T omaew . @

| BTG FILE CORY .

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A209 487

THESIS

A COMMAND AND CONTROLWARGAME TO TRAIN
OFFICERS IN THE INTEGRATION OF TACTICS AND
LOGISTICS IN A FIELD ARTILLERY BATTALION

by
Michael W. Schneider and Anthony R. Ferrara
March 1989
Thesis Advisor Samuel H. Parry
William J. Walsh

Co-Advisor

T1C

. Approved for public release; distribution is unlimited D
el £C c\ |
JUN 2.9 1989

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification Unclassified 1b Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b_Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
|4_Performing Organization Report Number(s) 3__Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 39 Naval Postgraduate School
6¢c Address (city, state, and ZIP code) . 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number
(If Applicable) —
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Element Number joct No Teak No | Work Unit Accession No

11 Title (Include Security Classification) A Command and Control Wargame to Train Officers 1n the Integration o
Tactics and Logistics in a Field Artillery Battalion

12 Personal Author(s) Michael W. Schneider, Anthony R. Ferrara

13a Type of Report 13b Time Covered 14 Date of Repon (year, month,day) 15 Paie Count
Master's Thesis From To March 1989 349
16 Supplementary Notation The views expressed 1n this thesis are those of the author and do not reflect the ofticial

policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and idensify by block number)
Field | Group Subgroup Wargame; Command and Control; Command Post Exercise (CPX); Field Artillery

@DAbsu'am {cordinue on reverse if necessary and identify by block number

ue to peacetime training limitations, the integration of tactics and logistics as it relates to the command and
control of a field artillery battalion cannot be easily practiced. This thesis presents a computer assisted wargame
which will give battalion staff officers some experience in dealing with this shortcoming. The wargame
emphasizes the decision maker in the command and control system. Specifically, this wargame forces the
decision maker to consider numerous tactics / logistics interface issues and then make a series of command and
control type decisions. At the end of each game, the player's performance is evaluated in terms of howitzer
availability time, casualty rates, vulnerability rates, and ammunition optimization. The wargame itself is highly
flexible and is capable of being played in support of a full scale battalion command post exercise or during weekly
officer professional development time. Tho=c s, (ALY

20 Distribution/Availability of Abstract 21 Abstract Security Classification
unclassified/unlimited D same as reporn D DTIC users Unclassified
22a Name of Responsible Individual 22Tﬂlephone (Include Area code) 22c¢ Office Symbol
Samuel H. Parry (408) 646-2779 S5Py
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

A Command and Control Wargame to Train Officers in the
Integration of Tactics and Logistics
in a Field Artillery Battalion

Michael W. Schneider
Captain, United States Army
B.S., United States Military Academy, 1980

and
Anthony R. Ferrara
Captain, United States Army
B.S., United States Military Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTERS OF SCIENCE IN SYSTEMS TECHNOLOGY
(COMMAND, CONTROL AND COMMUNICATIONS)

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Authors: 7/2/;’/’/01’[//{4 %/I?lﬂ%f k

Michael W. Schneideér

wtouy Eensasn

Kﬁ//}z(:hony R. Ferrara

Approved By: MA/L% 3

Samuel H. Pafry,/;psfas Advisor
7

/X/M/j o(/i/

William J. /'alsh Co-Advisor

/“f@@f«/

1 R. nes, Chairman,
nd, Confrol and Communications

ﬁ cademic Gro

Harrison Shull,
Provost and Academic Dean

ii

ABSTRACT

Due to peacetime training limitations, the integration
of tactics and logistics as it relates to the command and
control of a field artillery battalion cannot be easily
practiced. This thesis presents a computer assisted wargame
which will give battalion staff officers some experience in
dealing with this shortcoming. The wargame emphasizes the
decision maker in the command and contrel system.
Specifically, this wargame forces the decision maker to
consider numerous tactics / logistics interface issues and
then make a series of command and control type decisions.
At the end of each game, the player’s performance is
evaluated in terms of howitzer availability time, casualty
rates, vulnerability rates, and ammunition optimization.
The wargame itself is highly flexible and is capable of
being played in support of a full scale battalion command
post exercise or during weekly officer professional

ww——“““——-l

development time. isaggfaf?br

NT1S CRAXI
pTIC TAB
Unannounce.
Justificatxo

Availabilit
iavail and/or

special

iii

II.

III.

TABLE OF CONTENTS

DESCRIPTION OF THE PROBLEM....:ccovcevoecssccosassssl

A.

B'

C.

THE

A.

B.

c.

F.

G.

H.

THE

B.

D.

F.

H.

INTRODUCTIONOQ.....l.l....'...‘..0......‘....-.1

WHAT IS MEANT BY THE INTEGRATION OF
TACTICS AND LOGISTICS?..ccceeeccsosascocaccassel

SCOPE OF THE THESIS..cceccetoocstossorsosccvccces3
FIELD ARTILLERY BATTALION SYSTEM.....cec0c0eees.?
INTRODUCTION. . . cvecvsntnsassossascssansosne I—
FIELD ARTILLERY MISSION....vccceveecsvosssssessB
COALS. . covvesceesassonsssassasessnsssesenensell
ENVIRONMENT . ..ccsveeosessncnsssosssscscsannsss 15
RESOURCEScctscececcstsacnsssssononsencneeseld
MANAGEMENT ccetvevcocaccosanasansosnsensceessl9
ARCHITECTURAL LINK DEPICTIONS....¢cc0eeeveseee.20
SUMMARY . .toeveeesonensoasssseccssnsssssssssscesslD
CONCEPTUAL APPROACH. ¢ c c et v e cvsecocncacaosnss ..31
INTRODUCTION. s e vvsveveececnsssenancans ceeessens 31
MISSION OF THE WARGAME.t snceannns 32
GOALS OF THE WARGAME. .. o ccseaccssoncsosovnans 36
WARGAME ENVIRONMENT .., ccococecaacsccsasncncans .38
WARGAME RESOURCES....cesceccconossoncnn ceeesss40
MANAGEMENT OF THE WARGAME. ... ccceceveconsoeessdl
ARCHITECTURAL DEPICTIONS.....cccceencccnoens .41

SUMMARY ceentocaessoscscscoasscoes ceesreee.48

iv

Iv. WARGAME DESIGN..:cccoveccctscosososccnccnssnccssosssd2
A. TINTRODUCTION.....cccovecescvsotosvonsasccscscecd2
B. OVERALL WARGAME DESIGN....ccoccoeveeesscesccessd3
C. RECORDS...ccvs0ccscessssesosssssccosasssnsssssdD
D. GAME PLAY DESIGN.:vceecscccocosscscasascssnccsssDb
E. PROGRAM ILLUSTRATION...:cccceecvessssccsccscesb60
F. CASUALTIES:...ccctceccsotocccscccsccsscsccscscensssssb62
V. PLAYER’S MANUAL. . .sccccvoasesssoasancscsansscssscssnseB5
A. INTRODUCTION. .::cetoecccasosoccnsscsncnncanses ..65
B. MEASURE OF EFFECTIVENESS....tecvceecesssosssss .66
C. GETTING STARTED: .. ccteeoonscssescsnscccssosssas B8
D. GAME SETUP MENU, ..ccvcececcccccccasasescesosssb69
E. GAME PLAY........ Y & -
F. INTERPRETATION OF THE RESULTS....¢c0ceaeeces..93
VI. SUGGESTED ENHANCEMENTS AND POTENTIAL USES........117
A. INTRODUCTION....c.eicevecvtoooccnvnance Ceeneeens 117
B. POTENTIAL WARGAME USES.:.ccevvecenconsansasesll?
C. TIMPROVEMENTS / ENHANCEMENTS....ecteoaoesans ..120
D. FINAL COMMENTS....vceeeveessscsecnnossasssanssl2d
APPENDIX DOCUMENTED SOURCE CODE...ccooescccessocasaesscl2b
LIST OF REFERENCES ...t .0tctecsonscsscscnscerssscnsasncesess339
BIBLIOGRAPHY ...ttt reenennonsncannnscasosnsns eseeseses-340

INITIAL DISTRIBUTION LIST..:vececsecesncccccoscossecnssaldl

I. DESCRIPTION OF THE PROBLEM

A. INTRODUCTION

In the United States Army, combat-arms-type units have a
very difficult time finding ways to conduct fully realistic
training. In a peacetime environment there are many factors
which inhibit realistic training. Budgetary constraints
limit the scope and duration of training as well as minimize
the amount of ammunition expended. Safety considerations
limit intensity and realism in training. And, the lack of
adequate training areas compresses the size of the "training
battlefield" so that training does not take place over
realistic distances. The implication to those concerned
with the command and control of combat units is that there
is very 1little "hands on" experience available in the
integration of tactics and logistics as it relates to the
command and control of these units. This lack of hands on
experience by our officers is a potential deficiency which
deserves some attention.

In order to address this deficiency, there are many
options available. These options range from training
through "field training exercises" (FTX) down to classroom
instruction. An FTX would theoretically provide the best
situation for training the tactics / logistics interface.

However, FTXs rarely provide more than a start point for

understanding the tactics / 1logistics interface issues.
This is true due to budget constraints, safety
considerations, training area 1limitations, and low peace
time ammunition consumption rates. 1In short, we are never
faced with the problems of moving enough ammunition to keep
up with tactics or slowing tactics to keep pace with
ammunition resupply rates because we rarely fire ammunition
on combined arms exercises (at least not at a realistic
rate).

Classroom instruction can serve as an introduction to
the issues related to the integration of tactics and
logistics but it 1lacks the critical element of hands-on
experience. An individual must confront and solve these
type of problems for himself in order to be effective at the
beginning of the next war.

The next best thing to an FTX is a command post exercise
(CPX). 1In the CPX, all but the command and control elements
are played notionally. Normally, some type of wargame is
played at a remote location and then the various command
posts must perform their wartime functions in accordance
with the wargame scenario. In most cases, when CPX’s are
run by higher level headquarters, the resolution is such
that very little training on the integration of tactics and
logistics takes place at the battalion level. 1In fact, the
nature of the tactics / logistics problem is such that it is
very difficult for a wargame to provide an environment which

2

—

trains officers in the integration of these functions. Most
wargames either emphasize tactics or logistics but not both.
This is due to the fact that it requires much more detail

than can be generated under normal conditions in a manually

. run wargame.
B. WHAT IS8 MEANT BY THE INTEGRATION OF TACTICS AND
LOGISTICS?
According to Army Field Manual 100-5...
Commanders must plan tactics and logistics concurrently
to insure that the tactical scheme of maneuver and fire
support are logistically supportable. They consider the
constraints that Combat Service Support planners
identify. They modify unsupportable plans or accept the
risks involved. ([ref. 1: p. 5-1]
This refers primarily to the integration of tactics and
logistics in the planning of operations. However, the
integration process does not stop there. During the conduct
of operations, the integration of tactics and logistics is a
continuous process which 1is driven by factors such as
expenditure rates, casualty rates, supply availability,
supply transportation capacity, and the tactical situation.
All of these factors must be carefully managed in order to
conduct a cohesive operation. Failure to integrate tactics

and logistics can result in failure to accomplish the unit’s

overall mission.

C. BCOPE OF THE THESIS
This thesis describes the use of a battalion level,
. computer assisted wargame, played by the battalion

3

operations and logistics staff sections, to train officers
in the integration of tactics and logistics as it applies to
the command and control of a field artillery battalion.
Limiting the discussion to the command and control of a
field artillery battalion was done only to provide a
manageable start point for exploring the 1larger issue of
training officers in the integration of tactics and
logistics. The field artillery battalion is a logical
choice as a start point because of the field artillery’s
dependence on extremely large guantities of bulk ammunition.
In wartime, this dependence will dictate the movement of
firing batteries and the rate at which firing batteries can
shoot. Ammunition trucks will become a scarce resource that
needs to be carefully managed to ensure optimum ammunition
resupply as well as survivability. Therefore, in addition
to consideration of howitzer vulnerability thresholds, the
tactical situation, movement plans, fire plans, and casualty
projections, the commander and his staff will also have to
consider unit distribution plans or point distribution
plans, potential 1limitations on firing rates, ammunition
truck movement plans, and truck vulnerability thresholds.
This thesis presents a wargame that attempts to capture
these concepts in a form which will provide a learning
environment for those tasked with the command and control of
a field artillery battalion. The wargame is only computer
assisted. It is important to note that the "essential

4

ingredients of any command and control system...are the
commanders or decision makers themselves." ([ref. 2: p. 618]
The computer portion of the wargame will only provide
relevant information to the decision maker, execute his
decisions, and keep track of the game’s statistics. At the
end of the game, a measure of effectiveness (MOE) will be
computed which will provide an assessment of the player’s
performance. The MOE is based on a computation of the
howitzer availability time, the amount of time spent at a
critical vulnerability level, the amount of time lost due to
casualties, and the amount of time spent short of sufficient
amounts of ammunition. This will force the decision maker
to plan ahead and to consider all of the relevant concepts
in order to maximize howitzer availability time, minimize
vulnerability, minimize casualties, and optimize ammunition
resupply. The intent of the wargame is to provide an
environment in which officers can learn to consider the
factors which are critical to the integration of tactics and
logistics.

In order to build such a wargame, an analysis of the
architecture of field artillery battalion is required. This
analysis is the topic of Chapter II. Using this analysis,
the approach taken to design a wargame which trains officers
in the integration of tactics and logistics as it relates to
the command and control of a field artillery battalion is

discussed in Chapter III. Chapter IV describes the

processes used by the computer to derive some of the more
important aspects of the wargame. A user’s manual for the
wargame 1is provided in Chapter V. Finally, Chapter VI
discusses suggested enhancements and potential uses of the

wargame.

IXI. THE FIELD ARTILLERY BATTALION SYSTEM / ARCHITECTURE

A. INTRODUCTION

Before building a wargame that simulates the operations
of a field artillery battalion, it is critically important
to analyze the battalion in order to determine how it works.
More specifically, it is important to know not only the
internal interactions which take place within the battalion,
but also the interactions the battalion has with external
elements. It is important to understand the battalion’s
environment and its mission. More importantly, it is
important to understand how the environment affects the
battalion’s ability to achieve its goals and if there are
any other constraints which may hinder the achievement of
these goals.

One proven method of analysis is through the use of the
"Systems Approach." A system, as defined by Professor James
G. Taylor of the Naval Postgraduate School, is a "collection
of elements which combine together to form a whole in order
to accomplish a goal." (ref. 3] The systems approach
provides a method of developing the system by considering
the system’s goals, the environment, the mission, the
resources, and the management ([ref. 4: p. 44].

To supplement the systems approach, the system

architecture provides a depiction of the "interconnections

between elements of the system. Interconnections can be
based on time, functional, informational or spatial
relationships." [ref. 4: p. 126]

Through the use of both the systems approach and the
systems architecture, the field artillery battalion can be
thoroughly analyzed. A conscious effort has been made to
separate the analysis using the systems approach and the
systems architecture. It was felt that it would be better
to first conduct a written analysis of the battalion using
the systems approach and then £fill in between the lines by
letting each graphical portrayal of the system architecture
say "a thousand words". This analysis will be helpful in
determining which aspeéts of the battalion will be germane
to the design of the wargame and which system

characteristics can be ignored.

B. FIELD ARTILLERY MISSION

The mission of the field artillery is to "destroy,
neutralize, or suppress the enemy by indirect fires and to
integrate all fire support into combat operations.
Successful execution of this mission demands effective
integration of field artillery fires into the scheme of
maneuver and swift, exact, execution from the time a target
is acquired until ordnance is delivered on target." (ref. 5:
pP. 1-1) Field Manual 6-20-1, FIELD ARTILLERY CANNON

BATTALION OPERATIONS, goes on to say that in order for the

FlIlIl..lllllIlllllIlIIIIIIlIIIIIIIIlIlIlIIIIIIIII------::f

battalion to support maneuver forces on the battlefield

successfully, it must survive to perform the following 10

. basic tasks:

. 1. Target Acquisition--Detecting and engaging targets
that threaten maneuver elements of the supported
brigade.

2. Meteorology, Survey, Technical Fire Direction--The

battalion operations officer (S3) insures that fire
direction centers (FDC) have the information they need
to conduct effective fire direction.

3. Fire Planning--Field artillery fires are planned to
achieve one of three effects on the target:
suppression, neutralization or destruction. The desired
effect will be determined by the supported unit
commander, the fire support coordinator (FSCOORD), or
the fire direction officer.

4. Tactical Fire Control-~-Tactical fire direction in-

cludes selection of rounds, shell/fuze combinations, and
designation of units to fire.

. 5. Plans and Orders--Command and control of the field
artillery cannon battalion is established through the
assignment of tactical missions.

6. Positioning--The planning for the selection of any
position must include consideration of communication
requirements and combat service support in addition to
the mission, terrain, and tactical situation.

7. Reconnaissance--Reconnaissance is performed to se-

lect the best battalion and battery positions, march
routes, start and release points, command posts,
observation posts, and communication sites, and to
analyze the terrain where the battle will be fought.
Prior to or concurrent with reconnaissance, the field
artillery commander/S3 should coordinate with the
maneuver commander/S3 to determine what areas maneuver

units plan to occupy. Mutual agreement must be
. established to make the best use of the available
terrain.

8. Displacement--Field artillery battalions must fre-
guently displace to provide continuous fire support to
maneuver units. There are three general ways that a
field artillery battalion moves; by unit displacement,

9

by echelon, and by battery. In unit displacement, the
entire battalion moves at once and no units are
available to provide fire support. 1In displacement by
echelon, some portion of the battalion moves and sets up
in the next position and then the other portion of the
battalion moves. In displacement by battery, one
battery at a time displaces. This method provides the
maximum amount of fire support at any given time but it
is sometimes too slow to keep up with maneuver.

9. Communications--The cannon battalion commander must
rely on communications to control elements of his
command, gather information, distribute intelligence,
and coordinate fire support. The primary means of
communications in the cannon battalion are radio and
wire.

10. Combat Servjce Support (CSS)--CSS is the process of
keeping the maximum number of weapon systems
operational. The support functions and operations in

the battalion by the personnel officer (S1), logistics
officer (S4), or any other supervisor must be closely
coordinated with tactical operations. A continuous
exchange of information among CSS coordinators, the 83,
and battery commanders is essential to the success of
both tactical and logistical plans. [ref. 5)

The mission of the field artillery and its implied tasks
are critical to wunderstanding how the field artillery
battalion works and how to build a wargame which simulates
the battalion. The mission can be broken into two parts.
The first is the requirement to be capable of delivering
timely, accurate, and effective fires and the second is to
provide those fires in a manner which supports the overall
scheme of maneuver. The ten basic tasks are the implied
tasks which any field artillery unit must be able to perform
in order to accomplish the field artillery mission. These
tasks are important because they represent functions that

the wargame will have to be able to perform to varying

degrees depending on the mission and goals of the wargame.

10

The field artillery mission clearly implies that the
field artillery battalion is a part of a larger system
which, among other things, dictates the scheme of maneuver
which must be supported. The mission also implies that in
order to provide swift, exact indirect fires, much
coordination and interaction with external elements must
take place in order to ensure that the artillery can range
the enemy, has enough ammunition on hand to support the
operations, and has coordinated positions to which it can
displace. Finally, the mission implies that the unit must

be able to survive to perform all of these tasks.

C. GOALS

The mission and its implied tasks can be boiled down to
several goals. These goals are necessary because they help
to quantify the degree to which the unit is effective in the
accomplishment of its mission. They also help to further
describe the system and the positive and negative
motivations which are inherent in the system. In this
respect, an analysis of the goals will be very useful to the
design of the wargame and particularly to the design of any
MOEs which may be necessary.

The goals were chosen to address the mission and its
implied tasks. They are stated in quantifiable terms.
These goals are closely related and some could actually be

considered as sub-goals to other goals. However, they have

11

been separated into different goals based upon the fact
that there are specific command and control actions which
can be taken to optimize each goal. In many cases these
actions serve to oppose other goals and so a set of
tradeoffs must be considered. The four goals are described
below.

1. Maximize Availability Time

First and foremost, the battalion must be able to
support the maneuver units. This means that the battalion
must have the maximum number of cannons in a firing status
for the maximum amount of time. It also means that the
firing units must always have ammunition to fire and that
they should minimize the number of tubes lost to maintenance
or enemy fire.

In operational terms, it means that firing units
must displace as 1little as possible without 1letting the
enemy get out of range and without letting themselves get
too vulnerable to enemy detection. This goal can be
measured in tube hours, i.e., the sum of the total number of
hours each tube is capable of providing fire support.

2. Minimigze Vulnerability

A firing unit becomes more vulnerable to enemy
detection in two ways. First, the longer a unit is in
position, the more likely it is that it has been located by
aerial reconnaissance. Second, the more rounds a firing
battery fires out of a position, the more likely that unit

12

has been located by enemy counter-battery radar. These
probabilities of detection <can be determined from
probability of detection versus time and versus "rounds
fired" curves, respectively. These probabilities can be
combined to derive a vulnerability factor.

In operational terms, a commander must be willihg to
accept some degree of vulnerability. Some positions are
more vulnerable than others due to the amount of cover and
concealment available. A vulnerability threshold can be
specified by a commander in terms of rounds fired out of a
position when time in the position is 1less than some
specified maximum allowable time in that position. A unit
should move when it reaches the commander’s vulnerability
threshold so that its vulnerability level is reset at zero.
Many times, due to the tactical situation or due to a lack
of prior planning, the commander can not move a unit when it
reaches the commander’s vulnerability threshold. It is the
time spent above the vulnerability threshold that the
commander wants to minimize. This goal can be measured in
the number of tube hours spent above the vulnerability
threshold.

3. Minimize Casualties

Casualties can be incurred both in positions and
during displacement. In operational terms, a commander can
minimize casualties by moving often thereby minimizing
vulnerability. Or, he may take the safest but not

13

necessarily the shortest routes on displacements. This goal
to conserve assets for both current and future operations
must be balanced against the goal to maximize availability
time. This goal can be measured in terms of the tube /
truck / equipment / personnel time lost during the operation
due to casualties.
4. Optimize Logistics Operations

logistics operations also experience vulnerability
and casualties and therefore goals two and three apply to
logistics units. More importantly, logistics units are
critical to the attainment of the first goal. Fire units
which are low on ammunition or fuel can not adequately
support maneuver forces and fire units which are out of
those supplies are not available to support maneuver units.

In operational terms, there are many different forms
of resupply operations. The battalion trains can deliver
supplies to the unit (unit distribution) or it can deliver
the supplies to a point where the fire units will have to go
to pick up their supplies (point distribution). The trains
can bundle their trucks into convoys to pick up and deliver
supplies or they can use the "trickle" method to pick up and
deliver supplies by sending as few as one truck at a time as
the trucks become available. The method used depends on the
tactical situation, the enemy situation, the terrain and the

level of training of the units.

14

Optimization refers to making the most efficient use
of the supplies and the resupply assets in order to ensure
accomplishment of the field artillery mission. This goal
can be measured in terms of the amount of time firing units
spend critically short, or out of, critical supplies.

This analysis of the field artillery battalion’s
goals and especially the statements of the goals in
operational terms tells us a 1lot about the internal
operation of the battalion and about what motivates
operational decisions. These motivating factors must also
be present in the wargame in order to have any true training

value.

D. ENVIRONMENT

The field artillery battalion exists in an environment
consisting of both friendly and hostile elements. The
friendly environment can alsc be divided. It consists of
command relationships and support relationships.

Command relationships refer to the fact that the field
artillery battalion is commanded by the division artillery
which is commanded by the division and the fact that the
maneuver battalions are commanded by the maneuver brigade
which is in turn commanded by the division and finally that
the support battalions are commanded by the division support
command which is also commanded by the division. 1In short,
there is no command relationship between the field artillery

battalion and the maneuver units or the support units.

15

Support relationships refer to the relationship that
does exist between the field artillery battalion and the
maneuver units and the support units. The direct support
field artillery battalion has a mission to provide close
support to a maneuver brigade. With this mission, according
to Field Manual 6-20-1, comes the requirement to provide
first priority on calls for fire to the brigade and to
provide fire support coordinating personnel to the brigade.
The division artillery assigns missions to the field
artillery battalion. By the same token, the division
support command assigns missions to its subordinate units to
provide service support to various divisional units. In
this manner, the field artillery battalion will have a
support unit assigned to provide supplies to support its
mission.

The hostile side of the environment refers to the fact
that the enemy exists to prevent accomplishment of the
battalion’s mission. It does this by producing casualties,
by interdicting critical supplies, disrupting the plan, and
disrupting command, control and communications. There are
many forms of hostile acts performed by the enemy. Any
wargame must consider this aspect of the environment.

Another aspect of the environment is the fact that all
the elements of the system and the elements of the external
environment exist on the battlefield. They are separated by
considerable distances and must move frequently in order to

16

stay in the battle. They are positioned so as to best
facilitate accomplishment of their mission and to assure
survivability. They are positioned on terrain which
provides some degree of cover and concealment and which may
or may not facilitate communications with other elements of
the system and environment.

Finally, a discussion of the environment would not be
complete without <considering what Clausewitz called
"FRICTION." [ref. 6) This refers to the fact that
operations never occur as planned. There are many reasons
for plans going wrong which are beyond the control of the
commander. All of them are 1lumped together and called
friction. This requires commanders to be flexible. They
must be able to modify plans quickly and issue effective
fragmentary orders.

An understanding of the environment is necessary for a
full understanding of the field artillery battalion system.
It is also necessary to include the critical aspects of the

environment in the wargame.

E. RESOURCES

The battalion’s resources primarily include its people,
its equipment, and its supplies. Its people include its
leaders and its soldiers. They are trained and work
together as a part of a team. They operate the equipment

which helps to accomplish the mission. People are the

17

battalion’s most important resource. It takes people to
operate the equipment and to use the supplies. It takes
trained people who can work together as a cohesive unit to
accomplish the battalion’s mission.

The field artillery battalion’s most critical equipment
includes its weapon systems, fire direction systems, and
supply trucks. All are critical to accomplishment of its
mission.

The field artillery battalion’s most critical supplies
are food, fuel, and ammunition. All are critical to
accomplishment of its mission. Units establish required
supply rates (RSR) which tell higher level units how much
ammunition is required to accomplish the mission. The
higher 1level unit then establishes the controlled supply
rate (CSR) which 1is based upon how much ammunition is
available. 1If the CSR is less than the RSR, then the unit
must curtail operations to avoid exceeding the CSR.

Resources can be easily represented by computer
simulation. However, the manipulation and expenditure and
conservation of resources to accomplish the mission, which
is the subject of the next paragraph, is best left to the

human interaction portion of the wargame.

F. MANAGEMENT
In the military, the commander is responsible for all

that his unit does or fails to do. However, he has a staff

18

to assist him in the two primary management functions of
planning and controlling the battalion. The commander
alone, however, must provide leadership for the battalion.
His leadership serves to inspire and motivate his soldiers
and it provides direction for his subordinate units and his
staff. In addition to providing direction, the commander
must approve all plans and issue all orders in his name.
These aspects of command are very difficult to simulate
using computers and are best represented in wargames by the
human players themselves.

Staffs conduct planning under the commander’s guidance.
The S3 is responsible for incorporating all of the staff
estimates and determining the recommended course of action.
The commander then either approves or selects his own course
of action. The staff then prepares the plans to execute
that course of action. The plan becomes an order when
issued to subordinates with an execution time. Planning is
a complex process which requires much training. It |is
therefore suitable for the human element in a wargame.

Controlling refers to the process of monitoring
operations to ensure that they are being carried out within
the commander’s intent. It also refers to monitoring the
overall tactical situation to determine if the plan is still
appropriate. If it is not appropriate, it involves

modifying the plan and issuing fragmentary orders.

19

Controlling is a continuous process which requires the
commander and his staff to monitor the battalion’s
environment and resources and to make the tradeoffs implied
in the battalion’s goals, all in order to accomplish the
battalion’s mission. This complex process is especially
appropriate for the human interaction portion of the

wargame.

G. ARCHITECTURAL LINK DEPICTIONS

The discussion of the field artillery battalion thus far
using the systems approach has been very useful in
understanding the battalion so that an effective wargame can
be designed. Graphical portrayal of the discussion in the
form of the battalion’s system architecture will now be
useful in clarifying and adding to that discussion.

Systems architectures can be depicted in several

different ways depending on the perspective desired. For
the purposes of this thesis, functional, spatial,
informational, and time depictions will be |used. A

description of each can be found in this section.
1. Punctional
"Functional architecture describes the technical
structure of large systems." [ref. 7: p. 2.4]) Figure 2.1 is

a functional depiction of the divisional supersystem.

20

DIVISION

) MANEUVER BRIGADE -

- MANEUVER
BATTALION

DIVISION{ARTILLERY

ARTILLERY
BATTALION Q

.

i ! DIVISION SUPPORT COMMAND

SUPPORT

BATTALION

v Figure 2.1 Divisional Super-System

21

Everything outside of the field artillery battalion itself
is a part of the battalion’s environment. Boxes within
other boxes indicate command relationships. Arrows indicate
support relationships.

Figure 2.2 is a functional depiction of the field
artillery battalion. Again, boxes within other boxes
indicate command relationships. However, in this case the
primary function of each element is listed next to its box.

2. S8patial

Spatial architecture depicts the physical
relationship of the elements in the system. Figure 2.3 is a
spatial depiction of the field artillery battalion system.
Since a direct support field artillery battalion normally
supports a maneuver brigade, the brigade’s battlefield
geometry is depicted. The firing batteries must be able to
project approximately two-thirds of their range into enemy
territory. Therefore, the howitzers are found four to eight
kilometers behind the front 1line of troops (FLOT).
Normally, all three batteries support the entire brigade
rather than one battery per maneuver battalion. Therefore,
batteries are positioned where they can best support the
entire brigade in accordance with the battalion’s battery
displacement plan.

The battalion tactical operations center (TOC) must
be positioned farther back for survivability. But it must
be in close proximity to the supported brigade headquarters

22

FIELD ARTILLERY BATTALION
FIRING BATTERY j
PROVIDES:
8 HOWITZER SECTIONS FIRE
SUPPORT
TACTICAL
OPERATIONS PROVIDES:
CENTER COMMAND
BATTALION COMMANDER AND
. S3 CONTROL
S2
BATTALION
TRAINS PROVIDES:
X0 L.OGISTICS
S1 SUPPORT
S4
> Figure 2.2 Field Artillery Battalion System

23

FIELD ARTILLERY BATTALION

SPACIAL ARCHITECTURE

KILOMETERS
L I | | 1
¥ 1 | | u|
25+ 15 - 18 10 - 12 6-8 0

Figure 2.3 Field Artillery Battalion S pacial Architecture

24

and it must be able to communicate with the firing batteries
and the brigade TOC.

The battalion trains are located even farther to the
rear for survivability and for ease of coordination with
support units. The dotted lines which emanate from the
trains indicate that resupply convoys are constantly on the
road. |

The spatial architecture is important because it
puts the physical relationships of the elements in
perspective. An appreciation of the distances involved is
necessary to the wargame to simulate the times required for
events to transpire.

It is also important to note that Figure 2.3 is only
a snapshot of the system at a particular instant in time.
Elements of the system must continuously move in order to
perform their missions and enhance survivability.

3. Information

Information architecture is especially important to
the design of the wargame because it depicts the information
flow both within the system and to external elements.
Figure 2.4 depicts this flow for the battalion and its
environment. Only the most critical elements of information
have been depicted.

Implied in Figure 2.4 is the fact that if
information flows between two elements, then a
communications system must exist between them. This figure

25

FIELD ARTILLERY BATTALION
INFORMATION ARCHITECTURE -

X

COORD X
LOG.
SPT. MISSION
ASSIGNMENT
X RSR, CSR
REPORTS
. ORDERS ORDERS
FIREPLANS LAND COORD \ pLANs
OYv O INTEL REQUEST FOR REPORTS
FIRE
T TARGETS INTEL INTEL
mswpuz-‘s ; /FIREPLANS
COORD. L ~,
SPT. . | _ REQUESTS FOR FIRE
LOGISTICS/ °E
|1 SUPPORE FIRE PLANS
SPT COORDJRATION ORDERS ™,
BN RSR PLANS
O O CSR REPORTS ™,
; ORDERS INTEL)
REQUEST PLANS FIREPLANS
SUPPLIES REPORTS CsR
COORD X LOG. REQUIRMENTS RSR .
SUPPORY 4 l
. REQUESTS FOR SUPPLIES .
/ P
/ OTHER THAN AMMO

o
A

Figure 2.4 Field Artillery Battalion Information Architecture

26

does not show the communications nets. It only relates that
communications exists between the elements. The habitual
flow of information between elements leads to the use of
various message formats for different types of information
and it leads to standard operating procedures which dictate
when and how the messages will be sent.

Also depicted on Figure 2.4 with a dotted line is
the system boundary. Everything within the dotted line is
in the field artillery battalion system. Everything outside
the dotted line is external to the system. The 1lines of
communications that cross the boundaries are then external
communications and the lines of communications within the
boundaries are internal communications.

The information architecture is extremely important
to the analysis as it relates to the design of the wargame.
The primary problem will be which information is needed in
the wargame and which information is not necessary to
accomplish the goals of the wargame. Dividing the
communications into internal and external communications
also will be helpful in arriving at a solution to the
problem.

4. Architectural

Architectural depictions based on time relationships
help to place events in their natural order. 1In a complex
system such as the field artillery battalion, this can be
very difficult to do. Schedules of events are not

27

appropriate because events do not usually happen at a
specific time. It is even difficult to attempt to put
events into a chronological order without assigning specific
times. The best that can be done is to use the concepts of
time based depictions of architecture to analyze the combat
process.

Figure 2.5 is the Conceptual Combat Operations
Process Model (ref. 8: p. 27]. By avoiding specific events
and analyzing the generic process instead, an understanding
of the logical order of the component parts of any operation
can be gained. It is important to note that as a generic
model, it applies to tactical operations, 1logistical
operations, and applies equally well to both current
operations and future operations plans.

Figure 2.5 implies that combat operations consist of
a cyclic process which is stimulated by the environment and
leads to an attempt to understand the environment. This is
followed by the formulation of alternative courses of
action, guidance from higher headquarters, and ultimately a
decision to take some action which relates to the perception
of the environment. This decision is then sent to
subordinate elements and is executed. This in turn has some
impact on the environment and changes the stimulus which
caused the action in the first place and the process repeats

itself.

28

CONCEPTUAL COMBAT OPERATIONS
PROCESS MODEL

'{ SENSE

A
RO NT INTELLIGENCE PROCESS
ANALYSIS
A
DECIDE:r___ HIGHER LEVELS
FIRING BATTERIES ACT

Figure 2.5 Conceptual Combat Operations Process Model

29

This model gives structure to the wargame by
providing a logical order to the functions which must be
performed both by the computer program and the human

interaction portions of the game.

H. SUMMARY

In order to build a wargame that trains officers in the
integration of tactics and logistics, an analysis of the
field artillery battalion is necessary. Use of the systems
approach provides a structure for this analysis so that all
of the important aspects of the battalion can be considered.
‘The understanding of the field artillery battalion which was
gained through this analysis is critical to the design of
the wargame. The next chapter will discuss the approach

taken in the design of this wargame.

30

III. THE CONCEPTUAL APPROACH

A. INTRODUCTION

This section is not intended to provide detailed,
technical design criteria for the wargame. Rather, it is
intended to provide the approach taken to resolve many of
the issues which arose while conceptualizing this wargame.

It is important to differentiate between the field
artillery battalion system and the wargame. The wargame can
be considered a system unto itself. Therefore, the best way
to look at the conceptual approach is by using a system view
of the wargame. In many cases, the best approach to take
for certain system aspects of the wargame is to simply
simulate the same system aspects from the field artillery
battalion. In other cases, there are some important
differences. Therefore, specific references will be made to
the wargame system and to the battalion system in order to
avoid confusion.

As with the battalion, a discussion of the mission,
goals, environment, resources, and management follows.
These aspects, along with a discussion of some of the
architectural depictions, will provide the vehicle for a
complete discussion of the approach taken for the design of

this wargame.

31

B. MIS8SION OF THE WARGAME

"The mission of this wargame is to train officers in the
integration of tactics and 1logistics as related to the
command and control of a field artillery battalion. There
are several implied tasks which are necessary for the
wargame to accomplish this mission. The wargame must be
oriented toward the command and control elements of the
battalion. Therefore, the players will consist of an
operations and intelligence (0&I) staff section, a logistics
(S4) staff section, and a battalion commander. It must
require the players to weigh all of the tradeoffs involved
in integration of tactics and logistics. Special emphasis
must be given to those areas which are not normally
experienced in a peacetime training environment. Since the
mission is to train officers, the wargame must provide
feedback to the officers so that good decisions are
reinforced and poor decisions are penalized. This can be
done through the use of a measure of effectiveness which
evaluates the player’s performance. Finally, the wargame
must be able to provide a realistic representation of the
field artillery battalion system. This means that the field
artillery mission should be central to the wargame’s design.
Each of the artillery’s ten implied tasks must be performed

by the wargame to varying degrees.

32

1. Target Acquisition
This function will not be explicitly played in the
first iteration of the wargame. Targets will be provided to
the battalion TOC. All other firing will be done at some
predetermined rate depending on the tactical situation.
2. Meteorology, Survey, Technical Fire Control
These functions also will not be explicitly played
as a part of this wargame. This is due to the fact that
these functions are not germane to the wargame’s mission of
training officers in the integration of tactics and
logistics. These functions relate to the computation of
actual firing data.
3. Fire Planning
This function must be performed as a part of the
wargame at a tactical level since it occupies a significant
portion of the operations and intelligence section’s time.
More importantly, it must be done with the 1logistics
situation in mind. It requires an analysis of the CSR in
order to avoid firing too many rounds.
4. Tactical Fire Control
Some battalion 1level fire missions will be useful
for causing the O0&I section to determine the number of
rounds to fire on a given target and the number of fire
units. However, the level of resolution need not include
the various shells and fuzes in the wargame’s first version.
Once again, this will cause the 0&I section to weigh the

33

desire for effects on target against the 1logistics
situation.
S. Plans and Orders
These functions represent the essence of the command
and control / battle management portion of the wargame.
They will be performed by the players as they would actually
perform them in a real wartime environment. The game will
begin with a hard copy of the supported maneuver unit’s
operations order. The O&I section and the logistics section
will then begin planning, develop an order, and then, using
the computer, send the order to the units to execute. The
computer program portion of the wargame is responsible for
the execution of all orders.
6. Positioning
This function is also extremely important to the
design of the wargame. All positions must be coordinated
with the maneuver unit that owns the land. Positions must
also be coordinated with the resupply plan.
7. Reconnaissance
Reconnaissance must be performed within the wargame
so that realistic plans can be made. At the very least, map
reconnaissance can be performed. Ultimately, a computer run
network using Dykstra algorithms can be used to simulate
route reconnaissance to determine the shortest or quickest

routes.

34

8. Displacement
This function is central to the integration of
tactics and logistics. Displacement routes must be well
planned and coordinated with the resupply plan. The
movement times must be minimized in order to maximize
availability time. Routes which are under air defense
umbrellas may be 1longer but they reduce casualties.
Displacements must be timed so as to avoid falling too far
behind maneuver forces or to avoid getting overrun by the
enemy. Additionally, displacements should be timed to
minimize the amount of time a unit spends above the
commander’s vulnerability threshold. All of these tradeoffs
should exist within the wargame as well as the actual
movement of the units along the paths and nodes of the
previously mentioned network.
9. Communications
Some sense of communicating orders and receiving
reports must be contained within the game. The computer
assisted portion of the game will provide this service. The
players will be able to establish certain standard operating
procedures (SOP) to control such things as the frequency of
standard reports like the unit situation reports.
10. Combat Service Support (CsS8)
This function is obviously critical to
accomplishment of the wargame’s mission. In order to give

proper emphasis to the importance of this function, each of

35

the ammunition resupply trucks will be explicitly played.
Of the various types of supplies, only ammunition will be
played in the first iteration of the wargame. This is
because the other types of supplies are normally played
through actual consumption even in peacetime exercises. It
is ammunition which has the most bulk and the largest impact
on tactics.

This analysis of the wargame’s mission, along with
its implied tasks, provides a discussion of the wargame’s
intended purpose, its scope, énd a brief description of the

functions it must be able to perform.

C. GOALS OF THE WARGAME

The goals of the wargame are defined on two levels. The
first concerns the goals of the wargame’s design and the
second concerns the goals of the players of the wargame.

The goals of the wargame’s design should simply be to
design the wargame so that each of the battalion’s goals are
not only played, but also their degree of accomplishment is
measured. Specifically, availability, vulnerability,
casualties, and logistics optimization should all be played
in quantifiable terms so that they can be measured by the
computer portion of the wargame. Once they are measured, a
measure of effectiveness (MOE) can be computed. This MOE

provides feedback to the player so that they can reassess

36

their decisions and perhaps improve their MOE the next time
the wargame is played.

The goals of the players should therefore be the same as
for actual operations; to maximize fire support provided to
maneuver units by maximizing availability time, to minimize
the amount of time spent above the commander’s vulnerability
threshold, to minimize the time lost to casualties, and to
minimize the amount of time units spend either critically
short or out of ammunition.

These parallel goals (between the wargame and the
players) serve as the thread of continuity which ties the
wargame together. The wargame should be designed to
accomplish the wargame’s system goals and all components of
the system should contribute to the furtherance of the goals
within the intent given by the wargame’s mission. In this
way, the players will be able to use the same decision
criteria in playing the wargame as they would in wartime.
Their objective is to maximize the measure of effectiveness
(MOE) by seeking to accomplish the player’s goals which are
the same goals which are found in the field artillery
battalion system.

The actual MOE used for this wargame, named the Field
Artillery Battalion Command and Control (FABCAC)
Effectiveness Index by the authors, is directly related to

each one of the goals. The MOE is as follows:

37

MOE = "tube hours available" ratio - "truck hours lost
to casualties" ratio - “tube hours above the
vulnerability threshold" ratio ~ (.5 * "tube hours
critically short of ammunition" ratio).
Each of the ratios in the MOE is in terms of actual hours
over maximum possible hours. Tube hours lost due to
casualties are not explicitly listed in the MOE because they
are accounted for under availability time. Tube hours lost
due to ammunition outage are also accounted for under
availability time. By accounting for ammunition outage
under availability time, the players are afforded the
opportunity to minimize the effect of an ammunition =zero
balance by moving a unit since it cannot shoot anyway. 1In
this way, the players can get the unit into a better
position tactically and set its vulnerability level to zero

while out of ammunition rather than during a period in which

the unit could be shooting.

D. WARGAME ENVIRONMENT

The wargame simulates many of the more important aspects
of the field artillery battalion system environment. First
and foremost is the fact that the battalion exists in a
hostile environment. This is reflected in the wargame by
inducing attrition of howitzers and ammunition trucks using
Lanchester-type equations. Attrition takes place both in
positions and along displacement routes. Attrition rates

are based upon force postures and the tactical situation.

38

_—;

Command and support relationships should be understood
by the players. The wargame is consistent with actual
doctrine in this respect.

The facts that all of the units exist on the

° battlefield, are separated by considerable distances, are in
positions which provide varying degrees of cover and
concealment, and must move around the battlefield are all
important to the design of the wargame. It is anticipated
that the computer generated network will allow these aspects
of the environment to be simulated. Many of the nodes will
represent positions which afford varying degrees of cover
and concealment. The paths indicate the distances between
nodes and are used to control the movement of units between
nodes so that realistic travel times are generated based
upon path capacities. Additionally, paths have attrition
characteristics which will determine the amount of attrition
incurred by a unit while on that path.

Finally, "friction" is an important element to portray
{p any military wargame. Units will not always move through
a.route exactly as scheduled. Enemy artillery attack will
cause unscheduled moves. These kinds of problems are also
found in the wargame in order to cause the players to be
flexible and issue fragmentary orders to rectify the
situation.

The approach for the actual physical environment of the
wargame involves a computer program which is written for

39

execution on a personal computer. It is important to
restrict the wargame to execution on a PC because that is
all that most battalions have readily accessible. This
wargame can be played by the O&I section, the logistics
section, and the battalion commander in the battalion
headquarters or the PC can be set up in the battalion
tactical operations center (TOC) in the motor pool. In
éither case, situation maps and status boards will be
necessary not only to keep up with the battle, but also to
help evaluate the effectiveness of the section’s SOPs and

information management procedures.

E. WARGAME RESOURCES

Other than the players themselves, personnel are not
explicitiy played as a part of this wargame. It is assumed
that when equipment is lost, its personnel are also lost and
vice versa.

The only equipment represented in the wargame are
howitzers and ammunition trucks. These are the primary high
density items of equipment found in a battalion. They are
also the items of equipment which most significantly impact
on the accomplishment of the wargame’s mission.

The only supply represented in this version of the
wargame is ammunition. Ammunition, by far, represents the
most bulk in resupply operations and is directly involved in

the integration of tactics and logistics.

40

In order to effectively run the wargame, the following
resources will be necessary:
1. Operations players, logistics players, and commander.
2. One, IBM compatible, personal computer.

