlling the battalion. The commander

alone, however, must provide leadership for the battalion.

His leadership serves to inspire and motivate his soldiers

and it provides direction for his subordinate units and his

staff. In addition to providing direction, the commander

must approve all plans and issue all orders in his name.

These aspects of command are very difficult to simulate

using computers and are best represented in wargames by the

human players themselves.

Staffs conduct planning under the commander's guidance.

The S3 is responsible for incorporating all of the staff

estimates and determining the recommended course of action.

The commander then either approves or selects his own course

of action. The staff then prepares the plans to execute

that course of action. The plan becomes an order when

issued to subordinates with an execution time. Planning is

a complex process which requires much training. It is

therefore suitable for the human element in a wargame.

Controlling refers to the process of monitoring

operations to ensure that they are being carried out within

the commander's intent. It also refers to monitoring the

overall tactical situation to determine if the plan is still

appropriate. If it is not appropriate, it involves

modifying the plan and issuing fragmentary orders.

19

Controlling is a continuous process which requires the

commander and his staff to monitor the battalion's

environment and resources and to make the tradeoffs implied

in the battalion's goals, all in order to accomplish the

battalion's mission. This complex process is especially

appropriate for the human interaction portion of the

wargame.

G. ARCHITECTURAL LINK DEPICTIONS

The discussion of the field artillery battalion thus far

using the systems approach has been very useful in

understanding the battalion so that an effective wargame can

be designed. Graphical portrayal of the discussion in the

form of the battalion's system architecture will now be

useful in clarifying and adding to that discussion.

Systems architectures can be depicted in several

different ways depending on the perspective desired. For

the purposes of this thesis, functional, spatial,

informational, and time depictions will be used. A

description of each can be found in this section.

1. Functional

"Functional architecture describes the technical

structure of large systems." [ref. 7: p. 2.4) Figure 2.1 is

a functional depiction of the divisional supersystem.

20

DIVISION

MANEUVER BRIGADE

MANEUVER

BATrAL1 ON

DIVISION ARTILLERY

DIVISION SUPPORT COMMAND

Figure 2.1 Divisional Supcr. System

21

Everything outside of the field artillery battalion itself

is a part of the battalion's environment. Boxes within

other boxes indicate command relationships. Arrows indicate

support relationships.

Figure 2.2 is a functional depiction of the field

artillery battalion. Again, boxes within other boxes

indicate command relationships. However, in this case the

primary function of each element is listed next to its box.

2. Spatial

Spatial architecture depicts the physical

relationship of the elements in the system. Figure 2.3 is a

spatial depiction of the field artillery battalion system.

Since a direct support field artillery battalion normally

supports a maneuver brigade, the brigade's battlefield

geometry is depicted. The firing batteries must be able to

project approximately two-thirds of their range into enemy

territory. Therefore, the howitzers are found four to eight

kilometers behind the front line of troops (FLOT).

Normally, all three batteries support the entire brigade

rather than one battery per maneuver battalion. Therefore,

batteries are positioned where they can best support the

entire brigade in accordance with the battalion's battery

displacement plan.

The battalion tactical operations center (TOC) must

be positioned farther back for survivability. But it must

be in close proximity to the supported brigade headquarters

22

FIELD ARTILLERY BATTALION

FIRING BATTERY

PROVIDES:

8 HOWITZER SECTIONS FIRE

SUPPORT

TACTICAL

OPERATIONS PROVIDES:

CENTER COMMAND

BATTALION COMMANDER AND

S3 CONTROL
S2

BATTALION

TRAINS PROVIDES:

XO LOGISTICS

SI SUPPORT

S4

Figure 2.2 Field Artillery Battalion System

23

FIELD ARTILLERY BATTALION

SPACIAL ARCHITECTURE

KI LOMETERS

254+ 15 -18 10-12 6- 8 0

Figure 2.3 Field Artillery Battalion Spacial Architecture

244

and it must be able to communicate with the firing batteries

and the brigade TOC.

The battalion trains are located even farther to the

rear for survivability and for ease of coordination with

support units. The dotted lines which emanate from the

trains indicate that resupply convoys are constantly on the

road.

The spatial architecture is important because it

puts the physical relationships of the elements in

perspective. An appreciation of the distances involved is

necessary to the wargame to simulate the times required for

events to transpire.

It is also important to note that Figure 2.3 is only

a snapshot of the system at a particular instant in time.

Elements of the system must continuously move in order to

perform their missions and enhance survivability.

3. Information

Information architecture is especially important to

the design of the wargame because it depicts the information

flow both within the system and to external elements.

Figure 2.4 depicts this flow for the battalion and its

environment. Only the most critical elements of information

have been depicted.

Implied in Figure 2.4 is the fact that if

information flows between two elements, then a

communications system must exist between them. This figure

25

FIELD ARTILLERY BATTALION

INFORMATION ARCHITECTURE

COORD,

Sfl. MISSION C

RREQUESS

RUP E
PREPLANS OR ES RD S

U INE REUEST FOR REPORE

SPTCOODRAIO

SP.REPORTS OR EST

F FOR

RQETPASFIREPLANS \FR

SUPPORII

OTHER THAN AMMO .

Figure 2.4 Field Artillery Battalion Information Architecture

26

does not show the communications nets. It only relates that

communications exists between the elements. The habitual

flow of information between elements leads to the use of

various message formats for different types of information

and it leads to standard operating procedures which dictate

when and how the messages will be sent.

Also depicted on Figure 2.4 with a dotted line is

the system boundary. Everything within the dotted line is

in the field artillery battalion system. Everything outside

the dotted line is external to the system. The lines of

communications that cross the boundaries are then external

communications and the lines of communications within the

boundaries are internal communications.

The information architecture is extremely important

to the analysis as it relates to the design of the wargame.

The primary problem will be which information is needed in

the wargame and which information is not necessary to

accomplish the goals of the wargame. Dividing the

communications into internal and external communications

also will be helpful in arriving at a solution to the

problem.

4. Architectural

Architectural depictions based on time relationships

help to place events in their natural order. In a complex

system such as the field artillery battalion, this can be

very difficult to do. Schedules of events are not

27

appropriate because events do not usually happen at a

specific time. It is even difficult to attempt to put

events into a chronological order without assigning specific

times. The best that can be done is to use the concepts of

time based depictions of architecture to analyze the combat

process.

Figure 2.5 is the Conceptual Combat Operations

Process Model [ref. 8: p. 27]. By avoiding specific events

and analyzing the generic process instead, an understanding

of the logical order of the component parts of any operation

can be gained. It is important to note that as a generic

model, it applies to tactical operations, logistical

operations, and applies equally well to both current

operations and future operations plans.

Figure 2.5 implies that combat operations consist of

a cyclic process which is stimulated by the environment and

leads to an attempt to understand the environment. This is

followed by the formulation of alternative courses of

action, guidance from higher headquarters, and ultimately a

decision to take some action which relates to the perception

of the environment. This decision is then sent to

subordinate elements and is executed. This in turn has some

impact on the environment and changes the stimulus which

caused the action in the first place and the process repeats

itself.

28

CONCEPTUAL COMBAT OPERATIONS

PROCESS MODEL

SENSE

DECIDE FIGHER LEVELS

Figure 2.5 Conceptual Combat Operations Process Model

29

This model gives structure to the wargame by

providing a logical order to the functions which must be

performed both by the computer program and the human

interaction portions of the game.

N. SU3 OARY

In order to build a wargame that trains officers in the

integration of tactics and logistics, an analysis of the

field artillery battalion is necessary. Use of the systems

approach provides a structure for this analysis so that all

of the important aspects of the battalion can be considered.

The understanding of the field artillery battalion which was

gained through this analysis is critical to the design of

the wargame. The next chapter will discuss the approach

taken in the design of this wargame.

30

111. THE CONCEPTUAL APPROACH

A. INTRODUCTION

This section is not intended to provide detailed,

technical design criteria for the wargame. Rather, it is

intended to provide the approach taken to resolve many of

the issues which arose while conceptualizing this wargame.

It is important to differentiate between the field

artillery battalion system and the wargame. The wargame can

be considered a system unto itself. Therefore, the best way

to look at the conceptual approach is by using a system view

of the wargame. In many cases, the best approach to take

for certain system aspects of the wargame is to simply

simulate the same system aspects from the field artillery

battalion. In other cases, there are some important

differences. Therefore, specific references will be made to

the wargame system and to the battalion system in order to

avoid confusion.

As with the battalion, a discussion of the mission,

goals, environment, resources, and management follows.

These aspects, along with a discussion of some of the

architectural depictions, will provide the vehicle for a

complete discussion of the approach taken for the design of

this wargame.

31

D. KIS8ION OF THB WARGXB

The mission of this wargame is to train officers in the

integration of tactics and logistics as related to the

command and control of a field artillery battalion. There

are several implied tasks which are necessary for the

wargame to accomplish this mission. The wargame must be

oriented toward the command and control elements of the

battalion. Therefore, the players will consist of an

operations and intelligence (O&I) staff section, a logistics

(S4) staff section, and a battalion commander. It must

require the players to weigh all of the tradeoffs involved

in integration of tactics and logistics. Special emphasis

must be given to those areas which are not normally

experienced in a peacetime training environment. Since the

mission is to train officers, the wargame must provide

feedback to the officers so that good decisions are

reinforced and poor decisions are penalized. This can be

done through the use of a measure of effectiveness which

evaluates the player's performance. Finally, the wargame

must be able to provide a realistic representation of the

field artillery battalion system. This means that the field

artillery mission should be central to the wargame's design.

Each of the artillery's ten implied tasks must be performed

by the wargame to varying degrees.

32

1. Target Aoquisition

This function will not be explicitly played in the

first iteration of the wargame. Targets will be provided to

the battalion TOC. All other firing will be done at some

predetermined rate depending on the tactical situation.

2. Meteorology, Survey, Technical Fire Control

These functions also will not be explicitly played

as a part of this wargame. This is due to the fact that

these functions are not germane to the wargame's mission of

training officers in the integration of tactics and

logistics. These functions relate to the computation of

actual firing data.

3. Fire Planning

This function must be performed as a part of the

wargame at a tactical level since it occupies a significant

portion of the operations and intelligence section's time.

More importantly, it must be done with the logistics

situation in mind. It requires an analysis of the CSR in

order to avoid firing too many rounds.

4. Tactical Fire Control

Some battalion level fire missions will be useful

for causing the O&I section to determine the number of

rounds to fire on a given target and the number of fire

units. However, the level of resolution need not includewi

the various shells and fuzes in the wargame's first version.

Once again, this will cause the O&I section to weigh the

33

desire for effects on target against the logistics

situation.

5. Plans and Orders

These functions represent the essence of the command

and control / battle management portion of the wargame.

They will be performed by the players as they would actually

perform them in a real wartime environment. The game will

begin with a hard copy of the supported maneuver unit's

operations order. The O&I section and the logistics section

will then begin planning, develop an order, and then, using

the computer, send the order to the units to execute. The

computer program portion of the wargame is responsible for

the execution of all orders.

6. Positioning

This function is also extremely important to the

design of the wargame. All positions must be coordinated

with the maneuver unit that owns the land. Positions must

also be coordinated with the resupply plan.

7. Reconnaissance

Reconnaissance must be performed within the wargame

so that realistic plans can be made. At the very least, map

reconnaissance can be performed. Ultimately, a computer run

network using Dykstra algorithms can be used to simulate

route reconnaissance to determine the shortest or quickest

routes.

34

S. Displacement

This function is central to the integration of

tactics and logistics. Displacement routes must be well

planned and coordinated with the resupply plan. The

movement times must be minimized in order to maximize

availability time. Routes which are under air defense

umbrellas may be longer but they reduce casualties.

Displacements must be timed so as to avoid falling too far

behind maneuver forces or to avoid getting overrun by the

enemy. Additionally, displacements should be timed to

minimize the amount of time a unit spends above the

commander's vulnerability threshold. All of these tradeoffs

should exist within the wargame as well as the actual

movement of the units along the paths and nodes of the

previously mentioned network.

9. Communications

Some sense of communicating orders and receiving

reports must be contained within the game. The computer

assisted portion of the game will provide this service. The

players will be able to establish certain standard operating

procedures (SOP) to control such things as the frequency of

standard reports like the unit situation reports.

10. Combat Service Support (CBS)

This function is obviously critical to

accomplishment of the wargame's mission. In order to give

proper emphasis to the importance of this function, each of

35

the ammunition resupply trucks will be explicitly played.

Of the various types of supplies, only ammunition will be

played in the first iteration of the wargame. This is

because the other types of supplies are normally played

through actual consumption even in peacetime exercises. It

is ammunition which has the most bulk and the largest impact

on tactics.

This analysis of the wargame's mission, along with

its implied tasks, provides a discussion of the wargame's

intended purpose, its scope, and a brief description of the

functions it must be able to perform.

C. GOALS OF THE WARGAME

The goals of the wargame are defined on two levels. The

first concerns the goals of the wargame's design and the

second concerns the goals of the players of the wargame.

The goals of the wargame's design should simply be to

design the wargame so that each of the battalion's goals are

not only played, but also their degree of accomplishment is

measured. Specifically, availability, vulnerability,

casualties, and logistics optimization should all be played

in quantifiable terms so that they can be measured by the

computer portion of the wargame. Once they are measured, a

measure of effectiveness (MOE) can be computed. This MOE

provides feedback to the player so that they can reassess

36

their decisions and perhaps improve their MOE the next time

the wargame is played.

The goals of the players should therefore be the same as

for actual operations; to maximize fire support provided to

maneuver units by maximizing availability time, to minimize

the amount of time spent above the commander's vulnerability

threshold, to minimize the time lost to casualties, and to

minimize the amount of time units spend either critically

short or out of ammunition.

These parallel goals (between the wargame and the

players) serve as the thread of continuity which ties the

wargame together. The wargame should be designed to

accomplish the wargame's system goals and all components of

the system should contribute to the furtherance of the goals

within the intent given by the wargame's mission. In this

way, the players will be able to use the same decision

criteria in playing the wargame as they would in wartime.

Their objective is to maximize the measure of effectiveness

(MOE) by seeking to accomplish the player's goals which are

the same goals which are found in the field artillery

battalion system.

The actual MOE used for this wargame, named the Field

Artillery Battalion Command and Control (FABCAC)

Effectiveness Index by the authors, is directly related to

each one of the goals. The MOE is as follows:

37

MOE = "tube hours available" ratio - "truck hours lost
to casualties" ratio - "tube hours above the
vulnerability threshold" ratio - (.5 * "tube hours
critically short of ammunition" ratio).

Each of the ratios in the MOE is in terms of actual hours

over maximum possible hours. Tube hours lost due to

casualties are not explicitly listed in the MOE because they

are accounted for under avmilability time. Tube hours lost

due to ammunition outage are also accounted for under

availability time. By accounting for ammunition outage

under availability time, the players are afforded the

opportunity to minimize the effect of an ammunition zero

balance by moving a unit since it cannot shoot anyway. In

this way, the players can get the unit into a better

position tactically and set its vulnerability level to zero

while out of ammunition rather than during a period in which

the unit could be shooting.

D. WARGAME ENVIRONMENT

The wargame simulates many of the more important aspects

of the field artillery battalion system environment. First

and foremost is the fact that the battalion exists in a

hostile environment. This is reflected in the wargame by

inducing attrition of howitzers and ammunition trucks using

Lanchester-type equations. Attrition takes place both in

positions and along displacement routes. Attrition rates

are based upon force postures and the tactical situation.

38

Command and support relationships should be understood

by the players. The wargame is consistent with actual

doctrine in this respect.

The facts that all of the units exist on the

battlefield, are separated by considerable distances, are in

positions which provide varying degrees of cover and

concealment, and must move around the battlefield are all

important to the design of the wargame. It is anticipated

that the computer generated network will allow these aspects

of the environment to be simulated. Many of the nodes will

represent positions which afford varying degrees of cover

and concealment. The paths indicate the distances between

nodes and are used to control the movement of units between

nodes so that realistic travel times are generated based

upon path capacities. Additionally, paths have attrition

characteristics which will determine the amount of attrition

incurred by a unit while on that path.

Finally, "friction" is an important element to portray

in any military wargame. Units will not always move through

a route exactly as scheduled. Enemy artillery attack will

cause unscheduled moves. These kinds of problems are also

found in the wargame in order to cause the players to be

flexible and issue fragmentary orders to rectify the

situation.

The approach for the actual physical environment of the

wargame involves a computer program which is written for

39

execution on a personal computer. It is important to

restrict the wargame to execution on a PC because that is

all that most battalions have readily accessible. This

wargame can be played by the O&I section, the logistics

section, and the battalion commander in the battalion

headquarters or the PC can be set up in the battalion

tactical operations center (TOC) in the motor pool. In

either case, situation maps and status boards will be

necessary not only to keep up with the battle, but also to

help evaluate the effectiveness of the section's SOPs and

information management procedures.

E. WARGAME RESOURCES

Other than the players themselves, personnel are not

explicitly played as a part of this wargame. It is assumed

that when equipment is lost, its personnel are also lost and

vice versa.

The only equipment represented in the wargame are

howitzers and ammunition trucks. These are the primary high

density items of equipment found in a battalion. They are

also the items of equipment which most significantly impact

on the accomplishment of the wargame's mission.

The only supply represented in this version of the

wargame is ammunition. Ammunition, by far, represents the

most bulk in resupply operations and is directly involved in

the integration of tactics and logistics.

40

In order to effectively run the wargame, the following

resources will be necessary:

1. Operations players, logistics players, and commander.

2. One, IBM compatible, personal computer.

3. Maneuver unit operations order, overlays, and maps.

4. O&I section and logistics section status boards and
map boards.

5. Wargame computer software and user's manual.

F. MANAGEMENT OF THE WARGAME

All of the management as defined for the field artillery

battalion system will be handled within the human

interaction portion of the wargame. The commander will

provide direction and leadership to the staff and he will

make final decisions. The staff (O&I and logistics) will

prepare estimates and plans. They will also assist the

commander in monitoring operations by interpreting reports

and preparing and communicating orders and by assessing the

situation to determine if the plan needs to be modified.

G. ARCHITECTURAL DEPICTIONS

Once again, an effort has been made to separate the

architectural depictions into four categories which

represent functional, spatial, informational and time

relationships. The architectural depictions have been

separated from the previous discussion because most of the

depictions transcend any one aspect of a system and

41

therefore serve to tie together the previously mentioned

ideas. Additionally, they reveal new aspects of the system

which have not already been discussed.

1. Functional

"Functional architecture describes the technical

structure of large systems." [ref. 7: p. 2.4] Figure 3.1

represents a decision taxonomy known as the "SHOR" paradigm

[ref. 2: p. 626]. Within the context of this thesis, the

"SHOR" paradigm is used to indicate, at a conceptual level,

the boundary between the human portion of the wargame and

the computer portion of the wargame. What is inside the

dotted line is the human portion of the game and what is

outside the dotted line is handled by the computer. An

interpretation of the depiction indicates that the computer

will provide some kind of trigger event which will provide

the stimulus or data to the players (S). This will cause

the players to attempt to interpret the data to determine

what it means in relation to their mission accomplishment

(H). They will then create alternative courses of action to

counter the perceived impact of the data (0). Finally, they

will take action by issuing an order (R). This order is

executed by the computer and has some effect on the

environment. The players monitor the environment and

collect raw or preprocessed data and the cycle repeats

itself. At any given time, multiple stimuli can be received

by the players which can result in one or more responses.

42

THE SHOR MODEL

.............

S H 0 R

STIMULUS HYPOTHESIS OPTIONS RESPONSE

ENVIRONMENT

RAW OR PREPROCESSED DATA ATGNSSACTION OR COMMUNICATION

PROTAGONISTS

Figure 3.1 The SHOR Model

43

The entire process takes place continuously for the duration

of the game.

Figure 3.2 is the computer architecture which will

be used for the wargame. It has been divided into three

major modules: the Pre-Processor, the Game, and the Post

Processor. Each of these major modules has been divided

into the lesser modules representing functions which are

required to be performed to support the major module. Some

of the more significant points which can be derived from

this depiction are that the players will be able to input

their own scenario if they do not want to use the one that

will come with the game, the players will be able to input

some of their own parameters which will represent their unit

SOPs and commander's guidance, and finally, the players will

be able to save a game which is in progress and then get

back to it later.

2. Spatial

Spatial architecture depicts the physical

relationship of the elements in the system. Figure 3.3

depicts a basic level configuration for game's set-up

requirements. Figure 3.4 depicts the spatial relationship

of the elements of the field artillery battalion within the

wargame. In this figure, it is apparent that all of the

elements are spatially related to each other through the use

of the network architecture. Units are located at nodes and

44

J-

l~6)

6)rs

* i"

HUo .. mm

1-,<

bbO
~b u

IL I , 4a .

45. ..i I I II I I I) I p

COMMANDER

Figure 3.3 Wargame Setup Requirements

46

ARTILLERY WARGAME

SPATIAL ARCHITECTURE

TYPE NODE VULNERABILITY DISTANCE

O COVER & CONCEALMENT ROAD CONDITIONS

KI LOM~rERS

25+ 15 -18 10-12 6 -8 0

Figure 3.4 Artillery Wargame Spacial Architecture

47

displace along paths. The legend contains a listing of the

various characteristics of nodes and paths.

3. Informational

Informational architecture depicts the flow of

information within the system. Figure 3.5 is very similar

to Figure 2.4 except that only those elements of information

which will be used in the wargame have been listed on the

diagram. Additionally, in Figure 3.5, the dotted line

separates the game's players from the computer portion of

the wargame.

4. Time

The time based architectural depiction for the

wargame is the same as for the field artillery battalion

system. In both cases, the process that the key people must

use to make decisions remains the same. Therefore, Figure

2.5 applies equally well to the wargame.

H. SUMMARY

The basic conceptual approach taken for this wargame has

been to analyze a field artillery battalion from a systems

point of view. Then, using the knowledge gained from this

analysis, lay out the conceptual framework for a wargame

which emulates the pertinent aspects of the field artillery

battalion. Once again, the systems approach is very useful

in laying out this framework because it requires that every

48

ARTILLERY WARGAME

INFORMATION ARCHITECTURE

WSSION
A

x ASSIGNI(ENT CD
RS& CSR

REPORTS

F11
DR

0
S

FIREPLANS
ORDERS

D
F

LAND COORD
AN E

R _
NT REQUEST FOR

F I F
TARGETS FIRE

QU STS F

.......................... INTEL
REPLAS0U

.......

F NTEL
S

PLAN

R

7REE

R FIR

T
S

DRRE
REQUESTS FOR FI

FIRE LA S
LOGISTICS

FIRE PLANS
SUPPORT L C

COORDINt'riON

RSR PLANS

CSR REPORTS

ORDERS:: INTEL
ORTSREQUEST PLANS FIREPLANSFIREPLANS

PS
SUPPLIES REPORT CSRpL

I NTELLOG. REQPIRMENTS kSR

SUPPORT,'
COORD

'NTS

T
0

UPPLIESREQ S FOR SUPPLIES

dtHER THAN AMMO

...

Figure 3.5 ArtiUery Wargame Information Architecture

49

facet of the system be considered under the categories of

mission, goals, environment, resources, and management.

The wargame attempts to capture this framework in a form

which provides a learning environment for those tasked with

the command and control of a field artillery battalion. The

wargame is only computer assisted since the essential

element of any tactical command and control system is the

human decision maker. The computer portion of the wargame

only provides relevant information to the decision maker and

then executes his decisions and keeps track of the game's

statistics. At the end of the game, an MOE is calculated

which provides an assessment of the player's performance.

This forces the player to plan ahead and consider all the

relevant concepts in order to maximize howitzer availability

time, minimize casualties, minimize vulnerability time and

optimize ammunition resupply. The intent of the wargame is

to provide an environment in which officers can learn to

consider the factors which are critical to the integration

of tactics and logistics.

The computer program itself is complex. It utilizes a

network architecture to facilitate the movement of firing

batteries and ammunition convoys and it uses Lanchester

attrition equations to decrement forces. Among other

things, the program simulates firing, consumption of

ammunition, movement of units, ammunition resupply, and

changes in the tactical situation. Periodic reports as well

50

as emergency messages and warning reports are output to the

decision maker. The decision maker has the ability to issue

commands to the units. Among the commands are movement

orders, firing rate orders, ammunition resupply orders and

requests for situation reports from the units.

Finally, all this must be done in a format which is

usable at the battalion level. This means that it will be

executable on a personal computer, it will be well

documented, and it will enable the players to use their

normal unit / section SOPs.

51

IV. WARGAXZ DZSIGN

A. INTRODUCTION

The purpose of this Chapter is to supplement the

documented source code which can be found in the Appendix.

A description of the code's structure and organization can

be found in the documented source code. In this Chapter, a

description of the overall design used in the coding of the

computer portion of the wargame will be given.

Turbo Pascal version 5.0 and Turbo Pascal Database

Toolbox version 4.0 were used to code the wargame. Turbo

Pascal was used is because Turbo Pascal is one of the most

popular programming languages on the market. By using Turbo

Pascal, there is a reasonable expectation that users will be

able to modify their own source code.

In order to implement the wargame as described in

Chapter III, a "Time Step - Event Driven Hybrid" design was

used. An "Event Driven" design was needed to enable the

players to issue orders for future operations. A "Time

Step" design was used to perform the routine functions which

constantly occur over time in an artillery battalion. The

hybrid design will become more apparent later in this

Chapter.

Finally, a great deal of the design considerations used

for the wargame revolve around the desire to make the game

as "user friendly" as possible. In order to achieve this

52

objective, no computer commands are used in the wargame.

Everything is menu driven. All data entry fields are

protected so that only the correct type of data can be

entered. The terminology used by the game is as close to

actual military terminology as possible.

B. OVERMLL WARGAME DEZGN

The wargame's overall design can be described by

referring to Figure 4.1. Note that upon loading the game

there are three choices: "Play New Game", "Play Old Game",

or "Quit." If "Quit" is chosen, the player is returned

immediately to MS-DOS. If "Play Old Game" is chosen, the

old game's files are loaded and the program goes straight to

the Game Play Module. Finally, if "Play New Game" is

chosen, the Pre-Processor Module is entered. The Pre-

Processor is the portion of the computer program which

allows the player to set up or initialize the game with such

data as the battalion's configuration, the unit movement

network, the commander's guidance, the game's scenario and

the game's parameters. When the player is finished with the

Pre-Processor Module, hc enters the Game Play Module.

From within the Game Play Module, the entire game is

played. The design of the game itself will be discussed

later in this Chapter. From the Game Play Module, the

player can quit the game at any time. Upon deciding to

quit, the player has two options: either to quit with the

53

Issu CmdDelete Approp.Recordls Pao .P armCmdcords

Time ,[Step

[Increment Time J

Process Events List

Process Ammo Trucks

Process Fire Units

Generate Messages

Figure 4.2 Game Flow Chart

54

intent to continue playing the game later or to permanently

quit the game. When "Quit and Return" is selected, the

game's files are saved to disk. In both cases, the program

then enters the Post-Processor Module.

In the Post-Processor Module, the game's statistics are

tabulated and the Field Artillery Battalion Command and

Control Effectiveness Index is computed. After this

information is printed, the program returns the player to

MS-DOS.

C. RECORDS

The basic data structure used in the wargame is the

record. The following records are used by this version of

the wargame.

1. Scenario Record

2. Commander's Guidance Record

3. Game Parameters Record

4. Field Trains Record

5. Fire Unit Record

6. Ammunition Truck Record

7. Events List Record

8. Node Record

9. Path Record

The fields contained in each record can be found in the

global declaration section of the source code. The first

four types of records are all single records. The fire unit

records and the ammunition truck records are maintained in

55

an array of records. Finally, the last three types of

records are all stored in their own B+ lists in disk files

created by the Turbo Pascal Toolbox. The events list

records are stored in increasing order according to the

event's date time group. The nodes and paths are each

stored in their respective lists according to the node and

path name.

The reason that the fire unit records and the ammunition

truck records are stored in arrays is because there are only

a finite number of those records and because every record

must be accessed every time step. On the other hand, the

event list, node, and path records are stored in database

files because there are potentially an unlimited number of

these records and because only selected records will be

accessed in any given time step.

D. GAME PLAY DESIGN

The Game Play Module was designed in accordance with the

flow chart depicted in Figure 4.2. Note that in this top

level flow chart for the Game Play Module there is only one

decision point. This was deliberately designed in order to

focus all aspects of the game at one point. This point is

referred to throughout the rest of the thesis as the "hub of

the wargame." From this hub there are three possibilities:

the Time Step Module, the Issue Commands Module, and the

Change Game Initialization Module.

56

Quit Play New Gome Old Game
or

Pre- Pr ocessor

Game

or Quit &-Return

Figre R1tirsve Files

5o Disk

Post Processor

S

Figue 4. Fist rcerssow hr

5"7

If the "Change Game Initialization" option is chosen,

the program takes the player to many of the same procedures

that were used in the Pre-Processor Module. The player is

given the opportunity to change commander's guidance, add

nodes and paths, and change some of the game's parameters.

If the "Issue Commands" Module is chosen, the player is

given the option of issuing one of several commands. The

list of possible commands follows:

1. Convoy Ammunition Trucks

2. Dissolve Ammunition Truck Convoy

3. Move a Unit

4. Reqvest a Unit Situation Report

5. Change a Unit's Firing Rate

6. Assign Ammunition Resupply Mission

7. Assign Ammunition Pickup Mission

8. Issue a Fire Order

9. Cancel a Command

In most cases, the result of a command is to add or

delete one or more events list records. In some cases, it

involves direct modification of ammunition truck records or

fire unit records.

If the time step is chosen, the program will increment

the game time and then search the events list to retrieve

any records with an execute time between the last time

step's game time and the current game time. As each record

is retrieved, it is executed based upon the record's key

58

field. The key field contains the "type action" which took

place. This "type action" is what determines which

procedure is called. After all applicable events are

executed, the program enters the Field Trains Processing

Module, followed by the Ammunition Truck Processing Module,

then the Fire Unit Processing Module, and finally the

Generate Messages Module.

In the Field Trains Processing Module the vulnerability

level is determined, then the program checks to see if the

unit receives an enemy artillery attack, and finally,

casualties are computed. In each of the different type of

unit modules, the vulnerability level is determined and then

casualties are assessed based on the linear law form of the

Lanchester attrition equations. More will be said about the

assessment of casualties later is this Chapter.

Additional functions which take place in the Fire Unit

Processing Module include the firing of ammunition by each

fire unit, the determination of each unit's ammunition

count / status, and the update of such fire unit statistics

as availability time and ammunition critically low time.

In the Ammunition Truck Module, the program conducts the

actual resupply operations, checks for sufficient crew rest

to carry on with the mission, assesses casualties, and

increments the truck's statistic. The only statistic which

is tracked is the truck's casualty time.

59

The last module of the time step is the Generate

Messages Module. There are two general categories of

messages, those which are sent to the players by the

battalion's subordinate units and those which are sent by

other elements. The former category of messages is

generated by checking for various flags in each subordinate

unit's records. The later type of message is generated at

random times throughout game. Examples of this type of

random message include such messages as the "Bridge

Destroyed" message and the "Road Mined" message.

E. PROGRAM ILLUSTRATION

In order to illustrate how all the different modules

work together, an ammunition resupply operation will be

described. It is important to note that an operation of

this type may be only one of many operations taking place

concurrently in the game.

The operation which will be used for the illustration

involves ordering a convoy of five trucks to move from point

"A" to point "B" to deliver their loads of ammunition.

Multiple commands must be used to issue this order. First,

if not already organized into a convoy, the "Convoy

Ammunition Trucks" command must be issued. In order for

this command to be executed, all trucks must be in the same

location. Next, the "Assign Ammunition Resupply Mission"

command must be issued. This command modifies all the truck

records in the convoy to reflect the fact that a mission has

60

been received, and to reflect the fire unit to be resupplied

and the node in which the resupply is to take place. All

trucks in the convoy must have full loads of ammunition on

board in order for this command to be executed. Finally, a

"Move Unit" command must be issued. In this command, either

a depart or a occupy time is specified and a route is

specified in terms of nodes and paths.

When the "Move Unit" command is entered, a procedure is

called which builds an itinerary for the unit. It takes

either the depart time or the occupy time and works either

forward or backward as appropriate to determine the

itinerary. The time required to traverse each path is

determined based upon the length of the path, whether it is

day or night, the road conditions, and the type of convoy.

Using this information, event list records are created

for the time that the unit departs its current location, the

time that a unit moves through each node in the route, and

the time that the unit occupies its new location. During

each subsequent time step, the events list is checked. For

each event relating to this move, the convoy's location is

changed as well as other fields in the record. Also during

each time step, the trucks in the convoy have casualties

assessed based upon the vulnerability level of the path they

are traversing and whether it is day or night.

Once the convoy arrives at its destination, each truck

in the convoy is taken out of a moving status when the

61

occupation event is processed. In all subsequent time

steps, until the resupply operation takes place, the program

will check to determine if both the convoy and the unit to

be resupplied are in the same location. If they are, the

resupply operation will take place. After the resupply

operation has taken place, the fire unit's ammunition count

is incremented and each truck in the convoy's ammunition

count is decremented. At the end of the time step a message

is generated from the convoy to the battalion S4 notifying

him that the mission has been accomplished and requesting

further orders.

F. CASUALTIES

For the purposes of this wargame, it has been assumed

that the artillery units would not receive any direct fire

from enemy units. The only types of enemy fires in this

wargame are from enemy air attack and from enemy artillery

attack. Both of these types of attacks are produced by area

fire weapons. Therefore, the Lanchester linear law

differential model was used to assess casualties.

Specifically, the following form was used:

dx = - axy
dt

Where "a" is the attrition coefficient, "x" is the number of

friendly elements being attrited, and "y" is the number of

firing elements.

62

For this wargame casualties are calculated based on

three different possible unit postures: unit in a position,

unit in a position and receiving a deliberate artillery

attack, and unit moving. For each posture there are four

different attrition coefficients: friendly cannons attacked

by enemy artillery, friendly cannons attacked by enemy

bombs, friendly trucks attacked by enemy artillery, and

friendly trucks attacked by enemy bombs. The underlying

unit of time for these coefficients is one minute.

The number of friendly elements being attrited, "x", is

the percent of each truck which is remaining for ammunition

trucks. For firing units it is the number of firing

sections in operating condition.

The number of enemy firing elements, "y", is considered

in two parts: enemy air bombs and enemy artillery rounds.

This variable can be considered to be related to the

intensity of the attack. For this wargame, the intensity of

the attack varies according to several factors. Some of

these factors are listed below:

1. Day or night

2. Rural or urban position

3. High Medium or low cover and concealment

4. Acceptable, high, or critical vulnerability level

5. Maneuver mission offense or defense

For each type of enemy weapon, air bomb or artillery round,

the number of attacking elements is determined by summing

63

the number of bombs or rounds contributed by each factor.

For example, if a fire unit is in an urban position, the

time is later than end-evening-nautical-twilight (EENT), the

position has good cover and concealment, the unit's

vulnerability level is acceptable, and the supported

maneuver unit's mission is offense then the value of "y" is

determined by summing the number of bombs or the number of

artillery rounds for those particular factors which are

applicable to the unit's situation.

Next, the casualties assessed against the friendly truck

or fire unit due to each type of enemy weapons system, air

bomb or artillery round, are calculated and then summed.

Once the casualties for one minute are determined, they are

multiplied by the number of minutes in a time step and then

assessed by subtracting the determined amount of casualties

from the truck's effective percent figure or from the number

of firing sections in operating condition for fire units.

By computing casualties in this manner, one procedure is

used to determine casualties for any given situation by

passing the appropriate parameters in the procedure call.

The parameters are the type unit, the unit's posture, and

factors which are applicable to the situation at hand.

64

V. PLRYER'S MANUAL

A. INTRODUCTION

This chapter is intended to provide a stand alone

player's manual for the play of the wargame. For

information concerning the technical aspects of the code,

refer to Chapter IV or to the documented source code itself.

In this chapter, the mechanics of actual game play will be

discussed.

The wargame can be thought of as consisting of two

parts, the computer assisted part and the manual part. In

the manual portion, players should attempt to operate as

closely as possible to the way they normally operate during

combat or simulated combat conditions. The computer

assisted portion of the game involves a computer program

which provides the dynamic information which the players use

to make command and control decisions. The computer

assisted portion also keeps track of statistics and

calculates a measure of effectiveness which can be used to

assess player performance.

The wargame can be played at any level of intensity.

That is, the players can play the manual portion of the game

at a full scale with written orders, staff estimates, and

detailed planning or they can play it relatively casually by

just using "judgement" or "best guesses" to make decisions.

65

In either case, the computer assisted portion of the game

remains the same, it simply takes the human input and

processes it. The point is that the game can be played as a

part of a full battalion CPX or during weekly officer

professional development time. This is possible because the

wargame is designed to be played at the player's pace. The

pace is determined by the player by requiring him to

physically initiate each time step.

In order to make the wargame easy to learn and remember,

the wargame was designed to be completely menu driven.

There are no commands to remember.

B. MEASURE OF EFFECTIVENESS (MOE)

It is important to discuss the wargame's measure of

effectiveness up front in the player's manual because it

tells a lot about what the game's objectives are and what

the player's objectives should be. While playing this game,

the player should always keep in mind the fact that the

mission of the wargame is to train officers in the

integration of tactics and logistics as it relates to the

command and control of a field artillery battalion. As

such, the game is oriented toward the integration of tactics

and logistics and may not do justice to other important

aspects of a field artillery battalion.

The player's objectives should be to play the game by

taking the same actions they would take in a real situation

while trying to maximize the game's MOE. The MOE is

66

calculated based upon statistics which are compiled

throughout game play. The intent of the NOE is to reinforce

favorable statistics and to penalize unfavorable statistics.

In this way, players can judge how effective they were at

the command and control of the field artillery battalion.

The statistics which are tracked in the wargame mirror

the four goals of a field artillery battalion as discussed

in Chapter II. The actual MOE, called the Field Artillery

Battalion Command and Control Effectiveness Index, is

directly related to each one of the goals. The MOE is as

follows:

MOE = "tube hours available" ratio - "truck hours lost
to casualties" ratio - "tube hours above the
vulnerability threshold" ratio - (.5 * "tube hours
critically short of ammunition" ratio).

Tube hours lost due to casualties are not explicitly listed

in the MOE because they are accounted for under availability

time. Tube hours lost due to ammunition outage are also

accounted for under availability time. By accounting for

ammunition outage under availability time, the players are

afforded the opportunity to minimize the effect of an

ammunition zero balance by moving a unit since it can't

shoot anyway. In this way, the players can get the unit

into a bette.- position tactically and set its vulnerability

level back to zero while out of ammunition rather than

during a period in which the unit could be shooting.

67

C. GETTING STARTED

To start the computer assisted portion of the wargame,

the players must first ensure the printer is turned on and

is on-line. At the "A:" prompt, type WAGAME and press

"return." This will take you to the Main Menu. Throughout

the wargame, the "arrow" keys are used to move the cursor to

the various choices, the "return" key is used to make a

selection and the "Fl" key is used to get help. Any data

fields which require a choice to be made between such

entries as "high", "medium", or "low" can be entered by just

typing the first letter of the word, e.g., "h", "m" , or

"1". At the main menu the player has three options; start a

new game from the beginning, continue an old game from the

point where the game was previously quit, or simply to quit

the game and return to the MS-DOS "A:" prompt.