3. Maneuver unit operations order, overlays, and maps.

4. O0&I section and logistics section status boards and
map boards. ,

5. Wargame computer software and user’s manual.

F. MANAGEMENT OF THE WARGAME

All of the management as defined for the field artillery
battalion system will be handled within the human
interaction portion of the wargame. The commander will
provide direction and leadership to the staff and he will
make final decisions. The staff (0&I and logistics) will
prepare estimates and plans. They will also assist the
commander in monitoring operations by interpreting reports
and preparing and communicating orders and by assessing the

situation to determine if the plan needs to be modified.

G. ARCHITECTURAL DEPICTIONS

Once again, an effort has been made to separate the
architectural depictions into four categories which
represent functional, spatial, informational and time
relationships. The architectural depictions have been
separated from the previous discussion because most of the

depictions transcend any one aspect of a system and

41

therefore serve to tie together the previously mentioned
ideas. Additionally, they reveal new aspects of the system

which have not already been discussed.

1. Punctional

"Functional architecture describes the technical *
structure of large systems."” [ref. 7: p. 2.4] Figure 3.1
represents a decision taxonomy known as the "SHOR" paradigm
[ref. 2: p. 626]). Within the context of this thesis, the
"SHOR" paradigm is used to indicate, at a conceptual level,
the boundary between the human portion of the wargame and
the computer portion of the wargame. What is inside the
dotted line is the human portion of the game and what is
outside the dotted line is handled by the computer. An
interpretation of the depiction indicates that the computer
will provide some kind of trigger event which will provide
the stimulus or data to the players (S). This will cause
the players to attempt to interpret the data to determine
what it means in relation to their mission accomplishment
(H). They will then create alternative courses of action to
counter the perceived impact of the data (0). Finally, they
will take action by issuing an order (R). This order is
executed by the computer and has some effect on the
environment. The players monitor the environment and
collect raw or preprocessed data and the cycle repeats
itself. At any given time, multiple stimuli can be received
by the players which can result in one or more responses.

42

J————-——

THE SHOR MODEL

TRIGGERING EVENT (DEADLINE, POLICY, ENEMY ACTION, NEW DATA)

e reeee oo remm e et et eer e eee e etreereeef et st et feceneernrieaes .
s H o R
STIMULUS | HYPOTHESIS OPTIONS RESPONSE H

...

...

ENVIRONMENT

RAW OR PREPROCESSED DATA

ACTION OR COMMUNICATION

ANTAGONISTS

PROTAGONISTS

Figure 3.1 The SHOR Model

43

The entire process takes place continuously for the duration
of the game.

Figure 3.2 is the computer architecture which will
be used for the wargame. It has been divided into three
major modules: the Pre-Processor, the Game, and the Post
Processor. Each of these major modules has been divided
into the 1lesser modules representing functions which are
required to be performed to support the major module. Some
of the more significant points which can be derived from
this depiction are that the players will be able to input
their own scenario if they do not want to use the one that
will come with the game, the players will be able to input
some of their own parameters which will represent their unit
SOPs and commander’s guidance, and finally, the players will
be able to save a game which is in progress and then get
back to it later.

2. Spatial

Spatial architecture depicts the physical
relationship of the elements in the system. Figure 3.3
depicts a basic 1level configuration for game’s set-up
requirements. Figure 3.4 depicts the spatial relationship
of the elements of the field artillery battalion within the
wargame. In this figure, it is apparent that all of the
elements are spatially related to each other through the use

of the network architecture. Units are located at nodes and

44

sInpMary Induwo) z°c 2In8rg

Pu) [Pue)
;PmH sIPD
JHYLIS I53nboy Suo/ndu]
oy a1 ‘39D _
JIoMIaN
P10 1Ly SIS 938I3UD) 3q5/induy
wW dnyord surel] pld ‘o0ig |
“3juo) ug
U Addnsay synuq) axng o01g oureu0g 8y ‘84 /induj
AoAuo) aAjossiq owmy °001J ‘wered swen ‘83yq)H _
dON/sms £oAuo)) ayen SjUaAy ‘001 pIny Ip) 8y HeTEd 2O
smren) syndwo) : "84 /nduy
[1] 2A0 smny, “1ou] yIompN ‘F40] 0
ssa18o1g | | l OLIBU0g
u] suren aavg "Pw) anss| dayg sy, wered 8y 84D /MItA fpEO]
I]
J0sS9001J 1504 awren) 10553001 J -314

omediepm Liniy

Figure 3.3 Wargame Setup Requirements

46

ARTILLERY WARGAME
SPATIAL ARCHITECTURE

Figure 3.4 Artillery Wargame Spacial Architecture

47

TYPE NODE VULNERABILITY DISTANCE
O COVER & CONCEALMENT ROAD CONDITIONS
al ol) E
|
X R P T ® N
O r
) '/"
ATP E
/) C D
.. —§- — . {
./ M
-\ @ il
.'-\ ,,/"I Y
. S |
N~ —_—
X
,——-'——-jL P
KILOMETERS

i |] | 1
I |] ! I
25+ 15 - 18 10 - 12 6-8 0

displace along paths. The legend contains a listing of the
various characteristics of nodes and paths.
3. Informational
Informational architecture depicts the flow of
information within the system. Figure 3.5 is very similar
to Figure 2.4 except that only those elements of information
which will be used in the wargame have been listed on the
diagram. Additionally, in Figure 3.5, the dotted 1line
separates the game’s players from the computer portion of
the wargame.
4. Time
The time based architectural depiction for the
wargame is the same as for the field artillery battalion
system. In both cases, the process that the key people must
use to make decisions remains the same. Therefore, Figure

2.5 applies equally well to the wargame.

H. SUMMARY

The basic conceptual approach taken for this wargame has
been to analyze a field artillery battalion from a systems
point of view. Then, using the knowledge gained from this
analysis, lay out the conceptual framework for a wargame
which emulates the pertinent aspects of the field artillery
battalion. Once again, the systems approach is very useful

in laying out this framework because it requires that every

48

ARTILLERY WARGAME

INFORMATION ARCHITECTURE

P —
- .

X
MISSION O
ASSIGNMENT
X RSR, CSR
REPORTS
. N ORDERS
FIREPLANS { \ND COORD
() @) INTEL REQUEST FOR
FIRE
AT veesseesssnsy INTEL
REPLANS
[l
. REQUESTS FOR FIRE
LOGISTICS =
L SUPPORT i FIRE PLANS
SPT COORDINATION
BN . ; v
RSR | PLANS
Q O CSR 3 REPORTS
ORDERS; INTEL
) REQUEST ’ PLANS / FIREPLANS
SUPPLIES REPORTS CSR
COORD LOG. REQ:,UTM!\TS RSR
. SUPPORT ;

.

. . REQUESTS FOR SUPPLIES

QTHER THAN AMMO

Figure 3.5 Artillery Wargame Information Architecture

49

facet of the system be considered under the categories of
mission, goals, environment, resources, and management.

The wargame attempts to capture this framework in a form
which provides a learning environment for those tasked with
the command and control of a field artillery battalion. The
wargame is only computer assisted since the essential
element of any tactical command and control system is the
human decision maker. The computer portion of the wargame
only provides relevant information to the decision maker and
then executes his decisions and keeps track of the game’s
statistics. At the end of the game, an MOE is calculated
which provides an assessment of the player’s performance.
This forces the player to plan ahead and consider all the
relevant concepts in order to maximize howitzer availability
time, minimize casualties, minimize wvulnerability time and
optimize ammunition resupply. The intent of the wargame is
to provide an environment in which officers can learn to
consider the factors which are critical to the integration
of tactics and logistics.

The computer program itself is complex. It utilizes a
network architecture to facilitate the movement of firing
batteries and ammunition convoys and it uses Lanchester
attrition equations to decrement forces. Among other
things, the program simulates firing, consumption of
ammunition, movement of units, ammunition resupply, and
changes in the tactical situation. Periodic reports as well

50

as emergency messages and warning reports are output to the
decision maker. The decision maker has the ability to issue
commands to the units. Among the commands are movement
orders, firing rate orders, ammunition resupply orders and
requests for situation reports from the units.

Finally, all this must be done in a format which is
usable at the battalion level. This means that it will be
executable on a personal computer, it will be well
documented, and it will enable the players to use their

normal unit / section SOPs.

51

IV. WARGAME DESIGN

A. INTRODUCTION

The purpose of this Chapter is to supplement the
documented source code which can be found in the Appendix.
A description of the code’s structure and organization can
be found in the documented source code. In this Chapter, a
description of the overall design used in the coding of the
computer portion of the wargame will be given.

Turbo Pascal version 5.0 and Turbo Pascal Database
Toolbox version 4.0 were used to code the wargame. Turbo
Pascal was used is because Turbo Pascal is one of the most
popular programming languages on the market. By using Turbo
Pascal, there is a reasonable expectation that users will be
able to modify their own source code.

In order to implement the wargame as described in
Chapter III, a "Time Step - Event Driven Hybrid" design was
used. An "Event Driven" design was needed to enable the
players to issue orders for future operations. A "Time
Step" design was used to perform the routine functions which
constantly occur over time in an artillery battalion. The
hybrid design will become more apparent 1later in this
Chapter.

Finally, a great deal of the design considerations used
for the wargame revolve around the desire to make the game
as "user friendly” as possible. In order to achieve this

52

objective, no computer commands are used in the wargame.
Everything is menu driven. All data entry fields are
protected so that only the correct type of data can be
entered. The terminology used by the game is as close to

actual military terminology as possible.

B. OVERALL WARGAME DESIGN

The wargame’s overall design can be described by
referring to Figure 4.1. Note that upon loading the game
there are three choices: "Play New Game", "Play 0ld Game",
or "Quit." If "Quit" is chosen, the player is returned
immediately to MS-DOS. If "pPlay 0ld Game" is chosen, the
old game’s files are loaded and the program goes straight to
the Game Play Module. Finally, if "Play New Game" is
chosen, the Pre-Processor Module is entered. The Pre-
Processor 1is the portion of the computer program which
allows the player to set up or initialize the game with such
data as the battalion’s configuration, the unit movement
network, the commander’s guidance, the game’s scenario and
the game’s parameters. When the player is finished with the
Pre-Processor Module, he enters the Game Play Module.

From within the Game Play Module, the entire game is
played. The design of the game itself will be discussed
later in this Chapter. From the Game Play Module, the
player can quit the game at any time. Upon deciding to

quit, the player has two options: either to quit with the

53

Modify Approp.
Records

Time Step \ISsue
Issue Cmd

Add, Edit
Delete Approp.

Records

Time | Step

Increment Time

Process Events List

Process Ammo Trucks

L

Process Fire Units

Generate Messages

Figure 4.2 Game Flow Chart

54

intent to continue playing the game later or to permanently
quit the game. When "Quit and Return" is selected, the
game’s files are saved to disk. In both cases, the program
then enters the Post-Processor Module.

In the Post-Processor Module, the game’s statistics are
tabulated .and the Field Artillery Battalion Command and
Control Effectiveness 1Index is computed. After this
information is printed, the program returns the player to

MS-DOS.

C. RECORDS
The basic data structure used in the wargame is the

record. The following records are used by this version of
the wargame.

1. Scenario Record

2. Commander’s Guidance Record

3. Game Parameters Record

4. Field Trains Record

5. Fire Unit Record

6. Ammunition Truck Record

7. Events List Record

8. Node Record

9. Path Record
The fields contained in each record can be found in the
global declaration section of the source code. The first
four types of records are all single records. The fire unit
records and the ammunition truck records are maintained in

55

an array of records. Finally, the last three types of
‘records are all stored in their own B+ lists in disk files
created by the Turbo Pascal Toolbox. The events 1list
records are stored in increasing order according to the
event’s date time group. The nodes and paths are each
stored in their respective lists according to the node and
path name.

The reason that the fire unit records and the ammunition
truck records are stored in arrays is because there are only
a finite number of those records and because every record
must be accessed every time step. On the other hand, the
event list, node, and path records are stored in database
files because there are potentially an unlimited number of
these records and because only selected records will be

accessed in any given time step.

D. GAME PLAY DESIGN

The Game Play Module was designed in accordance with the
flow chart depicted in Figure 4.2. Note that in this top
level flow chart for the Game Play Module there is only one
decision point. This was deliberately designed in order to
focus all aspects of the game at one point. This point is
referred to throughout the rest of the thesis as the "hub of
the wargame." From this hub there are three possibilities:
the Time Step Module, the Issue Commands Module, and the

Change Game Initialization Module.

56

Play New Game

or
Continue Oild Game
or

Quit

Quit Old Game

Retrieve Files

from Disk
Pre-Processor
Game
* Quit & Return

or
Quit & Rtn

Save Files
to Disk

Post Processor

2

:

MS- DOS

Figure 4.1 First Order Flow Chart

57

If the "“Change Game Initialization" option is chosen,
the program takes the player to many of the same procedures
that were used in the Pre-Processor Module. The player is
given the opportunity to change commander’s guidance, add
nodes and paths, and change some of the game’s parameters.

If the "Issue Commands" Module is chosen, the player is
given the option of issuing one of several commands. The
list of possible commands follows:

1. Convoy Ammunition Trucks

2. Dissolve Aammunition Truck Convoy
3. Move a Unit

4. Reqguest a Unit Situation Report

5. Change a Unit’s Firing Rate

6. Assign Ammunition Resupply Mission
7. Assign Ammunition Pickup Mission
8. 1Issue a Fire Order

9. Cancel a Command

In most cases, the result of a command is to add or
delete one or more events list records. In some cases, it
involves direct modification of ammunition truck records or
fire unit records.

If the time step is chosen, the program will increment
the game time and then search the events list to retrieve
any records with an execute time between the last time
step’s game time and the current game time. As each record

is retrieved, it is executed based upon the record’s key

58

field. The key field contains the "type action" which took
place. This "type action" is what determines which
procedure is called. After all applicable events are
executed, the program enters the Field Trains Processing
Module, followed by the Ammunition Truck Processing Module,
then the Fire Unit Processing Module, and finally the
Generate Messages Module.

In the Field Trains Processing Module the vulnerability
level is determined, then the program checks to see if the
unit receives an enemy artillery attack, and finally,
casualties are computed. In each of the different type of
unit modules, the vulnerability level is determined and then
casualties are assessed based on the linear law form of the
Lanchester attrition equations. More will be said about the
assessment of casualties later is this Chapter.

Additional functions which take place in the Fire Unit
Processing Module include the firing of ammunition by each
fire unit, the determination of each unit’s ammunition
count / status, and the update of such fire unit statistics
as availability time and ammunition critically low time.

In the Ammunition Truck Module, the program conducts the
actual resupply operations, checks for sufficient crew rest
to carry on with the mission, assesses casualties, and
increments the truck’s statistic. The only statistic which

is tracked is the truck’s casualty time.

59

The last module of the time step is the Generate
Messages Module. There are two general categories of
messages, those which are sent to the players by the
battalion’s subordinate units and those which are sent by
other elements. The former category of messages is
generated by checking for various flags in each subordinate
unit’s records. The later type of message is generated at
random times throughout game. Examples of this type of
random message include such messages as the "Bridge

Destroyed" message and the "Road Mined" message.

E. PROGRAM ILLUSTRATION

In order to illustrate how all the different modules
work together, an ammunition resupply operation will be
described. It is important to note that an operation of
this type may be only one of many operations taking place
concurrently in the game.

The operation which will be used for the illustration
involves ordering a convoy of five trucks to move from point
"A" to point "B" to deliver their loads of ammunition.
Multiple commands must be used to issue this order. First,
if not already organized into a convoy, the "Convoy
Ammunition Trucks" command must be issued. In order for
this command to be executed, all trucks must be in the same
location. Next, the "Assign Ammunition Resupply Mission"
command must be issued. This command modifies all the truck
records in the convoy to reflect the fact that a mission has

60

FllllllllIIIIIIIIIIIllIIIllIlIIIIIllIlIIIIIIIIIIIII-------—

been received, and to reflect the fire unit to be resuppliead
and the node in which the resupply is to take place. All
- trucks in the convoy must have full loads of ammunition on

board in order for this command to be executed. Finally, a

"Move Unit" command must be issued. In this command, either
a depart or a occupy time is specified and a route is
specified in terms of nodes and paths.

When the "Move Unit" command is entered, a procedure is
called which builds an itinerary for the unit. It takes
either the depart time or the occupy time and works either
forward or backward as appropriate to determine the
itinerary. The time required to traverse each path is
determined based upon the length of the path, whether it is
day or night, the road conditions, and the type of convoy.

Using this information, event 1list records are created

. for the time that the unit departs its current location, the
time that a unit moves through each node in the route, and
the time that the unit occupies its new location. During
each subsequent time step, the events list is checked. For
each event relating to this move, the convoy’s location is
changed as well as other fields in the record. Also during
each time step, the trucks in the convoy have casualties
assessed based upon the vulnerability level of the path they
are traversing and whether it is day or night.

Once the convoy arrives at its destination, each truck

in the convoy is taken out of a moving status when the

61

rIIIIIIIIlIIIlIlIlllIllIIIIIIIlIlIllIlIIIIIIlIIIIIII--------rf

occupation event is processed. In all subsequent time
steps, until the resupply operation takes place, the program

will check to determine if both the convoy and the unit to

be resupplied are in the same location. If they are, the
resupply operation will take place. After the resupply
operation has taken place, the fire unit’s ammunition count
is incremented and each truck in the convoy’s ammunition
count is decremented. At the end of the time step a message
is generated from the convoy to the battalion S4 notifying
him that the mission has been accomplished and requesting

further orders.

F. CASUALTIES

For the purposes of this wargame, it has been assumed
that the artillery units would not receive any direct fire
from enemy units. The only types of eneny fires in this
wargame are from enemy air attack and from enemy artillery
attack. Both of these types of attacks are produced by area
fire weapons. Therefore, the Lanchester 1linear law
differential model was used to assess casualties.
Specifically, the following form was used:

dx = - axy
dt

Where "a" is the attrition coefficient, "x" is the number of
friendly elements being attrited, and "y" is the number of

firing elements.

62

For this wargame casualties are calculated based on
three different possible unit postures: unit in a position,
unit in a position and receiving a deliberate artillery
attack, and unit moving. For each posture there are four
different attrition coefficients: friendly cannons attacked
by enemy artillery, friendly cannons attacked by enemy
bombs, friendly trucks attacked by enemy artillery, and
friendly trucks attacked by enemy bombs. The underlying
unit of time for these coefficients is one minute.

The number of friendly elements being attrited, "x", is
the percent of each truck which is remaining for ammunition
trucks. For firing units it 4is the number of firing
sections in operating condition.

The number of enemy firing elements, "y", is considered
in two parts: enemy air bombs and enemy artillery rounds.
This variable can be considered to be related to the
intensity of the attack. For this wargame, the intensity of
the attack varies according to several factors. Some of
these factors are listed below:

1. Day or night
2. Rural or urban position
3. High Medium or low cover and concealment
4. Acceptable, high, or critical vulnerability level
5. Maneuver mission offense or defense
For each type of enemy weapon, air bomb or artillery round,

the number of attacking elements is determined by summing

63

the number of bombs or rounds contributed by each factor.
For example, if a fire unit is in an urban position, the
time is later than end-evening-nautical-twilight (EENT), the
position has good <cover and concealment, the unit’s
vulnerability 1level is acceptable, and the supported
maneuver unit’s mission is offense then the value of "y" is
determined by summing the number of bombs or the number of
artillery rounds for those particular factors which are
applicable to the unit’s situation.

Next, the casualties assessed against the friendly truck
or fire unit due to each type of enemy weapons system, air
bomb or artillery round, are calculated and then summed.
Once the casualties for one minute are determined, they are
multiplied by the number of minutes in a time step and then
assessed by subtracting the determined amount of casualties
from the truck’s effective percent figure or from the number
of firing sections in operating condition for fire units.

By computing casualties in this manner, one procedure is
used to determine casualties for any given situation by
passing the appropriate parameters in the procedure call.
The parameters are the type unit, the unit’s posture, and

factors which are applicable to the situation at hand.

64

V. PLAYER’S8 MANUAL

A. INTRODUCTION

This chapter is intended to provide a stand alone
player’s manual for the play of the wargame. For
information concerning the technical aspects of the code,
refer to Chapter IV or to the documented source code itself.
In this chapter, the mechanics of actual game play will be
discussed.

The wargame can be thought of as consisting of two
parts, the computer assisted part and the manual part. 1In
the manual portion, players should attempt to operate as
closely as possible to the way they normally operate during
combat or simulated combat conditions. The computer
assisted portion of the game involves a computer program
which provides the dynamic information which the players use
to make command and control decisions. The computer
assisted portion also keeps track of statistics and
calculates a measure of effectiveness which can be used to
assess player performance.

The wargame can be played at any level of intensity.
That is, the players can play the manual portion of the game
at a full scale with written orders, staff estimates, and
detailed planning or they can play it relatively casually by

just using "judgement" or "best guesses" to make decisions.

65

In either case, the computer assisted portion of the game
remains the same, it simply takes the human input and
processes it. The point is that the game can be played as a
part of a full battalion CPX or during weekly officer
professional development time. This is possible because the
wargame is designed to be played at the player’s pace. The
pace is determined by the player by requiring him to
physically initiate each time step.

In order to make the wargame easy to learn and remember,
the wargame was designed to be completely menu driven.

There are no commands to remember.

B. MEASURE OF EFFECTIVENES8S (MOE)

It is important to discuss the wargame’s measure of
effectiveness up front in the player’s manual because it
tells a lot about what the game’s objectives are and what
the player’s objectives should be. While playing this game,
the player should always keep in mind the fact that the
mission of the wargame is to train officers in the
integration of tactics and logistics as it relates to the
command and control of a field artillery battalion. As
such, the game is oriented toward the integration of tactics
and logistics and may not do justice to other important
aspects of a field artillery battalion.

The player’s objectives should be to play the game by
taking the same actions they would take in a real situation
while trying to maximize the game’s MOE. The MOE is

66

calculated based upon statistics which are compiled
throughout game play. The intent of the MOE is to reinforce
favorable statistics and to penalize unfavorable statistics.
In this way, players can judge how effective they were at
the command and control of the field artillery battalion.
The statistics which are tracked in the wargame mirror
the four goals of a field artillery battalion as discussed
in Chapter 1II. The actual MOE, called the Field Artillery
Battalion Command and Control Effectiveness 1Index, is

directly related to each one of the goals. The MOE is as

follows:
MOE = Y“tube hours available" ratio - "truck hours lost
to casualties" ratio - "tube hours above the
vulnerability threshold” ratio - (.5 * ‘“tube hours

critically short of ammunition" ratio).
Tube hours lost due to casualties are not explicitly listed
in the MOE because they are accounted for under availability
time. Tube hours lost due to ammunition outage are also
accounted for under availability time. By accounting for
ammunition outage under availability time, the players are
afforded the opportunity to minimize the effect of an
ammunition zero balance by moving a unit since it can’t
shoot anyway. In this way, the players can get the unit
into a bette.- position tactically and set its vulnerability
level back to zero while out of ammunition rather than

during a period in which the unit could be shooting.

67

C. GETTING STARTED

To start the computer assisted portion of the wargame,
the players must first ensure the printer is turned on and
is on-line. At the "A:" prompt, type WARGAME and press
"return." This will take you to the Main Menu. Throughout
the wargame, the "arrow" keys are used to move the cursor to
the various choices, the "return" key is used to make a
selection and the "F1" key is used to get help. Any data

fields which require a choice to be made between such

entries as "high", "medium", or "low" can be entered by just
typing the first letter of the word, e.g., "h", "m" , or
"l", At the main menu the player has three options; start a

new game from the beginning, continue an old game from the
point where the game was previously quit, or simply to quit
the game and return to the MS-DOS "A:" prompt.
Selecting "Continue an 0ld Game" will take the player .
directly to the game play screen and will pick up with the
one and only old game which is on file on that particular
disk. Selecting "Start a New Game" will require the player
to initialize the game. This can be done by loading a
scenario file. The "Enter Scenario File Name" screen allows
the player to do this. Refer to Figure 5.1 at the end of
the Chapter. When the screen first is displayed, the cursor
is after the "scn" on the directory line. The player has
two options. He can hit "return" to get a directory listing

of all the scenario files on the disk or he can press the

68

—

"escape" key to build a new scenario file. If the "“escape"
key is used, the program will require the player to enter a
scenario name. A valid scenario file name is "*.SCN." If
the player chooses the directory listing, then he must place
the cursor over the file name desired and press "return."

Either case will lead to the Game Setup Menu.

‘D. GAME SETUP MENU

The purpose of this menu is to allow the players to
start the game or view, change, or print the game scenario /
network, the game parameters, the commanders guidance, and
the battalion configuration / status. All but the "Play
Game" option will be discussed in this section. The "Play
Game" option will be discussed in Section E of this chapter.

It is strongly recommended that players print all of the
game initialization data before beginning the game. This
serves two purposes. First, it forces the player to review
the data to ensure it is correct. Secondly, it gives the
players a hard copy of the data that can be used throughout
the game as a reference. All printing is done by pressing
the "F4" key. This prints the currently displayed screen.

Throughout the view and change options, use the arrow
keys to move between fields, use "page up" and "page down"
to move between pages where applicable, and use the "escape"

key when finished with an option.

69

1. View or Change Scenario / Network

This option takes the players to another menu which
allows them to view, change, or print the administrative
information contained in the scenario file, the network node
data, and the network path data. It also allows them to use
the network utility to test the network.

The term "network" as used here refers to the unit
movement network. Unfortunately, all unit movement in this
game is represented by moving along this network. This will
require the player to translate from grid coordinates and
routes on the map to nodes and paths in the unit movement
network.

In this network, nodes represent positions, or
potential positions. Paths represent a route between two
nodes. The nodes have a specific grid location on the map
whereas the paths provide connectivity between two nodes.
There may be two or more paths between the same two nodes.
The conventional depiction of a network shows the paths
between nodes as straight lines. For this wargame, it is
recommended that an overlay be developed which shows all of
the nodes as circles over their grid locations and all of
the paths as route traces of the routes represented by each
path. Each node and path will be labeled with a unique
name. (Nodes are labeled with up to three numbers and paths
with up to three letters.) 1In this way, the players can do

their normal planning. When they give the movement order to

70

the computer assisted portion of the wargame, they use the
overlay to dictate the route. (A future version of this
game should just take the start and end nodes and determine
the optimal route.)

Under the node data and path data options, the bulk
of the network can be setup before the game. However, it is
still possible to add nodes and paths during game play. The
importance of setting up a good network cannot be over
emphasized. The larger and more comprehensive the network,
the more flexible and more realistic the game play will be
for the players. The entire game is structured around the
movement network. Units occupy nodes and move along paths.
Point distribution of ammunition must also take place in a
node.

The computer assisted portion of the game is
interested in more than just location and length information
for each node and each path. There are many other elements
of information which are necessary to describe the nodes and
paths. These will be covered in more detail in paragraphs
b) and c) in this section.

a. S8cenario Information (Figure 5.2)

This option allows the players to view, change,
or print the administrative information contained in the
scenario file. This screen contains the operations order
number, the date of operations order, the map sheets used in

the scenario, the game start time, and finally an

71

administrative note to be used at the discretion of the
scenario builder.
b. Path Data (FPigure 5.3)

Most of the fields in the path data screen are
self explanatory. However, a few will require some
explanation. A path in this game can have no more than one
bridge. The player will have to pick a bridge if there is
actually more than one bridge on the map.

Road conditions and path vulnerability each have three
levels of quality. It is up to the players to make this
assessment in accordance with the relative conditions in the
game’s area of operations. To get the first data screen,
press "F5.%

c. Node Data (Figure 5.4)

The node data screen 1is also fairly self
explanatory, however, a few items require some discussion.
A given node must have at least one but no more than six
paths associated with it. A node can have an ammunition
count independent of any fire units or ammunition trucks.
This gives the players the ability to preposition ammunition
at a node for eventual transfer to a fire unit or ammunition
truck. The type position and cover and concealment fields
are like the path vulnerability and road condition fields in
that the entry is at the discretion of the players but
should be based upon the relative conditions in the area of

operations. All of these fields are important to the game

72

FlllllllllIlllIlIllllIlllIIIIIIIIIIIIIIlIllIlIIIIIII-II------cf

because they are some of the previously mentioned factors
which help to determine the casualty rates.
- d. Network Utility

This option has not yet been implemented. It

will eventually allow the player to test the network by
tracing routes through the network and determining route
distances.

2. View or Change Game Parameters (Figure 5.5)

This option allows players to view or change the
game parameters. The game parameters are generally expected
values of such variables as convoy speeds. These expected
values can be set by the players to reflect the average
speeds based on a specific area of operations or opposing
force. For example, an area with a good road network will
have a higher expected value for the convoy speed. The
actual values used by the game will be based on these
expected values but will vary according to many factors.
Examples of some of these factors are the unit’s mission,
the road conditions on the specific path, the intensity of
conflict, etc.

3. View or Change Commander’s Guidance (Figure 5.6)

This option allows the player to view or change
elements of commander’s guidance. The commander’s guidance
- data consists of items which could be part of a unit’s

standard operating procedure (SOP), part of a specific

operations order, or verbal guidance given by a battalion or

73

division artillery commander for a specific operation. The
commander’s guidance can also be changed while playing the
game.

4. View or Change the Battalion Configuration / Status

This option allows the player to view or change data
concerning the battalion’s field trains, fire units and
ammunition trucks. The data concerning these elements is
the data that will be used to start the game.

Upon selecting this option, another menu is
displayed. The first choice allows the player to view or
change the trains location. The second option allows the
players to view or change the number of fire units, and the
number of ammunition trucks in the battalion at the
beginning of the game. The third choice allows the player
to view or change the starting firing unit data. And the
last choice allows the player to view or change the starting
ammunition truck data.

a. Location of Trains

This screen contains only the field trains
location. Note that the correct entry for all 1location
fields in this game are in terms of the unit’s position node
name.

b. Number of Fire Units / Trucks (Figure 5.7)

Whatever numbers are entered for the number of
fire units and the number of ammunition trucks determines

the number of screens that are created for the next twc

74

options. The maximum number of fire units in this game is
six and the maximum number of ammunition trucks is twenty-
four. If there are three fire units currently on disk and
six is entered for the number of fire units, then the third
fire unit’s data will be duplicated three more times for the
additional three fire units. The next option can be used to
edit the new fire unit records.
c. PFiring Unit Data (Figure 5.8)

Use the "page-up" and "page~down" Kkey to move
between the various pages of fire unit data. Most of the
fields on these screens are self explanatory. However, a
few require additional explanation.

The location fields indicate the locations of
the units at the beginning of the game. These locations are
in terms of nodes. From a game play perspective, these
positions can be pre-hostility assembly areas or they can be
initial firing positions. At the beginning of the game, the
player will be queried at the start of each time step as to
whether or not hostilities have commenced. If the answer is
no, the game continues but no casualties are assessed and no
rounds are fired. 1If the answer is yes, the game continues
with firing and casualties and the players will no longer be
gqueried about the beginning of hostilities. This procedure
gives the players the ability to exercise a pre-hostility

deployment plan and tactically position their fire units and

75

their ammunition <trucks prior to the commencement of
hostilities.

The maximum rounds capacity per firing section
field refers to the number of rounds the particular weapon
system / organic ammunition carrier can carry combat loaded.
The number of rounds on hand per fire unit can exceed the
unit’s total capacity while in a firing position. However,
when the fire unit displaces, it can only move with its
maximum total capacity. The excess rounds will be left as
prepositioned ammunition on that node. Separate
arrangements must be made with battalion ammunition trucks
to transport that ammunition if necessary.

d. Ammo Truck Data (Figure 5.9)

As with the fire unit data, use the "page-up"

and "page-down" keys to move between screens. All of the

fields should be self explanatory.

E. GAME PLAY

After completing the initialization process, the player
should select the game play option. This will lead to the
game play control screen (Figure 5.10) which is the hub of
the wargame. From this screen the players can initiate time
steps, 1issue commands, change parameters, utilize the
network utility, and they can end the game play by selecting
the quit option. The game time will always be displayed on
any screen which is generated out of the game play control
screen.

76

In order to play the game, the following players are
required as a minimum: A battalion commander, a battalion
0&I section, and a battalion S-4 and / or Service Battery
Commander. These players are required in order to integrate
tactical and logistical planning and execution.

The game is actually played by initiating a time step,
viewing and / or ©printing any messages which may be
generated during the time step, and then issuing any
commands which may be necessary for the battalion to execute
its plans. The players themselves should act out their own
roles as if the wargame were actually a real situation.
However, rather than sending or receiving information /
orders using a radio, the players will receive information
from the computer and will send orders to the units
represented by the computer.

The players should conduct 211 planning in accordance
with their own unit standard operating procedures and Army
doctrine. For the computer assisted portion of the game,
special emphasis should be given to logistics plans since
the computer will require detailed orders for ammunition
resupply. Fire plans should also be made either manually or
using TACFIRE. Finally, plans should be made well in
advance for future fire unit moves so that routes can be

planned thereby facilitating timely execution.

77

1. Time Step

This option will process all events which take place
from the current time to the new current time. The
difference between these times equates to the length of a
time step. The time step size is set by the players under
the game parameter option during game setup. A size of 30
minutes is recommended.

There are many functions which take place during the
time step. The fire units shoot at some rate which is a
function of the battalion’s CSR but can not exceed the
weapon system’s sustained rate of fire. Resupply
transactions take place between ammunition trucks and fire
units in accordance with their orders. Ammunition trucks
return from the ammunition transfer point with new truck
loads of ammunition but the total ammuniticn drawn in a day
can not exceed the battalion’s CSR. Units / trucks move
around the battlefield in accordance with their orders.
Units may receive incoming artillery and must request
permission for an emergency displacement. And finally,
units / trucks may receive casualties where the degree of
casualties is based upon numerous factors such as the type
position, the position’s cover and concealment, and the
unit’s vulnerability factor.

Casualties are determined each time step whether the
units are in a position or are on the move. Casualties are

assessed as fractional parts of firing sections and

78

ammunition trucks rather than whole sections and trucks.
This is a result of the fact that Lanchesterian attrition
was used. Therefore, casualties are determined as an
expected value over time rather than discrete amounts. Due
to this fact, it is possible to have less than a whole
ammunition truck and 1less than a whole number of firing
sections in a fire unit. In turn, all quantities which are
related to these systems are calculated based on the
effective percent of the system. For example, if a
particular ammunition truck is at 74 effective percent, then
it can only haul 74 percent of its full ammunition capacity.
During the time step, the computer not only executes
previously issued commands, but also generates messages for
the players to review and, if necessary, take some action.
A discussion of each message follows:
a. Incoming Artillery
This message notifies the battalion staff that
the named unit is receiving incoming and that they request
permission for an emergency displacement. It requires the
players to make an immediate response of either "“y" or "n."
If "y" is entered, the unit will displace to its alternate
position within the same node. It will be in a moving
status for approximately 30 minutes. Upon occupation, its
vulnerability level will be set back to an acceptable level.

If "n" is selected, the unit will stay in position and ride

79

the attack out. Casualties will be higher and its
vulnerability level will continue to increase.
b. Unit sSituation Reports
These messages will be displayed on a periodic
basis in accordance with the battalion’s standard operating
procedure. The situation report frequency can be set using
the ‘"commander’s guidance" option under the "Change
Parameters" option of the Game Play Menu. Use the "page-up"
and '"page-down" keys to move from one unit situation report
to the next. All fire units and the field trains will be
displayed.
c. Bridge out
This message will appear randomly. It notifies
the players that a bridge on a certain path is out. It is
up to the players to avoid the path once this message is
received. If the players send a unit down a path which has
a bridge out, then the time the unit spends on the path will
be greatly increased.
d. Minefield
This message will appear randomly. It notifies
the players that a minefield has been placed on a certain
path. It is up to the players to avoid the path once this
message is received. If the players send a unit down a path
which has a minefield, then the time the unit spends on the
path will be greatly increased and the casualties will be

increased.

80

e. Vulnerability High / Critical

This message notifies the players that the
vulnerability threshold for the named unit has become high
or critical. To warrant a rating of high, a fire unit must
exceed the commander’s guidance for either the number of
rounds fired out of a position or the amount of time spent
in a position. The rating becomes critical when both items
of the commander’s guidance has been exceeded. For the
field trains, the rating is high if too much time is spent
in the position. And if two times the commander’s guidance
for time in position is exceeded, the field trains receives
a vulnerability rating of critical. In either case, the
expected value for the degree of casualties increases as the
vulnerability rating increases.

f. Ammunition Low / Critical / out

This message notifies the players, as a real
fire unit would, when the named fire unit’s ammunition
levels decreases below certain thresholds. If the
ammunition count is below 35 percent of the unit’s maximum
capacity, then the ammunition status is "low." If the
ammunition count is below 10 percent of the unit’s maximum
capacity, then the status is "“critical." And finally, if
the ammunition count is 0, then the ammunition status is
"out."

There is no penalty for an ammunition status of

"low." It simply serves as a warning to the S4 to begin

81

planning for ammunition resupply operations to that unit.
If the status is "critical", then the unit is not considered
fully available. The amount of time a unit spends
critically short of ammunition is incremented and, at the
end of the game, a portion of the critically short time is
subtracted from the availability time. Finally, if the unit
is "out” of ammunition, it is placed in a cold status and is
therefore not available to support the maneuver forces. The
"Change Rate of Fire" command can be used to tell a firing
unit to decrease or increase its rate of fire.
g. Resupply / Pick-up Complete, Request Orders

This message is generated when an ammunition
truck has completed an ammunition resupply or pickup mission
and needs further guidance. The players then must issue the
appropriate commands to instruct the truck where to go and
what to do. In most cases, since the truck can only go to
the ammunition transfer point from the field trains
location, the players will issue an order to get the truck
back to the field trains. Another option would be to
instruct the truck to go to a specific node to pick up
prepositioned ammunition.

This approach was taken because most ammunition
trucks / convoys do not have organic radios. In most cases
they would call the field trains, utilizing the resupplied
uni‘’ ’s radio, to give a situation report after accomplishing

their resupply mission.

82

h. Return from Ammunition Transfer Point, PField
Trains Gone, Regquest Orders

This message is generated when an ammunition
truck returns to what was the field trains location and
finds that the field trains is no longer there. The
player’s reaction should be to issue orders to the truck
either to get to the field trains or to go somewhere else to
deliver the ammunition.

i. Crew Rest Warning

This message is generated when an ammunition
truck is given a movement order and the truck’s crew has not
had the amount of rest dictated by the commander’s guidance
in the 1last 24 hours. The truck will still accept the
orders, but the casualty rate will be a little higher. 1If
the crew has not had the amount of rest dictated by the
commander’s guidance in the last 48 hours, then the truck
will not be able to accept the orders. This will force the
battalion’s logistics planners to use all of the trucks
equally and to consider crew rest in their planning.

j. Front Line Trace Change

This message will be generated on a random
basis. When the maneuver forces are in the offense, the
front line trace will move some specified distance usually
towards the enemy in the direction of the attack. When the
maneuver forces are defending against an enemy attack, the
front line trace will move some specified distance usually
toward the friendly forces in the direction of the enemy

83

attack. The player’s actions upon receipt of this message
should be to redraw the front line trace on their maps and
then check their firing unit’s ranges to determine if they
need to be moved.

2. Issue Commands

This option is chosen to give orders to any of the

game’s entities, i.e., firing units and / or ammunition
trucks. Once chosen, the player is taken to another menu
which 1lists each of the various types of commands. By

selecting a command description from this menu, the player
will be taken to the command screen. Most of the commands
have a unique command number. It is recommended that the
"F4" key be used to print the command screen so that the
players can keep track of the commands given and their
associated command number. The command number is needed in
order to cancel a specific command.
a. Convoy Ammunition Trucks (Figure 5.11)

This command enables the players to organize the
ammunition trucks into convoys. The convoy name must be
unigque. Up to 24 trucks can be placed in a convoy but a
given truck can only be associated with one convoy.
Furthermore, all trucks named in the command must be at the
same location when the command is given. If the desired
trucks are not all a%* the same location, then the "move"

command must be used to get them all to the same place.

84

Once a truck is assigned to a convoy, it can
only receive orders as a part of the convoy. If one of the
trucks in the convoy can not accept a convoy order due to a
critical lack of «crew rest, then the truck will
automatically be taken out of the convoy and will not
execute the order.

b. Remove Ammunition Truck Convoy (Figure 5.12)

This command enables the players to break-up the
named convoy. All of the trucks in the convoy will be
disassociated from the convoy and will once again be able to
receive orders as individual trucks.

c. Move a Unit (Figure 5.13a and 5.13b)

This command enables the players to order units
to move around the battlefield. The players should first
plan the move on a map of the battlefield. Once they
determine where they want the unit to move, they should
refer to the unit movement network overlay to determine if
the appropriate nodes and paths exist to make the move. If
they do not exist, the players should use the "change
parameters"” option to add the needed nodes and paths. Once
this is completed or if the nodes and paths already existed,
then this command screen can be used. All the fields on
these screens should be self explanatory except the "node to
resupply" field. If the unit making the move is a firing
unit or ammo truck/convoy and it is supposed to pick up or

deliver ammunition along the way, then the players should

85

enter the node where the ammunition resupply is to take
place. This will cause the fire unit to stop at that node
to pick up ammunition. If the ammunition resupply trucks
are not there, then the ammunition resupply will not take
place and the fire unit will continue on its way after one
time step.

d. Request situation Report

This command is used by the players to get an
immediate situation report. The output of this command will
be in the same format as the unit situation report which is
generated on a periodic basis during the game. The
situation reports for all units will be displayed.

e. Change Firing Rate (Figure 5.14)

This command is used to speed-up or slow-down
the named fire unit’s rate of fire. The number entered for
the firing rate is a percent of the battalion‘’s CSR. If the
number exceeds 100, then the firing rate will be such that
the unit, if in a firing status all day, will expend more
than its "“CSR worth'" of ammunition. On the other hand, if
the CSR is less than 100, then less than the "CSR worth" of
ammunition wili be expended. This command is intended to be
used to manage the unit’s ammunition expenditure. One of
the statistics reported at the end of the game is the amount
of ammunition the battalion has on hand in excess of the
battalion’s CSR. Since the CSR should never be higher than

what the battalion requested as the required supply rate

86

(RSR), this statistic should be minimized. Therefore, the
players should use this command both to ensure the fire
units do not run out of ammunition and to ensure that too
much ammunition is not on-hand at the end of the game.

If the firing rate entered is 1less than 50
percent of the battalion’s CSR, then the unit will be
considered less than 100 percent available. The percentage
of time considered available will be the same percentage as
the firing rate.

£f. Ammunition Resupply Kission (Figure 5.15)

This command is used to assign a resupply
mission to an ammunitien truck or convoy. Legal entries
for the "Unit to Resupply" field include any of the fire
unit names and the word "prepo." By entering preposition,
the players are telling the trucks to deliver the ammunition
to a node where the ammunition will be unloaded. The
players can then use the next command to tell a fire unit to
pick up the ammunition.

For any resupply mission to actually take place,
the trucks must be full and located at the same node as tne
fire unit. If a preposition mission, then the truck must be
at the node specified in the resupply command. In order to
get the truck and the fire units into the same location, one
Oor more move command must be used. Therefore, to cause a
resupply mission to be executed, the players must issue at

least two commands, a _esupply mission command and a move

87

command to the truck / convoy or to the fire unit or to both
the fire unit and the truck / convoy.

It is important to note that since the wargame .
uses Lanchesterian attrition, the trucks are attrited by
fractions of a truck. Therefore, as the game progresses,
each truck will have a different effective strength. Since
a truck can only carry its "effective strength" worth of a
full ¢truck’s hauling capacity, 1less rounds than full
capacity of a truck will actually be delivered to the fire
unit or node. This will require the players to keep track
of each truck’s hauling capacity. This approach may nct be
100 percent realistic but it does account for the expected
value of casualties over time.

g. Ammunition Pickup Mission

Selection of this command will take the players
to another menu. This menu gives them two options, "Fire -
Units" or "Ammo Trucks".

If "Fire Units" is chosen, the command screen
(Figure 5.16) is used to tell a fire unit to go to a node to
pick-up prepositioned ammunition. Like the resupply
command, this command will require the players to give a
move command to the fire unit if it is not already in the
appropriate node.

If "Ammo Trucks" is chosen, the command screen -
(Figure 5.17) is used to tell an ammunition truck or convoy

to go to the ammunition transfer point (ATP) to pick-up

88

—

ammunition. The trucks must be in the field trains location
to receive this command. This constraint was imposed
because it was assumed that the trucks would have to at
least pass through the field trains on the way to the ATP to
get paperwork, and / or fuel, food, maintenance, and rest.

The amount of time the trucks take to go to the
ATP is randomly chosen based on a normal distribution with a
mean of the "ATP turn-around time" as specified under the
game parameters. It is important to update the ATP turn-
around time whenever the field trains moves or the ATP
moves. Unlike the resupply command and the fire unit pickup
command, a move command is not necessary with this command.

The battalion can only pick~up its "CSR worth"
of ammunition during any given day. Even if the day’s
allotment of ammunition has already been picked-up from the
ATP, the wargame will alilow the players to send trucks to
the ATP. However, the trucks will return empty. The point
is that it is up to the players to manage both the pick-up
and delivery of ammunition.

h. 1Issue Fire Order (Figure 5.18)

This command enables the players to issue
battalion level fire orders. It can be used to direct the
fire units to shoot battalion level targets of opportunity
or planned fires. Planned fires can be planned either
manually or using TACFIRE to fulfil the requirements of the

fire support annex of the maneuver unit’s operations order.
P

89

Once the fire plan is finished, it can be sent to the fire
units using this command screen. All that is necessary is
the unit name, time to fire, and the number of volleys.