Selecting "Continue an Old Game" will take the player

directly to the game play screen and will pick up with the

one and only old game which is on file on that particular

disk. Selecting "Start a New Game" will require the player

to initialize the game. This can be done by loading a

scenario file. The "Enter Scenario File Name" screen allows

the player to do this. Refer to Figure 5.1 at the end of

the Chapter. When the screen first is displayed, the cursor

is after the "scn" on the directory line. The player has

two options. He can hit "return" to get a directory listing

of all the scenario files on the disk or he can press the

68

"escape" key to build a new scenario file. If the "escape"

key is used, the program will require the player to enter a

scenario name. A valid scenario file name is "*.SCN." If

the player chooses the directory listing, then he must place

the cursor over the file name desired and press "return."

Either case will lead to the Game Setup Menu.

D. GAME SETUP MENU

The purpose of this menu is to allow the players to

start the game or view, change, or print the game scenario /

network, the game parameters, the commanders guidance, and

the battalion configuration / status. All but the "Play

Game" option will be discussed in this section. The "Play

Game" option will be discussed in Section E of this chapter.

It is strongly recommended that players print all of the

game initialization data before beginning the game. This

serves two purposes. First, it forces the player to review

the data to ensure it is correct. Secondly, it gives the

players a hard copy of the data that can be used throughout

the game as a reference. All printing is done by pressing

the "F4" key. This prints the currently displayed screen.

Throughout the view and change options, use the arrow

keys to move between fields, use "page up" and "page down"

to move between pages where applicable, and use the "escape"

key when finished with an option.

69

1. View or Change Scenario / Network

This option takes the players to another menu which

allows them to view, change, or print the administrative

information contained in the scenario file, the network node

data, and the network path data. It also allows them to use

the network utility to test the network.

The term "network" as used here refers to the unit

movement network. Unfortunately, all unit movement in this

game is represented by moving along this network. This will

require the player to translate from grid coordinates and

routes on the map to nodes and paths in the unit movement

network.

Ln this network, nodes represent positions, or

potential positions. Paths represent a route between two

nodes. The nodes have a specific grid location on the map

whereas the paths provide connectivity between two nodes.

There may be two or more paths between the same two nodes.

The conventional depiction of a network shows the paths

between nodes as straight lines. For this wargame, it is

recommended that an overlay be developed which shows all of

the nodes as circles over their grid locations and all of

the paths as route traces of the routes represented by each

path. Each node and path will be labeled with a unique

name. (Nodes are labeled with up to three numbers and paths

with up to three letters.) In this way, the players can do

their normal planning. When they give the movement order to

70

the computer assisted portion of the wargame, they use the

overlay to dictate the route. (A future version of this

game should just take the start and end nodes and determine

the optimal route.)

Under the node data and path data options, the bulk

of the network can be setup before the game. However, it is

still possible to add nodes and paths during game play. The

importance of setting up a good network cannot be over

emphasized. The larger and more comprehensive the network,

the more flexible and more realistic the game play will be

for the players. The entire game is structured around the

movement network. Units occupy nodes and move along paths.

Point distribution of ammunition must also take place in a

node.

The computer assisted portion of the game is

interested in more than just location and length information

for each node and each path. There are many other elements

of information which are necessary to describe the nodes and

paths. These will be covered in more detail in paragraphs

b) and c) in this section.

a. Scenario Information (Figure 5.2)

This option allows the players to view, change,

or print the administrative information contained in the

scenario file. This screen contains the operations order

number, the date of operations order, the map sheets used in

the scenario, the game start time, and finally an

71

administrative note to be used at the discretion of the

scenario builder.

b. Path Data (Figure 5.3)

Most of the fields in the path data screen are

self explanatory. However, a few will require some

explanation. A path in this game can have no more than one

bridge. The player will have to pick a bridge if there is

actually more than one bridge on the map.

Road conditions and path vulnerability each have three

levels of quality. It is up to the players to make this

assessment in accordance with the relative conditions in the

game's area of operations. To get the first data screen,

press "F5."

c. Node Data (Figure 5.4)

The node data screen is also fairly self

explanatory, however, a few items require some discussion.

A given node must have at least one but no more than six

paths associated with it. A node can have an ammunition

count independent of any fire units or ammunition trucks.

This gives the players the ability to preposition ammunition

at a node for eventual transfer to a fire unit or ammunition

truck. The type position and cover and concealment fields

are like the path vulnerability and road condition fields in

that the entry is at the discretion of the players but

should be based upon the relative conditions in the area of

operations. All of these fields are important to the game

72

because they are some of the previously mentioned factors

which help to determine the casualty rates.

d. Network Utility

This option has not yet been implemented. It

will eventually allow the player to test the network by

tracing routes through the network and determining route

distances.

2. View or Change Game Parameters (Figure 5.5)

This option allows players to view or change the

game parameters. The game parameters are generally expected

values of such variables as convoy speeds. These expected

values can be set by the players to reflect the average

speeds based on a specific area of operations or opposing

force. For example, an area with a good road network will

have a higher expected value for the convoy speed. The

actual values used by the game will be based on these

expected values but will vary according to many factors.

Examples of some of these factors are the unit's mission,

the road conditions on the specific path, the intensity of

conflict, etc.

3. View or Change Commanders Guidance (Figure 5.6)

This option allows the player to view or change

elements of commander's guidance. The commander's guidance

data consists of items which could be part of a unit's

standard operating procedure (SOP), part of a specific

operations order, or verbal guidance given by a battalion or

73

division artillery commander for a specific operation. The

commander's guidance can also be changed while playing the

game.

4. view or Change the Battalion Configuration / Status

This option allows the player to view or change data

concerning the battalion's field trains, fire units and

ammunition trucks. The data concerning these elements is

the data that will be used to start the game.

Upon selecting this option, another menu is

displayed. The first choice allows the player to view or

change the trains location. The second option allows the

players to view or change the number of fire units, and the

number of ammunition trucks in the battalion at the

beginning of the game. The third choice allows the player

to view or change the starting firing unit data. And the

last choice allows the player to view or change the starting

ammunition truck data.

a. Location of Trains

This screen contains only the field trains

location. Note that the correct entry for all location

fields in this game are in terms of the unit's position node

name.

b. Number of Fire Units / Trucks (Figure 5.7)

Whatever numbers are entered for the number of

fire units and the number of ammunition trucks determines

the number of screens that are created for the next two

74

options. The maximum number of fire units in this game is

six and the maximum number of ammunition trucks is twenty-

four. If there are three fire units currently on disk and

six is entered for the number of fire units, then the third

fire unit's data will be duplicated three more times for the

additional three fire units. The next option can be used to

edit the new fire unit records.

c. Firing Unit Data (Figure 5.8)

Use the "page-up" and "page-down" key to move

between the various pages of fire unit data. Most of the

fields on these screens are self explanatory. However, a

few require additional explanation.

The location fields indicate the locations of

the units at the beginning of the game. These locations are

in terms of nodes. From a game play perspective, these

positions can be pre-hostility assembly areas or they can be

initial firing positions. At the beginning of the game, the

player will be queried at the start of each time step as to

whether or not hostilities have commenced. If the answer is

no, the game continues but no casualties are assessed and no

rounds are fired. If the answer is yes, the game continues

with firing and casualties and the players will no longer be

queried about the beginning of hostilities. This procedure

gives the players the ability to exercise a pre-hostility

deployment plan and tactically position their fire units and

75

their ammunition trucks prior to the commencement of

hostilities.

The maximum rounds capacity per firing section

field refers to the number of rounds the particular weapon

system / organic ammunition carrier can carry combat loaded.

The number of rounds on hand per fire unit can exceed the

unit's total capacity while in a firing position. However,

when the fire unit displaces, it can only move with its

maximum total capacity. The excess rounds will be left as

prepositioned ammunition on that node. Separate

arrangements must be made with battalion ammunition trucks

to transport that ammunition if necessary.

d. Ammo Truck Data (Figure 5.9)

As with the fire unit data, use the "page-up"

and "page-down" keys to move between screens. All of the

fields should be self explanatory.

E. GAME PLAY

After completing the initialization process, the player

should select the game play option. This will lead to the

game play control screen (Figure 5.10) which is the hub of

the wargame. From this screen the players can initiate time

steps, issue commands, change parameters, utilize the

network utility, and they can end the game play by selecting

the quit option. The game time will always be displayed on

any screen which is generated out of the game play control

screen.

76

In order to play the game, the following players are

required as a minimum: A battalion commander, a battalion

O&I section, and a battalion S-4 and / or Service Battery

Commander. These players are required in order to integrate

tactical and logistical planning and execution.

The game is actually played by initiating a time step,

viewing and / or printing any messages which may be

generated during the time step, and then issuing any

commands which may be necessary for the battalion to execute

its plans. The players themselves should act out their own

roles as if the wargame were actually a real situation.

However, rather than sending or receiving information /

orders using a radio, the players will receive information

from the computer and will send orders to the units

represented by the computer.

The players should conduct all planning in accordance

with their own unit standard operating procedures and Army

doctrine. For the computer assisted portion of the game,

special emphasis should be given to logistics plans since

the computer will require detailed orders for ammunition

resupply. Fire plans should also be made either manually or

using TACFIRE. Finally, plans should be made well in

advance for future fire unit moves so that routes can be

planned thereby facilitating timely execution.

77

1. Time Step

This option will process all events which take place

from the current time to the new current time. The

difference between these times equates to the length of a

time step. The time step size is set by the players under

the game parameter option during game setup. A size of 30

minutes is recommended.

There are many functions which take place during the

time step. The fire units shoot at some rate which is a

function of the battalion's CSR but can not exceed the

weapon system's sustained rate of fire. Resupply

transactions take place between ammunition trucks and fire

units in accordance with their orders. Ammunition trucks

return from the ammunition transfer point with new truck

loads of ammunition but the total ammunition drawn in a day

can not exceed the battalion's CSR. Units / trucks move

around the battlefield in accordance with their orders.

Units may receive incoming artillery and must request

permission for an emergency displacement. And finally,

units / trucks may receive casualties where the degree of

casualties is based upon numerous factors such as the type

position, the position's cover and concealment, and the

unit's vulnerability factor.

Casualties are determined each time step whether the

units are in a position or are on the move. Casualties are

assessed as fractional parts of firing sections and

78

ammunition trucks rather than whole sections and trucks.

This is a result of the fact that Lanchesterian attrition

was used. Therefore, casualties are determined as an

expected value over time rather than discrete amounts. Due

to this fact, it is possible to have less than a whole

ammunition truck and less than a whole number of firing

sections in a fire unit. In turn, all quantities which are

related to these systems are calculated based on the

effective percent of the system. For example, if a

particular ammunition truck is at 74 effective percent, then

it can only haul 74 percent of its full ammunition capacity.

During the time step, the computer not only executes

previously issued commands, but also generates messages for

the players to review and, if necessary, take some action.

A discussion of each message follows:

a. Incoming Artillery

This message notifies the battalion staff that

the named unit is receiving incoming and that they request

permission for an emergency displacement. It requires the

players to make an immediate response of either "y" or "n."

If "y" is entered, the unit will displace to its alternate

position within the same node. It will be in a moving

status for approximately 30 minutes. Upon occupation, its

vulnerability level will be set back to an acceptable level.

If "n" is selected, the unit will stay in position and ride

79

the attack out. Casualties will be higher and its

vulnerability level will continue to increase.

b. Unit Situation Reports

These messages will be displayed on a periodic

basis in accordance with the battalion's standard operating

procedure. The situation reFort frequency can be set using

the "commander's guidance" option under the "Change

Parameters" option of the Game Play Menu. Use the "page-up"

and "page-down" keys to move from one unit situation report

to the next. All fire units and the field trains will be

displayed.

c. Bridge Out

This message will appear randomly. It notifies

the players that a bridge on a certain path is out. It is

up to the players to avoid the path once this message is

received. If the players send a unit down a path which has

a bridge out, then the time the unit spends on the path will

be greatly increased.

d. Minefield

This message will appear randomly. It notifies

the players that a minefield has been placed on a certain

path. It is up to the players to avoid the path once this

message is received. If the players send a unit down a path

which has a minefield, then the time the unit spends on the

path will be greatly increased and the casualties will be

increased.

80

o. Vulnerability 1igb / Critical

This message notifies the players that the

vulnerability threshold for the named unit has become high

or critical. To warrant a rating of high, a fire unit must

exceed the commander's guidance for either the number of

rounds fired out of a position or the amount of time spent

in a position. The rating becomes critical when both items

of the commander's guidance has been exceeded. For the

field trains, the rating is high if too much time is spent

in the position. And if two times the commander's guidance

for time in position is exceeded, the field trains receives

a vulnerability rating of critical. In either case, the

expected value for the degree of casualties increases as the

vulnerability rating increases.

f. Ammunition Low / Critical / Out

This message notifies the players, as a real

fire unit would, when the named fire unit's ammunition

levels decreases below certain thresholds. If the

ammunition count is below 35 percent of the unit's maximum

capacity, then the ammunition status is "low." If the

ammunition count is below 10 percent of the unit's maximum

capacity, then the status is "critical." And finally, if

the ammunition count is 0, then the ammunition status is

"out. "1

There is no penalty for an ammunition status of

"low." It simply serves as a warning to the S4 to begin

81

planning for ammunition resupply operations to that unit.

If the status is "critical", then the unit is not considered

fully available. The amount of time a unit spends

critically short of ammunition is incremented and, at the

end of the game, a portion of the critically short time is

subtracted from the availability time. Finally, if the unit

is "out" of ammunition, it is placed in a cold status and is

therefore not available to support the maneuver forces. The

"Change Rate of Fire" command can be used to tell a firing

unit to decrease or increase its rate of fire.

g. Resupply / Pick-up Complete, Request Orders

This message is generated when an ammunition

truck has completed an ammunition resupply or pickup mission

and needs further guidance. The players then must issue the

appropriate commands to instruct the truck where to go and

what to do. In most cases, since the truck can only go to

the ammunition transfer point from the field trains

location, the players will issue an order to get the truck

back to the field trains. Another option would be to

instruct the truck to go to a specific node to pick up

prepositioned ammunition.

This approach was taken because most ammunition

trucks / convoys do not have organic radios. In most cases

they would call the field trains, utilizing the resupplied

uni''s radio, to give a situation report after accomplishing

their resupply mission.

82

h. Return from Ammunition Transfer Point, Field
Trains Gone, Request Orders

This message is generated when an ammunition

truck returns to what was the field trains location and

finds that the field trains is no longer there. The

player's reaction should be to issue orders to the truck

either to get to the field trains or to go somewhere else to

deliver the ammunition.

i. Crew Rest Warning

This message is generated when an ammunition

truck is given a movement order and the truck's crew has not

had the amount of rest dictated by the commander's guidance

in the last 24 hours. The truck will still accept the

orders, but the casualty rate will be a little higher. If

the crew has not had the amount of rest dictated by the

commander's guidance in the last 48 hours, then the truck

will not be able to accept the orders. This will force the

battalion's logistics planners to use all of the trucks

equally and to consider crew rest in their planning.

J. Front Line Trace Change

This message will be generated on a random

basis. When the maneuver forces are in the offense, the

front line trace will move some specified distance usually

towards the enemy in the direction of the attack. When the

maneuver forces are defending against an enemy attack, the

front line trace will move some specified distance usually

toward the friendly forces in the direction of the enemy

83

attack. The player's actions upon receipt of this message

should be to redraw the front line trace on their maps and

then check their firing unit's ranges to determine if they

need to be moved.

2. Issue Comands

This option is chosen to give orders to any of the

game's entities, i.e., firing units and / or ammunition

trucks. Once chosen, the player is taken to another menu

which lists each of the various types of commands. By

selecting a command description from this menu, the player

will be taken to the command screen. Most of the commands

have a unique command number. It is recommended that the

"F4" key be used to print the command screen so that the

players can keep track of the commands given and their

associated command number. The command number is needed in

order to cancel a specific command.

a. Convoy Ammunition Trucks (Figure 5.11)

This command enables the players to organize the

ammunition trucks into convoys. The convoy name must be

unique. Up to 24 trucks can be placed in a convoy but a

given truck can only be associated with one convoy.

Furthermore, all trucks named in the command must be at the

same location when the command is given. If the desired

trucks are not all a-, the same location, then the "move"

command must be used to get them all to the same place.

84

Once a truck is assigned to a convoy, it can

only receive orders as a part of the convoy. If one of the

trucks in the convoy can not accept a convoy order due to a

critical lack of crew rest, then the truck will

automatically be taken out of the convoy and will not

execute the order.

b. Remove Ammunition Truck Convoy (Figure 5.12)

This command enables the players to break-up the

named convoy. All of the trucks in the convoy will be

disassociated from the convoy and will once again be able to

receive orders as individual trucks.

c. Move a Unit (Figure 5.13a and 5.13b)

This command enables the players to order units

to move around the battlefield. The players should first

plan the move on a map of the battlefield. Once they

determine where they want the unit to move, they should

refer to the unit movement network overlay to determine if

the appropriate nodes and paths exist to make the move. If

they do not exist, the players should use the "change

parameters" option to add the needed nodes and paths. Once

this is completed or if the nodes and paths already existed,

then this command screen can be used. All the fields on

these screens should be self explanatory except the "node to

resupply" field. If the unit making the move is a firing

unit or ammo truck/convoy and it is supposed to pick up or

deliver ammunition along the way, then the players should

85

enter the node where the ammunition resupply is to take

place. This will cause the fire unit to stop at that node

to pick up ammunition. If the ammunition resupply trucks

are not there, then the ammunition resupply will not take

place and the fire unit will continue on its way after one

time step.

d. Request Situation Report

This command is used by the players to get an

immediate situation report. The output of this command will

be in the same format as the unit situation report which is

generated on a periodic basis during the game. The

situation reports for all units will be displayed.

e. Change Firing Rate (Figure 5.14)

This command is used to speed-up or slow-down

the named fire unit's rate of fire. The number entered for

the firing rate is a percent of the battalion's CSR. If the

number exceeds 100, then the firing rate will be such that

the unit, if in a firing status all day, will expend more

than its "CSR worth" of ammunition. On the other hand, if

the CSR is less than 100, then less than the "CSR worth" of

ammunition will be expended. This command is intended to be

used to manage the unit's ammunition expenditure. One of

the statistics reported at the end of the game is the amount

of ammunition the battalion has on hand in excess of the

battalion's CSR. Since the CSR should never be higher than

what the battalion requested as the required supply rate

86

(RSR), this statistic should be minimized. Therefore, the

players should use this command both to ensure the fire

units do not run out of ammunition and to ensure that too

much ammunition is not on-hand at the end of the game.

If the firing rate entered is less than 50

percent of the battalion's CSR, then the unit will be

considered less than 100 percent available. The percentage

of time considered available will be the same percentage as

the firing rate.

f. Ammunition Resupply Mission (Figure 5.15)

This command is used to assign a resupply

mission to an ammunition truck or convoy. Legal entries

for the "Unit to Resupply" field include any of the fire

unit names and the word "prepo." By entering preposition,

the players are telling the trucks to deliver the ammunition

to a node where the ammunition will be unloaded. The

players can then use the next command to tell a fire unit to

pick up the ammunition.

For any resupply mission to actually take place,

the trucks must be full and located at the same node as tne

fire unit. If a preposition mission, then the truck must be

at the node specified in the resupply command. In order to

get the truck and the fire units into the same location, one

or more move command must be used. Therefore, to cause a

resupply mission to be executed, the players must issue at

least two commands, a :esupply mission command and a move

87

command to the truck / convoy or to the fire unit or to both

the fire unit and the truck / convoy.

It is important to note that since the wargame

uses Lanchesterian attrition, the trucks are attrited by

fractions of a truck. Therefore, as the game progresses,

each truck will have a different effective strength. Since

a truck can only carry its "effective strength" worth of a

full truck's hauling capacity, less rounds than full

capacity of a truck will actually be delivered to the fire

unit or node. This will require the players to keep track

of each truck's hauling capacity. This approach ray not be

100 percent realistic but it does account for the expected

value of casualties over time.

g. Ammunition Pickup Mission

Selection of this command will take the players

to another menu. This menu gives them two options, "Fire

Units" or "Ammo Trucks".

If "Fire Units" is chosen, the command screen

(Figure 5.16) is used to tell a fire unit to go to a node to

pick-up prepositioned ammunition. Like the resupply

command, this command will require the players to give a

move command to the fire unit if it is not already in the

appropriate node.

If "Ammo Trucks" is chosen, the command screen

(Figure 5.17) is used to tell an ammunition truck or convoy

to go to the ammunition transfer point (ATP) to pick-up

88

ammunition. The trucks must be in the field trains location

to receive this command. This constraint was imposed

because it was assumed that the trucks would have to at

least pass through the field trains on the way to the ATP to

get paperwork, and / or fuel, food, maintenance, and rest.

The amount of time the trucks take to go to the

ATP is randomly chosen based on a normal distribution with a

mean of the "1ATP turn-around time" as specified under the

game parameters. It is important to update the ATP turn-

around time whenever the field trains moves or the ATP

moves. Unlike the resupply command and the fire unit pickup

command, a move command is not necessary with this command.

The battalion can only pick-up its "CSR worth"

of ammunition during any given day. Even if the day's

allotment of ammunition has already been picked-up from the

ATP, the wargame will allow the players to send trucks to

the ATP. However, the trucks will return empty. The point

is that it is up to the players to manage both the pick-up

and delivery of ammunition.

h. Issue Fire Order (Figure 5.18)

This command enables the players to issue

battalion level fire orders. It can be used to direct the

fire units to shoot battalion level targets of opportunity

or planned fires. Planned fires can be planned either

manually or using TACFIRE to fulfil the requirements of the

fire support annex of the maneuver unit's operations order.

89

Once the fire plan is finished, it can be sent to the fire

units using this command screen. All that is necessary is

the unit name, time to fire, and the number of volleys.

The intent of this command is to ensure that the

S3 players are able to perform all of their responsibilities

while trying to integrate operations and logistics in the

command and control of the battalion. They must be careful

not to shoot so much ammunition that the fire unit's rate of

fire must be reduced to too low a level to be considered 100

percent available. On the other hand, they must conduct

normal fire planning in support of the maneuver forces.

i. Cancel Command (Figure 5.19)

This command enables the players to delete the

following commands: "Move a Unit", "Ammo Resupply Mission",

"Ammo Pickup Mission", and "Issue a Fire Order." Each of

these command screens has a "command number" field which

contains a computer generated number. It is this number

which is entered into the "Cancel Command" screen in order

to cancel a specific command. For all but the "move"

command, the command must not have been executed in order

for the "cancel" command to have any effect. In the case of

the "move" command, if the move has already begun but is not

yet completed, the "cancel" command will cause the unit to

stop at the nearest node. If the unit is a firing unit and

it has ammunition, it will go into a firing status unless it

is immediately given another movement order.

90

If a fire unit is on the move, and the players

want to hip-shoot the fire unit, then they must cancel the

move command and issue a fire order. If any type unit is on

the move and the players want to change the route or

destination, then they must cancel the "move" command and

then issue a new "move" command from the unit's new

location.

3. Change Parameters

Selection of this option from the game control

screen takes the players to more menus which give them the

ability to change all the entries which were made during

game setup except for the battalion configuration / status

records. For example, the time step size can be changed,

nodes and paths can be added to the network, and the

situation report frequency can be changed. The battalion

configuration records can not be accessed because they

contain the status of the battalion at the start of the

game. To give the players the ability to edit these records

would be the same as giving them the ability to circumvent

the commands. If the players want to check a units status,

they can use the "Request a Situation Report" command.

4. Network Utility

This option is not yet implemented. It is

envisioned that this option will be used by the players to

conduct movement planning. This option will eventually be

capable of determining the shortest route by time or

91

distance and determining the safest route according to the

path vulnerability levels.

S. Output Game Statistics

This option gives the players the ability to request

the game's statistics, MOE, and the number of rounds on-hand

in excess of the battalion's CSR at any point during the

game. It is recommended that this listing be printed at

least once at the end of every 24 hours of game play. This

will provide a means of comparing statistics between games

to judge if the players are improving in their ability to

command and control the battalion. More will be said on the

meaning of the statistics in Section F of this chapter.

5. Quit

Upon selecting the "Quit" option, the players are

given two options. The first option is to quit with the

intention of continuing the game later. This gives them the

ability to continue the game where they left off at a later

date. All of the appropriate files are saved to disk and

are recalled the next time the game is played by selecting

the "Continue an Old Game" option from the main menu. The

second choice is to quit the game without the intention of

ever continuing the game. In this case, the game's data is

not saved to disk.

In either case, the computer will provide a listing

of the wargame's statistics, the MOE, and the number of

92

rounds remaining in excess of the battalion's CSR before

returning to the MS-DOS "A:" prompt.

F. INTERPRETATION OF THE RESULTS

The "results" referred to in this section is the listing

which is printed whenever the "Output Game Statistics"

option or the "Quit" option is selected from the game play

control screen (Figure 5.20). The listing itself should be

self explanatory. It is the interpretation of the listing

which requires some explanation.

Each time the listing is obtained, it is based on the

cumulative statistics from the start of the game to the

current time rather than since the last time the listing was

obtained. Since this wargame does not allow replacements of

casualties, the availability ratio will gradually decrease

as time goes on due to casualties alone regardless of how

well the players exercise command and control over the

battalion. The same is true of the truck casualty ratio

except that it will gradually increase. Since Lanchesterian

attrition was used, this amount of change in the statistics

should be consistent for the same wargame setup data and the

same C2 decisions at any given amount of time into a

particular game. Therefore, in order to be able to compare

the performance between different groups of players playing

the same game or between the same group of players playing

the same game at two different times, they must obtain a

printout of the statistics at the same amount of time into

93

, , l i a I I I I

the game during each game. For example, if the players

request output of the statistics after every 24 hours of

game play each time they play the game, they will be able to

compare their performance from game to game. This is

because the differences in the statistics for the same

amount of time into each game will be due to command and

control decisions made by the players. There will be no

dependence on the amount of casualties which occur based

simply on the amount of time the game has been played.

The ratios provide a measure of how well the players

have performed with respect to the specific statistics

involved in each ratio. For a better idea of how well the

players have performed with respect to the overall command

and control of the battalion, the Field Artillery Battalion

Command and Control Effectiveness Index is used to determine

a number which is based on all of the ratios. The number

itself has no meaning other than as a means of comparing

performance from one game to the next, assuming the same

game setup data is used for each game. It can also be used

to compare performance between two different groups of

players each playing their own game when each game had the

same setup data.

The final statistic is the number of rounds the

battalion has on-hand in excess of the battalion's CSR.

This statistic first counts all of the ammunition each

firing unit has and then adds the amount of ammunition the

94

battalion has prepositioned in nodes. Even prepositioned

ammunition which is currently behind enemy lines is included

in the count because it is assumed that the loss of

ammunition was a result of a poor command and control

decision on the part of the players. The product of the

battalion's CSR and the number of tubes in operating

condition is then subtracted from the total count. The

player's objective is to minimize this number. If the

number is negative, the battalion has less than the CSR on-

hand. The greater the number, the more rounds the battalion

has on hand in excess of the CSR. Since it is assumed that

the RSR equals the CSR in this game, large numbers would

tend to indicate that the battalion did not properly project

their required ammunition supply rate.

95

Hit ESC KEY to build a new scenario

Directory a:V .scn

.scn

I ,Choose -J Select Fl-Help F4-New Mask

Figure 5.1 Build Scenario Screen

96

The Artillery Wargame I

Scenario /Network

OPORD # 00001
OPORD Date 15 0600Z Jan 89
Map Sheets Ft Knox
Game Start Time (DTG) :17 0530Z Jan 89

Admin Note

j~hoose Fl-Help F4-Prn Scr ESC-Done

Figure 5.2 Scenario Data Screen

97

Artillery Wargame I

Scenario Network

Path Data
Path Name AKD
Length (Kilometers) 8.6
Rood Condition (Poor/Medium/Good) M
Start Node 425
End Node : 248
Bridges on Path (Yes/No) Y
Bridge Location : 123456
Vulnerability (High/ Medium/Low) L

Page Up - next path Page Down - Prev Path

TChoose Fl-Help F4-Print F5-Add F6-Del F8-Search
ESC- Done

Figure 5.3 Path Data Screen

98

Artillery Wargame I

Scena rio INetwork

Node Data

Node Name 458
Associated Paths JHH JHG TRE

HGF HGF FDS
Position Type (Rural/Urban) U
Location (grid) 123456
Prepositioned ammo count (rounds) 150
Cover and concealment (High/Medium/Low) M

Page Up - next path Page Down - Prey Path

Choose Fl-Help F4-Print F5-Add F6-Del F8-Search
ESC- Done

Figure 5.4 Node Data Screen

99

The Artillery Wargame I

Game Parameters

Time step (minutes) 30

Average track convoy speed (kph) : 20

Average wheel convoy speed (kph) : 25

Average time from trains to ATP (min) : 55

j choose Fl-Help F4-Prn Scrn ESC-Done

Figure 5.5 Game Parameter Screen

100

The Artillery Wargame I

Commander's Guid ance

Unit sitrep frequency (minutes) 60
Vulnerability threshold (hours) 3.5
Vulnerability threshold (rds Ipsn) 120
Ammo truck crew rest (hrs Iday) 6.5
Battalion CSR (rds / tube / day) 110
BMNT 0545 Z
EENT 1 820Z
Maneuver mission (Offense/Defense) 0

choose Fl-Help F4-Prn Scrn ESC-Done

Figure 5.6 Commander's Guidance Screen

101

The Artillery Wargame I

Battalion Configuration /Status

Number of firing units 6

Number of ammo trucks 24

I jchoose Fl-Help F4-Prn Scrn ESC-Done

Figure 5.7 Bn Configuration / Status Screen

102

The Artillery Wargame I

Battalion Configuration / Status

Firing unit data

Unit name A
Number of guns 8.0
Location (node) 458
Max rounds capacity for firing unit 1000
Rounds on hand for firing unit 500
Sustained rate of fire (rounds/tube/min) 1.5

Page Up-next unit Page Down-Prey Unit

Ichoose Fl-Help F4-Prn Scrn ESC-Done

Figure 5.8 Firing Unit Data Screen

103

The Artillery Wargame I

Battalion Configuration I Status

Ammo truck data

Bumper number 23
Location (node) 458
Load status (Full / Empty) F
Truck capacity (rounds) 500

Page Up-next truck Page Down-Prey truck

jchoose Fl-Help F4-Prn Scrn ESC-Done

Figure 5.9 Ammo Truck Data Screen

104

DTG :15 0600Z Jon 89

0600 Z
Game Menu

Next Time Step
Issue Command
Change Parameters
Network Utility
Quit Go me

Choose .- Select F1-Help

Figure 5.10 Game Play Screen

105

DTG :15 0600Z Jan 89

Issue Commands

Convoy Ammo Trucks

New convoy name AY1

Enter bumper numbers for trucks in convoy

1 2 3 4 5 6 17 18 19 22 23 24

I jChoose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.11 Create Truck Convoy Screen

106

DTG: 15 0600Z Jan 89

Issue Commands

Remove Truck Convoy

Convoy to be separated AY1

IIChoose Fl- Help F2- Execute Cmdl F4-Print
ESC- Abort

Figure 5.12 Remove Truck Convoy Screen

107

DTG :15 0600Z Jan 89

issue Commands

Move a Uniit

Command number :1234

Start Node: 458

Along Path: A to Node: 789

Along Path:

Cose Fl-Help F2-Execute Cmd F4-Print
E SC- Abor t

Figure 5.13o Move a Unit Screen (part 1)

108

DTG :15 0600Z Jan 89

Issue Commands

Move a Uniit

Command number :1234

Enter movement informalIon:

Unit to move: A

7i-ne for movement: 15 100Z FEB 89

Is this a departure or arrival lime (D/ A): D

Node to resupply at: (Optional)

J Choose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.13b Move a Unit Screen (Part 2)

109

DTG" 15 0600Z Jon 89

Issue Commands

Change Unit Firing Rate

Unit to change A

Firing rate (% CSR) 100

Choose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.14 Change Unit Firing Rate Screen

110

DTG :15 0600Z Jon 89

Issue Commandls

Ammunition Resupply

Ammo truck bumper N or Convoy name AY1

Unit or node to resupply A

Choose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.15 Ammo Resupply Mission Screen

111

DTG: 15 060OZ Jan 89

Issue Commands

Fire Unit Ammunition Pickup

Fire Uniit to Pickup Ammo :A

Location of Ammo 458

I hos Fl-Help F2-Execute Omd F4-Print
ESC- Abort

Figure 5.16 Ammo Pickup Mission Screen

112

DTG: 15 060OZ Jon 89

Issue Commands

Ammunition Pickup

Command number 1237

Ammo truck or convoy to pickup ammo 24

Departure time 15 0800Z Jan 89

Pickup Location (ATP or node) ATP

I IChoose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.17 Ammo Truck / Convoy Pickup Screen

113

DTG :15 060OZ Jan 89

Issue Commands

Fire Order

Command number :1238

Wkit to fire :B

Time to fire :15 090OZ Jan 89

Number of volleys :2

I Choose Fl-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.18 Fire Order Screen

114

DTG :15 0600Z Jan 89

Issue Commands

Cancel Command

Number of command to cancel :1237

T jhoose Fl-Help F2-Execute Cmd F4-Print

L L .
ESC- Abort

Figure 5.19 Cancel Command Screen

115

STATISTICS / MOE DATA

Total time firing sections were available (hrs): 7589
Max. possible available time: 9255

Availabity Ratio: .82

Total Time firing sections critically short ammo: 98.2
Max possible critical short time : 9255

Critically Short Ratio: 0.0106

Total Time firing sections at critical vulnerability: 211

Max possible critical vulnerability time: 9255

Critical Vulnerability Ratio: 0.0227

Total time lost due to truck casualties (h-s) : 985.2
Max possible casualty time (hrs): 9255

Truck Casualty Ratio: 0.106

Field Artillery Battalion Command and Control
Effectivenes Index : 0.687

Number of rounds on hand at end of game in
excess of battalion CSR: 852

Figure 5.20 Statistics / MOE Printout

116

V1. SUGGESTED ZNRNCE.XZNTS AND POTENTIAL USES

A. INTRODUCTION

The primary objective of this wargame has been achieved;

to provide a tool for training officers in the integration

of tactics and logistics as it relates to the command and

control of a field artillery battalion. As with any

undertaking of this kind, there is still plenty of room for

improvements which would enhance the wargame's effectiveness

in training these officers. In spite of the need for

improvement, the wargame, as it currently exists, is still

very useful.

B. POTENTIAL WARGAME USES

It is very important to note, before discussing any of

the wargamIe's uses, that this game is not to be used as a

tool to validate a unit's war plans. This point cannot be

emphasized enough. The game, while it was intended to be as

realistic as possible, does not claim to accurately model

casualty rates. It is primarily for this reason that the

wargame should not be used to validate a unit's war plans.

It is possible, however, to use the wargame as a tool to

develop familiarity with a unit's area of operations and its

plans. By loading a unit movement network for a unit's area

of operations, the unit's configuration into the battalion

configuration file, the commander's guidance into the

117

commander's guidance file, and SOP / operations order items

into the game parameter file, the players can exercise and

become familiar with the unit's general defense plans. Pre-

hostility deployment plans, to include occupation of

assembly areas followed by occupation of initial positions

and pickup and delivery of the unit's basic load of

ammunition can easily be practiced. Just as easily, the

unit's post hostility plans can also be practiced. This

type of training, using the unit's actual wartime area of

operations and battalion configuration, can pay great

dividends if the plans are ever called upon to be used in

time of war.

One of the strengths of the wargame is the ability for

the computer assisted portion of the game to be integrated

into any level of CPX. For example, the game can be played

as a part of a battalion's weekly officer professional

development time, in conjunction with a battalion level CPX,

or it can be integrated into a full scale, higher level,

CPX. In every case, the utility of the game is that it

allows the players to fully integrate tactical decisions

with the logistics considerations. Additionally, it

measures their performance using the Field Artillery

Battalion Command and Control Effectiveness Index. By

providing this feedback, the players can assess their

decisions, and perhaps vary their method of command and

control in order to maximize howitzer availability time,

118

minimize casualty time, vulnerability time, and time spent

critically short of ammunition.

Another training strategy is to play the game

competitively. For example, at the division artillery

level, the game's setup files can be established so that

they are the same for each battalion. Then, each battalion

can play the game for a specified period of game time. At

the end of the game, the game's statistics are assessed to

determine which battalion more effectively command and

controlled the wargame's units. A similar technique can be

used for training within a battalion by playing the game

competitively between the battalion's day and night shift

personnel.

Finally, the game can be used by a battalion to study

the effect on their tactics of increasing enemy lethality.

By changing the value of "a" in the Lanchester equations

found in the source code, the casualty rates can be changed.

For each level of casualty rates, a set of tactics can be

developed to more effectively command and control the

battalion. The types of things which can be varied within

the set of tactics include the size of ammunition convoys,

the frequency and distance of moving firing units, the rate

of firing for fire units, the use of point or unit

distribution for ammunition resupply, the types of positions

which are occupied (rural or urban), and the positioning of

119

the field trains in relation to the fire units and the

ammunition transfer point.

C. IMPROVMEZNTS / ZNIMNCPZMNTB

The wargame, as it currently exists, is fully

functional. However, there are some areas which can be

expanded in order to make the wargame more useful. The

enhancements described in the following paragraphs are

listed in order of priority from highest to lowest.

1. Different Ammunition Types

Currently, the wargame allows the players to manage

ammunition of only one type. While there are many things

that can be learned about the integration of tactics and

logistics when only using one ammunition type, the issues

become much more complex when the myriad of possible

ammunition types are included in the game. It is not only a

logistics management problem, but also it has a profound

impact on tactical planning.

In order to implement this enhancement, the fire

unit, truck, and node records all will have to be modified

to include each of the various ammunition types.

Additionally, everywhere in the time step that ammunition is

either transferred or expended, it must be done for each

ammunition type. Finally, new criteria must be used to

determine what constitutes low or critical ammunition

levels.

120

2. Zxplicitly Play FLOT / Ranges

Currently, there is no cartesian coordinate system

implemented within the wargame. This would not be difficult

to implement and would enable certain useful functions. For

example, it would enable the howitzer's range to be played.

Currently, it is up to the players to check the unit's range

fan against the battlefield geometry to determine if the

unit needs to move due to range considerations. If the

cartesian coordinate system were implemented, this would

enable the computer to also check the range. If the players

failed to move the unit as the FLOT moved out of range, then

the unit would no longer be considered available. Other

functions would be enabled as well by implementing this

enhancement, range checks could be made for fire missions,

unit positions could be overrun by the FLOT, and

prepositioned ammunition could also be overrun by the FLOT.

In order to implement this enhancement, the node

records need to be modified to include an X and Y coordinate

for the UTM grid location of the node. Additionally, a

record needs to be created for the coordinates of the FLOT,

and procedures need to be written to calculate the distance

between two points and to determine if a point lies above,

below, left, or right of a line.

3. Requests for Fires

The way the wargame is now written, the players can

fire a fire mission but the target is not explicitly named.