The intent of this command is to ensure that the
S3 players are able to perform all of their responsibilities
while trying to integrate operations and logistics in the
command and control of the battalion. They must be careful
not to shoot so much ammunition that.the fire unit’s rate of
fire must be reduced to too low a level to be considered 100
percent available. On the other hand, they must conduct
normal fire planning in support of the maneuver forces.

i. Cancel Command (Figqure 5.19)

This command enables the players to delete the
following commands: "Move a Unit", "Ammo Resupply Mission",
"Ammo Pickup Mission", and "Issue a Fire Order." Each of
these command screens has a "command number" field which
contains a computer generated number. It is this number
which is entered into the "Cancel Command" screen in order
to cancel a specific command. For all but the '"move"
command, the command must not have been executed in order
for the "cancel" command to have any effect. In the case of
the "move" command, if the move has already begun but is not
yet completed, the 'cancel'" command will cause the unit to
stop at the nearest node. 1If the unit is a firing unit and
it has ammunition, it will go into a firing status unless it

is immediately given another movement order.

90

If a fire unit is on the move, and the players
want to hip-shoot the fire unit, then they must cancel the
move command and issue a fire order. 1If any type unit is on
the move and the players want to change the route or
destination, then they must cancel the "move" command and
then issue a new "move" command from the unit’s new
location.

3. Change Paranmeters
Selection of this option from the game control
screen takes the players to more menus which give them the
ability to change all the entries which were made during
game setup except for the battalion configuration / status
records. For example, the time step size can be changed,
nodes and paths can be added to the network, and the
situation report frequency can be changed. The battalion
configuration records can not be accessed because they
contain the status of the battalion at the start of the
game. To give the players the ability to edit these records
would be the same as giving them the ability to circumvent
the commands. If the players want to check a units status,
they can use the "Request a Situation Report" command.
4. Network Utility
This option is not yet implemented. It is
envisioned that this option will be used by the players to
conduct movement planning. This option will eventually be

capable of determining the shortest route by time or

91

4--------IIllIlllllIlllllllllllllllllllllllllllllllllllllJ

distance and determining the safest route according to the
path vulnerability levels.
S. Output Game Statistics

This option gives the players the ability to request
the game’s statistics, MOE, and the number of rounds on-hand
in excess of the battalion’s CSR at any point during the
game. It is recommended that this 1listing be printed at
least once at the end of every 24 hours of game play. This
will provide a means of comparing statistics between games
to judge if the players are improving in their ability to
command and control the battalion. More will be said on the
meaning of the statistics in Section F of this chapter.

5. Quit

Upon selecting the "Quit" option, the players are
given two options. The first option is to quit with the
intention of continuing the game later. This gives them the
ability to continue the game where they left off at a later
date. All of the appropriate files are saved to disk and
are recalled the next time the game is played by selecting
the "Continue an 0ld Game" option from the main menu. The
second choice is to quit the game without the intention of
ever continuing the game. 1In this case, the game’s data is
not saved to disk.

In either case, the computer will provide a listing

of the wargame’s statistics, the MOE, and the number of

92

rounds remaining in excess of the battalion’s CSR before

returning to the MS-DOS "A:" prompt.

F. INTERPRETATION OF THE RESULTS

The "results" referred to in this section is the listing
which is printed whenever the "Output Game Statistics”
option or the "Quit" option is selected from the game play
control screen (Figure 5.20). The listing itself should be
self explanatory. It is the interpretation of the listing
which requires some explanation.

Each time the 1listing is obtained, it is based on the
cumulative statistics from the start of the game to the
current time rather than since the last time the listing was
obtained. Since this wargame does not allow replacements of
casualties, the availability ratio will gradually decrease
as time goes on due to casualties alone regardless of how
well the players exercise command and control over the
battalion. The same is true of the truck casualty ratio
except that it will gradually increase. Since Lanchesterian
attrition was used, this amount of change in the statistics
should be consistent for the same wargame setup data and the
same C2 decisions at any given amount of time into a
particular game. Therefore, in order to be able to compare
the performance between different groups of players playing
the same game or between the same group of players playing
the same game at two different times, they must obtain a
printout of the statistics at the same amount of time into

93

the game during each game. For example, if the players
request output of the statistics after every 24 hours of
game play each time they play the game, they will be able to -
compare their performance from game to game. This is
because the differences in the statistics for the same
amount of time into each game will be due to command and
control decisions made by the players. There will be no
dependence on the amount of casualties which occur based
simply on the amount of time the game has been played.
The ratios provide a measure of how well the players
have performed with respect to the specific statistics
involved in each ratio. For a better idea of how well the
players have performed with respect to the overall command
and control of the battalion, the Field Artillery Battalion
Command and Control Effectiveness Index is used to determine
a number which is based on all of the ratios. The number .
itself has no meaning other than as a means of comparing
performance from one game to the next, assuming the same
game setup data is used for each game. It can also be used
to compare performance between two different groups of
players each playing their own game when each game had the
same setup data.
The final statistic is the number of rounds the
battalion has on-hand in exceés of the battalion’s CSR. -
This statistic first counts all of the ammunition each

firing unit has and then adds the amount of ammunition the

94

.

battalion has prepositioned in nodes. Even prepositioned
ammunition which is currently behind enemy lines is included
in the count because it 1is assumed that the 1loss of
ammunition was a result of a poor command and control
decision on the part of the players. The product of the
battalion’s CSR and the number of tubes in operating
condition is then subtracted from the total count. The
player’s objective is to minimize this number. If the
number is negative, the battalion has less than the CSR on-
hand. The greater the number, the more rounds the battalion
has on hand in excess of the CSR. Since it is assumed that
the RSR equals the CSR in this game, large numbers would
tend to indicate that the battalion did not properly project

their required ammunition supply rate.

85

The Artillery Wargame

Enter Senario File Name

Hit ESC KEY to build a new scenario

Directory : a:\" .sch

Il choose - Select Fi-Help F4-New Mask

Figure 5.1 Build Scenario Screen

96

The Artiliery Wargame |

Scenario / Network

OPORD # : 00001

OPORD Date : 15 0600Z Jan 89

Map Sheets : Ft Knox

Game Start Time (DTG) : 17 0530Z Jan 89

Aamin Note :

) | | Choose Fi1-Help F4-Prn Scr ESC-Done

Figure 5.2 Scenario Data Screen

97

\

Artillery Wargame |

Scenario / Network
Path Data

Path Name : AKD
Length (Kilometers) : 8.6

Road Condition (Poor/Medium/Good) : M
Start Node : 425
End Node : 248
Bridges on Path (Yes/No) : Y
Bridge Location : 123456
Vuinerability (High/ Medium/Low) : L

Page Up - next path Page Down - Prev Path

| |Choose Fi-Help F4-Print F5-Add Fé-Del F8-Search
ESC-Done

Figure 5.3 Path Dota Screen

98

\,

Artilery wargame |

Scenario / Network

Node Data

Node Name : 458
Associated Paths : JHH JHG TRE

HGF HGF FDS
Position Type (Rural/Urban) : U
Location (grid) : 123456
Prepositioned ammo count {rounds) : 150
Cover and concealment (High/Medium/Low): M

Page Up - next path Page Down - Prev Path

ESC- Done

| | choose Fi-Help F4-Print F5-Add Fé-Del F8-Search

Figure 5.4 Node Data Screen

99

The Artillery Wargame |

Game Parameters

Time step (minutes) : 30
Average track convoy speed (kph) : 20
Average wheel convoy speed (kph) : 25

Average time from trains to ATP (min) : 55

] | choose Fi-Help F4-Prn Scrn ESC-Done

_

Figure 5.5 Game Parameter Screen

100

The Artilery Wargame !

Commander’'s Guidance

Unit sitrep frequency (minutes) : 60
Yuilnerability threshold (hours) : 3.5
Vulnerability threshold (rds / psn) : 120
Ammo truck crew rest (hrs / day) : 6.5
Battalion CSR (rds / tube / day) : 110
BMNT : 05452
EENT : 18202

Maneuver mission (Offense/Defense) : 0

] lchoose F1-Help F4-Prn Scrn ESC-Done

Figure 5.6 Commander's Guidance Screen

101

The Artillery Wargame |

———Battalion Configuration / Status ——

Number of firing units : 6

Number of ammo trucks : 24

| |choose Fi-Help F4-Prn Scrn ESGC-Done

Figure 5.7 Bn Configuration / Status Screen

102

The Artilery Wargame |

—— Battalion Configuration / Status

Firing unit data

Unit name : A
Number of guns : 8.0
Location (node) : 458
Max rounds capacity for firing unit : 1000
Rounds on hand for firing unit : 500

Sustained rate of fire {rounds/tube/min) : 1.5

Page Up-next unit Page Down-Prev Unit

]lchoose Fi-Help F4-Prn Scrn ESC-Done

Figure 5.8 Firing Unit Data Screen

103

The Artillery Wargame |
Battalion Configuration / Status

Ammo truck data

Bumper number : 23
Location (node) : 458
Load status (Full / Empty) : F
Truck capacity (rounds) : 500

Page Up-next truck Page Down-Prev truck

Tlchoose Fi-Help F4-Prn Scrn ESC-Done

Figure 5.9 Ammo Truck Data Screen

104

DTG : 15 0600Z Jan 89

0600 Z

r——Game Menu

Next Time Step
Issue Command
Change Parameters
Network Utility

Quit Game

] | choose —Iselect Fi-Help

Figure 510 Game Play Screen

105

DTG : 15 0600Z Jan 89

Issue Commands

Convoy Ammo Trucks

New convoy name : AY1
Enter bumper numbers for trucks in convoy :

12345617 18 19 22 23 24

] |choose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.11 Create Truck Convoy Screen

106

DTG : 15 0600Z Jan 89

Issue Commands

Remove Truck Convoy

Convoy to be separated : AYi

| |cnoose Fi-Help F2-Execute Cmd F4-Print
. ESC- Abort

Figure 512 Remove Truck Convoy Screen

107

DTG : 15 0600Z Jan 89

Issue Commands
Move a Unit
Command number : 1234
Start Node : 458

Along Path: A to Node : 789
Along Path :

ESC- Abort

]lcnoose F1-Help F2-Execute Cmd F4-Print

Figure 5.13a Move a Unit Screen (pPqrt 1)

108

DTG : 15 0600Z Jan 89

Issue Commands

Move a Unit

Command number : 1234
Enter movement infomation:
Unit to move : A
Time for movement : 15 100Z FEB 89
Is this a departure or anival fime (D/ A): D

Node to resupply at : (Optional)

]lChoose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.13b Move a Unit Screen (Part 2)

109

DTG : 15 06002 Jan 89

Issue Commands

Change Unit Firing Rate

Unit to change : A

Firing rate (% CSR) : 100

Choose F1-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.14 Change Unit Firing Rate Screen

110

DTG : 15 0600Z Jan 89

Issue Commands

Ammunition Resupply

Ammo truck bumper # or Convoy name : AY1

Unit or node to resupply : A

.]lcnoose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.15 Ammo Resupply Mission Screen

111

DTG : 15 0600Z Jan 89

Issue Commands

Fire Unit Ammunition Pickup

Fire Unit to Pickup Ammo : A

Location of Ammo : 458

][cnoose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 516 Ammo Pickup Mission Screen

112

DTG : 15 0600Z Jan 89

issue Commands

Ammunition Pickup

Command number : 1237

Ammo truck or convoy to pickup ammo : 24

Departure time : 15 0800Z Jcn 89

Pickup Location (ATP or node) : ATP

| |cnoose Fi-Help F2-Execute cmd Fa-Print
ESC- Abort

Figure 517 Ammo Truck / Convoy Pickup Screen

113

DTG : 15 0600Z Jan 89

Issue Commands
Fire Order
Command number : 1238
Unit to fire : B
Time to fire : 15 0900Z Jan 89

Number of volieys : 2

] lChoose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.18 Fire Order Screen

114

DTG : 15 0600Z Jan 89

Issue Commands

Cancel Command

Number of command to cancel : 1237

-]lChoose Fi-Help F2-Execute Cmd F4-Print
ESC- Abort

Figure 5.19 Cancel Command Screen

115

STATISTICS / MOE DATA
Total time firing sections were available (hrs): 7589
Max. possible available time : 9255
Availabity Ratio : .82

Total Time firing sections critically short ammo : 98.2
Max possible critical short time : 9255

Critically Short Ratio : 0.0106

Total Time firing sections at critical vulnerability : 211
Max possible critical vulnerability time : 9255

Critical Vulnerability Ratio : 0.0227

Total time lost due to truck casualties (hrs) : 985.2
Max possible casualty time (hrs) : 9255

Truck Casualty Ratio : 0.106

Field Artillery Battalion Command and Control
Effectivenes Index : 0.687

Number of rounds on hand at end of game in
excess of battalion CSR : 852

\ el

Figure 5.20 Statistics / MOE Printout

116

VI. BSUGGESTED ENHANCEMENTS AND POTENTIAL USES

A. INTRODUCTION

The primary objective of this wargame has been achieved:;
to provide a tool for training officers in the integration
of tactics and logistics as it relates to the command and
control of a field artillery battalion. As with any
undertaking of this kind, there is still plenty of room for
improvements which would enhance the wargame’s effectiveness
in training these officers. In spite of the need for
improvement, the wargame, as it currently exists, is still

very useful.

B. POTENTIAL WARGAME USES

It is very important to note, before discussing any of
the wargame’s uses, that this game is not to be used as a
tool to validate a unit’s war plans. This point cannot be
emphasized enough. The game, while it was intended to be as
realistic as possible, does not claim to accurately model
casualty rates. It is primarily for this reason that the
wargame should not be used to validate a unit’s war plans.

It is possible, however, to use the wargame as a tool to
develop familiarity with a unit’s area of operations and its
plans. By loading a unit movement network for a unit’s area
of operations, the unit’s configuration into the battalion

configuration file, the commander’s guidance into the

117

commander’s guidance file, and SOP / operations order items
into the game parameter file, the players can exercise and
become familiar with the unit’s general defense plans. Pre-
hostility deployment @plans, to include occupation of
assembly areas followed by occupation of initial positions
and pickup and delivery of the unit’s basic 1load of
ammunition can easily be practiced. Just as easily, the
unit’s post hostility plans can also be practiced. This
type of training, using the unit’s actual wartime area of
operations and battalion confiquration, can pay great
dividends if the plans are ever called upon to be used in
time of war.

One of the strengths of the wargame is the ability for
the computer assisted portion of the game to be integrated
into any level of CPX. For example, the game can be played
as a part of a battalion’s weekly officer professional
development time, in conjunction with a battalion level CPX,
or it can be integrated into a full scale, higher level,
CPX. In every case, the utility of the game is that it
allows the players to fully integrate tactical decisions
with the 1logistics considerations. Additionally, it
measures their performance using the Field Artillery
Battalion Command and Control Effectiveness Index. By
providing this feedback, the players can assess their
decisions, and perhaps vary their method of command and

control in order to maximize howitzer availability time,

118

minimize casualty time, vulnerability time, and time spent
critically short of ammunition.

Another training strategy is to play the game
competitively. For example, at the division artillery
level, the game’s setup files can be established so that
they are the same for each battalion. Then, each battalion
can play the game for a specified period of game time. At
the end of the game, the gaﬁe's statistics are assessed to
determine which battalion more effectively command and
controlled the wargame’s units. A similar technique can be
used for training within a battalion by playing the game
competitively between the battalion’s day and night shift
personnel.

Finally, the game can be used by a battalion to study
the effect on their tactics of increasing enemy lethality.
By changing the value of "a" in the Lanchester equations
found in the source code, the casualty rates can be changed.
For each level of casualty rates, a set of tactics can be
developed to more effectively command and control the
battalion. The types of things which can be varied within
the set of tactics include the size of ammunition convoys,
the frequency and distance of moving firing units, the rate
of firing for fire units, the use of point or unit
distribution for ammunition resupply, the types of positions

which are occupied (rural or urban), and the positioning of

119

the field trains in relation to the fire units and the

ammunition transfer point.

C. INMPROVEMENTS / ENHANCEMENTS

The wargame, as it currently exists, is fully
functional. However, there are some areas which can be
expanded in order to make the wargame more useful. The
enhancements described in the following paragraphs are
listed in order of priority from highest to lowest.

1. Different Ammunition Types

Currently, the wargame allows the players to manage
ammunition of only one type. While there are many things
that can be learned about the integration of tactics and
logistics when only using one ammunition type, the issues
become much more complex when the myriad of possible
ammunition types are included in the game. It is not only a
logistics management problem, but also it has a profound
impact on tactical planning.

In order to implement this enhancement, the fire
unit, truck, and node records all will have to be modified
to include each of the various ammunition types.
Additionally, everywhere in the time step that ammunition is
either transferred or expended, it must be done for each
ammunition type. Finally, new criteria must be used to
determine what constitutes 1low or critical ammunition

levels.

120

2. Explicitly Play PLOT / Ranges

Currently, there is no cartesian coordinate system
implemented within the wargame. This would not be difficult
to implement and would enable certain useful functions. For
example, it would enable the howitzer’s range to be played.
Currently, it is up to the players to check the unit’s range
fan against the battlefield geometry to determine if the
unit needs to move due to range considerations. If the
cartesian coordinate system were implemented, this would
enable the computer to also check the range. If the players
failed to move the unit as the FLOT moved out of range, then
the unit would no longer be considered available. Other
functions would be enabled as well by implementing this
enhancement, range checks could be made for fire missions,
unit positions could be overrun by the FLOT, and
prepositioned ammunition could also be overrun by the FLOT.

In order to implement this enhancement, the node
records need to be modified to include an X and Y coordinate
for the UTM grid location of the node. Additionally, a
record needs to be created for the coordinates of the FLOT,
and procedures need to be written to calculate the distance
between two points and to determine if a point lies above,
below, left, or right of a line.

3. Requests for Fires
The way the wargame is now written, the players can

fire a fire mission but the target is not explicitly named.

121

It is up to the players to ensure the target is within range
before firing. Furthermore, the only impetus for firing
comes from the players themselves, either to fire a fire
plan directed by the operations order or to fire targets of
opportunity generated by the players themselves. Since the
players are assumed to be the battalion staff, the only
types of fire missions which are played are battalion level
missions or battery missions which are originated at the
battalion level. All other firing is done by establishing a
firing rate in terms of the CSR in order to expend the
ammunition.

1ne first problem can be resolved by implementing
the cartesian coordinate system. The second problem can be
resolved by randomly generating requests for fires on
randomly generated coordinates located on the far side of
the FLOT. This process can be written to simulate
FIREFINDER radar output or target lists from the division
artillery target intelligence files. In either case, it
would be up to the players to decide which targets to
engage, which fire units to use, and with which ammunition
types.

4. Play Fuel

Fuel was not played in this version of the wargame

because fuel is already played in real training through

actual consumption. Nevertheless, fuel is a very important

122

consideration in the integration of tactics and logistics.
As such, it should be added to the wargame.

In order to implement this improvement, a similar
approach to the one used for the ammunition resupply can be
used. Rather than rounds of ammunition, resupply will be in
gallons of fuel. Rather than a firing rate, consumption.
will -be in terms of a rate based upon the unit’s posture,
e.g. in position or moving. Like the ammunition trucks,
fuel can be delivered by the combination of a movement
command to the trucks or fire units and a resupply mission
command.

Implementation of this command will ensure that the
players do not move the units so much that they run out of
fuel. It also forces them to plan for fuel resupply using
either unit or point distribution thereby integrating the
requirement for fuel into the Dbattalion’s overall
operational plan.

5. Play Maintenance

Like fuel, maintenance was not included in the first
version of the wargame because it is regularly practiced in
real training. It is, however, a real problem and therefore
should be included in future versions of the game.

It can be implemented by forcing a certain amount of
"down" time or maintenance time for every kilometer traveled
by the battalion’s vehicles. This "down" time would then be

subtracted from a fire unit’s availability time. For

123

ammunition trucks the "down" time could be handled similarly
to the way that crew rest requirements are currently
handled. In short, the truck would not be available for N
ammunition resupply missions while in a "down" status.
6. Network Utility

The network utility was assigned the lowest priority
because it provides a service which is normally done
manually by the players and it may be construed as
detracting from the player’s training. The network utility
is intended to determine the shortest route (time or
distance) between two nodes in the unit movement network or
determine the safest route in terms of vulnerability
factors. It can be used as a staff planning aid in
determining unit movement routes or it can be used to
automate the movement orders by allowing the players to
specify that a move between two nodes be done using the
shortest or safest route.

The node and path records needed for this
enhancement are already in place. All that is needed are
procedures containing the appropriate algorithms to

implement the functions.

D. FINAL COMMENTS

At the very least, this wargame can serve as a working
prototype for a wargame to train officers in the integration
of tactics and 1logistics as related to the command and
control of a field artillery battalion. The word "working"

124

N

is emphasized Dbecause this wargame, as currently
implemented, is fully operational and is capable of use by
units in the field. The wargame’s greatest strengths are
that is requires very 1little training on the use of the
wargame itself, it can be played on an IBM compatible
personal computer, it uses the Field Artillery Battalion
Command and Control Effectiveness Index to provide feedback,
and it forces the players to consider aspects of field
artillery battalion command and control which are very
difficult if not impossible to practice through actual
training.

Finally, it should be pointed out that this wargame was
originally conceived to satisfy a perceived deficiency in
training which is common to all units that require large
quantities of bulk supplies, such as ammunition, to sustain
them in combat. The point is that this wargame, with
relatively minor changes, could be used for air defense
artillery units, armor units, and infantry units. 1In short,
the concept can be expanded into a whole class of wargames
which can be used by battalion level officers for training

in the integration of tactics and logistics.

125

APPENDIX

DOCUMENTED SOURCE CODE

(**)

{
Program name : WARGAME

Purpose : this program is a computer assisted
wargame designed to exercise the command and
control functions in a field artillery
battalion as they relate to the integration
of tactics and logistics.

Written by : Anthony R. Ferrara

Michael W. Schneider

Program completed : 23 March 1989

Language used : Turbo Pascal 5.0

System : IBM Personal System II Model 50
running DOS 3.30

Environment required : IBM compatible system
with color monitor.

Program structure :
this program makes extensive use of the unit
structure defined by Turbo pascal. All of
the procedures, functions, and variables of
the program are contained in the units that
are part of this program.

Units :

GLOBAL - this unit contains the declarations
for all of the files, records and variables
used for the game itself.

GAME - this is the unit responsible for the
overall control of the game: its
initialization, modification of parameters,
execution of the game, and issuing of
commands.

INIT -~ contains the procedures that initial-
ize the game and allow the user to change
any of the games parameters.

SCENARIO - contains the procedures that
initialize, modify, and create the scenario
for the game.

TIMESTEP - this unit contains the procedures
that comprise the "heart" of the game, it
actually executes each time step and
processes the event records for the game.

COMMANDS - this unit contains the procedures

126

that allow the user to issue commands that
allow the command and control of an
artillery battalion to take place.

GAMEUTIL - this unit contains a number of
general purpose utility procedures and
functions that are used by more than one
unit and are specific to the game.

UTILITY - this unit contains a library of
general purpose procedures that are
specifically for the generation of the user
interface, both input and output.

TACCESS -~ this a Borland written unit that
contains a number of low level procedures
that provide database related functions
used throughout the gane.

TAHIGH - this a Borland written unit that
contains a number of high level procedures
that provide database related functions
used throughout the game.

)

(**)

program wargame;
{$m 65520,0,655360)

uses crt, utility, game;
var choice : integer;
begin

initialize_screen;
remove_cursor;

repeat
center_text (1, ‘The Artillery Wargame !’, blue):
choice := menu_selection (’Main Menu’,

’Start a new game|Continue an
old game|Quit\’);
case choice of

1 : play_new_game;
2 : play_old_game
end

until choice = 3;
restore_cursor;
initialize_screen
end.

~2

127

(**)

{
Unit name : GLOBAL

Purpose : this unit contains all of the declara-
tions necessary for the game itself. It con-
tains declarations for all of the files used
to save the game variables from game to game
on disk. It also contains default values for
records wherever they were possible. The
specific purpose of each variable is clearly
indicated by its name.

(**)
unit global;

interface
uses dos, utility, taccess, tahigh;

const
scenario_file_header = ’This is a valid wargame scenario

file !’;
max_firing_units = 6;
max_ammo_trucks = 24;
trains_filename
firing_unit_filename
ammo_truck_filename
cdrs_guidance_filename
game_parameter_filename

’trains.dat’;

'fireunit.dat’;
'ammotrck.dat’;
’cdrguide.dat’;
‘gamparam.dat’;

node_data_filename_ext ’.scl’;
path_data_filename_ext r.sc2’;
node_index_filename_ext ’.sc3’;
path_index_filename_ext ’.sc4’;

event_data_filename
event_time_index_filename
event_serial_index_filename
message_data_filename
message_type_index_filename

revnt$lst.dat’;
’evntSlst.ixl’;
revntS$lst.ix2’;
'msg$list.dat’;
‘msg$list.idx’;

{$1 global.typ)

type
firing_unit_record = record

record_status : longint;
firing_unit_name : strings;
number_of_guns : integer;
location : stringlo;
section_max_rounds_capacity : integer;
rouads_on_hand : integer;
sustained_rate_of_fire : integer;

128

time_in_position

rounds_fired from_position

vulnerability status
firing_status
ammo_status
support_mission
rate_percent_csr
ammo_pickup mission
ammo_pickup_location
traverse_minefield
minefield_location
pending_movement
ammo_low
ammo_critical
ammo_out
vulnerability_high

vulnerability critical
sections_in_operating_.
total_availability time

critically_short_time

critically_vulnerable_

end;

record_status
bumper number
location
load_status
ammo_capacity
convoy_name
mission_assigned
moving

firing_unit_to_resupply

node_to_resupply
vulnerability_status
amount_of_rest
time_since_rest_began
traverse_minefield
minefield_location
pending_movement
effective_percent
killed
casualty_time

end;

battalion_trains_record =

record_status
location

moving
pending_movement
time_in_position
vulnerability_ status
vulnerability_high

longint;
integer;
char:
char;
char:
string3;
real;
boolean;
stringlo
boolean;
stringlo
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
real:
longint;
longint;
longint

condition

time

ammo_truck_record = record

longint;
string5;
stringlo0;
char;
integer:;
string5;
char;
boolean;
string5;
strings;
char;
longint;
longint;
boolean;
stringlo;
boolean;
real;
boolean;
longint

record
longint;
stringlo;
boolean;
boolean;
longint;
char;
boolean;

a0 o0 se o9 ee se s

129

.
’

L3
’

vulnerability critical : boolean
end;
cdr_guidance_record = record

record_status : longint;
unit_sitrep_frequency ¢ integer; .
vulnerability threshold_time : real;
vulnerability_threshold_rounds : integer:;
crew_rest_per day : real; .
bn_csr : integer;
bmnt : strings;
eent ¢ string5s;
maneuver_mission ¢ char;
axis ¢ integer
end;
game_param_record = record
record_status ¢ longint;
time_step_size : integer;
avg_track_convoy_speed : integer;
avg_wheel_convoy_speed : integer;
avg_time_trains_to_atp : integer
end;
scenario_info_record = record
record_status : longint;
opord_number ¢ stringlo;
opord_date : stringls;
map_sheets ¢ string80;
start_dtg : stringl5s;
admin_notes : array [1..10]) of stringé60 .
end;
node_record = record
record_status : longint;
node_name : string5;
paths : array [1..6] of string5;
grid ¢ stringlo;
position_type ¢ char;
cover_concealment : char;
ammo_count ¢ integer
end;
path_record = record
record_status : longint;
path_name ¢ strings;
start_node : string5;
end_node ¢ string5;
length ! real;
road_condition : char;
bridge ¢ char;
bridge_griad ¢ stringlo; "
vulnerability : char
end;
event_record = record .

record_status : longint;

130

e ——————————————————————

ﬁ;

event_type : char;
serial_number : integer;
time_key : stringlo;
unit_type ¢ char;

. unit_name : string5;
volleys ¢ integer;
grid : stringl0;

. node : string5;
path : string5
end;

message_record = record

record_status : longint;
message_type : char;
unit_type : char;
unit_name : string5;
location : stringl0;
ammo_status ¢ char;
vulnerability : char
end;)

stat_record = record
availability : real;
max_availability ¢ real;
availability ratio ¢ real;
ammo_short_time : real:;
max_ammo_short_time : real;
ammo_short_time_ratio : real;
vulnerability ¢ real;

. max_vulnerability ¢ real;
vulnerability_ ratio : real;
truck_casualties ¢ real;

. max_truck_casualties : real;
truck_casualties_ratio : real:;
moe ¢ real:;
rounds_on_hand : integer;
total_guns_at_start : integer
end;

firing_unit_array = array [1..max_firing units] of
firing_unit_record;
ammo_truck_array = array [1..max_ammo_trucks] of
ammo_truck_record;
var
game_stats : stat_record;
scenarioc_file_name : string80;
scenario_file : text;
node_data_filename : string80;
. path_data_filename : string80;
node_index_filename : string80;
path_index_ filename : string80;

) trains_file : file of battalion_trains_record;
fireunit_file : file of firing_unit_record:

131

ammotrck_file
cdrguide_file
gamparam_file

number_of_firing_units

number_of ammo_t
firing_units
ammo_trucks
battalion_trains
commanders_guida

file of ammo_truck_record;
file of cdr_guidance_record:;
file of game_param_record;

integer:;

integer:;

firing unit_array:;
ammo_truck_array:;
battalion_trains_record;
cdr_guidance_record;

rucks

nce

game_parameters game_param_record;
scenario_info scenario_info_record;
nodes dataset;

paths dataset;

event_list datafile;

time_index indexfile;

serial_ number_index indexfile;

messages datafile;
message_type_index indexfile;

game_start_time : datetime;
game_start_dtg : stringls;
game_time : datetime;

game_dtg : stringls;
total_game_time : longint;
new_day : boolean;

day_time : boolean;
time_since_last_sitrep : integer;
atp_rounds_on_hand : integer;
hostilities_started : boolean;
command_serial_number : integer;

const
default_firing_unit_data : firing unit_record

= (record_status
firing_unit_name

null_string;

number of_ guns

location
section_max_rounds_capacity
rounds_on_hand
sustained_rate_of_fire
time_in_position
rounds_fired_from_position
vulnerability_status
firing_status

ammo_status
support_mission
rate_percent_csr
ammo_pickup_mission

132

08 e o8 00 90 o0 20 20 e 20 se s e

IDSI;
1.0;
false;

..

ammo_pickup_location
null_string:;

traverse_minefield

minefield location
null_string:;

pending_movement

ammo_low

ammo_critical

ammo_out

vulnerability high

vulnerability critical

sections_in_operating condition

total_availability time

critically_short_time

critically_vulnerable_time

)¢

default_ammo_truck_data : ammo_truck record

o

= (record_status
bumper number

0;

location r1’;
load_status ‘F’;
ammo_capacity 300;

convoy_name
mission_assigned
moving
firing_unit_to_resupply
node_to_resupply

'N’;

vulnerability status ‘A’
amount_of_rest 0:
time_since_rest_began ;
traverse_minefield false;

minefield_location

pending_movement false
effective_percent 1.0
killed false;
casualty time 0

)¢

false;
null_string;
null_string;

.
14

null_string;

null_string;

null_string:;

false;

false:;
false:
false;
false;
false;
false;
8.0;

.
’

.
’

0

default_battalion_trains : battalion_trains_record

= (record_status : 07
location IR O
moving : false;
pending_movement : false:;
time_in_position : 05
vulnerability_status : 'A';
vulnerability high : false;
vulnerability critical : false

):

default_commanders_guidance : cdr_guidance_record

= (record_status
unit_sitrep_frequency
vulnerability_ threshold_time

133

0;
60;
6.5;

vulnerability_threshold_rounds : 200;
crew_rest_per_day : 6.5;
bn_csr : 100;
bmnt ¢ ’054527;
eent t 7182027;
maneuver_mission : '0/;
axis : 090

) :
default_game_parameters :

game_par

= (record_status : 07
time_step_size : 30;
avg_track_convoy_speed : 20;
avg_wheel_convoy_speed : 35;
avg_time_trains_to_atp : 180

am_record

default_scenario_info

(record_status
opord_number
opord_date
map_sheets
start_dtg
admin_notes

)¢
default_node node_reco
(record_status
node_name
paths
null_string,

null_string);
grid

scenario_info_record
0;

’0001’;

’ I;

’None applicable’;
/15 0600Z NOV 88';

(’ r s ' ¢
’ ’ ,
’ ’ '
’ ’

’ ’ 4
!

rd

0;
null_string;
: (null_string,

null_string,
null_string, null_string,

null_string;

position_type : 'R’;
cover_concealment : 'M’;
ammo_count : 0

)¢

default_path : path_record
= (record_status : 0;
path_name : null_string;
start_node : null_string:
end_node : null_string;
length : 07
road_condition : ’‘M’;
bridge : /N7
bridge_grid : null_string:
vulnerability : ’'M’/
):
default_scenario_file_name : string80 =
‘newS$scen.scn’;
default_number_of_firing units : integer = 6;
default_number_of ammo_trucks : integer = 24;

134

A

implementation

begin
end.

~Z

135

(**)

{
Unit name : GAME

Purpose : this unit contains the procedures that
actually comprise the heart of the wargame.
It is responsible for initializing either a
nev or old game, running the game, and taking
care of the functions necessary when quitting.
As part of the game itself it also controls
execution of the time step, the issuing of
commands, and the changing of allowable game
parameters for the execution of the game.
This unit can be thought of as having four
subordinate units that contains the procedures
that carry out its functions. T..ese are INIT,
SCENARIO, TIMESTEP, and COMMANDS.

(**)
unit game;

interface

{$I~)

uses crt, printer, utility, gameutil, global, init,
scenario, timestep, commands, taccess, tahigh;

procedure play new_game;
procedure play_old_game;

implementation
(**)

{
Procedure name : PLAY WARGAME

Purpose : this procedure controls the play of
wargame once it has been initialized as
either a new or old game, as appropriate.
It displays the game screen, and provides the
game menu. It relies on four units: INIT,
SCENARIO, TIMESTEP, and COMMANDS. These are
called as is necessary to handle the selection
made from the game menu by the player.

Parameters : none.

Called by : PLAY NEW_GAME
PLAY_OLD_GAME

)

(**)
procedure play_wargame;

136

var
choice : integer;

(**)

{
Procedure name : DISPLAY_ GAME_MAIN_SCREEN

Purpose : this procedure displays the current
game time in large block letters at the top
of the screen and the current dtg in normal
size characters on the top line of the screen.

Parameters : none.

Called by : PLAY WARGAME
EXECUTE_NEXT_TIME_STEP

}

(**)
procedure display game_main_screen;

var
dtg : stringils;

begin

initialize_screen;

dtg := remove_blanks (game_dtgqg):

put_font_string (17, 3, copy (dtg, 3, 4) + blank + copy
(dtg, 7, 1), cyan);

center_text (1, ‘DTG : '+ game_dtg, yellow)

end;

procedure execute_next_time_step;

begin

inc_time (game_time, game_parameters time_step_size):

datetlme to_dtg (game_time, game_dtg):

total_game_time 1= total_game_time +

game_parameters.time_step_size;

new_day := ((game_time.hour * 60) + game_time.min) <
game_parameters.time_step_size;

determine_day_or_night;

display_game_main_screen;

process_events_list;

stock_atp:

process_field_trains;

process_ammo_trucks;

process_fire_units:

generate_messages

end;

137

(**)

{
Procedure name : ISSUE_COMMAND

Purpose : this procedure presents the command
menu to the player. It is responsible for
calling the appropriate procedure to handle
the command selected by the user.

Parameters : none.

Called by : PLAY WARGAME

(**)
procedure issue_command;

begin
clear_area (1,2,80,25);
draw_window (1,2,80,23, menu_forecolor, menu_backcolor,
'Issue Commands’);
repeat
menu_x1 := 12; menu_yl := 5;
menu_xz := 68; menu_y2 := 19;
choice := menu_selection (null_string, ‘Create truck

convoy| ’+
’Remove truck
convoy| ‘+
’‘Move a unitj’+
’Request sitrep|’+

’Change firing
rate)’+

’Issue fire
order|’+

’Cancel command]’+

/! Ammo resupply
mission|’+

’Cancel resupply
mission|’+

’Fire unit ammo

pickup|’+
Cancel fire unit
pickup|’+
‘Ammo truck ammo
pickup|’+
'RETURN TO
GAME\’) :
menu_x1 := menu_x1_default; menu_yl := menu_yl_default;
menu_x2 := menu_x2_default; menu_y2 := menu_y2_ default;

case choice of

138

create_truck_convoy;
remove_truck_convoy;
move_unit;
display sitrep;
change_firing_rate;
issue_fire_order;
cancel_command;
ammo_resupply_mission;
cancel_resupply_mission;
fire_unit_ammo_pickup:;
cancel_fire_unit_pickup:;
ammo_truck_ammo_pickup

VOONOWN M
68 00 90 ¢¢ oo ¢4 0¢ o0 oo

-
[
e se oo

end
until choice = 13;
initialize_screen
end;

(**)

{
Procedure name : CHANGE_PARAMETERS

Purpose : this procedure presents the menu for
allowing the player to change the commander’s
guidance, the game parameters, modify the
network, or access the network utility.

Parameters : none.

Called by : PLAY_WARGAME
}

(**)
procedure change_parameters;

var
choice : integer:;

begin
clear_area (1,2,80,25);
repeat
choice := menu_selection (’Scenario / Parameter Menu’,
‘View or change scenario [/
network| ’+

'View or change game
parameters|’+

'View or change commander’’s
guidance|’+
'Return to game\’);
case choice of
1l : view_scenario;
2 : view_game_parameters;
3 : view_commanders_guidance

139

end
until choice = 4;
initialize_screen
end;

(**)

{
Procedure name : QUIT_GAME i

Purpose : this procedure handles the actions

neccessary for <.iting the game. It presents
the player wit.. the option to save the game in
progress or a%. .don t. It then calculates
and outputs the sta! stics for the game.

Parameters : none.

Called by : PLAY WARGAME

(**)
procedure quit_game;

var
choice : integer;

(**)

{
Procedure name : SAVE_GAME .

Purpose : this procedure saves the current game
so that it can be continued at a later time.
It saves all variables in files on disk so y
that can be retrieved by INITIALIZE_OLD_GAME.

Parameters : none.

Called by : QUIT_GAME
}

(**)
procedure save_game;

begin
end;

(**)

{
Procedure name : OUTPUT_STATISTICS .

Purpose : this procedure calculates and prints
on a printer the statistics for the play of i

the ganme.

140

_

Parameters : none.

Called by : QUIT GAME

* (*********************t**tt*tt*t*t***************)
procedure output_statistics;

- . (*********************t******t*f***i*******t*****)

{
Procedure name : CALCULATE_STATS

Purpose : this procedure calculates the
statistics for the game.

Parameters : none.

Called by : OUTPUT_STATISTICS
)

(*t******rki*************************************)
procedure calcuiate_stats;

var

L. L7 ager;

“e.. ode : node_record;
tcur name : stringlo;

begin
with yame_stats do
begin
availability := 0.
. ammo_short_time :=
vulnerability := 0.
rounds_on_hand := 0
total_guns_at_start := 0;
for i := 1 to number_of_firing_units do
begin
availability := availability +
(firing units{i].total_availability_time / 60);
ammo_short_time := ammo_short_time +
(firing_units{i).critically_short_time / 60);
vulnerability := vulnerability +
(firing_units[ij.critically_vulnerable_time / 60);
rounds_on_hand := rounds_on_hand +
firing_units[i]).rounds_on_hand;
total_guns_at_start := total_guns_at_start +
firing_units([i].number_of_guns
end;
max_availability := total_game_time * total_guns_at_start
/ 60;
- availability ratio := availability / max_availability;

;
0.0;
4]

141

max_ammo_short_time = total_game_time *
total_guns_ at start / 60;

ammo_short_time_ratio = ammo_short_time /
max_ammo_short_time;

max_vulnerability t= total_game_time *

total_guns_at_start / 60;
vulnerabllity ratio := vulnerability / max_vulnerability;

truck_casualties := 0.0;
for i := 1 to number_of_ ammo_trucks do
begin
truck_casualties := truck_casualties +
(ammo_trucks{i]. casualty_tlme / 60);
if ammo_trucks[i]).load_status = ‘F’ then
rounds_on_hand := rounds on_hand +
round (ammo_ trucks[i] ammo_capacity *
ammo_trucks(i].effective_ percent)

end;
max_truck_casualties = total_game_time *
number_of ammo_trucks / 60;
truck_casualties_ratio ¢= truck_casualties /
max_truck_casualties;
moe := availability ratio - ammo_short_time_ratio -

vulnerability_ ratio - truck casualties _ratio;
tareset (nodes):;
tanext (nodes, temp_node, node_name);
while ok do
begin
rounds_on_hand o= rounds_on_hand +
temp_node.ammo_count;
tanext (nodes, temp_node, node_name)
end;
rounds_on_hand = rounds_on_hand -
commanders_guidance.bn_csr;
if rounds_on_hand < 0 then
rounds_on_hand := 0
end
end;

(**)

{
Procedure name : PRINT_STATS

Purpose : this procedure prints the statistics
for the game on the printer.

Parameters : none.
Called by : OUTPUT_STATISTICS
)

(**)

142

procedure print_stats;

const
ff = #12;
begin
with game_stats do
begin
writeln (1st, ff):
writeln (1lst);
writeln (1lst):;
writeln (1lst):
writeln (1lst):
writeln (1lst):;
writeln (1st):; :
write (1st, ’Game start time : ’/):
writeln (1st, game_start_dtg);
write (1st, ’‘Game end time A W
writeln (1st, game_dtqg);
writeln (1lst);
write (1st, ’‘Total time firing sections were available
(hours) : 7);
writeln (1st, availability:4:2):;
write (1st, ’‘Maximum possible availability time (hours) :
l);
writeln (1lst, max_availability:4:2);
write (1st, ‘Availability ratio (maximize) : *);
writeln (lst, availability_ratio:4:2);
writeln (1lst):
write (1st, ’'Total time firing sections were critically

short ammo (hours) :

writeln
write
{hours)
writeln
write
writeln
writeln
write

vulnerable (hours) :

writeln
write
{hours)
writeln
write
writeln
writeln
write
(hours)
writeln
write

I);
(1st, ammo_short_time:4:2):;
(1st, “’Maximum possible
:)
(1lst,
(1st,
(1lst,
(1st);
{1lst,

critically_short_time

max_ammo_short_time:4:2);
‘Critically short ratio (minimize) :
ammo_short_time_ratio:4:2);

I);

‘Total time firing sections were critically

I):

(1st, vulnerability:4:2);

(1st, ’‘Maximum possible critically vulnerable time

R

(1st, max_vulnerability:4:2);

(1st, ‘Critically vulnerable ratio (minimize) :

(1st, vulnerability ratio:4:2);

(1st);
(1st,

HERA

(1st, truck_casualties:4:2);

(1st, ’‘Maximum possible casualty time (hours)

I);

'Total time 1lost due to truck casualties

"y ;
143

writeln (1st, max_truck_casualties:4:2);
write (1st, ’‘Truck casualty time ratio (minimize) : ’);
writeln (lst, truck_casualties_ratio:4:2);
writeln (1lst);
writeln (1lst, ‘MOE (availability ratio - critically short
ratio -’);
write (lst, ’ vulnerability ratio =~ casualty ratio)
:)z
writeln (lst, moe:4:2);
writeln (1lst):;
write (1st, ’‘Number of rounds on nand in excess of CSR
(minimize) : ’);
writeln (1st, rounds_on_hand);
writeln (ist, ff)
end
end;

begin
if not printer_ready then
begin
save_screen;
draw_window (21,12,60,15, yellow, red, null_string):
center_text (13, ‘Printer not ready’, yellow);
center_text (14, ’‘press any key’, white);
key := get_key;
key := null;
restore_screen
end;
if total_game_time > 0 then
begin
calculate_stats;
if printer_ready then
print_stats
end
end;

begin
choice := menu_selection (’Quit Game’, ’'Save game in
progress |Abandon game\’);
if choice = 1 then
save_game;
close_all_files;
output_statistics
end;

begin
initialize_screen;
repeat
display game_main_screen;
if not hostilities_started then
check_for_start_of_hostilities;

144

menu_x1 := 1;

menu_yl := 11;

menu_x2 := 23;

menu_y2 := 23;

choice := menu_selection (’Game Menu’, ’Next time step|’+

’Issue command|’+

f ¢ h a n g e
parameters|’+

'’ Ne tworik

utility|’+
’Quit game\’);
menu_x1 := menu_xl_default;
menu_yl := menu_yl_default;
menu_x2 := menu_x2_default;
menu_y2 := menu_y2_ default;

case choice of

1 : execute_next_time_step;
2 : issue_command;
3 : change_parameters;
4 : network_utility
end

until choice = 5;
initialize_screen;
quit_game

end;

(**)

{
Procedure name : PLAY NEW_GAME

Purpose : this procedure initializes and plays
a new game.

Parameters : none.