121

It is up to the players to ensure the target is within range

before firing. Furthermore, the only impetus for firing

comes from the players themselves, either to fire a fire

plan directed by the operations order or to fire targets of

opportunity generated by the players themselves. Since the

players are assumed to be the battalion staff, the only

types of fire missions which are played are battalion level

missions or battery missions which are originated at the

battalion level. All other firing is done by establishing a

firing rate in terms of the CSR in order to expend the

ammunition.

rine first problem can be resolved by implementing

the cartesian coordinate system. The second problem can be

resolved by randomly generating requests for fires on

randomly generated coordinates located on the far side of

the FLOT. This process can be written to simulate

FIREFINDER radar output or target lists from the division

artillery target intelligence files. In either case, it

would be up to the players to decide which targets to

engage, which fire units to use, and with which ammunition

types.

4. Play Fuel

Fuel was not played in this version of the wargame

because fuel is already played in real training through

actual consumption. Nevertheless, fuel is a very important

122

consideration in the integration of tactics and logistics.

As such, it should be added to the wargame.

In order to implement this improvement, a similar

approach to the one used for the ammunition resupply can be

used. Rather than rounds of ammunition, resupply will be in

gallons of fuel. Rather than a firing rate, consumption

will be in terms of a rate based upon the unit's posture,

e.g. in position or moving. Like the ammunition trucks,

fuel can be delivered by the combination of a movement

command to the trucks or fire units and a resupply mission

command.

Implementation of this command will ensure that the

players do not move the units so much that they run out of

fuel. It also forces them to plan for fuel resupply using

either unit or point distribution thereby integrating the

requirement for fuel into the battalion's overall

operational plan.

5. Play Maintenance

Like fuel, maintenance was not included in the first

version of the wargame because it is regularly practiced in

real training. It is, however, a real problem and therefore

should be included in future versions of the game.

It can be implemented by forcing a certain amount of

"down" time or maintenance time for every kilometer traveled

by the battalion's vehicles. This "down" time would then be

subtracted from a fire unit's availability time. For

123

-. =- == .,m~~mmnmn~ U[mm Ii

ammunition trucks the "down" time could be handled similarly

to the way that crew rest requirements are currently

handled. In short, the truck would not be available for

ammunition resupply missions while in a "down" status.

6. Network Utility

The network utility was assigned the lowest priority

because it provides a service which is normally done

manually by the players and it may be construed as

detracting from the player's training. The network utility

is intended to determine the shortest route (time or

distance) between two nodes in the unit movement network or

determine the safest route in terms of vulnerability

factors. It can be used as a staff planning aid in

determining unit movement routes or it can be used to

automate the movement orders by allowing the players to

specify that a move between two nodes be done using the

shortest or safest route.

The node and path records needed for this

enhancement are already in place. All that is needed are

procedures containing the appropriate algorithms to

implement the functions.

D. FINAL COMMENTS

At the very least, this wargame can serve as a working

prototype for a wargame to train officers in the integration

of tactics and logistics as related to the command and

control of a field artillery battalion. The word "working"

124

is emphasized because this wargame, as currently

implemented, is fully operational and is capable of use by

units in the field. The wargame's greatest strengths are

that is requires very little training on the use of the

wargame itself, it can be played on an IBM compatible

personal computer, it uses the Field Artillery Battalion

Command and Control Effectiveness Index to provide feedback,

and it forces the players to consider aspects of field

artillery battalion command and control which are very

difficult if not impossible to practice through actual

training.

Finally, it should be pointed out that this wargame was

originally conceived to satisfy a perceived deficiency in

training which is common to all units that require large

quantities of bulk supplies, such as ammunition, to sustain

them in combat. The point is that this wargame, with

relatively minor changes, could be used for air defense

artillery units, armor units, and infantry units. In short,

the concept can be expanded into a whole class of wargames

which can be used by battalion level officers for training

in the integration of tactics and logistics.

125

APPENDIX

DOCUMENTED SOURCE CODE

Program name : WARGAME
Purpose : this program is a computer assisted

wargame designed to exercise the command and
control functions in a field artillery
battalion as they relate to the integration
of tactics and logistics.

Written by : Anthony R. Ferrara
Michael W. Schneider

Program completed : 23 March 1989
Language used : Turbo Pascal 5.0
System : IBM Personal System II Model 50

running DOS 3.30
Environment required : IBM compatible system

with color monitor.

Program structure :
this program makes extensive use of the unit
structure defined by Turbo pascal. All of
the procedures, functions, and variables of
the program are contained in the units that
are part of this program.

Units :
GLOBAL - this unit contains the declarations

for all of the files, records and variables
used for the game itself.

GAME - this is the unit responsible for the
overall control of the game: its
initialization, modification of parameters,
execution of the game, and issuing of
commands.

INIT - contains the procedures that initial-
ize the game and allow the user to change
any of the games parameters.

SCENARIO - contains the procedures that
initialize, modify, and create the scenario
for the game.

TIMESTEP - this unit contains the procedures
that comprise the "heart" of the game, it
actually executes each time step and
processes the event records for the game.

COMMANDS - this unit contains the procedures

126

that allow the user to issue commands that
allow the command and control of an
artillery battalion to take place.

GAMEUTIL - this unit contains a number of
general purpose utility procedures and
functions that are used by more than one
unit and are specific to the game.

UTILITY - this unit contains a library of
general purpose procedures that are
specifically for the generation of the user
interface, both input and output.

TACCESS - this a Borland written unit that
contains a number of low level procedures
that provide database related functions
used throughout the game.

TAHIGH - this a Borland written unit that
contains a number of high level procedures
that provide database related functions
used throughout the game.)

program wargame;

($m 65520,0,655360)

uses crt, utility, game;

var choice : integer;

begin
initialize screen;
remove cursor;
repeat

center text (1, 'The Artillery Wargame !', blue);
choice := menu-selection ('Main Menu',

'Start a new gamelContinue an
old gameJQuit\');

case choice of
1 : play_newgame;
2 : play_oldgame

end
until choice = 3;
restore-cursor;
initializescreen
end.

AZ

127

Unit name : GLOBAL

Purpose : this unit contains all of the declara-
tions necessary for the game itself. It con-
tains declarations for all of the files used
to save the game variables from game to game
on disk. It also contains default values for
records wherever they were possible. The
specific purpose of each variable is clearly
indicated by its name. }

unit global;

interface

uses dos, utility, taccess, tahigh;

const
scenario file header = 'This is a valid wargame scenario

file !';
maxfiringunits = 6;
max ammo trucks = 24;
trains filename = 'trains.dat';
firing unitfilename = 'fireunit.dat';
ammo truck filename = 'ammotrck.dat';
cdrs guidance filename = 'cdrguide.dat';
game_parameterfilename = 'gamparam.dat';
node data filename ext = '.scl';
pathdata-filename-ext = '.sc2';
node index-filename ext = '.sc3';
path index filename ext = '.sc4';
event data filename = 'evnt$lst.dat';
event time index filename = 'evnt$lst.ixl';
event-serial index filename = 'evnt$lst.ix2';
message-data filename = 'msg$list.dat';
messagetype indexfilename = 'msg$list.idx';

{$I global.typ)
type

firingunitrecord = record
record status : longint;
firing unitname : string5;
numberof guns : integer;
location : stringlO;
section maxroundscapacity : integer;
rouids on hand : integer;
sustainedrate of fire : integer;

128

time -inposition : longint;
rounds -fired fromposition : integer;
vulnerability status : char;
firing status : char;

*ammo status : char;
support -mission : string3;
ratepercent-csr : real;

*ammopickupmission : boolean;
ammopickup 'location : stringlO;
traverse-minefield : boolean;
minefield -location : stringlo;
pending__movement : boolean;
ammo low : boolean;
ammo critical : boolean;
ammo out : boolean;
vulnerability high : boolean;
vulnerability critical : boolean;
sections in Ioperating_condition : real;
total -availability_ time : longint;
critically short -time : longint;
critically_ vulnerable time : longint
end;

ammo-truck -record = record
record-status : longint;
bumper -number :string5;
location : stringlo;
load status : char;
ammo capacity : integer;
convoy-name : string5;
mission -assigned :char;
moving : boolean;
firing -unit -to -resupply : string5;
node -to -resupply : string5;
vulnerability status : char;
amount-of -rest : longint;
time -since Irest -began : longint;
traverse minefield : boolean;
minefield -location : stringlo;
pendingmovement : boolean;
effectivepercent : real;
killed : boolean;
casualty time : longint
end;

battalion trains record =record

record status : longint;
location : stringlo;
moving : boolean;
pendingmovement : boolean;
time -inposition : longint;
vulnerability status : char;
vulnerability high : boolean;

129

vulnerabilitycritical : boolean
end;

cdr_guidancerecord = record
record-status : longint;
unit sitrepfrequency : integer;
vulnerabilitythresholdtime : real;
vulnerabilitythresholdrounds : integer;
crewrest_per day : real;
bn csr : integer;
bmnt : string5;
eent : string5;
maneuver-mission : char;
axis : integer
end;

game_param-record = record
record status : longint;
time_stepsize : integer;
avgtrackconvoyspeed : integer;
avgwheelconvoyspeed : integer;
avgtime_trains to atp : integer
end;

scenario info record = record
record status : longint;
opordnumber : stringlO;
opord date : stringl5;
mapsheets : string80;
startdtg : stringl5;
adminnotes : array [1..10) of string60
end;

node-record = record
recordstatus : longint;
node-name : string5;
paths : array [1..6] of string5;
grid : stringlO;
positiontype : char;
cover concealment : char;
ammo_count : integer
end;

pathrecord = record
recordstatus : longint;
path_name : string5;
startnode : string5;
end-node : string5;
length : real;
road-condition : char;
bridge : char;
bridgegrid : stringlO;
vulnerability : char
end;

event record = record
recordstatus : longint;

130

event type : char;
serial number : integer;
time key : stringlO;
unittype : char;
unit name : string5;
volleys : integer;
grid : stringlO;
node : string5;
path : string5
end;

messagerecord = record
record status : longint;
message type : char;
unittype : char;
unit name : string5;
location : stringlO;
ammo status : char;
vulnerability : char
end;)

stat record = record
availability : real;
maxavailability : real;
availabilityratio : real;
ammoshorttime : real;
max ammo -short-time : real;
ammo short time ratio : real;
vulnerability : real;
max vulnerability : real;
vulnerabilityratio : real;
truck casualties : real;
max truck casualties : real;
truck casualties ratio : real;
moe : real;
rounds on hand : integer;
totalgunsatstart : integer
end;

firingunit_array = array [l..max firing_units] of
firingunitrecord;
ammotruckarray = array [l..maxammotrucks] of
ammotruckrecord;

var
gamestats : statrecord;
scenario file-name : string8O;
scenario file : text;
node data filename : string8O;
path data filename : string8O;
node index filename : string8O;
path -index filename : string80;
trains file file of battalion trains record;
fireunit file file of firingunitrecord;

131

' " ' , ' I I I I II I I I

ammotrck file : file of ammo truck record;
cdrguide file : file of cdr guidance record;
gamparamfile : file of game_paramrecord;

number offiringunits : integer;
number of ammo trucks : integer;
firingunits : firing_unit_array;
ammotrucks : ammotruckarray;
battalion trains : battalion trains record;
commandersguidance : cdrguidancerecord;
gameparameters : gameparamrecord;
scenarioinfo : scenario info record;
nodes : dataset;
paths : dataset;
event list : datafile;
time index : indexfile;
serial number-index : indexfile;
messages : datafile;
messagetypeindex : indexfile;

gamestart time : datetime;
game_start dtg : string15;
game time : datetime;
gamedtg : string15;
totalgametime : longint;
newday : boolean;
daytime : boolean;
time since lastsitrep : integer;
atprounds-on hand : integer;
hostilities started : boolean;
commandserialnumber : integer;

const
defaultfiringunitdata : firing unitrecord

- (record status : 0;
firing unitname

null_string;
number of guns : 8;
location : '1';
section maxrounds-capacity : 250;
rounds on hand : 500;
sustained-rate of fire . 1;
time in position 0;
rounds fired_fromposition : 0;
vulnerabilitystatus : 'A';
firingstatus : 'H';
ammo status : "S';
supportmission : 'DS';
ratepercentcsr : 1.0;
ammopickup mission : false;

132

ammopickup_location
null_string;

traverse minefield : false;
minefieldlocation

nullstring;
pendingmovement : false;
ammo-low : false;
ammo critical : false;
ammo-out : false;
vulnerabilityhigh : false;
vulnerability_critical : false;
sections in operatingcondition : 8.0;
total availabilitytime : 0;
criticallyshort time : 0;
critically_vulnerabletime : 0

default ammo truck data : ammo truck record
(record status 0 0;
bumpernumber : nullstring;
location : '1';
load-status : 'F';
ammo capacity : 300;
convoyname : nullstring;
missionassigned : 'N';
moving : false;
firingunittoresupply : nullstring;
node to resupply : nullstring;
vulnerabilitystatus : 'A';
amount of rest : 0;
time since restbegan : 0;
traverse minefield : false;
minefield location : null-string;
pendingmovement : false;
effective percent : 1.0;
killed : false;
casualty time : 0

default battalion-trains : battalion trains-record
= (record status : 0;

location : '1';
moving : false;
pendingmovement : false;
time injposition : 0;
vulnerability_status : 'A';
vulnerabilityhigh : false;
vulnerability critical : false

defaultcommandersguidance : cdr guidancerecord
= (record-status : 0;

unit_sitrepfrequency : 60;
vulnerabilitythresholdtime : 6.5;

133

vulnerabilitythresholdrounds : 200;
crew restper day : 6.5;
bn csr : 100;
bmnt : '0545Z';
eent : '1820Z';
maneuvermission : '0';
axis : 090

default game parameters : gameparamrecord
- (record status : 0;

time_step_size : 30;
avgtrackconvoyspeed : 20;
avgwheelconvoyspeed : 35;
avgtime_trains to atp : 180

default scenario-info : scenario info record
= (record status : 0;

opordnumber : '0001';
oporddate : ' ';
mapsheets : 'None applicable';
startdtg : '15 0600Z NOV 88';
admin notes :(' 'I' '' 'I' ''__ ' , ' , ' ,

, , , I , , , , I)

default node : node-record
= (record status : 0;

node name : null string;
paths : (null-string, nullstring,

null_string,
null-string, null-string,

nullstring);
grid : null string;
positiontype : 'R';
coverconcealment : 'M';
ammo_count : 0

default_path : path record
= (recordstatus : 0;

pathname : null_string;
start node : null_string;
end node : null_string;
length : 0;
road condition : 'M';
bridge : 'N';
bridgegrid : nullstring;
vulnerability : 'M'

default scenario file name : string80
'new$scen.scn';

defaultnumber offiring units : integer = 6;
defaultnumberofammo_trucks : integer = 24;

134

implementation

begin
end.

AZ

135

(
Unit name : GAME

Purpose : this unit contains the procedures that
actually comprise the heart of the wargame.
It is responsible for initializing either a
new or old game, running the game, and taking
care of the functions necessary when quitting.
As part of the game itself it also controls
execution of the time step, the issuing of
commands, and the changing of allowable game
parameters for the execution of the game.
This unit can be thought of as having four
subordinate units that contains the procedures
that carry out its functions. T.'ese are INIT,
SCENARIO, TIMESTEP, and COMMANDS.)

unit game;

interface
($I-)

uses crt, printer, utility, gameutil, global, init,
scenario, timestep, commands, taccess, tahigh;

procedure playnewgame;

procedure playoldgame;

implementation

(
Procedure name : PLAYWARGAME

Purpose : this procedure controls the play of
wargame once it has been initialized as
either a new or old game, as appropriate.
It displays the game screen, and provides the
game menu. It relies on four units: INIT,
SCENARIO, TIMESTEP, and COMMANDS. These are
called as is necessary to handle the selection
made from the game menu by the player.

Parameters : none.

Called by : PLAY NEWGAME
PLAYOLDGAME

)

procedure playwargame;

136

var
choice : integer;

Procedure name : DISPLAYGAMEMAINSCREEN

Purpose : this procedure displays the current
game time in large block letters at the top
of the screen and the current dtg in normal
size characters on the top line of the screen.

Parameters : none.

Called by : PLAY WARGAME
EXECUTENEXTTIMESTEP }

procedure displaygamemainscreen;

var
dtg : stringl5;

begin
initializescreen;
dtg := remove blanks (gamedtg);
putfontstring (17, 3, copy (dtg, 3, 4) + blank + copy
(dtg, 7, 1), cyan);
centertext (1, 'DTG : '+ game_dtg, yellow)
end;

procedure executenext time-step;

begin
inc time (gametime, game_parameters.timestepsize);
datetimetodtg (game_time, game dtg);
totalgametime totalgame time +
gameparameters.timestepsize;
new day := ((game_time.hour * 60) + gametime.min) <

gameparameters.time stepsize;
determinedayornight;
displaygame mainscreen;
processevents_list;
stock_atp;
processfield trains;
processammo_trucks;
processfire-units;
generate-messages
end;

137

{
Procedure name : ISSUECOMMAND

Purpose : this procedure presents the command
menu to the player. It is responsible for
calling the appropriate procedure to handle
the command selected by the user.

Parameters : none.

Called by : PLAYWARGAME
)

procedure issue-command;

begin
clear area (1,2,80,25);
drawwindow (1,2,80,23, menuforecolor, menubackcolor,
'Issue Commands');
repeat

menu xl := 12; menu yl := 5;
menu x := 68; menu y2 := 19;
choice := menuselection (nullstring, 'Create truck

convoyl'+
'Remove truck

convoyl'+
'Move a unitl'+
'Request sitrepl'+

'Change firingratej '+

'Issue fire
orderl'+

'Cancel command '+

'Ammo resupply
missionl'+

'Cancel resupply
missionl'+

'Fire unit ammo
pickup'+

'Cancel fire unit
pickupl'+

'Ammo truck ammo
pickup '+

'RETURN TO
GAME\');

menu_xl := menu xl default; menuyl := menu_yldefault;
menux2 := menu x2 default; menu-y2 := menuy2_default;
case choice of

138

1 : create truckconvoy;
2 : remove truckconvoy;
3 : move-unit;
4 : displaysitrep;
5 : changefiringrate;
6 : issuefireorder;
7 : cancel command;
8 : ainmoresupplyjnission;
9 : cancel_resupplyjmission;
10 : fireunitammo_pickup;
11 : cancel fire unit_pickup;
12 : ammotruck ammopickup

end
until choice = 13;
initialize-screen
end;

{
Procedure name : CHANGEPARAMETERS

Purpose : this procedure presents the menu for
allowing the player to change the commander's
guidance, the game parameters, modify the
network, or access the network utility.

Parameters : none.

Called by : PLAYWARGAME
I

procedure changeparameters;

var
choice : integer;

begin
clear area (1,2,80,25);
repeat

choice := menu-selection ('Scenario / Parameter Menu',
'View or change scenario

networkl'

'View or change gameparameters I'+-
'View or change commander''sguidancej '+

'Return to game\');
case choice of

1 : viewscenario;
2 : view_gameparameters;
3 : view commandersguidance

139

end
until choice = 4;
initialize-screen
end;

Procedure name : QUITGAME

Purpose : this procedtire handles the actions
neccessary for iitinq the game. It presents
the player wit the ortion to save the game in
progress or &...don t.. It then calculates
and outputs the sta ,stics for the game.

Parameters : none.

Called by : PLAYWARGAME
)

procedure quit game;

var
choice : integer;

Procedure name : SAVEGAME

Purpose : this procedure saves the current game
so that it can be continued at a later time.
It saves all variables in files on disk so
that can be retrieved by INITIALIZEOLDGAME.

Parameters : none.

Called by QUITGAME
)

procedure save game;

begin
end;

Procedure name : OUTPUT STATISTICS

Purpose : this procedure calculates and prints
on a printer the statistics for the play of
the game.

140

Parameters : none.

Called by : QUITGAME
)

procedure outputstatistics;

{
Procedure name : CALCULATESTATS

Purpose : this procedure calculates the

statistics for the game.

Parameters : none.

Called by : OUTPUTSTATISTICS
}

procedurc calculatestats;

var
'i-nger;

i, ode : node record;
-,'- ,aame : stringlO;

Orgin
with jamne_stats do

begin
availability := 0.0;
ammoshort time := 0.0;
vulnerability := 0.0;
rounds-on hand := 0;
totalguns at start := 0;
for i := I to numberoffiringunits do

begin
availability := availability +

(firingunits[i].total_availabilitytime / 60);
ammo-shorttime := ammoshort-time +

(firing units[i].critically shorttime / 60);
vulnerability := vulnerability +

(firingunits[i].criticallyvulnerabletime / 60);
rounds on hand := rounds-on hand +

firingunits[i).roundson hand;
totalgunsat start := total_guns at start +

firingunits[il.numberofguns
end;

max_availability := total game time * totalguns atstart
/ 60;

availabilityratio := availability / max_availability;

141

max ammo short-time totalgametime
total_guns at start / 60;

ammo -short time ratio ammo short time
max ammo short time;

max vulnerability totalgame time *
totalguns at start / 60;

vulnerability ratio := vulnerability / maxvulnerability;

truck-casualties := 0.0;
for i := 1 to number of ammo trucks do

begin
truck casualties := truck-casualties +

(ammotrucks[i].casualtytime / 60);
if ammo trucks[i].load status = 'F' then

rounds on hand := rounds on hand +
round (ammotrucks(i].ammocapacity *

ammo_trucks[i].effectivepercent)
end;

max truckcasualties totalgametime *
number of ammo trucks / 60;

truck casualties ratio truck-casualties
max truck casualties;

moe := availabilityratio - ammo short time ratio -
vulnerabilityratio - truckcasualtiesratio;

tareset (nodes);
tanext (nodes, tempnode, node-name);
while ok do

begin
rounds on hand rounds on hand +

temp node.ammo count;
tanext (nodes, tempnode, node_name)
end;

rounds on hand rounds on hand
commanders guidance.bncsr;

if rounds on-hand < 0 then
rounds on hand := 0

end
end;

(
Procedure name : PRINTSTATS

Purpose : this procedure prints the statistics
for the game on the printer.

Parameters : none.

Called by : OUTPUTSTATISTICS

1

142

procedure print_stats;

const
ff = #12;

begin
with game_stats do
begin
writeln (1st, ff);
writeln (1st);
writeln (1st);
writeln (1st);
writeln (1st);
writeln (1st);
writeln (1st);
write (1st, 'Game start time : ')-
writeln (1st, gamestartdtg);
write (1st, 'Game end time : ');
writeln (1st, gamedtg);
writeln (1st);
write (1st, 'Total time firing sections were available
(hours) : ');
writeln (1st, availability:4:2);
write (1st, 'Maximum possible availability time (hours)
');
writeln (1st, max_availability:4:2);
write (Ist, 'Availability ratio (maximize) : ');
writeln (ist, availability ratio:4:2);
writeln (1st);
write (1st, 'Total time firing sections were critically
short ammo (hours) : ');
writeln (1st, ammoshort time:4:2);
write (1st, 'Maximum possible critically_shorttime
(hours) : ');
writeln (1st, max ammoshort time:4:2);
write (1st, 'Critically short ratio (minimize) : ');
writeln (1st, ammo_shorttimeratio:4:2);
writeln (1st);
write (1st, 'Total time firing sections were critically
vulnerable (hours) : ');
writeln (1st, vulnerability:4:2);
write (1st, 'Maximum possible critically vulnerable time
(hours) : ');
writeln (1st, maxvulnerability:4:2);
write (ist, 'Critically vulnerable ratio (minimize) :
writeln (1st, vulnerabilityratio:4:2);
writeln (1st);
write (1st, 'Total time lost due to truck casualties
(hours) : ');
writeln (1st, truckcasualties:4:2);
write (1st, 'Maximum possible casualty time (hours) :

143

writeln (1st, max truck casualties:4:2);
write (1st, 'Truck casualty time ratio (minimize) : ');
writeln (1st, truckcasualtiesratio:4:2);
writeln (1st);
writeln (Ist, 'MOE (availability ratio - critically short
ratio -');
write (1st, ' vulnerability ratio - casualty ratio)

: ');
writeln (1st, moe:4:2);
writeln (1st);
write (1st, 'Number of rounds on hang in excess of CSR
(minimize) : ');
writeln (Ist, roundsonhand);
writeln (1st, ff)
end
end;

begin
if not printerready then

begin
savescreen;
drawwindow (21,12,60,15, yellow, red, null_string);
centertext (13, 'Printer not ready', yellow);
center text (14, 'press any key', white);
key := getkey;
key := null;
restore-screen
end;

if total game time > 0 then
begin
calculate stats;
if printerready then

print_stats
end

end;

begin
choice := menu selection ('Quit Game', 'Save game in
progresslAbandon-game\');
if choice = 1 then

savegame;
close all files;
output-statistics
end;

begin
initialize-screen;
repeat

displaygamemainscreen;
if not hostilities started then

check for start of hostilities;

144

menuxl := 1;
menuyl := 11;
menu x2 := 23;
menuy2 := 23;
choice := menu-selection ('Game Menu', 'Next time step1'+

'Issue commandl'+

parametersl'+
'N e t w o r k

utilityl '+
'Quit game\');

menu xl := menu xl default;
menuyl := menuyldefault;
menux2 := menu x2_default;
menuy2 := menu y2_default;
case choice of

1 : executenext time-step;
2 : issue command;
3 : change_parameters;
4 : network-utility

end
until choice = 5;
initialize screen;
quit-game
end;

Procedure name : PLAYNEWGAME

Purpose : this procedure initializes and plays
a new game.

Parameters : none.

Called by WARGAME

procedure play new game;

begin
if initialize-new-game then

playwargame
end;

Procedure name : PLAYOLDGAME

Purpose : this procedure initializes and plays

145

an old game.

Parameters : none.

Called by : WARGAME
}

procedure playoldgame;

begin
if initializeoldgame then

playwargame
end;

begin
end.
^Z

146

Unit name : INIT

Purpose : this unit contains the procedures that
initialize all of the variables and files for
both a new game or an old game to be continued
if desired. It also contains the procedures
that allow the user to create or modify his
battalion for the game. This includes the
trains, fire units, and ammo trucks. The
player can also modify the game parameters and
commanders guidance with procedures in this
unit. It calls procedures in unit SCENARIO
to also allow the user to create and modify a
scenario complete with nodes and paths.)

unit init;

interface
($I-)

uses dos, crt, utility, gameutil, global, scenario, taccess,
tahigh;

procedure viewgameparameters;
procedure viewcommanders-guidance;
procedure view-battalionconfi~iation;
function initializenew-game : boolean;
function initialize old game : boolean;

implementation

var
firingunitnumber : integer;
ammotrucknumber : integer;

(
Procedure name : UNIQUEFIRINGUNITNAME

Purpose : this procedure insures that a firing
unit that is being created or modified is
assigned a unique name. It checks the
names of the other firing units, the ammo
trucks, and the trains.

Parameters STRINGVALUE - name to be checked

Called by passed as a parameter to

147

EDITSCREEN by UPDATEFIRINGUNITDATA
)

($F+)
function uniquefiring unit-name (stringvalue : string8O):
boolean;

var
uniquename : boolean;
unitnumber : integer;

begin
uniquename := true;
if string value <> nullstring then

begin
for unit-number := 1 to number offiringunits do

if (stringvalue =
firingunits[unitnumber].firingunitname) and

(unitnumber <> firingunit-number) then
uniquename := false;

if unique-name then
uniquename := (trucknumber (stringvalue) = 0) and

(string value <> 'TRAIN')
end

else
unique_name := false;

if not unique name then
displayerror message ('INPUT ERROR', null_string,

nullstring,
'unit must have a unique name',

nullstring);
uniquefiringunit_name := uniquename
end;
($F-)

(
Procedure name : UNIQUEBUMPERNUMBER

Purpose : this procedure insures that an ammo
truck that is being created or modified is
assigned a unique bumper number. It checks
the bumper numbers of the other trucks, the
names of the firing units, and the trains.

Parameters : STRINGVALUE - bumper number to be
checked.

Called by passed as a parameter to
EDITSCREEN by UPDATEAMMOTRUCKDATA

148

(SF+)
function unique bumpernumber (string value : string80):
boolean;

var
unique_name : boolean;
truck-number : integer;

begin
unique name := true;
if stringvalue <> null-string then

begin
for truck-number := 1 to number of ammo trucks do

if (string value =
ammo_trucks [trucknumber) .bumper number) and

(trucknumber <> ammo trucknumber) then
unique name := false;

if unique-name then
unique-name := (unit-number (string value) = 0) and

(stringvalue <> 'TRAIN')
end

else
unique_name := false;

if not unique name then
display errormessage ('INPUT ERROR', nullstring,

null-string,
'truck must have a unique name',

null-string);
unique bumper number := uniquename
end;

S {$F-)

(
Procedure name : SAVEGAMEPARAMETERSTODISK

Purpose . this procedure saves the game
parameter to disk so that it can be used in
successive games to be played by the user
to save him the trouble of having to tailor
it each time.

Parameters : none.

Called by : VIEW GAME PARAMTERS
READYTOPLAY

procedure savegameparameterstodisk;

149

begin
savescreen;
draw window (27,11,54,15, yellow, red, null_string);
shade window (27,11,54,15, black);
center text (13, 'updating files... ', yellow);
assign (gamparam file, gameparameterfilename);
rewrite (gamparam file);
if ioresult = 0 then

write (gamparamfile, gameparameters);
close (gamparam file);
restore-screen
end;

Procedure name : SAVECOMMANDERSGUIDANCETODISK

Purpose : this procedure saves the commander's
guidance to disk so that it can be used in
successive games to be played by the user
to save him the trouble of having to tailor
it each time.

Parameters : none.

Called by : VIEW COMMANDERS GUIDANCE
READYTOPLAY

}

procedure save commanders guidance to disk;

begin
save screen;
drawwindow (27,11,54,15, yellow, red, nullstring);
shade window (27,11,54,15, black);
center text (13, 'updating files...', yellow);
assign (cdrguide file, cdrsguidancefilename);
rewrite (cdrguide file);
if ioresult = 0 then

write (cdrguidefile, commanders-guidance);
close (cdrguidefile);
restore-screen
end;

Procedure name : SAVEUNITDATATODISK

Purpose : this procedure saves the unit data
to disk so that it can be used in
successive games to be played by the user

150

to save him the trouble of having to tailor
it each time. It saves the firing unit data,
ammo truck data, and battalion trains data.

Parameters : none.

Called by : VIEWBATTALION CONFIGURATION
READYTO_PLAY

)

procedure save unit data to disk;

begin
savescreen;
draw window (27,11,54,15, yellow, red, null-string);
shade window (27,11,54,15, black);
center text (13, 'updating files...', yellow);
assign (trainsfile, trainsfilename);
rewrite (trains file);
if ioresult = 0 then

write (trainsfile, battaliontrains);
close (trainsfile);
assign (fireunit file, firing unit filename);
rewrite (fireunit file);
if ioresult = 0 then

for firing unit_number := 1 to number of firing units do
write (fireunit file,

firingunits[firing unitnumber]);
close (fireunit file);
assign (ammotrck file, ammo_truckfilename);
rewrite (ammotrck_file);
if ioresult = 0 then

for amino truck number := 1 to number of ammo trucks do
write (ammotrck_file, ammotrucks[ammo_trucknumber));

close (ammotrck file);
restore-screen
end;

(
Procedure name : VIEWGAMEPARAMETERS

Purpose : this procedure allows the player to
view, change, or print the game parameters for
the game.

Parameters : none.

Called by : INITIALIZE NEW GAME
CHANGEPARAMETERS

151

procedure viewgameparameters;

Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
battalion configuration data.

Parameters : none.

Called by : VIEWGAMEPARAMETERS)

procedure set-upfields;

begin
number-of fields := 4;
with field list[l] do

begin
labelstring := 'Time step (minutes) :';
label x := 15; label-y := 10;
int_value := gameparameters.time stepsize;
str (int_value, str val);
xl := 63; yl := 10; x2 := 67; y2 := 10;
field type := int; int min value := 1; int max value

maxint
end;

with fieldlist[2] do
begin
label string := 'Average track convoy speed (kph) :';
label x := 15; label-y := 12;
int_value := gameparameters.avg track convoyspeed;
str (int_value, str val);
xl := 63; yl := 12; x2 := 65; y2 := 12;
fieldtype := int; int_minvalue := 1; int_maxvalue

120
end;

with fieldlist[3] do
begin
label string := 'Average wheel convoy speed (kph) :';
label x := 15; labely := 14;
int value := gameyparameters.avgwheel convoyspeed;
str (int_value, str val);
xl := 63; yl := 14; x2 := 65; y2 := 14;
field type := int; int minvalue := 1; int maxvalue

120
end;

152

with fieldlist[4) do
begin
label-string := 'Average time from trains to ATP

(minutes) :';
label x := 15; label-y := 16;
int value := game parameters.avg time-trainsto-atp;
str (int value, str val);
xl := 63; yl := 16; x2 := 65; y2 := 16;
field type := int; int min value := 1; int max value :=

maxint
end

end;

begin
set up fields;
save screen;
clear area (1,2,80,25);
draw-window (1,3,80,23, white, blue, 'Game Parameters');
display_editscreenhelpline;
edit screen (number of fields, fieldlist, not
abort allowed);
with gameparameters do

begin
time_stepsize := field list(l].int value;
avgtrackconvoyspeed := field-list[2.int-value;
avgwheel_convoyspeed := fieldlist[3].intvalue;
avgtime_trainsto-atp := fieldlist[4].intvalue
end;

save gameparameterstodisk;
restore screen
end;

Procedure name : VIEWCOMMANDERSGUIDANCE

Purpose : this procedure allows the player to
view, change, or print the commanders guidance
for the game.

Parameters : none.

Called by : INITIALIZENEWGAME
CHANGEPARAMETERS

1

procedure viewcommandersguidance;

Procedure name : SETUPFIELDS

153

Purpose : this procedure initializes the data
that describes the fields for displaying the
commanders guidance data.

Parameters : none.

Called by : VIEWCOMMANDERSGUIDANCE
I

procedure setupfields;

begin
number-of fields := 9;
with fieldlist(l] do

begin
label string := 'Unit sitrep frequency (minutes) :';
label x := 14; label-y := 5;
int value := commandersguidance.unitsitrep frequency;
str (int_value, str-val);
xl := 63; yl := 5; x2 := 65; y2 := 5;
field type := int; int_min value := 1; int max value

maxint
end;

with fieldlist(2] do
begin
label string := 'Vulnerability threshold (hours) :';
label x := 14; label-y := 7;
float value :=

commandersguidance.vulnerabilitythresholdtime;
str (float value:6:3, strval);
xl := 63; yl := 7; x2 := 68; y2 := 7;
field type := float; float minvalue := 0.0;

float max value := 100.0
end;

with fieldlist[3] do
begin
labelstring := 'Vulnerability threshold (rds / position)

label x := 14; label-y := 9;
int value :=

commandersguidance.vulnerabilitythresholdrounds;
str (int_value, str-val);
xl := 63; yl := 9; x2 := 65; y2 := 9;
field type := int; int min value := 1; int max value

maxint
end;

with fieldlist[4] do
begin
labelstring := 'Ammo truck crew rest (hrs / day) :';
labelx := 14; labely := 11;

154

float -value := commanders guidance.crew restper-day;
str (float -value:6:3, str -val);
x1 := 63; yi := 11; x2 -- 68; y2 := 11;
field -type := float; float-iuin-value := 0.0;

float-max-value := 24.0
end;

with field-list[5J do
begin
label -string := 'Battalion CSR :';
label-x := 14; label-y :- 13;
int-value := commanders_guidance.bn-csr;
str (mnt-value, str Tval);
x1 := 63; yl := 13;* x2 := 66; y2 := 13;
field type := int; int-minvalue := 1; mnt-max-value :

maxint
end;

with field-list[6] do
begin
label-string := 'BMNT :1;
label-x :=14; label-y := 15;
str -val :=commanders guidance.bmnt;
xl := 63; yl := 15; x2 := 67; y2 15;
field -type := time
end;

with field-list[73 do
begin
label-string := 'EENT :1;
label x :=14; label-y :=17;
str -val :=commanders guidance.eent;
x1l: 63; yl := 17; x2 := 67; y2 17;
field type :=time
end;

with field-list[8] do
begin
label -string := 'Maneuver mission (Offense/Defense/No

contact) :';
label-x :=14; label-y := 19;
str -val :=commanders guidance.maneuver -mission;
xl := 63; yl := 19; x2 := 63; y2 := 19;
field type := ch; valid-char-set := ['O','D','N');
end;

with field-list(9) do
begin
label string := 'Axis (bearing in degrees) :1;
label x := 14; label-y := 21;
mnt -value := commanders guidance.axis;

*str (int -value, str-val);
xl := 63; yi := 21; x2 := 66; y2 := 21;
field type :=int; mnt mm _value := 1; int max-value

360
end

155

end;

begin
set upfields;
savescreen;
clear area (1,2,80,25);
draw window (1,3,80,23, white, blue, 'Commander"s
Guidance');
displayeditscreenhelpline;
edit screen (number offields, field-list, not
abortallowed);
with commandersguidance do

begin
unit sitrepfrequency

field list[1].int value;
vulnerability threshold time •

field list[2].float value;
vulnerabilitythreshold rounds :=

fieldlist[3].intvalue;
crewrestper day

fieldlist[4].floatvalue;
bn csr

field list[5].int value;
bmnt := field list[6].strval;
eent := field_.list(7].str val;
maneuver mission

field list(8j.str val[1];
axis := fieldlist[9].intvalue

end;
savecommanders guidance to disk;
restore-screen
end;

Procedure name : VIEWBATTALIONCONFIGURATION

Purpose : this procedure allows the player to
view, change, or print the battalion
configuration for the game. It presents the
player with a menu to select the trains,
fire units, or ammo trucks.

Parameters : none.

Called by : INITIALIZENEWGAME
)

procedure view-battalionconfiguration;

156

var
choice : integer;

{
Procedure name : UPDATETRAINSLOCATION

Purpose : this procedure allows the player to
view, change, or print the location of the
battalion trains for the start of the game.

Parameters : none.

Called by : VIEWBATTALIONCONFIGURATION
)

procedure updatetrains location;

{
Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
location of the battalion trains data.

Parameters : none.

Called by : UPDATETRAINSLOCATION
}

************** **********************************)*

procedure set_upfields;

begin
number of fields := 1;
with field_listr1] do

begin
labelstring := 'Trains location (node) :';
labelx := 27; label-y := 13;
strval battalion trains.location;
X1 := 53; yl := 13; x2 := 57; y2 := 13;
field type := strg
end

end;

begin
set upfields;
save screen;
clear area (2,4,79,22);
displayeditscreenhelpline;

157

edit screen (numberoffields, fieldlist, not
abort allowed);
battalion trains.location := uppercase
(fieldlist[l].strval);
restore-screen
end;

Procedure name : UPDATENUMBEROFUNITS

Purpose : this procedure allows the player to
view, change, or print the number of ammo
trucks and fire units to use for the play of
the game.

Parameters none.

Called by VIEWBATTALIONCONFIGURATION
)

procedure updatenumber of units;

{
Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
the number of fire units and ammo trucks.

ParameLers none.