Called by : WARGAME
}

(**)
procedure play_ new_game;

begin

if initialize_new_game then
play_wargame

end;

(**)

{
Procedure name : PLAY_ OLD GAME
Purpose : this procedure initializes and plays

145

an old game.
Parameters : none.

Called by : WARGAME
)

(**)
procedure play_old_game;

begin

if initialize_old_game then
play_wargame

end;

begin

end.
~Z

146

(**)

{
Unit name : INIT

Purpose : this unit contains the procedures that
initialize all of the variables and files for
both a new game or an old game to be continued
if desired. It also contains the procedures
that allow the user to create or modify his
battalion for the game. This includes the
trains, fire units, and ammo trucks. The
player can also modify the game parameters and
commanders guidance with procedures in this
unit. It calls procedures in unit SCENARIO
to also allow the user to create and modify a
scenario complete with nodes and paths.

(**)
unit init;

interface
{$I-)

uses dos, crt, utility, gameutil, global, scenario, taccess,
tahigh;

procedure view_game_parameters;
procedure view_commanders_guidance;
procedure view_battalion_confiyuration;
function initialize_new_game : boolean;
function initialize_old_game : boolean;

implementation

var
firing unit_number : integer:;
ammo_truck_number : integer;

(**)

{
Procedure name : UNIQUE_FIRING_UNIT_NAME

Purpose : this procedure insures that a firing
unit that is being created or modified is
assigned a unigque name. It checks the
names of the other firing units, the ammo
trucks, and the trains.

Parameters : STRING_VALUE - name to be checked

Called by : passed as a parameter to

147

EDIT_SCREEN by UPDATE_FIRING_UNIT DATA
)

R R L e e LS T)

($F+}l L] L] s [
function unique_firing unit_name (string_value : string80):
boolean;

var
unique_name : boolean;
unit_number : integer:;

begin
unigue_name := true;
if string_value <> null_string then

begin

for unit_number := 1 to number_of_firing_units do

if (string_value =
firing_units{unit_number).firing_unit_name) and
(unit_number <> firing_unit_number) then
unique_name := false;
if unique_name then
unigue_name := (truck_number (string_value) = 0) and
(string_value <> ’TRAIN’)

end
else

unique_name := false;
if not unique_name then

display_error_message (’INPUT ERROR’, null_string,
null_string,

‘unit must have a unigque name’,

null_string);
unique_firing_unit_name := unique_name
end;
(SF-)

(**)

{
Procedure name : UNIQUE_BUMPER_NUMBER

Purpose : this procedure insures that an ammo
truck that is being created or modified is
assigned a unique bumper number. It checks
the bumper numbers of the other trucks, the
names of the firing units, and the trains.

Parameters : STRING_VALUE - bumper number to be
checked.

Called by : passed as a parameter to
EDIT_SCREEN by UPDATE_AMMO_TRUCK_DATA

148

(****************************t*******************)

(SF+) , :
function unique_bumper_ number (string_value : string80):
boolean;

var
unique_name : boolean;
truck_number : integer;

begin
unique_name := true;
if string value <> null_string then

begin

for truck_number := 1 to number_of_ ammo_trucks do

if (string_value = ‘
ammo_trucks[truck_number].bumper_number) and
(truck_number <> ammo_truck_number) then
unique_name := false;
if unique_name then
unique_name := (unit_number (string_value) = 0) and
(string_value <> ‘TRAIN’)

end
else

unique_name := false;
if not unique_name then

display_error_message (’/INPUT ERROR’, null_string,
null_string,

’truck must have a unique name’,

null_string);
unique_bumper_number := unique_name
end;
{$F-)

(**)

{
Procedure name : SAVE_GAME_PARAMETERS_TC_DISK

Purpose . this procedure saves the game
parameter to disk so that it can be used in
successive games to be played by the user
to save him the trouble of having to tailor
it each time.

Parameters : none.

Called by : VIEW_GAME_PARAMTERS
READY_TO_PLAY
' }

(**)
procedure save_game_parameters_to_disk;

149

begin

save_screen;

draw_window (27,11,54,15, yellow, red, null_string);

shade_window (27,11,54,15, black):;

center_text (13, ‘updating files...’, yellow): .

assign (gamparam_file, game_parameter_filename);

rewrite (gamparam_file);

if ioresult = 0 then .
write (gamparam_ file, game_parameters):;

close (gamparam_file);

restore_screen

end;

(**)

{
Procedure name : SAVE_COMMANDERS_GUIDANCE_TO_DISK

Purpose : this procedure saves the commander’s
guidance to disk so that it can be used in
successive games to be played by the user
to save him the trouble of having to tailor
it each time.

Parameters : none.

Called by : VIEW_COMMANDERS_ GUIDANCE
READY_TO_PLAY
. } -
(**)
procedure save_commanders_guidance_to_disk;

begin
save_screen;
draw_window (27,11,54,15, yellow, red, null_string):
shade_window (27,11,54,15, black):
center_text (13, ‘updating files...’, yellow):;
assign (cdrguide_file, cdrs_guidance_filename);
rewrite (cdrguide_file);
if ioresult = 0 then

write (cdrguide_file, commanders_guidance);
close (cdrguide_file);
restore_screen
end;

(**)

{
Procedure name : SAVE_UNIT_DATA_TO_DISK .

Purpose : this procedure saves the unit data
to disk so that it can be used in .
successive games to be played by the user

150

e ————————————

to save him the trouble of having to tailor
it each time. It saves the firing unit data,
ammo truck data, and battalion trains data.

Parameters : none.

Called by : VIEW_BATTALION_CONFIGURATION
READY_TO_PLAY

(**)
procedure save_unit_data_to_disk;

begin
save_screen;
draw_window (27,11,54,15, yellow, red, null_string):;
shade_window (27,11,54,15, black):
center_text (13, ‘updating files...’, yellow);
assign (trains_file, trains_filename);
rewrite (trains_file);
if ioresult = 0 then
write (trains_file, battalion_trains);
close (trains_file);
assign (fireunit_file, firing unit_filename);
rewrite (fireunit_file);
if ioresult = 0 then
for firing_unit_number := 1 to number_of_ firing_units do
write (fireunit_file,
firing_units[firing_unit_number]):;
close (fireunit_file):;
assign (ammotrck_file, ammo_truck_filename) ;
rewrite (ammotrck_file);
if ioresult = 0 then
for ammo_truck_number := 1 to number of_ ammo_trucks do
write (ammotrck_file, ammo_trucks[ammo_truck_number));

close (ammotrck_file):;
restore_screen
end;

(**)

{
Procedure name : VIEW_GAME_PARAMETERS

Purpose : this procedure allows the player to
view, change, or print the game parameters for
the game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME
CHANGE PARAMETERS

151

)

(**)
procedure view_game_parameters;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
battalion configuration data.

Parameters : none.

Called by : VIEW_GAME_PARAMETERS
}

(**)
procedure set_up_ fields;

begin
number_of fields := 4;
with field_list[1l] do

begin

label_string := ’Time step (minutes) :7;

label_x := 15; 1label_y := 10;

int_value := game_parameters.time_step_size;

str (int_value, str_val);

X1l = 63; Yyl := 10; %2 := 67; y2 := 10;

field type := int; int_min_value := 1; int_max_value
maxint

end;
with field_list[2] do

begin

label_string := ‘Average track convoy speed (kph) :’:

label_x := 15; label_y := 12;

int_value := game_parameters.avg_track_convoy speed;

str (int_value, str_val);

X1 := 63; Yyl := 12; x2 := 65; y2 := 12;

field_type := int; int_min_value := 1; int_max_value
120

end;
with field_list(3] do

begin

label_string := ’Average wheel convoy speed (kph) :';

label x := 15; 1label_y := 14;
int_value := game_parameters.avg_wheel_convoy_speed;
str (int_value, str_val):;

X1 = 63; Yyl := 14; x2 := 65; y2 := 14;
field_type := int; int_min value := 1; int_max_value
120
end;
152

with field_list[4] do
begin
label _string := ’Average time from trains to ATP
(minutes) :’;
label_x := 15; label_y := 16;
int_value := game_parameters.avg_time_trains_to_atp;
str (int_value, str_val):
X1 := 63; Yyl := 16; x2 := 65; y2 := 16;
field_type := int; int_min_value := 1; int_max_value :=
maxint
end
end;

begin

set_up_fields;

save_screen;

clear_area (1,2,80,25);

draw_window (1,3,80,23, white, blue, ’‘Game Parameters’):

display_edit_screen_help_line;

edit_screen (number of fields, field_list, not

abort_allowed) ;

with game_parameters do
begin
time_step_size
avg_track_convoy_speed
avg_wheel_convoy_speed
avg_time trains_to_atp
end:;

save_game_parameters_to_disk;

restore_screen

end;

field_list(1l].int_value;
field list[2].int_value;
field list[3].int_value;
field_list([4].int_value

20 09 Be o0
nnnu

(**)

{
Procedure name : VIEW_COMMANDERS_GUIDANCE

Purpose : this procedure allows the player to
view, change, or print the commanders guidance
for the game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME
CHANGE_PARAMETERS

(**)
procedure view_commanders_guidance;

(**)

{
Procedure name : SET_UP_FIELDS

153

Purpose : this procedure initializes the data
that describes the fields for displaying the
commanders guidance data.

Parameters : none.

Called by : VIEW_COMMANDERS_GUIDANCE
}

(**)
procedure set_up_fields;

begin

number_of_fields := 9;

with field_list{1] do
begin
label_string := ’Unit sitrep frequency (minutes) :’;
label_x := 14; label_y := 5;
int_value := commanders_guidance.unit_sitrep_frequency;
str (int_value, str_val);

X1l := 63; yl :=5; x2 := 65; y2 :=5;
field type := int; int_min_value := 1; int_max_value :=
maxint
end;
with field_list([2] do
begin
label_string := ’‘Vulnerability threshold (hours) :’;
label_x := 14; 1label_y := 7; .

float_value :=
commanders_guidance.vulnerability_threshold_time;
str (float_value:6:3, str_val);

x1 := 63; yl :=7; X2 := 68; y2 :=7; :
field_type := float; float_min_value := 0.0;
float_max_value := 100.0
end;
with field_list[3] do
begin

label_string := ‘Vulnerability threshold (rds / position)

« !
label_x := 14; 1label_y := 9;
int_value :=
commanders_guidance.vulnerability_ threshold_rounds;
str (int_value, str_val):;

X1l := 63; yl :=9; x2 := 65; y2 :=9;

field_type := int; int_min_value := 1; int_max_value :=
maxint

end; .
with field_list[4] do

begin

label_string := ’‘Ammo truck crew rest (hrs / day) :’:
label _x := 14; 1label y := 11;

154

float_value := commanders_guidance.crew_rest_per_day:
str (float_value:6:3, str_val);

X1l := 63; yl :=11; x2 := 68; y2 := 11;

field_type := float; float_min_value := 0.0;
- float_max_value := 24.0

end;

with field_list({5]) do

. begin

label_string := ‘Battalion CSR :’;

label_x := 14; label_ y := 13;

int_value := commanders_guidance.bn_csr;

str (int_value, str_val):

13;

X1l := 63; yl := 13; x2 := 66; Yy2 :

field type := int; int_min value := 1; int max_value :=

maxint
end;
with field_list{6] do
begin
label_string := /BMNT :’;

label_x := 14; label y := 15;
str_val := commanders_guidance.bmnt;

X1l := 63; Yyl := 15; x2 := 67; y2 := 15;
field_type := time
end;

with field 1list[7] do
begin
label_string := ’EENT :’;

- label_x := 14; label_y := 17;
str_val := commanders_guidance.eent;
Xl := 63; yl = 17; x2 := 67; y2 := 17;
. field_type := time

end;

with field_list([8] do
begin
label_string := ’‘Maneuver mission (Offense/Defense/No

contact) :/;
label_x := 14; 1label_y := 19;
str_val := commanders_guidance.maneuver_mission;
X1l := 63; yl :=19; x2 := 63; y2 := 19;
field_type := ch; valid_char_set := [’0O’,’D’,’N’];
end;

with field_list([9] do
begin

label_string := ’Axis (bearing in degrees) :’;
label_x := 14; label_y := 21;

int_value := commanders_guidance.axis;
. str (int_value, str_val);
X1 = 63; yl := 21; x2 := 66; Y2 := 21;
:= 1; int_max_value :=

field_type := int; int_min_value
360
end

155

end;

begin

set_up_fields;

save_screen;

clear_area (1,2,80,25);

draw_window (1,3,80,23, white, blue, ’‘Commander’’s

Guidance’) ;

display_edit_screen_help_line;

edit_screen (number_of_fields, field_list, not

abort_allowed) ;

with commanders_guidance do
begin
unit_sitrep_ frequency

field_list[1]).int_value;
vulnerability threshold time :

field_list[2]).float_value;
vulnerability_threshold_rounds

field_list(3].int_value;
crew_rest_per day

field_list[4]).float_value;

bn_csr =
field_list[5]).int_value;

bmnt := field_list(6].str_val;

eent := field list(7].str_val;

maneuver_mission
field_list(8].str_val[l}];
axis :

field list[9].int_value

end;
save_commanders_guidance_to_disk;
restore_screen
end;

(**)

{
Procedure name : VIEW_BATTALION_CONFIGURATION

Purpose : this procedure allows the player to
view, change, or print the battalion
configuration for the game. It presents the
player with a menu to select the trains,
fire units, or ammo trucks.

Parameters : none.

Called by : INITIALIZE_NEW_GAME
)

(hr Rk kR kAR IR R R AR RN R IR RRR KRR IR AR R AR AR R AR AR K)
procedure view_battalion_configuration;

156

var
choice : integer;

(**)

{
Procedure name : UPDATE_TRAINS_LOCATION

Purpose : this procedure allows the player to
view, change, or print the location of the
battalion trains for the start of the game.

Parameters : none.

Called by : VIEW_BATTALION_CONFIGURATION

(**t*****)
procedure update_trains_location;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
location of the battalion trains data.

Parameters : none.

Called by : UPDATE_TRAINS_LOCATION
}

(**)
procedure set_up_ fields;

begin
number_of_ fields := 1;
with field list{1] do
begin
label_string := ’‘Trains location (node) :’;

label_x := 27; 1label_ y := 13;
str_val := battalion_trains.location;
x1l = 53; yl := 13; x2 := 57; y2 := 13;
field_type := strg
end
end;
begin

set_up_fields;

save_screen;

clear_area (2,4,79,22);
display_edit_screen_help line;

157

edit_screen (number_of_fields, field_list, not
abort_allowed):;

battalion_trains.location := upper_case
(field_list[1l]).str_val);

restore_screen

end;

(**)

{
Procedure name : UPDATE_NUMBER_OF_UNITS

Purpose : this procedure allows the player to
view, change, or print the number of ammo
trucks and fire units to use for the play of
the game.

Parameters : none.

Called by : VIEW_BATTALION_CONFIGURATION
)

(**)
procedure update_number_of_units;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
the number of fire units and ammo trucks.

Parameiers : none.

Called by : UPDATE_NUMBER_OF_UNITS
)

(**)
procedure set_up_fields;

begin

number_of_ fields := 2;

with field_list[1] do
begin

label_string := ’Number of firing units :’;

label x := 25; label_y := 12;

int_value := number_of_firing_units;

str (int_value, str_val);

x1 := 53; yl :=12; x2 := 55; y2 := 12;

field_type := int; int_min_value := 1; int_max_value :=
max_firing_units

end;
with field_list{2] do

158

begin

label_string := ‘Number of ammo trucks :’;
label _x := 25; label_y := 14;

int_value := number_of_ammo_trucks;

str (int_value, str_val);

X1l := 53; Yyl := 14; x2 := 55; y2 := 14;

field_type := int; int_min_value := 1; int_max_value :=
max_ammo_trucks

end
end;
begin

set_up_fields:;

save_screen;

clear_area (2,4,79,22);

display edit_screen_help_line;

edit_screen (number_of_fields, field_list, not
abort_allowed);

number_of_ firing_units := field_list[1].int_value;

number_of_ammo_trucks := field_list([2).int_value;
restore_screen
end;

(**)

{
Procedure name : UPDATE_FIRING_UNIT_DATA

Purpose : this procedure allows the player to
view, change, or print the data that pertains
to the fire units for the play of the garme.

Parameters : none.

Called by : VIEW_BATTALION_CONFIGURATION
)

(**************x*********************************)
procedure update_firing_unit_data;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
data for the fire units.

Parameters : none.

Called by : UPDATE_FIRING_UNIT_DATA
)

(**)

159

procedure set_up_fields;

begin

number of_fields := 6;

with field list[1] do
begin
label_string := ’‘Unit name :’;
label _x := 17; label_y := 8;

X1l := 57; yl :=8; x2 := 61; y2 := 8;
field_type := eval; eval_function :=
unique_firing_unit_name
end;
with field_list[2] do
begin
label_string := ‘Number of guns :’;
label_x := 17; 1label_y := 10;
X1l := 57; vyl := 10; X2 := 61; y2 := 10;
field_type := int; int_min_value :
maxint
end;
with field list[3] do
begin

label_string := ’Location (node) :’;
label_x := 17; label_y := 12;
X1l := 57; vyl := 12; x2 := 61; y2
field_type := strg
end;

with field 1list(4] do
begin

i
[
N

label_string := ‘Firing section capacity (rounds)

label_x := 17; label_y := 14;

X1l :=57; yl := 14; x2 := 60; y2 := 14;

field type := int; int_min_value := 1; int_max_value

maxint
end;

with field_list(5] do
begin

label_string := ’Rounds on hand for firing unit :’;

label_x := 17; label_y := 16;

X1l := 57; vyl := 16; x2 := 60; y2 := 16;

field_type := int; int_min_value := 1; int_max_value :
maxint

end;
with field_list[6] do

begin

label_string := ’Sustained rate of fire (rounds/tube)

label_x := 17; 1label_y := 18:

X1l :=57; yl := 18; x2 := 60; y2 := 18;

field_type := int; int_min_value := 1; int_max_value
maxint

160

= 1; int_max_value :=

i

.
’

end
end;

begin
set_up_fields;
save_screen;
clear_area (2,4,79,22):;
display_edit_screen_help_line;
center_text (24, ‘Page Up - next firing unit 4+
’'Page Down - previous firing unit’, red):;

center_text (5, ’‘Firing unit data’, cyan);
firing_unit_number := 1;
repeat

save_screen;

clear_area (2,6,79,22);

with firing_units[firing_unit_number) do

begin

field_list{1l].str_val := firing_unit_name;
field_list[2].int_ “value := number__ of _ _guns;

str (fleld list[2].int _value, field _list[2]}.str_val);
field_list(3].str_val := location;

field_list[4).int_ “value :=
section_max_rounds_capacity:
str (field_list([4].int_value, field list(4].str_val);

field_list[5]).int_value := rounds_on_hand;
str (field_list[5].int_value, field_list([5]}.str_val);
field_list[6].int_value := sustained_rate_of_ fire;

str (field_ list[6].int _value, field list[6].str val);

edit_screen (number_of fields, field_list, not
abort_allowed),

firing_unit_name := upper_case
(field_list[1l]).str_val);

number_of_guns =
field_listf2).int_value;

sections_in_operating_condition := number_ of guns;

location ¢{= upper_case
(field_list([3}.str_val);

section_max_rounds_capacity 1=
field_list[4).int_value;

rounds_on_hand
field_list{5].int_value;

sustained_rate_of_ fire :
field list[6).int value

end;
if key = page_down then

begin

if firing_unit_number = 1 then
firing_unit_number := number_of firing units

else
decr (firing_unit_number)

end

161

else if key = page_up then
begin
if firing_unit_number = number_of_ firing units then
firing_unit_number := 1
else
incr (firing_unit_number)
end;
restore_screen
until key = escape;
restore_screen
end;

(**)

{
Procedure name : UPDATE_AMMO_TRUCK_DATA

Purpose : this procedure allows the player to
view, change, or print the data that pertains
to the ammo trucks for the play of the game.

Parameters : none.

Called by : VIEW_BATTALION_CONFIGURATION
)

(*******t**)
procedure update_ammo_truck_data:;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
data for the ammo trucks.

Parameters : none.

Called by : UPDATE_AMMO_TRUCK_DATA
)

(**)
procedure set_up fields;

begin
number_of fields := 4;
with field_list[1] do

begin

label_string := ’‘Bumper number :’;

label_x := 24; label_y := 10;

Xl := 54; ¥yl := 10; x2 := 58; vy2 := 10;
field_type := eval; eval_function :=

unique_bumper_ number

162

end;
with field_list[2] do
begin
label_string := ’Location (node) :’;
label _x := 24; label_y := 12;

- X1l := 54; yl := 12; x2 := 58; y2 := 12;
field_type := strg
end;

- with field_list[3] do
begin

label_string := ’Load status (Full / Empty) :’;
label_x := 24; label_y := 14;

X1 := 54; yl := 14; %2 := 54; y2 := 14;
field_type := ch; valid_char_set := [’F’,’E’]

end;
with field_list([4] do
begin
label_string := ‘Truck capacity (rounds) :’;
label_x := 24; label_y := 16;
X1l = 54; yl1 := 16; x2 := 57; y2 := 16;
field_type := int; int_min_value := 1; int_max value :=
maxint
end
end;
begin
set_up_ fields;
save_screen;
- clear_area (2,4,79,22);
display_edit_screen_help_line;
center_text (24, ‘Page Up - next ammo truck 74+
. 'Page Down - previous ammo truck’, red):;
center_text (5, ‘Ammo truck data’, cyan):
ammo_truck_number := 1;
repeat

save_screen;
clear_area (2,6,79,22);
with ammo_trucks[ammo_truck_number] do
begin
field_list[1].str_val := bumper_ number;
field_list[2].str_ _val := location;
field _list[3].str_ _val := load_status;
field list(4]).int value := ammo_capacity;
str (field llst[4] int_value, field_list([4).str_val);
edit_screen (number_of_ fields, field list, not
abort_allowed) ;

. bumper_number := upper_case (field_list(l].str_val);
location = upper_case (field_list{2].str_val);
- load_status = field list([3].str val(l]:
163

ammo_capacity := field_ list(4].int_value;
end;
if kxey = page_down then
begin
if ammo_truck_number = 1 then
ammo_truck_number := number of_ammo_trucks

else
decr (ammo_truck_number)
end
else if key = page_up then
begin

if ammo_truck_number = number_of_ammo_trucks then

ammo_truck_number := 1
else
incr (ammo_truck_number)
end;
restore_screen

until key = escape:;
restore_screen
end;

begin

save_screen;

clear_area (1,2,80,25);

draw_window (1,3,80,23, white, blue, ’Battalion
Configuration / Status’);

menu_x1 := 20;
menu_yl := 7;
menu_x2 := 60;
menu_y2 := 19;
repeat
choice := menu_selection (null_string, ’‘Location of

trains|’+
'Number of firing
units / trucks|’+
’Firing unit
data|’+
‘Ammo truck
data|’+
’Return\’):;
case choice of
1 : update_trains_location;
2 : update_number_of units;
3 : update_firing_unit_data:
4 : update_ammo_truck_data

end
until choice = 5;
menu_x1 := menu_x1_default;
menu_yl := menu_yl default;
menu_x2 := menu_x2_default;
menu_y2 := menu_y2_ default;

164

save_unit_data_to_disk;
restore_screen
end;

(**)

{
Procedure name : INTIALIZE_NEW_GAME

Purpose : this procedure initializes all
variables and files for the play of a new game.
It also provides a menu for allowing the player
to view, modify, or print any of the parameters,
commanders guidance, unit data, or network. It
returns a false if the player elects to return
to the game’s main menu.

Parameters : none.

Called by : PLAY NEW_GAME
}

(**)
function initialize_new_game : boolean;

var
choice : integer:;

(**)

{
Procedure name : INTIALIZE_NEW_GAME_VARIABLES

Purpose : this procedure initializes all
variables and files for the play of a new game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME
)

(**)
procedure initialize_new_game_variables;

(**)

{
Procedure name : INTIALIZE_GAME_PARAMETERS

Purpose : this procedure initializes the game
parameters by reading them from disk if they
exist fror a previous game or by assigning
default values from unit GLOBAL if a file
does not exist from a previous game.

Parameters : none.

165

Called by : INITIALIZE_NEW_GAME_VARIABLES
)

(**)
procedure initialize_game_parameters:;

begin
game_parameters := default_game_parameters;
assign (gamparam_file, game_parameter_filename);
reset (gamparam_file);
if ioresult = 0 then
read (gamparam_ file, game_parameters);
close (gamparam_file)
end;

(**)

{
Procedure name : INITIALIZE_COMMANDERS_ GUIDANCE

Purpose : this procedure initializes the
commanders guidance by reading them from disk
if they exist from a previous game or by
assigning default values from unit GLOBAL if a
file does not exist from a previous game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME_VARIABLES

(**)
procedure initialize_commanders_guidance:;

begin
commanders_guidance := default_commanders_guidance;
assign (cdrguide_file, cdrs guldance filename) ;
reset (cdrguide_file);
if ioresult = 0 then
read (cdrguide_file, commanders_guidance);
close (cdrguide_file)
end;

(**)

{
Procedure name : INITIALIZE UNIT_DATA

Purpose : this procedure initializes the unit
data by reading them from disk if they exist
from a previous game or by assigning default
values from unit GLOBAL if a file does not
exist from a previous game.

166

Parameters : none.

Called by : INITIALIZE NEW_GAME_VARIABLES

(**)
procedure initialize_unit_data:

begin
battalion_trains := default_battalion_trains;
for firing unit_. number := 1 to max_firing units do
firing_ units[flring unit_number] :=
default_firing_unit_data;
for ammo_truck_ number := 1 to max_ammo_trucks do
ammo trucks[ammo truck number] 1=
default_ammo_truck_data:
assign (tralns file, trains _filename) ;
reset (tra1ns_f11e),
assign (fireunit_file, firing_unit_filename):;
reset (fireunit_file):
assign (ammotrck_file, ammo_truck_filename,);
reset (ammotrck_file);
if ioresult = 0 then
begin
read (trains_file, battalion_trains);
if ioresult <> 0 then
battalion_trains := default_battalion_trains;
firing_unit_number := 0;
while not (eof (fireunit_file)) and (ioresult = 0) and
(firing_unit_number < max_firing units) do
begin
incr (firing_unit_number) ;
read (fireunit_file, firing units{firing_unit_number])

end;
if (ioresult <> 0) and (firing_unit_number <> 0) then
firing unlts[flrlng unit_number] :=
default_firing unit_data;
ammo_truck_ number := 0;
while not eof (ammotrck_file) and (ioresult = 0) and
(ammo_truck_number < max_ammo_trucks) do
begln
incr (ammo_truck_number) ;
read (ammotrck_file, ammo_trucks[ammo_truck_number])
end;
if (ioresult <> 0) and (ammo_truck_number <> 0) then
ammo_trucks[ammo_truck number) :=
default_ammo_truck_data;
end;
close (trains_file);
close (fireunit_file);
close (ammotrck_file)

167

end;

(**)

{
Procedure name : INITIALIZE_EVENTS_LIST

Purpose : this procedure initializes the files
that will be used to maintain the events list
throughout the game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME_VARIABLES
}

(**)
procedure initialize_event_list;

begin
makefile (event_list, event_data_filename, sizeof

(event_record)):;
makeindex (time_index, event_time_index_filename,
sizeof (stringl0) - 1, duplicates):
makeindex (serial_number_index, event_serial_index_filename,

sizeof (stringS5) - 1, duplicates)
end;

(**)

{
Procedure name : INITIALIZE_ MESSAGE_LIST

Purpose : this procedure initializes the files
that will be used to maintain the message
buffer throughout the game.

Parameters : none.

Called by : INITIALIZE_NEW_GAME_VARIABLES
)

(**)
procedure initialize_message_list;

begin

makefile (messages, message_data_filename, sizeof

(message_record)) :

makeindex (message_type_index, message_type_index_filename,
sizeof (char), duplicates)

end;

begin
save_screen;

168

draw_window (26,11,55,15, yellow, red, null_string):;
center_text (13, ’initializing game...’, yellow):;
repeat
scenario_file_name :=
get_file (’Enter scenario file name’,
’Hit ESC key to build a new scenario’,
t+.8cn’)
until (scenario_file_name = null_string) or
(scenario_file_valid);
if scenario_file_name = null_string then
begin
scenario_file name := get_new_scenario_filename;
initialize_ new_scenario
end;
game_start_dtg := scenario_info.start_dtg;
dtg_to_datetime (game_start_dtg, game_start_time);
game_dtg := game_start_dtg:;
game_time := game_start_time:;
number_of firing_units := default_number_of_ firing_units;
number_ of_ammo_trucks := default_number_ of_ ammo_trucks;
initialize game_parameters;
initialize_ commanders_guidance;
initialize_unit_data;
initialize event_list;
initialize_message_list;
total_game_time := 0;
new_day := false;
determine_day_or_night:
time_since_last_sitrep := 0;
hostilities_started := false;
command_serial_number := 0;
randomize;
restore_screen
end;

(**)

{
Procedure name : READY_TO_PLAY

Purpose : this procedure insures that the game
is ready to be played after initialization by
checking to make sure that all units are
placed at an existing node for game start.

Parameters : none.

Called by : INITIALIZE_NEW_GAME

(**)
function ready_to_play : boolean;

169

var
ready : boolean;
temp_node : node_record;

begin
atp_rounds_on_hand := 0;
for firing_unit_number := 1 to number_of_ firing units do
atp_rounds_on_hand := atp_rounds_on_hand +
firing_ un1ts[f1r1ng unit number] number of _guns;
atp_rounds_on_hand := atp_rounds_on_hand #*
commanders_guidance.bn_csr;
save_game_parameters_to_disk;
save_commanders_guidance_to_disk;
save_unit_data_to_disk;
ready := true;
for firing _unit_number := 1 to number_of_ firing units do
begin
taread (nodes, temp_node,
firing_units[firing_unit_number).location,

exactmatch) ;
if not ok then ready := false
end;
if ready then
for ammo_truck_number := 1 to number_ of_ ammo_trucks do
begin

taread (nodes, temp_node,
ammo_trucks[ammo_truck_number].location,
exactmatch) ;
if not ok then ready := false
end;
if ready then
begin
taread (nodes, temp_node, battalion_trains.location,
exactmatch) ;
if not ok then ready := false
end;
if not ready then
display_error_message (’/INITIALIZATION ERROR’,
’firing units, trucks, and
trains’,
‘must start game at valid
locations’,
null_string,
'correct this before continuing’):

ready_ to _play := ready
end;

begin
initialize_new_game_variables;
repeat

170

choice := menu_selection (’Scenario / Parameter Menu’,
'View or change scenario /
network| ’+
’View or change game

« parameters|’+

’View or change commander’’s
guidance|’+

'View or change battalion
configuration / status|’+

‘Play game|’+

‘Main menu\’):;

case choice of

view_scenario;
view_game_parameters;
view_commanders_guidance;
view_battalion_confiquration

BhWN

end
until ((choice = 5) and ready_to_play) or (choice = 6);
if choice = 6 then
close_all_files;
initialize_new_game := choice = 5
end;

(**)

{
Procedure name : INTIALIZE_OLD_GAME

- Purpose : this procedure initializes all
variables and files for the play of an old game
that was saved in progress. The procedure
automatically loads the data from disk if

there is a game file there to be locaded. It
returns a false value if it could not load the
game successfully.

Parameters : none.

Called by : PLAY OLD_GAME

(**)
function initialize_old_game : boolean;

begin
initialize_old_game := false
end;

. begin

end.
~Z

171

(**)

{
Unit name : SCENARIO

Purpose : this unit contains the procedures that
allow a player to create, modify, view, or
print a scenario file. This includes the
scenario header, the node data, and the path
data. It also reads and saves scenario files
from and to disk.

(**)
unit scenario;

interface

{$I-)

uses dos, crt, utility, gameutil, global, taccess, tahigh;
function scenario_file_valid : boolean;

function get_new_scenario_filename : string;

procedure initialize_new_scenario;

procedure view_scenario;
procedure network utility;

implementation

const
add_record = true;
edit_record = false;

(**)

{
Procedure name : SAVE_SCENARIO_TO_DISK

Purpose : this procedure saves the scenario
header information to disk.

Parameters : none.

Called by : VIEW_SCENARIO

(**)
procedure save_scenario_to_disk;

var
i : integer;
begin
save_screen;
draw_window (26,11,55,15, yellow, red, null_string):

172

shade_window (26,11,55,15, black);
center_text (13, ‘updating files...’, yellow);
assign (scenario_file, scenario_file_name) ;
rewrite (scenario_file);
if ioresult = 0 then
with scenario_info do
begin
writeln (scenario_file, scenario_file_header):;
- writeln (scenario_file, opord_number) ;
writeln (scenario_file, opord_date);
writeln (scenario_file, map_sheets);
writeln (scenario_file, start_dtg);
for i := 1 to 10 do
writeln (scenario_file, admin_notes[i)])
end;
close (scenario_file):
restore_screen
end;

(**)

{
Procedure name : VALID_SCENARIO_FILENAME

Purpose : this procedure insures that a
file name entered for the new scenario is a
valid and not previously used name.

Parameters : STRING_VALUE - filen name to be

i checked.
Called by : passed as a parameter to
- EDIT_SCREEN by GET_NEW_SCENARIO_FILENAME
)
(****************************!*******************)
{$F+)
function valid scenario_filename (string_value : string80)
: boolean;
var

temp_file : file;
valid_filename : boolean;

begin
valid_filename := false;
assign (temp_file, string_value);
reset (temp_file);
if ioresult = 2 then
begin
rewrite (temp_file);
if ioresult <> 2 then
. begin

173

valid_filename := true;
erase (temp file)
end
end;
if not valid_filename then
display_error_message (’/FILE ERROR’, null_string,
*filename entered is not valid’,
‘or already exists’,
null_string);

close (temp_file):
valid_scenario_filename := valid_filename
end;

{$F~)

(**)

({
Procedure name : SCENARIO_FILE_VALID

Purpose : this procedure checks a selected
scenario file name to insure that the file
contains a valid scenario that can be loaded.

Parameters : none.

Called by : INITIALIZE_NEW_GAME_VARIABLES
)

(**)
function scenario_file_valid : boolean;

var
file_header : string8o0;
i : integer;
scenario_valid : boolean;

dir : dirstr;
name : namestr;
ext : extstr;
begin
scenario_valid := false;

assign (scenario_file, scenario_file_ name);
reset (scenario_file);
if ioresult = 0 then
begin
readln (scenario_file, file_header);
if file_header = scenario_file_header then
begin
with scenario_info do
begin
readln (scenario_file, opord_number);
readln (scenario_file, opord_date);
readln (scenario_file, map_sheets);

174

readln (scenario_file, start_dtg):
for i := 1 to 10 do
readln (scenario_file, admin_notes{i])
end;
if (ioresult = 0) and (valid_dtg
(scenario_info.start_dtg)) then
begin
fsplit (scenario_file_name, dir, name, ext);
node_data_filename := dir + name +
node_data_filename_ext;
path_data_filename := dir + name +
path_data_filename_ext;
node_index_filename := dir + name +
node_index_filename_ext:;
path_index_filename := dir + name +
path_index_filename_ext;
taopen (nodes, node_data_filename, sizeof
(node_record),
node_index_filename, sizeof
(string_5)):
if ok then
begin
taopen (paths, path_data_filename, sizeof
(path_record),
path_index_filename, sizeof
(string_5) Yi
if ok then
scenario_valid := true
end
end
end
end;
if not scenario_valid then
display_error_message (null_string, scenario_file_ name,
'INVALID SCENARIO FILE’,
’‘check it before continuing’,
‘or try another’):

scenario_file valid := scenario_valid;
close (scenario_file)
end;

(**)

{
Procedure name : GET_NEW_SCENARIO_FILENAME

Purpose : this procedure prompts the player to
enter a name for the new scenario that he would
like to create.

Parameter 3 : none.

175

Called by : INITIALIZE_NEW_GAME VARIABLES
)

(**)
function get_new_scenario_filename : string:;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
prompt for entering a file name.

Parameters : none.

called by : GET_NEW_SCENARIO_FILENAME
}

(**)
procedure set_up_fields;

begin
number of_ fields := 1;
with field_list[1] do
begin
label_string := ‘File name for new scenario :’;
label_x := 10; 1label_y := 13;
str_val := default_scenario_file_name;

X1 = 40; yl := 13; x2 := 70; y2 := 13;
field type := eval; eval_ function :=
valid_scenario_filename;
end
end;
begin

set_up_fields;

save_screen;

clear_area (2,4,79,22);

draw_window (1,3,80,23, white, blue, ’‘New Scenario’);
display_edit_screen_help_line;

edit_screen (number_of_fields, field_list, not
abort_allowed):

get_new_scenario_filename := upper_case
(field_list(1].str_val);

restore_screen

end;

(**)

{
Procedure name : INITIALIZE_NEW_SCENARIO

Purpose : this procedure initializes the new

176

scenario by assigning a default header to the
scenario and creating the files to hold the
node and path data.

Parameters : none.

Called by : INITIALIZE_NEW_GAME_VARIABLES
}

(**)
procedure initialize_new_scenario;

var
dir : dirstr;
name : namestr;
ext : extstr:

begin

scenario_info := default_scenario_info;
save_scenario_to_disk;

fSpllt (scenarlo file name, dir, name, ext);

node_data_ filename := dir + name + node_data_filename_ext;
path data filename = dir + name + path data filename_ _ext;
node_index_filename dir + name + node_index_filename_ext;

path_index_filename := dir + name + path_index_filename_ext;

tacreate (nodes, node_data_filename, sizeof (node_record),
node_index_filename, sizeof (string_5)
)i

tacreate (paths, path_data_filename, sizeof (path_record),
path_index_filename, sizeof (string_5))

end;

(**)

{
Procedure name : NETWORK_UTILITY

Purpose : this procedure allows the user to
get information about the network he has
created. It includes determining min time and
min distance routes between selected nodes.

Parameters : none.

Called by : VIEW SCENARIO
PLAY_WARGAME

(**)
procedure network utility;

177

begin
end;

(**)

{

Procedure name : VIEW_SCENARIO

Purpose : this procedure allows the player to
view, change, or print the game scenario for
the game. It presents the player with a menu
to select the scenario header, the node data,

or the path data. It also allows him to use
the network utility from here.

Parameters : none.

Called by : INITIALIZE_NEW_GAME

CHANGE_PARAMETERS

)
(**)
procedure view_scenario;

var
choice : integer;

(**)

{

Procedure name : UPDATE_SCENARIO_INFORMATION

Purpose : this procedure allows the player to
view, change, or print the scenario header
information for the current scenario.

Parameters : none.

Called by : VIEW_SCENARIO

}
(**)
procedure update_scenario_information:;

(**)

{
Procedure name : SET_UP_FIELDS

Purpose : this procedure initializes the data

that describes the fields for displaying the
scenario header information.

Parameters : none.

Called by : UPDATE_SCENARIO_INFORMATION

178

—

(**)
procedure set_up fields;

begin

number_of fields := 14;

with field_list[1] do
begin
label_string := ’OPORD # ;
label_x := 11; 1label_y := 6;
str_val := scenario_info.opord_number;
X1l := 22; Yyl := 6; Xx2 := 31; y2 := 6;
field_type := strg
end;

with field_list([2] do
begin
label_string := ’OPORD Date :’;
label_x := 11; label_y := 7;
str_val := scenario_info.opord_date;

4

X1 := 25; vyl :=7; x2 := 39; y2 := 7;
field_type := strg
end;
with field list([31 do
begin
label_string := ’Map sheets :/;
label_x := 11; label_y := 8;
str_val := scenario_info.map_sheets;
X1l := 25; yl := 8; X2 := 70; y2 := 8;
field_type := strg
end;
with field_list[4] do
begin

label_string := ’‘Game start time (DTG) :’;
label x := 11; label_y := 9;
str_val := scenario_info.start_dtg;
X1l = 36; yl :=9; x2 := 50; y2 := 9;
field_type := dtg
end;
with field_list([5] do
begin
label string := ’‘Admin note :’;
label x := 11; 1label_y := 11;

str_val := scenario_info.admin_notes[1]:
X1 := 25; yl := 11; x2 := 70; y2 := 11:
field type := strg
end;

with field_list(6] do
begin

label_string := null_string;
label_x := 1; label_y := 1;
str_val := scenario_info.admin_notes(2];

179

x1 := 11; yl := 12; x2 := 70; y2
field_type := strg
end;

e
n
(-
N

with field_list(7] do

begin

label_string := null_string:

label_x := 1; 1label y := 1;

str_val := scenario_info.admin_notes([3];
x1l := 11; ¥yl := 13; x2 := 70; y2 := 13;
field_type := strg

with field_list{8] do

begin

label_string := null_string:;

label_x := 1; label_y := 1;

str_val := scenario_info.admin_notes{4];

x1 3= 11; y1 3= 14; X2 := 70; Yy2 := 14;
field _type := strg
end;
with field_list([9] do
begin
label_string := null_string;
label_x := 1; 1label_y := 1;
str_val := scenario_info.admin_notes[5]:
X1l := 117 vyl :=15; x2 := 70; y2 := 15;
field_type := strg
end;
with field_list[10] do
begin
label_string := null_string;
label x := 1; label y := 1;
str_val := scenario_info.admin_notes([6];
x1 t= 11; yl := 16; x2 := 70; y2 := 16;
field_type := strg
end;
with field_list[(11] do
begin
label _string := null_string;
label_x := 1; 1label_ y := 1;
str_val := scenario_info.admin_notes[7];
x1 :=11; yl :=17; x2 :=70; y2 :=17;
field _type := strg
end;
with field_list[12] do
begin
label_string := null_string;

label_x := 1; label_y := 1;

str_val := scenario_info.admin notes([8];
x1 = 11; yl := 18; x2 := 70; y2 := 18;
field_type := strg

end;

180

with field_list({13] do
begin
label_string := null_string:;
label _x := 1; label y := 1;
str_val := scenario_info.admin_notes(9];
X1 := 11; Yyl := 19 x2 := 70; y2 := 19;
field_type := strg
end;
with field_list(14] do
begin
label_string := null_string:
label_x := 1; label y := 1;
str_val := scenario_info.admin_notes[10
x1 t= 11; 1yl := 20; x2 := 70; y2 :=
field_type := strg
end
end;

1
20;

begin

set_up_fields;

save_screen;

clear_area (2,4,79,22);

display edit_screen_help_line;

edit_screen (number_of fields, field_list, not
abort_allowed):

with scenario_info do

begin

opord_number := field list[1l].str_val:
opord_date := field_list[2].str_val;
map_sheets := field _list[3]. str _val;
start_dtg := field _list[4]. str_ —_val;

game_ start _dtg := start_dtg,

dtg_to_datetime (game_start_dtg, game_start_time);
game_dtg := game_start_dtg;

game_time := game_start_time;

admin_notes[1] := field _list([5].str_val;

admin_notes[2]
admin_notes{3]
admin_notes[4]
admin_notes[5)

:= field _list(6].str val,
admin_notes(6] :

field 1list[7]).str_val;
field_list(8].str_val;
field list([9]).str_val;
field 1list{10]).str_val;
field_list[ll].str_val:
field_list([12].str_val;
field_list([13].str val,
field_list[14].str val

admin_notes (7]
admin_notes(8]
admin_notes(9]
admin_notes[10]
end;
save_scenario_to_disk;
restore_screen
end;

(**)

181

{
Procedure name : UPDATE_NODE_DATA

Purpose : this procedure allows the player to
view, change, or print the node data that is
part of the current scenario.

Parameters : none.

Called by : VIEW_SCENARIO

(**)
procedure update_node_data;

var
current_node : node_record:;
current_node_name : strings:;

(**)

{
Procedure name : INITIALIZE_NODE_FIELDS

Purpose : this procedure initializes the data
that describes the fields for displaying the
node data.

Parameters : none.

Called by : UPDATE_NODE_DATA

(**)
procedure initialize_node_fields;

begin
number_of_fields := 11;
with field_list[1] do

begin
label_string := ’Node name :’;
label_x := 15; 1label_y := 7;
x1 1= 28; yl :=7; x2 := 32; y2 :=7;
field_type := strg
end;
with field_list([2] do
begin
label_string := ’Associated paths :’:
label_x := 15; label_y := 9;
X1 1= 36; yl := 9; x2 := 40; vy2 := 9;
field_type := strg
end;
with field_list([3] do
begin

182

label string := null_string:;
label_x := 15; label_y := 9;

X1l = 43; Yyl :=9; x2 := 47; y2 := 9;
field_type := strg
end;
with field_list[4] do
begin
label_string := null_string:
label_x := 15; 1label_y := 9;
X1 := 50; Yyl :=9; x2 := 54; y2 :=9;
field_type := strg
end;
with field_list[5] do
begin
label_string := null_string:;
label_x := 15:; 1label_y := 10;
X1 := 36; Yyl := 10; x2 := 40; y2 := 10;

field_type := strg
end;
with field_list[6] do
begin
label_string := null_string:
label_x := 15; 1label_y := 10;
X1 := 43; yl := 10; x2 := 47; y2 := 10;
field_type := strg
end;
with field_list[7] do
begin
label_string := null_string;
label_x := 15; 1label_y := 10;
X1 = 50; yl := 10; x2 := 54; y2 := 10;
field_type := strg
end;
with field_list(8] do
begin
label_string := ’‘Location (grid) :’;
label _x := 15; 1label_y := 12;
X1 = 50; vyl := 12; x2 := 59; y2
field_type := strg
end;
with field_list(9] do
begin
label_string := ‘Position type (Rural/Urban) :’;
label_x := 15; 1label_y := 14;

.
||
[
[\

x1 := 58; yl := 14; X2 := 58; y2 := 14;

field_type := ch; valid_char_set := [’R’,’U’]

end;
with field_list(10] do

begin

label_string := ‘Cover and concealment (High/Medium/Low)
I Ar)

183

label _x := 15; label_y := 16;
X1l := 58; yl := 16; x2 := 58; y2 := 16;
field_type := ch; valid_char_set := [’H’,’M’,’L’]
end;
with field_list[11] do
begin
label_string := ’‘Prepositioned ammo count (rounds) :’;
label_x := 15; label_y := 18;
xl := 58; vyl := 18; x2 := 61; y2 := 18;
field_type := int; int_min_value := 0; int_max value :=
maxint
end

end;

(**)

{

Procedure name : DISPLAY NODE_DATA

Purpose : this procedure uses the data that
describes the fields for displaying the
node data and uses it to display a node’s data.

Parameters : NODE_DATA - record containing the
data for the node to be displayed.
Called by : UPDATE_NODE_DATA
}

(**)
procedure display_node_data (node_data node_record) ;

var
i : integer:;

begin

with node_data do
begin

field list{1].str val node_name;

field list[2].str_val := paths[1l];
field list[(3].str_val := paths{2];
i field_list[4]. str val := paths[3];
field_list[5).str val = paths(4];
f1eld_llst[6] str_val 1= paths[5];
field_list{7].str_val := paths(6];
field_list[8]).str_ “val := grld,

field _list([9).str val

position_type;

. field_list[10]. str _val := cover_concealment;
str (ammo_count, field_ list[11].str_val)
end;

for i := 1 to number_of_ fields do
with field llSt[l] do

begin

184

put_string (label_x, label_y, label_string):
put_string (x1, yl, str_val)
end

end:;

(**)

{
Procedure name : EDIT_NODE_SCREEN

Purpose : this procedure uses the data that
describes the fields for displaying the
node data and uses it to display a node’s data
and allow it to be changed.

Parameters : NODE_DATA ~ record containing the
data for the node to be displayed.
NEW_RECORD - boolean record indicating whether
a new node is being entered or an existing one
is being modified.

Called by : EDIT_NODE
}

(**)

procedure edit_node_screen (var node_data : node_record;
new_record : boolean);

var
temporary_field : field_record:
error_code : integer;
i : integer;

begin
save_screen;
if new_record then
display_add_record_help line
else
display_edit_screen_help_line;
clear_area (2,6,79,22);
clear_area (1,24,80,24);
with node_data do
begin

field_list[1l]}.str_val node_name;

field_list([2]).str_val := paths[1];
field_list([3].str_val := paths(2];
field_list([4].str val := paths(3];
field_list(5].str_ “val := paths{4];
field_list(e6]. str val := paths[5];
field _list{7).str_ “val := paths[6];
field_list[8].str_val := grid;

field 1ist[9].str_val position_type:
field _list(10]. str val := cover_concealment;

185

str (ammo_count, field_list[11]).str_val)
end;
if new_record then
edit_screen (number_of fields, field_list, abort_allowed)

else i
begin
with field list(1] do
begin -
put_string (label_x, label_y, label_string);
put_string (x1, yl, str_val)
end;
temporary_field := field_list[1];
for i := 2 to number_of_ fields do
field list([i - 1] := field list[i};
decr (number_of_fields);
edit_screen (number_of fields, field_list, not
abort_allowed):;
incr (number_of_ fields);

for i := number_of_fields downto 2 do
field list{i] := field_list[i - 1];
field 1list[1l] := temporary_ field
end;
with node_data do
begin
node_name := upper_case (field_list[l].str_val):
paths[1] := upper_case (field_list[2].str_val):
paths[2] := upper_ case (field list([3].str_val):;
paths([3] := upper_case (field_list[4].str_val);]
paths[4] := upper case (field_list[5].str_val);
paths[5] := upper_case (field_list(6].str_val):
paths[6] := upper_case (field_list(7].str_val); .
grid := field_list[8].str_val;
position_type := field_list[9].str_val[l]:;
cover_concealment := field_list[10].str_val{l]:
val (field_list[11].str_val, ammo_count, error_code)
end;
restore_screen
end;

(**)

{
Procedure name : GET_ FIRST_NODE

Purpose : this procedure retrieves the first node
from the current scenario node file.

Parameters : NODE_DATA - record containing the i
data for the node being retrieved.
CURRENT_NODE_NAME - string containing the name
of the node being retrieved. -

186

R —

Called by : UPDATE_NODE_DATA
}

(hhkhkhkhhkRhhhhahhhhhdhdhhhkhkdRhAR AR kA kA dhrhhhn)
procedure get_first_node (var current_node : node_record;
var current_node_name : string5):

begin
. tareset (nodes):

tanext (nodes, current_node, current_node_name) ;
if not ok then

current_node_name := null_string
end;

(**)

{
Procedure name : GET_NEXT_NODE

Purpose : this procedure retrieves the next node
from the current scenario node file.

Parameters : NODE_DATA - record containing the
data for the node being retrieved.
CURRENT_NODE_NAME - string containing the name
of the node being retrieved.

Called by : UPDATE_NODE_DATA
)

- (**)
procedure get_next_node (var current_node : node_record;
var current_node_name : string5):;

begin

tanext (nodes, current_node, current_node_name) ;

if not ok then
begin
tanext (nodes, current_node, current_node_name) ;
if not ok then

current_node_name

end

end;

= null_string

(**)
{
Procedure name : GET_PREV_NODE

Purpose : this procedure retrieves the previous
. node from the current scenario node file.

Parameters : NODE_DATA - record containing the
. data for the node being retrieved.

187

CURRENT_NODE_NAME - string containing the name
of the node being retrieved.

Called by : UPDATE_NODE_DATA
}

(**)

procedure get_prev_node (var current_node : node_record;
var current_node_name : string5);

begin
taprev (nodes, current_node, current_node_name);
if not ok then
begin
taprev (nodes, current_node, current_node_name) ;
if not ok then
current_node_name := null_string
end
end;

(**)

{
Procedure name : ADD_NODE

Purpose : this procedure adds new node record to
the current scenario node file.

Parameters : CURRENT_NODE - record containing the
data for the node being added.
CURRENT_NODE_NAME - string containing the name
of the node being added.

Called by : UPDATE_NODE_DATA
)

(**)

procedure add_node (var current_node : node_record:
var current_node_name : string5):

var
node_data : node_record;
done : boolean;

begin

done := false;

node_data := default_node;
repeat

edit_node_screen (node_data, add_record):;
if (key = f2) and (node_data.node_name <> null_string)
then

begin
tainsert (nodes, node_data, node_data.node_name);
if not ok then

188

display_error_message (’RECORD ERROR’,
null_string, ‘a node
already exists’,

’with this name’,
null_string)
else
begin
taread (nodes, node_data, node_data.node_nanme,
- : exactmatch) ;
' current_node := node_data:;
current_node_name := current_node.node_name;
taflush (nodes);
done := true
end
end
else if (key = f2) and (node_data.node_name =
null_string) then
display_error message (’RECORD ERROR’,
null_string, ’‘node must have a
name’,
'before it can be saved’,
null_string)

else
done := true
until done;
key := null
end;
° (**)

{
Procedure name : DELETE_NODE

Purpose : this procedure deletes a node recorad
from the current scenario node file.

Parameters : CURRENT_NODE - record containing the
data for the node being deleted.
CURRENT_NODE_NAME - string containing the name
of the node being deleted.

Called by : UPDATE_NODE_DATA

(**)

procedure delete_node (var current_node : node_record:;
var current_node_name : string5):;

var
next_node : node_record;
next_node_name : strings;

4 (**)

189

{
Procedure name : VERIFY

Purpose : this procedure prompts the player for
a yes or no to verify the action that he last
selected.

Parameters : none.

Called by : DELETE_NODE
)

T e I T T T T T T))
function verify : boolean;

var
number_of_fields : integer:;
field_list : field_array:

begin

number_of_fields := 1;

with field_list([1] do
begin
label_string := ’‘Are you sure (Y/N) ?/;
label_x 28; label_y := 12;

str_val := ’N/’;

X1l = 50; yl := 12; x2 := 50; y2 := 12;
field_type := ch; valid_char_set := [’Y’,’N’'];
end;

save_screen;

draw_window (21,10,60,14, blue, lightgray, null_string);
shade_window (21,10,60,14, black):

edit_screen (number_of_ fields, field_list, not
abort_allowed) ;

verify := field_list[1l].str_val[l] = ’'Y’;

key := null;

restore_screen

end;

begin
if (current_node_name <> null_string) and verify then
begin
get_next_node (next_node, next_node_name);
tadelete (nodes, current_node_name);
taread (nodes, current_node, next_node_name, exactmatch);

if ok then
current_node_name := current_node.node_name
else
current_node_name :
taflush (nodes)
end

it

null_string;

180

end;

(***t)

{
Procedure name : EDIT_NODE

Purpose : this procedure allows the player to
edit a node in the current scenario node file.

Parameters : CURRENT_NODE - record containing the
data for the node being edited.
CURRENT_NODE_NAME - string containing the name
of the node being edited.

Called by : UPDATE_NODE_DATA

(**)

procedure edit_node (var current_node : node_record;
var current_node_name : string$5):;

begin

edit_node_screen (current_node, edit_record):

taupdate (nodes, current_node, current_node.node_name) ;
taflush (nodes):;

key := null

end;

(**)

{
Procedure name : FIND_NODE

Purpose : this procedure allows the player to
find a node in the current scenario node file.

Parameters : CURRENT_NODE - record containing the
data for the node being searched for.
CURRENT_NODE_NAME -~ string containing the name
of the node being searched for.

Called by : UPDATE_NODE_DATA
)

(**)

procedure find_node (var current_node : node_record;
var current_node_name : string5);

var
node_data : node_record;
search_string : string5;

(**)

{

191

Procedure name : GET_SEARCH_STRING

Purpose : this procedure prompts the player for
the name of the node that he wants to find.

Parameters : none.

Called by : FIND_NODE

(**)
function get_search_string : string5;

var
number_of_fields : integer;
field_list : field_array:

begin
number_of_ fields := 1;
with field_1list[1l] do

begin

label_string := ’‘Node to search for :’;
label_x := 26; label_y := 12;

str_val := null_string;

X1 = 48; vyl := 12; x2 := 52; vy2 := 12;
field_type := strg:;

end;

save_screen;

draw_window (21,10,60,14, blue, lightgray, null_string);
shade_window (21,10,60,14, black);

edit_screen (number_of fields, field_list, not
abort_allowed);

get_search_string := upper_case (field_list[1l].str_val);
key := null;

restore_screen

end;

begin

search_string := get_search_string;

if search_string <> null_string then
begin
taread (nodes, node_data, search_string, partialmatch);
if ok then

begin
current_node := node_data;
current_node_name := current_node.node_name
end
end
end;
begin

initialize_node_fields;

192

save_screen;
clear_area (2,4,79,22);
display edit_list_help_line;
center_text (24, ’‘Page Up ~ next node Page Down -
previous node’, red);
center_text (5, ’‘Node data’, cyan);
get_first node (current_node, current_node_name);
repeat
- save_screen;
clear_area (2,6,79,22);
if current_node_name <> null_string then
display_node_data (current_node)
else
center_text (14, ‘There are currently no nodes in the
database’, white):;
key := get_Key:
case key of
home_key : get_first_node (current_node,
current_node_name) ;
page_up : get_next_node (current_node,
current_node_name) ;
page_down : get_prev_node (current_node,
current_node_name) ;

f4 ¢ print_screen;
£5 : add_node (current_node,
current_node_name) ;
feé ¢ delete_node (current_node,
current_node_name) ;
- £7 : edit_node (current_node,
current_node_name) ;
£8 : find_node (current_node,
. current_node_name)
end;

restore_screen
until key = escape;
restore_screen
end;

(**)

{
Procedure name : UPDATE_PATH_DATA

Purpose : this procedure allows the player to
view, change, or print the path data that is
part of the current scenario.

Parameters : none,

Called by : VIEW_SCENARIO

)

- (**)

193

procedure update_path_data;

var
current_path : path_record:
current_path_name : string5;

(**)

{
Procedure name : INITIALIZE PATH_FIELDS '

Purpose : this procedure initializes the data
that describes the fields for displaying the
path data.

Parameters : none.

Called by : UPDATE_PATH_DATA
}

(**)
procedure initialize_path_fields;

begin
number_of_ fields := 8;
with field list{1l] do
begin
label_string := ‘Path name :’;
label_x := 15; label_y := 6;
X1l := 58; Yyl := 6; x2 := 62; y2 := 6;
field_type := strg
end;
with field_list[2] do
begin .
label_string := ’Start node :’;
label_x := 15; 1label_y := 8;

X1l := 58; yl :=8; x2 := 62; y2 := 8;
field_type := strg
end;
with field_list[3] do
begin
label_string := ’End node :’

label_x := 15; 1label_y := 10
X1l := 58; vyl := 10; x2 := 6
field_type := strg
end;

with field_1list[4] do
begin
label_string := ’‘Length (kilometers) :’;
label_x := 15; label_y := 12;

X1l = 58; yl = 12; %2 := 63; y2 := 12
field_type := float:; float_min_value :=

float_max_value := 500.0

2; y2 := 10;:

0.0:;

194

N

end;
with field_list([5] do
begin
label_string := ‘Road condition (Poor/Medium/Good) :’;
label_x := 15; 1label_y := 14;

X1l := 58; Yyl := 14; x2 := 58; y2 := 14;
field_type := ch; valid_char_set := [’P’/,’M’,’G’]
end;

- : with field_list([6] do
begin

label_string := ’Bridges on path (Yes/No) :’;
label_x := 15; label_y := 16;
x1l := 58; yl :=16; x2 := 58; y2 := 16;
field_type := ch; valid_char_set := [’Y’,’N’)
end;

with field_list{7)] do
begin
label_string := ’Bridge location (grid) :’:
label_x := 15; label_y := 18;
X1 := 58; yl := 18; x2 := 67; y2 := 18;
field_type := strg
end;

with field_list([8] do
begin
label string := ‘Vulnerability (High/Medium/Low) :’:
label _x := 15; label_y := 20;
x1 := 58; 1yl := 20; x2 := 58; y2 :=
field_type := ch; valid_char_set := [!
end

end;

2
HI’IMI'ILI]

. (**)

{
Procedure name : DISPLAY_ PATH_DATA

Purpose : this procedure uses the data that
describes the fields for displaying the
path data and uses it to display a path’s data.

Parameters : PATH_DATA - record containing the
data for the path to be displayed.

Called by : UPDATE_PATH_DATA
)
(**)
procedure display_path_data (path_data : path_record);

var
i : integer:;

- begin

195

with path_data do
begin
field list[1).str_val := path_name;
field_list[2).str_val := start_node;
field list([3].str_val := end_node;
str (length:3:1, field_list(4]).str_val);
field_list(5).str_val := road_condition:;
field list(6]).str_val := bridge;
field list(7].str_val := bridge_grid;
field_list([8]).str_val := vulnerability
end;
for i := 1 to number_of fields do
with field_list[i] do
begin
put_string (label_x, label_y, label_string);
put_string (x1, yl, str_val)
end
end;

(**)

{
Procedure name : EDIT_PATH_SCREEN

Purpose : this procedure uses the data that
describes the fields for displaying the
path data and uses it to display a path’s data
and allow it to be changed.

Parameters : PATH_DATA - record containing the
data for the path to be displayed.
NEW_RECORD - boolean record indicating whether
a new path is being entered or an existing one
is being modified.

Called by : EDIT_PATH
)

(**)

procedure edit_path_screen (var path_data : path_record:
new_record : boolean);

var
temporary field : field_record;
error_code : integer;
i : integer:;

begin

save_screen;

if new_record then
display_add_record_help_line

else
display_edit_screen_help line:

196

clear_area (2,6,79,22);
clear_area (1,24,80,24);
with path_data do

begin

field_list{1l]).str_val := path_name;
- field list[2]. str val := start_node;

field list[3].str_val := end_node;

str (length:3:1, field list[4]. str_val):
. field_list[5]).str_val := road_condition;

field_list(6].str_val := bridge;
field_list([7]).str_val := bridge_grid;
field_list(8].str_val := vulnerability

end;
if new_record then

edit_screen (number_of_ fields, field_list, abort_allowed)

else
begin
with field_list[1] do
begin
put_string (label_x, label_y, label string);:
put_string (x1, yl, str_val)
end;
temporary_field := field_list([1l]:
for i := 2 to number_of_fields do
field_list[i - 1] := field list[i}:
decr (number_of_ fields);
edit_screen (number_of_ fields, field list, not
. abort_allowed);
incr (number_of_ fields);
for i := number_of_fields downto 2 do
field_list([i] := field list[i - 1};
field_list[1] := temporary_field
end;
with path_data do
begin
path_name := upper_case (field_list({l].str_val):
start_node = upper_case (field_list[2].str_val);
end_node = upper_case (field_list([3]}.str_val);
val (field_list([4].str_val, length, error_code);
road_condition := field list([5]).str_val(l)];
bridge := field _list([6].str _val[1l];
bridge_grid := field_list([7).str_val;
vuénerability := field list[8].str val[1l]
end;
restore_screen
end;

(*************************i’**********i***********)

(
. Procedure name : GET_FIRST_PATH

197

Purpose : this procedure retrieves the first path
from the current scenario path file.

Parameters : PATH_DATA - record containing the
data for the path being retrieved.
CURRENT_PATH_NAME - string containing the name
of the p- -h being retrieved.

Called by : UPDATE_PATH_DATA

(**)
procedure get_first_path (var current_path : path_record;
var current_path_name : string5):;

begin
tareset (paths):;

tanext (paths, current_path, current_path_name);
if not ok then

current_path_name := null_string
end;

(**)

{
Procedure name : GET_NEXT_ PATH

Purpose : this procedure retrieves the next path
from the current scenario path file.

Parameters : PATH_DATA ~ record containing the
data for the path being retrieved.
CURRENT_PATH_NAME - string containing the name
of the path being retrieved.

Called by : UPDATE_PATH_DATA

(**)

procedure get_next path (var current_path : path_record;
var current_path name : string5):

begin

tanext (paths, current_path, current_path_name);
if not ok then
begin
tanext (paths, current_path, current_path_name);
if not ok then
current_path_name := null_string
end
end;

(**)
[4

198

{
Procedure name : GET_PREV_PATH

Purpose : this procedure retrieves the previous
path from the current scenario path file.

Parameters : PATH_DATA - record containing the
data for the path being retrieved.
- CURRENT_PATH_NAME - string containing the name
of the path being retrieved.

called by : UPDATE_PATH_DATA
}

(**)

procedure get_prev_path (var current_path : path_record;
var current_path_name : string5):

begin
taprev (paths, current_path, current_path_name);
if not ok then
begin
taprev (paths, current_path, current_path_name);
if not ok then
current_path_name := null_string
end
end;

(**)

{
Procedure name : ADD_PATH

. Purpose : this procedure adds new path record to
the current scenario path file.

Parameters : CURRENT_PATH - record containing the
data for the path being added.
CURRENT_PATH_NAME - string containing the name
of the path being added.

Called by : UPDATE_PATH_DATA

(**)

procedure add_path (var current_path : path_record;
var current_path_name : string$5):

var
path_data : path_record;
done : boolean;

begin
done := false;

199

path_data :=
repeat
edit_path_screen (path_data, add_record):
if (key = f2) and (path_data.path_name <> null_string)
then
begin

default_path;

tainsert (paths, path_data, path_data.path_name);
if not ok then
display_error_message (’RECORD ERROR’,

null_string, ‘a path
already exists’,
'with this name’,
null_string)
else
begin

taread (paths, path_data, path_data.path_name,
exactmatch) ;

current_path := path_data;
current_path_name :

taflush (paths):
done := true

end
end

= current_path.path_name;

else if (key = f2) and (path_data.path_name
null_string) then

display_error_message (’RECORD ERROR’,

null_string, ‘path must have a
name’,
null_string)
else
done :=
until done:

key := null
end;

'before it can be saved’,

true

(**)
{
Procedure name : DELETE_PATH

Purpose : this procedure deletes a path record
from the current scenario path file.

Parameters :

CURRENT_PATH - record containing the
data for the path being deleted.

CURRENT_PATH_NAMTZ - string containing the name
of the path being deleted.

Called by : UPDATE_PATH_DATA

}
(**)

200

———

procedure delete_path (var current_path : path_record:
var current_path_name : string$5):

var
next_path : path_record:;
next_path_name : string5;

(***************************i********************)
B ; {
Procedure name : VERIFY

Purpose : this procedure prompts the player for
a yes or no to verify the action that he last
selected.

Parameters : none.

Called by : DELETE_PATH

(**)
function verify : boolean;

var
number_of_ fields : integer;
field_list : field_ array:

begin
. number_of_fields := 1;
with field_list[1l] do
begin
label_string := ’Are you sure (Y/N) ?/;
. label_x := 28; 1label_y := 12;
str_val := ’'N’;
X1l := 50; yl := 12; x2 := 50; y2 = 12;
field_type := ch; valid_char_set := [’Y’,’'N’];
end;

save_screen;

draw_window (21,10,60,14, blue, lightgray, null_string);
shade_window (21,10,60,14, black):

edit_screen (number_of_fields, field_list, not
abort_allowed);

verify := field_list[1l].str_val{l] = ’'Y’;

key := null;

restore_screen

end;

begin

if (current_path_name <> null_string) and verify then
begin
get_next_path (next_path, next_path_name):
tadelete (paths, current_path_name);

201

taread (paths, current_path, next_path_name, exactmatch):

if ok then
current_path_name := current_path.path_name
else
current_path_name := null_string;
taflush (paths)
end
end;

(**)

{
Procedure name : EDIT_PATH

Purpose : this procedure allows the player to
edit a path in the current scenario path file.

Parameters : CURRENT_PATH -~ record containing the
data for the path being edited.
CURRENT_PATH_NAME - string containing the name
of the path being edited.

Called by : UPDATE_PATH_DATA

(**)

procedure edit_path (var current_path : path_record;
var current_path_name : string5s);

begin

edit_path_screen (current_path, edit_record);

taupdate (paths, current_path, current_path.path_name):;
taflush (paths):;

key := null

end;

(**)

{
Procedure name : FIND_PATH

Purpose : this procedure allows the player to
find a path in the current scenario path file.

Parameters : CURRENT_PATH ~ record containing the
data for the path being searched for.
CURRENT_PATH_NAME - string containing the name
of the path being searched for.

Called by : UPDATE_PATH_DATA
)

(t***t***)
procedure find_path (var current_path : path_record;

202

var current_path_name : string5):

var
path_data : path_record;
search_string : string5;

(**)

{
Procedure name : GET_SEARCH_STRING

Purpose : this procedure prompts the player for
the name of the path that he wants to find.

Parameters : none.

Called by : FIND_PATH
)

(**)
function get_search_string : string5;

var
number_of_ fields : integer;
field_list : field_array:;

begin
number_of fields := 1;
with field list[1] do

begin

label_string := ’‘Path to search for :’;
label _x := 26; label_y := 12;

str_val := null_string;

X1l := 48; yl := 12; x2 := 52; y2 := 12;
field_type := strg;

end;

save_screen;

draw_window (21,10,60,14, blue, lightgray, null_string):
shade_window (21,10,60,14, black):

edit_screen (number_of fields, field_list, not
abort_allowed) ;

get_search_string := upper_case (field_list[l].str_val):

key := null;
restore_screen
end;

begin

search_string := get_search_string;
if search_string <> null_string then
begin
taread (paths, path_data, search_string, partialmatch);
if ok then
begin

203

current_path := path_data;
current path_name := current_path.path_name
end
end
end;

begin
initialize_path_fields:;
save_screen;
clear_area (2,4,79,22);
display_edit_list_help_line;
center_text (24, ’‘Page Up ~ next path Page Down -
previous path’, red);
center_text (5, ’‘Path data’, cyan);
get_first_path (current_path, current_path_name) ;
repeat
save_screen;
Clear_area (2,6,79,22);
if current_path name <> null_string then
display path_data (current_path)
else
center_text (14, ‘There are currently no paths in the
database’, white);
key := get_key;
case key of
home_key : get_first_path (current_path,
current_path_name) ;
page_up ¢ get_next path (current_path,
current_path_name) ;
page_down : get_prev_path (current_path,
current_path_name) ;

: print_screen; '
£5 : add_path (current_path,

current_path_name) ;
fé : delete_path (current_path,

current_path_name) ;
£7 ¢ edit_path (current_path,

current_path_name) ;
f8 : find_path (current_path,

current_path_name)

end;

restore_screen
until key = escape;
restore_screen
end;

begin

save_screen;

clear_area (1,2,80,25);

draw_window (1,3,80,23, white, blue, ’‘Scenario / Network’);
menu_x1l := 25;

204

—

menu_yl := 7;
menu_x2 := 55;
menu_y2 := 19;
repeat

choice := menu_selection (null_string,
information|’+

utility|’+

case choice of

1 : update_scenario_information;
2 : update_node_data;
3 : update_path_data;
4 : network_utility
end

until choice = §;

menu_x1l := menu_x1l_default;
menu_yl := menu_yl_default;
menu_x2 := menu_x2_default;
menu_y2 := menu_y2_default;
restore_screen

end;

begin
end.
~Z

205

’Scenario
'Node data
‘Path data
’Network

fReturn\’):

'+
'+

(**)

{
Unit name : TIMESTEP

Purpose : this unit contains the procedures that .
conduct all of the actions that occur each
time step. This includes incrementing the
game time, processing the events list, firing .
rounds, and attriting forces.

(**)
unit timestep:

interface
{$I-)

uses crt, utility, gameutil, global, event, commands,
taccess, tahigh;

procedure check_for_start_of hostilities;
procedure display sitrep:

procedure process_events_list;

procedure stock_atp;

procedure process_field trains;

procedure process_ammo_trucks;

procedure process_fire_units;

procedure generate_messages;

implementation
const .
fire_unit = 0;
ammo_truck = 1;
in_position = 0;
under_fire = 1;
moving = 2;

(**)

{
Procedure name : ADD_MESSAGE

Purpose : this procedure adds a message to the
message buffer file for display at a later time.

Parameters : NEW_MESSAGE - message record to be
added to the buffer.

Called by : several procedures that generate

messages throughout this unit.
} .

(**)

206

e

procedure add_message (new_message : message_record);

var
record_number : longint;

begin :
addrec (messages, record_ number, new_message) ;
addkey (message_type_index, record_number,
nev_message.message_type) ;

flushfile (messages);

flushindex (message_type_index)

end;

(**)

{
Procedure name : DELETE_MESSAGE

Purpose : this procedure deletes a message from
the message buffer after it has been displayed.

Parameters : RECORD_NUMBER - number of the record
that corresponds to the message to be deleted.

Called by : DISPLAY_MESSAGES

(**)
procedure delete_message (record_number : longint);

var
message : message_record;

begin
getrec (messages, record number, message);

deletekey (message_type_index, record_number,
message.message_type) ;

deleterec (messages, record_number);
flushfile (messages);

flushindex (message_type_index)
end;

(**)

{
Procedure name : CHECK_FOR_START_OF HOSTILITIES

Purpose : this procedure prompts the user for
determining whether hostilities have commenced.

Parameters : none.

Called by : PLAY_ WARGAME

207

(**)
procedure check_for_start_of hostilities;

begin
number_of_fields := 1; .
with field_list{1] do

begin

label_string := ’‘Commence hostilities (Yes/No) ?’;
label x := 24; label_y := 13;
str_val := ’N’;
xl := 57; yl := 13; x2 := 57; y2 := 13;
field_type := ch; valid_char_set := [’Y’,'N’]
end;
save_ screen;
draw_window (18,11,63,15, white, blue, null_string):
display_edit_screen_help_line;
edit_screen (number_of_fields, field_list, not
abort_allowed) ;
hostilities_started := field_list{l].str_val{l] = ‘Y’;
restore_screen
end;

(**)

{
Procedure name : DISPLAY_SITREP

Purpose : this procedure displays a sitrep for
the player with information on the firing units,
the battalion trains, and the ammo trucks.

Parameters : none.

Called by : GENERATE_MESSAGES
ISSUE_COMMAND
}

(**)
procedure display_sitrep:;

var
number_of_screens : integer;
screen : integer;

(**)

{
Procedure name : DISPLAY_ FIRING_UNIT_SITREP

Purpose : this procedure displays a sitrep for .
the fire unit passed as a parameter.

Parameters : FIRING_UNIT_NUMBER - number of the
firing unit for which the sitrep will be

208

—— e

displayed.
Called by : DISPLAY_SITREP

(**)
procedure display_firing _unit_sitrep (firing_unit_number :
integer):

* var
number_string : string80;

begin
save_screen;
with firing units[firing_unit_number] do

begin :
center_text (4, ’Firing Unit’, blue);
put_string (20, 6, ‘Firing unit name : /);

put_string (58, 6, firing_unit_name);
if sections_in_operating_condition > 0.0 then

begin

put_string (20, 7, ‘’Location : ‘);
put_string (58, 7, 1location);

put_string (20, 8, ‘Rounds on hand : /)

str (rounds_on_hand, number_string):

put_string (58, 8, number_string);

put_string (20, 9, ‘Ammo status : ‘);

put_string (58, 9, ammo_status);

put_string (20, 10, ’‘Rounds fired from current
position : 7);

str (rounds_fired_from_position, number_string);

put_string (58, 10, number_string):;

put_string (20, 11, ‘Time in position (hours) : ’);

str ((time_in_position / 60):4:2, number_string);

put_string (58, 11, number_string):

put_string (20, 12, ’Firing sections still operating :
I)’:

str (sections_in_ operating_condition:4:2,
number_string):

put_string (58, 12, number_string):;

put_string (20, 13, ’Status : ’);

put_string (58, 13, firing_status);

put_string (20, 14, ‘Vulnerability : ‘);
put_string (58, 14, vulnerability_status)
end

else
center_text (8, 'K I L L E D’, blue)

end;

key := get_key;
restore_screen
end;

209

(**)

{
Procedure name : DISPLAY_AMMO_TRUCK_SITREP

Purpose : this procedure displays a sitrep for
the range of ammo trucks passed as parameters.

Parameters : FIRST TRUCK - number of the first
truck to be displayed.
LAST TRUCK -~ number of the last truck to be
displayed.

Called by : DISPLAY_SITREP

(************************************t***********)

procedure display ammo_truck_sitrep (first_truck, last_truck
: integer):

var
truck : integer:;
percent : stringé;

begin

save_screen;

center_text (4, ‘Ammo Trucks’, blue);

center_text (6, .
’Bumper Convoy Mission Unit to Full/

Location Effective’, blue);

center_text (7,
A resupply empty

% ’, blue):

----------------- ’, blue);
for truck := first_truck to last_truck do
with ammo_trucks[truck] do
begin
put_string (5, 9 + truck - first_truck,
bumper number) ;
if not killed then
begin
put_string (15, 9 + truck
convoy_name) ;
put_string (27, 9 + truck
mission_assigned) ;
put_string (37, 9 + truck
firing_unit_to_resupply):
put_string (49, 9 + truck
load_status);
put_string (58, 9 + truck

first_truck,

first_truck,

first_truck,

first_truck,

first_truck, location);

210

str (effective_percent:4:2, percent):
put_string (70, 9 + truck ~ first_truck, percent)

end
else
put_string (22, 9 + truck - first_truck, 'K I L L E
* D')
end;
key := get_key:
* restore_screen
end;

(**)

{
Procedure name : DISPLAY_ TRAINS_SITREP

Purpose : this procedure displays a sitrep for
the battalion trains.

Parameters : none.

Called by : DISPLAY_SITREP

(**)
procedure display_trains_sitrep;

begin
save_screen;
center_text (4, ’‘Field Trains’, blue);
center_text (6, ’‘Location : ’+ battalion_trains.location,
blue) ;
key := get_key:
- restore_screen
end;

begin
save_screen;
clear_area (1,2,80,25);
draw_window (1,2,80,25, blue, lightgray, ’SITREP’):
center_text (23, ’‘page up - next screen page down -
previous screen’, red);
center_text (24, ’‘hit ESC when done viewing sitrep’, red):
if number_of_ammo_trucks > 12 then

number_of_screens := number_of_firing_units + 3

else

number_of_screens := number_of_firing_units + 2;
screen := 1;
repeat

if screen in ([1..number_of_firing_units] then
display firing unit_sitrep (screen)

else if screen = number_of_firing_units + 1 then

. display_ trains_sitrep

211

else if screen = number_of_firing_units + 2 then
" begin
if number_of_ammo_trucks < 12 then
display_ammo_truck_sitrep (1,
number_of_ ammo_trucks)
else
display_ammo_truck_sitrep (1, 12)
end
else
display_ammo_truck_sitrep (13, number_of ammo_trucks);

if key = page_up then

begin
if screen = number_of_screens then
screen := 1
else
incr (screen)
end
else if key = page_down then
begin
if screen = 1 then
screen := number_ of_screens
else
decr (screen)
end

else if key = 113 shl 8 then
check_event_list
until key = escape:
restore_screen
end;

(**)

{
Procedure name : AMOUNT_OF_ATTRITION

Purpose : this procedure determines the rate of
attrition of all units during the game based on
the parameters passed.

Parameters : UNIT TYPE - indicates whether the
unit to be attrited is a truck or fire unit.
UNIT_NUMBER - indicates which fire unit or
truck is to be attrited.

UNIT_POSTURE - indicates the current posture
of the unit to be attrited.

Called by : PROCESS_FIELD TRAINS
PROCESS_AMMO_TRUCKS
PROCESS_FIRE_UNITS

)

(**)

212

function amount_of_attrition (unit_type : integer;
unit_number : integer;
unit_posture : integer) :
real;

type
alpha_array = array ([fire_unit..ammo_truck] of
array (in_position..moving] of real:

const
alpha_air : alpha_array
0.0000025),

((0.000005, 0.000005,

(0.00001, 0.00001,
0.000005)):
alpha_arty : alpha_array

((0.000004, 0.000004,

0.000002),
(0.000008, 0.000008,
0.000004)):
var
temp_node : node_record:
temp_path : path_record;

casualties_per minute : real;
function y_air : integer;

var
y : integer;

begin

1f day_time then
y := 2

else
y := 1;

case unit_posture of
in_position, under_fire :

begin
with temp_node do
begin
case position_type of
'R! 1y t=y + 2;
,U’:y°—y+l
end;
case cover_concealment of
'L sy =y + 3;
™! y =y + 2;
'H’ ¢+ y t=y + 1
end
end;

if unit_type = fire_unit then
with firing_units[unit_number] do
begin

213

else

case vulnerabili
'H’ : y :=Yy
M/ 1y =Y
'L’ : y =Y
end;

Y

+ 4+ +0t
=N W

status of

if unit_posture = under_fire then
case firing_status of

'M’
else

Ty =y + 2;

Yy :=y + 1

end
end

with ammo_trucks[unit_number] do

end;
moving
with t

.
.

end
end;
y_air :=y
end;

function y_a

var
Yy

integ

begin

y := y_air;
y_arty =y
end;

begin

begin

case vulnerability status of

IHI
IMI
ILI
end;
if unit_posture
case movin

Y
Y
y

Yy

es ea ao
ee oo oo
nwwn

Y
y
r
g

false
true
end
end

y
Yy

+ 3
+ 2
+ 1

of

~e we

emp_path do

case vulnerability of
'H’ : y :=y + 3
‘M’ t y t=y + 2
'Lty t=y + 1
rty : integer:
er;
pe of

case unit_ty
fire unit

214

.
r
L3
’

under_fire then

y + 2;
y +1

begin
if unit_posture in [in_position, under_fire] then
taread (nodes, temp_node,
firing_units{unit_number].location,
exactmatch)
else
taread (paths, temp_path,
firing_units{unit_number].location,
exactmatch) ;
with firing _units[unit_number] do
casualties_per_minute :=
sections_in_operating_condition *
((alpha_air [unit_type]([unit_posture] * y_air)

+
(alpha_arty (unit_type)}[unit_posture] * y_arty)
)
end;
ammo_truck :
begin
if unit_posture in [in_position, under_ fire] then
taread (nodes, temp_node,
ammo_trucks(unit_number}.location,
exactmatch)
else
taread (paths, temp_path,
ammo_trucks(unit_number].location,
exactmatch) ;
with ammo_trucks(unit_number] do
casualties_per minute := effective_percent *
((alpha_air [unit_type][unit_posture] * y_air)
+
(alpha_arty [unit_type][unit_posture)] * y_arty)
)
end
end;
amount_of_attrition := casualties_per_ minute *
game_parameters.time_step_size
end;

(**)

{
Procedure name : PROCESS_EVENTS_LIST

Purpose : this procedure reads events from the
events list and determines if it is time to
execute that particular event and does so if
the time is current.

Parameters : none,

Called by : EXECUTE_NEXT_TIME_STEP

215

)

(**)
procedure process_events_list;

var
current_dtg : stringl5;
last_time_to_process : stringloO;
next_time_key : stringlo;
record_number : longint;
event : event_record;

(**)

{
Procedure name : UNIT_ALIVE

Purpose : this procedure determines whether or
not a unit is still alive before it processes
an event record for that unit.

Parameters : EVENT - event to be processed.

called by : PROCESS_EVENTS_LIST

(**)
function unit_alive (event : event_record): boolean;

begin
case event.unit_type of
‘T’ : unit_alive := true;
A’ : with ammo_trucks[truck_number (event.unit_name)] do

unit_alive := not killed:
’F’ : with firing_units[unit_number (event.unit_name)] do

unit_alive := (sections_in_operating_condition >
0.0)
end
end;

(**)

{
Procedure name : OCCUPY_NODE

Purpose : this procedure handles an occupy node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESS_EVENTS_LIST
)

(**)

216

procedure occupy node (event : event_record);

begin
case event.unit_type of
'T’ : begin
battalion_trains.location := event.node;
battalion_trains.moving := false
end;
A’ : with ammo_trucks([truck_number (event.unit_name)] do

begin
location := event.node;
moving := false
end;
'F’ : with firing_units[unit_number (event.unit_name)) do

begin
location := event.node;
if rounds_on_hand > 0 then
firing_status := ’H’
else
firing_status := ’C’
end
end
end;

(**)

{
Procedure name : TRANSIT NODE

Purpose : this procedure handles a transit node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESS_EVENTS_ LIST
)

(**)
procedure transit_node (event : event_record):

begin
case event.unit_type of
T’ : battalion_trains.location := event.path;
A’ : with ammo_trucks([truck_number (event.unit_name)] do

location := event.path;
’F’ : with firing_units{unit_number (event.unit_name)] do
location := event.path
end
end;

217

(**)

(
Procedure name : WAIT_ AT_NODE

Purpose : this procedure handles a wait at node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESS_EVENTS_LIST

(**)
procedure wait_at_node (event : event_record):

begin
case event.unit_type of
‘T’ : battalion_trains.location := event.node;
A’ : with ammo_trucks([truck_number (event.unit_name)] do

location := event.node;
’F’ : with firing_units{unit_number (event.unit_name))] do

location := event.node
end
end;

(**)

{
Procedure name : DEPART_NODE

Purpose : this procedure handles a depart node
event.

Parameters : EVENT - event to be processed.

Called by : PROCESS_EVENTS_LIST

(**)
procedure depart_node (event : event_record):

var
capacity : integer;
temp_node : node_record:;
temp_path : path_record;

begin
case event.unit_type of
T’ : with battalion_trains do
begin
location := event.path;

218

time_in_position := 0;
vulnerability status := ’A’;
moving := true
end;
‘A’ : with ammo_trucks{truck_number (event.unit_name)] do

begin

location := event.path;

taread (paths, temp_path, event.path,
exactmatch) ;

vulnerability status := temp_path.vulnerability;

moving := true
end;
’F’ : with firing_units{unit_number (event.unit_name)] do

begin
capacity := round
(sections_in_operating_condition *
section_max_rounds_capacity):

if rounds_on_hand > capacity then
begin
taread (nodes, temp_node, location,

exactmatch) ;
temp_node.ammo_count :=
temp_node.ammo_count + (rounds_on_hand -
capacity):
taupdate (nodes, temp node, location):;
taflush (nodes):;
rounds_on_hand := capacity
end;
location := event.path;
time_in_position := 0;
rounds_fired_from_position := 0;
vulnerability status := ’A’;
firing_status := M’
end
end
end;

(**)

{
Procedure name : SHOOT

Purpose : this procedure handles a shooting
event.

Parameters : EVENT - event to be processed.
Called by : PROCESS_EVENTS_LIST

219

(*t*************t********************************)
procedure shoot (event : event_record):

(**)

{
Procedure name : DETERMINE_AMMO_STATUS

Purpose : this procedure determines the units
ammo status after the firing has occured.

Parameters : UNIT NUMBER - unit that is firing

Called by : SHOOT

(FhrArhhhhhhhhhdhhhhhhhhhhhhhAhhhhhhdhddehhohhin)
procedure determine_ammo_status (unit_number : integer):;

begin
with firing units{unit_number] do
begin
if rounds_on_hand <= 0 then
ammo_status := ‘0’
else if rounds_on_hand > (0.35 #*
sections_in_operating _condition *
section_max_rounds_capacity)
then
ammo_status := ’S’
else if rounds_on_hand < (0.1 *
sections_in_operating condition *
section_max_rounds_capacity)

then
ammo_status := ’C’
else
ammo_status := ‘'L’
end
end;
begin

if hostilities_started then
with firing_units{unit_number (event.unit_name)] do
if firing_status = ‘H’ then
begin
rounds_on_hand := rounds_on_hand -
round (event.volleys *
sections_in_operating_condition):
rounds_fired_from_position :=
rounds_fired_from_ position +
round (event.volleys *
sections_in_operating_condition);

220

rIIIIIII.lIIIIlllIIIlllIIIIllIIllIlllll-..-.-.-.--II-------'*

determine_ammo_status (unit_number
(event.unit_name))

end
end;

(**)

{
Procedure name : RETURN_FROM_ATP

Purpose : this procedure handles a return from
the atp event.

Parameters : EVENT - event to be processed.

Called by : PROCESS_EVENTS_LIST
}

(*i**)
procedure return_from_atp (event : event_record):

var
new_message : message_record:

(**)

{
Procedure name : CREATE_MESSAGE

Purpose : this procedure creates a message and
puts it in the buffer if a truck has returned
from the atp and the trains have moved.

Parameters : TRUCK_NUMBER - truck that has
. returned to trains location.

Called by : RETURN_FROM_ATP
}

(**)
procedure create_message (truck_number : integer):

var
new_message : message_record;
message : message_record;
record_number : longint;
message_exists : boolean;

key : char;
begin
. with ammo_trucks|truck_number] do
begin

new_message.message_type := ’8’;
if convoy_name = null_string then
begin

221

eeeeeeeeeeeeeeed

IA’ H
bumper_ number

new_message.unit_type
new_message.unit_name
end
else
begin
new_message.unit_type := ‘C’;
new_message.unit_name := convoy_name
end;
new_message.location := location
end;
message_exists := false;
clearkey (message_type_index):
key := ’8’;
nextkey (message_type_index, record_number, key):
while ok and not message_exists do
begin
getrec (messages, record_number, message);
if message.unit_name = new_message.unit_name then
message_exists := true;
nextkey (message_type_ index, record_number, key)
end;
if not message_exists then
add_message (new_message)

L]

end;

begin

with ammo_trucks{truck_number (event.unit_name)] do
begin
location := event.node;
moving := false;

if atp_rounds_on_hand >= round (ammo_capacity *
effective_percent) then
begin
atp_rounds_on_hand :=
atp_rounds_on_hand - round (ammo_capacity *
effective_percent);
load_status := ’'F’
end;
if location <> battalion_trains.location then
Create_message (truck _number (event.unit_name))
end
end;

begin
current_dtg := game_dtg:;
last_time_to_process :=

inc_dtg_to_timekey

(current_dtg, round (game_parameters.time_step_size /

2.0));
clearkey (time_index);
nextkey (time_index, record_number, next_time_key);

222

while ok and (next_time_key <= last_time_ to_process) do
begin
getrec (event_list, record number, event):
if unit_alive (event) then
case event.event_type of

‘0’ : occupy_node (event):

T’ : transit_node (event);

'w’ : wait_at_node (event):

’D’ : depart_node (event);

'F’ : shoot (event):

'R’ : return_from_atp (event)
end;

delete_event (record_number):;
nextkey (time_index, record_number, next_time key)
end

end;

(**)

{
Procedure name : STOCK_ATP

Purpose : this procedure determines whether or
not to restock the atp each time based on the
start of a new day.

Parameters : none.

Called by : EXECUTE_NEXT_TIME_STEP

(**)
procedure stock_atp:

var
total_firing_units : real;
i : integer:

begin
if new_day then
begin
total_firing_units := 0;
for i := 1 to number_of_firing units do
total_firing_units := total_firing_units +
firing units[i].sections_in_operating_condition:
atp_rounds_on_hand :=
trunc (commanders_guidance.bn_csr #*
total_firing_units)
end
end;

(**)

{

223

Procedure name : PROCESS_FIELD_TRAINS

Purpose : this procedure checks the trains each

time step to determine the wvulnerability, if it

is receiving incomming, and attrition of any .
trucks at the trains location.