Called by UPDATENUMBEROFUNITS
)

procedure setupfields;

begin
number of fields := 2;
with field_list[l] do

begin
labelstring := 'Number of firing units :';
label x := 25; labely := 12;
int value := number of firingunits;
str (int_value, str val);
xl := 53; yl := 12; x2 := 55; y2 := 12;
fieldtype := int; int_minvalue := 1; int maxvalue

maxfiringunits
end;

with field list[23 do

158

begin
label string := 'Number of ammo trucks :';
labelx := 25; label-y := 14;
int value := number of ammotrucks;
str (int_value, str-val);
xl := 53; yl := 14; x2 := 55; y2 := 14;
field type := int; int min value := 1; int maxvalue

max ammo trucks
end

end;

begin
setupfields;
savescreen;
clear area (2,4,79,22);
displayedit screenhelpline;
edit screen (number offields, field-list, not
abort_allowed);
numberoffiringunits := field_list[l].intvalue;
number ofammotrucks := fieldlist[2].intvalue;
restore-screen
end;

(
Procedure name : UPDATEFIRINGUNITDATA

Purpose : this procedure allows the player to
view, change, or print the data that pertains
to the fire units for the play of the garme.

Parameters: none.

Called by : VIEWBATTALIONCONFIGURATION
)

procedure update firingunit data;

Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
data for the fire units.

Parameters none.

Called by : UPDATEFIRINGUNITDATA

1

159

procedure setup fields;

begin
number of fields := 6;
with fieldlist[l] do

begin
label string := 'Unit name :';
labelx := 17; label-y := 8;
xl := 57; yl := 8; x2 := 61; y2 := 8;
field-type := eval; eval function :=

uniquefiringunitname
end;

with fieldlist[2J do
begin
label string := 'Number of guns :';
label x := 17; labely : 10;
xl := 57; yl := 10; x2 := 61; y2 := 10;
fieldtype := int; int min value := 1; int maxvalue

maxint
end;

with fieldlist[3] do
begin
label string := 'Location (node) :';
label x := 17; labely := 12;
xl := 57; yl := 12; x2 := 61; y2 := 12;
fieldtype := strg
end;

with fieldlist[4] do
begin
label string := 'Firing section capacity (rounds) :';
label x := 17; labely := 14;
xl := 57; yl := 14; x2 := 60; y2 := 14;
field_type := int; int_min value := 1; int maxvalue

maxint
end;

with fieldlist[5] do
begin
label-string := 'Rounds on hand for firing unit :';
label x := 17; labely := 16;
xl := 57; yl := 16; x2 := 60; y2 := 16;
fieldtype := int; int min value := 1; int maxvalue

maxint
end;

with fieldlist[6] do
begin
label-string := 'Sustained rate of fire (roinds/tube) :';

label x := 17; labely := 18;
xl := 57; yl := 18; x2 := 60; y2 := 18;
fieldtype := int; int minvalue := 1; int maxvalue

maxint

160

end
end;

begin
setupfields;
save screen;
clear area (2,4,79,22);
displayedit screenhelpline;
centertext (24, 'Page Up - next firing unit '+

'Page Down - previous firing unit', red);
center-text (5, 'Firing unit data', cyan);
firing unitnumber :- 1;
repeat

save-screen;
clear-area (2,6,79,22);
with firingunits[firing unitnumber] do

begin
field list[l].strval := firingunit_name;
field list[2].int value := number ofguns;
str (field list[2).int value, field list[2).str val);
field list[3].str val := location;
fieldlist[4J.int-value

section max roundscapacity;
str (field list[4].int value, field list[4].str val);
field list[5].int value := rounds on hand;
str (field list[5.int value, field list[5].str val);
field list[6].int value := sustained rate of fire;
str (fieldlist[6].intvalue, field list[6].str val);
edit screen (numberoffields, field list, not

abort-allowed);
firing unitname :- upper-case

(fieldlist[l].str_val);
number of guns

field_list[2J.intvalue;
sections in operating condition number of guns;
location upper-case

(fieldlist[31.str_val);
section max rounds capacity

fieldlist[4]bint -value;
rounds on hand

field_list(53.intvalue;
sustained rate of fire

field_list[6].intvalue
end;

if key = pagedown then
begin
if firing unitnumber = 1 then

firing_unit_ntumber := number of firingunits
else

decr (firing_unit_number)
end

161

else if key - page-up then
begin
if firingunitnumber = number of_firing units then

firingunitnumber :- 1
else

incr (firing_unitnumber)
end;

restore screen
until key = escape;
restorescreen
end;

(
Procedure name : UPDATEAMMOTRUCKDATA

Purpose : this procedure allows the player to
view, change, or print the data that pertains
to the ammo trucks for the play of the game.

Parameters none.

Called by : VIEWBATTALIONCONFIGURATION
I

procedure updateammo-truckdata;

Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
data for the ammo trucks.

Parameters none.

Called by : UPDATEAMMOTRUCKDATA
)

procedure set_upfields;

begin
number-of fields := 4;
with field list[l] do

begin
labelstring := 'Bumper number :';
label x := 24; labely := 10;
xl := 54; yl := 10; x2 := 58; y2 := 10;
field type := eval; eval function :=

uniquebumper number

162

end;
with field list[2] do

begin
label string := 'Location (node) :';
label x := 24; labely := 12;
xl :=-54; yl := 12; x2 := 58; y2 := 12;
field-type := strg
end;

with field list[3) do
begin
labelstring := 'Load status (Full / Empty) :';
label x := 24; labely := 14;
xl := 54; yl := 14; x2 := 54; y2 := 14;
field-type := ch; validcharset := ['F','E']
end;

with fieldlist[4] do
begin
label string := 'Truck capacity (rounds) :';
label-x := 24; label-y := 16;
xl := 54; yl := 16; x2 := 57; y2 := 16;
fieldtype := int; int minvalue := 1; int_maxvalue

maxint
end

end;

begin
set upfields;
save screen;
cleararea (2,4,79,22);
displayedit screenhelpline;
center-text (24, 'Page Up - next ammo truck '+

'Page Down - previous ammo truck', red);
centertext (5, 'Ammo truck data', cyan);
ammo truck-number := 1;
repeat

savescreen;
cleararea (2,6,79,22);
with ammotrucks[ammotruck_number] do

begin
field list[l].str val := bumpernumber;
field-list[2).str-val := location;
field list[3].str-val := load-status;
field list(4].intvalue := ammo capacity;
str (field_list[4].int value, field list[4).strval);
edit screen (number offields, field-list, not

abortallowed);
bumper-number := upper_case (fieldlist(l].strval);

location := upper_case (field list[2].str_val);

loadstatus := fieldlist[3].str-val(l];

163

ammo capacity := field_listf4].intvalue;
end;

if key = page-down then
begin
if ammo truck number = 1 then

ammo_trucknumber := numberof ammotrucks
else

decr (ammo trucknumber)
end

else if key = pageup then
begin
if ammo truck number = number of ammo trucks then

ammo truck number := 1
else

incr (ammotrucknumber)
end;

restore-screen
until key = escape;
restore-screen
end;

begin
save screen;
cleararea (1,2,80,25);
draw-window (1,3,80,23, white, blue, 'Battalion
Configuration / Status');
menu xl 20;
menu yl := 7;
menu x2 := 60;
menuy2 := 19;
repeat

choice := menuselection (nullstring, 'Location of
trainsl'+

'Number of firing
units / trucksI'+

'Firing unit
datal'+

'Ammo truck
datal I+

'Return\');
case choice of

1 : updatetrainslocation;
2 : updatenumber of units;
3 : updatefiring unit_data;
4 : updateammotruck_data

end
until choice = 5;
menu xl := menu xl default;
menuy yl := menuyldefault;
menu x2 menu x2_default;
menu-y2 := menuy2_default;

164

save unit data to disk;
restore-screen
end;

Procedure name : INTIALIZENEWGAME

Purpose : this procedure initializes all
variables and files for the play of a new game.
It also provides a menu for allowing the player
to view, modify, or print any of the parameters,
commanders guidance, unit data, or network. It
returns a false if the player elects to return
to the game's main menu.

Parameters • none.

Called by : PLAYNEWGAME
)

function initializenewgame : boolean;

var
choice : integer;

(
Procedure name : INTIALIZENEWGAMEVARIABLES

Purpose : this procedure initializes all
variables and files for the play of a new game.

Parameters : none.

Called by INITIALIZENEWGAME
I

procedure initializenewgamevariables;

Procedure name : INTIALIZEGAMEPARAMETERS

Purpose : this procedure initializes the game
parameters by reading them from disk if they
exist fror: a previous game or by assigning
default values from unit GLOBAL if a file
does not exist from a previous game.

Parameters : none.

165

Called by : INITIALIZENEWGAMEVARIABLES
}

procedure initializegame parameters;

begin
gameparameters := defaultgameparameters;
assign (gamparam file, gameparameterfilename);
reset (gamparamfile);
if ioresult = 0 then

read (gamparam-file, gameparameters);
close (gamparamfile)
end;

Procedure name : INITIALIZECOMMANDERSGUIDANCE

Purpose : this procedure initializes the
commanders guidance by reading them from disk
if they exist from a previous game or by
assigning default values from unit GLOBAL if a
file does not exist from a previous game.

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES

procedure initialize commandersguidance;

begin
commandersguidance := defaultcommandersguidance;
assign (cdrguide file, cdrsguidance filename);
reset (cdrguide file);
if ioresult = 0 then

read (cdrguide_file, commandersguidance);
close (cdrguidefile)
end;

Procedure name : INITIALIZEUNITDATA

Purpose : this procedure initializes the unit
data by reading them from disk if they exist
from a previous game or by assigning default
values from unit GLOBAL if a file does not
exist from a previous game.

166

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES
)

procedure initializeunitdata;

begin
battalion-trains := default battalion trains;
for firingunitnumber :- 1 to max firingunits do

firingunits[firing unit number) :-
default firingunitdata;
for ammo-truck number := 1 to max ammo trucks do

ammotrucks(ammo trucknumber]: =
default ammo truck data;
assign (trains_file, trainsfilename);
reset (trains_file);
assign (fireunit file, firing unitfilename);
reset (fireunitfile);
assign (ammotrckfile, ammotruckfilenamej;
reset (ammotrck file);
if ioresult = 0 then

begin
read (trainsfile, battaliontrains);
if ioresult <> 0 then

battalion trains := default battalion trains;
firingunitnumber := 0;
while not (eof (fireunitfile)) and (ioresult = 0) and

(firing unitnumber < max firing_units) do
begin
incr (firingunitnumber);
read (fireunit_file, firingunits[firingunit_number])

end;
if (ioresult <> 0) and (firingunit number <> 0) then

firingunits[firingunit-number]-:=
default firing_unitdata;

ammo truck number := 0;
while not eof (ammotrckfile) and (ioresult = 0) and

(ammotrucknumber < maxammo_trucks) do
begin
incr (ammo trucknumber);
read (ammotrck_file, ammo_trucks[ammo_trucknumber])
end;

if (ioresult <> 0) and (ammo_trucknumber <> 0) then
ammo_trucks[ammo trucknumber) :=

defaultammotruckdata;
end;

close (trains_file);
close (fireunitfile);
close (ammotrckfile)

167

end;

{
Procedure name : INITIALIZEEVENTSLIST

Purpose : this procedure initializes the files
that will be used to maintain the events list
throughout the game.

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES
)

procedure initializeeventlist;

begin
makefile (event list, eventdatafilename, sizeof
(event record));
makeindex (time index, event time index filename,

sizeof (stringlo) - 1, duplicates);
makeindex (serialnumberindex, eventserialindex-filename,

sizeof (string5) - 1, duplicates)
end;

Procedure name : INITIALIZEMESSAGELIST

Purpose : this procedure initializes the files
that will be used to maintain the message
buffer throughout the game.

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES
)

procedure initialize_message_list;

begin
makefile (messages, messagedatafilename, sizeof
(message_record));
makeindex (message type index, messagetypeindex-filename,

sizeof (char), duplicates)
end;

begin
savescreen;

168

draw window (26,11,55,15, yellow, red, null_string);
center text (13, 'initializing game...', yellow);
repeat

scenario file name :=
get_file (TEnter scenario file name',

'Hit ESC key to build a new scenario',
'*.scn')

until (scenario file name = null-string) or
(scenario file validT;
if scenario file_name = null string then

begin
scenario file name := get new scenariofilename;
initializenew_scenario
end;

gamestart dtg := scenarioinfo.startdtg;
dtgtodatetime (gamestartdtg, game_starttime);
gamedtg := gamestartdtg;
game time := gamestarttime;
number of firingunits := defaultnumberof firingunits;
number of ammo trucks := default number of ammo trucks;
initialize_gameparameters;
initializecommandersguidance;
initialize unit data;
initialize-event list;
initialize-messagelist;
totalgametime := 0;
new day := false;
determine dayor night;
time-sincelastsitrep := 0;
hostilities-started := false;
commandserialnumber := 0;
randomize;
restore-screen
end;

Procedure name : READYTOPLAY

Purpose : this procedure insures that the game
is ready to be played after initialization by
checking to make sure that all units are
placed at an existing node for game start.

Parameters : none.

Called by : INITIALIZENEWGAME
}

function readytoplay : boolean;

169

var
ready : boolean;
temp_node : node-record;

begin
atp rounds-on-hand := 0;
for firing_ unit -number :=1 to number-of-firing units do

atp rounds-on-hand :~atp_rounds-on-hand +
firing_ units (firing_ unit number) .number-of guns;

atp rounds-on-hand := atp roundis-on-hand
comma nders gjuidance .bn csr;
save gameyparameters to-disk;
save-commanders guidance-to-disk;
save unit data to disk;
ready := true;-
for firing_ unit-number := 1 to number-of-firing_ units do

begin
taread (nodes, temp node,

firing units~firing_ unit_number] .location,
exactmatch);

if not ok then ready :=false
end;

if ready then
for ammo-truck-number :=1 to number-of-ammo-trucks do

begin
taread (nodes, temp node,

ammo-trucks~ammo-truck-number].location,
exactmatch);

if not ok then ready := false
end;

if ready then
begin
taread (nodes, temp node, battalion-trains.location,

exactmatch);
if not ok then ready := false
end;

if not ready then
display error-message ('INITIALIZATION ERROR',

'firing units, trucks, and
trains',

'must start game at valid
locations',

null_string,
'correct this before continuing');

ready toplay :=ready
end;

begin
initialize new~game-variables;
repeat

170

choice := menuselection ('Scenario / Parameter Menu',
'View or change scenario /

network I'+
'View or change game

4 ~ parametersl '+

'View or change commander''s
guidancel'+

'View or change battalion
configuration / statusl'+ 'Play gamel'+

'Main menu\');
case choice of

1 : view scenario;
2 : view game_parameters;
3 : view commanders guidance;
4 : view-battalionconfiguration

end
until ((choice = 5) and readytoyplay) or (choice = 6);
if choice = 6 then

close all files;
initialize new game := choice = 5
end;

{
Procedure name : INTIALIZEOLDGAME

Purpose : this procedure initializes all
variables and files for the play of an old game
that was saved in progress. The procedure
automatically loads the data from disk if
there is a game file there to be loaded. It
returns a false value if it could not load the
game successfully.

Parameters : none.

Called by : PLAYOLDGAME
)

function initialize oldgame : boolean;

begin
initialize oldgame := false
end;

begin
end.
AZ

171

{
Unit name : SCENARIO

Purpose : this unit contains the procedures that
allow a player to create, modify, view, or
print a scenario file. This includes the
scenario header, the node data, and the path
data. It also reads and saves scenario files
from and to disk.

)

unit scenario;

interface
($I-)

uses dos, crt, utility, gameutil, global, taccess, tahigh;

function scenario file valid : boolean;
function get new-scenario filename string;
procedure initialize new scenario;
procedure viewscenario;
procedure networkutility;

implementation

const
add record = true;
edit record = false;

Procedure name SAVESCENARIOTODISK

Purpose : this procedure saves the scenario
header information to disk.

Parameters : none.

Called by : VIEWSCENARIO
I

procedure savescenario to disk;

var
i : integer;

begin
save screen;
draw-window (26,11,55,15, yellow, red, null-string);

172

shade-window (26,11,55,15, black);
center text (13, 'updating files... ', yellow);
assign (scenariofile, scenario filename);
rewrite (scenario file);
if ioresult = 0 then

with scenario-info do
begin
writeln (scenario file, scenario fileheader);
writeln (scenario file, opordnumber);
writeln (scenario file, opord date);
writeln (scenariofile, mapsheets);
writeln (scenario file, start dtg);
for i := 1 to 10 "do

writeln (scenariofile, adminnotes[i])
end;

close (scenariofile);
restorescreen
end;

(
Procedure name : VALIDSCENARIOFILENAME

Purpose : this procedure insures that a
file name entered for the new scenario is a
valid and not previously used name.

Parameters STRINGVALUE - filen name to be
checked.

Called by passed as a parameter to
EDITSCREEN by GETNEWSCENARIOFILENAME

)
**************************** .*********************

($F+)
function validscenario filename (string_value string80)
: boolean;

var
temp file : file;
valid filename : boolean;

begin
valid filename := false;
assign (tempfile, stringvalue);
reset (temp_file);
if ioresult = 2 then

begin
rewrite (temp file);
if ioresult <> 2 then

begin

173

valid filename := true;
erase (tempfile)
end

end;
if not valid filename then

displayerrormessage ('FILE ERROR', null_string,
'filename entered is not valid',
'or already exists',
null_string);

close (temp file);
validscenariofilename := validfilename
end;
($F-}

Procedure name : SCENARIOFILEVALID

Purpose : this procedure checks a selected
scenario file name to insure that the file
contains a valid scenario that can be loaded.

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES
)

function scenario file valid : boolean;

var
file-header : string8O;
i : integer;
scenario valid : boolean;
dir : dirstr;
name : namestr;
ext : extstr;

begin
scenario valid := false;
assign (scenario file, scenariofile-name);
reset (scenario file);
if ioresult = 0 then

begin
readln (scenario file, file header);
if file-header = scenario file header then

begin
with scenario-info do

begin
readln (scenario file, opord_number);
readln (scenario file, opord_date);
readln (scenario-file, mapsheets);

174

readln (scenario file, start dtg);
for i := 1 to 10 do

readln (scenario-file, admin-notes[i))
end;

if (ioresult = 0) and (validdtg
(scenarioinfo.start-dtg)) then

begin
fsplit (scenariofilename, dir, name, ext);
node data filename := dir + name +

node-data filename ext;
path data filename := dir + name +

path datafilename-ext;
node index filename := dir + name +

node-index filename-ext;
path index-filename := dir + name +

path-index filename ext;
taopen (nodes, nodedatafilename, sizeof

(noderecord),
nodeindexfilename, sizeof

(string_5)
if ok then

begin
taopen (paths, pathdata-filename, sizeof

(pathrecord),
pathindex filename, sizeof

(string_5)
if ok then

scenario valid := true
end

end
end

end;
if not scenario valid then

displayerrormessage (nullstring, scenariofilename,
'INVALID SCENARIO FILE',
'check it before continuing',
'or try another');

scenario file valid := scenario-valid;
close (scenario_file)
end;

Procedure name : GETNEWSCENARIOFILENAME

Purpose : this procedure prompts the player to
enter a name for the new scenario that he would
like to create.

Parametej ; : none.

175

Called by : INITIALIZENEWGAMEVARIABLES
)

function get new scenario filename : string;

Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
prompt for entering a file name.

Parameters : none.

Called by : GETNEWSCENARIOFILENAME
)

procedure set_upfields;

begin
number-of fields 1;
with field_list[l] do

begin
labelstring := 'File name for new scenario :';
labelx 10; label-y := 13;
str val default scenario file name;
xl := 40; yl := 13; x2 := 70; y2 := 13;
fieldtype := eval; eval function

valid scenario filename;
end

end;

begin
setupfields;
savescreen;
cleararea (2,4,79,22);
draw window (1,3,80,23, white, blue, 'New Scenario');
display_editscreenhelpline;
edit screen (numberof_fields, field-list, not
abort_allowed);
getnew scenario filename := uppercase
(field list(l].str_val);
restore-screen
end;

{

Procedure name : INITIALIZENEWSCENARIO

Purpose : this procedure initializes the new

176

scenario by assigning a default header to the
scenario and creating the files to hold the
node and path data.

Parameters : none.

Called by : INITIALIZENEWGAMEVARIABLES

procedure initializenewscenario;

var
dir : dirstr;
name : namestr;
ext : extstr;

begin
scenarioinfo := defaultscenarioinfo;
save scenario to disk;
fsplit (scenario file name, dir, name, ext);
nodedata filename := dir + name + node data filename ext;
path data filename := dir + name + path data filename-ext;
node indexfilename := dir + name + nodeindexfilenameext;

path index filename dir + name + path index filenameext;

tacreate (nodes, node data filename, sizeof (node_record),
node-indexfilename, sizeof (string_5)

tacreate (paths, pathdatafilename, sizeof (path_record),
pathindexfilename, sizeof (string_5)

end;

{
Procedure name : NETWORKUTILITY

Purpose : this procedure allows the user to
get information about the network he has
created. It includes determining min time and
min distance routes between selected nodes.

Parameters none.

Called by VIEW SCENARIO
PLAYWARGAME

)

procedure network-utility;

177

begin
end;

Procedure name : VIEWSCENARIO

Purpose : this procedure allows the player to
view, change, or print the game scenario for
the game. It presents the player with a menu
to select the scenario header, the node data,
or the path data. It also allows him to use
the network utility from here.

Parameters : none.

Called by : INITIALIZE NEW GAME
CHANGEPARAMETERS

}

procedure view-scenario;

var
choice : integer;

{
Procedure name : UPDATESCENARIOINFORMATION

Purpose : this procedure allows the player to
view, change, or print the scenario header
information for the current scenario.

Parameters none.

Called by : VIEWSCENARIO
)

procedure updatescenarioinformation;

(
Procedure name : SETUPFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
scenario header information.

Parameters : none.

Called by : UPDATESCENARIOINFORMATION

178

procedure set-up fields;

begin
number of fields := 14;
with field -list[1) do

begin
label -string := 'OPORD # :1;
label -x 11 i; labeljy := 6;
str-val :=scenario -info.opord -number;
xl :*= 22; yl := 6; x2 :=31; y2 := 6;
field type := strg
end;

with field-list(2J do
begin
label string := OPORD Date :';
label x 11; label-y := 7;
str -val :=scenario -info.opord date;
xl := 25; yl :=7; x2 := 39; y2 := 7;
field -type := strg
end;

with field-listt31 do
begin
label string := 'Map sheets :1;
label x :=11; label_y := 8;
str -val :=scenario-info.map sheets;
xi := 25; yl := 8; x2 :=70; y2 8= ;
fieldtype :=strg
end;

with field-list[4) do
begin
label-string :='Game start time (DTG) :';
label x :~11; label-y := 9;
str -val :=scenario -info.start_dtg;
xl : 36; yl := 9; x2 := 50; y2 :=9;
field type := dtg
end;

with field-list[53 do
begin
label-string := 'Admin note :';
label-x :=11; label_y := 11;
str-val :=scenario -info.admin-notes[l];
xl := 25; yl : 11; x2 := 70; y2 :=11;
field type :=strg
end;

with field-list(6] do
begin
label-string := null-string;
label-x 1; labely := 1;
str-val :=scenario-info.admin-notes[2];

179

xl :- 11; yl := 12; x2 := 70; y2 :=12;
field-type := strg
end;

with field-list(7) do
begin
label-string := null-string;
label-x :=1; labeljY := 1;
str -val :=scenario -info.admin-notes(3J;
xl := 11; yl := 13;* x2 := 70;, y2 := 13;
field -type := strg
end;

with field list(8J do
begin
label string :-null-string;
label x :=1; labeljY := 1;
str -val :=scenario-info.admin-notes[4);
Xl := 11; yl := 14; x2 := 70; y2 := 14;
field type := strg
end;

with field-list[93 do
begin
label string := null -string;
label x :=1; label-y := 1;
str -val :=scenario-info.admin-notes[5);
xl := 11; y1 := 15; x2 := 70; y2 := 15;
field type := strg
end;

with field-list[1O) do
begin
label string := null -string;
label x 1; label-y := 1;
str-val scenario -info.adxnin-notest6);
xl := 11; yl := 16;* x2 := 70;* y2 := 16;
field type :=strg
end;

with field-list(113 do
begin
label string := null -string;
label x :=1; label-y := 1;
str-val :=scenario -info.admin-notes[7];
xl *:= 11; yl := 17; x2 := 70; y2 := 17;
field-type := strg
end;

with field-list[12] do
begin
label-string := null-string;
label-x :=1; label-y := 1;
str-val scenario -info.adminnotes[83;
X1 := 11; yl := 18; x2 := 70; y2 :=18;
field type := strg
end;

180

with field -list(133 do
begin
label-string := null-string;
label-x :=1; label-y := 1;
strvYal :=scenario-info.adinnnotes(9J;
x1 := 11; yl :- 19: x2 :- 70; y2 := 19;
field-type := strg
end;

with field -list(143 do
begin
label-string := null-string;
label-x :=1; label-y := 1;
str -val :=scenario-info.adinnnotes~lli;
x1 := 11; yl := 20;, x2 := 70;* y2 := 20;
field -type := strg
end

end;

begin
set-up fields;
save screen;
clear -area (2,4,79,22);
display_edit -screen -helpline;
edit screen (number-of-fields, fie'ld_list, not
abort -allowed);
with scenario-info do

begin
opord-number :=field list~l].str val;
opord-date :=field list[2).str val;
map sheets :=field -list[3] .str-val;
start -dtg :=field list[4) .str-val;
game-start_dtg :=start dtg;
dtgto_datetime (game_start dtg, game start_time);
game dtg game -start -dtg;
game_time game -start time;
admin -notesti] : field list[5].str-val;
admin -notes[2] :=field list[6].str-val;
admin -notes[3) : field list[7].str-val;
adm-in-notesE4] :=field list[8).str-val;
admin -notes[5) : field list[9) .str-val;
admin-notest6) : field listt 10) .str-val;
admin notes[73 : field list(11).str -val;
admin notest8) : field list[12].str -val;
admiri notes(9) : field list[13] .str -val;
admin notesIlO] field list[14) .str-val
end;

save-scenario-to-disk;
restore-screen
end;

181

Procedure name : UPDATENODEDATA

Purpose : this procedure allows the player to
view, change, or print the node data that is
part of the current scenario.

Parameters : none.

Called by : VIEWSCENARIO

procedure updatenodedata;

var
currentnode : noderecord;
currentnodename : string5;

Procedure name : INITIALIZENODEFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
node data.

Parameters none.

Called by UPDATENODEDATA
}

procedure initialize node fields;

begin
number-of fields := 11;
with field_list[l] do

begin
labelstring := 'Node name :';
labelx := 15; label y 7;
xl := 28; yl := 7; x2 := 32; y2 7;
field type := strg
end;

with fieldlist[2] do
begin
labelstring := 'Associated paths :';
labelx := 15; label-y 9;
xl := 36; yl := 9; x2 40; y2 := 9;
fieldtype := strg
end;

with field-list[3] do
begin

182

labelstring := null-string;
labelx := 15; label-y := 9;
xl := 43; yl := 9; x2 := 47; y2 := 9;
field type := strg
end;

with field list[4] do
begin
labelstring := null string;
label x := 15; label-y : 9;
xl :=-50; yl := 9; x2 := 54; y2 := 9;
field type := strg
end;

with fieldlist[5) do
begin
label-string := null-string;
label x := 15; label-y : 10;
xl := 36; yl := 10; x2 := 40; y2 := 10;
fieldtype := strg
end;

with field list[6] do
begin
label-string := null-string;
labelx := 15; labely :1 10;
xl := 43; yl := 10; x2 := 47; y2 10;
fieldtype := strg
end;

with fieldlist[7] do
begin
label-string := null string;
label x := 15; label-y : 10;
xl := 50; yl := 10; x2 54; y2 10;
fieldtype := strg
end;

with field list(8] do
begin
labelstring := 'Location (grid) :';
label x := 15; label y := 12;
xl := 50; yl := 12; x2 := 59; y2 12;
fieldtype := strg
end;

with field list(9] do
begin
labelstring := 'Position type (Rural/Urban) :';
labelx := 15; labely : 14;
xl := 58; yl := 14; x2 := 58; y2 := 14;
field type := ch; valid char set : ['R','U'3
end;

with fieldlist(10) do
begin
label-string := 'Cover and concealment (High/Medium/Low)

183

labelx := 15; labely := 16;
xl := 58; yl := 16; x2 := 58; y2 := 16;
field-type := ch; validcharset := ['H','M','L']
end;

with field list[1l] do
begin
label string := 'Prepositioned ammo count (rounds) :';
label x := 15; label-y := 18;
xl := 58; yl := 18; x2 := 61; y2 := 18;
field type := int; int_min value := 0; int max value :=

maxint
end

end;

Procedure name : DISPLAYNODEDATA

Purpose : this procedure uses the data that
describes the fields for displaying the
node data and uses it to display a node's data.

Parameters : NODE DATA - record containing the
data for the node to be displayed.

Called by : UPDATENODEDATA

}

procedure displaynode_data (nodedata noderecord);

var
i : integer;

begin
with node data do

begin
field list[l].str_val := node-name;
field-list[2).str_val := paths[l];
field -list[3].str_val:= paths[2];
field list[4].str val := paths[3);
field -list[5).str Val :pathst4];
field list[6).str val := paths[5];
field list[7].str val := paths[6];
field list[8).str val := grid;
field list[9).str val := positiontype;
field list[10].str val := cover-concealment;
str (ammo_count, fieldlist[ll].str_val)
end;

for i := 1 to number of fields do
with field_list[i) do

begin

184

put_string (label x, label y, label-string);
put_string (xl, yl, str val)
end

end;

Procedure name : EDITNODESCREEN

Purpose : this procedure uses the data that
describes the fields for displaying the
node data and uses it to display a node's data
and allow it to be changed.

Parameters : NODE DATA - record containing the
data for the node to be displayed.
NEW RECORD - boolean record indicating whether
a new node is being entered or an existing one
is being modified.

Called by : EDITNODE
}

procedure edit node screen (var node-data node-record;
newrecord : boolean);

var
temporary field : field record;
error code : integer;
i : integer;

begin
savescreen;
if new record then

displayaddrecord helpline
else

displayeditscreenhelpline;
clear_area (2,6,79,22);
cleararea (1,24,80,24);
with node-data do

begin
field list[l].strval nodename;
field list(2].str val paths[l];
field list[3].strval := paths[2];
field list[4].str val := paths(3];
field list(5].strval := paths[4];
field list[6].strval := paths[5];
field list[7].str val := paths[6];
fieldlistr8).str-val grid;
field list[9].strval := positiontype;
field list[l0].str-val cover-concealment;

185

str (ammo_count, fieldlist[ll].str val)
end;

if new-record then
editscreen (number of fields, field_list, abortallowed)

else
begin
with field_list[l] do

begin
putstring (label_x, labely, labelstring);
putstring (xl, yl, strval)
end;

temporary-field := field list[l);
for i := 2 to number of fields do

field list[i - 1] := fieldlist[i);
decr (numberof fields);
edit screen (number of fields, field_list, not

abort_allowed);
incr (numberoffields);
for i := number of fields downto 2 do

field list[i T := field list[1 - 1];
field list[l] := temporary-field
end;

with node-data do
begin
node name upper-case (field_list[l].strval);
paths[1) uppercase (field_list[2].str val);
paths[2] upper case (fieldlist[3].str val);
paths[3] upper case (fieldlist[4).str-val);
paths[4] upper case (fieldlist[5].str-val);
paths[5] upper case (field_list[6].strval);
paths[6] upper-case (field_list[7].str-val);
grid := fieldlist[8].str val;
position-type := field list[9].str val[l];
cover-concealment := field list[10].str-val[l];
val (fieldlist[ll].strval, ammo_count, error-code)
end;

restore-screen
end;

Procedure name : GETFIRSTNODE

Purpose : this procedure retrieves the first node
from the current scenario node file.

Parameters : NODE DATA - record containing the
data for the node being retrieved.
CURRENT NODE NAME - string containing the name
of the node being retrieved.

186

Called by : UPDATENODEDATA
)

procedure get first node (var currentnode : node-record;
var current-nodename : string5);

begin
tareset (nodes);
tanext (nodes, current_node, currentnode-name);
if not ok then

currentnodename := nullstring
end;

Procedure name : GET NEXTNODE

Purpose : this procedure retrieves the next node
from the current scenario node file.

Parameters : NODEDATA - record containing the
data for the node being retrieved.
CURRENT NODE NAME - string containing the name
of the node being retrieved.

Called by : UPDATENODEDATA
)

procedure get nextnode (var currentnode : node-record;
var currentnode name : string5);

begin
tanext (nodes, current_node, currentnode name);
if not ok then

begin
tanext (nodes, currentnode, currentnodename);
if not ok then

currentnodename := nullstring
end

end;

{
Procedure name : GETPREVNODE

Purpose : this procedure retrieves the previous
node from the current scenario node file.

Parameters : NODEDATA - record containing the
data for the node being retrieved.

187

CURRENT NODE NAME - string containing the name
of the node being retrieved.

Called by : UPDATENODEDATA
I

procedure get prevnode (var currentnode : node-record;
var currentnodename : string5);

begin
taprev (nodes, currentnode, current-nodename);
if not ok then

begin
taprev (nodes, currentnode, currentnodename);
if not ok then

currentnode name := null_string
end

end;

{
Procedure name : ADDNODE

Purpose : this procedure adds new node record to
the current scenario node file.

Parameters : CURRENT NODE - record containing the
data for the node being added.
CURRENT NODE NAME - string containing the name
of the node being added.

Called by : UPDATENODEDATA
)

procedure addnode (var current node : node record-
var currentnode name :-string5);

var
nodedata : noderecord;
done : boolean;

begin
done := false;
node data := default-node;
repeat

edit node screen (nodedata, add_record);
if (key =-f2) and (node_data.nodename <> nullstring)

then
begin
tainsert (nodes, nodedata, node data.node_name);
if not ok then

188

display error-message ('RECORD ERROR',
nullstring, 'a node

already exists',
'with this name',

nullstring)
else

begin
taread (nodes, node-data, nodedata.nodename,

exactmatch);
current node := node data;
current node name := currentnode.node-name;
taflush (nodes);
done := true
end

end
else if (key = f2) and (nodedata.nodename =

nullstring) then
displayerrormessage ('RECORD ERROR',

null-string, 'node must have a
name',

'before it can be saved',
nullstring)

else
done := true

until done;
key := null
end;

Procedure name : DELETENODE

Purpose : this procedure deletes a node record
from the current scenario node file.

Parameters : CURRENT NODE - record containing the
data for the node being deleted.
CURRENT NODE NAME - string containing the name
of the node being deleted.

Called by : UPDATENODEDATA
)

procedure deletenode (var current-node : node-record;
var current nodename : string5);

var
next_node : noderecord;
next nodename : string5;

189

iA

Procedure name : VERIFY

Purpose : this procedure prompts the player for
a yes or no to verify the action that he last
selected.

Parameters : none.

Called by : DELETENODE
)

function verify : boolean;

var
number of fields : integer;
fieldlist : fieldarray;

begin
number of fields := 1;
with field_list[l3 do

begin
labelstring := 'Are you sure (Y/N) ?';
label x := 28; label-y := 12;
str val := 'N';
xl := 50; yl := 12; x2 := 50; y2 := 12;
fieldtype := ch; validcharset := ['Y','N'];
end;

save screen;
drawwindow (21,10,60,14, blue, lightgray, null_string);
shade_window (21,10,60,14, black);
edit screen (number offields, field-list, not
abort_allowed);
verify := fieldlist[l].strval[l] = 'Y';
key := null;
restore-screen
end;

begin
if (current nodename <> null_string) and verify then

begin
getnext-node (nextnode, nextnodename);
tadelete (nodes, current nodename);
taread (nodes, current_node, nextnodename, exactmatch);

if ok then
current node name currentnode.node name

else
currentnode name := null_string;

taflush (nodes)
end

190

end;

{
Procedure name : EDIT NODE

Purpose : this procedure allows the player to
edit a node in the current scenario node file.

Parameters : CURRENT NODE - record containing the
data for the node being edited.
CURRENT NODE NAME - string containing the name
of the node being edited.

Called by : UPDATENODEDATA
}

procedure editnode (var currentnode : noderecord;
var currentnodename : string5);

begin
editnode screen (currentnode, edit_record);
taupdate (nodes, currentnode, currentnode.node name);
taflush (nodes);
key := null
end;

{
Procedure name : FINDNODE

Purpose : this procedure allows the player to
find a node in the current scenario node file.

Parameters : CURRENT NODE - record containing the
data for the node being searched for.
CURRENT NODE NAME - string containing the name
of the node being searched for.

Called by : UPDATENODEDATA
)

procedure findnode (var current node : node record;
var currentnodename : string5);

var
node-data : node-record;
searchstring : string5;

{
191

Procedure name : GETSEARCHSTRING

Purpose : this procedure prompts the player for
the name of the node that he wants to find.

Parameters : none.

Called by : FINDNODE
I

function get searchstring : string5;

var
number of fields : integer;
field list : field-array;

begin
number-of fields := 1;
with field_list[l] do

begin
label string := 'Node to search for :';
label x := 26; label-y := 12;
strval nullstring;
xl := 48; yl := 12; x2 := 52; y2 12;
fieldtype := strg;
end;

savescreen;
drawwindow (21,10,60,14, blue, lightgray, nullstring);
shade window (21,10,60,14, black);
editscreen (numberoffields, field_list, not
abortallowed);
get searchstring := upper case (fieldlist[1].str-val);
key := null;
restore-screen
end;

begin
searchstring := getsearch string;
if searchstring <> nullstring then

begin
taread (nodes, nodedata, searchstring, partialmatch);
if ok then

begin
current-node := node-data;
current node name := current node.node name
end

end
end;

begin

initialize node fields;

192

save screen;
clear area (2,4,79,22);
displayedit_listhelpline;
center text (24, 'Page Up - next node Page Down
previous node', red);
center-text (5, 'Node data', cyan);
get_firstnode (currentnode, current-nodename);
repeat

save-screen;
clear area (2,6,79,22);
if currentnode name <> null_string then

displaynode-data (currentnode)
else

center-text (14, 'There are currently no nodes in the
database', white);

key := get key;
case key of

home key : getfirstnode (currentnode,
currentnode_name);

pageup : getnextnode (currentnode,
current nodename);

pagedown : getprevnode (currentnode,
currentnodename);

f4 : printscreen;
f5 : addnode (current_node,

currentnodename);
f6 : deletenode (currentnode,

current nodename);
f7 : editnode (current_node,

current nodename);
f8 : findnode (currentnode,

currentnodename)
end;
restore screen

until key = escape;
restore-screen
end;

(
Procedure name : UPDATEPATHDATA

Purpose : this procedure allows the player to
view, change, or print the path data that is
part of the current scenario.

Parameters : none.

Called by : VIEWSCENARIO
)

193

procedure update_pathdata;

var
current_path : pathrecord;
current_pathname : string5;

Procedure name : INITIALIZEPATHFIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
path data.

Parameters : none.