Parameters : none. -

Called by : EXECUTE_NEXT_ TIME_STEP
}

(**)
procedure process_field_trains:

(**)

{
Procedure name : DETERMINE_VULNERABILTY_ LEVEL

Purpose : this procedure checks the current
level of vulnerability of the field trains based
on time in position.

Parameters : none.

Called by : PROCESS_FIELD_TRAINS

(**)
procedure determine_vulnerability level; .

begin
with battalion_trains do
begin)
if time_in_position <
round

(commanders_guidance.vulnerability_ threshold _time * 60) then

vulnerability status := ‘A’
else if time_in_position >
round
(commanders_guidance.vulnerability threshold_time * 60) then

vulnerability status := ‘H’
else if time_in_position >
round
(commanders_guidance.vulnerability threshold_time * 60 * 2)
then
vulnerability_status := ‘C’ .
end
end;

(**)

224

R —

Procedure name : CHECK_FOR_INCOMING

Purpose : this procedure checks the trains level
cf vulnerability to determine if they should
receive enemy artillery fire.

Parameters : none.

Called by : PROCESS_FIELD_TRAINS

T T T T T L T T T)
procedure check_for_incoming;

(**)

{
Procedure name : DISPLACE_FOR_INCOMING

Purpose : this procedure prompts the player to
determine whether the trains and any trucks at
that location should displace after receiving

incoming.

Parameters : none.

Called by : CHECK_FOR_INCOMING
}

(**)
function displace_for_intoming : boolean;

begin
number_of fields := 1;
with field_list[1] do

begin

label_string := ’Displace (Yes/No) ?';

label_x := 30:; label_y := 20;

str_val := ’N’;

X1l := 51; yl := 20; x2 := 51; vy2 := 20;
field_type := ch; valid_char_set := [’Y’,’N’)
end;

save_screen;

draw_window (10,15,71,23, blue, lightgray, null_string);
center_text (17, ’Battalion trains are receiving incoming
artillery fire.’, blue);

center_text (18, ’Request permission for emergency
displacement.’, blue):

edit_screen (number_ of_fields, field_list, not
abort_allowed) ;

displace_for_incoming := field list({1l].str_val[l] = ’Y’;
restore_screen
end;

225

(****************************i*******************)

{
Procedure name : DISPLACE_TRAINS

Purpose : this procedure creates the event
records necessary to displace the trains and any
trucks at the trains if desired by the player.

Parameters : none.

Called by : CHECK_FOR_INCOMING
}

(**)
procedure displace_trains;

var
i : integer:
displace_event : event_record;
current_time : stringl5;

begin
with displace_event do
begin
event_type := ‘0’;
current_time := game_dtg;
time_key := inc_dtg_to_timekey (current_time, 30);
node := battalion_trains.location
end;
with battalion_trains do
begin
displace_event.unit_type :
displace_event.unit_name :
moving := true;
time_in_position := 0;
vulnerability status := ’A’;
add_event (displace_event)
end;
for i := 1 to number_of_ammo_trucks do
with ammo_trucks({i] do
if (not killed) and (location =
battalion_trains.location) then
begin
displace_event.unit_type :
displace_event.unit_name :

1,
'TRAIN’;

IAI:
bumper number;

moving := true;
add_event (displace_event)
end

end:;

(**)

226

Procedure name : ASSESS_CASUALTIES

Purpose : this procedure eill assess casualties
for any trucks at the trains location when they
received the incoming artillery fire.

Parameters : none.

Called by : CHECK_FOR_INCOMING
)

(**)
procedure assess_casualties;

var
i : integer:

begin
for i := 1 to number_of_ammo_trucks do
with ammo_trucks[i] do
if (not killed) and (location =

battalion_trains.location) then

begin

vulnerability status :=
battalion_trains.vulnerability status;

effective percent := effective_percent -

amount_of_ attrition (ammo_truck, i, under_fire);

if effective_percent < 0.0 then
effective_percent := 0.0
end
. end;

begin
with battalion_trains do
if ((vulnerability_status
((vulnerability_ status
((vulnerability status

C’) and (random < 0.05)) or
’H’) and (random < 0.01)) or
‘A’) and (random < 0.005))

then
begin
if displace_for_incoming then
displace_trains;
assess_casualties
end
end;

(**)

{
Procedure name : PUT_VULNERABILITY MESSAGE

- Purpose : this procedure will put a message in

227

the buffer if the vulnerability of the trains has
changed this time step.

Parameters : none.

Called by : PROCESS_FIELD_TRAINS

(**)
procedure put_vulnerability message;

procedure create_message:;

var
new_message : message_record;

_ begin
with battalion_trains do
begin
new_message.message_type := ’‘7’;

new_message.unit_type := ‘T/;
new_message.unit_name := /TRAIN’;
if vulnerability high then

new_message.vulnerability := ’‘H’
else
new_message.vulnerability := ’C’
end;
add_message (new_message)
end;
begin

with battalion_trains do
case vulnerability_ status of
A’ : if vulnerability_high or vulnerability_critical
then

begin
vulnerability high := false;
vulnerability critical := false
end;

’H’ : if not vulnerability_high then
begin
vulnerability critical := false;
vulnerability_high := true;
create_message
end;

’C’ : if not vulnerability_critical then
begin
vulnerability_high := false;
vulnerability_critical := true;
create_message
end

end

228

end;

begin
if not battalion_trains.moving then
with battalion_trains do
begin
time_in position := time_in_position +
game_parameters.time_step_size:;
- determine_vulnerability_ level;
if hostilities_started then
check_for_incoming;
put_vulnerability message
end

end;

(**)

{
Procedure name : PROCESS_AMMO_TRUCKS

Purpose : this procedure checks the trucks each
time step to determine if they have completed a
resupply mission, if they have sufficient rest,
attrit them if moving, and update their stats.

Parameters : none.

Called by : EXECUTE_NEXT_TIME_STEP
)

(**)
procedure process_ammo_trucks;

. (**)

{
Procedure name : ASSESS_CASUALTIES

Purpose : this procedure checks the trucks each
time step to determine if they are moving and if
so what attrition will be assessed to then.

Parameters : none.

Called by : PROCESS_AMMO_TRUCKS
)

(**)
procedure assess_casualties;

var
i : integer;

begin
- for i := 1 to number_of_ammo_trucks do

229

with ammo_trucks([i] do
if (not killed) and moving then
begin
effective_percent := effective_percent -
amount_of_attrition (ammo_truck, i,
timestep.moving);
if effective_percent < 0.0 then
effective_percent := 0.0;
killed := (effective_percent = 0.0)
end
end;

(**)

{ :
Procedure name : CHECK_FOR_RESUPPLY

Purpose : this procedure checks the trucks each
time step to determine if they have completed

a resupply mission, either to a unit or to a
node. If so, it creates a message to that
effect.

Parameters : none.
Called by : PROCESS_AMMO_TRUCKS

(**)
procedure check_for_resupply:;

var
i : integer;
temp node : node_record;

procedure create_message (message_type : char);

var
new_message : message_record;
message : message_record;
message_exists : boolean;
key : char;
record_number : longint;

begin
with ammo_trucks(i] do
begin
new_message.message_type := message_type;
if convoy_name = null_string then
begin

new_message.unit_type
new_message.unit_name
end

= IAI:
= bumper_ number

230

else
begin
hew_message.unit_type := ‘C’;
nev_message.unit_name := convoy_name
- end;
if message_type = ’1’ then
hew_message.location := node_to_resupply
else
new_message.location := firing_unit_to_resupply
end;
message_exists := false;
clearkey (message_type_index);
key := message_type:;
nextkey (message_type_index, record_number, key):
while ok and not message_exists do
begin
getrec (messages, record_number, message):;
if message.unit_name = new_message.unit _name then
message_ exists := true:
nextkey (message_type_index, record_number, key)
end;
if not message_exists then
add_message (new_message)
end;

begin
for i := 1 to number_of_ammo_trucks do
. w1th ammo trucks[1] do
if (not killed) and (mission_assigned = ’Y’) then
begin
if (firing_unit_to_resupply = ‘PREPO’) and (not
moving) and

(node_to_resupply = location) and (load_status

‘F’) then

begin

load_status := ‘E’;

taread (nodes, temp_node, node_to_resupply,
exactmatch) ;

temp_node.ammo_count := temp_node.ammo_count
+

round (ammo_capacity * effective_percent);

taupdate (nodes, temp_node, location);
taflush (nodes):;
Ccreate_message (’1’);

mission a551gned t= IN’;
firing_unit_to_resupply := null_string:
node_to resupply := null strlng

end

else if (not moving) and (load_status = ’F’) and
(firing_unit_to_resupply <> null_string) and

231

(firing_units[unit_number
(firing_unit_to_resupply)).location =
location) then
begin
load_status := ‘E’;
with firing_units{unit_number
(firing_unit_to_resupply)] do
begin
rounds_on_hand := rounds_on_hand +
round (ammo_capacity *
effective_percent);
if firing status = ’C’ then
firing_status := ’‘H’
end;
create_message (’2');
mission_assigned := ’N’;
firing_unit_to_resupply := null_string;
node_to_resupply := null_string
end
end
end;

(**)

{
Procedure name : CHECK_FOR_REST

Purpose : this procedure checks the trucks each
time step to determine if they have accrued
sufficient rest to accomplish any assigned
mission. It also updates the amount of rest
and the time since they began resting.

Parameters : none.

Called by : PROCESS_AMMO_TRUCKS

(**)
procedure check_for_rest;

var
i : integer;

begin
for i := 1 to number_of_ammo_trucks do
with ammo_trucks([i] do
if not killed then
begin
time_since_rest_began :=
time_since_rest_began +
game_parameters.time_step_size;
if (not moving) and (mission_assigned = ’N’) then

232

e s e e e e

rllIlIIIllIIIlIlIII-I-II-IIl----------------‘:*

amount_of_ rest := amount_of_rest +
game_parameters.time_step_size;
if amount_of_rest >=
round (commanders_guidance.crew_rest_per_day *

60) then
' begin
time_since_rest_began := 0;
amount_of_rest := 0
- end
end
end;

(**)

{
Procedure name : CALCULATE_TRUCK_STATS

Purpose : this procedure updates the amount of
time that a truck is not available due to
casualties each time step.

Parameters : none.

Called by : PROCESS_AMMO_TRUCKS

(**)
procedure calculate_truck_stats:;

var
i : integer;

begin
- for i := 1 to number_of_ammo_trucks do
with ammo_trucks{i] do

casualty time := casualty_time +
round ((1.0 - effective_percent) *
game_parameters.time_step_size)
end;

begin

if hostilities_started then
assess_casualties;

check_for_resupply:

check_for_rest:

calculate_truck_stats

end;

(**)

{
Procedure name : PROCESS_FIRE_UNITS

. Purpose : this procedure checks the fire units

233

each time step for firing, attrition, ammo
resupply, and updates it vulnerability, ammo
status, and statistics.

Parameters : none.

Called by : EXECUTE_NEXT_ TIME_STEP

T T T T T T T T T T)
procedure process_fire units;

var
i : integer;

(**)

{
Procedure name : CHECK_FOR_AMMO_RESUPPLY

Purpose : this procedure checks the fire units
each time step to determine if they have
arrived at a node at which they are supposed to
pick up ammunition.

Parameters : none.

Called by : PROCESS_FIRE_UNITS

(**)
procedure check_ for_ammo_resupply:

var
temp_node : node_record;

begin
with firing units(i] do
if (ammo_pickup_mission) and (location =
ammo_pickup_location) then
begin
taread (nodes, temp_node, location, exactmatch);
rounds_on_hand := rounds_on_hand +
temp_node.ammo_count;
temp_node.ammo_count := 0;
taupdate (nodes, temp_node, location);
taflush (nodes)
end
end;

(**)

{
Procedure name : SHOOT_ROUNDS

234

Purpose : this procedure checks the fire units
each time step to have them fire at a rate
consistent with their ammo status and the
battalion csr.

Parameters : none.

Called by : PROCESS_FIRE_UNITS
)

(***************************************t****t***)
procedure shoot_rounds;

var
rounds_to_fire : integer;

begin
with firing units(i] do
begin
rounds_to_fire := trunc (commanders_guidance.bn_csr *

rate_percent_csr *
sections_in_operating_condition
%
game_parameters.time_step_size /
(60 * 24));
rounds_to_fire := abs (normal_rv (rounds_to_fire, 5));
if rounds_ to_fire >
(sustalned_rate_of_fire *
sections_in_operating_condition *
game_parameters time_step_size) then
rounds_to_fire := ~trunc (sustained_rate_of_fire *

sections_in_operating_condition *

game_parameters.time_step_size);
if rounds_to_fire > rounds_on_hand then
rounds_to_ _fire := rounds _on_hand;
rounds_on_ “hand := rounds_on hand - rounds_to_fire;
rounds_fired_from position := rounds_fired_from position
+ rounds_to_fire;
if rounds_on_hand <= 0 then
firing_status := ‘C’
end
end;

(**)

{
Procedure name : DETERMINE_VULNERABILITY_LEVEL

Purpose : this procedure checks the fire units
each time step to update their vulnerability
status based on rounds fired from position and

235

time in position.
Parameters : none.

Called by : PROCESS_FIRE_UNITS

T T P T T T T
procedure determine_vulnerability level;

begin
with firing units{i), commanders_guidance do
if (time_in_position < round
(vulnerability threshold_time * 60)) and
(rounds_fired from_ position <
vulnerability_ threshold_rounds) then
vulnerability status := ‘A’
else if (time_in_position < round
(vulnerability_ threshold_time * 60)) and
(rounds_fired_from_position >
vulnerability_threshold_rounds) then
vulnerability_ status := ’‘H’
else if (time_in_position > round
(vulnerability_threshold_time * 60)) and
(rounds_fired_from position <
vulnerability_threshold_rounds) then
vulnerability_ status := ’‘H’
else
vulnerability status := ’C’
end;

(**)

{
Procedure name : ASSESS_CASUALTIES

Purpose : this procedure checks the fire units
each time step to assess casualties based on
vulnerabilty and whether they are receiving
incoming this time step.

Parameters : none.

Called by : PROCESS_FIRE_UNITS
)

(**)
procedure assess_casualties;

var
j : integer:;

(**)

{
236

_j

Procedure name : CHECK_FOR_INCOMING

Purpose : this procedure checks the fire units
each time step to determine whether or not they
will receive enemy artillery fire and assess
casualties accordingly.

Parameters : none.

Called by : ASSESS_CASUALTIES

(**)
procedure check_for_incoming;

function displace_for_incoming : boolean;
begin

number_of_ fields := 1;
with field_list(1] do

begin

label_string := ’Displace (Yes/No) ?’;
label_x := 30; label_y := 20;

str_val := ’N’;

X1 := 51; yl := 20; x2 := 51; y2 := 20;
field type := ch:; valid_char_set := [’Y’,’N’]
end;
save_screen;
draw_window (10,15,71,23, blue, lightgray, null_string):
center_text (17, ‘Firing unit ’ +
firing units{i).firing_unit_name +
* is receiving incoming artillery fire.’,
. blue);
center_text (18, ‘Reguest permission for emergency
displacement.’, blue);
edit_screen (number_of_ fields, field_list, not
abort_allowed) ;
displace_for_incoming := field_list[1l].str_val[l] = ’'Y’;
restore_screen
end;

procedure displace_firing unit;

var
j : integer;
displace_event : event_record;
current_time : stringil5;

- begin
with displace_event do
begin
- event_type := ‘0’;

237

current_time := game_dtg:;
time_key := inc _dtg_to_timekey (cur
node := firing units(i].location
end;

with firing_units[i] do
begin
displace_event.unit_type := ’‘F’;

displace_event.unit_name := firing_unit_name;

firing_status := 'M’;
time_in_position = 0;
rounds_fired_from position := 0;
vulnerability_status := ‘A’;
add_event (displace_event)
end;
for j := 1 to number_of_ ammo_trucks do
with ammo_trucks[j] do
if (not killed) and (location =
firing_units(i].location) then
begin
displace_event.unit_type := /
displace_event.unit_name :=
moving := true;
add_event (displace_event)
end
end;

procedure assess_incoming_casualties;

var
j : integer;

begin
with firing_units[i] do
begin
sections_in_operating_condition :=
sections_in operatlng condition -
amount of attrition (fire_unit,
if sections_in _operating_ condltlon
sectlons in_operating_condition
end,
for j := 1 to number_of_ammo_trucks do
with ammo_trucks[j] do
if (not killed) and (location =
firing units{i).location) then
begin
vulnerability_status :=
firing_units{i).vulnerability status;
effective_percent := effectiv

rent_time, 30):

i, under_fire);
< 0.0 then
= 0.0

e_percent -

amount_of_attrition (ammo_truck, j, under_fire);

if effective_percent < 0.0 th

238

en

effective_percent := 0.0
end
end;

begin
with firing units{i] do
if ((vulnerability_status
((vulnerability status
((vulnerability_status

'C’) and (random < 0.05)) or
‘H’) and (random < 0.01)) or
‘A’) and (random < 0.005))

then
begin
if displace_for_incoming then
displace_firing_unit;
assess_incoming_casualties
end -
end;

begin
with firing units[i] do
begin
sections_in_operating_condition :=
sections_in_operating_condition -
amount_of_attrition (fire_unit, i, in_position);
if sections_in_operating_condition < 0.0 then
sections_in_operating_condition := 0.0
end;
for j := 1 to number_of_ammo_trucks do
with ammo_trucks{j] do
if (not killed) and
(ammo_trucks[j].location
firing_units{i).location) then
begin
vulnerability status :=
firing units[i).vulnerability status:;
effective_percent := effective_percent -
amount_of_ attrition (ammo_truck, j,

in_position);
if effective_percent < 0.0 then
effective_percent := 0.0
end;
check_for_incoming
end;

(**)

{
Procedure name : PUT_VULNERABILITY_ MESSAGE

Purpose : this procedure will create a message to

be placed in the buffer if the firing units
vulnerability level has changed this time step.

239

Parameters : none.

Called by : PROCESS_FIRE_UNITS
}

(hhhkkkhhhkhkhhhhhhhRhhkhdhkok bk Rk hhrhhr kA h kR kdkdk)
procedure put_vulnerability message;

procedure create_message;

var
new_message : message_record;

begin

with firing_units[i] do
begin
new_message.message_type := ’'7/;
new_message.unit_type := ‘F’;

new_message.unit_name := firing_unit_name;
if vulnerability high then
new_message.vulnerability := ’H’
else
new_message.vulnerability := ’C’
end;
add_message (new_message)
end;
begin

with firing units{i] do
case vulnerability status of
A’ : if vulnerability high or vulnerability_critical

then
begin
vulnerability_high := false;
vulnerability critical := false
end;
'H’ : if not vulnerability high then
begin
vulnerability critical := false;
vulnerability_high := true:;
create_message
end;
C’ : if not vulnerability_critical then
begin
vulnerability high := false;
vulnerability critical := true;
create_message
end .
end
end;

(**)

240

e

Procedure name : DETERMINE_AMMO_STATUS

Purpose : this procedure will check the firing
unit each time step in order to update its ammo
status.

Parameters : none.

Called by : PROCESS_FIRE_UNIT

(RrRERARRIRRRRRRRRRRRA AR RRR IR R AR R AR AR RN R R AR)
procedure determine_ammo_status;

begin
with firing_units([i] do
if rounds_on_hand > (0.35 * section_max_rounds_capacity #*

sections_in_operating _condition) then

ammo_status := ’S’
else if rounds_on_hand <= 0 then
ammo_status := ‘0’

else if rounds_on_hand < (0.1 *
section_max_rounds_capacity *
sections_in_operating_condition) then

ammo_status := 'C’
else
ammo_status := ‘L’
end;

(**)

{
Procedure name : PUT_AMMO_STATUS_MESSAGE

Purpose : this procedure will create a message to

be placed in the buffer if the firing units
ammo status has changed this time step.

Parameters : none.

Called by : PROCESS_FIRE_UNITS
(**;
procedure put_ammo_status_message;
procedure create_message;

var
new_message : message_record;

241

begin
with firing_units[i] do
begin
new_message.message_type := ‘6’;
new_message.unit_type := ‘F’; .
new_message.unit_name := firing_unit_name;
if ammo_low then

new_message.ammo_status := ‘L’ -
else if ammo_critical then
new_message.ammo_status := ’C’
else if ammo_out then
new_message.ammo_status := ‘0’
end;
add_message (new_message)
end;
begin
with firing units[i] do
case ammo_status of
'S’ : if ammo_out or ammo_critical or ammo_low then
begin
ammo_out := false;
ammo_critical := false;
ammo_low := false
end;
'L’ : if not ammo_low then
begin
ammo_low := true; .
ammo_critical := false;
ammo_out := false;
create_message .
end;
’/C’ : if not ammo_critical then
begin
ammo_critical := tiue;
ammo_low := false;
ammo_out := false;
create_message
end;
0’ : if not ammo_out then
begin
ammo_out := true;
ammo_low := false;
ammo_critical := false;
create_message
end
end *

end;

(**) .

242

-

Procedure name : CALCULATE_FIRING_UNIT_STATS

Purpose : this procedure will update the stats
for a firing unit each time step based on the
time that it was critically short ammo,
critically vulnerable, and time lost due to
casualties.

Parameters : none.

Called by : PROCESS_FIRE_UNITS
}

(***t******)
procedure calculate_firing_unit_stats;

begin
with firing_units([i] do
begin
if firing_status = ‘H’ then
total_availability time :=
total_availability time + round
(game_parameters.time_step_size *
sections_in_operating _condition);
if vulnerability status = ’C’ then
critically_vulnerable_time :=
critically_vulnerable_time + round
(game_parameters.time_step_size *
sections_in_operating_condition);
if ammo_status = ’C’ then
critically_short_time :=
- critically_short_time + round
(game_parameters.time_step size *
sections_in_operating_condition)
end
end;

begin
for i := 1 to number_of_firing_units do
with firing_units{i] do
if sections_in_operating_condition > 0.0 then
begin
check_for_ammo_resupply:;
if (hostilities_started) and (firing_status = ’‘H’)
then
shoot_rounds;
if firing_status = ’M’ then
begin
sections_in_operating condition :=
sections_in_operating_condition -
i amount_of_attrition (fire_unit, i, moving);

243

p

if sections_in_operating_condition < 0.0 then
sections_in_operating_condition := 0.0
end
else
begin
time_in_position :=
time_in_position +
game_parameters.time_step_size;
determine_vulnerability_level;
if hostilities_started then
assess_casualties;
if sections_in_operating_condition > 0.0 then
begin
put_vulnerability message:;
determine_ammo_status;
put_ammo_status_message
end
end;
calculate_firing_unit_stats
end

end;

(**)

{
Procedure name : GENERATE_MESSAGES

Purpose : this procedure will display the sitrep
and message buffer each time step if it is
required based on desired frequency of sitreps
and whether or not the message buffer has any-
thing in it.

Parameters : none.

Called by : EXECUTE_NEXT_TIME_STEP
)

(**)
procedure generate_messages;

procedure display_messages;
var
message : message_record;
message_type : char;
record_number : longint;
buffer : array [1..8) of string;
i : integer;
function message_text (message : message_record): string;
var

244

buffer : string;

begin
with message do
begin
case message_type of
1’ : begin
buffer := ’‘Ammo prepositioned at node ’ +
location;
if unit_type = ’C’ then
buffer := buffer + ’, convoy ’ + unit_name +
! requests orders’
else
buffer := buffer + ‘/, truck ’/ + unit_name + ’
requests_orders’
end;
2’ : begin
buffer := ’Ammo delivered to unit ’ + location;
if unit_type = ’‘C’ then
buffer := buffer + ’, convoy ’ + unit_name +
! requests orders’
else
buffer := buffer + /, truck ’ + unit_name + '’
requests_orders’

end;
‘3’ : begin
end;
4’ : begin
end;
‘5’ : begin
end;
’6’ : begin
case ammo_status of
0’ : buffer := ‘Unit ’ + unit_name + ’ is out
of ammo’;

’C’ : buffer := ’Unit ’ + unit_name + ’ ammo
status is critical’;
'L’ : buffer := ’‘Unit ’/ + unit_name + ’/ ammo
status is low’
end
end;
7’ : begin
case unit_type of
T’ : if vulnerability = ’‘H’ then
buffer := ’'Trains have reached high
vulnerability’
else
buffer := ’‘Trains have reached
critical vulnerability’;
’F’ : if vulnerability = ’‘H’ then
buffer := ‘Unit ’‘+ unit_name +

245

’ has reached high

vulnerability’
else
buffer := ‘Unit ’+ unit_name +
' has reached critical
vulnerability’
end
end;

’g8’ : begin
if unit_type = ’C’ then
buffer := ‘Convoy ’ + unit_name + ’ unable to
locate trains’
else
buffer := ’‘Truck ’' + unit_name + ’ unable to
locate trains’

end
end
end;
message_text := buffer
end;

procedure display buffer:

var
i : integer;

begin
save_screen;
draw_window (6,14,75,25, blue, lightgray, ’'MESSAGES’):
for i := 1 to 8 do
put_string (10, 15 + i, buffer[i]):
center_text (24, ’‘press any key’, red):
key := get Kkey:

key := null;
restore_screen
end;

begin

clearkey (message_type_index) :;
nextkey (message_type_index, record_number, message_type):
repeat
for i := 1 to 8 do
buffer[i] := null_string;
iz:=1;
while ok and (i < 8) do
begin
getrec (messages, record_number, message);
buffer{i) := message_text (message):;
delete_message (record_number):;
incr (1i):

246

nextkey (message_type_ index, record_number,
message_type)
end;
if buffer[l) <> null_string then
display_buffer
’ until not ok
end;) B,

- begin T

display messages;
time_since_last_sitrep :=

time_since_last_sitrep + game_parameters.time_step_size;
if time_since_last_sitrep >=
commanders_guidance.unit_sitrep frequency then

begin

time_since_last_sitrep := 0;

display sitrep

end
end;

begin
end. 2

247

F--..I-------.--I.--II--.---I-----------E:.

(**)

{
Unit name : COMMANDS

Purpose : this unit contains the procedures that
allow the player to input commands and have
them executed as is appropriate for each
command.

T T T T T)
unit commands:;

interface

{$I-)
uses dos, crt, utility, gameutil, global, taccess, tahigh;

procedure create_truck_convoy;
procedure remove_truck_convoy;
procedure ammo_resupply mission;
procedure cancel_resupply mission;
procedure ammo_truck_ammo_pickup;
procedure fire unit_ammo_pickup;
procedure cancel_fire_ unit_pickup;
procedure move_unit;

procedure issue_fire_order:;
procedure change_firing_rate;
procedure cancel_command;

implementation

type

name_array = array (1..24] of string5;

route_array = array [1..2] of array [1..11] of string5;
var

route : route_array;

current_path : integer;

(**)

{
Procedure name : UNIQUE_CONVOY_NAME

Purpose : this procedure checks a name entered

for a convoy to insure that it has not been used

to name a fire unit, truck, or other convoy.

Parameters : STRING_VALUE - string to be checked.

Called by : used as a parameter to EDIT_SCREEN
by CREATE_TRUCK_CONVOY

248

(**)
($F+}. . L] [
function unique_convoy_name (string_value : string80):
boolean;

var
convoy_exists : boolean;

begin

suppress_messages := true;

string value := upper_case (string_value):;

convoy_exists := (string_value = null_string) or
(string_value = ‘TRAIN’) or
(truck_number (string_value) <> 0) or
(unit_number (string_value) <> 0) or
(valid_convoy (string_value));

if convoy_exists then

display_error_message (’/INPUT ERROR’, null_string,
null_string,
‘convoy must have a unique name’,

null_string);

unique_convoy_name := not convoy_exists;

suppress_messages := false

end;

{(S$F-)

(**)

{
Procedure name : VALID_AMMO_TRUCK_FOR_CONVOY

Purpose : this procedure checks a name entered
to determine whether or not it can be added to
a new convoy.

Parameters : STRING_VALUE - string to be checked.

Called by : used as a parameter to EDIT_SCREEN
by CREATE_TRUCK_CONVOY
)
(**)
($F+)
function valid_ammo_truck_for_convoy (string_value :
string80): boolean;

var
truck_exists : boolean;

begin

suppress_messages := true;

string_value := upper_case (string_value);
truck_exists := (string_value = null_string) or

249

(valid_ammo_truck (string_value)):;

if not truck_exists then

display_error_message (’INPUT ERROR’, null_string,
ﬁull_string,

‘ammo truck does not exist’, .

null_string):;
valid_ammo_truck_for_convoy := truck_exists;
suppress_messages := false
end;
{SF-)

(**)

{
Procedure name : VALID TRUCK_OR_CONVOY

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing truck or convoy.

Parameters : STRING_VALUE - string to be checked.

Called by : used as a parameter to EDIT_SCREEN
by AMMO_RESUPPLY_MISSION

}

(**)

($F+)

function valid_truck_or_convoy (string_value : string80):

boolean; .

var
truck_or_convoy_exists : boolean;

begin

suppress_messages := true;

string_value := upper_case (string_value);
truck_or_convoy_exists := valid_ammo_truck (string_value) or

valid_convoy (string_value);
if not truck_or_convoy_exists then
display_error_message (’/INPUT ERROR’, null_string,
’truck/convoy entered does not
exist’,
‘or truck is part of a convoy’,
null_string):

valid_truck_or_convoy := truck_or_convoy_exists;

suppress_messages := false

end; .
(SF-}

(**)

{

250

I —

e EEE— -

Procedure name : VALID UNIT_TO_RESUPPLY

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing node or unit to be resupplied.

Parameters : STRING_VALUE - string to be checked.

Called by : used as a parameter to EDIT_SCREEN
by AMMO_RESUPPLY_MISSION
}
(***t**)
{SF+)
functlon valid_unit_to resupply (string_value : string80):
boolean;

var
unit_exists : boolean;

begin
suppress_messages := true;
string_value := upper_case (string_value);
unit_exists := (valid_unit (string_value)) or (string_value
= 'PREPO’);
if not unit_exists then
display_error_message (’INPUT ERROR’, null_string,
null_string,
'unit entered does not exist’,
null_string)
else if string_value = ’‘PREPO’ then
begin
number_of_fields := 3;
with field_list[3] do
begin
put_string (label_x, label_y, label_string):
if length (str_val) > (x2 - x1 + 1) then

str_val [0] := chr (x2 - x1 + 1);
put_string (x1, yl, str_val)
end
end
else
begin

number_of fields := 2;
field llst[3] str_val := null_string;
with field llSt[3] do

put_string (label_x, label_y, ‘

")

end;
valid_unit_to_resupply := unit_exists;
suppress_messages := false
end;

251

e

{$F-)

(**************************t*********************)

{
Procedure name : TRUCKS_AT_ATP

Purpose : this procedure checks a name entered
to determine whether or not it corresponds to
an existing truck or convoy that is at the
trains and ready to pickup ammo.

Parameters : STRING_VALUE -~ string to be checked.

Called by : used as a parameter to EDIT_SCREEN
by AMMO_TRUCK_AMMO_PICKUP

(**)

{$F+)
function trucks_at_atp (string_value : string80): boolean;

var
truck_or_convoy_valid : boolean;
i : integer;

begin

suppress_messages := true;

string_value := upper_case (string_value):;
truck_or_convoy_valid := valid_ammo_truck (string_value) or

valid_convoy (string_value);
if truck_or_convoy_valid then
begin
if valid_ammo_truck (string_value) then
truck_or_convoy_valid :=
(ammo_trucks[truck_number (string_value)].location

battalion_trains.location) and

(ammo_trucks[truck_number
(string_value)].load_status = ‘E’) and

(ammo_trucks[truck_number
(string_value)] .mission_assigned = ’N’)

else
begin
truck_or_convoy_valid := false:
for i := 1 to number_of_ammo_trucks do

if (ammo_trucks(i].convoy_name = string_value) and
(ammo_trucks[i].location =
battalion_trains.location) and
(ammo_trucks(i].load_status = ‘E’) and
(ammo_trucks[i].mission_assigned = ’N’) then
truck_or_convoy_valid := true
end

252

.

end:
if not truck_or_convoy_valid then
display_error_message (’/INPUT ERROR’, null_string,

‘truck/convoy entered does not
exist,’,

’is not at trains, has a mission,
or’,

’is not out of ammunition’);
trucks_at_atp := truck_or_convoy_valiqd;
suppress_messages := false
end;

{S$F-)

(**)

{
Procedure name : TIME_NOT_PAST

Purpose : this procedure checks a dtg that has
been entered for a command to insure that it
has not past.

Parameters : STRING_VALUE =~ dtg to be checked.

Called by : used as a parameter to EDIT_SCREEN
by any command that requires a dtg be entered.
}
(**)
{SF+)
function time_not_past (string_value : string80): boolean;

var
time_equivalent : datetime;

begin
if valid_dtg (string_value) then
begin
dtg_to_datetime (string_value, time_equivalent);
if time_relative (time_equivalent, game_time) = before
then
begin
time_not_past := false;
display_error_message (’/INPUT ERROR’, null_string,
null_string,
’time entered has already
past’, null_string);
end
else
time_not_past := true
end
else
begin

253

time_not_past := false;
display_error_message (‘/INPUT ERROR’, null_string,
’dtg format : ‘’/05 0530Z JAN
89"',
’'spaces may be omitted’,
null_string)
end
end;

{$F-)

(**)

{
Procedure name : VALID_ NODE_FOR_ROUTE

Purpose : this procedure checks a node to insure
that it lies on the route being entered for a
movement command.

Parameters : STRING_VALUE - node to be checked.

Called by : used as a parameter to EDIT_SCREEN
by MOVE_UNIT.

)

(**)

{$F+) , .

function valid_node_for_ route (string_value : string80):
boolean; '

begin

string_value := upper_case (string_value);

if valid_node (string_value) then
route(2][1] := string_value

end;

{S$F-)

(**)

{
Procedure name : VALID_PATH_IN_ROUTE

Purpose : this procedure checks a path to insure
that it lies on the route being entered for a
movement command.

Parameters : STRING_VALUE - path to be checked.

Called by : used as a parameter to EDIT_SCREEN
by MOVE_UNIT.

}

(**)

{$F+)

254

function valid_path_in_route (string_value : string80):
boolean:;

var
node_has_path : boolean:
path_has_node : boolean;
path_exists : boolean;
temp_path : path_record;
temp_node : node_record;
i : integer;

procedure update_fields_displayed:

begin
if (key = up_arrow) and (current_path > 2) then
begin
decr (number_of_ fields);
with field_list[current_path] do
begin
str_val := null_string;
put_string (label_x, label_y,
’

")
end:
decr (current_path)
end
else if (key = enter) or (key = down_arrow) or
((key = f2) and (string_value <> null_string)) then
begin
route(l](current_path] := temp_path.path_name;
if temp_path.start_node = temp_node.node_name then
route{2][current_path] := temp_path.end_node
else
route[2] (current_path] := temp_path.start_node:;
with field_list[current_path] do
put_string (label_x + 21, label_y,
’to node : '+ route[2]{current_path]);
if (current_path < 11) then
begin
incr (number_of_ fields):
with field_list[current_path + 1) do
begin
put_string (label_x, label_y, label_string):
if length (str_val) > (x2 - x1 + 1) then

str_val (0] := chr (x2 - x1 + 1);
put_string (x1, yl, str_val)
end;
incr (current_path)
end
else if key <> f2 then
key := null
255

end
end;

begin
suppress_messages := true;
string_value := upper_case (string value);
path_exists := (key = up_arrow) or
((key = £f2) and (string_value = null_string) and
(current_path > 2)):;
if not path_exists then
begin
taread (paths, temp path, string_value, exactmatch);
path_exists := ok;
if not path_exists then
display_error_message (’INPUT ERROR’, null strlng,
null_string,
'path entered does not exist’,
null_string)
else
begin
taread (nodes, temp_node, route{2][current_path - 1],
exactmatch) ;
node_has_path := false;
for i := 1 to 6 do
if temp_node.paths[i] = temp_path.path_name then
node_has_path := true;
path_has_node := (temp_path.start_node =
temp_node. node_name) or
(temp_path.end_node =
temp_node.node_name) ;
path_exists := node_has_path and path_has_node;
if not path_exists then
display_error_message (’/INPUT ERROR’, null_string,
‘path does not connect’, ’‘to
previous node’,
null_string)
end
end;
if path_exists then
update_fields_displayed;

valid_path_in_route := path_exists;
suppress_messages := false

end;

{$F-)

(**)

{
Procedure name : VALID_UNIT_TO_MOVE

Purpose : this procedure checks a unit entered to
insure that it is a valid unit in this game and

256

that it is not already pending a move.
Parameters : STRING_VALUE - unit to be checked.

Called by : used as a parameter to EDIT_SCREEN

by MOVE_UNIT.
}

(**)
($F+} s (] (] L]
function valid_unit_to_move (string_value : string80):
boolean;

var
unit_exists : boolean;
i : integer;

begin

suppress_messages :!= true;

string_value := upper case (string_value);
unit_exists := valid_unit (string value) or

valid_ammo_truck (string_value) or
valid_convoy (string_value) or
(string_value = ’‘TRAIN’);
if not unit_exists then
dlsplay~error_message (’INPUT ERROR’, null_string,
’‘unit entered does not exist’,
‘or cannot move separately’

null_string)

else
begin
if string_value = ‘TRAIN’ then
unit_exists := not battalion_trains.pending_movement
else if valld unit (string_ value) then
unit exlsts := not firing_units[unit_number

(string value)]
pending_movement
else if valid_ammo_truck (string_value) then
unit_ exists := not ammo _trucks{truck_number
(string_ value)]
pending_movement

else
begin
unit_exists := true:;
for 1 := 1 to number_of_ammo_trucks do

with ammo_trucks[i) do
if (convoy_name = string value) and
(pending_movement) then
unit_exists := false

end;
if not unit_exists then
display_error_message ('’INPUT ERROR’, null_string,

257

’unit is already moving or is’,

’‘pending execution of a
movement’, null_string)
end;
if unit_exists then
begin
if valid_unit (string_value) then
begin
number_of_ fields := 4;
with field list[4] do
begin
put_string (label_x, label_y, label_string):
if length (str_val) > (x2 - x1 + 1) then
str_val (0] := chr (x2 - x1 + 1);
put_string (x1, yl, str_val)
end
end
else
begin
number_of_ fields := 3;
field_list[4].str_val := null_string;
with field list([4] do
put_string (label_x, label_y, ’
’
)

end
end;
valid_unit_to_move := unit_exists;
suppress_messages := false
end;
{$F-)

(**)

{
Procedure name : VALID_NODE_FOR_RESUPPLY

Purpose : this procedure checks a node entered
to insure that it lies along the entered route
so that resupply can occur there.

Parameters : STRING_VALUE - node to be checked.

Called by : used as a parameter to EDIT_SCREEN
by MOVE_UNIT.
)
(**)
(SF+)
function valid_node_for_resupply (string _value : string80):
boolean;

var

258

A

i : integer;
node_in_route : boolean;

begin
string_value := upper_case (string_value);
node_in_route := string value = null_string:;
if not node_in_route then
for i := 1 to 12 do
if string_value = route[2][i] then
node_in_route := true;
if not node_in_route then
display_ error_message (’/INPUT ERROR’, null_string,
‘node entered is not along’,
’‘the entered route’, null_string):

valid_node_for_resupply := node_in_route
end;
{SF-)

(**)

{
Procedure name : CREATE_TRUCK_CONVOY

Purpose : this procedure allows the player to
create a convoy of trucks to be used as a group
for other commands to be entered.

Parameters : none.

called by : ISSUE_COMMAND
}

(**)
procedure create_truck_convoy:

var

names : name_array;
i : integer;

procedure set_up_fields;

var
i, 3 : integer;

begin
number_of fields := 25;
with field_1list[1l] do

begin

label_string := ‘New convoy name :’;
label_x := 11; label_y := 9;

str_val := null_string;

X1 := 30; Yyl :=9; x2 := 34; y2 := 9;

259

field type := eval; eval_function := unique_convoy_name
end;
for i := 0 to 2 do
for j := 1 to 8 do
with field list[l + j + (i * 8)] do
begin

label_string := null_string;

label_x := 11; 1label_ y := 11;

str_val := null_string;

X1 :=3 + (7 * 8); yl =13 + i; x2 :=7 4+ (j *
8): y2 :=13 + i;

field_type := eval; eval_function :=
valid_ammo_truck_for_convoy

end;
field_list[2].label_string := ‘Enter bumper numbers for
trucks in convoy :’/
end;

function valid_input (var names : name_array): boolean;

var
input_is_valid : boolean;
location : stringlO;
ammo_status : char;
i : integer:;

begin
input_is_valid := false;
for i := 1 to 24 do
if names[i] <> null_string then
input_is_valid := true;
if input_is_valid then
begin
i = 0;
repeat
incr (i)
until names[i] <> null_string;
location := ammo_trucks(truck_number
(names{i])].location;
ammo_status := ammo_trucks(truck_number
(names[i])].load_status;
for i 1= 1 to 24 do
if (names[i] <> null_string) and
((location <> ammo_trucks{truck_number
(names[i])]}.location) or
(ammo_status <> ammo_trucks[truck_ number
(names(i]) }.load_status) or
(ammo_trucks[truck_number
(names{i])]} .mission_assigned = ’Y’)) then
input_is_valid := false
end;

260

if not input_is_valid then
display_error_message (‘/COMMAND ERROR’,
‘all trucks must be in same
location,’
’‘have no mission assigned, and’,
‘have the same ammo status to be’,

‘part of the same convoy’);
valid_input := input_is_valid
end;

begin
set_up_fields;
save_screen;
clear area (2,3,79,22);
dlsplay command help line;
center_text (4, ’Create Truck Convoy’, cyan):
repeat

edit_screen (number_ of_fields, field_list,
abort allowed),

field _list(1].str_val := upper_case
(field_list[1l].str val),

for i := 1 to 24 do

names[i] := upper_case (field_list{i + 1].str_val)

until (key = escape) or valid_input' (names):
if key <> escape then

for 1 := 1 to 24 do

if names[i] <> null_string then
ammo trucks[truck number (names[i])] .convoy_name :=
field_list[1].str_val;

restore_screen
end;

(**)

{
Procedure name : REMOVE_TRUCK_CONVOY

Purpose : this procedure allows the player to
remove trucks from a convoy so that they will
now be treated individually by the player.

Parameters : none.
Called by : ISSUE_COMMAND
}
(Kkkhhhhkhhkhkhhhhhkhhkhhhhhhhkhhhhhhhkhhkkkkrhkhhdhk)
procedure remove_truck_convoy:
var
i : integer;

261

procedure set_up_fields;

begin _
number_of_ fields := 1;
with field_list[1] do ’
begin
label_string := ’‘Convoy to be separated :’;
label _x := 25; label_y := 12; -
str_val := null_string; '
x1l := 51; vyl := 12; x2 := 55; y2 := 12;
field_type := eval; eval_function := valid_convoy
end
end;

begin _

set_up_fields;

save_screen;

clear_area (2,3,79,22);

display command_help_ line;

center_text (4, ‘Remove Truck Convoy’, cyan);

edit_screen (number_of fields, field_list, abort_allowed):
field_list[1l).str_val := upper_case (field_list[l].str_val);

if (key = f2) or (key = enter) then
for i := 1 to number_of_ammo_trucks do
if ammo_trucks{i).convoy_name = field_list[1l).str_val

then

ammo_trucks[i].convoy_name := null_string; -
restore_screen
end;

(**)

{
Procedure name : AMMO_RESUPPLY_ MISSION

Purpose : this procedure allows the player to
assign a truck or convoy the mission of ammo
delivery to either a fire unit or node. This
command must be issued with a corresponding
movement order to insure that applicable units
are at the proper locations for delivery.

Parameters : none.

Called by : ISSUE_COMMAND
)

(**) hd
procedure ammo_resupply mission;

var
i : integer;

262

-

procedure set_up_fields;

begin
number_of_fields := 2;
. with field_list({1] do
begin

label_string := ‘Ammo truck bumper # or convoy name :’;
- label_x := 19; label_y := 10;
str_val := null_string;
x1 := 57; yl := 10; x2 := 61; y2 := 10;
field_type := eval; eval_function :=
valid_truck_or_convoy
end;
with field_list([2) do
begin
label_string := ’Unit to resupply HAAH
label_x := 19; 1label_y := 12;
str_val := null_string;
X1 = 39; Yyl := 12; X2 := 43; y2 := 12;
field_type := eval; eval_function :=
valid _unit_to_resupply
end;
with field_list([3] do
begin
label_string := ’Node to resupply :’;
label x := 19; label_y := 14;
str_val := null_string;

- X1l = 39; vyl 1= 14; x2 := 43; y2 := 14;
field_type := eval; eval_function := valid_node
end

end;
function valid_input : boolean;

var
input_is_valid : boolean;
i : integer;

begin
input_is_valid := not ((field_list(3].str_val = null_string)
and

((field list[2).str_val null_string) or

(f1e1d list[2].str_val *PREPO’))):
if input_is_valid then
begin
suppress_messages := true;
. if valid_ammo_truck (field_list[1).str_val) then
begin

input_is_valid := ammo_trucks[truck_number
(field_list[1].str_val)).

263

mission assxgned N’ ;
if not input_is_valid then
display_error_message (’/COMMAND ERROR’,
null_string,
‘ammo truck already has a’,
'‘mission assigned’,
null_string)
end
else
begin
for i := 1 to number_of_ammo_trucks do
if (ammo_trucks([i].convoy_name =
field list[1].str_val) and
(ammo__ truckstl] mission_assigned = ‘Y’) then
1nput is_valid := false:
if not input_is valld then
display error_message (’COMMAND ERROR’,
null_string,
‘convoy already has a’,
‘mission assigned’,
null_string)

end;
suppress_messages := false
end;
valid_input := input_is_valid
end;
begin

set_up_fields:;
save_screen;
clear_area (2,3,79,22);
display_command_help_line;
center_text (4, ’Ammunition Resupply’, cyan):
repeat
edit_screen (number_of_fields, field_list,
abort allowed),
f1e1d_llst[1].str_val != upper_case
(field_list{1].str_val);
field_list[2].str_val :
(field_list[2].str val),
field_list[3].str_val := upper_case
(field_ 1lst[3] str val),
until (key = escape) or valid_input;
if key <> escape then
begin
if truck_number (field_list[l].str val) <> 0 then
begin
ammo_trucks[truck_number (field_list(1l].str_val)]).
mission_assigned := ’Y’;
ammo_trucks(truck_number (field_list(1].str_val)].
firing _unit_to_resupply := field_list[2].str_val:

upper_case

264

o ——

ammo_trucks(truck_number (field_list(1].str_val)].

node_to_resupply := field_list(3].str_val
end
else
for i := 1 to number_of ammo_trucks do
if ammo_trucks[i).convoy_name =
field_list([1l]).str_val then
begin
ammo_trucks[i].mission_assigned := ‘Y’;
ammo_trucks(i].firing_unit_to_resupply :=
field_list{2].str_val;
ammo_trucks(i].node_to_resupply :=
field_list[3]).str_val
end
end;
restore_screen
end;

(**)

{
Procedure name : CANCEL_RESUPPLY_MISSION

Purpose : this procedure allows the player to
cancel the resupply mission issued to a truck
or convoy by the AMMO_RESUPPLY_COMMAND.

Parameters : none.
Called by : ISSUE_COMMAND

}
(**)

procedure cancel_resupply mission;

var
i : integer;

procedure set _up fields;

begin

number of_ fields := 1;

with field list[1l] do
begin

label_string := ‘Ammo truck bumper # or convoy name :’;

label_x := 19; 1label_y := 12;
str_val := null_string;
x1l := 57; yl := 12; x2 := 61; y2 = 12;
field_type := eval; eval_function :=
valid_truck_or_convoy
end
end;

265

begin

set_up_fields;

save_screen;

clear_area (2,3,79,22):
display_command_help_line;

center_text
edit screen

(4, ’'Cancel Resupply Mission’, cyan);
(number_of_ fields, field_list, abort_allowed):

field list[1].str_val := upper_case (field_list({1].str_val);

if (key = f2) or (key = enter) then
for i := 1 to number_of_ammo_trucks do
if ((ammo_trucks[i].bumper_ number =
field_list[{1].str_val) or
(ammo_trucks(i].convoy name =
field_list[1].str_val)) and
(ammo_trucks{i).mission_assigned = ’Y’) and
((ammo_trucks[i].node_to_resupply <> null_string)

or

(ammo_trucks[i].firing_unit_to_resupply <>
null_string)) then

null_string;

null_string

begin

ammo_trucks([i].mission_assigned := ’N’;
ammo_trucks{i].node_to_resupply :=
ammo_trucks[i].firing_unit_to_resupply :=

end;

restore_screen

end;

(**)

{

Procedure name : FIRE_UNIT_ AMMO_PICKUP

Purpose : this procedure allows the player to
issue an order to a fire unit to pick up ammo
at a specified node. This command must be
issued with a corresponding movement order to
get the fire unit to the specified node.

Parameters

Called by :

¢ none.

ISSUE_COMMAND
)

(**)
procedure fire_unit_ammo_pickup:

procedure set_up_ fields;

begin

number_of fields := 2;

266

-

with field_list[{1) do
begin
label_string := ’‘Fire unit to pick up ammo :’;
label _x := 24; label_y := 11;
str_val := null_string:

Xl := 53; yl := 11; x2 := 57; y2 := 11;
field_type := eval; eval_function := valid_unit
end;

with field_list[2] do
begin

label_string := ‘Location of ammo :’;
label_x := 24; 1label_y := 13;
str_val := null_string;

X1l := 44; Yyl := 13; x2 := 48; y2 := 13;
field_type := eval; eval_function := valid_node
end

end;

function valid_input : boolean;

var
inout_is_valid : boolean;

begin
input_is_valid := field_list[2].str_val <> null_string;
if input_is_valid then

begin

with firing_units[unit_number (field_list([1l].str_val)] do

input_is_valid := ammo_pickup_mission;
if not input_is_valid then
display_error_message (’COMMAND ERROR’, null_string,
'fire unit already has an’,
‘ammo pickup mission assigned’,
null_string)
end;
valid_input := input_is_valid
end;

begin
set_up_fields;
save_screen;
clear_area (2,3,79,22);
display_command_help_line;
center_text (4, ’‘Fire Unit Ammunition Pickup’, cyan):
repeat

edit_screen (number_of_fields, field_list,
abort_allowed):

field_list[1l).str_val := upper_case
(field_list[1l].str_val);

267

field list([2].str_val := upper_case
(field_list([2].str_val)
until (key = escape) or valid_input;
if kxey <> escape then

with firing_units{unit_number (field_list(1].str_val)] do

if not ammo_pickup mission then
begin
ammo_pickup_mission := true:
ammo_pickup_location := field_list([2].str_val
end;
restore_screen
end;

(**)

{
Procedure name : CANCEL_FIRE_UNIT_PICKUP

Purpose : this procedure allows the player to
cancel an order to a fire unit to pick up ammo
at a specified node as directed to by a
FIRE_UNIT_AMMO_PICKUP order.

Paramet.ers : none.

Called by : ISSUE_COMMAND

(**)
procedure cancel_fire unit_pickup;

procedure set_up fields;
begin

number_of_fields := 1;
with field_1list[1l]) do

begin
label_string := ’‘Fire unit :/;
label_x := 33; label_y := 12;
str_val := null_string;
X1l := 46; Yyl := 12; x2 := 50; y2 := 12;
field_type := eval; eval_function := valid_unit
end
end;
begin

set_up_fields;

save_screen;

Clear_area (2,3,79,22);

display command_help_line;

center_text (4, ‘Cancel Ammo Pickup Mission’, cyan);
edit_screen (number_of fields, field list, abort_allowed):;

268

field_list[l].str_val := upper_case (field_list[1l].str_val):

if (key = f2) or (key = enter) then
with firing_unitsf{unit_number (field_list[1]}.str_val)] do

if ammo_pickup_mission then
begin
ammo_pickup_mission := false;
ammo_pickup_location := null_string
end;
restore_screen
end;

(**)

{
Procedure name : AMMO_TRUCK_AMMO_PICKUP

Purpose : this procedure allows the player to
issue an order to a truck or convoy that is

at the trains location and empty to proceed to
atp for ammo resupply.

Parameters : none.

Called by : ISSUE_COMMAND
)

(**)
procedure ammo_truck_ammo_pickup;

var
command_number : stringé;
new_event_1 : event_record;
new_event_ 2 : event_record;
i : integer;

procedure set_up_ fields;

begin
number_of fields := 2;
with field list([1] do
begin
label_string := ’Ammo truck or convoy to pickup ammo :’;
label _x := 19; 1label_y := 11:
str_val := null_string;
£1 = 58; vyl := 11; x2 := 62; Y2 := 11;
field_type := eval; eval_function := trucks_at_atp
end;
with field_list({2] do
begin
label_string := ’Departure time :’;
label_x := 19; label_y := 13;

269

str_val := game_dtg;

X1l (= 37; yl := 13; Xx2 := 51; y2 := 13;
field_type := eval; eval_function := time_not_past
end

end;

begin

set_up_fields;

save_screen;

clear_area (2,3,79,22):

display_command_help_line;

center_text (4, ‘Ammo Truck Ammunition Pickup’, cyan);
put_string (55, 6, ’‘Command number :’);

str (command_serial_number, command_number) ;

put_string (72, 6, command_number);

color_foreground (55,6,77,6, yellow);

edit_screen (number_of_ fields, field_list, abort_allowed):

field list{1].str_val := upper_case (field list[1].str_val):;
if key = f2 then
begin
with new_event_1 do
begin
event_type :-= 'D’;
serial_number := command_serial_nhumber;
dtg_to_timekey (field_list([2].str_val, time_key):
unit_type := ’‘aA’;
unit_name := null_string;
node := null_string:
path := ’‘ATP’
end;
new_event_2 := new_event_1;
with new_event_2 do
begin
event_type := ’‘R’;
time_key := inc_dtg_to_timekey (field_list{2].str_val,

abs (normal_rv
(game_parameters.avg_time_trains_to_atp, 10))):
path := null_string

end;
if truck_number (field_list[1)}.str_val) <> 0 then
begin

new_event_l.unit_name := field_list{1].str_val;
new_event_2.unit_name := field_list[1].str_val;
new_event_2.node :=
ammo_trucks[truck_number
(field_1list[1]}.str_val)].location;
ammo_trucks{truck_number (field_list{l]}.str_val)].
mission_assigned := ‘Y’;
add_event (new_event_1);

270

add_event (new_event_2)
end
else
begin
for i := 1 to number_of_ ammo_trucks do
if ammo_trucks([i].convoy_name =
field_list({1].str_val then
begin
new_event_1l.unit_name :
ammo_trucks[i].bumper_number;
new_event_2.unit_name :
ammo_trucks([i].bumper_ number;
new_event_2.node := ammo_trucks{i].location:;
ammo_trucks{i}.mission_assigned := ’'Y’;
add_event (new_event_1);
add_event (new_event_2)
end

end;
incr (command_serial_ number)
end;
restore_screen
end;

(**)

{
Procedure name : ISSUE_FIRE_ORDER

Purpose : this procedure allows the player to
issue an order to a fire order to execute a
fire order with the specified number of volleys
and at the specified time.

Parameters : none.

Called by : ISSUE_COMMAND
}

(**)
procedure issue_fire_order;

var
command_number : stringé6;
new_event : event_record;

procedure set_up_fields;

begin
number_of fields := 3;
with field_list[1) do
begin
label_string := ‘Unit to fire :’;

271

label_x

= 25; label y := 10;
str_val :=

null_string:

X1l := 41; vyl := 10; x2 := 45; y2 := 10;
field_type := eval; eval_function := valid_unit
end;

with field_1list{2] do
begin

label_string := ’‘Time to fire :’;

label_x := 25; label_y := 12;
str_val := game_dtg:
X1l := 41; yl := 12; X2 := 55; y2 := 12;
field_type := eval; eval_function := time_not_past
end;

with field_list(3] do
begin

label _string := ‘Number of volleys :’;

label_x := 25; label_y := 14:

X1 = 46; Yyl := 14; X2 := 48; y2 :

field _type := int; int_min_value := 0; int_max_value :
maxint;

il
e
-

int_value := 1;
str (int_value, str_val)
end

end;

begin

set_up_fields;

save_screen;

clear_area (2,3,79,22):

display_command_help line;

center_text (4, ‘Fire Order’, cyan);

put_string (55, 6, ‘Command number :’);

str (command_serial_number, command_number) ;

put_string (72, 6, command_number) ;

color_foreground (55,6,77,6, yellow);

edit_screen (number_of fields, field_list, abort_allowed);
field_list([1].str_val := upper_case (field list[l].str_val);

if key = f2 then
begin
with new_event do
begin
event type := 'F’;
serial_number := command_serial_number;
dtg_to_timekey (field_list[2]).str_val, time_key):;

unit_type := ’F’;

unit_name := field_list([1l].str_val;
volleys := field_list([3].int_value
end;

add_event (new_event);
incr (command_serial number)

272

end;
restore_screen
end;

(**)

{
Procedure name : CHANGE_FIRING_RATE

Purpose : this procedure allows the player to
change the rate at which a unit fires during the
execution of each time step.

Parameters : none.

Called by : ISSUE_COMMAND

(**)
procedure change_firing_rate;

procedure set_up_fields;

begin
number of_ fields := 2;
with field_list([1] do
begin
label string := ‘Unit to change :’;
label_x := 27; label_y := 11;
str_val := null_string;
X1l := 45; yl := 11; x2 := 49; y2 := 11;
field type := eval; eval_function := valid_unit
end;
with field list[2] do
begin
label string := ‘Firing rate (% CSR) :’;
label_x := 27; label_y := 13;
str (1.0, str_val);
X1l := 50; yl := 13; x2 := 53; y2 := 13;
field_type := float; float_min_value := 0.01;
float_max_value := 1.0
end
end;
begin

set_up fields;

save_screen;

clear_area (2,3,79,22);

display_command_help line:;

center_text (4, ’‘Change Unit Firing Rate’, cyan):
edit_screen (number of_ fields, field list, abort_allowed):
field list{1l).str_val := upper case (field list[1l].str val);

273

if key = £f2 then
firing_units{unit_number
(field_list([1l).str_val)].rate_percent_csr :=
field_list[1).float_value;
restore_screen
end;

(**)

{
Procedure name : CANCEL_COMMAND

Purpose : this procedure allows the player to
cancel a command that was issued with a time for
execution if it has not passed. It requires that
the serial number of the command to be cancelled
be entered.

Parameters : none.
Called by : ISSUE_COMMAND

)
(**)

procedure cancel_command:;

var
record_number : longint:;

procedure set_up_fields;

begin
number_of_fields := 1;
with field_list([1] do
begin
label_string := ’‘Number of command to cancel :’;
label_x := 24; 1label_y := 12;
str_val := null_string;
X1l := 55; vyl := 12; x2 := 57; y2 := 12;
field_type := int;
int_min_value := 0; int_max_value :=
command_serial_number - 1
end
end;
begin

set_up fields;

save_screen;

Clear_area (2,3,79,22);

display_ command_help line;

ce.iter_text (4, ‘Cancel Command’, cyan);

edit_screen (number_of_ fields, field list, abort_allowed):;
if (key = f2) or (key = enter) then

274

begin
findkey (serial_number_index, record_number,
field_list[1l].str_val);
while ok do
begin
delete_event (record_number);
findkey (serial_number_index, record_number,
field_list[1].str_val)
end
end;
restore_screen
end;

(**)

{
Procedure name : MOVE_UNIT

Purpose : this procedure allows the player to
issue a movement order to any of the units in
the game. This is done by first entering the
route for the movement and then the information
for the unit and the time to movement. It also
allows the player to instruct a fire unit to
resupply in route at a specified node.

Parameters : none.

Called by : ISSUE_COMMAND
)

(**)
procedure move_unit;

var
command_number : stringé;
valid_input : boolean;

(**)

{
Procedure name : GET_ROUTE

Purpose : this procedure allows the player to
enter the route to taken by a unit that is to
be moved with this movement order. It allows
a route with up to 10 nodes in it.

Parameters : none.
Called by : MOVE_UNIT

}
(**)

procedure get_route;

275

var
i : integer;
j : integer;

procedure set_up_fields;

var
i : integer;

begin

number_of_fields := 2;

with field_list[1] do
begin
label_string := ‘Start node :’;
label_x := 24; label_ y := 10;

ol

str_val := null_string;

X1l := 38; yl := 10; x2 := 42; y2 := 10;

field_type := eval; eval_function := valid_node_for_route
end;

for i := 2 to 11 doc
with field 1list([i] do

begin
label_string := ‘along path :’/;
label_x := 24; 1label_y := 10 + i;
str_val := null_string;
X1 := 38; ¥yl := 10 + i; x2 := 42; y2 := 10 + 1i;
field_type := eval; eval_function :=

valid_path_in_route
end

end;

begin
set_up_fields;
save_screen;
put_string (26,25, ‘Accept route ")
center_text (8, ’Enter route for movement’, cyan);
for i := 1 to 2 do
for j := 1 to 11 do
route [i])[j] := null_string;
current_path := 2;
valid_input := false;
repeat
edit_screen (number_of_fields, field_list,
abort_allowed);
for i := 1 to number_of_fields do
field_list({i).str_val := upper_case
(field_list(i].str_val);
if key <> escape then
valid_input := field_list([2].str_val <> null_string

276

until (key = escape) or valid_input;
restore_screen
end;

(*******************t************************i***)

{
Procedure name : GET_MOVEMENT_INFO

Purpose : this procedure allows the player to
enter the unit to be moved, the departure or
arrival time, and, if it is a fire unit, the
location for a resupply in route.

Parameters : none.

Called by : MOVE_UNIT

(**)
procedure get_movement_info;

procedure set_up_ fields;
begin

number_of_ fields := 3;
with field_list[1] do

begin
label_string := ‘Unit to move :’;
label_x := 18; label_y := 10;
str_val := null_string;
x1l := 347 yl := 10; x2 := 38; y2 :=10;
field_type := eval; eval_function := valid_unit_to_move
end;
with field list([2] do
begin
label_string := ’Time for movement :’;
label_x := 18; 1label_y := 12;
str_val := game_dtg;
X1 = 39; vyl := 12; x2 := 53; y2 := 12;
field_type := eval; eval_function := time_not_past
end;
with field 1list[3] do
begin
label_string := ’Is this a departure or arrival time
(D/A) :7’;
label_x := 18; label_y := 14; .
str _val := ’D’;
X1l := 63; yl := 14; x2 := 63; y2 := 14;
field_type := ch: valid_char_set := ['D’,’A’]
end;
with field_list([4] do
begin

277

label_string := ’Node to resupply at :’;
label_x := 18; 1label_y := 16;
str_val := null_string:
x1 = 41; 1yl := 16; x2 := 45; y2 := 16;
field_type := eval; eval_function :
valid_node_for_resupply
end
end;

begin

set_up_fields;

save_screen;

center_text (8, ’‘Enter movement information’, cyan);
edit_screen (number_of_ fields, field_list, abort_allowed);
field_list({1l]).str_val := upper_case (field_list{l].str_val):

field_list[4].str_val := upper_case (field_list([4].str_val):;

valid_input := key = f2;
restore_screen
end;

(**)

{
Procedure name : CREATE_EVENT_RECORDS

Purpose : this procedure creates the event
records that correspond to the information
entered in this movement order.

Parameters : none.

Called by : MOVE_UNIT
)

(**)
procedure create_event_records;

type
route_array = array [2..11] of integer;
var
route_info : route_array;
total_estimated_time : integer;

new_event : event_record;
wait_event : event record:
wait_exists : boolean;
command_start_time : datetime;
command_time : stringls;
path_number : integer;

i : integer;

278

procedure calculate_movement_times (var route_info :
route_array:

var total_estimated_time
¢ integer);

var
i : integer;
path_number : integer;
speed : real:;
calculated_time : integer:
estimated_time : integer:;
total_calculated_time : integer;
temp_path : path_record;
tracked_vehicle : boolean;

begin

path_number := 2;

total_estimated_time := 0;

total_calculated_time := 0;

tracked_vehicle := unit_number (field_ list[1l).str_val) <> 0;
repeat

taread (paths, temp path, route[l]([path_number],
exactmatch);
if tracked_vehicle then
begin
estimated_time :=
round (((1.0 /
game_parameters.avg_track_convoy_ speed) * 60.0)
* temp_path.length):;
case temp_path.road_condition of
‘P’ : speed := 0.95 *
game_parameters.avg_track_convoy_speed;
‘M’ : speed := 1.00 *
game_parameters.avg_track_convoy_speed;
‘G’ : speed := 1.05 %
game_parameters.avg_track_convoy_speed
end;
calculated_time :=
abs (normal_rv (round (((1.0 / speed) * 60.0) *
temp_path.length), 5))
end
else
begin
estimated_time :=
round (((1.0 /
game_parameters.avg_wheel convoy_speed) * 60.0)
* temp_path.length):;
case temp_path.road_condition of
'P!’ : speed := 0,95 *
game_parameters.avg_wheel_convoy_speed;

279

‘M’ : speed := 1.00 *
game_parameters.avg_wheel_convoy_speed;
G’ : speed := 1.05 *
game_parameters.avg_wheel_convoy_speed
end;
calculated_time :=
abs (normal rv (round (((1.0 / speed) * 60.0) *
temp_path.length), 5))
end;
route_info[path _number) := calculated_time;
total_estimated_time := total_estimated_time +
estimated _time;
total_calculated_time := total_caiculated_time +
calculated_time;
incr (path number)
until (path_number > 11) or (route(l](path_number) =
null_string):
for i := path_number to 11 do
route_info[i] := 0
end;

begin
calculate_movement_times (route_info, total_estimated time);

dtg_to_datetime (field_list[2].str_val, command_start_time):

if field_list(3].str_val = ‘A’ then
dec__ time (command start_time, total_estimated _time):

if time _relative (command start_time, game _time) = before
then
command_start_time := game_time;

datetime to _dtg (command start _time, command_time) ;
path_number := 1;
repeat
wait_exists := false;
if path_number = 1 then
begin
with new_event do
begin
event_type := ’'D’;
serial number := command_serial_ number;
dtg_ to_ _timekey (command_ time, time _key)
path := route[l]([path_ number + 1]
end
end
else if (path_number = 11) or (route[l][path_number + 1)
= null_string) then
begin
with new_event do
begin
event_type := ‘0’;

A

serial_number := command_serial_ number;
time_key :=
inc_dtg_to_timekey (command_time,
route_info[path_number)):;
node := route(2][path_number]
end
end
else
begin
if route[2)({path_number] = field_list[4].str_val then
begin
wait_exists := true;
with wait_event do
begin
event_type := ‘W/;
serial_number := command_serial_number;
time_key :=
inc_dtg_to_timekey (command_time,
route_info[path_number]);

node := route(2][path_number]
end
end;
with new_event do
begin
event_type := ‘T’;
serial number := command_serial_number;
if wait_exists then
time_key :=

inc_dtg_to_timekey (command_time,
game_parameters.time_step_size)
else
time_key :=
inc_dtg_to_timekey (command_time,
route_info{path_number]);
path := route(l](path_number + 1]
end
end;
if unit_number (field_list(1l].str_val) <> 0 then
begin
new_event.unit_type := ‘F’;
new_event.unit_name := field_list({1].str_val;
add_event (new_event);
if wait_exists then
begin
wait_event.unit_type :
wait_event.unit_name :
add_event (wait_event)
end
end
else if truck_number (field_list({1].str_val) <> 0 then
begin

’ 7 .
’

field_list[l).str_val;

281

IAI :

new_event.unit_type
field_list([1].str_val;

new_event.unit_name :
add_event (new_event)

end

else if field_list[1].str_val = ‘TRAIN’ then
begin
new_event.unit_type := ‘T’;
new_event.unit_name := field_list[1]).str_val;
add_event (new_event)
end

else
begin
new_event.unit_type := ‘A’;
for i := 1 to number_of_ammo_trucks do

if ammo_trucks({i].convoy_name =

field_list([1l].str_val then

begin

new_event.unit_name :=
ammo_trucks[i].bumper_ number:;

add_event (new_event)

end

end:
incr (path_number)

until (path_number = 12) or (route({l]([path_number] =
null_string)
end;

begin
save_screen;
clear_area (2,3,79,22);
display_command_help line;
center_text (4, ‘Move Unit’, cyan);
put_string (55, 6, ‘Command number :’);
str (command_serial_ number, command_number) ;
put_string (72, 6, command_number) ;
color_foreground (55,6,77,6, yellow);
get_route;
if valid_input then
begin
get_movement_info;
if valid_input then
begin
create_event_records;
incr (command_serial_number)
end
end;
restore_screen
end;

begin

282

N

suppress_messages := false
end.*2

283

(**)

{
Unit name : GAMEUTIL

Purpose : this unit contains a number of general
purpose procedures that are specific to the
game and that are used by procedures or
functions that are in more than one unit.

}

R T T T T T S)
unit gameutil;

interface

uses dos, utility, global, taccess, tahigh;

type
time_relation_type = (before, after, same);

var
suppress_messages : boolean;

function always_true (string _value : string80): boolean;

procedure inc_time (var time : datetime; increment

integer):;

procedure dec_time (var time : datetime; decrement :

integer) ;

procedure dtg_to_datetime (dtg : stringl5; var datetime_rec

: datetime):

procedure datetime_to_dtg (datetime_rec : datetime; var dtg

: stringls);

procedure dtg_to_timekey (dtg : stringl5; var timekey

stringl0);

function time_relative (timel, time2 : datetime):

time_relation_type:;

function time_in_range (timel, time2, checktime :

datetime): boolean:

function inc_dtg_to_timekey (var start_dtg : stringls;
increment : integer):

string;

procedure determine_day_or_night;

function normal_rv (mean : integer; sd : integer): integer;

function unit_number (name : string5): integer:
function truck_number (name : string5): integer;
procedure add_event (new_event : event_record):
procedure delete_event (record_number : longint);
function valid_unit (string_value : string80): boolean;
function valid_ammo_truck (string_value : string80):
boolean;

function valid_convoy (string_value : string80): boolean;

284

function valid_node (string_value : string80): boolean;
procedure close_all_files;

implementation
function always_true (string_value : string80): boolean;

begin
always_true := true
end;

(**************************************i*********)

{
Procedure name : INC_TIME

Purpose : this procedure increments a time that
is represented by the Turbo provided datetime
type and returns it. The increment is to be
specified in minutes.

Parameters : TIME - datetime record to be
incremented.
INCREMENT - number of minutes to increment the
datetime record.

Called by :

(**)

procedure inc_time (var time : datetime; increment :
integer);

begin
with time do
begin
min := min + increment:
if min > 59 then
begin
hour := hour + (min div 60);
min := min - ((min div 60) * 60)
end;
if hour > 23 then
begin
day := day + (hour div 24):
hour := hour - ((hour div 24) * 24)
end;
if day > month_data [month].days then
begin
day := day - month_data [monthj.days:
month := month + 1
end;

if month > 12 then

285

begin
month := 1;
year := year + 1
end
end;
end;

(**)

{
Procedure name : DEC_TIME

Purpose : this procedure decrements a time that
is represented by the Turbo provided datetime
type and returns it. The decrement is to be
specified in minutes.

Parameters : TIME - datetime record to be
decremented.
DECREMENT - number of minutes to decrement the
datetime record.

Called by :
)

(**)
procedure dec_time (var time : datetime; decrement :

integer);
var
dec_mins : integer;
dec_hours : integer;
dec_days : integer;
begin
dec_days := decrement div 1440;
decrement := decrement mod 1440:;
dec_hours := decrement div 60;
decrement := decrement mod 60;
dec_mins := decrement;
with time do
begin
if min >= dec_mins then
min := min - dec_mins
else
begin
min := 60 - (dec_mins - min);
incr (dec_hours)
end;

if hour >= dec_hours then
hour := hour - dec_hours
else
begin

286

hour := 24 - (dec_hours - hour):
incr (dec_days)
end;
while dec_days >= day do
begin
dec_days := dec_days - day:

if month > 1 then
month := month - 1
else
begin
month := 12;
year := year - 1

end;
day := month_data[month].days
end; ’
day := day - dec_days
end
end;

(**)

{
Procedure name : DTG_TO_DATETIME

Purpose : this procedure converts a string that
represents a valid dtg and converts it to the
date and time in the form of the datetime
type record.

Parameters : DTG - string that contains the dtg
to be converted.
DATETIME_REC ~ record to contain the result of
the conversion.

Called by :
}

(**)

procedure dtg_to_datetime (dtg : stringl5:; var datetime_rec
¢ datetime);

var
error_code : integer;

begin
dtg := remove_blanks (dtqg):
val (copy (dtg, 1, 2), datetime_rec.day , error_code):
if copy (dtg, 3, 2) = ’24’ then
datetime_rec.hour := 0
else
val (copy (dtg, 3, 2), datetime_rec.hour, error_code):;
val (copy (dtg, 5, 2), datetime_rec.min , error_code):

287

datetime_rec.month := ord (str_to_month (copy (dtg, 8, 3)))
+ 1;
val (copy (dtg, 11, 2), datetime_rec.year, error_code);

datetime_rec.year := datetime_rec.year + 1900
end;

(**)

{
Procedure name : DATETIME_TO_DTG

Purpose : this procedure converts a datetime

record into a string that represents a valid
dtg.

Parameters : DATETIME_REC - record to be con-
verted into a dtg string.

DTG - string to contain the converted datetime
record.

Called by :

(**)

procedure datetime_to_dtg (datetime_rec : datetime; var dtg
: stringls);

var
string_val : stringls;

begin
with datetime_rec do

begin

str (day, string_val):

if day < 10 then
begin
dtg [1]
dtg (2] :
end

else
begin
dtg (1] := string val ([1]:
dtg (2] := string val [2]
end;

dtg [3] := blank:

str (hour, string_val):;

if (hour = 0) and (min = 0) then
begin
dtg (4]
dtg [5]
end

else if hour < 10 then
begin

IOI;
string_val [1)

W

IZI;
I4I

288

dtg [4) := ’'0’;
datg [5) string_val (1]
end
else
- begin
dtg [4] := string_val
dtg [5]) := string_val
R end;
str (min, string_val);
if min < 10 then
begin
dtg (6] := ‘0‘;
dtg (7] := string_val (1)
end
else
begin
dtg [6] :
dtg [7] :

Lm N o
(XY
Awed R

-e

-e

= string_val
= string_val

N B

~—
ot

= IZI:
dtg [9] := blank;
insert (month_data [month].name, dtg, 10);
dtg (13] := blank;
str (year - 1900, string_val);
insert (string_val, dtg, 14)
end
end;

(**)

{
. Procedure name : DTG_TO_TIMEKEY

Purpose : this procedure takes a string that
is a valid dtg and converts it to a string that
contains the same information but can be used
as an alphabetic key for event records.

Parameters : DTG - string that contains the valid
dtg to converted for use as a key.
TIMEKEY ~ string that will contain the key
after conversion from dtg format.

Called by :
)

(**)

procedure dtg_to_timekey (dtg : stringl5; var timekey :
- stringlo0);

var
. month : month_type:;
month_val : string;

289

begin
dtg := remove_blanks (dtg):
insert (copy (dtg, 11, 2), timekey, 1);
month := str_to_month (copy (dtg, 8, 3)):
str (ord (month) + 1, month_val):;
if ord (month) < 10 then

insert (’0’ + month_val, timekey, 3)
else

insert (month_val, timekey, 3);
insert (copy (dtg, 1, 6), timekey, 5)
end;

(**)

{
Procedure name : TIME_RELATIVE

Purpose : this procedure compares two records of
type datetime and determines whether the first
one represents a time that occurs before, after
or at the same time as the second record.

Parameters : TIMEl1l - the first record of type
datetime to be compared against.
TIME2 - the second record of type datetime to
be compared against the first one.

Called by :
)

(**)

function time_relative (timel, time2 : datetime):
time_relation_type;

begin
if timel.year < time2.year then time_relative := before
else if timel.year > time2.year then t1me relative := after
else

begin

if timel.month < time2.month then time_relative := before

else if timel.month > time2.month then time_relative :=
after

else
begin
if timel.day < time2.day then time_relative := before
else if timel.day > time2.day then time_relative :=
after
else
begin
if timel.hour < time2.hour then time_relative :=
before

290

else if timel.hour > time2.hour then time_relative

:= after
else
begin
if timel.min < time2.min then time_relative :=
before
else if timel.min > time2.min then time_relative
:= after
else
time_relative := same
end
end
end
end
end;

(**)

(
Procedure name : TIME_IN_RANGE

Purpose : this procedure will check the third
parameter of type datetime and indicate whether
or not it falls between the times represented
by the first two datetime records.

Parameters : TIMEl1l - the first record of type
datetime to be compared against.
TIME2 - the second record of type datetime to
be compared against.
CHECKTIME - the record of type datetime to be
compared to the interval represented by TIME1l
and TIME2.

Called by :

(**********k%************************************)
function time_in _range (timel, time2, checktime : datetime):
boolean;

begin
if time_relative (timel, time2) = before then
time_in_range := ((time_relative (checktime, timel) in

{(after, same]) and

(time_relative (checktime, time2) in
(before, same]))
else

time_in_range := ((time_relative (checktime, time2) in

[after, same)) and

(time_relative (checktime, timel) in
[before, same]))
end;

291

(***i)

{
Procedure name : INC_DTG_TO_TIMEKEY

Purpose : this procedure will take a string that
represents a valid dtg and increment the time
and date that it represents by the specified
number of minutes and return the result in the
form of a string to be used as a key to an
event record.

Parameters : START DTG - the string that
represents a valid dtg to be incremented.
INCREMENT - the number of minutes to
increment the time represented by the dtg.

Called by :
)

(**)

function inc_dtg_to_timekey (var start_dtg : stringls;
increment : integer): string:;

var
final_datetime : datetime;
final_dtg : stringls;
final_timekey : stringlo;

begin

dtg_to_datetime (start_dtg, final_datetime);
inc_time (final_datetime, increment);
datetime_to_dtg (final_datetime, final_dtg);
dtg to_timekey (final_dtg, final_timekey):
start_dtg := final_dtg:

inc_dtg_to_timekey := final_timekey

end;

(***************************i********************)

{
Procedure name : DETERMINE_DAY_OR_NIGHT

Purpose : this procedure uses the BMNT end EENT
entered by the player to determine whether the
game time is at day or night.

Parameters : none.

Called by :

}

(**)

292

procedure determine_day_ or_night:;

var
sun_up : integer:;
sun_down : integer:;
erro. : integer:

begin
val (copy (commanders_guidance.bmnt, 1, 4), sun_up, error):;
val (copy (commanders_guidance.eent, 1, 4), sun_down,
error) ;
day_time := (((game_time.hour * 100) + game_time.min) >=
sun_up) and

(((game_time.hour * 100) + game_time.min) <
sun_down)
end;

(**)

{
Procedure name : NORMAL_RV

Purpose : this procedure will return a normally
distributed random variable with the specified
mean and standard deviation.

Parameters : MEAN - the mean of the distribution.
SD - the standard deviation of the
distribution.

Called by :

(*****************************t******************)
function normal_rv (mean : integer; sd : integer): integer:

var
x_random : real;
y_random : real;
y_calculated : real;

begin
repeat
x_random := (random * 6.0) - 3.0;
y_random := random * (1 / sgrt (2.0 * pi));
y_calculated := exp (-1.0 * sqr (x_random) / 2.0) / sgrt
(2.0 * pi)
until y_random <= y calculated:;
normal_rv := round (X_random * sd + mean)
end;

(**)

293

{
Procedure name : UNIT_NUMBER

Purpose : this procedure will take the name of
a unit and return the number of that unit in
“he array of firing units. It will return a
0 if the name doews not correspond to a
firing unit.

Parameters : NAME - the name of the firing unit
to be checked.

Called by :
}

(******************************i*****************)
function unit_number (name : string5): integer:;

var
firing_unit_number : integer;

begin
firing_unit_number := 0;
repeat

incr (firing_unit_number)
until (firing _unit_number = number of_firing_units) or

(name =

firing_units([firing_unit_number].firing_unit_name):
if name <> firing_units{firing_unit_number).firing_unit_name
then

unit_number := 0
else

unit_number
end;

firing_unit_number

(**)

{
Procedure name : TRUCK_NUMBER

Purpose : this procedure will take the bumper
number of a truck and return the number of that
truck in the array of ammo trucks. It will
return a value of 0 if the bumper number does
not correspond to a truck.

Parameters : NAME - the bumper number of the
truck to be checked.

Called by :
}

(*********i**************************************)
function truck_number (name : string5): integer:

294

var
ammo_truck_number : integer;

begin
ammo_truck_number := 0;
repeat
incr (ammo_truck_number)
until (ammo_truck_number = number_of_ammo_trucks) or
(name = ammo_trucks({ammo_truck number].bumper_ number);

if name <> ammo_trucks([ammo_truck_ number].bumper_number then

truck_number := 0
else

truck_number := ammo_truck_number
end;

(**)

{
Procedure name : ADD_EVENT

Purpose : this procedure will take the event
passed to it and add it to the file that
contains the events list of events not yet
executed.

Parameters : NEW_EVENT - the event record to be
added to the events list.

Called by :
)

(**)
procedure add_event (new_event : event_ record);

var
record_number : longint;
command_number : string6;

begin

str (new_event.serial_number, command_number) ;

addrec (event_list, record_number, new_event);

addkey (time_index, record_number, new_event.time_key):
addkey (serial_number_index, record_number, command_number) :

flushfile (event_list);
flushindex (time_index);
flushindex (serial_number_index):;
if new_event.event_type = /D’ then
begin
suppress_messages := true;

295

case new_event.unit_type of
T’/ : battalion_trains.pending_movement := true;
A’ : ammo_trucks[truck_number
(new_event.unit_name)) .pending_movement :
true;
‘F’ : firing_units[unit_number
(new_event.unit_name) j.pending_movement

true
end;
suppress_messages := false
end

end;

(**)

(
Procedure name : DELETE_EVENT

Purpose : this procedure will take the event
corresponding to the record number passed to
the procedure and delete it from the events
list. If the event was related to a cancelled
movement order it also takes the unit involved
and moves it to the nearest node if it was
on a path.

Parameters : RECORD_NUMBER - the number of the
record to be deleted from the events list.

Called by :

(**)
procedure delete_event (record_number : longint);

var
event : event_record;
command_number : stringé6;
temp_path : path_record:

begin
getrec (event_list, record_number, event);
str (event.serial_number, command_number) ;
if event.event_type in (’0’,’T’,’W’,’D’] then
begin
suppress_messages := true;
case event.unit_type of
T’ : with battalion_trains do
begin .
if not valid_node (battalion_trains.location)

then
begin

296

taread (paths, temp_path, location,
exactmatch) ;
location := temp_path.start_node
end;
pending_movement := false
end;
'A’ : with ammo_trucks[truck_number (event.unit_name))
do
begin
if not valid_node
(ammo_trucks(truck_number
(event.unit_name)).location) then
begin
taread (paths, temp_path, location,
exactmatch) ;
location := temp_path.start_node
end;
pending_movement := false
end;
’F’ : with firing_units[unit_number (event.unit_name)]
do
begin
if not valid_node
(firing_units(unit_number
(event.unit_name)].location) then
begin
taread (paths, temp_path, location,
exactmatch);

location := temp_path.start_node
end;
pending_movement := false
end
end;
suppress_messages := false
end;

deletekey (serial_number_ index, record_number,
command_number) ;

deletekey (time_index, record_number, event.time_key):
deleterec (event_list, record_number);

flushfile (event_list):;

flushindex (time_index);

flushindex (serial_number_index)

end;

(**)

{
Procedure name : VALID_UNIT

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
unit that it still alive.

297

Parameters : STRING_VALUE - name of unit to be
checked.

Called by :

(***************t********************************)

(SF+)
function valid unit (string_value : string80): boolean;

var
unit_exists : boolean;

begin
string_value := upper_case (string_value):;
unit_exists := (unit_number (string_value) <> 0) and
(firing_units{unit_number (string value)].
sections_in_operating_condition > 0.0);
if (not suppress_messages) and (not unit_exists) then
display error_message (’INPUT ERROR’, null_string,
null_string,
‘unit entered does not exist’,
null_string):;
valid_unit := unit_exists
end;
{$F-)

(**)

{
Procedure name : VALID_AMMO_TRUCK

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
truck that is still alive.

Parameters : STRING_VALUE - name of truck to be
checked.

Called by :

(**)
(SF+)

function valid_ammo_truck (string_value : string8o0):
boolean;

var
ammo_truck_good : boolean;

begin
string_value := upper_case (string_value);
ammo_truck_good := (truck_number (string_value) <> 0) and

298

FlllllIllllllIlllIIllIIIlIIIlIIIllIlllIIIIIlllllllllllII-I------cf

(ammo_trucks [truck_number
(string_value)] .effective_percent > 0.0) and
(ammo_trucks(truck_number (string_value)].convoy_name =
null_string);
N if (not suppress_messages) and (not ammo_truck_good) then
display_error_message (’INPUT ERROR’, null_string,
‘truck entered does not exist’,
‘or is part of another convoy’,

null_string);

valid_ammo_truck := ammo_truck_good
end;

{$F-)

(**)

{ v
Procedure name : VALID CONVOY

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
convoy that is still in operation.

Parameters : STRING_VALUE - name of convoy to be
checked.

Called by :
}
(**)
« ($F+)
function valid_convoy (string value : string80): boolean;

var
: ammo_truck_number : integer;
convoy_exists : boolean;

begin
string_value := upper_case (string_value);
convoy_exists := false;

if string_value <> null_string then
for ammo_truck_number := 1 to number_of_ammo_trucks do
if (ammo_trucks(ammo_truck_number].effective_percent
> 0.0) and
(string_value =
ammo_trucks {ammo_truck_number].convoy_name) then
convoy_exists := true;
if (not suppress_messages) and (not convoy_exists) then
display error_message (’INPUT ERROR’, null_string,
. null_string,
’convoy does not exists’,
null_string);
valid_convoy := convoy_exists
end;

299

»

(SF-)

(**)

{
Procedure name : VALID_NODE

Purpose : this procedure will determine whether
or not the name passed corresponds to a valid
node created for this scenario.

Parameters : STRING_VALUE - name of node to be
checked.

Called by :

(**)

(SF+)
function valid_node (string_value : string80): boolean;

var
temp_node : node_record;
node_exists : boolean;

begin
string_value := upper_case (string_value);
taread (nodes, temp_node, string_value, exactmatch);
node_exists := ok:
if (not suppress_messages) and (not node_exists) then
display_ error_message (’/INPUT ERROR’, null_string,
null_string,
‘node does not exists’,
null_string);
valid_node := node_exists
end;
($F=)

(**)

{
Procedure name : CLOSE_ALL_FILES

Purpose : this procedure will close all files
that are used throughout the game.

Parameters : none.
Called by :
)

(**)
procedure close_all_files;

begin

300

taclose (nodes);
taclose (paths):
closefile (event_list);
closeindex (time_index);

. closeindex (serial_number_index):;
closefile (messages);
closeindex (message_type_index)

. end;

begin
end.~2

301

—

(**************************t*********************)

{
Unit name : UTILITY

Purpose : this unit contains a number of general
purpose procedures that perform functions
related to input and output of information
using menus and full screen editing.