Called by : UPDATEPATHDATA
I

procedure initializejpath-fields;

begin
number-of fields := 8;
with field_list(l] do

begin
labelstring := 'Path name :';
label x := 15; labely 6;
xl := 58; yl := 6; x2 62; y2 6;
fieldtype := strg
end;

with fieldlist[2] do
begin
labelstring := 'Start node :';
labelx := 15; labely 8;
xl := 58; yl := 8; x2 := 62; y2 := 8;
fieldtype := strg
end;

with fieldlist[3] do
begin
labelstring := 'End node :';
labelx := 15; labely := 10;
xl := 58; yl := 10; x2 := 62; y2 10;
fieldtype := strg
end;

with fieldlist[4) do
begin
labelstring := 'Length (kilometers) :';
labelx := 15; label-y := 12;
xl := 58; yl := 12; x2 := 63; y2 := 12;
fieldtype := float; float minvalue := 0.0;

float max value := 500.0

194

end;
with field list[5] do

begin
labelstring := 'Road condition (Poor/Medium/Good) :';
labelx := 15; labely := 14;
xl := 58; yl := 14; x2 := 58; y2 := 14;
field type := ch; validcharset := ['P','M','G']
end;

with field list[6] do
begin
labelstring := 'Bridges on path (Yes/No) :';
label x := 15; labely := 16;
xl := 58; yl := 16; x2 := 58; y2 := 16;
field type := ch; validcharset := ['Y','N']
end;

with fieldlist[7] do
begin
labelstring := 'Bridge location (grid) :';
label x := 15; label-y := 18;
xl := 58; yl := 18; x2 := 67; y2 := 18;
field type := strg
end;

with fieldlist[8] do
begin
labelstring := 'Vulnerability (High/Medium/Low) :';
labelx := 15; labely := 20;
xl := 58; yl := 20; x2 58; y2 := 20;
fieldtype := ch; valid charset := ['H','M','L']
end

end;

Procedure name : DISPLAYPATHDATA

Purpose : this procedure uses the data that
describes the fields for displaying the
path data and uses it to display a path's data.

Parameters : PATHDATA - record containing the
data for the path to be displayed.

Called by : UPDATEPATHDATA
)

procedure display_path_data (path_data : path record);

var

i : integer;

begin

195

with pathdata do
begin
field list[l].str val := path-name;
field-list[2].str-val := start-node;
field list[3].str val := endnode;
str (length:3:1, fieldlist[4].str val);
field list[5].strval := road-condition;
field -list[6].strval := bridge;
fieldlist[7].strval := bridgegrid;
fieldlist[8].strval := vulnerability
end;

for i := 1 to number of-fields do
with field list[i] do

begin
putstring (label_x, labely, label string);
put_string (xl, yl, str val)
end

end;

Procedure name : EDITPATHSCREEN

Purpose : this procedure uses the data that
describes the fields for displaying the
path data and uses it to display a path's data
and allow it to be changed.

Parameters : PATH DATA - record containing the
data for the path to be displayed.
NEW RECORD - boolean record indicating whether
a new path is being entered or an existing one
is being modified.

Called by : EDITPATH
)

procedure edit_pathscreen (var pathdata pathrecord;
newrecord : boolean);

var
temporaryfield : field record;
error code : integer;
i : integer;

begin
savescreen;
if new record then

display addrecord_helpline
else

displayeditscreenhelp_line;

196

clear area (2,6,79,22);
cleararea (1,24,80,24);
with path-data do

begin
field list[l].str val := path-name;
field list[2].str val := start-node;
field list[3].str val := end node;
str (length:3:l, fieldlist[4].strval)."

field list[5].str val := road-condition;
field-list[6].str val := bridge;
field -list[7].strval := bridgegrid;
field-list[8].str-val := vulnerability
end;

if new record then
edit_screen (number-of fields, fieldlist, abortallowed)

else
begin
with field_list[l] do

begin
putstring (labelx, labely, labelstring);
putstring (xl, yl, str_val)
end;

temporary-field := field list[l];
for i := 2 to number of fields do

field list[i - 1] := field_list[iJ;
decr (number of fields);
edit screen (number of fields, fieldlist, not

abortallowed);
incr (number of fields);
for i := number of fields downto 2 do

field list[i] := field list(i - 1);
field list[l] temporaryfield
end;

with path_data do
begin
path-name uppercase (field list[l].strval);
start-node := uppercase (fieldlist[2].strval);
endnode := uppercase (fieldlist[3].strval);
val (field list[4].strval, length, errorcode);
road condition := field list[5).strval[l];
bridge := field-list[6].strval[l];
bridgegrid := field-list[7].str val;
vulnerability := field-list[8].strval[l]
end;

restore-screen
end;

Procedure name : GETFIRSTPATH

197

Purpose : this procedure retrieves the first path
from the current scenario path file.

Parameters : PATH DATA - record containing the
data for the path being retrieved.
CURRENTPATH NAME - string containing the name
of the p-h being retrieved.

Called by : UPDATEPATHDATA
)

procedure get first_path (var currentpath : pathrecord;
var current_path_name : string5);

begin
tareset (paths);
tanext (paths, currentpath, currentpathname);
if not ok then

currentpathname := null-string
end;

Procedure name : GETNEXTPATH

Purpose : this procedure retrieves the next path
from the current scenario path file.

Parameters : PATH DATA - record containing the
data for the path being retrieved.
CURRENT PATH NAME - string containing the name
of the path being retrieved.

Called by : UPDATEPATHDATA
}

procedure getnext path (var current_path : pathrecord;
var current pathname : string5);

begin
tanext (paths, currentpath, currentpath_name);
if not ok then

begin
tanext (paths, currentpath, current_path_name);
if not ok then

current_path_name := null_string
end

end;

198

Procedure name : GETPREVPATH

Purpose : this procedure retrieves the previous
path from the current scenario path file.

Parameters : PATH DATA - record containing the
data for the path being retrieved.
CURRENTPATH NAME - string containing the name
of the path being retrieved.

Called by : UPDATEPATHDATA)

procedure get prevy_path (var current path : pathrecord;
var currentpath name : string5);

begin
taprev (paths, currentypath, current_pathname);
if not ok then

begin
taprev (paths, currentjpath, current_path_name);
if not ok then

currentpathname := nullstring
end

end;

Procedure name : ADDPATH

Purpose : this procedure adds new path record to
the current scenario path file.

Parameters : CURRENTPATH - record containing the
data for the path being added.
CURRENTPATHNAME - string containing the name
of the path being added.

Called by : UPDATEPATHDATA
)

procedure add_path (var current_path : path_record;
var currentpath_name : string5);

var
pathdata : pathrecord;
done : boolean;

begin
done := false;

199

path-data := defaultpath;
repeat

editpath screen (path data, add_record);
if (key = f2) and (pathdata.pathname <> null-string)

then
begin
tainsert (paths, path-data, path data.pathname);
if not ok then

displayerror message ('RECORD ERROR',
null-string, 'a path

already exists',
'with this name',

null_string)
else

begin
taread (paths, pathdata, path-data.pathname,

exactmatch);
current_path := pathdata;
current_pathname := current_path.pathname;
taflush (paths);
done := true
end

end
else if (key = f2) and (path data.pathname =

null_string) then
display errormessage ('RECORD ERROR',

null-string, 'path must have a
name',

'before it can be saved',
null_string

else
done := true

until done;
key := null
end;

{
Procedure name : DELETEPATH

Purpose : this procedure deletes a path record
from the current scenario path file.

Parameters : CURRENTPATH - record containing the
data for the path being deleted.
CURRENTPATH NAME - string containing the name
of the path being deleted.

Called by : UPDATEPATHDATA

2

200

procedure delete_path (var currentpath : path record;
var currentpathname : string5);

var
next_path : path record;
next_pathname : string5;

{
Procedure name : VERIFY

Purpose : this procedure prompts the player for
a yes or no to verify the action that he last
selected.

Parameters : none.

Called by DELETEPATH
)

function verify : boolean;

var
number of fields : integer;
fieldlist : field-array;

begin
number of fields := 1;
with field_list[l] do

begin
labelstring := 'Are you sure (Y/N) ?';
labelx := 28; labely := 12;
str val := 'N';
xl := 50; yl := 12; x2 50; y2 := 12;
fieldtype := ch; validcharset := ['Y','N'];
end;

save screen;
draw-window (21,10,60,14, blue, lightgray, null_string);
shadewindow (21,10,60,14, black);
edit screen (number offields, fieldlist, not
abor-tallowed);
verify := fieldlist[l].str val[l] = 'Y';
key := null;
restore-screen
end;

begin
if (current_path_name <> null_string) and verify then

begin
getnext_path (next_path, next_path_name);
tadelete (paths, current_path name);

201

taread (paths, currentypath, nextjpath_name, exactmatch);

if ok then
currentpathname := current_path.pathname

else
currentpathname := nullstring;

taflush (paths)
end

end;

Procedure name : EDIT-PATH

Purpose : this procedure allows the player to
edit a path in the current scenario path file.

Parameters : CURRENT PATH - record containing the
data for the path being edited.
CURRENT PATH NAME - string containing the name
of the path being edited.

Called by : UPDATEPATHDATA
)

procedure edit_path (var current_path : path_record;
var currentpathname : string5);

begin
edit-path-screen (currentpath, edit-record);
taupdate (paths, currentpath, currentpath.path name);
taflush (paths);
key := null
end;

{
Procedure name : FINDPATH

Purpose : this procedure allows the player to
find a path in the current scenario path file.

Parameters : CURRENT PATH - record containing the
data for the path being searched for.
CURRENTPATH NAME - string containing the name
of the path being searched for.

Called by : UPDATEPATHDATA
)

procedure find_path (var currentpath : path_record;

202

var currentpath name : string5);

var
pathdata : path record;
search-string : string5;

(
Procedure name : GETSEARCHSTRING

Purpose : this procedure prompts the player for
the name of the path that he wants to find.

Parameters : none.

Called by : FINDPATH
)

function get searchstring : string5;

var
number offields : integer;
fieldlist : field array;

begin
number-of fields := 1;
with field_list[l] do

begin
labelstring := 'Path to search for :';
label x := 26; labely := 12;
strval := nullstring;
xl := 48; yl := 12; x2 := 52; y2 := 12;
fieldtype := strg;
end;

savescreen;
draw window (21,10,60,14, blue, lightgray, null-string);
shadewindow (21,10,60,14, black);
edit screen (number offields, field-list, not
abortallowed);
get searchstring := uppercase (fieldlist[l].str val);
key := null;
restorescreen
end;

begin
searchstring := get searchstring;
if searchstring <> nullstring then

begin
taread (paths, path data, searchstring, partialmatch);
if ok then

begin

203

currentpath := path data;
current_path name := currentypath.pathname
end

end
end;

begin
initializepath fields;
save screen;
clear-area (2,4,79,22);
display_editlisthelpline;
center text (24, 'Page Up - next path Page Down -
previous path', red);
center-text (5, 'Path data', cyan);
getfirstpath (currentpath, currentpath name);
repeat

save-screen;
clear-area (2,6,79,22);
if currentpath name <> nullstring then

display_path data (currentpath)
else

center text (14, 'There are currently no paths in the
database', white);

key := get key;
case key of

home-key : get_firstpath (currentpath,
currentpathname);

pageup : getnextpath (currentpath,
currentpath name);

pagedown : getprevpath (current_path,
currentpath name);

f4 : printscreen;
f5 : add-path (current_path,

currentpathname);
f6 : delete_path (currentpath,

currentpath name);
f7 : edit_path (currentpath,

currentpathname);
f8 : findpath (currentpath,

currentpathname)
end;
restorescreen

until key = escape;
restorescreen
end;

begin
save screen;
clear area (1,2,80,25);
draw window (1,3,80,23, white, blue, 'Scenario Network');
menu xl := 25;

204

menuyl := 7;
menux2 := 55;
menuy2 := 19;
repeat

choice := menuselection (nullstring, 'Scenario
informationj1+

'Node data I+
'Path data '+
'Network

utility'+
'Return\');

case choice of
1 : updatescenario information;
2 : updatenode data;
3 : updateypath data;
4 : networkutility

end
until choice = 5;
menu xl := menu xl default;
menuyl := menuyldefault;
menu x2 := menu x2 default;
menuy2 := menu y2_default;
restore-screen
end;

begin
end.
AZ

205

Unit name : TIMESTEP

Purpose : this unit contains the procedures that
conduct all of the actions that occur each
time step. This includes incrementing the
game time, processing the events list, firing
rounds, and attriting forces.)

unit timestep;

interface
($I-)

uses crt, utility, gameutil, global, event, commands,
taccess, tahigh;

procedure check for start of hostilities;
procedure display_sitrep;
procedure processeventslist;
procedure stock atp;
procedure processfield trains;
procedure processammo trucks;
procedure processfire-units;
procedure generatemessages;

implementation

const
fire unit = 0;
ammo truck = 1;
in-position = 0;
under fire = 1;
moving = 2;

{
Procedure name : ADDMESSAGE

Purpose : this procedure adds a message to the
message buffer file for display at a later time.

Parameters : NEW MESSAGE - message record to be
added to the buffer.

Called by : several procedures that generate
messages throughout this unit.

2

206

procedure add_message (new message : messagerecord);

var
recordnumber : longint;

begin
addrec (messages, recordnumber, newmessage);
addkey (messagetypeindex, recordnumber,
newmessage.message type);
flushfile (messages);
flushindex (message typeindex)
end;

Procedure name : DELETEMESSAGE

Purpose : this procedure deletes a message from
the message buffer after it has been displayed.

Parameters : RECORD NUMBER - number of the record
that corresponds to the message to be deleted.

Called by : DISPLAYMESSAGES
}

procedure delete-message (recordnumber : longint);

var
message : messagerecord;

begin
getrec (messages, record number, message);
deletekey (messagetype index, recordnumber,
message.messagetype);
deleterec (messages, recordnumber);
flushfile (messages);
flushindex (messagetypeindex)
end;

Procedure name : CHECKFORSTARTOFHOSTILITIES

Purpose : this procedure prompts the user for
determining whether hostilities have commenced.

Parameters : none.

Called by : PLAYWARGAME

207

procedure check forstart of hostilities;

begin
number of fields := 1;
with fiel _list[lJ do

begin
labelstring := 'Commence hostilities (Yes/No) ?';
label x := 24; label-y := 13;
strval := 'N';
xl : 57; yl := 13; x2 : 57; y2 := 13;
field type := ch; validcharset := ['Y','N']
end;

save screen;
draw window (18,11,63,15, white, blue, nullstring);
displayedit screenhelpline;
editscreen (number offields, fieldlist, not
abort allowed);
hostilitiesstarted := field list[l].str-val[1] = 'Y';
restore-screen
end;

(
Procedure name : DISPLAYSITREP

Purpose : this procedure displays a sitrep for
the player with information on the firing units,
the battalion trains, and the ammo trucks.

Parameters : none.

Called by GENERATEMESSAGES
ISSUECOMMAND)

procedure displaysitrep;

var
number of screens : integer;
screen : integer;

(
Procedure name : DISPLAYFIRINGUNITSITREP

Purpose : this procedure displays a sitrep for
the fire unit passed as a parameter.

Parameters : FIRING UNIT NUMBER - number of the

firing unit for which the sitrep will be

208

displayed.

Called by : DISPLAYSITREP
}

procedure display-firingunit-sitrep (firingunitnumber
integer);

var
number-string : stringBo;

begin
savescreen;
with firingunits[firingunitnumber] do

begin
center text (4, 'Firing Unit', blue);
put string (20, 6, 'Firing unit name : ');
put string (58, 6, firingunitname);
if sections-in operatingcondition > 0.0 then

begin
put_string (20, 7, 'Location : ');
put_string (58, 7, location);
put_string (20, 8, 'Rounds on hand :);
str (roundsonhand, numberstring);
put_string (58, 8, numberstring);
put_string (20, 9, 'Ammo status : ');
put_string (58, 9, ammo_status);
put_string (20, 10, 'Rounds fired from current

position : ');
str (roundsfired_fromposition, number_string);
put_string (58, 10, number_string);
put_string (20, 11, 'Time in position (hours) ');
str ((time in position / 60):4:2, number_string);
put_string (58, 11, numberstring);
put_string (20, 12, 'Firing sections still operating

');
str (sections in operating condition:4:2,

number_string);
put_string (58, 12, number_string);
putstring (20, 13, 'Status : ');
putstring (58, 13, firing-status);
put_string (20, 14, 'Vulnerability : ');
put_string (58, 14, vulnerabilitystatus)
end

else
center-text (8, 'K I L L E D', blue)

end;
key := get key;
restore-screen
end;

209

(
Procedure name : DISPLAYAMMOTRUCKSITREP

Purpose : this procedure displays a sitrep for
the range of ammo trucks passed as parameters.

Parameters : FIRST TRUCK - number of the first
truck to be displayed.
LAST TRUCK - number of the last truck to be
displayed.

Called by : DISPLAYSITREP
I

procedure displayammotruck sitrep (firsttruck, lasttruck
: integer);

var
truck : integer;
percent : string6;

begin
save screen;
center-text (4, 'Ammo Trucks', blue);
center text (6,

'Bumper Convoy Mission Unit to Full/
Location Effective', blue);
centertext (7,

resupply empty
% ', blue);

center_text (8,

-------- ', blue);
for truck := first-truck to last-truck do

with ammo_trucks(truck] do
begin
putstring (5, 9 + truck - firsttruck,

bumper number);
if not killed then

begin
put string (15, 9 + truck - firsttruck,

convoy name);
putstring (27, 9 + truck - firsttruck,

mission-assigned);
putstring (37, 9 + truck - firsttruck,

firingunit_to resupply);
putstring (49, 9 + truck - firsttruck,

loadstatus);
putstring (58, 9 + truck - firsttruck, location);

210

str (effectivepercent:4:2, percent);
putstring (70, 9 + truck - firsttruck, percent)
end

else
put string (22, 9 + truck - firsttruck, 'K I L L ED')

end;
key := getkey;
restore-screen
end;

(
Procedure name : DISPLAYTRAINSSITREP

Purpose : this procedure displays a sitrep for
the battalion trains.

Parameters : none.

Called by : DISPLAYSITREP
)

procedure displaytrainssitrep;

begin
savescreen;
centertext (4, 'Field Trains', blue);
center_text (6, 'Location : '+ battalion trains.location,
blue);
key := getkey;
restore-screen
end;

begin
save screen;
clear_area (1,2,80,25);
draw window (1,2,80,25, blue, lightgray, 'SITREP');
center-text (23, 'page up - next screen page down -
previous screen', red);
center text (24, 'hit ESC when done viewing sitrep', red);
if number ofammo trucks > 12 then

numberofscreens := numberoffiringunits + 3
else

number of screens := numberoffiringunits + 2;
screen := 1;
repeat

if screen in (1..number of firingunits] then
displayfiring unitsitrep (screen)

else if screen = number offiring units + 1 then
displaytrainssitrep

211

else if screen = number offiring units + 2 then
begin
if number of ammo trucks < 12 then

displayammotruck sitrep (1,
number-of ammo_trucks)

else
displayammotruck sitrep (1, 12)

end
else

displayammo_trucksitrep (13, number of ammotrucks);

if key = pageup then
begin
if screen = number of screens then

screen.'= 1
else

incr (screen)
end

else if key = page_down then
begin
if screen = 1 then

screen := number of screens
else

decr (screen)
end

else if key = 113 shl 8 then
check event list

until key = escape;
restore screen
end;

*********************** **************************)
{
Procedure name : AMOUNTOFATTRITION

Purpose : this procedure determines the rate of
attrition of all units during the game based on
the parameters passed.

Parameters : UNIT TYPE - indicates whether the
unit to be attrited is a truck or fire unit.
UNIT NUMBER - indicates which fire unit or
truck is to be attrited.
UNITPOSTURE - indicates the current posture
of the unit to be attrited.

Called by : PROCESS FIELD TRAINS
PROCESSAMMOTRUCKS
PROCESSFIREUNITS

2

212

function amount of attrition (unit type : integer;
unit-number : integer;
unitposture : integer)

real;

type
alpha_array = array [fire unit..ammotruck] of

array [in position..moving] of real;

const
alphaair : alpha array = ((0.000005, 0.000005,

0.0000025),
(0.00001, 0.00001,

0.000005));
alpha arty : alpha array = ((0.000004, 0.000004,

0.000002),
(0.000008, 0.000008,

0.000004));
var

tempnode : node-record;
temppath : path record;
casualties per minute : real;

function yair : integer;

var
y : integer;

begin
if daytime then

y :=2
else

y := 1;
case unitposture of

inposition, underfire
begin
with tempnode do

begin
case positiontype of

'R' : y := y + 2;
'U' : y y + 1

end;
case coverconcealment of

'L' : y ;= y + 3;
'M' : y := y + 2;
'H' : y y + 1

end
end;

if unittype = fire unit then
with firingunits(unitnumber] do

begin

213

case vulnerabilitystatus of
'H' : y := y + 3;
'M' : y := y + 2;
'L' : y := y + 1

end;
if unit_posture = under fire then

case firingstatus of
'M' : y := y + 2;

else
y :=y+ 1

end
end

else
with ammo_trucks[unitnumber] do

begin
case vulnerabilitystatus of

'H' : y := y + 3;
'M' : y := y + 2;
'L' : y := y + 1

end;
if unitposture = under-fire then

case moving of
false : y := y + 2;
true : y :=y+ 1

end
end

end;
moving

with temp_path do
case vulnerability of

'H' : y := y + 3;
'M' : y := y + 2;
'L' : y := y + 1

end
end;
yair := y
end;

function yarty : integer;

var
y : integer;

begin
y := yair;
y_arty := y
end;

begin
case unit type of

fire-unit

214

... - -- --- -- .,. - - m m lm n ! I I

begin
if unitposture in (inposition, under-fire) then

taread (nodes, temp node,
firing units(unit_number) .location,

exactmatch)
else

taread (paths, temppath,
firirgunits~unit-number) .location,

exactmatch);
with firing units~unit -number) do

casua ltiesjper -minute:
sections -in-operating Icondition

(alpha air [unit type][unitposture) * y-air)

(alpha arty (unit type) [unitposture) * yarty)

end;
ammo-truck

begin
if unitposture in (inyposition, under-fire] then

taread (nodes, temp node,
amino-trucks~unit number) .location,

exactmatch)
else

taread (paths, temppath,
ammo-trucks[unit number) .location,

exactmatch);
with ammo-trucks[unit_number] do

casualtiesper-minute := effectiveypercent*
(alpha air (unit type) [unityposture) * yair)

(alpha arty [unit type) [unityposture) * yarty)

end
end;
amount-of-attrition := casualtiesyper minute*
gameyparameters .time step size
end;

Procedure name : PROCESSEVENTSLIST

Purpose : this procedure reads events from the
events list and determines if it is time to
execute that particular event and does so if
the time is current.

Parameters :none.

Called by: EXECUTENEXTTIMESTEP

215

procedure process eventslist;

var
current dtg : stringl5;
last time to_process : stringlO;
next time key : stringlO;
record_number : longint;
event : eventrecord;

{
Procedure name : UNITALIVE

Purpose : this procedure determines whether or
not a unit is still alive before it processes
an event record for that unit.

Parameters : EVENT - event to be processed.

Called by : PROCESSEVENTSLIST)

function unitalive (event : eventrecord): boolean;

begin
case event.unittype of

'T' : unit alive := true;
'A' : with ammotrucks[trucknumber (event.unitname)] do

unit-alive := not killed;
'F' : with firingunits[unitnumber (event.unitname)] do

unit-alive := (sections in operating condition >
0.0)
end
end;

(
Procedure name : OCCUPYNODE

Purpose : this procedure handles an occupy node
event.

Parameters: EVENT - event to be processed.

Called by : PROCESSEVENTSLIST

}

216

procedure occupynode (event : event_record);

begin
case event.unit-type of

'T' : begin
battalion trains.location := event.node;
battalion-trains.moving := false
end;

'A' : with ammotrucks[truck number (event.unit_name)] do

begin
location := event.node;
moving := false
end;

IF' : with firingunits[unitnumber (event.unitname)) do

begin
location := event.node;
if rounds on hand > 0 then

firing-status := 'H'
else

firing-status := 'C'
end

end
end;

{
Procedure name : TRANSITNODE

Purpose : this procedure handles a transit node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESSEVENTSLIST
)

procedure transitnode (event : eventrecord);

begin
case event.unittype of

'T' : battaliontrains.location := event.path;
'A' : with ammotrucks[trucknumber (event.unit_name)] do

location := event.path;
'F' : with firingunits(unitnumber (event.unitname)] do

location := event.path
end
end;

217

Procedure name : WAITATNODE

Purpose : this procedure handles a wait at node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESSEVENTSLIST
)

procedure wait at node (event : event_record);

begin
case event.unit type of

'T' : battalion trains.location := event.node;
'A' : with ammo-trucks[trucknumber (event.unitname)] do

location := event.node;
'F' : with firingunits[unitnumber (event.unitname)] do

location := event.node
end
end;

Procedure name : DEPARTNODE

Purpose : this procedure handles a depart node
event.

Parameters EVENT - event to be processed.

Called by : PROCESSEVENTSLIST
}

procedure depart_node (event : eventrecord);

var
capacity : integer;
temp_node : noderecord;
temppath : path-record;

begin
case event.unittype of

IT' : with battalion-trains do
begin
location := event.path;

218

timein_position := 0;
vulnerabilitystatus := 'A';
moving := true
end;

'A' : with ammo_trucks[trucknumber (event.unitname)) do

begin
location := event.path;
taread (paths, temppath, event.path,

exactmatch);
vulnerabilitystatus := temp_path.vulnerability;

moving := true
end;

'F' : with firingunits[unitnumber (event.unitname)] do

begin
capacity := round

(sectionsinoperatingcondition *
sectionmaxroundscapacity);

if rounds on hand > capacity then
begin
taread (nodes, tempnode, location,

exactmatch);
tempnode.ammocount :=

tempnode.ammo count + (rounds on hand -
capacity);

taupdate (nodes, temp node, location);
taflush (nodes);
rounds on hand := capacity
end;

location := event.path;
timein_position := 0;
rounds firedfrom_position := 0;
vulnerabilitystatus := 'A';
firing status := 'M'
end

end
end;

{
Procedure name : SHOOT

Purpose : this procedure handles a shooting
event.

Parameters : EVENT - event to be processed.

Called by : PROCESSEVENTSLIST

219

procedure shoot (event : event-record);

Procedure name : DETERMINEAMMOSTATUS

Purpose : this procedure determines the units

ammo status after the firing has occured.

Parameters : UNITNUMBER - unit that is firing

Called by : SHOOT
)

procedure determineammostatus (unit-number : integer);

begin
with firingunits[unitnumber] do

begin
if rounds on hand <= 0 then

ammo status := '0'
else if rounds on hand > (0.35 *

sections in operating_condition *
section maxrounds_capacity)

then
ammo status := 'S'

else if rounds on hand < (0.1 *
sections in operating_condition *

sectionmaxrounds_capacity)
then

ammo status := 'C'
else

ammo status := 'L'
end

end;

begin
if hostilities started then

with firing units(unit number (event.unit name)] do
if firingstatus = 'H' then

begin
rounds on hand := rounds on hand -

round (event.volleys *
sections in operating_condition);

rounds fired fromposition
roundsfiredfromposition +

round (event.volleys *
sections in operatingcondition);

220

determineammostatus (unitnumber
(event.unitname))

end
end;

Procedure name : RETURNFROMATP

Purpose : this procedure handles a return from
the atp event.

Parameters : EVENT - event to be processed.

Called by PROCESSEVENTSLIST
}

procedure return from atp (event : eventrecord);

var
new-message : messagerecord;

Procedure name : CREATEMESSAGE

Purpose : this procedure creates a message and
puts it in the buffer if a truck has returned
from the atp and the trains have moved.

Parameters : TRUCK NUMBER - truck that has
returned to trains location.

Called by : RETURNFROMATP
}

procedure create-message (truck-number : integer);

var
newmessage : messagerecord;
message : messagerecord;
record number : longint;
message exists : boolean;
key : char;

begin
with ammo_trucks(trucknumber] do

begin
newmessage.messagetype := '8';
if convoy-name = nullstring then

begin

221

new -message.unit type =A'
new message.unit-name :=bumper-number
end-

else
begin
new -message.unit type I= C';
new -message.unit-name :wconvoy name
end;

new-message.location := location
end;

message_exists := false;
clearkey (message type_index);
key := '8';
nextkey (message type_index, record-number, key);
while ok and not message exists do

begin
getrec (messages, record -number, message);
if message.unit name = new message.unit-name then

message exists := true;-
nextkey (message type index, record-number, key)
end;

if not message_exists then
add -message (new-message)

end;

begin
with ammo-trucks jtruck-number (event, unit_name)] do

begin
location :=event.node;
moving := false;
if atp rounds on hand >= round (ammo_capacity*

effectiveypercent) then
begin
atp rounds -on hand :

atp rounds on -hand - round (ammo_capacity
effectivepercent);

load status := IF'
end;

if location <> battalion trains.location then
create-Message (truck-number (event.unit-name))

end
end;

begin
current_dtg := game -dtg;
last-time toprocess :

inc dtg tot iekey
(current dtg, round (gameyparameters.time-step size/

2.0));
clearkey (time index);
nextkey (time__index, record-number, next-time-key);

222

while ok and (next time key <= last-time to process) do
begin
getrec (eventlist, recordnumber, event);
if unit alive (event) then

case event.event type of
'0' : occupy_node (event);
'T' : transit_node (event);
'W' : wait_at_node (event);
'D' : departnode (event);
'F' : shoot (event);
'R' : returnfrom atp (event)

end;
delete event (recordnumber);
nextkey (timeindex, record-number, next time key)
end

end;

Procedure name : STOCKATP

Purpose : this procedure determines whether or
not to restock the atp each time based on the
start of a new day.

Parameters : none.

Called by : EXECUTENEXTTIME STEP)

procedure stockatp;

var
total firingunits : real;
i : integer;

begin
if new_day then

begin
totalfiringunits := 0;
for i := 1 to number of firingunits do

total firing units := total_firing units +
firingunits[i].sectionsin operatingcondition;

atprounds on hand :=
trunc (commanders guidance.bn csr *

totalfiringunits)
end

end;

{
223

Procedure name : PROCESSFIELDTRAINS

Purpose : this procedure checks the trains each
time step to determine the vulnerability, if it
is receiving incomming, and attrition of any
trucks at the trains location.

Parameters : none.

Called by : EXECUTENEXTTIMESTEP
)

procedure processfieldtrains;

Procedure name : DETERMINEVtJLNERABILTYLEVEL

Purpose : this procedure checks the current
level of vulnerability of the field trains based
on time in position.

Parameters : none.

Called by : PROCESSFIELDTRAINS
I

procedure determinevulnerabilitylevel;

begin
with battalion-trains do

begin
if timeinposition <

round
(commanders guidance.vulnerabilitythreshold time * 60) then

vulnerabilitystatus := 'A'
else if timeinposition >

round
(commanders guidance.vulnerabilitythresholdtime * 60) then

vulnerabilitystatus := 'H'
else if timein_position >

round
(commanders guidance.vulnerabilitythresholdtime * 60 * 2)
then

vulnerability status := 'C'
end

end;

224

Procedure name : CHECKFORINCOMING

Purpose : this procedure checks the trains level
of vulnerability to determine if they should
receive enemy artillery fire.

Parameters : none.

Called by : PROCESS3FIELDTRAINS
)

procedure checkforincoming;

(
Procedure name : DISPLACEFORINCOMING

Purpose : this procedure prompts the player to
determine whether the trains and any trucks at
that location should displace after receiving
incoming.

Parameters : none.

Called by : CHECKFORINCOMING
I

function displace_forincoming : boolean;

begin
number-of fields := 1;
with field_list[l] do

begin
labelstring := 'Displace (Yes/No) ?';
label x := 30; label-y := 20;
strval 'N';
xl := 51; yl := 20; x2 := 51; y2 := 20;
field type := ch; validcharset := ['Y','N']
end;

savescreen;
drawwindow (10,15,71,23, blue, lightgray, null_string);
center text (17, 'Battalion trains are receiving incoming
artillery fire.', blue);
centertext (18, 'Request permission for emergency
displacement.', blue);
edit-screen (number offields, field-list, not
abort allowed);
displaceforincoming := field list(l].str-val[l] = 'Y';
restore-screen
end;

225

Procedure name : DISPLACETRAINS

Purpose : this procedure creates the event
records necessary to displace the trains and any
trucks at the trains if desired by the player.

Parameters : none.

Called by : CHECK FOR INCOMING

(* **** **** ********** ****** **** ***** **** ***** **** ***

procedure displace-trains;

var
i : integer;
displace_event : event record;
currenttime : string15;

begin
with displace-event do

begin
eventtype '0';
current time := gamedtg;
timekey := incdtg to timekey (currenttime, 30);
node := battalion trains.location
end;

with battalion-trains do
begin
displace_event.unittype IV;
displace_event.unitname 'TRAIN';
moving := true;
time inposition := 0;
vulnerabilitystatus := 'A';
addevent (displace_event)
end;

for i := 1 to number of ammo trucks do
with ammotrucks[i] do

if (not killed) and (location =
battalion trains.location) then

begin
displaceevent.unit type := 'A':
displaceevent.unit-name := bumpernumber;
moving := true;
add event (displaceevent)
end

end;

226

Procedure name : ASSESSCASUALTIES

Purpose : this procedure eill assess casualties
for any trucks at the trains location when they
received the incoming artillery fire.

Parameters : none.

Called by : CHECK FOR INCOMING

procedure assesscasualties;

var
i : integer;

begin
for i := 1 to number-of ammo trucks do

with ammo_trucks[i] do -
if (not killed) and (location

battalion trains.location) then
begin
vulnerabilitystatus :=

battalion trains.vulnerability_status;
effective_percent := effectivepercent -

amount of attrition (ammotruck, i, under_fire);

if effectivepercent < 0.0 then
effectivepercent := 0.0

end
end;

begin
with battalion trains do

if ((vulnerability status = 'C') and (random < 0.05)) or
((vulnerabilitystatus = 'H') and (random < 0.01)) or
((vulnerabilitystatus = 'A') and (random < 0.005))

then
begin
if displacefor incoming then

displace_trains;
assess-casualties
end

end;

{

Procedure name : PUTVULNERABILITYMESSAGE

Purpose : this procedure will put a message in

227

the buffer if the vulnerability of the trains has

changed this time step.

Parameters : none.

Called by : PROCESSFIELDTRAINS
)

procedure put vulnerabilitymessage;

procedure create-message;

var
newmessage : messagerecord;

begin
with battalion-trains do

begin
newmessage.messagetype := '7';
newmessage.unit_type := 'T';
new message.unit name := 'TRAIN';
if vulnerability high then

new--message.vulnerability := 'H'
else

newmessage.vulnerability := 'C'
end;

add_message (new-message)
end;

begin
with battalion trains do

case vulnerabilitystatus of
'A' : if vulnerabilityhigh or vulnerabilitycritical

then
begin
vulnerabilityhigh := false;
vulnerability-critical := false
end;

'H' : if not vulnerabilityhigh then
begin
vulnerability critical := false;
vulnerability high := true;
createmessage
end;

'C' : if not vulnerabilitycritical then
begin
vulnerabilityhigh := false;
vulnerability critical := true;
createmessage
end

end

228

end;

begin
if not battalion trains.moving then

with battaliontrains do
begin
timeinjposition := timein_position +

gameparameters.time step size;
determine-vulnerability level;
if hostilities started then

check for-incoming;
putvulnerability message
end

end;

{
Procedure name : PROCESSAMMOTRUCKS

Purpose : this procedure checks the trucks each
time step to determine if they have completed a
resupply mission, if they have sufficient rest,
attrit them if moving, and update their stats.

Parameters : none.

Called by : EXECUTENEXTTIMESTEP
)

procedure processammotrucks;

Procedure name : ASSESSCASUALTIES

Purpose : this procedure checks the trucks each
time step to determine if they are moving and if
so what attrition will be assessed to them.

Parameters : none.

Called by : PROCESSAMMOTRUCKS
}

procedure assesscasualties;

var i : integer;

begin
for i := 1 to number of ammo trucks do

229

with ammotrucks[i] do
if (not killed) and moving then

begin
effective_percent := effectivepercent -

amount of attrition (ammotruck, i,
timestep.moving);

if effective-Percent < 0.0 then
effective_percent := 0.0;

killed := (effective-percent = 0.0)
end

end;

Procedure name : CHECKFORRESUPPLY

Purpose : this procedure checks the trucks each
time step to determine if they have completed
a resupply mission, either to a unit or to a
node. If so, it creates a message to that
effect.

Parameters : none.

Called by : PROCESSAMMOTRUCKS
I

procedure check forresupply;

var
i : integer;
temp node : node-record;

procedure createmessage (messagetype : char);

var
newmessage : messagerecord;
message : messagerecord;
messageexists : boolean;
key : char;
recordnumber : longint;

begin
with ammo trucks[i] do

begin
newmessage.message type := message type;
if convoy-name = null-string then

begin
new message.unittype := 'A';
new message.unit name := bumpernumber
end

230

else
begin
newmessage.unit-type : 'C';
newmessage.unitname := convoy-name
end;

if messagetype - '1' then
new_message.location := nodeto-resupply

else
newmessage.location := firingunitto-resupply

end;
messageexists := false;
clearkey (messagetype_index);
key := messagetype;
nextkey (message typeindex, recordnumber, key);
while ok and not messageexists do

begin
getrec (messages, recordnumber, message);
if message.unit name = new_message.unit name then

message exists := true;
nextkey (message type index, recordnumber, key)
end;

if not message_exists then
add-message (newmessage)

end;

begin
for i := 1 to number of ammo_trucks do

with ammo trucks[i] do
if (not killed) and (mission assigned = 'Y') then

begin
if (firingunit to resupply = 'PREPO') and (not

moving) and
(nodetoresupply = location) and (loadstatus =

'F') then
begin
load status := 'E';
taread (nodes, temp node, node_toresupply,

exactmatch);
tempnode.ammo count := tempnode.ammo_count

+

round (ammocapacity * effective percent);

taupdate (nodes, temp node, location);
taflush (nodes);
create message ('1');
mission-assigned := 'N';
firing_unittoresupply := null string;
node to resupply := null_string
end

else if (not moving) and (load status = 'F') and
(firingunitto-resupply <>-nullstring) and

231

(firing units[unit-number
(firingunit to resupply)].location -

location) then
begin
load status :- 'E';
with-firingunits[unitnumber

(firingunit-to resupply)] do
begin
rounds on hand :- roundson hand +

round (ammocapacity *
effective_percent);

if firing-status - 'C' then
firing-status :- 'H'

end;
create message ('2');
mission assigned := 'N';
firingunit to resupply := nullstring;
nodeto resupply := null-string
end

end
end;

Procedure name : CHECKFORREST

Purpose : this procedure checks the trucks each
time step to determine if they have accrued
sufficient rest to accomplish any assigned
mission. It also updates the amount of rest
and the time since they began resting.

Parameters : none.