}

(**)
unit utility:

interface

($1I-)

uses dos, crt;

const
null_string = ’’;
blank = #32;
null = 00;
backspace = 08;
enter = 13;
escape = 27;
space = 32;
f1 = 59 shl 8;
f2 = 60 shl 8;
£3 = 61 shl 8;
f4 = 62 shl 8;
£5 = 63 shl 8;
fe = 64 shl 8;
£7 = 65 shl 8;
f8 = 66 shl 8;
f9 = 67 shl 8;
f1o = 68 shl 8;
f11 = 133 shl 8;
f£12 = 134 shl 8;
home_key = 71 shl 8;
up_arrow = 72 shl 8;
page_up = 73 shl 8;
left_arrow = 75 shl 8;
right_arrow = 77 shl 8;
end_key = 79 shl 8;
down_arrow = 80 shl 8;
page_down = 81 shl 8;
insert_key = 82 shl 8;
delete_key = 83 shl 8;

[

menu_x1_default

menu_x2_default = 80;
menu_yl_default = 3;
menu_y2_default = 23;

302

menu_forecolor_default = white;
menu_backcolor_default = blue;
option_forecolor_default = blue;
option_backcolor_default = lightgray:
- field_forecolor_default = yellow;
field_backcolor_default = magenta;
max_fields_per_screen = 25;

abort_allowed = true;

type
stringl = string [1}:
string2 = string [2]:
string3 = string [3);
stringd = string [4):
string5 = string ([5):
stringé = string (6):
string? = string (7]:
string8 = string (8]:
string9 = string [9]:
stringl0 = string [10];
stringl5 = string [15);
string20 = string [20);
string25 = string [25]):
string30 = string [30];
string35 = string [35];
string40 = string [40];
string45 = string [45];
string50 = string [50]);
string55 = string [55]:
string60 = string [60];
string65 = string [65];
string70 = string [70};
string75 = string [75]:
string80 = string ([80];

option_string = string;
eval_function_type = function (string_value : string80):
boolean;
month_type = (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC,
INVALID_MONTH) ;
data_type = (int, float, ch, strg, eval, enum, dtg,
time);
month_record = record
days : integer;
name : string3
end;
field_record = record
label_string : string80;
label_x, label_y : integer;
str_val : string80;
x1l, yl, x2, y2 : integer;
case field_type : data_type of

303

—’

int ¢ (int_value : longint;
int_min_value,
int_max_value : integer);
float : (float_value : real;
float_min_value, .
float_max_value : real):;
ch : (valid_char_set : set of char);
enum : (number_of_enum_values : integer; .

valid_enum_values : array [1..10] of
stringl0):

eval eval_function : eval_function_type);

(13
-

end;
field_array
field_record;
font = array [1..7] of array [1..7] of char;

array [1l..max_fields_per_screen] of

var
key : integer;

menu_xl, menu_x2, menu_yl, menu_y2 : integer;
menu_forecolor, menu_backcolor : integer:
option_forecolor, option_backcolor : integer;
field_forecolor , field_backcolor : integer;

default_mask : dirstr;

letters : array ['A’..’Z’] of font;

digits : array [’0’..’9’] of font;

fontfile : file of font;

number_of fields : integer; -
field_list : field_array:

month_data : array (1..12] of month_record;

procedure incr (var number : integer):
procedure decr (var number : integer):;
function remove_blanks (string_value : string80): string80;

function upper_case (string value : string80): string80;
function str_to_month (string_value : string3): month_type;

function valid_dtg (string_value : stringlS): boolean:

function valid_time (string_value : string5): boolean:

function insert_on : boolean;

procedure toggle_insert;

function get_key : integer;

procedure initialize_screen;

procedure save_screen;

procedure restore_screen;

procedure print_screen; .
procedure remove_cursor;

procedure restore_cursor;
procedure beep;

function printer_ready : boolean;

304

———————————

procedure color_background (x1, yl, x2, y2, color :

integer);

procedure color_foreground (x1, yl, x2, y2, color :

integer):

procedure clear_area (x1, yl, x2, y2 : integer);

procedure put_char (column, line : integer: character :

char) ;

function get_char (column, row : integer): char;

procedure put_string (column, line : integer; text :

strings8o0);

procedure put_font_string (column, line : integer; text

stringl10; color : integer):

procedure center_text (line : integer; text : string80;

color : integer):

procedure draw_window (x1, yl, x2, y2 : integer:;
forecolor, backcolor : integer:
title : string80);

procedure shade_window (x1, yl, x2, y2, color : integer):;

procedure display_error_message (title, linel, line2, line3,

line4 : string55);

function edit_field (field : field_record): string80;

procedure display_edit_screen_help_line;

procedure display_. edlt list_help_line;

procedure display_ command _help_line;

procedure display_add_record_help_line;

procedure edit_screen (var number_of_ fields : integer:
var field data : field_array;
abort_possible : boolean) ;

function menu_selection (menu_title : string80;

menu_options : option_string):

integer;
function get_file (prompt, message : string80; search_mask
¢ dirstr): pathstr;

implementation
type

screen = array [1..25] of array [1..80] of integer;
var

keyboard_status : byte absolute $0040:50017;
register_values : registers;
screen_image : screen;
cursor_x : integer;
cursor_y : integer;
stack_pointer : integer;
screen_image_stack : array (1..7] of screen;
cursor_x_stack array {1..7) of integer;
cursor_y_stack array [1..7]) of integer;
loop : char;

const

305

_

screen_location : “screen = ptr ($B800,$0000):
procedure incr (var number : integer):
begin -
number := number + 1
end;
procedure decr (var number : integer):
begin

number := number - 1
end;

function remove_blanks (string_value : string80): string80;

var
position : byte;

begin
position := pos (blank, string_value);
while position <> 0 do
begin
delete (string_value, position, 1);
position := pos (blank, string_value)
end;
remove_blanks := string_value
end; .

function upper_case (string value : string80): string80;

var
position : byte:

begin

for position := 1 to length (string_value) do
string_value [position] := upcase (string_value

[position]):;

upper_case := string_value

end;

function str_to_month (string_value : string3): month_type;

begin
if string_value = ‘JAN’ then
str_to_month := JAN .

else if string value = ’'FEB’ then
str_to_month := FEB

else if string_value = ‘MAR’ then
str_to_month := MAR

306

—

else if string_value = ‘APR’ then
str_to_month := APR

else if string_value = ’MAY’ then
str_to_month := MAY

else if string_value = ‘JUN’ then
str_to_month := JUN

else if string_value = ‘JUL’ then
str_to_month := JUL

else if string_value = ‘AUG’ then
str_to_month := AUG

else if string_value = ’SEP’ then
str_to_month := SEP

else if string_value = ‘OCT’ then
str_to_month := OCT

else if string_value = ‘NOV’ then
str_to_month := NOV

else if string_value = ‘DEC’ then
str_to_month := DEC

else
str_to_month := INVALID_MONTH

end;

function valid_dtg (string value : stringl5): boolean;

var
date : longint;
time : longint:;
year : longint:
zone : char;
menth : month_type:
error_code : integer;
begin
string_value := upper_case (string_value);

string_value := remove_blanks (string_value);
if length (string_value) = 12 then
begin
val (copy (string_value, 1, 2), date, error_code);
val (copy (string_value, 3, 4), time, error_code);
val (copy (string_value, 11, 2), year, error_code);
zone := char (string_value (71}):
month := str_to_month (copy (string_value, 8, 3)):
valid_dtg := (error_code = 0) and
(month <> INVALID_MONTH) and
(date > 0) and (date <= month_data [ord
(month)] .days) and
(time >= 0) and (time <= 2400) and
(zone in [’A’..’2Z’])) and
(year >= 70) and (year <= 99)
end
else

307

'.lllllllllllllIIIllIIIIlIIIIIIIIIIIIlIIIlIIlIlIIIIIIIIII-------r

valid_dtg := false
end;

function valid_time (string_value : string5): boolean:

var
time : longint;
zone : char;
error_code : integer;

begin

string value := upper_case (string_value):

val (copy (string value, 1, 4), time, error_code):;

zone := char (string_value (5]):

valid_time := (error_code = 0) and
(time >= 0) and (time <= 2400) and
(zone in [‘A’..’2Z'})

end;

function insert_on : boolean;

begin

insert_on := ((keyboard_status and $80) = $80)
end;

procedure toggle_insert;

begin .
if insert_on then

keyboard_status := keyboard_status and $7F
else

keyboard_status := keyboard_status or $80 *
end;

function get_key : integer;

var
key_value : integer;

begin
key_value := ord (readkey):
if key_value = null then
key_value := ord (readkey) shl 8;
get_key := key value
end;

procedure initialize_screen; y
begin

window (1,1,80,25);

textbackground (black):;

308

J---ll---------IIIII-IIlllIlIlIllIlIllIIIIIIIIIIIIIIIIIIIIIIIJ

FIlllllIIll.IlIlIlllIIIIIIIIIIIIIIIIIIIIIIllIIIIIIIII-------:—

textcolor (yellow):

clrscr
end;

- procedure save_screen;
begin

- incr (stack_pointer):

screen_image_stack (stack_pointer] := screen_location*;
cursor_x_stack [stack_pointer] := wherex;

cursor_y_ stack [stack_pointer] := wherey

end;

procedure restore_screen;

begin

screen_location” := screen_image_stack [stack_pointer]:
gotoxy (cursor_x_stack [stack_pointer), cursor_y_ stack
[stack_pointer]);

decr (stack_pointer)

end;

procedure print_screen;
begin

intr ($5, register_values)
end;

procedure remove_cursor;

. begin
gotoxy (1,1):
register_values.ax := $0100;
register_values.cx := $2607;
intr ($10, register_values)
end;

procedure restore_cursor;

begin

register_values.ax := $0100;
register_values.cx := $0607;
intr ($10, register_values)
end;

procedure beep;
begin

sound (1000):;
delay (100):
nosound

309

end;
function printer_ready : boolean;

begin

register_values.ah := $02;

register_values.dx := $00;

intr ($17, register_values):

printer_ready := (register_values.ah and $08) = $00
end;

procedure color_background (x1, yl, x2, y2, color :

integer);
var
line,
column : integer:
value : integer;
begin
for line := yl to y2 do
for column := x1 to x2 do
begin
value := screen_location” [line,column];
value := (value and $OFFF) + (color shl 12);

screen_location” [line,column] := value
end
end;

procedure color_foreground (x1, yl, x2, y2, color :

integer);
var
line,
column : integer;
value : integer;
begin

for line := yl to y2 do
for column := x1 to x2 do

begin

value := screen_location* [line,column];
value := (value and $FOFF) + (color shl 8):;
screen_location” [line,column] := value
end

end;
procedure clear_area (x1, yl, x2, y2 : integer):;

var
line,

310

column
value

integer:;
integer;

begin
- for line := yl to y2 do
for column := x1 to x2 do
begin
A value := screen_location” [line,column];
: value := (value and $FF00) + ord (space):
screen_location* [line,column) := value
end

end;

procedure put_char (column, line : integer; character :
char) ;

var
value : integer;

begin

value := screen_location* ([line,column};
value := (value and $FF00) + ord (character);
screen_location”® [line,column] := value

end;

function get_char (column, row : integer): char:;

v begin
get_char := chr (lo (screen_location* [row, colunmn]))
end;

procedure put_string (column, line : integer; text :
stringso);

var
i : integer:

begin
for i := 1 to length (text) do

put_char (column + i - 1, line, text [i))
end;

procedure put_font_string (column, line : integer; text :
stringl0; color : integer):

var
. k : integer;

procedure put_font_char (column, line : integer; character :
char; color : integer);

311

—j

var
i, j : integer;

begin
if (column < 74) and (line < 19) then
for i 1= 1 to 7 do
for j := 1 to 7 do
begin
if (character in [’a’..’2’]) or (character in
(‘A’..’Z’]) then
put_char (i + column - 1, j + line - 1, letters
[character] [3j, 1i])
else if character in [’0’..’9’] then
put_char (i + column - 1, j + line - 1, digits
(character] [j, 1i])
else
put_char (i + column - 1, j + line - 1, blank):
color_foreground (i + column - 1, j + line - 1,
i+ column - 1, j + line - 1,

color)
end
end;

begin
for k := 0 to length (text) - 1 do
put_font_char (column + (k * 8), line, text [k+1], color)

end;

procedure center_text (line : integer; text : string80;
color : integer):;

var
indent : integer:

begin
indent := (((lo(windmax) - lo(windmin) + 1) - length (text))
div 2) + 1;
put_string ((lo(windmin) + indent), line, text):;
color_foreground ((lo(windmin) + indent), line,

(lo(windmin) + indent + length (text) -
1), line, color)
end;

procedure draw_window (x1, yl, x2, y2 : integer;
forecolor, backcolor : integer;
title : string80):;

var

line,
column,

312

indent : integer;

begin
clear_area (x1,yl,x2,yY2);
color_background (x1,yl,x2,y2, backcolor):
color_foreground (x1,yl,x2,y2, forecolor):
for column := x1 to x2 do
begin
put_char (column, yl, #205);
put_char (column, y2, #205);
end;
for line := yl to y2 do
begin
put_char (x1, line, #186);
put_char (x2, line, #186);
end;
put_char (x1, yl, #201):
put_char (x1, y2, #200);
put_char (x2, yl, #187);
put_char (x2, y2, #188);
if length (title) <> 0 then

begin
indent := ((x2 - x1 + 1) - (length (title) + 2)) div 2;
put_string (x1 + indent, yl, ’ ’+ title +’ /)
end
end;

procedure shade_window (x1, yl, x2, y2, color : integer);:

var
position : integer;

begin
position := x1 + 1;
repeat
put_char (position, y2 + 1, #219);
color_foreground (position, y2 + 1, position, y2 + 1,
color);
incr (position)
until position > x2 + 2;
position := y1 + 1;
repeat
put_char (x2 + 1, position, #219):
put_char (x2 + 2, position, #219):
color_foreground (x2 + 1, position, x2 + 2, position,
color) ;
incr (position)
until position > y2
end;

313

!!IIIIIIIlIIIIIIlllIlIIIllIlIIlIIlllIIIlllIIlIIlIIIIIIIIII------L,

procedure display_error_message (title, linel, line2, line3,
line4 : string5s5):

begin

save_screen;

draw_window (21,9,60,17, yellow, red, title):;
shade_window (21,9,60,17, black):
center_text (11, linel, yellow):
center_text (12, line2, yellow):
center_text (13, line3, yellow):
center_text (14, line4, yellow);
center_text (16, ’press any key’, white);
key := get_key:

key := null;

restore_screen

end;

function edit_field (field : field_record): string80;

var
screen_string : string80;
exit_edit_field : boolean;
i : inceger;

procedure highlight_field (field : field_record):

begin
with field do
begin
color_background (x1-1, yl, x2+1, y2, field_backcolor);
color_foreground (x1-1, yl, x2+1, y2, field_forecolor);
if field_type in [strg, dtg] then
begin
i = x2 + 1;
repeat
decr (i):
gotoxy (i + 1, yl)
until (i = x1 - 1) or (get_char (i, yl) <> blank)
end
else
gotoxy (x1, yl1)
end
end;

procedure restore_field (field : field_record):

begin

with field do
begin
color_background (x1-1, yl, x2+1, y2, menu_backcolor);
color_foreground (x1-1, yl, x2+1, y2, menu_forecolor);

314

rlIIIlIIlIlIIlII..IllIIIIIIIlIIIlIIIIlIIIIIIIIIIIII------cf

if field_type in [strg, dtg) then
begin
i = x2 +1;
repeat
v decr (i):
gotoxy (i + 1, yl)
until (i = x1 - 1) or (get_char (i, yl) <> blank)
[] end
else
gotoxy (x1, yl)
end
end;

procedure display_edit_field_help_screen;

begin

save_screen;

remove_cursor;

draw_window (16,5,65,19, blue, lightgray, ’help’):
shade_window (16,5,65,19, black):

center_text (12, /NO HELP AVAILABLE AT THIS TIME’, blue);
center_text (17, ’‘press any key to return’, blue);
key := get_key:

key := null;

restore_cursor;

restore_screen

end;

begin
restore_cursor:;
if insert_on then
begin
put_string (77,25, ’‘INS’);
color_foreground (77,25,79,25, blue)
end
else
put_string (77,25, ' ") ;
highlight_field (field):
exit_edit_field := false;
repeat
key := get_key;
case key of
up_arrow, down_arrow, escape, enter,
t2, £3, f4, f5, fe, £f7, £8, £f9, flo,
page_up, page_down :
exit_edit_field := true;
‘ f1l : display edit_field_help_screen;
insert_key : begin
if insert_on then
. begin
put_string (77,25, ’INS’);

315

——

_\»

color_foreground (77,25,79,25, blue)
end
else
put_string (77,25, ’ ")
end;
backspace : if wherex = field.xl1l then
beep
else if wherex = field.x2 + 1 then
begin
gotoxy (wherex - 1, field.yl):
put_char (wherex, wherey, blank)
end
else
begin
gotoxy (wherex - 1, field.yl):
for i := wherex + 1 to field.x2 do
put_char (i - 1, field.yl, get_char

(i, field.yl)):
put_char (field.x2, field.yl, blank)
end;
delete_key : if wherex = field.x2 + 1 then
beep
else
begin
for i := wherex + 1 to field.x2 do
put_char (i - 1, field.yl, get_char
(i, field.yl));
put_char (field.x2, field.yl, blank)
end;
left_arrow : if wherex = field.x1l then
beep
else
gotoxy (wherex - 1, field.yl):
right_arrow : if wherex = field.x2 + 1 then
beep
else
gotoxy (wherex + 1, field.yl):
home_key : gotoxy (field.x1, field.yl):
end_key : begin
i := field.x2 + 1;
repeat
decr (i):
gotoxy (i + 1, field.yl)
until (i = field.x1l - 1) or
(get_char (i, field.yl) <> blank)

end;
else
begin
if insert_on then

begin
if wherex = field.x2 + 1 then

316

rlIIIII..-Il.-Il--I-lIIlIlIIIlllllIIIIIIIII--I-----cr

beep
else
begin
for i := field.x2 downto wherex + 1 do
. put_char (i, field.yl, get_char (i - 1,

field.yl)):
put_char (wherex, field.yl, chr (key)):
3 gotoxy (wherex + 1, field.yl)

end

end

else

begin

if wherex = field.xl then
begin
for 1 := field.xl to field.x2 do

put_char (i, field.yl, blank):;

put_char (field.xl1, field.yl, chr (key)):
gotoxy (field.xl + 1, field.yl)
end

else if wherex = field.x2 + 1 then
beep

else
begin
put_char (wherex, field.yl, chr (key)):
gotoxy (wherex + 1, field.yl)
end

end

s end
end

until exit_edit_field;
for i := field.x1 to field.x2 do

screen_string [i - field.x1 + 1] := get_char (i,
field.yl):
i := field.x2 + 1;
repeat

decr (i)
until (i = field.x1 - 1) or (get_char (i, field.yl) <>
blank);

screen_string (0] := chr (i - field.xl + 1);
edit_field := screen_string;

restore_field (field):

remove_cursor

end;

procedure display_edit_screen_help_line;

. begin

clear_area (1,25,80,25);
put_char (1, 25, #24);
put_char (2, 25, #25):
put_char (3, 25, #60):;

317

put_char (4, 25,

put_string (5, 25,

ESC-Done’);
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_background
end;

$#217);
/! -Choose

Fl-Help

F4-Print screen

(1,25,4,25, red):
(5,25,11,25, blue):

(14,25,15, 25,
(16,25,20,25,
(23,25,24,25,
(25,25,37, 25,
(40,25,42,25,
(43,25,47,25,

red);
blue);
red) ;
blue);
red) ;
blue);

(1,25,80,25, lightgray)

procedure display_edit_list_help_line;

begin

clear_area (1,25,80,25);

put_char (1, 25,
put_char (2, 25,
put_char (3, 25,
put_char (4, 25,

put_string (5, 25,
put_string (13, 25,

color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_background
end;

$#24);
#25);
$60) ;
$#217);

!-Choose’) ;

‘Fl-Help F4-Print F5-Add F6-Delete ’+
'F7-Edit F8-Search ESC-Done’);
(1,25,4,25, red):;
(5,25,11,25, blue):;

(13,25,14,25, red):
(15,25,20,25, blue);
(21,25,22,25, red):;
(23,25,29,25, blue):;
(30,25,31,25, red):
(32,25,36,25, blue);
(37,25,38,25, red):
(39,25,46,25, blue):;
(47,25,48,25, red):
(49,25,54,25, blue);
(55,25,56,25, red):;
(57,25,64,25, blue);
(65,25,67,25, red):
(68,25,72,25, blue);

(1,25,80,25, lightgray)

procedure display_command_help line;

begin

clear_area (1,25,

put_char (1, 25,
put_char (2, 25,
put_char (3, 25,

80,25);
#24);
#25);
$#60) ;

318

put_char (4, 25, #217);

put_string (5, 25, ’-Choose Fl-Help F2-Execute command
‘F4-Print ESC-Abort’);

(1,25,4,25, red);

(5,25,11,25, blue);

color_foreground
color_foreground

color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground
color_foreground

(14,25,15, 25,
(16,25,20,25,
(23,25,24,25,
(25,25,40,25,
(43,25,44,25,
(45,25,50,25,
(53,25,55,25,
(56,25,61,25,

red) ;
blue) ;
red);
blue) ;
red) ;
blue) ;
red) ;
blue) ;

color_background (1,25,80,25, lightgray)

end;
procedure display_add_record_help_line;
begin

clear_area (1,25,80,25);
put_char (1, 25, #24):

put_char (2, 25, #25);
put_char (3, 25, #60);
put_char (4, 25, #217):;

put_string (5, 25, ’‘~Choose Fl-Help F2-Add record '+
'F4-Print ESC-Abort’);
{(1,25,4,25, red);

(5,25,11,25, blue);

color_foreground
color_foreground

color_foreground (14,25,15,25, red):
color_foreground (16,25,20,25, blue);
color_foreground (23,25,24,25, red):
color_foreground (25,25,35,25, blue);
color_foreground (38,25,39,25, red);
color_foreground (40,25,45,25, blue);
color_foreground (48,25,50,25, red):;
color_foreqround (51,25,56,25, blue);

color_background
end;

procedure edit_screen (var number_of_fields :

(1,25,80,25, lightgray)

integer;

var field_data : field_array;

abort_possible : boolean);
var :
field_number : integer;
error_value : integer;

good_value_entered : boolean:;

i : integer;

procedure display_edit_screen_help_screen:;

319

'+

begin

save_screen;

remove_cursor;

draw_window (16,5,65,19, blue, lightgray, ‘help’): -
shade_window (16,5,65,19, black):

center_text (12, ’NO HELP AVAILABLE AT THIS TIME’, blue);

center_text (17, ‘press any key to return’, blue):; L
key := get_key:

key := null;

restore_cursor:;

restore_screen

end;

procedure print_bad_int_message:;

begin
display_error_message (‘/INPUT ERROR’,

’integer input error’,

null_string,

’input is either not a valid number
or’,

’is out of allowable range of
values’)
end;

procedure print_bad_float_message;

begin
display_error_message (’/INPUT ERROR’,
’floating point input error’,
null_string,
’input is either not a valid number
or’,
’is out of allowable range of
values’)
end;

procedure print_bad_dtg_message:

begin
display_error_message (’INPUT ERROR’,
’dtg input format error’,
null_string,
’proper format : ’‘’05 0530Z JAN
89III'
’spaces may be omitted’)
end;

procedure print_bad_time_message;

320

—

begin

display_error_message (’INPUT ERROR’,
’time input error’,
null_string,
'proper format : ’/05302’’/,
null_string)

end;

procedure print_bad_chr_message;

begin

display error_message (‘/INPUT ERROR’/,
‘character input error’,
null_string,
‘character entered is not allowed’,
’in this field’)

end;

procedure print_bad_enum_message;

begin
display_error_message (’INPUT ERROR’,
’character input error’,
null_string,
'characters entered are not allowed’,

‘in this field’)
end;

begin
save_screen;
for field_number := 1 to number_of_fields do
with field_data [field_number] do
begin
put_string (label_x, label_y, label_string);
if length (str_val) > (x2 - x1 + 1) then
str_val [0] := chr (x2 - x1 + 1);
if field_type in [int, float] then str_val :=
remove_blanks (str_val);
put_string (x1, yl, str_val)
end;
field_number := 1;
repeat
with field_data [field_number] do
begin
str_val := edit_field (field_data [field_number]):;
if (key = enter) or (key = up_arrow) or (key =
down_arrow) or
(key = page_up) or (key = page_down) or (key = f4)
or
((key = escape) and not (abort_possible)) or

321

((key = £f2) and (abort_possible)) then

begin

case field_type of

int
and
int_min_value) and
int_max_value);

float

and

begin
val (str_val, int_value, error_value);
good_value _entered := (error_value = 0)

(int_value >=
(int_value <=
if not good_value_entered then
print_bad_int_message
end;
begin
val (str_val, float_value, error_value);
good_value_entered := (error_value = 0)

(float_value >=

float_min_value) and

float_max_value);

ch

strg

enum

dtg

(str_val);

(float_value <=

if not good_value_entered then
print_bad_float_message

end;

begin

str_val := upper_case (str_val):

good_value_entered :=
str_val [1] in valid_char_set;

if not good_value_entered then
print_bad_chr_message

end;

begin

good_value_entered := true

end;

begin

str_val := upper_case (str_val):

good_value_entered := false;

for i := 1 to number_of_enum_values do
good_value_entered :=

str_val = valid_enum_values [i];

if not good_value_entered then
print_bad_enum_message

end;

begin

str_val := upper_case (str_val):

good_value_entered := valid_dtg

if not good_value_entered then
print_bad_dtg_message

322

FIIIl-lIIlllIIIllIIIIIlIIIlIlIIIIllIHIlIlIIIIIIIIIIIIIII------r

end;

begin

str_val := upper_case (str_val):
good_value_entered := valid_time

time

- (str_val);
if rot good_value_entered then
print_bad_time_message
) end;
: eval : good_value_entered := eval_function
(str_val)
end;

if good_value_entered then
case key of
f4 : print_screen;
up_arrow ¢ if field number = 1 then
begin
if not abort_possible then
field_number :=
number_of_ fields
end
else
decr (field_number):;
down_arrow,
enter
number_of fields then

if field_number =

field_number := 1
else
. incr (field_number)
end
end

end
until (key = escape) or

((key = page_down) and not abort_possible) or
((key = page_up) and not abort_possible) or

((RKey enter) and (number_of fields = 1)) or
((key = £2) and (abort_possible)):;
restore_screen

end;

function menu_selection (menu_title : string80;
menu_options : option_string):
integer;

type
menu_option = record
option : string8o0;
- option_number : integer;
x1l, yl, x2, y2 : integer
end;
option_array = array [1..20] of menu_option;

323

var
option_list : option_array:
number_menu_options : integer;

procedure create_option_list (menu_options : option_string:
var option_list :
option_array;
var number_menu_options :
integer):;

var
position : integer;
option_string_length : integer;
opt_num : integer;
skip_lines : integer;

begin
position := 1;
number_menu_options := 0;
while menu optlons [p051tlon] <> '\’ do
begln
incr (number_menu_options);
with option_list [number_menu_options] do
begin
option_string_length := 0;
while not (menu_options ([position] in [’\’,’|’]) do

begin

incr (option_string length):;

option [option_string_length] := menu_options

[position];

incr (position)

end;
option [0] := chr (option_string_length);
option_number := number_menu_options;

X1l := ((menu_x2 - menu_xl1 + 1 - length (option))
div 2) + menu_x1;

x2 := x1 + length (option) - 1:
if menu_options [position]) = /|’ then incr
(position)
end
end;

if number menu_options < 10 then
skip_lines :=
(((menu_y2 - menu_yl) - (2 * number_menu_options - 1))
div 2) + 1
else
skip_lines :=
(((menu_y2 - menu_yl) - (2 * ((number_menu_options +
1) div 2) - 1)) div 2) + 1;
for opt_num := 1 to number_menu_options do

324

with option_list [opt_num] do
begin
if number_menu_options < 10 then
begin
%1 := ((menu_x2 - menu_x1 + 1 - length (option))
div 2) + menu_x1;
Yyl := (menu_yl + skip_lines - 1) + (2 * opt_num -
1)
end
else
begin
if opt_num <= (number_menu_options + 1) div 2 then
begin
yl := (menu_yl + skip_lines - 1) + (2 * opt_num

x1 := menu_x1 + 4

yl := (menu_yl + skip_lines - 1) +
(2 * (opt_num -~ ((number_menu_options + 1)

:
X1 := menu_x1 + ((menu_x2 - menu_x1 + 1) div 2)

+ 2
end
end;
X2 := x1 + length (option) - 1;
y2 =yl
end
end;

procedure display_menu_screen (menu_title : string80;
option_list : option_array:
number_menu_options :
integer) ;

procedure display options (option_list : option_array:
number_menu_options : integer):

var
opt_num : integer;

begin
for opt_num := 1 to number_menu_options do
with option_list {opt_num] do
put_string (x1, yl, option)
end;
procedure display_menu_help_line:;
begin

325

clear_area (1,25,80,25);

put_char (1, 25, #24):;

put_char (2, 25, #25);

put_string (3, 25, ’-Choose’);
put_char (12, 25, #60);

put_char (13, 25, #217):

put_string (14, 25, ’-Select’):;
put_string (23, 25, ’‘Fl-Help'’):
color_foreground (1,25,2,25, red):
color_foreground (3,25,9,25, blue):
color_foreground (12,25,13,25, red);
color_foreground (14,25,20,25, blue);
color_foreground (23,25,24,25, red);
color_foreground (25,25,30,25, blue);
color_background (1,25,80,25, lightgray)
end;

begin

draw_window (menu_xl, menu_yl, menu_x2, menu_y2,
menu_forecolor, menu_backcolor, menu_title);

display_options (option_list, number_menu_options);

display_menu_help_line

end;

function get_option (option_list : option_array:
number _menu_options : integer):
integer;

var
opt_num : integer;

procedure highlight_option (field : menu_option);

begin

with field do
begin
color_background (x1-1, yl, x2+1, y2, option_backcolor);
color_foreground (x1-1, yl, x2+1, y2, option_forecolor)
end

end;

procedure restore_option (field : menu_option);

begin

with field do
begin
color_background (x1-1, yl, x2+1, y2, menu_backcolor):;
color_foreground (x1-1, yl, x2+1, y2, menu_forecolor)
end

end;

326

procedure display_ menu_help_screen;

begin

save_screen;

draw_window (16,6,65,20, blue, lightgray, ‘help’):
shade_window (16,6,65,20, black):

center_text (13, ’NO HELP AVAILABLE AT THIS TIME'’, blue):;
center_text (19, ‘press any key to return’, blue):

key := get_ Xkey:

key := null;

restore_screen

end;

begin
opt_num := 1;
highlight_option (option_ list (opt_num));
repeat
key := get_Kkey;
case key of
enter :
get_option := opt_num;
up_arrow :
begin
restore_option (option_list [opt num]);
if opt_num = 1 then
opt_num := number_menu_options
else decr (opt_num);
highlight_option (option_list ([opt_num])
end;
down_arrow :
begin
restore_option (option_list [opt_num]):;
if opt_num = number_menu_options then
opt num := 1
else incr (opt_num);
highlight_option (option_list [opt_num]})
end;
left_arrow :
if (number_menu_options >= 10) and
(opt_num > (number_menu_options + 1) div 2)

then
begin
restore_option (option_list [opt_num]}):;
opt_num := opt_num - ((number_menu_options +
1) div 2);

highlight_option (option_list [opt_num])
end;
right_arrow :
if (number_menu_options >= 10) and
(opt_num + ((number_menu_options + 1) div 2)
<= number_menu_options) then

327

begin
restore_option (option_list [opt_num]);
opt_num := opt_num + ((number_menu_options +
1) div 2):
highlight_option (option_list [opt_num])
end;
f1 :
display menu_help_screen
end
until key = enter
end;

begin

save_screen;

create_option_list (menu_options, option_list,
number_menu_options) ;

display_menu_screen (menu_title, option_list,
number_menu_options) ;

menu_selection := get_option (option_list,
number_menu_options) ;

restore_screen

end;

function get_file (prompt, message : string80; search_mask :
dirstr): pathstr;

const
number fields = 1;
fields : array [1..number_fields) of field record =
((label_string : ’Directory : ‘; label x : 18;
label y : 7;
str_val : null_string;
Xl 2 31; yl ¢ 7; %2 : 60; y2 : 7;
field_type : strg)):
file_window_x1 = 10;

file window_yl = 10;
file _window_x2 = 71;
file _window_y2 = 21;

file_window_backcolor = cyan:
file_window_forecolor = blue;

type
file_list_ptr = ~file_list_record:
file_list_record = record
line ¢ string60;
previous file_list_ptr;
next file_list_ptr
end;

var
file_list : file_list_ptr;

328

path_valid : boolean;
list_length : integer;
heap_state : pointer;
file_error : integer;

procedure display_getfile help screen;

begin

save_screen?

draw_window (16,5,65,19, blue, lightgray, ‘help’)
shade_window (16,5,65,19, black):

center_text (12, ’/NO HELP AVAILABLE AT THIS TIME’, blue):;
center_text (17, ’‘press any key to return’, blue);

key := get_Kkey:

key := null;

restore_screen

end;

-y

procedure display_getfile_screen (prompt, message :
string80; search_mask : dirstr):

procedure display_getfile_help_line;

begin

put_char (1, 25, #24);
put_char (2, 25, #25);
put_char (3, 25, #26);

. put_char (4, 25, #27);:
put_string (5, 25, ’-Choose’);
put_char (14, 25, #60);
put_char (15, 25, #217):

4 put_string (16, 25, ’-Select’);
put_string (25, 25, ’‘Fl-~Help’):
put_string (34, 25, ’F4~-New mask’);
put_string (47, 25, 'ESC-Quit’):
color_foreground (1,25,4,25, red):;
color_foreground (5,25,11,25, blue);
color_foreground (14,25,15,25, red):;
color_foreground (16,25,22,25, blue):
color_foreground (25,25,26,25, red);
color_foreground (27,25,31,25, blue):;
color_foreground (34,25,35,25, red);
color_foreground (36,25,44,25, blue);
color_foreground (47,25,49,25, red):;
color_foreground (50,25,54,25, blue);
color_background (1,25,80,25, lightgray)
end;

begin
draw_window (menu_xl, menu_yl, menu_x2, menu_y2,
menu_forecolor, menu_backcolor, prompt):

329

draw_window (file_window_x1, file _window_yl, file window_x2,
file_window_y2,

file_window_forecolor, file window_backcolor,
search_mask) ;
put_string (fields [1].label_x, fields [1]).label_y,

fields [1).label_string + search_mask);
center_text (fields [1].label_y - 2, message,
file_window_backcolor) ;
display getfile_help line
end;

function check_path (search_mask : dirstr): boolean:;

var
file_info : searchrec;
valid_path : boolean;
begin

findfirst (search_mask, anyfile, file_info);
file_error := doserror:;
if file_error <> 0 then
begin
save_screen;
draw_window (26,13,55,16, yellow, red, null_string);
shade_window (26,13,55,16, black);
case doserror of
3 : begin
center_text (14, ‘PATH NOT FOUND’, yellow):
center_text (15, ’‘press any key’, white);
key := get_key;
key := null
end;
18 : begin
center_text (14, ’‘NO FILES FOUND’, yellow):;
center_text (15, ’‘press any key’, white):
key := get_key:
key := null
end;
152 : begin
center_text (14, ’'DISK ERROR’, yellow);
center_text (15, ’‘Retry or Abort’, yellow);
color_foreground (34,15,34,15, white):
color_foreground (43,15,43,15, white);
repeat
key := get_key:;
if chr (key) in [’a’,’A’]) then
begin
restore_screen;
check_path := (file_error = 0);
exit
end

330

else if chr (key) in [’r’, ’R’] then
valid_path := check_path (search_mask)
until (file_error <> 152) or (chr (key) in
(‘a’,*a’]);
- end
else
begin
center_text (14, ‘PATH ERROR’, yellow):
center_text (15, ’press any key’, white):;
key := get_key:;
key := null
end
end;
restore_screen
end;
check_path := (file_error = 0);
end;

~

function get_file_list (search_mask : dirstr;
var list_length : integer):
file list_ptr:

const
blank_60 = '/ '+
’

var
number_of_ files : integer:;
file_info : searchrec;

column : integer:;
list_head : file_list_ptr;
list_tail : file_list ptr;

begin

number_of_files := 1;

list length =13

column := 2;

new (list_head);
list_head”.line := blank_60;
list_head~.next := nil;
list_head”.previous := nil;
list_tail := list_head;
findfirst (search_mask, anyfile, file_info);:
while (doserror = 0) do
begin
delete (list_tail~.line, column, length
(file_info.name)):
insert (file_info.name, list_tail~.line, column);
if file_info.attr = dlrectory then
list_ _tail~.line {column + length (file_info.name)] :=
I\I;

331

N

.

findnext (file_info):
if doserror = 0 then
begin
incr (number_of files):
if (number of_files mod 4) = 1 then
begin
new (list_tail~.next);
list tail~.next”~.next := nil;
list_tail”.next~.previous := list_tail;
list_tail~.next~.line := blank_60;
list_tail := list_tail~.next;
incr (list_length);
column := 2

|

{

end
else
column := column + 15
end
end;
get_file list := list_head
end;
function get_file_name (search_mask : dirstr;
file_list : file_list_pt
list_length : integer
pathstr;
var

list_pointer : file_list_ptr;
done : boolean;

file_name : pathstr;

dir : dirstr;

name : namestr;

ext : extstr:

procedure highlight_file;

begin
color_ foreground (file_window_x1 + wherex,
file_window_yl + wherey,

file_window_x1 + wherex + 13,
file_window_yl + wherey,

yellow) ;
color_background (file_window_x1 + wherex,
file_window_yl + wherey,

file_window_x1 + wherex + 13,
file_window_yl + wherey,

magenta)
end;

procedure restore_file;

332

r;
):

begin
color_foreground (file_window_x1 + wherex,
file_window_yl + wherey,

file_window_x1 + wherex + 13,
file_window_yl + wherey,

file_window_forecolor):;
color_background (file_ “window_x1 + wherex,
file_window_yl + wherey,

file_window_x1 + wherex + 13,
file _window_yl + wherey,

file_window_backcolor)
end;

begin
draw_window (file_window_x1, file window_yl,

file window _x2, file_window_y2,

file w1ndow forecolor, file_window_backcolor,
search_mask) ;
window (file _window_x1 + 1, file window_yl + 1,

file_window_x2 - 1, file window_y2 - 1):;

textbackground (file_window_backcolor):;
textcolor (file_window_forecolor):;

clrscr:

list_pointer := file_list;
done := false;

repeat

put _string (file_window_x1 + wherex, file_window_yl +
wherey,
list_pointer~.line);
if (list_pointer~.next <> nil) and (wherey <> 10) then
begin
gotoxy (wherex, wherey + 1);
list_pointer := list_pointer~.next
end
else
begin
gotoxy (1,1):
list_pointer := file_list;
done := true
end
until done;
highlight_file;
repeat
key := get_key:
case key of
enter :
begin
file_name :

il

copy (list_pointer~.line, wherex + 1,
12):
if pos (’\’, file_name) = 0 then
begin

333

———

fsplit (search_mask, dir, name, ext);

get_file name := dir + file_name

end

else

begin

save_screen;

draw_window (26,13,55,16, yellow, red,
null_string):;

shade_window (26,13,55,16, black);

center_text (14, ’/CANNOT SELECT SUBDIRECTORY’,

vellow) ;
center_text (15, ’‘press any key’, white):
key := get_key:;
key := null;
restore_screen
end
end;
f1 :
display_getfile_help_screen;
up_arrow,

down_arrow,
left_arrow,
right_arrow :

begin

restore_file;

case key of

up_arrow :
if wherey <> 1 then

begin

gotoxy (wherex, wherey - 1):;
list_pointer := list_pointer~.previous
end

else if (wherey = 1) and
(list_pointer~.previous <> nil) then
begin
list_pointer := list_pointer~.previous;
insline;
put_string (file_window_x1 + 1,
file_window_yl + wherey,
list_pointer~.line)
end;
down_arrow :
if (wherey <> 10) and (list_pointer*.next <>
nil) and
(list_pointer~.next”.line [wherex + 1] <>
blank) then
begin
gotoxy (wherex, wherey + 1);
list_pointer := list_pointer~.next
end

334

else if (wherey = 10) and (list_pointer~.next
<> nil) anad

(list_pointer~.next”.line [wherex +
1) <> blank) then
begin
list_pointer := list_pointer*.next:;
gotoxy (wherex, 1):;
delline;
gotoxy (wherex, 10):
put_string (file_window_x1 + 1,
file_window_yl + wherey,
list_pointer~.line)
end;
left_arrow :
if wherex <> 1 then
gotoxy (wherex - 15, wherey)
else if wherex = 1 then
begin
if wherey <> 1 then
begin
list_pointer := list_pointer~.previous;

gotoxy (wherex + 45, wherey - 1)
end

else if (wherex = 1) and

(1ist_pointer~.previous <> nil)
then

begin
list_pointer := list_pointer~.previous;

insline;
put_string (file_window_x1 + 1,
file_window_yl + wherey,
list_pointer~.line);
gotoxy (wherex + 45, wherey)
end
end;
right_arrow :
if (wherex <> 46) and
(get_char (file_window_x1 + wherex + 16,
file_window_yl + wherey)
<> blank) then
gotoxy (wherex + 15, wherey)
else if wherex = 46 then

begin
if wherey <> 10 then
begin
list_pointer := list_pointer”.next;
gotoxy (1, wherey + 1)
end

else if (wherey = 10) and
(list_pointer~.next <> nil) then
begin
list_pointer := list_pointer~.next;
gotoxy (1,1);
delline;
gotoxy (1,10);
put_string (file_window_x1 + 1,
file_window_yl + wherey,
list_pointer~.line)
end
end
end;
highlight_file
end
end
until (key = enter) or (key = escape) or (key = f4);
restore_file;
textbackground (black):;
textcolor (yellow);
window (1,1,80,25)
end;

begin
save_screen;
mark (heap_state);
repeat
display _getfile_screen (prompt, message, search_mask) ;
path_valid := false;
repeat
search_mask := edit_field (fields [1]):
if key = enter then
path_valid := check_path (search_mask)
until (key = escape) or (path_valid);
if path_valid then
begin
file list := get_file_list (search_mask, list_length);

get_file := get_file_name (search_mask, file list,
list_length)
end
until (key = enter) or (key = escape):
if key = escape then
get_file := null_string;
release (heap_state);
restore_screen
end;

begin
menu_x1 := menu_x1_default;

336

menu_x2
menu_y1l
menu_y2

& p—
=
=
L.E—3
e=

option_forecolor
option_backcolor
field_forecolor
field backcolor

menu_x2_default;
menu_yl_default;
menu_y2_default;
menu_forecolor := menu_forecolor_default;
menu_backcolor := menu_backcolor_default;

:= option_forecolor_default;
:= option_backcolor_default;
:= field forecolor_default;
¢= field_backcolor_default;

default_mask := ‘a:*.*’;
stack_pointer := 0;

month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data
month_data

assign (fontfile,

reset

if ioresult = 0 then

begin

for loop :

read (fontfile,

for loop := ‘0’ to

read (fontfile,
close (fontfile)

end
else
begin

initialize_screen;
remove_cursor;

draw_window

{1].days := 31;
[2]).days := 28;
[3).days := 31;
(4] .days := 30;
[5].days := 31;
{6].days := 30;
[7]).days := 31;
[8].days := 31;
[9].days := 30;
[10]).days := 31;
[11]).days := 30;
{12].days := 31;
[1).name := ’'JAN’;
[2]) .name := ’FEB’;
[3].name := ’‘MAR’:;
[4].name := ’APR’:;
[5].name := ‘MAY’/;
[6].name := 'JUN’;
[7]).name := ‘JUL’;
{8].name := ‘AUG’;
[9].name := ’SEP’;
[10].name := ‘0OCT’;
(11].name := ’NOV/;
[12].name := ’'DEC’;
'fontfile’);
(fontfile):;
= 'A’ to 'Z’ do

letters [loop]):

'9’ do

digits [loop]):

(19,12,61,16, yellow, red, null_string);

337

_

center_text (13, /FONTFILE NOT FOUND’, yellow) ;
center_text (14, ’‘CHECK DISK, THEN TRY AGAIN’, yellow):;
center_text (15, ’‘press any key’, white);

key := get_key;

key := null:;

restore_cursor:;

initialize_screen:

halt

end

end.
~Z

338

LIST OF REFERENCES

U.S. Department of the Army, Operatjons, Field Manual
100-5, Washington, D.C.: U.S. Government Printing
Office, 1982.

Wohl, Joseph, "Force Management Decision Requirements
for Air Force Tactical Command and Control," JIEEE
Iransactions on Systems, Man, and Cybernetics, Vol.
SMC-11, No. 9, Sept 1981.

Taylor, James G., Professor, Naval Postgraduate School,
Monterey, CA, 0S3636 Class Notes, "C3 Architecture”,
Summer Quarter, 1988.

Giles, G. and Sandene, J., " nt io o_C3
Architecture,” M.S. Thesis, Naval Postgraduate School,
Monterey, CA, March 1988.

U.S. Department of the Army, Field Artillery Cannon
Battalion, Field Manual 6-20-1, Washington, D.C.: U.S.

Government Printing Office, 1979.

Clausewitz, Carl von, On V. , Edited and Translated by
Michael Howard and Peter Paret, Princeton University
Press, 1976.

IBM Corp. Federal Systems Division, ™"1982 Final Report

Integration of €3 Architecture," (Naval Postgraduate
School Microfiche AD-B072-182L).

Orr, George, Combat Operations C3]I: Fundamentals and
Interactions, Air University Press, 1983.

339

BIBLIOGRAPHY

Barr, D.R., Poock, G.K., and Richards, F.R., "Experimental
Manual, Part I: Experimentation Methodology," Naval
Postgraduate School NPS55-78-032, Nov, 78, (NPS Microfiche
AD-A067-539) .

Martin, Terry L., Command, Control, apnd Communicatjons
Mission and Organization: A Primer, M.S. Thesis, Naval
Postgraduate School, Monterey, CA, March 1984.

Schoderbeck, Peter P., Schoderbeck, Charles G., and Kefalas,

Asterios, Management Systems: Conceptual Considerations,

Third Edition, Business Publications, INC., Plano, TX, 1985.

Tiede, Roland V., and Leake, Lewis A., "A Method for
Evaluating the Combat Effectiveness of a Tactical
Information System in a Field Army.," QOperations Research,
Opns. Res. 19, pages 585-604, 1971.

340

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Commandant

US Army Field Artillery School
ATTN: ATSF-~AF

Ft Sill, Oklahoma 73503-5600

Commander

US Army Signal Center and Ft Gordon
ATTN: ATZH-POO

Ft Gordon, Georgia 30905-5300

Commander

US Army Combined Arms Center
ATTN: ATZL-SWP-P

Ft Leavenworth, Kansas 66027-5300

Curricular Office, Code 39
Naval Postgraduate School
Monterey, California 93943-5000

c3 Academic Group

ATTN: Prclessor Carl Jones, Code 74
Naval Postgraduate School

Monterey, Caliifornia 93943-5000

Commander

US Army Combined Arms Center
ATTN: ATZL-CAC-I

Ft Leavenworth, Kansas 66027-5300

Department of Operations Research

ATTN: Professor Samuel Parry, Code 55Py
Naval Postgraduate School

Monterey, California 93943-5000

341

2

10. Department of Operations Research
ATTN: LCDR William Walsh, Code S55Wa
Naval Postgraduate School
Monterey, California 93943-5000

11. Test and Experimentation Command
ATTN: CPT Michael W. Schneider
Ft Hood, Texas 76544

12. Commanding General
Training and Doctrine Command
Ft Monroe, Virginia 23351

13. Commanding General
5th United States Army
Fort Sam Houston, Texas 78234

14. Defense Communications Agency
Center for C3 Systems
ATTN: CPT Anthony R. Ferrara
Arlington Hall Station
Arlington, Virginia 22212-5410

342