Called by : PROCESSAMMOTRUCKS
I

procedure check-for rest;

var
i : integer;

begin
for i := 1 to number of ammo-trucks do

with ammo trucks[i] do
if not killed then

begin
time since rest began :=

time since restbegan +
gameparameters.timestepsize;

if (not moving) and (mission_assigned = 'N') then

232

amount of rest := amount of rest +
gameyparameters.time_step size;

if amount of rest >=
round (commandersguidance.crew-restper day *

60) then
begin

timesincerest began := 0;
amount of rest := 0
end

end
end;

Procedure name : CALCULATETRUCKSTATS

Purpose : this procedure updates the amount of
time that a truck is not available due to
casualties each time step.

Parameters : none.

Called by : PROCESSAMMOTRUCKS
}

procedure calculatetruckstats;

var
i : integer;

begin
for i := 1 to number of ammo trucks do

with ammo trucks[i] do
casualtytime casualtytime +

round ((1.0 - effective percent) *
gameparameters.timestepsize)
end;

begin
if hostilities started then

assesscasualties;
checkfor resupply;
check for rest;
calculatetruckstats
end;

{

Procedure name : PROCESSFIREUNITS

Purpose : this procedure checks the fire units

233

each time step for firing, attrition, ammo
resupply, and updates it vulnerability, ammo
status, and statistics.

Parameters : none.

Called by : EXECUTENEXTTIMESTEP
)

procedure processfireunits;

var
i : integer;

Procedure name : CHECKFORAMMORESUPPLY

Purpose : this procedure checks the fire units
each time step to determine if they have
arrived at a node at which they are supposed to
pick up ammunition.

Parameters : none.

Called by : PROCESSFIREUNITS
}

procedure check for ammo resupply;

var
temp_node : noderecord;

begin
with firingunits(i] do

if (ammopickup mission) and (location =
ammo-pickuplocation) then

begin
taread (nodes, temp node, location, exactmatch);
rounds on hand := rounds onhand +

temp node.ammo count;
tempnode.ammo count := 0;
taupdate (nodes, tempnode, location);
taflush (nodes)
end

end;

(

Procedure name : SHOOTROUNDS

234

Purpose : this procedure checks the fire units
each time step to have them fire at a rate
consistent with their ammo status and the
battalion csr.

Parameters : none.

Called by : PROCESSFIREUNITS
)

procedure shoot-rounds;

var
rounds to fire : integer;

begin
with firing units[i] do

begin
rounds to fire := trunc (commanders guidance.bncsr *

rate percentcsr *
sections in operating condition

gameparameters.timestepsize /
(60 * 24));

rounds to fire := abs (normal_rv (rounds tofire, 5));
if rounds to fire >

(sustainedrate of fire *
sections in operatingcondition *

gameparameters.time_stepsize) then
rounds tofire := trunc (sustainedrate of fire *

sections in operating_condition *

gameparameters.timestepsize);
if rounds-to fire > rounds on hand then

rounds to fire := rounds onhand;
rounds on hand := rounds on hand - rounds to fire;
rounds firedfromposition := roundsfired fromposition

+ rounds to fire;
if rounds on hand <= 0 then

firing-status := 'C'
end

end;

(
Procedure name : DETERMINEVULNERABILITYLEVEL

Purpose : this procedure checks the fire units
each time step to update their vulnerability
status based on rounds fired from position and

235

time in position.

Parameters : none.

Called by : PROCESSFIREUNITS

procedure determinevulnerability level;

begin
with firingunitsfi], commandersguidance do

if (time injposition < round
(vulnerability_thresholdtime * 60)) and

(roundsfired from_position <
vulnerability thresholdrounds) then

vulnerabilitystatus := 'A'
else if (time in position < round

(vulnerabilitythreshold time * 60)) and
(roundsfired fromposition >

vulnerability thresholdrounds) then
vulnerability status := 'H'

else if (time inposition > round
(vulnerabilitythresholdtime * 60)) and

(roundsfired_from_position <
vulnerabilitythresholdrounds) then

vulnerability-status := 'H'
else

vulnerability-status := 'C'
end;

Procedure name : ASSESSCASUALTIES

Purpose : this procedure checks the fire units
each time step to assess casualties based on
vulnerabilty and whether they are receiving
incoming this time step.

Parameters : none.

Called by : PROCESSFIREUNITS

procedure assess-casualties;

var
j : integer;

236

Procedure name : CHECKFORINCOMING

Purpose : this procedure checks the fire units
each time step to determine whether or not they
will receive enemy artillery fire and assess
casualties accordingly.

Parameters : none.

Called by : ASSESSCASUALTIES
)

procedure check-forincoming;

function displace forincoming : boolean;

begin
number of fields := 1;
with field_list(l] do

begin
label string := 'Displace (Yes/No) ?';
label -x = 30; labely := 20;
str val := 'N';
xl := 51; yI := 20; x2 := 51; y2 := 20;
field type := ch; validcharset := ['Y','N']
end;

savescreen;
draw-window (10,15,71,23, blue, lightgray, null_string);
center text (17, 'Firing unit ' +
firing units[i].firing unitname +

I is receiving incoming artillery fire.',
blue);
centertext (18, 'Request permission for emergency
displacement.', blue);
edit screen (numberof fields, field-list, not
abortallowed);
displace for incoming := field list[l].str-val[l] ='Y;
restore-screen
end;

procedure displace_firingunit;

var
j : integer;
displaceevent : event record;
current_time : stringl5;

begin
with displace-event do

begin
eventtype := '0';

237

...... - m m m nnm mmm n m nI

current time := game dtg;
time key := incdtgtotimekey (currenttime, 30);
node := firingunits[i].location
end;

with firingunits[i] do
begin
displaceevent.unit type := 'F';
displace_event.unitname := firingunit-name;
firing-status := 'N';
time injposition := 0;
roundsfiredfrommposition := 0;
vulnerabilitystatus := 'A';
addevent (displace_event)
end;

for j := 1 to number of ammotrucks do
with ammotrucks[j] do

if (not killed) and (location =
firingunits[i].location) then

begin
displace_event.unittype := 'A';
displaceevent.unitname := bumpernumber;
moving := true;
addevent (displaceevent)
end

end;

procedure assessincomingcasualties;

var
j : integer;

begin
with firingunits[i] do

begin
sectionsin-operating condition :=

sections in operatingcondition -
amount of attrition (fire-unit, i, underfire);

if sections in_operatingcondition < 0.0 then
sectionsinoperatingcondition := 0.0

end;
for j := 1 to number-of ammo trucks do

with ammo_trucks[j) do
if (not killed) and (location =

firingunits(i].location) then
begin
vulnerabilitystatus :=

firingunits[i).vulnerability status;
effective percent := effectivepercent -

amount of attrition (ammo_truck, j, underfire);

if effective-percent < 0.0 then

238

effective-Percent := 0.0
end

end;

begin
with firingunits[i] do

if ((vulnerability_status - 'C') and (random < 0.05)) or
((vulnerabilitystatus = 'H') and (random < 0.01)) or
((vulnerability_status = 'A') and (random < 0.005))

then
begin
if displaceforincoming then

displacefiring unit;
assessincomingcasualties
end

end;

begin
with firingunits[i] do

begin
sections in operatingcondition :=

sections in operatingcondition -
amountofattrition (fireunit, i, inposition);

if sections in operatingcondition < 0.0 then
sections in operatingcondition := 0.0

end;
for j := 1 to number of ammotrucks do

with ammo trucks[j] do
if (not killed) and

(ammo_trucks[j].location =
firingunits[i].location) then

begin
vulnerabilitystatus :=

firingunits[i].vulnerabilitystatus;
effective-Percent := effectivepercent -

amount-of-attrition (ammo truck, j,
inposition);

if effective percent < 0.0 then
effective_percent := 0.0

end;
checkforincoming
end;

{
Procedure name : PUTVULNERABILITYMESSAGE

Purpose : this procedure will create a message to
be placed in the buffer if the firing units
vulnerability level has changed this time step.

239

Parameters : none.

Called by : PROCESSFIREUNITS
)

procedure put vulnerability message;

procedure createmessage;

var
newmessage : message-record;

begin
with firingunits[i] do

begin
newmessage.message type := '7';
new_message.unit_type := 'F';
newmessage.unit name := firingunit name;
if vulnerability high then

newmessage.vulnerability := 'H'
else

newmessage.vulnerability := 'C'
end;

addmessage (newmessage)
end;

begin
with firing units[i] do

case vulnerability_status of
'A' : if vulnerabilityhigh or vulnerabilitycritical

then
begin
vulnerabilityhigh := false;
vulnerability_critical := false
end;

'H' : if not vulnerability high then
begin
vulnerability_critical := false;
vulnerability_high := true;
create-message
end;

'C' : if not vulnerabilitycritical then
begin
vulnerabilityhigh := false;
vulnerabilitycritical := true;
createmessage
end

end
end;

240

Procedure name : DETERMINEAMMOSTATUS

Purpose : this procedure will check the firing
unit each time step in order to update its ammo
status.

Parameters : none.

Called by : PROCESSFIREUNIT
)

procedure determine ammostatus;

begin
with firingunits[i) do

if rounds on hand > (0.35 * sectionmaxroundscapacity *

sections_inoperatingcondition) then

ammo status := 'S'
else if rounds on hand <= 0 then

ammo status := '0'
else if rounds on hand < (0.1 *

section-maxrounds_capacity *
sections_inoperating condition) then

ammo status := 'C'
else

ammo status ILI
end;

{
Procedure name : PUTAMMOSTATUSMESSAGE

Purpose : this procedure will create a message to
be placed in the buffer if the firing units
ammo status has changed this time step.

Parameters : none.

Called by PROCESSFIREUNITS
}

procedure put ammostatusmessage;

procedure create-message;

var
newmessage : message record;

241

begin
with firingunits[i] do

begin
newmessage.messagetype := '6';
newmessage.unit type := 'F';
newmessage.unitname := firingunit name;
if ammolow then

new_message.ammo status := 'L'
else if ammo critical then

newmessage.ammo status := 'C'
else if ammo out then

newmessage.ammo status : 'O'
end;

addmessage (newmessage)
end;

begin
with firingunits[i] do

case ammo status of
'S' : if ammo out or ammo critical or ammo low then

begin
ammo out := false;
ammo-critical := false;
ammolow := false
end;

'L' : if not ammo low then
begin
ammo low := true;
ammo-critical := false;
ammo out := false;
create_message
end;

'C' : if not ammo critical then
begin
ammo critical := tiue;
ammo low := false;
ammo out false;
create_message
end;

'O' : if not ammo out then
begin
ammo out := true;
ammo-low := false;
ammo-critical := false;
create_message
end

end
end;

242

Procedure name : CALCULATEFIRINGUNITSTATS

Purpose : this procedure will update the stats
for a firing unit each time step based on the
time that it was critically short ammo,
critically vulnerable, and time lost due to
casualties.

Parameters : none.

Called by: PROCESSFIREUNITS
)

procedure calculatefiringunitstats;

begin
with firingunits[i] do

begin
if firing status = 'H' then

total availabilitytime :=
totalavailabilitytime + round

(game parameters.time stepsize *
sections in operatingcondition);

if vulnerability status = 'C" then
critically vulnerabletime :=

criticallyvulnerabletime + round
(gameparameters.time stepsize *

sectionsinoperating-condition);
if ammo status = 'C' then

criticallyshorttime :-
criticallyshorttime + round

(gameparameters.time stepsize *
sections in operating condition)

end
end;

begin
for i := 1 to number of firing units do

with firingunits(i) do
if sectionsinoperatingcondition > 0.0 then

begin
check for ammo_resupply;
if (hostilitiesstarted) and (firingstatus = 'H')

then
shoot-rounds;

if firing-status = 'N' then
begin
sections inoperatingcondition :=

sectionsinoperatingcondition -
amount of attrition (fire-unit, i, moving);

243

if sections_in operating condition < 0.0 then
sectionsin operating condition := 0.0

end
else

begin
time inposition :=

time injposition +
gameparameters.time_stepsize;

determine vulnerability_level;
if hostilities started then

assess casualties;
if sections in operatingcondition > 0.0 then

begin
put vulnerability message;
determine ammo status;
put ammo_status_message
end

end;
calculate_firingunit_stats
end

end;

Procedure name : GENERATEMESSAGES

Purpose : this procedure will display the sitrep
and message buffer each time step if it is
required based on desired frequency of sitreps
and whether or not the message buffer has any-
thing in it.

Parameters : none.

Called by : EXECUTENEXTTIMESTEP
)

procedure generatemessages;

procedure displaymessages;

var
message : messagerecord;
messagetype : char;
recordnumber : longint;
buffer : array [1..8] of string;
i : integer;

function messagetext (message : messagerecord): string;

var

244

buffer : string;

begin
with message do

begin
case message type of

'1' : begin
buffer := 'Ammo prepositioned at node ' +

location;
if unittype = 'C' then

buffer := buffer + ' convoy ' + unit-name +
I requests orders'

else
buffer := buffer + ' truck ' + unit-name + '

requestsorders'
end;

'2' : begin
buffer := 'Ammo delivered to unit ' + location;
if unittype = 'C' then

buffer := buffer + ', convoy ' + unit-name +
requests orders'

else
buffer -= buffer + ', truck ' + unit-name + '

requestsorders'
end;

'3' : begin
end;

'4' : begin
end;

'5' : begin
end;

'6' : begin
case ammostatus of

'0' : buffer := 'Unit ' + unit-name + ' is out
of ammo';

'C' : buffer := 'Unit ' + unit name + ' ammo
status is critical';

'L' : buffer 'Unit ' + unit-name + ' ammo
status is low'

end
end;

'7' : begin
case unit-type of

'T' : if vulnerability = 'H' then
buffer := 'Trains have reached high

vulnerability'
else

buffer := 'Trains have reached
critical vulnerability';

'F' : if vulnerability = 'H' then
buffer := 'Unit '+ unit name +

245

has reached high
vulnerability'

else
buffer := 'Unit '+ unit name +

' has reached critical
vulnerability'

end
end;

'8' : begin
if unittype = 'C' then

buffer := 'Convoy ' + unitname + ' unable to
locate trains'

else
buffer := 'Truck ' + unit name + ' unable to

locate trains'
end

end
end;

message_text := buffer
end;

procedure displaybuffer;

var
i : integer;

begin
save-screen;
draw-window (6,14,75,25, blue, lightgray, 'MESSAGES');
for i := 1 to 8 do

put string (10, 15 + i, buffer[i]);
center_text (24, 'press any key', red);
key := getkey;
key := null;
restore-screen
end;

begin
clearkey (message typeindex);
nextkey (messagetype_index, recordnumber, messagetype);
repeat

for i := I to 8 do
buffer(i] := nullstring;

i := 1;
while ok and (i < 8) do

begin
getrec (messages, recordnumber, message);
buffer(i] := messagetext (message);
deletemessage (record-number);
incr (i);

246

nextkey (message type_index, recordnumber,
message type)

end;
if buffer[l] <> nullstring then

display buffer
until not ok
end;

begin
displaymessages;
time sincelastsitrep :=

time sincelast sitrep + game_parameters.time stepsize;
if timesince last sitrep >=
commandersguidance.unit sitrepfrequency then

begin
time since lastsitrep :- 0;
display_sitrep
end

end;

begin
end.AZ

247

Unit name : COMMANDS

Purpose : this unit contains the procedures that
allow the player to input commands and have
them executed as is appropriate for each
command. I

(* *** **** **** *** ** *** ** *** ***** ***** ********

unit commands;

interface

($I-)

uses dos, crt, utility, gameutil, global, taccess, tahigh;

procedure createtruckconvoy;
procedure remove truckconvoy;
procedure ammo resupplymission;
procedure cancel_resupplymission;
procedure ammotruckammopickup;
procedure fireunitammo_pickup;
procedure cancelfire unitpickup;
procedure moveunit;
procedure issue fireorder;procedure change firing rate;
procedure cancelcommand;

implementation

type
name array = array (1..24] of string5;
route array = array [l..2] of array [1..ll] of string5;

var
route : routearray;
currentpath : integer;

{
Procedure name : UNIQUECONVOYNAME

Purpose : this procedure checks a nazue entered
for a convoy to insure that it has not been used
to name a fire unit, truck, or other convoy.

Parameters : STRINGVALUE - string to be checked.

Called by : used as a parameter to EDITSCREEN
by CREATETRUCKCONVOY

248

($F+)
function unique_convoyname (string_value : string8O):
boolean;

var
convoy exists : boolean;

begin
suppressmessages := true;
stringvalue := upper-case (stringvalue);
convoyexists := (stringvalue = nullstring) or

(stringvalue = 'TRAIN') or
(trucknumber (stringvalue) <> 0) or
(unit_number (stringvalue) <> 0) or
(valid_convoy (stringvalue));

if convoyexists then
displayerrormessage ('INPUT ERROR', null_string,

null-string,
'convoy must have a unique name',

nullstring);
unique convoyname := not convoyexists;
suppressmessages := false
end;($F-)

{
Procedure name : VALIDAMMOTRUCKFORCONVOY

Purpose : this procedure checks a name entered
to determine whether or not it can be added to
a new convoy.

Parameters : STRINGVALUE - string to be checked.

Called by used as a parameter to EDITSCREEN
by CREATETRUCKCONVOY

I

($F+)
function validammo truckfor_convoy (string-value :
string80): boolean;

var
truck-exists : boolean;

begin
suppressmessages := true;
stringvalue := upper case (string value);
truckexists := (stringvalue = null-string) or

249

(validammotruck (string value));
if not truck-exists then

display error message ('INPUT ERROR', null_string,
?ullstring,

'ammo truck does not exist',
nullstring);
validammo_truckfor convoy := truckexists;
suppress-messages := false
end;($F-)

Procedure name : VALIDTRUCKORCONVOY

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing truck or convoy.

Parameters : STRINGVALUE - string to be checked.

Called by : used as a parameter to EDITSCREEN
by AMMORESUPPLYMISSION

}

($F+)
function validtruck orconvoy (stringvalue : stringSO):
boolean;

var
truck or convoyexists : boolean;

begin
suppressmessages := true;
stringvalue := uppercase (stringvalue);
truckor convoyexists := validammotruck (stringvalue) or

valid_convoy (stringvalue);
if not truckorconvoyexists then

displayerrormessage ('INPUT ERROR', null_string,
'truck/convoy entered does not

exist',
'or truck is part of a convoy',

nullstring);
validtruck or convoy := truckorconvoyexists;
suppressmessages := false
end;
($F-)

250

Procedure name : VALIDUNITTORESUPPLY

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing node or unit to be resupplied.

Parameters : STRINGVALUE - string to be checked.

Called by : used as a parameter to EDITSCREEN
by AMMORESUPPLYMISSION

I

{$F+)
function valid unit toresupply (stringvalue : string8O):
boolean;

var
unit-exists : boolean;

begin
suppressmessages := true;
stringvalue := upper-case (string value);
unit exists := (valid unit (stringvalue)) or (stringvalue
= 'PREPO');
if not unit-exists then

display errormessage ('INPUT ERROR', nullstring,
null_string,

'unit entered does not exist',
null_string)
else if string_value = 'PREPO' then

begin
number of fields := 3;
with field_list[33 do

begin
put_string (labelx, labely, label-string);
if length (str val) > (x2 - xl + 1) then

str val [0) := chr (x2 - xl + 1);
put_string (xl, yl, strval)
end

end
else

begin
number of fields := 2;
field list(3].str val := nullstring;
with fieldlist[3) do

put_string (label_x, label-y, I,9)
end;

validunittoresupply := unit exists;
suppress_messages := false
end;

251

($F-)

{
Procedure name : TRUCKSATATP

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing truck or convoy that is at the
trains and ready to pickup ammo.

Parameters : STRINGVALUE - string to be checked.

Called by : used as a parameter to EDITSCREEN
by AMMOTRUCKAMMOPICKUP

)

($F+)
function trucks at atp (stringvalue : string80): boolean;

var
truck or convoyvalid : boolean;
i : integer;

begin
suppressmessages := true;
stringvalue := uppercase (stringvalue);
truck-orconvoyvalid := valid ammo truck (stringvalue) or

valid convoy (stringvalue);
if truck or convoyvalid then

begin
if validammo truck (stringvalue) then

truck or convoy_valid :=
(ammotrucks(trucknumber (string value)].location

battaliontrains.location) and
(ammotrucks[trucknumber

(stringvalue)j.load status = 'E') and
(ammotrucks[trucknumber

(stringvalue)].mission_assigned = 'N')
else

begin
truck or convoy_valid := false;
for i := 1 to number of ammo trucks do

if (ammotrucks[i].convoy name = string value) and
(ammotrucks[i].location =

battaliontrains.location) and
(ammotrucks(i].load status = 'E') and
(ammotrucks[i].mission assigned = 'N') then

truckor_convoy valid := true
end

252

end;
if not truck or convoyvalid then

display errormessage ('INPUT ERROR', null-string,
'truck/convoy entered does not

exist,',
'is not at trains, has a mission,

or',
'is not out of ammunition');

trucks at atp := truck or convoy valid;
suppressmessages := false
end;{$F-)

Procedure name : TIMENOTPAST

Purpose : this procedure checks a dtg that has
been entered for a command to insure that it
has not past.

Parameters : STRINGVALUE - dtg to be checked.

Called by : used as a parameter to EDITSCREEN
by any command that requires a dtg be entered.

1

($F+)
function time-not past (string_value : string80): boolean;

var
timeequivalent : datetime;

begin
if validdtg (stringvalue) then

begin
dtgto_datetime (stringvalue, timeequivalent);
if timerelative (time_equivalent, gametime) = before

then
begin
timenotpast := false;
displayerrormessage ('INPUT ERROR', null-string,

nullstring,
'time entered has already

past', null_string);
end

else
time not_past := true

end
else

begin

253

time not past := false;
display error message ('INPUT ERROR', null-string,

'dtg format : ''05 0530Z JAN
89'''

'spaces may be omitted',
null_string)

end
end;
($F-)

(
Procedure name : VALIDNODEFORROUTE

Purpose : this procedure checks a node to insure
that it lies on the route being entered for a
movement command.

Parameters : STRINGVALUE - node to be checked.

Called by used as a parameter to EDITSCREEN
by MOVEUNIT.

($F+)

function validnode forroute (stringvalue : string80):
boolean;

begin
stringvalue := upper_case (stringvalue);
if validnode (stringvalue) then

route[2][l] := stringvalue
end;($F-)

Procedure name : VALIDPATHINROUTE

Purpose : this procedure checks a path to insure
that it lies on the route being entered for a
movement command.

Parameters STRINGVALUE - path to be checked.

Called by : used as a parameter to EDITSCREEN
by MOVE_UNIT.

I

{$F+)

254

function validpath in route (stringvalue string80):
boolean;

var
node has-path : boolean;
pathhas node : boolean;
pathexists : boolean;
temppath : path record;
tempnode : node-record;
i : integer;

procedure update_fieldsdisplayed;

begin
if (key = uparrow) and (current path > 2) then

begin
decr (number of fields);
with fieldlist[currentpath] do

begin
str val := nullstring;
putstring (labelx, label-y,

,)

end;
decr (currentpath)
end

else if (key = enter) or (key = down_arrow) or
((key = f2) and (stringvalue <> nullstring)) then

begin
route[l][current_path] = temppath.pathname;
if temppath.startnode = tempnode.node name then

route[2)[current_path] := temppath.endnode
else

route[2][currentpath] := temppath.startnode;
with fieldlist[currentpath] do

putstring (labelx + 21, labely,
'to node : '+ route[2][current_path]);

if (currentpath < 11) then
begin
incr (number offields);
with fieldlist[currentpath + 1) do

begin
putstring (label_x, labely, label string);
if length (strval) > (x2 - xl + 1) then

str val [0] := chr (x2 - xl + 1);
putstring (xl, yl, str-val)
end;

incr (current path)
end

else if key <> f2 then
key := null

255

end
end;

begin
suppressmessages := true;
string value := uppercase (stringvalue);
pathexists := (key (up arrow) or

((key = f2) and (stringvalue = null_string) and
(currentpath > 2));
if not path-exists then

begin
taread (paths, temppath, string value, exactmatch);
path exists := ok;
if not path exists then

displayerror message ('INPUT ERROR', null string,
nullstring,

'path entered does not exist',
nullstring)

else
begin
taread (nodes, tempnode, route[2][current path - 13,

exactmatch);
nodehaspath := false;
for i := 1 to 6 do

if tempnode.paths[i] = temp_path.pathname then
node has_path := true;

pathhas-node := (temppath.startnode =
temp node.node name) or

(temp_path.endnode
temp node.nodename);

pathexists := nodehaspath and pathhas node;
if not path_exists then

displayerrormessage ('INPUT ERROR', nullstring,
'path does not connect', 'to

previous node',
nullstring)

end
end;

if pathexists then
update_fieldsdisplayed;

valid_path_inroute := path exists;
suppressmessages := false
end;{$F-}

Procedure name : VALIDUNITTOMOVE

Purpose : this procedure checks a unit entered to
insure that it is a valid unit in this game and

256

that it is not already pending a move.

Parameters : STRINGVALUE - unit to be checked.

Called by : used as a parameter to EDITSCREEN
by MOVEUNIT.

)

{$F+)
function validunitto move (stringvalue : string80):
boolean;

var
unit-exists : boolean;
i : integer;

begin
suppress_messages := true;
stringvalue := uppercase (stringvalue);
unit-exists := valid-unit (stringvalue) or

valid-ammotruck (string value) or
valid-convoy (stringvalue) or
(string value = 'TRAIN');

if not unit-exists then
display errormessage ('INPUT ERROR', nullstring,

'unit entered does not exist',
'or cannot move separately',

null_string)
else

begin
if string-value = 'TRAIN' then

unit exists := not battalion trains.pending movement
else if validunit (stringvalue) then

unitexists := not firingunits[unitnumber
(stringvalue)].

pendingmovement
else if validammo_truck (stringvalue) then

unitexists := not ammotrucks[trucknumber
(stringvalue)].

pending movement
else

begin
unit exists := true;
for i := 1 to number-ofammo trucks do

with ammotrucks[i] do -
if (convoy-name = string-value) and

(pendingmovement) then
unit-exists := false

end;
if not unit exists then

displayerrormessage ('INPUT ERROR', null-string,

257

'unit is already moving or is',

'pending execution of a
movement', nullstring)

end;
if unit exists then

begin
if valid-unit (stringvalue) then

begin
number of fields := 4;
with field_list[4] do

begin
putstring (label_x, label_y, labelstring);
if length (str-val) > (x2 - xl + 1) then

str val [0) := chr (x2 - xl + 1);
put string (xl, yl, strval)
end

end
else

begin
number of fields := 3;
field list[4].str val := null-string;
with fieldlist[4T do
putstring (label_x, labely,

end
end;

valid unit to move := unit-exists;
suppress_messages := false
end;
($F-)

Procedure name : VALIDNODEFORRESUPPLY

Purpose : this procedure checks a node entered
to insure that it lies along the entered route
so that resupply can occur there.

Parameters : STRINGVALUE - node to be checked.

Called by : used as a parameter to EDITSCREEN
by MOVEUNIT.

)

($F+)
function validnodefor_resupply (stringvalue : string8O):
boolean;

var

258

i : integer;
node inroute : boolean;

begin
stringvalue := upper case (string value);
node in route := stringvalue = nullstring;
if not node inroute then

for i := 1 to 12 do
if string value = route[2][i] then

node in-route := true;
if not node in route then

displayerror-message ('INPUT ERROR', null_string,
'node entered is not along',
'the entered route', null-string);

valid-nodefor resupply := node in route
end;
(SF-)

Procedure name : CREATETRUCKCONVOY

Purpose : this procedure allows the player to
create a convoy of trucks to be used as a group
for other commands to be entered.

Parameters : none.

Called by : ISSUECOMMAND
)

procedure createtruckconvoy;

var
names : namearray;
i : integer;

procedure setup fields;

var
i, j : integer;

begin
number of fields := 25;
with fieldlist[l) do

begin
labelstring := 'New convoy name :';
labelx := 11; label-y := 9;
strval nullstring;
xl := 30; yl := 9; x2 := 34; y2 := 9;

259

field type := eval; evalfunction := unique convoyname
end;

for i := 0 to 2 do
for j := I to 8 do

with fieldlist[1 + j + (i * 8)) do
begin
label string := nullstring;
label x := 11; label-y := 11;
strval := nullstring;
Xl := 3 + (j * 8); yl := 13 + i; x2 := 7 + (j *

8); y2 := 13 + i;
field type := eval; evalfunction :=

valid ammotruck-forconvoy
end;

field list[2].labelstring := 'Enter bumper numbers for
trucks in convoy :'
end;

function validinput (var names : namearray): boolean;

var
input_isvalid : boolean;
location : stringlo;
ammo status : char;
i integer;

begin
input isvalid := false;
for i := 1 to 24 do

if names[i) <> null_string then
input is valid := true;

if input_is-valid then
begin
i := 0;
repeat

incr (i)
until names[i] <> null string;
location := ammo_trucks trucknumber

(names(i])].location;
ammo status := ammo trucks[trucknumber

(names[i])).loadstatus;
for i := 1 to 24 do

if (names[i] <> nullstring) and
((location <> ammotrucks[trucknumber

(names[i])].location) or
(ammostatus <> ammo_trucks[trucknumber

(namesi])].load status) or
(ammo_trucks[trucknumber

(names[i])].mission assigned = 'Y')) then
input is valid := false

end;

260

if not input is valid then
displayerror message ('COMMAND ERROR',

'all trucks must be in same
location,',

'have no mission assigned, and',
'have the same ammo status to be',

'part of the same convoy');
validinput := inputis valid
end;

begin
set upfields;
save-screen;
clear area (2,3,79,22);
display_command helpline;
center text (4, 'Create Truck Convoy', cyan);
repeat

edit-screen (numberoffields, field_list,
abortallowed);

field list(l].str val := uppercase
(field list[l].str val);

for i := 1 to 24 do
names(i] := upper case (field list(i + 1].strval)

until (key = escape) or valid input (names);
if key <> escape then

for i := 1 to 24 do
if names~i] <> null string then

ammotrucks[truck number(names[i])).convoyname
fieldlist[l).strval;

restore-screen
end;

{
Procedure name : REMOVETRUCKCONVOY

Purpose : this procedure allows the player to
remove trucks from a convoy so that they will
now be treated individually by the player.

Parameters : none.

Called by : ISSUECOMMAND I

procedure removetruck-convoy;

var
i : integer;

261

procedure set_up_fields;

begin
number of fields := 1;
with field_list[l] do

begin
labelstring := 'Convoy to be separated :';
label x := 25; labely := 12;
str val := nullstring;
xl := 51; yl := 12; X2 : 55; y2 := 12;
field type := eval; evalfunction := validconvoy
end

end;

begin
setupfields;
savescreen;
clear area (2,3,79,22);
display_command helpline;
center text (4, 'Remove Truck Convoy', cyan);
edit screen (number offields, fieldlist, abortallowed);
field_list[l].str_val := upper_case (fieldlist[1].str val);

if (key = f2) or (key = enter) then
for i := 1 to number of ammo trucks do

if ammotrucks[i).convoyname = fieldlist[l).strval
then

ammo_trucks[i].convoyname := nullstring;
restore-screen
end;

(
Procedure name : AMMORESUPPLYMISSION

Purpose : this procedure allows the player to
assign a truck or convoy the mission of ammo
delivery to either a fire unit or node. This
command must be issued with a corresponding
movement order to insure that applicable units
are at the proper locations for delivery.

Parameters : none.

Called by : ISSUECOMMAND
)

procedure ammoresupplymission;

var
i : integer;

262

procedure set-upfields;

begin
number of fields := 2;
with field list(l] do

begin
labelstring := 'Ammo truck bumper # or convoy name :1;
label x := 19; label-y := 10;
str-val := nullstring;
xl : 57; yl := 10; x2 :- 61; y2 := 10;
field type := eval; evalfunction :=

valid truck-or convoy
end;

with fieldlist[2] do
begin
label string := 'Unit to resupply :';
labelx := 19; labely := 12;
strval := nullstring;
xl := 39; yl := 12; x2 := 43; y2 := 12;
field type := eval; evalfunction :=

valid unit toresupply
end;

with fieldlist[3] do
begin
label string := 'Node to resupply :';
labelx := 19; labely := 14;
strval := nullstring;
xl := 39; yl := 14; x2 43; y2 := 14;
fieldtype := eval; evalfunction := validnode
end

end;

function valid input : boolean;

var
inputis valid : boolean;
i : integer;

begin
input is valid := not ((field_list[3].strval = null_string)
and

((field list[2].strval = nullstring) or
(fieldlist[2].str val = 'PREPO')));

if inputis valid then
begin
suppress_messages := true;
if valid ammo truck (fieldlist[l].strval) then

begin
input is valid := ammotrucks[trucknumber

(field_list[l].str_val)].

263

missionassigned = 'N';
if not input is valid then

displayerrormessage ('COMMAND ERROR',
nullstring,

'ammo truck already has a',
'mission assigned',

null_string)
end

else
begin
for i := 1 to numberof ammo trucks do

if (ammo trucks[i].convoy name =
field_list[l].str

val) and

(ammo trucks(i].mission assigned = 'Y') then
input is valid := false;

if not input is valid then
displayerrormessage ('COMMAND ERROR',

nullstring,
'convoy already has a',
'mission assigned',

nullstring)
end;

suppress-messages := false
end;

validinput := inputis valid
end;

begin
set upfields;
save screen;
clear area (2,3,79,22);
display_commandhelp line;
center-text (4, 'Ammunition Resupply', cyan);
repeat

edit screen (number of fields, fieldlist,
abort_allowed);

field list~l].str val := upper-case
(field list[l].strval);

field list[2].str val := upper-case
(field list[2].strval);

field list[3].str val := upper-case
(field list[3).str val);
until (key = escape) or valid-input;
if key <> escape then

begin
if truck-number (field list[l].str val) <> 0 then

begin
ammo trucks[truck number (fieldlist[l].str val)].

mission-assigned := 'Y';
ammo trucks[trucknumber (fieldlist[l].str val)].

firingunit toresupply := fieldlist[2].strval;

264

ammo trucks[trucknumber (field list(l].str val)].
nodetoresupply := fieldlist(3].strval

end
else

for i := 1 to number-of ammo trucks do
if ammo trucks[i].convoyname =

fieldlist(l].strval then
begin
ammo trucks[i].missionassigned := 'Y';
ammo trucks(i].firing unit to resupply :=

field_list[2].strval;
ammo trucks(i].nodetoresupply :=

field_list[3].st7rval
end

end;
restore-screen
end;

Procedure name : CANCELRESUPPLYMISSION

Purpose : this procedure allows the player to
cancel the resupply mission issued to a truck
or convoy by the AMMORESUPPLYCOMMAND.

Parameters : none.

Called by : ISSUECOMMAND
)

procedure cancelresupplymission;

var
i : integer;

procedure set_upfields;

begin
number of fields := 1;
with fieldlist[l] do

begin
labelstring := 'Ammo truck bumper * or convoy name :';
label x := 19; label-y := 12;
strval := nullstring;
xl := 57; yl := 12; x2 := 61; y2 := 12;
fieldtype := eval; evalfunction :=

valid truck or convoy
end

end;

265

begin
set upfields;
save screen;
clear area (2,3,79,22);
display_command helpline;
center_text (4, 'Cancel Resupply Mission', cyan);
edit screen (number offields, field-list, abortallowed);
field_list[l].str_val := upper_case (field list~l].str val);

if (key = f2) or (key = enter) then
for i := 1 to number of ammo trucks do

if ((ammotrucks[i].bumper number =
field_list[l].strval) or

(ammotrucks(i].convoyname =
field_list[1].str_val)) and

(ammo trucks[i].missionassigned = 'Y') and
((ammotrucks[i].nodetoresupply <> nullstring)

or
(ammotrucks[i].firingunit to resupply <>

nullstring)) then
begin
ammotrucks[i).missionassigned := 'N';
ammotrucks[i].nodetoresupply :=

nullstring;
ammotrucks[i].firingunit to resupply

nullstring
end;

restore-screen
end;

{
Procedure name : FIREUNITAMMOPICKUP

Purpose : this procedure allows the player to
issue an order to a fire unit to pick up ammo
at a specified node. This command must be
issued with a corresponding movement order to
get the fire unit to the specified node.

Parameters : none.

Called by : ISSUECOMMAND
}

procedure fireunitammopickup;

procedure set_upfields;

begin
number of fields := 2;

266

with fieldlist[l) do
begin
labelstring := 'Fire unit to pick up ammo :';
label x := 24; labely :- 11;
str-val := null-string;
xl := 53; yl := 11; x2 := 57; y2 := 11;
field type := eval; evalfunction := validunit
end;

with fieldlist[2] do
begin
label string := 'Location of ammo :';
label x := 24; labely := 13;
strval := null-string;
xl := 44; yl := 13; x2 := 48; y2 := 13;
field type := eval; evalfunction := validnode
end

end;

function validinput : boolean;

var
innut is valid : boolean;

begin
input is valid := fieldlist[2).strval <> null_string;
if inputis valid then

begin
with firingunits[unitnumber (field list[ll.str val)] do

input is valid := ammo pickup_mission;
if not input is valid then

display errormessage ('COMMAND ERROR', nullstring,
'fire unit already has an',
'ammo pickup mission assigned',

nullstring)
end;

valid_input := inputis valid
end;

begin
set upfields;
save screen;
cleararea (2,3,79,22);
display_command help_line;
centertext (4, 'Fire Unit Ammunition Pickup', cyan);
repeat

edit screen (numberoffields, field_list,
abort_allowed);

field listrl].str val := uppercase
(fieldlisttl].strval);

267

field list[2].str val := upper-case
(field list[2].strval)
until (key = escape) or valid input;
if key <> escape then

with firing_units[unit number (fieldlist[l].str val)] do

if not ammopickupmission then
begin
ammopickupmission := true;
ammopickup_location := fieldlist[2].strval
end;

restore-screen
end;

Procedure name : CANCELFIREUNITPICKUP

Purpose : this procedure allows the player to
cancel an order to a fire unit to pick up ammo
at a specified node as directed to by a
FIREUNITAMMOPICKUP order.

Parameters none.

Called by ISSUECOMMAND
)

procedure cancelfireunitpickup;

procedure set_upfields;

begin
number-of fields 1;
with field_list[l) do

begin
label string := 'Fire unit :';
label x := 33; labely := 12;
strval := nullstring;
xl := 46; yl := 12; x2 50; y2 := 12;
field type := eval; evalfunction := validunit
end

end;

begin
set upfields;
save-screen;
clear-area (2,3,79,22);
display_command helpline;
center text (4, 'Cancel Ammo Pickup Mission', cyan);
edit-screen (number_of_fields, fieldlist, abortallowed);

268

field_list[l].strval := uppercase (field list[l].strval);

if (key = f2) or (key = enter) then
with firingunits[unitnumber (field_list[l].strval)] do

if ammo-pickupmission then
begin
ammo-pickupmission := false;
ammopickuplocation := nullstring
end;

restore-screen
end;

Procedure name : AMMOTRUCKAMMOPICKUP

Purpose : this procedure allows the player to
issue an order to a truck or convoy that is
at the trains location and empty to proceed to
atp for ammo resupply.

Parameters none.

Called by ISSUECOMMAND
)

procedure ammo_truck_ammopickup;

var
command_nuiLDer : string6;
newevent_1 : eventrecord;
new event_2 : eventrecord;
i :-integer;

procedure set_upfields;

begin
number of fields := 2;
with field_list[l] do

begin
label string := 'Ammo truck or convoy to pickup ammo :';
labelx 19; labely := 11;
strval nullstring;
X.l := 58; yl := 11; x2 62; y2 := 11;
field type := eval; evalfunction := trucksat atp
end;

with fieldlist[23 do
begin
label string := 'Departure time :';
label x := 19; labely := 13;

269

str val := gamedtg;
xl := 37; yl := 13; x2 := 51; y2 := 13;
field type := eval; eval function := time not past
end

end;

begin
set upfields;
save screen;
clear area (2,3,79,22);
displaycommand help_line;
center text (4, 'Ammo Truck Ammunition Pickup', cyan);
put_string (55, 6, 'Command number :');
str (command_serialnumber, commandnumber);
put_string (72, 6, commandnumber);
colorforeground (55,6,77,6, yellow);
edit screen (number offields, field list, abort-allowed);
field_list[lJ.str_val := uppercase (field list[l].str val);

if key = f2 then
begin
with new event_1 do

begin
event type :-= 'D';
serial number := command serial-number;
dtg to-timekey (fieldlist[2].strval, timekey);
unittype 'A';
unitname nullstring;
node := null string;
path 'ATP'
end;

new event_2 := new event_1;
with new event_2 do

begin
event-type := 'R';
timekey := incdtg to timekey (field list[2].strval,

abs (normal_rv
(game_parameters.avg timetrains to atp, 10)));

path := null-string-
end;

if truck number (field list[l].str val) <> 0 then
begin
newevent l.unit name field list[l].str val;
newevent_2.unit-name := field list[l].strval;
newevent_2.node :=

ammotrucks[trucknumber
(field_list[l].strval)].location;

ammotrucks[trucknumber (field_listL).str val)].
mission assigned := 'Y';

addevent (newevent_l);

270

addevent (new-event_2)
end

else
begin
for i := 1 to number-of ammo trucks do

if ammo trucks[i].convoyname =
fieldlist(l].str val then

begin
new event 1.unit name :=

ammo_trucks[i].bumper~number;
new event 2.unit name :=

ammotrucks[i].bumper~number;
newevent_2.node := ammo trucksfi].location;
ammo trucks[i].mission assigned := 'Y';
addevent (new event 1);
addevent (new event 2)
end

end;
incr (command serialnumber)
end;

restore-screen
end;

{
Procedure name : ISSUEFIREORDER

Purpose : this procedure allows the player to
issue an order to a fire order to execute a
fire order with the specified number of volleys
and at the specified time.

Parameters none.

Called by ISSUECOMMAND
}

procedure issue fire order;

var
commandnumber : string6;
new-event : eventrecord;

procedure set_upfields;

begin
number of fields := 3;
with field_list[l] do

begin
label-string := 'Unit to fire :';

271

label_x := 25; labely := 10;
str_val := nullstring;
xl := 41; yl := 10; x2 := 45; y2 := 10;
fieldtype := eval; eval_function := valid-unit
end;

with field_list[2] do
begin
labelstring := 'Time to fire :';
labelx := 25; labely := 12;
str val := gamedtg;
xl := 41; yl := 12; x2 := 55; y2 := 12;
field type := eval; evalfunction := time_notpast
end;

with field_list[3] do
begin
labelstring := 'Number of volleys :';
labelx := 25; labely 14;
xl := 46; yl := 14; x2 48; y2 := 14;
field type int; int_minvalue := 0; int_maxvalue

maxint;
int value 1;
str (int_value, strval)
end

end;

begin
setup fields;
save screen;
clear area (2,3,79,22);
display_commandhelpline;
centertext (4, 'Fire Order', cyan);
put_string (55, 6, 'Command number :');
str (commandserialnumber, commandnumber);
put_string (72, 6, commandnumber);
color_foreground (55,6,77,6, yellow);
edit screen (number offields, field list, abortallowed);
fieldlist[l].str_val := uppercase (fieldlist[l].strval);

if key = f2 then
begin
with new-event do

begin
event type := 'F';
serial-number := command serial number;
dtgtotimekey (fieldlist[2).str_val, time_key);
unit type := 'F';
unit-name fieldlist[l].strval;
volleys := field_list[3].intvalue
end;

addevent (new_event);
incr (command serialnumber)

272

end;
restore-screen
end;

(
Procedure name : CHANGEFIRINGRATE

Purpose : this procedure allows the player to
change the rate at which a unit fires during the
execution of each time step.

Parameters : none.

Called by : ISSUECOMMAND
)

procedure changefiringrate;

procedure set_upfields;

begin
number-of fields := 2;
with field_list[l] do

begin
labelstring := 'Unit to change :';
label x 27; label-y 11;
strval := nullstring;
xl := 45; yl := 11; x2 := 49; y2 11;
fieldtype := eval; evalfunction := valid unit
end;

with fieldlist[2] do
begin
labelstring := 'Firing rate (% CSR) :';
label x := 27; label_y 13;
str (i.0, strval);
xl := 50; yl := 13; x2 := 53; y2 := 13;
fieldtype := float; float minvalue := 0.01;

float max value := 1.0
end

end;

begin
set-upfields;
save screen;
cleararea (2,3,79,22);
displaycommandhelp line;
centertext (4, 'Change Unit Firing Rate', cyan);
edit screen (number offields, field list, abortallowed);
fieldlist~l].str_val := upper-case (fieldlist[l).strval);

273

if key = f2 then
firingunits[unit number

(fieldlist[l].str val)].rate_percentcsr :=
field_list[l].floatvalue;

restorescreen
end;

Procedure name : CANCELCOMMAND

Purpose : this procedure allows the player to
cancel a command that was issued with a time for
execution if it has not passed. It requires that
the serial number of the command to be cancelled
be entered.

Parameters : none.

Called by : ISSUECOMMAND
)

procedure cancelcommand;

var
recordnumber : longint;

procedure setupfields;

begin
number of fields := 1;
with field_list[l] do

begin
labelstring := 'Number of command to cancel :';
label x := 24; label y := 12;
strval nullstring;
xl := 55; yl := 12; x2 := 57; y2 := 12;
fieldtype := int;
int min value := 0; int max value :=

command serial number - 1
end

end;

begin
set upfields;
save screen;
cleararea (2,3,79,22);
display_commandhelpline;
ce.iter_text (4, 'Cancel Command', cyan);
edit screen (numberof_fields, field-list, abortallowed);
if (key = f2) or (key = enter) then

274

begin
findkey (serial numberindex, recordnumber,

fieldlist[l).str_val);
while ok do

begin
delete-event (recordnumber);
findkey (serialnumber-index, recordnumber,

fieldlist[l].strval)
end

end;
restore-screen
end;

{
Procedure name : MOVEUNIT

Purpose : this procedure allows the player to
issue a movement order to any of the units in
the game. This is done by first entering the
route for the movement and then the information
for the unit and the time to movement. It also
allows the player to instruct a fire unit to
resupply in route at a specified node.

Parameters : none.

Called by ISSUECOMMAND
)

procedure move-unit;

var
command number : string6;
validinput : boolean;

Procedure name : GETROUTE

Purpose : this procedure allows the player to
enter the route to taken by a unit that is to
be moved with this movement order. It allows
a route with up to 10 nodes in it.

Parameters : none.

Called by : MOVEUNIT
I

************************************ **************

procedure get-route;

275

var
i : integer;
j : integer;

procedure set_up fields;

var
i : integer;

begin
number-of fields := 2;
with field_list[l) do

begin
labelstring := 'Start node :';
labelx := 24; labely := 10;
strval := null_string;
xl := 38; yl := 10; x2 := 42; y2 := 10;
fieldtype := eval; eval_function := validnodeforroute

end;
for i := 2 to 11 do

with field_list[i] do
begin
labelstring := 'along path :';
labelx := 24; label-y := 10 + i;
strval := null_string;
xl := 38; yl := 10 + i; x2 := 42; y2 10 + i;
field type := eval; evalfunction

validpathinroute
end

end;

begin
setupfields;
savescreen;
putstring (26,25, 'Accept route ');
centertext (8, 'Enter route for movement', cyan);
for i := 1 to 2 do

for j := 1 to 11 do
route [i)[j) := null_string;

current-path 2;
valid input := false;
repeat

editscreen (number of fields, field_list,
abortallowed);

for i := I to number of fields do
field list[i].str_val := upper_case

(fieldlist[i].str_val);
if key <> escape then

valid-input := fieldlist(2].strval <> nullstring

276

until (key = escape) or valid input;
restore-screen
end;

Procedure name : GETMOVEMENTINFO

Purpose : this procedure allows the player to
enter the unit to be moved, the departure or
arrival time, and, if it is a fire unit, the
location for a resupply in route.

Parameters : none.

Called by : MOVEUNIT
)

procedure get movementinfo;

procedure setupfields;

begin
number-of fields := 3;
with field_list[l) do

begin
labelstring := 'Unit to move :';
labelx := 18; label-y := 10;
strval nullstring;
xl := 34; yl := 10; x2 := 38; y2 := 10;
fieldtype := eval; evalfunction := validunit to move
end;

with fieldlist[2] do
begin
labelstring := 'Time for movement :';
labelx := 18; label-y := 12;
strval := gamedtg;
xl := 39; yl := 12; x2 := 53; y2 := 12;
field type := eval; evalfunction := time_not_past
end;

with fieldlist(3] do
begin
labelstring := 'Is this a departure or arrival time

(D/A) :''.
label x := 18; labely := 14;
str val := 'D';
xl := 63; yl := 14; x2 := 63; y2 := 14;
fieldtype := ch; validcharset := ['D','A']
end;

with fieldlist[4] do
begin

277

label string := 'Node to resupply at :';
labelx := 18; labely := 16;
strval := nullstring;
xl :- 41; yl := 16; x2 := 45; y2 := 16;
field type := eval; evalfunction

validnodefor resupply
end

end;

begin
set upfields;
save screen;
center text (8, 'Enter movement information', cyan);
edit screen (numberof_fields, fieldlist, abort-allowed);
field list[1].str val := upper_case (fieldlist[l).str val);

fieldlist[4].strval uppercase (fieldlist[4].strval);

validinput := key = f2;
restore-screen
end;

{
Procedure name : CREATEEVENTRECORDS

Purpose : this procedure creates the event
records that correspond to the information
entered in this movement order.

Parameters none.

Called by : MOVEUNIT
}

procedure createeventrecords;

type
route-array = array [2..11] of integer;

var
routeinfo : routearray;
total estimatedtime : integer;
new event event record;
wait event : event record;
wait-exists : boolean;
command start time : datetime;
command time : string15;
pathnumber : integer;
i : integer;

278

procedure calculatemovementtimes (var routeinfo
route-array;

var totalestimatedtime
: integer);

var
i : integer;
path-number : integer;
speed : real;
calculatedtime : integer;
estimated time : integer;
total calculatedtime : integer;
temppath : pathrecord;
tracked-vehicle : boolean;

begin
pathnumber := 2;
total estimated time := 0;
total calculated time := 0;
tracked_vehicle := unitnumber (field_list[l.str val) <> 0;

repeat
taread (paths, temppath, route[l)[path_number],

exactmatch);
if tracked-vehicle then

begin
estimated time

round (((1.0 /
game3parameters.avgtrackconvoyspeed) * 60.0)

* temppath.length);
case temp_path.roadcondition of

'P' : speed := 0.95 *
game parameters.avgtrackconvoyspeed;

'M' : speed := 1.00 *
gameparameters.avgtrackconvoyspeed;

'G' : speed := 1.05 *
gameparameters.avgtrackconvoy speed

end;
calculated time :=

abs (normal rv (round (((1.0 / speed) * 60.0) *
temppath.length), 5T)

end
else

begin
estimated time

round (((1.0 /
gameparameters.avgwheelconvoy speed) * 60.0)

* temppath.length);
case temppath.roadcondition of

'P' : speed := 0.95 *
gameparameters.avgwheelconvoy speed;

279

'M' : speed := 1.00 *
game_parameters.avg wheelconvoyspeed;

'G' : speed := 1.05 *
gameparameters.avg wheelconvoyspeed

end;
calculated time :=

abs (normal rv (round (((1.0 / speed) * 60.0) *
temp_path.length), 5))

end;
route info[path number] := calculated time;
total estimated time := totalestimatedtime +

estimated time;
total calculated-time := totalcalculated time +

calculated time;
incr (pathnumber)

until (path number > 11) or (route[l][path_number] =
null_string);
for i := pathnumber to 11 do

route info[i) := 0
end;

begin
calculatemovement-times (routeinfo, totalestimated_time);

dtg to datetime (field_list[2].strval, commandstart_time);

if field list[3).str val = 'A' then
dec time (command starttime, total estimated time);

if timerelative (commandstart_time, gametime) = before
then

commandstarttime := gametime;
datetime to dtg (commandstarttime, command-time);
path number := 1;
repeat

wait-exists := false;
if path_number = 1 then

begin
with new event do

begin
eventtype := 'D';
serialnumber := command serial-number;
dtg to timekey (command_time, timekey);
path := route[l][pathnumber + 1]
end

end
else if (pathnumber = 11) or (route[l][pathnumber + 1]

= null string) then
begin
with new event do

begin
event-type := '0';

230

serial number := command serial number;
timekey :=

inc dtg-totimekey (commandtime,
route_info[pathnumber));

node := route[2)[pathnumber]
end

end
else

begin
if route[2)[pathnumber) = field_list[4].strval then

begin
wait-exists := true;
with waitevent do

begin
event-type := 'W';
serial-number := command serialnumber;
timekey :=

incdtgtotimekey (commandtime,
routeinfo[pathnumber]);

node := route[2][pathnumber)
end

end;
with new event do

begin
eventtype := 'T';
serialnumber := commandserialnumber;
if wait exists then

time key.-=
incdtgtotimekey (command-time,

game_ parameters.time stepsize)
else

timekey
incdtg to timekey (command-time,

route_info[pathnumber]);
path := route[l][pathnumber + 1
end

end;
if unit-number (fieldlist[l].str val) <> 0 then

begin
newevent.unittype 'F';
newevent.unit name := field list[1].strval;
addevent (newevent);
if wait exists then

begin
wait event.unittype := IF';
wait event.unit name := fieldlist[l].str val;
addevent (wait-event)
end

end
else if trucknumber (field_list[1].strval) <> 0 then

begin

281

newevent.unittype := 'A';
new event.unit name := field list[l].str val;
add-event (newevent)
end

else if fieldlist[l].strval = 'TRAIN' then
begin
new event.unittype := 'T';
new event.unitname := field list[l].strval;
addevent (new event)
end

else
begin
newevent.unittype := 'A';
for i := 1 to number ofammotrucks do

if ammo trucks[i].convoy name =
fieldlist~l].str val then

begin
new event.unit name :=

ammotrucks[i].bumpernumber;
addevent (new_event)
end

end;
incr (pathnumber)

until (pathnumber = 12) or (route[l][path_number] =
nullstring)
end;

begin
save screen;
clear_area (2,3,79,22);
displaycommandhelp line;
centertext (4, 'Move Unit', cyan);
putstring (55, 6, 'Command number :');
str (commandserialnumber, commandnumber);
putstring (72, 6, commandnumber);
color foreground (55,6,77,6, yellow);
getroute;
if validinput then

begin
get movement info;
if validinput then

begin
create event records;
incr (command_serial-number)
end

end;
restore screen
end;

begin

282

suppress-messages :~false
end. AZ

283

{
Unit name : GAMEUTIL

Purpose : this unit contains a number of general
purpose procedures that are specific to the
game and that are used by procedures or
functions that are in more than one unit.)

unit gameutil;

interface

uses dos, utility, global, taccess, tahigh;

type
timerelationtype = (before, after, same);

var
suppress_messages : boolean;

function always true (stringvalue : string8O): boolean;
procedure inc_time (var time : datetime; increment :
integer);
procedure dectime (var time : datetime; decrement :
integer);
procedure dtg todatetime (dtg : string15; var datetimerec
: datetime);
procedure datetimetodtg (datetimerec : datetime; var dtg
: string15);
procedure dtgto_timekey (dtg : stringl5; var timekey
stringlO);
function time relative (timel, time2 : datetime):
time relationtype;
function time in range (timel, time2, checktime
datetime): boolean;
function inc_dtg to timekey (var start_dtg : string15;

increment : integer):
string;
procedure determinedayor night;
function normalrv (mean : integer; sd : integer): integer;

function unit number (name : string5): integer;
function truck number (name : string5): integer;
procedure addevent (newevent : event_record);
procedure delete event (record-number : longint);
function valid-unit (string_value : string8O): boolean;
function valid-ammo_truck (stringvalue : string80):
boolean;
function validconvoy (string value : string80): boolean;

284

function validnode (stringvalue : string8O): boolean;

procedure close allfiles;

implementation

function always true (stringvalue : stringSo): boolean;

begin
always true := true
end;

Procedure name : INCTIME

Purpose : this procedure increments a time that
is represented by the Turbo provided datetime
type and returns it. The increment is to be
specified in minutes.

Parameters : TIME - datetime record to be
incremented.
INCREMENT - number of minutes to increment the
datetime record.

Called by
)

procedure inctime (var time : datetime; increment :
integer);

begin
with time do

begin
min := min + increment;
if min > 59 then

begin
hour := hour + (min div 60);
min := min - ((min div 60) * 60)
end;

if hour > 23 then
begin
day day + (hour div 24);
hour := hour - ((hour div 24) * 24)
end;

if day > monthdata (month].days then
begin
day := day - monthdata (month].days;
month := month + 1
end;

if month > 12 then

285

begin
month := 1;
year := year + 1
end

end;
end;

(
Procedure name : DECTIME

Purpose : this procedure decrements a time that
is represented by the Turbo provided datetime
type and returns it. The decrement is to be
specified in minutes.

Parameters : TIME - datetime record to be
decremented.
DECREMENT - number of minutes to decrement the
datetime record.

Called by
)

procedure dec time (var time : datetime; decrement
integer);

var
decmins : integer;
dec hours : integer;
dec days : integer;

begin
dec days := decrement div 1440;
decrement := decrement mod 1440;
dec hours := decrement div 60;
decrement := decrement mod 60;
dec mins := decrement;
with time do

begin
if min >= dec mins then

min := min - decmins
else

begin
min := 60 - (dec mins - min);
incr (dec hours)
end;

if hour >= dec hours then
hour := hour - dechours

else
begin

286

hour := 24 - (dec hours - hour);
incr (dec days)
end;

while decdays >= day do
begin
dec days := dec days - day;
if month > 1 then

month := month - 1
else

begin
month := 12;
year := year - 1
end;

day := monthdata(month].days
end;

day := day - dec_days
end

end;

{
Procedure name : DTGTODATETIME

Purpose : this procedure converts a string that
represents a valid dtg and converts it to the
date and time in the form of the datetime
type record.

Parameters : DTG - string that contains the dtg
to be converted.
DATETIMEREC - record to contain the result of
the conversion.

Called by
}

procedure dtg to datetime (dtg : string15; var datetimerec
: datetime);

var
errorcode : integer;

begin
dtg := remove blanks (dtg);
val (copy (dtg, 1, 2), datetime_rec.day , errorcode);
if copy (dtg, 3, 2) = '24' then

datetimerec.hour := 0
else

val (copy (dtg, 3, 2), datetimerec.hour, error-code);
val (copy (dtg, 5, 2), datetimerec.min , errorcode);

287

datetimerec.month := ord (strto_month (copy (dtg, 8, 3)))
+ 1;
val (copy (dtg, 11, 2), datetimerec.year, error-code);
datetime rec.year := datetime rec.year + 1900
end;

Procedure name : DATETIMETODTG

Purpose : this procedure converts a datetime
record into a string that represents a valid
dtg.

Parameters : DATETIME REC - record to be con-
verted into a dtg string.
DTG - string to contain the converted datetime
record.

Called by :)

procedure datetime-to-dtg (datetime rec : datetime; var dtg
: stringl5);

var
stringval : string15;

begin
with datetimerec do

begin
str (day, stringval);
if day < 10 then

begin
dtg (13 '0';
dtg [2) := string_val (1)
end

else
begin
dtg (1] := stringval (1];
dtg (2) := stringval (2]
end;

dtg [3) := blank;
str (hour, stringval);
if (hour = 0) and (min = 0) then

begin
dtg [4) := '2';
dtg [5] := '4'
end

else if hour < 10 then
begin

288

dtg [4] := '0';
dtg [5) := string yal [1]
end

else
begin
dtg [4] := string val [1);
dtg [5) :- stringval [2)
end;

str (min, string val);
if min < 10 then

begin
dtg [6] := '0';
dtg (7] := stringval (1]
end

else
begin
dtg [6) := stringval [1);
dtg [7] := stringval [2)
end;

dtg [8] := 'Z';
dtg [9] := blank;
insert (monthdata (month].name, dtg, 10);
dtg (13) := blank;
str (year - 1900, stringval);
insert (string val, dtg, 14)
end

end;

{
Procedure name : DTGTOTIMEKEY

Purpose : this procedure takes a string that
is a valid dtg and converts it to a string that
contains the same information but can be used
as an alphabetic key for event records.

Parameters : DTG - string that contains the valid
dtg to converted for use as a key.
TIMEKEY - string that will contain the key
after conversion from dtg format.

Called by :
)

procedure dtg to timekey (dtg : string15; var timekey
stringlO);

var
month : monthtype;
monthval : string;

289

begin
dtg := remove-blanks (dtg);
insert (copy (dtg, 11, 2), timekey, 1);
month := str to month (copy (dtg, 8, 3));
str (ord (month) + 1, monthval);
if ord (month) < 10 then

insert ('0' + monthval, timekey, 3)
else

insert (monthval, timekey, 3);
insert (copy (dtg, 1, 6), timekey, 5)
end;

Procedure name : TIMERELATIVE

Purpose : this procedure compares two records of
type datetime and determines whether the first
one represents a time that occurs before, after
or at the same time as the second record.

Parameters : TIME1 - the first record of type
datetime to be compared against.
TIME2 - the second record of type datetime to
be compared against the first one.

Called by)

function time relative (timel, time2 : datetime):
timerelationtype;

begin
if timel.year < time2.year then time relative := before
else if timel.year > time2.year then timerelative := after
else

begin
if timel.month < time2.month then time relative := before

else if timel.month > time2.month then time-relative :=
after

else
begin
if timel.day < time2.day then time relative := before
else if timel.day > time2.day then timerelative

after
else

begin
if timel.hour < time2.hour then time relative :=

before

290

else if timel.hour > time2.hour then time-relative
:= after

else
begin
if timel.min < time2.min then timerelative :=

before
else if timel.min > time2.min then time-relative

:- after
else

timerelative := same
end

end
end

end
end;

{
Procedure name : TIMEINRANGE

Purpose : this procedure will check the third
parameter of type datetime and indicate whether
or not it falls between the times represented
by the first two datetime records.

Parameters : TIME1 - the first record of type
datetime to be compared against.
TIME2 - the second record of type datetime to
be compared against.
CHECKTIME - the record of type datetime to be
compared to the interval represented by TIMEl
and TIME2.

Called by
}

function time-in range (timel, time2, checktime : datetime):
boolean;

begin
if time relative (timel, time2) = before then

time-in range := ((time_relative (checktime, timel) in
[after, same]) and

(timerelative (checktime, time2) in
(before, same]))
else

timein range := ((time-relative (checktime, time2) in
(after, same]) and

(time_relative (checktime, timel) in
[before, same]))
end;

291

Procedure name : INCDTGTOTIMEKEY

Purpose : this procedure will take a string that
represents a valid dtg and increment the time
and date that it represents by the specified
number of minutes and return the result in the
form of a string to be used as a key to an
event record.

Parameters : START DTG - the string that
represents a valid dtg to be incremented.
INCREMENT - the number of minutes to
increment the time represented by the dtg.

Called by :
)

function inc-dtgto-timekey (var start dtg : string15;
increment : integer) string;

var
final datetime : datetime;
final dtg : stringl5;
finaltimekey : stringlo;

begin
dtgto datetime (startdtg, finaldatetime);
inc time (final datetime, increment);
datetime to dtg (finaldatetime, final_dtg);
dtgto timekey (final dtg, final_timekey);
start dtg := final_dtg;
inc-dtg_totimekey := finaltimekey
end;

Procedure name : DETERMINEDAYORNIGHT

Purpose : this procedure uses the BMNT end EENT
entered by the player to determine whether the
game time is at day or night.

Parameters : none.

Called by
)

292

procedure determinedayornight;

var
sun_up : integer;
sun doun : integer;
erro, : integer;

begin
val (copy (commanders guidance.bmnt, 1, 4), sun_up, error);
val (copy (commanders guidance.eent, 1, 4), sundown,
error);
day time := (((gametime.hour * 100) + game_time.min) >=
sunup) and

(((gametime.hour * 100) + gametime.min) <
sundown)
end;

{
Procedure name : NORMALRV

Purpose : this procedure will return a normally
distributed random variable with the specified
mean and standard deviation.

Parameters : MEAN - the mean of the distribution.
SD - the standard deviation of the
distribution.

Called by

function normal_rv (mean : integer; sd integer): integer;

var
x random : real;
y-random : real;
y_calculated : real;

begin
repeat

x_random := (random * 6.0) - 3.0;
y_random := random * (1 / sqrt (2.0 * pi));
y calculated := exp (-1.0 * sqr (xrandom) / 2.0) / sqrt

(2.0 * pi)
until y_random <= ycalculated;
normal rv := round (xrandom * sd + mean)
end;

293

Procedure name : UNITNUMBER

Purpose : this procedure will take the name of
a unit and return the number of that unit in
'-he array of firing units. It will return a
0 if the name doews not correspond to a
firing unit.

Parameters : NAME - the name of the firing unit
to be checked.

Called by
)

function unitnumber (name : string5): integer;

var
firingunitnumber : integer;

begin
firing unitnumber := 0;
repeat

incr (firingunit number)
until (firingunitnumber = number of firing units) or

(name =
firing units[firingunit number].firingunitname);
if name <> firingunits(firing unit_number).firing unit name
then

unit-number := 0
else

unitnumber := firing unitnumber
end;

(
Procedure name : TRUCKNUMBER

Purpose : this procedure will take the bumper
number of a truck and return the number of that
truck in the array of ammo trucks. It will
return a value of 0 if the bumper number does
not correspond to a truck.

Parameters : NAME - the bumper number of the
truck to be checked.

Called by

)

function trucknumber (name : string5): integer;

294

var
ammotruck-number : integer;

begin
ammo truck number := 0;
repeat

incr (ammo truck number)
until (ammo_truck number = number of ammo trucks) or

(name = ammo trucks(ammo_trucknumber].bumper number);

if name <> ammotrucks[ammo truck number] .bumper number then

trucknumber := 0
else

trucknumber := ammo-truck-number
end;

(
Procedure name ADDEVENT

Purpose : this procedure will take the event
passed to it and add it to the file that
contains the events list of events not yet
executed.

Parameters : NEW EVENT - the event record to be
added to the events list.

Called by

*)

procedure addevent (newevent : eventrecord);

var
record number : longint;
command_number : string6;

begin
str (newevent.serialnumber, commandnumber);
addrec (event_list, recordnumber, new event);
addkey (timeindex, recordnumber, new-event.time key);
addkey (serialnumber index, recordnumber, commandnumber);

flushfile (event list);
flushindex (timeindex);
flushindex (serialnumberindex);
if new event.event type = 'D' then

begin
suppress-messages := true;

295

case new-event.unit type of
'T' : battalion trains.pending movement := true;
'A' : ammo trucks[truck number

(new event.unit name)].pending movement :=
true;

'F' : firing units[unit number
(newevent.unit name)].pendingmovement :=

true
end;
suppressmessages := false
end

end;

Procedure name : DELETEEVENT

Purpose : this procedure will take the event
corresponding to the record number passed to
the procedure and delete it from the events
list. If the event was related to a cancelled
movement order it also takes the unit involved
and moves it to the nearest node if it was
on a path.

Parameters : RECORD NUMBER - the number of the
record to be deleted from the events list.

Called by

procedure deleteevent (recordnumber : longint);

var
event : event record;
command number : string6;
temppath : path-record;

begin
getrec (eventlist, recordnumber, event);
str (event.serial number, command-number);
if event.eventtype in ['O','T','W','D'] then

begin
suppressmessages := true;
case event.unit type of

'T' : with battalion trains do
begin
if not valid-node (battaliontrains.location)

then
begin

296

taread (paths, temp_path, location,
exactmatch);

location := temp_path.startnode
end;

pendingmovement := false
end;

'A' : with ammo-trucks[truck number (event.unitname))
do

begin
if not valid node

(ammo tru7cks[trucknumber
(event.unitname)].location) then

begin
taread (paths, temppath, location,

exactmatch);
location := temp_path.startnode
end;

pendingmovement := false
end;

'F' : with firingunits[unit number (event.unitname)]
do

begin
if not valid-node

(firingunits[unitnumber
(event.unitname)].location) then

begin
taread (paths, temppath, location,

exactmatch);
location := temppath.startnode
end;

pendingmovement := false
end

end;
suppress_messages := false
end;

deletekey (serial numberindex, recordnumber,
commandnumber);
deletekey (time index, recordnumber, event.timekey);
deleterec (event list, record-number);
flushfile (event list);
flushindex (timeindex);
flushindex (serialnumberindex)
end;

Procedure name : VALIDUNIT

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
unit that it still alive.

297

Parameters : STRINGVALUE - name of unit to be
checked.

Called by :
I

(*********** ** * *** * **** ****** ***** *)
($F+)
function valid-unit (stringvalue : stringSo): boolean;

var
unit-exists : boolean;

begin
string value := upper case (stringvalue);
unit exists := (unit_number (string value) <> 0) and

(firing units[unit_number (stringvalue)].
sections in operatingcondition > 0.0);

if (not suppressmessages) and (not unitexists) then
display errormessage ('INPUT ERROR', null_string,

nullstring,
'unit entered does not exist',

nullstring);
valid unit := unit-exists
end;
($F-)

Procedure name : VALIDAMMOTRUCK

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
truck that is still alive.

Parameters : STRINGVALUE - name of truck to be
checked.

Called by :
}

($F+)
function validammotruck (stringvalue : string80):
boolean;

var
ammotruckgood : boolean;

begin
stringvalue := upper case (stringvalue);
ammotruck-good := (trucknumber (stringvalue) <> 0) and

298

(ammo_trucks [truck-number
(stringvalue)] .effective_percent > 0.0) and

(ammo Itrucks [trucknumber (stringvalue)]. convoyname =
nullstring);
if (not suppressmessages) and (not ammotruckgood) then

display error-message ('INPUT ERROR', nullstring,
'truck entered does not exist',
'or is part of another convoy',null_string);

validammotruck :- ammotruck good
end;
($F-)

Procedure name : VALIDCONVOY

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
convoy that is still in operation.

Parameters : STRINGVALUE - name of convoy to be
checked.

Called by
)

($F+)
function validconvoy (string value : string8o): boolean;

var
ammo truck-number : integer;
convoyexists : boolean;

begin
stringvalue := uppercase (stringvalue);
convoyexists := false;
if stringvalue <> nullstring then

for ammo truck number := 1 to number of ammo trucks do
if (ammo trucks (ammo trucknumber]. effectiveypercent

> 0.0) and
(stringvalue =

ammo_trucks(ammo_trucknumber].convoyname) then
convoy-exists := true;

if (not suppressmessages) and (not convoyexists) then
displayerrormessage ('INPUT ERROR', null_string,

nullstring,
'convoy does not exists',

nullstring);
valid_convoy := convoyexists
end;

299

($F-)

Procedure name : VALIDNODE

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
node created for this scenario.

Parameters : STRINGVALUE - name of node to be
checked.

Called by :
)

($F+)
function valid-node (string value : string80): boolean;

var
temp node : node record;
node-exists : boolean;

begin
stringvalue := upper case (stringvalue);
taread (nodes, tempnode, stringvalue, exactmatch);
node-exists := ok;
if (not suppress messages) and (not nodeexists) then

displayerrormessage ('INPUT ERROR', nullstring,
nullstring,

'node does not exists',
nullstring);
valid node := node-exists
end;
($F-)

Procedure name : CLOSEALLFILES

Purpose : this procedure will close all files

that are used throughout the game.

Parameters : none.

Called by :
)

procedure closeallfiles;

begin

300

taclose (nodes);
taclose (paths);
closefile (event list) ;
closeindex (time -index);
closeindex (serial -number-index);
closet ile (messages);
close index (message type index)
end;

begin
end. AZ

301

Unit name : UTILITY

Purpose : this unit contains a number of general
purpose procedures that perform functions
related to input and output of information
using menus and full screen editing.)

unit utility;

interface
($I-)

uses dos, crt;

const
nullstring = '';
blank = #32;
null = 00;
backspace = 08;
enter = 13;
escape = 27;
space = 32;
fl = 59 shl 8;
f2 = 60 shl 8;
f3 = 61 shl 8;
f4 = 62 shl 8;
f5 = 63 shl 8;
f6 = 64 shl 8;
f7 = 65 shl 8;
f8 = 66 shl 8;
f9 = 67 shl 8;
flO = 68 shl 8;
fil = 133 shl 8;
f12 = 134 shl 8;
home_key = 71 shl 8;
up arrow = 72 shl 8;
page up = 73 shl 8;
left-arrow = 75 shl 8;
right_arrow = 77 shl 8;
endkey = 79 shl 8;
down-arrow = 80 shl 8;
pagedown = 81 shl 8;
insert key = 82 shl 8;
delete key = 83 shl 8;
menu xl default = 1;
menu x2 default = 80;
menuyl default = 3;
menuy2_default = 23;

302

menu forecolor default = white;
menu~backcolor-default = blue;
option-forecolor-default = blue;
option 'backcolor default - lightgray;
field -forecolor default = yellow;
field backcolor-default - magenta;
max ieldsjper 'screen =25;

* abort-allowed Z true;
type

stringi - string [1];
string2 = string [2];
string3 = string (3);
string4 - string [4);
stringS - string [5];
string6 - string (6);
string7 = string (7];
string8 = string [8];
string9 = string [9);
stringlO = string [10);
stringiS = string [15);
string20 = string [20);
string25 = string [25);
string3O = string [30];
string35 = string [35];
string4O = string (40];
string45 = string [45];
string50 = string [50);
string55 = string [55);
string6o = string [60);
string65 = string [65);

*string70 = string [70);
string75 = string (75];
string8O = string (80];
option_string = string;
eval -function-type = function (string value string8o):

boolean;
month-type = (JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC,
INVALID-MONTH);

data type = (int, float, ch, strg, eval, enum, dtg,
time);

month record = record
days : integer;
name : string3

end;
field record = record

label -string : string8o;
label -x, label_y : integer;
str -val : string8o;
x1, yi, x2, y2 :integer;
case field type :data-type of

303

int : (int value : longint;
intmin _value,
int-max value : integer);

float : (float-value : real;
float min value,
float max-value : real);

ch : (valid_-char set : set of char);
enum : (number of enum values : integer;

validenum values : array (1..10] of
stringlo);

eval : (evalfunction : evalfunction type);

end;
field array = array [l..maxfields per_screen] of

field record;
font = array [1..7] of array [1..7] of char;

var
key : integer;
menuxl, menux2, menu_yl, menu_y2 : integer;
menu-forecolor, menu backcolor : integer;
optionforecolor, option backcolor : integer;
field_forecolor , field backcolor : integer;
default mask : dirstr;
letters : array ['A'..'Z'] of font;
digits : array ['0'..'9') of font;
fontfile : file of font;
number of fields : integer;
field_list : fieldarray;
monthdata : array [l..12] of month-record;

procedure incr (var number : integer);
procedure decr (var number : integer);
function removeblanks (stringvalue : string80): string8O;

function uppercase (stringvalue : string8O): string8O;
function strtomonth (stringvalue : string3): month-type;

function valid-dtg (string_value : stringl5): boolean;
function validtime (stringvalue : string5): boolean;
function insert on : boolean;
procedure toggle insert;
function getkey : integer;
procedure initializescreen;
procedure savescreen;
procedure restorescreen;
procedure printscreen;
procedure removecursor;
procedure restorecursor;
procedure beep;
function printerready : boolean;

304

procedure color-background (xl, yl, x2, y2, color :
integer);
procedure color-foreground (xl, yl, x2, y2, color :
integer);
procedure clear area (xl, yl, x2, y2 : integer);
procedure put-char (column, line : integer; character :
char);
function get char (column, row : integer): char;
procedure put-string (column, line : integer; text :
stringSO);
procedure put font string (column, line : integer; text
stringlO; color : integer);
procedure center-text (line : integer; text : string8O;
color : integer);
procedure draw-window (xl, yl, x2, y2 : integer;

forecolor, backcolor : integer;
title : stringSO);

procedure shade window (xl, yl, x2, y2, color : integer);
procedure display error-message (title, linel, line2, line3,
line4 : string55);
function edit field (field : field record): string80;
procedure display edit screen help line;
procedure display-edit list help_line;
procedure display-command helpline;
procedure display addrecord helpline;
procedure edit screen (var number of fields : integer;

var field data : fieldarray;
abort possible : boolean);

function menuselection (menutitle : string8o;
menu-options : optionstring):

integer;

function get file (prompt, message : string8O; searchmask
: dirstr): pathstr;

implementation

type
screen = array [l..25] of array [1..80] of integer;

var
keyboard-status : byte absolute $0040:$0017;
register values : registers;
screen-image : screen;
cursorx : integer;
cursory : integer;
stackypointer : integer;
screen image_stack : array (l..7] of screen;
cursor_x stack : array [1..7] of integer;
cursor-y stack : array [1..7] of integer;
loop : char;

const

305

screenlocation : ,screen = ptr ($B800,$0000);

procedure incr (var number : integer);

begin
number := number + 1
end;

procedure decr (var number : integer);

begin
number := number - 1
end;

function removeblanks (string value : string8O): string80;

var
position : byte;

begin
position := pos (blank, stringvalue);
while position <> 0 do

begin
delete (stringvalue, position, 1);
position := pos (blank, stringvalue)
end;

removeblanks := stringvalue
end;

function upper_case (stringvalue : string8O): string80;

var
position : byte;

begin
for position := 1 to length (string_value) do

string value [position) := upcase (string value
[position]);
upper case := string-value
end;

function strtomonth (stringvalue string3): month_type;

begin
if string value = 'JAN' then

str to month := JAN
else if string_value = 'FEB' then

str to month := FEB
else if string_value = 'MAR' then

str to month := MAR

306

else if string_value = 'APR' then
strto month :- APR

else if stringvalue - 'MAY' then
str to month := MAY

else if string_value - 'JUN' then
str to month :- JUN

else if string_value - 'JUL' then
strto month :- JUL

else if string_value = 'AUG' then
str to month :- AUG

else if string_value = 'SEP' then
str to month := SEP

else if string_value = 'OCT' then
str to month :- OCT

else if stringvalue = 'NOVI then
str to month :- NOV

else if string_value = 'DEC' then
str to month := DEC

else
strtomonth := INVALIDMONTH

end;

function validdtg (stringvalue : string15): boolean;

var
date : longint;
time : longint;
year : longint;
zone : char;
month : monthtype;
error-code : integer;

begin
stringvalue -= uppercase (stringvalue);
stringvalue : remove blanks (stringvalue);
if length (string value) = 12 then

begin
val (copy (string value, 1, 2), date, error_code);
val (copy (string value, 3, 4), time, error_code);
val (copy (string value, 11, 2), year, error_code);
zone := char (string value (7]);
month := str_tomonth (copy (stringvalue, 8, 3));
valid_dtg := (errorcode = 0) and

(month <> INVALIDMONTH) and
(date > 0) and (date <= monthdata [ord

(month)].days) and
(time >= 0) and (time <= 2400) and
(zone in ['A'..'Z']) and
(year >= 70) and (year <= 99)

end
else

307

valid dtg := false

end;

function validtime (stringvalue : string5): boolean;

var
time : longint;
zone : char;
errorcode : integer;

begin
stringvalue := uppercase (string value);
val (copy (stringvalue, 1, 4), time, errorcode);
zone := char (stringvalue [5]);
validtime := (errorcode = 0) and

(time >= 0) and (time <= 2400) and
(zone in ['A'..'Z'])

end;

function insert on : boolean;

begin
inserton := ((keyboardstatus and $80) = $80)
end;

procedure toggleinsert;

begin
if insert on then

keyboard-status keyboardstatus and $7F
else

keyboard status := keyboardstatus or $80
end;

function getkey : integer;

var
keyvalue : integer;

begin
key value := ord (readkey);
if keyvalue = null then

keyvalue := ord (readkey) shl 8;
get key := key_value
end;

procedure initialize-screen;

begin
window (1,1,80,25);
textbackground (black);

308

textcolor (yellow);
clrscr
end;

procedure save-screen;

begin
incr (stackpointer);
screen imagestack [stackpointer] := screenlocation";
cursor_x_stack [stackpointer] := wherex;
cursory_stack [stackpointer] := wherey
end;

procedure restorescreen;

begin
screenlocation- := screenimagestack [stack_pointer];
gotoxy (cursor_x_stack [stackpointer], cursory_stack
(stackpointerl);
decr (stack pointer)
end;

procedure printscreen;

begin
intr ($5, registervalues)
end;

procedure removecursor;

begin
gotoxy (1,1);
registervalues.ax := $0100;
registervalues.cx $2607;
intr ($10, registervalues)
end;

procedure restorecursor;

begin
registervalues.ax := $0100;
registervalues.cx := $0607;
intr ($10, registervalues)
end;

procedure beep;

begin
sound (1000);
delay (100);
nosound

309

end;

function printer-ready : boolean;

begin
register values.ah := $02;
register values.dx := $00;
intr ($17, registervalues);
printer-ready := (register values.ah and $08) = $00
end;

procedure color-background (xl, yl, x2, y2, color :
integer);

var
line,
column : integer;
value : integer;

begin
for line := yl to y2 do

for column := xl to x2 do
begin
value := screenlocationA [line,column);
value := (value and $OFFF) + (color shl 12);
screenlocation" [line,column) := value
end

end;

procedure colorforeground (xl, yl, x2, y2, color
integer);

var
line,
column : integer;
value : integer;

begin
for line := yl to y2 do

for column := xl to x2 do
begin
value := screenlocation" [line,column];
value := (value and $FOFF) + (color shl 8);
screenlocation" [line,column] := value
end

end;

procedure cleararea (xl, yl, x2, y2 : integer);

var
line,

310

column : integer;
value : integer;

begin
for line := yl to y2 do

for column := Xl to x2 do
begin
value screen location [linecolumnJ;
value : (value and FFOO) + ord (space);
screen-location A [linecolumn :- value
end

end;

procedure putchar (column, line : integer; character :
char);

var
value : integer;

begin
value .= screen location^ [line,column];
value := (value and $FFOO) + ord (character);
screen locationA [line,column] := value
end;

function get char (column, row : integer): char;

begin
get char := chr (lo (screenlocationA [row, column]))
end;

procedure put_string (column, line : integer; text
string8O);

var
i : integer;

begin
for i := 1 to length (text) do

putchar (column + i - 1, line, text [i])
end;

procedure putfontstring (column, line : integer; text
stringlO; color : integer);

var
k : integer;

procedure put font char (column, line : integer; character
char; color : integer);

311

var
i, j : integer;

begin
if (column < 74) and (line < 19) then

for i := 1 to 7 do
for j := 1 to 7 do

begin k
if (character in ['a'..'z']) or (character in

['A'..'Z']) then
putchar (i + column - 1, j + line - 1, letters

[character] [j, i])
else if character in ['0'..'9'] then

put_char (i + column - 1, j + line - 1, digits
(character] [j, i])

else
put_char (i + column - 1, j + line - 1, blank);

colorforeground (i + column - 1, j + line - 1,
i + column - 1, j + line - 1,

color)
end

end;

begin
for k := 0 to length (text) - 1 do

put fontchar (column + (k * 8), line, text [k+l], color)

end;

procedure center text (line : integer; text : string80;
color : integer);

var
indent : integer;

begin
indent := (((lo(windmax) - lo(windmin) + 1) - length (text))
div 2) + 1;
putstring ((lo(windmin) + indent), line, text);
color_foreground ((lo(windmin) + indent), line,

(lo(windmin) + indent + length (text) -

1), line, color)
end;

procedure draw-window (xl, yl, x2, y2 : integer;
forecolor, backcolor : integer;
title : string8O);

var
line,
column,

312

indent : integer;

begin
clear area (xl,yl,x2,y2);
color_-background (xl,yl,x2,y2, backcolor);
color foreground (xl,yl,x2,y2, forecolor);
for column := xl to x2 do

begin
put-char (column, yl, #205);
put char (column, y2, #205);
end;

for line := yl to y2 do
begin
putchar (xl, line, #186);
put char (x2, line, #186);
end;

put-char (xl, yl, #201);
put char (xl, y2, #200);
put-char (x2, yl, #187);
put char (x2, y2, #188);
if length (title) <> 0 then

begin
indent := ((x2 - xl + 1) - (length (title) + 2)) div 2;
putstring (xl + indent, yl, ' '+ title +' ')
end

end;

procedure shade-window (xl, yl, x2, y2, color : integer);

var
position : integer;

begin
position := xl + 1;
repeat

putchar (position, y2 + 1, #219);
colorforeground (position, y2 + 1, position, y2 + 1,

color);
incr (position)

until position > x2 + 2;
position := yl + 1;
repeat

putchar (x2 + 1, position, #219);
putchar (x2 + 2, position, #219);
colorforeground (x2 + 1, position, x2 + 2, position,

color);
incr (position)

until position > y2
end;

313

procedure displayerrormessage (title, linel, line2, line3,
line4 : string55);

begin
savescreen;
draw window (21,9,60,17, yellow, red, title);
shade window (21,9,60,17, black);
centertext (11, linel, yellow);
center text (12, line2, yellow);
centertext (13, line3, yellow);
center_text (14, line4, yellow);
centertext (16, 'press any key', white);
key := get key;
key := null;
restore-screen
end;

function edit_field (field : fieldrecord): stringSO;

var
screen string : string8O;
exit edit field : boolean;
i : inceger;

procedure highlightfield (field : fieldrecord);

begin
with field do

begin
color background (xl-l, yl, x2+1, y2, field backcolor);
color-foreground (x1-1, yl, x2+1, y2, field forecolor);
if field type in [strg, dtg] then

begin
i := x2 + 1;
repeat

decr (i);
gotoxy (i + 1, yl)

until (i = xl - 1) or (getchar (i, yl) <> blank)
end

else
gotoxy (xl, yl)

end
end;

procedure restorefield (field : field_record);

begin
with field do

begin
color-background (xl-l, yl, x2+l, y2, menubackcolor);
color-foreground (x1-1, yl, x2+1, y2, menuforecolor);

314

if fieldtype in [strg, dtg) then
begin
i := x2 + 1;
repeat

decr (i);
gotoxy (i + 1, yl)

until (i = xl - 1) or (get-char (i, yl) <> blank)
end

else
gotoxy (xl, yl)

end
end;

procedure displayedit field helpscreen;

begin
savescreen;
removecursor;
draw window (16,5,65,19, blue, lightgray, 'help');
shade window (16,5,65,19, black);
center-text (12, 'NO HELP AVAILABLE AT THIS TIME', blue);
center-text (17, 'press any key to return', blue);
key -=-get key;
key .= null;
restorecursor;
restore-screen
end;

begin
restore-cursor;
if insert on then

begin
put string (77,25, 'INS');
color-foreground (77,25,79,25, blue)
end

else
put string (77,25, '

highlight field (field);
exit edit field := false;
repeat

key := getkey;
case key of

uparrow, down_arrow, escape, enter,
f2, f3, f4, f5, f6, f7, f8, f9, flo,
page-up, pagedown :

exit edit field := true;
fl : displayedit fieldhelp_screen;
insertkey : begin

if insert on then
begin
putstring (77,25, 'INS');

315

color -foreground (77,25,79,25, blue)
end

else
put string (77,25,'

end;
backspace :if wherex = field.xl then

beep
else if wherex = field.x2 + 1 then

begin
gotoxy (wherex - 1, field.yl);
put char (wherex, wherey, blank)
end

else
begin
gotoxy (wherex - 1, field.yl);
for i := wherex + 1 to field.x2 do

put-char (i - 1, field.yl, get-char
(i, field.yl));

put char (field.x2, field.yl, blank)
end;

delete-key :if wherex =field.x2 + 1 then
beep

else
begin
for i :=wherex + 1 to field.x2 do

put_char (i - 1, field.yl, get-char
(i, field.yl));

put char (field.x2, field.yl, blank)
end;

left-arrow : if wherex = field.xl then
beep

else
gotoxy (wherex - 1, field.yl);

right-arrow :if wherex = field.x2 + 1 then
beep

else
gotoxy (wherex + 1, field.yl);

home key :gotoxy (field.xl, field.yl);
end-key : begin

i := field.x2 + 1;
repeat

decr (i);
gotoxy (i + 1, field.yl)

until (i = field.xl - 1) or
(get char (i, field.yl) <> blank)

end;
else

begin
if insert on then

begin
if wherex = field.x2 + 1 then

316

beep
else

begin
for i := field.x2 downto wherex + 1 do

put char (i, field.yl, get-Char (i - 1
field.yl));

put -char (wherex, field.yl, chr (key));
J gotoxy (wherex + 1, field.yl)

end
end

else
begin
if wherex =field.xl then

begin
for i :=field.xI to field.x2 do

put -char (i, field.yl, blank);
put_char (field.xl, field.yl, chr (key));
gotoxy (field.xl + 1, field.yl)
end

else if wherex = field.x2 + I then
beep

else
begin
put_char (wherex, field.yl, chr (key));
gotoxy (wherex + 1, field.yl)
end

end
end

end
until exit-edit -field;
for i := field.xl to field.X2 do

screen Tstring [i -field.xl + 1) :=get_char (i,
field.yl);
i := field.x2 + 1;
repeat

decr (i)
until (i = field.xl 1) or (get char (i, field.yl) <>
blank);
screen-string (0) := chr (i - field.xl + 1);
edit -field := screen string;
restore-field (field);
remove-cursor
end;

procedure display edit-screen help line;

begin
clear_area (1,25,80,25);
put char (1, 25, #24);
put char (2, 25, #25);
put char (3, 25, #60);

317

putchar (4, 25, #217);
putstring (5, 25, '-Choose Fl-Help F4-Print screen
ESC-Done');
color-foreground (1,25,4,25, red);
color-foreground (5,25,11,25, blue);
color-foreground (14,25,15,25, red);
color-foreground (16,25,20,25, blue);
colorforeground (23,25,24,25, red);
colorforeground (25,25,37,25, blue);
color-foreground (40,25,42,25, red);
color-foreground (43,25,47,25, blue);
colorbackground (1,25,80,25, lightgray)
end;

procedure displayedit_list_helpline;

begin
cleararea (1,25,80,25);
put_char (1, 25, #24);
put_char (2, 25, #25);
putchar (3, 25, #60);
put_char (4, 25, #217);
put_string (5, 25, '-Choose');
put_string (13, 25, 'FI-Help F4-Print F5-Add F6-Delete '+

'F7-Edit FS-Search ESC-Done');
colorforeground (1,25,4,25, red);
colorforeground (5,25,11,25, blue);
color_foreground (13,25,14,25, red);
colorforeground (15,25,20,25, blue);
color_foreground (21,25,22,25, red);
colorforeground (23,25,29,25, blue);
colorforeground (30,25,31,25, red);
color_foreground (32,25,36,25, blue);
colorforeground (37,25,38,25, red);
colorforeground (39,25,46,25, blue);
color_foreground (47,25,48,25, red);
color_foreground (49,25,54,25, blue);
color_foreground (55,25,56,25, red);
colorforeground (57,25,64,25, blue);
colorforeground (65,25,67,25, red);
colorforeground (68,25,72,25, blue);
colorbackground (1,25,80,25, lightgray)
end;

procedure displaycommandhelpline;

begin
cleararea (1,25,80,25);
put_char (1, 25, #24);
put_char (2, 25, #25);
put_char (3, 25, #60);

318

put char (4, 25, #217);
put-string (5, 25, '-Choose Fl-Help F2-Execute command '+

'F4-Print ESC-Abort');
color foreground (1,25,4,25, red);
color_foreground (5,25,11,25, blue);
color foreground (14,25,15,25, red);
color foreground (16,25,20,25, blue);
color foreground (23,25,24,25, red);
color foreground (25,25,40,25, blue);
color_foreground (43,25,44,25, red);
color_foreground (45,25,50,25, blue);
colorforeground (53,25,55,25, red);
color_foreground (56,25,61,25, blue);
color_background (1,25,80,25, lightgray)
end;

procedure displayadd record help_line;

begin
cleararea (1,25,80,25);
put char (1, 25, #24);
put char (2, 25, #25);
put char (3, 25, #60);
put char (4, 25, #217);
put-string (5, 25, '-Choose Fl-Help F2-Add record '+

'F4-Print ESC-Abort');
color_foreground (1,25,4,25, red);
color_foreground (5,25,11,25, blue);
color_foreground (14,25,15,25, red);
color_foreground (16,25,20,25, blue);
color_foreground (23,25,24,25, red);
colorforeground (25,25,35,25, blue);
colorforeground (38,25,39,25, red);
color foreground (40,25,45,25, blue);
colorforeground (48,25,50,25, red);
color_foreground (51,25,56,25, blue);
color_background (1,25,80,25, lightgray)
end;

procedure editscreen (var number of fields : integer;
var field data : field-array;
abort_possible : boolean);

var
field-number : integer;
error-value : integer;
good value entered : boolean;
i : integer;

procedure displayedit-screenhelp_screen;

319

begin
savescreen;
remove-cursor;
draw window (16,5,65,19, blue, lightgray, 'help');
shade window (16,5,65,19, black);
centertext (12, 'NO HELP AVAILABLE AT THIS TIME', blue);
centertext (17, 'press any key to return', blue);
key := get-key;
key := null;
restore-cursor;
restore-screen
end;

procedure printbadint_message;

begin
displayerror message ('INPUT ERROR',

'integer input error',
null string,
'input is either not a valid number

or',
'is out of allowable range of

values')
end;

procedure printbadfloatmessage;

begin
displayerrormessage ('INPUT ERROR',

'floating point input error',
nullstring,
'input is either not a valid number

or',
'is out of allowable range of

values')
end;

procedure printbaddtgmessage;

begin
display error message ('INPUT ERROR',

'dtg input format error',
null string,
'proper format : ''05 0530Z JAN

89'''
'spaces may be omitted')

end;

procedure print-badtime-message;

320

begin
display_errormessage ('INPUT ERROR',

'time input error',
null string,
'proper format : ''0530Z''',
null-string)

end;

procedure printbadchrmessage;

begin
display_errormessage ('INPUT ERROR',

'character input error',
null string,
'character entered is not allowed',
'in this field')

end;

procedure printbadenummessage;

begin
display_error message ('INPUT ERROR',

'character input error',
null string,
'characters entered are not allowed',

'in this field')
end;

begin
save-screen;
for field-number := 1 to number of fields do

with fielddata [field_number] do
begin
put_string (label x, labely, label-string);
if length (str-val) > (x2 - xl + 1) then

strval [0) := chr (x2 - xl + 1);
if field_type in [int, float] then strval

remove-blanks (strval);
put_string (xl, yl, strval)
end;

field number := 1;
repeat

with fielddata [fieldnumber] do
begin
str val := editfield (field data [fieldnumber]);
if (key = enter) or (key = uparrow) or (key =

downarrow) or
(key = page-up) or (key = pagedown) or (key = f4)

or
((key = escape) and not (abortpossible)) or

321

((key = f2) and (abortpossible)) then
begin
case fieldtype of

int : begin
val (strval, int_value, errorvalue);
goodvalueentered := (error_value = 0)

and
(int_value >=

int_minvalue)
and

(int value <=int_max value) ;

if not goodvalueentered then
printbad_int_message

end;
float : begin

val (strval, floatvalue, errorvalue);

goodvalue entered := (errorvalue = 0)
and

(float-value >=
float minvalue) and

(floatvalue <=
floatmaxvalue);

if not goodvalue entered then
printbad_float_message

end;
ch begin

str val := uppercase (str-val);
goodvalueentered :=

str val [l] in valid char-set;
if not goodvalueentered then

print_badchrmessage
end;

strg : begin
goodvalue entered := true
end;

enum : begin
str val := upper-case (str-val);
goodvalue entered := false;
for i := 1 to number of enum values do

good valueentered :=
str val = valid enum values [i];

if not goodvalueentered then
printbad_enummessage

end;
dtg : begin

str val := upper_case (strval);
goodvalue-entered := valid_dtg

(str_val);
if not good value-entered then

print bad_dtgmessage

322

end;
time : begin

str val := uppercase (str val);
good valueentered := valid-time

(str-val);
if not good valueentered then

printbad timemessage
end;

eval : good value entered := eval function
(str-val)

end;
if goodvalue entered then

case key of
f4 : print screen;
uparrow : if field-number = 1 then

begin
if not abortpossible then

field-number :=
number of fields

end
else

decr (fieldnumber);
down arrow,
enter : if field-number =

number of fields then
field-number := 1

else
incr (fieldnumber)

end
end

end
until (key escape) or

((key = page down) and not abort_possible) or
((key = pageup) and not abort-Possible) or
((key = enter) and (number of fields = 1)) or
((key = f2) and (abortpossible));

restore-screen
end;

function menu-selection (menutitle : string8O;
menu-options : option-string):

integer;

type
menuoption = record

option : string8o;
option number : integer;
xl, yl, x2, y2 : integer
end;

optionarray = array £1..20) of menu_option;

323

f , , a i I I I I I I

var
option_list : option-array;
number menuoptions : integer;

procedure create option list (menu_options : optionstring;
var option-list :

option-array;
var numbermenu options :integer) ;

var
position : integer;
optionstringlength : integer;
opt num : integer;
skiplines : integer;

begin
position := 1;
number-menu options := 0;
while menu options [position] <> '\' do

begin
incr (number menu options);
with option_list [number menuoptions] do

begin
optionstringlength := 0;
while not (menu-options [position] in ['\','I']) do

begin
incr (optionstringlength);
option [option string length] := menu-options
incr (position)

end;
option [0] := chr (optionstringlength);
optionnumber := number menuoptions;
xl := ((menux2 - menu_xl + 1 - length (option))

div 2) + menu xl;
x2 := xl + length (option) - 1;
if menu-options [position) = 'J' then incr

(position)
end

end;
if numbermenuoptions < 10 then

skip-lines :=
(((menuy2 - menu yl) - (2 * numbermenuoptions - 1))

div 2) + 1
else

skiplines :=
(((menu_y2 - menuyl) - (2 * ((numbermenu_options +

1) div 2) - 1)) div 2) + 1;
for optnum := 1 to numbermenuoptions do

324

with option-list [optnum) do
begin
if number menu_options < 10 then

begin
xl :- ((menux2 - menuxl + 1 - length (option))

div 2) + menu_x1;
yl := (menu_yl + skip_lines - 1) + (2 * opt num -

end
else

begin
if opt num <= (number menu options + 1) div 2 then

begin
yl := (menu yl + skip-lines - 1) + (2 * optnum

- 1);
xl := menu xl + 4
end

else
begin
yl := (menuyl + skiplines - 1) +

(2 * (optnum - ((numbermenuoptions + 1)
div 2)) - 1);

xl := menu_xl + ((menu_x2 - menuxl + 1) div 2)
+2

end
end;

x2 := xl + length (option) - 1;
y2 := yl
end

end;

procedure displaymenuscreen (menu_title : string8O;
option_list : optionarray;
numbermenu options

integer);

procedure displayoptions (option list : option array;
numbermenu options : integer);

var
optnum : integer;

begin
for opt num := 1 to numbermenu options do

with optionlist [optnum] do
put_string (xl, yl, option)

end;

procedure displaymenuhelpline;

begin

325

clear area (1,25,80,25);
putchar (1, 25, #24);
putchar (2, 25, #25);
put string (3, 25, '-Choose');
put char (12, 25, #60);
put char (13, 25, #217);
put string (14, 25, '-Select');
put string (23, 25, 'Fl-Help');
colorforeground (1,25,2,25, red);
colorforeground (3,25,9,25, blue);
colorforeground (12,25,13,25, red);
color-foreground (14,25,20,25, blue);
colorforeground (23,25,24,25, red);
colorforeground (25,25,30,25, blue);
colorbackground (1,25,80,25, lightgray)
end;

begin
drawwindow (menux1, menu_yl, menux2, menu_y2,

menu forecolor, menubackcolor, menu-title);
displayoptions (optionlist, numbermenuoptions);
display menu_helpline
end;

function getoption (option list : option-array;
numbermenuoptions : integer):

integer;

var
opt num : integer;

procedure highlightoption (field : menu_option);

begin
with field do

begin
color background (x1-1, yl, x2+1, y2, option backcolor);
color foreground (x1-l, yl, x2+1, y2, option forecolor)
end

end;

procedure restore-option (field : menu-option);

begin
with field do

begin
color background (x1-1, yl, x2+1, y2, menubackcolor);
color foreground (xl-1, yl, x2+1, y2, menu forecolor)
end

end;

326

procedure display menu help screen;

begin
save screen;
draw window (16,6,65,20, blue, lightgray, 'help');
shade window (16,6,65,20, black);
center text (13, 'NO HELP AVAILABLE AT THIS TIME', blue);
centertext (19, 'press any key to return', blue);
key := get key;
key := null;
restorescreen
end;

begin
optnum := 1;
highlight-option (optionlist [opt num]);
repeat

key := get key;
case key of

enter
get option := opt_num;

up_arrow :
begin
restore-option (option-list [optnum));
if optnum = 1 then

optnum := numbermenuoptions
else decr (optnum);
highlightoption (optionlist [opt num])
end;

down arrow :
begin
restore option (optionlist (optnum));
if optnum = numbermenu options then

opt-num := 1
else incr (optnum);
highlight-option (option list [optnum))
end;

left arrow :
if (numbermenu_options >= 10) and

(optnum > (numbermenu options + 1) div 2)
then

begin
restore option (optionlist [optnum]);
opt-num := optnum - ((numbermenu options +1) div 2) ;
highlightoption (option_list (optnum])
end;

right-arrow :
if (numbermenu_options >= 10) and

(optnum + ((numbermenuoptions + 1) div 2)
<= numbermenu options) then

327

,mm m mlI• [mmA

begin
restore option (optionlist (opt num]);
optnum := opt_num + ((numbermenu options +

1) div 2);
highlightoption (optionlist [optnum])
end;

fl
displaymenu help_screen

end
until key = enter
end;

begin
save screen;
create_option list (menuoptions, option-list,
number menu options);
display_menu_screen (menu-title, option-list,
numbermenu options);
menu selection := getoption (optionlist,
number menu options);
restorescreen
end;

function get-file (prompt, message : string8o; search-mask
dirstr): pathstr;

const
number fields = 1;
fields : array [l..numberfields) of fieldrecord =

((label_string : 'Directory : '; labelx 18;
labely : 7;

strval : nullstring;
xl : 31; yl : 7; x2 : 60; y2 : 7;
fieldtype : strg));

file window xl = i0;
file windowyl = 10;
filewindow x2 = 71;
file_windowy2 = 21;
file window backcolor = cyan;
file-window_-forecolor = blue;

type
file listjptr = Afile listrecord;
file-listrecord = record

line : string60;
previous : file listptr;
next : file list ptr

end;

var
file-list : file listptr;

328

pathvalid : boolean;
listlength : integer;
heapstate : pointer;
file-error : integer;

procedure displaygetfilehelpscreen;

begin
save screen;
draw-window (16,5,65,19, blue, lightgray, 'help');
shade window (16,5,65,19, black);
centertext (12, 'NO HELP AVAILABLE AT THIS TIME', blue);
centertext (17, 'press any key to return', blue);
key := get key;
key := null;
restore-screen
end;

procedure display getfilescreen (prompt, message :
stringSO; searchmask : dirstr);

procedure displaygetfilehelpline;

begin
put-char (1, 25, #24);
putchar (2, 25, #25);
put char (3, 25, #26);
put char (4, 25, #27);
put string (5, 25, '-Choose');
put char (14, 25, #60);
put char (15, 25, #217);
put string (16, 25, '-Select');
put-string (25, 25, 'Fl-Help');
put string (34, 25, 'F4-New mask');
put string (47, 25, 'ESC-Quit');
color_foreground (1,25,4,25, red);
colorforeground (5,25,11,25, blue);
colorforeground (14,25,15,25, red);
color-foreground (16,25,22,25, blue);
colorforeground (25,25,26,25, red);
colorforeground (27,25,31,25, blue);
color-foreground (34,25,35,25, red);
colorforeground (36,25,44,25, blue);
colorforeground (47,25,49,25, red);
colorforeground (50,25,54,25, blue);
colorbackground (1,25,80,25, lightgray)
end;

begin
draw window (menu_xl, menu_yl, menux2, menu y2,

menuforecolor, menubackcolor, prompt);

329

draw window (file window_xl, filewindowy1, filewindowx2,
file-windowy2,

filewindowforecolor, filewindowbackcolor,
searchmask);
put string (fields [lJ.labelx, fields (l).labely,

fields [lJ.labelstring + searchmask);
center text (fields (l].label y - 2, message,
file windowbackcolor);
displaygetfilehelp_line
end;

function checkpath (searchmask : dirstr): boolean;

var
file info : searchrec;
valid_path : boolean;

begin
findfirst (searchmask, anyfile, file_info);
file error := doserror;
if file error <> 0 then

begin
save screen;
draw-window (26,13,55,16, yellow, red, null_string);
shade window (26,13,55,16, black);
case doserror of

3 : begin
center text (14, 'PATH NOT FOUND', yellow);
centertext (15, 'press any key', white);
key := getkey;
key.-= null
end;

18 : begin
center text (14, 'NO FILES FOUND', yellow);
center-text (15, 'press any key', white);
key := getkey;
key := null
end;

152 : begin
center text (14, 'DISK ERROR', yellow);
center text (15, 'Retry or Abort', yellow);
colorforeground (34,15,34,15, white);
color foreground (43,15,43,15, white);
repeat

key := get key;
if chr (key) in ['a','A') then

begin
restore-screen;
checkpath := (file-error = 0);
exit
end

330

else if chr (key) in ['r', 'R'] then
valid path := check-Path (search-mask)

until (file-error <> 152) or (chr (key) in('a', '')
end

else
begin
center text (14, 'PATH ERROR', yellow);
centertext (15, 'press any key', white);
key := get key;
key := null
end

end;
restorescreen
end;

checkpath := (file_error = 0);
end;

function get file list (search-mask : dirstr;
var list_length : integer):

file listptr;

const
blank60 ='+

var
number of files : integer;
file info : searchrec;
column : integer;
list head : file listptr;
list-tail : file-list ptr;

begin
number of files := 1;
list length := 1;
column := 2;
new (listhead);
list head^.line := blank 60;
list-head^.next := nil;
list-head^.previous := nil;
list tail := listhead;
findfirst (search-mask, anyfile, fileinfo);
while (doserror = 0) do

begin
delete (list tail^.line, column, length

(fileinfo.nameT);
insert (file info.name, list tailA.line, column);
if file info.attr = directory then

list tailA.line (column + length (file info.name))

331

fA

findnext (fileinfo);
if doserror = 0 then

begin
incr (numberof files);
if (numberoffiles mod 4) = 1 then

begin
new (listtailA.next);
list tailA.nextA.next := nil;
list tailA.nextA.previous := list-tail;
list tailA.nextA.line := blank_60;
list tail := list tailA.next;
incr-(listlength);
column :- 2
end

else
column := column + 15

end
end;

getfile list := listhead
end;

function get filename (searchmask : dirstr;
file list : file listptr;
list-length : integer

pathstr;

var
list_pointer : file listptr;
done : boolean;
filename : pathstr;
dir : dirstr;
name : namestr;
ext : extstr;

procedure highlightfile;

begin
colorforeground (filewindow-xl + wherex,
file_window yl + wherey,

file window-xl + wherex + 13,
file_windowyl + wherey,

yellow);
colorbackground (filewindow_xl + wherex,
file windowyl + wherey,

file window-xl + wherex + 13,
file windowyl + wherey,

magenta)
end;

procedure restore-file;

332

begin
color-foreground (file window xl + wherex,
file window-yl + wherey,

file window xl + wherex + 13,
filewindow-yl + wherey,

filewindowforecolor);
colorbackground (file_windowxl + wherex,
filewindow-yl + wherey,

file window xl + wherex + 13,
filewindowyl + wherey,

filewindowbackcolor)
end;

begin
drawwindow (file window xl, file window yl,

filewindowx2, filewindow_y2,
file-windowforecolor, filewindowbackcolor,

search-mask);
window (file window xl + 1, file window_yl + 1,

file window-x2 - 1, filewindow y2 - 1);
textbackground (file window backcolor);
textcolor (file windowforecolor);
clrscr;
listpointer := filelist;
done := false;
repeat

put string (filewindow_xl + wherex, file window-yl +
wherey,

list_pointer^.line);
if (list_pointerA.next <> nil) and (wherey <> 10) then

begin
gotoxy (wherex, wherey + 1);
listpointer := list_pointer^.next
end

else
begin
gotoxy (1,1);
list_pointer := file-list;
done := true
end

until done;
highlight_file;
repeat

key := getkey;
case key of

enter :
begin
filename := copy (list_pointer^.line, wherex + 1,

12);
if pos ('\', file-name) = 0 then

begin

333

fsplit (searchmask, dir, name, ext);
getfile-name := dir + file-name
end

else
begin
save-screen;
draw-window (26,13,55,16, yellow, red,

nullstring);
shade window (26,13,55,16, black);
center-text (14, 'CANNOT SELECT SUBDIRECTORY',

yellow);
centertext (15, 'press any key', white);
key := get-key;
key := null;
restore-screen
end

end;
fl :

displaygetfile-helpscreen;
uparrow,
downarrow,
leftarrow,
right arrow

begin
restore file;
case key of

up_arrow :
if wherey <> 1 then

begin
gotoxy (wherex, wherey - 1);
listpointer := list pointer.A previous
end

else if (wherey = 1) and
(list pointer".previous <> nil) then

begin
listpointer := listypointer.A previous;
insline;
putstring (filewindowxl + 1,

filewindow-yl + wherey,
list_pointerA .line)

end;
down-arrow

if (wherey <> 10) and (listpointer^.next <>
nil) and

(listpointer .nextA.line (wherex + 1] <>
blank) then

begin
gotoxy (wherex, wherey + 1);
listpointer := list_pointer^.next
end

334

else if (wherey = 10) and (listypointerA-next
<> nil) and

(listpointer A .next-,. line (wherex +
1) <> blank) then

* begin
listpointer := listpointerA.next;
gotoxy (wherex, 1);
delline;
gotoxy (wherex, 10);
put -string (file-window-xl + 1,

file windowjl1 + wherey,
listpointer A .line)

end;
left arrow:

if wherex <> 1 then
gotoxy (wherex - 15, wherey)

else if wherex = 1 then
begin
if wherey <> 1 then

begin
listpointer := listpointerA .previous;

gotoxy (wherex + 45, wherey - 1)
end

else if (wherex = 1) and
(listpointer A.previous <> nil)

then
begin
listpointer := listpointer A .previous;

insline;
put string (file-window-xl + 1,

file-wi ndow-yl + wherey,
listpointer A .line);

gotoxy (wherex + 45, wherey)
end

end;
right -arrow:

if (wherex <> 46) and
(get_char (file -window -xl + wherex + 16,

file-window _yl + wherey
<> blank) then

gotoxy (wherex + 15, wherey)
else if wherex = 46 then

begin
if wherey <> 10 then

begin
listpointer := list..yointer A next;
gotoxy (1, wherey + 1)
end

335

else if (wherey = 10) and
(list pointer^.next <> nil) then

begin
list_pointer := list_pointerA.next;
gotoxy (1,i);
delline;
gotoxy (1,10);
putstring (filewindow_xl + 1,

file-window-y1 + wherey,
listpointerA line)

end
end

end;
highlightfile
end

end
until (key = enter) or (key = escape) or (key = f4);
restore-file;
textbackground (black);
textcolor (yellow);
window (1,1,80,25)
end;

begin
savescreen;
mark (heapstate);
repeat

displaygetfilescreen (prompt, message, searchmask);
pathvalid := false;
repeat

search mask := edit field (fields [1]);
if key = enter then

path-valid := checkpath (search mask)
until (key = escape) or (path_valid);
if path_valid then

begin
filelist := getfilelist (searchmask, list_length);

getfile := getfile name (search_mask, file list,
listlength)

end
until (key = enter) or (key = escape);
if key = escape then

get-file := nullstring;
release (heapstate);
restore-screen
end;

begin

menu xl := menu xl default;

336

menu-x2 :=menu-x2_default;
menuyl :=menuji ~default;
menu..y2 :=menuy2-default;
menu forecolor :=menu forecolor default;
menu~backoolor :=menu-backcolor-default;
option -forecolor :=option-forecolor-default;
option -backcolor :=option backcolor default;

) field forecolor :-field forecolor default;
field~backcolor :=field~backcolor-default;
default mask :='a:*. *';
stackpointer o= ;
month-data [1].days :=31;
month-data (2).days :=28;
month-data [3).days :=31;
month-data [4).days :=30;
month -data (5).days :-31;
month-data [6].days :=30;
month-data (7].days :=31;
month data [8] .days :=31;
month data [9) .days :=30;
month-data (10) .days :=31;
month_data (11) .days :=30;
month-data [12].days :=31;
month data [l].name :='JAN';
month data [2) .name :='FEB';
month data [3].name :='MARI;
month-data [4].name :='APR';
month -data [5].name -* MAY';
month-data [6].name :='JUN';
month_data [7).name :='JUL';
month-data [8] .name :='AUG';
month -data [9] .name :='SEP';
month-data [10] .name 'OCT';
month_data [11].name :P NOV';
month_data [12].name :='DEC';

assign (fontfile, 'fontfile');
reset (fontfile);
if ioresult =0 then

begin
for loop :='A' to 'Z' do

read (fontfile, letters [loop]);
for loop := '0' to '9' do

read (fontfile, digits [loop]);
close (fontfile)
end

else
begin
initialize screen;
remove-cursor;
draw-Window (19,12,61,16, yellow, red, null-string);

337

center text (13, 'FONTFILE NOT FOUND', yellow);
center-text (14, 'CHECK DISK, THEN TRY AGAIN', yellow);
centertext (15, 'press any key', white);
key := get key;
key := null;
restore-cursor;
initializescreen;
halt
end

end.
AZ

338

LIST OF RBFBRZNCES

U

1. U.S. Department of the Army, 02e, Field Manual
100-5, Washington, D.C.: U.S. Government Printing

* Office, 1982.

2. Wohl, Joseph, "Force Management Decision Requirements
for Air Force Tactical Command and Control," IEEE
Transactions on Systems. Man. and Cybernetics, Vol.
SMC-II, No. 9, Sept 1981.

3. Taylor, James G., Professor, Naval Postgraduate School,
Monterey, CA, OS3636 Class Notes, "C3 Architecture",
Summer Quarter, 1988.

4. Giles, G. and Sandene, J., "An Introduction to C3
Architecture," M.S. Thesis, Naval Postgraduate School,
Monterey, CA, March 1988.

5. U.S. Department of the Army, Field Artillery Cannon
Battalion, Field Manual 6-20-1, Washington, D.C.: U.S.
Government Printing Office, 1979.

6. Clausewitz, Carl von, On V- , Edited and Translated by
Michael Howard and Peter Paret, Princeton University
Press, 1976.

7. IBM Corp. Federal Systems Division, "1982 Final Report
Integration of C3 Architecture," (Naval Postgraduate
School Microfiche AD-B072-182L).

8. Orr, George, Combat Operations C31: Fundamentals and
Interactions, Air University Press, 1983.

339

BIBLIOGRAPHY

Barr, D.R., Poock, G.K., and Richards, F.R., "Experimental
Manual, Part I: Experimentation Methodology," Naval
Postgraduate School NPS55-78-032, Nov, 78, (NPS Microfiche
AD-A067-539).

Martin, Terry L., Command. Control. and Communications
Mission and Organization: A Primer, M.S. Thesis, Naval
Postgraduate School, Monterey, CA, March 1984.

Schoderbeck, Peter P., Schoderbeck, Charles G., and Kefalas,
Asterios, Management Systems: Conceptual. Considerations,
Third Edition, Business Publications, INC., Plano, TX, 1985.

Tiede, Roland V., and Leake, Lewis A., "A Method for
Evaluating the Combat Effectiveness of a Tactical
Information System in a Field Army.," Operations Research,
Opns. Res. 19, pages 585-604, 1971.

3

340

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
b Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Commandant 1
US Army Field Artillery School
ATTN: ATSF-AF
Ft Sill, Oklahoma 73503-5600

4. Commander 1
US Army Signal Center and Ft Gordon
ATTN: ATZH-POO
Ft Gordon, Georgia 30905-5300

5. Commander I
US Army Combined Arms Center
ATTN: ATZL-SWP-P
Ft Leavenworth, Kansas 66027-5300

6. Curricular Office, Code 39
Naval Postgraduate School
Monterey, California 93943-5000

7. C3 Academic Group I
ATTN: Prcessor Carl Jones, Code 74
Naval Postgraduate School
Monterey, California 93943-5000

8. Commander 1
US Army Combined Arms Center
ATTN: ATZL-CAC-I
Ft Leavenworth, Kansas 66027-5300

9. Department of Operations Research 2
ATTN: Professor Samuel Parry, Code 55Py
Naval Postgraduate School
Monterey, California 93943-5000

341

IS" -- AIl I

10. Department of Operations Research 2
ATTN: LCDR William Walsh, Code 55Wa
Naval Postgraduate School
Monterey, California 93943-5000

11. Test and Experimentation Command 2
ATTN: CPT Michael W. Schneider
Ft Hood, Texas 76544

12. Commanding General 1
Training and Doctrine Command
Ft Monroe, Virginia 23351

13. Commanding General 1
5th United States Army
Fort Sam Houston, Texas 78234

14. Defense Communications Agency 2
Center for C3 Systems
ATTN: CPT Anthony R. Ferrara
Arlington Hall Station
Arlington, Virginia 22212-5410

342

