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Dual-Beam Autocorrelation Based Wind Estimates from
Airport Surveillance Radar Signals

ABSTRACT

This report describes an efficient, autocorrelation based algo-
rithm for estimating low altitude radial winds using signals from the
two receiving beams of an airport surveillance radar (ASR). The
approach seeks to achieve the accuracy demonstrated previously for
spectral domain dual beam velocity estimators with significantly
reduced computational requirements. Fundamental to the technique
is the assumption that the power spectrum measured with an air-
port surveillance radar’s broad elevation beain can be fitted by a
two component Gaussian model. The parameters of this model are
estimated using measured low-order autocorrelation lags from the
low and high beam received signals. The desired near surface radial
velocity estimate is obtained directly as one of these parameters --
the center frequency of the "low altitude" Gaussian spectrum com-
ponent.

Simulated data and field measurements from Lincoln
Laboratory’s experimental ASR-R in Huntsville, Alabama were used
to evaluate the accuracy of the autocorrelation based velocity esti-
mates. Monte Carlo simulations indicate that biases relative to the
near surface outflow velocity in a microburst would be less than 2.5
m/s unless the microburst were distant (range > 12 km) or very
shallow (depth of maximum wind speed layer < 50 m). Estimate
standard deviations averaged 0.5 m/s after the spatial filtering
employed in our processing sequence. The algorithm’s velocity esti-
mate accuracy was sufficient to allow for automatic detection of
measured microbursts during 1988 with a detection probability
exceeding 0.9 and a false alarm probability less than 0.05. Our
analysis indicates that the dual-beam autocorrelation based velocity
estimator should support ASR wind shear detection at approxi-
mately the same level of confidence as the low-high beam spectral
differencing algorithm evaluated by Weber and Noyves (1988).
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Dual-Beam Autocorrelation Based Wind Estimates from
Airport Surveillance Radar Signals

I. INTRODUCTION

This report evaluates an efficient, autocorrelation based algorithm for estimat-
ing low altitude radial winds using signals from the two receiving beams of an air-
port surveillance radar (ASR). The described approach seeks to achieve the accu-
racy demonstrated previously for spectral domain dual beam velocity estimators
(Anderson,1989; Atlas,1987,1989; Weber and Noyes,1988) with significantly
reduced computational requirements.

The feasibility of a data processing augmentation to existing ASRs that would
allow for detection of low altitude wind shear has been under investigation by
Lincoln Laboratory and cooperating universities since 1984. This capability would
require:

(a) a signal processing module that would suppress ground clutter and estimate
the radial velocity of near-surface precipitation wind tracers;

(b) an algorithm to automatically recognize significant wind shear in the result-
ing vewocity field.

Anderson (1987), Weber and Moser (1987) and Weber (1987) considered the
impact of ground clutter on ASKR wind measurements. Simulations and analysis
of real clutter data from airport surveillance radars indicated that wind measure-
ments were feasible even at short range provided that the reflectivity factor of the
precipitation tracers was approximately 20 dBz or greater. Even when this condi-
tion is met howevex accurate low-altitude radial wind estimates may not be
obtained with "conventional” mean Doppler estimators when the radial wind com-
ponent varies rapidly with altitude. In this situation, an ASR’s fan-shaped eleva-
tion beam intercepts scatterers moving at both the near-surface velocitv and the
velocity of wind aloft; the result is a broad, possibly multi-modal velocity spee-
trum whose power-weighted mean differs markedly from the near surface radial
wind velocity. Since both microbursts and gust fronts exhibit strong vertical
shear in the horizontal winds near the ground, this beam resolution issue is of
obvious importance.

Weber and Noyes (1988) used data from an experimental ASR operated during
periods of nearby thunderstorm activity to evaluate three methods for estimating
low altitude winds from ASR signals:

(i) high-pass filtering to exploit the fact that microburst outflow winds are often
higher in abselute magnitude than winds aloft:

(i1) comparison of the strength of divergence regions detected in veloeity fields
» . - . 0 ‘. 11 "
from the high and low receiving heams of the ASR to “correct™ the measured

2 A

velocity shear values:

(ii1) resolution cell by cell comparison of the power speetra of the low and high
receiving beams to determine the veloeity domain associated with near sur-
face seatterers,




Our assessment included an end-to-end data processing evaluation whereby wind
fields estimated from the ASR signals were passed into a slightly modified version
of the Terminal Doppler Weather Radar’'s (TDWR) surface outtlow detection algo-
rithm (Merritt, 1987). The resulting microburst alarms were scored on a scan-by-
scan basis against "truth” as determined from manual examination of wind lields
measured with a colocated pencil-beam Doppler weather radar. Overall, the third
method above -- transformation of high and low beam signals into the frequency
domain followed by spectral differencing -- produced better detection performance
(higher probability of detection and lower false alarm probability) and more accu-
rate velocity shear estimates than the other two methods evaluated.

Use of this dual-beam signal processing approach, however, raises several
implementation issues. ASRs normally transmit circularly polarized (CP) signals
during heavy rain in order to reduce precipitation clutter in the aircraft detection
processor. In order to avoid a resulting 15 to 20 dB loss in received power from
weather echoes, any weather processor on an airport surveillance radar should
receive its input from the opposite-sense polarized antenna port. ASR-8's and
ASR-~9’s have only one path through the rotary joint for opposite sense polarized
signals: thus during operation with circular polarization. weather data from both
high and low beams could not be accessed simultancously. Power spectra for the
two beams would have to be calculated on alternate antenna scans, requiring
memory storage for all data from one of the scans. Assuming range coverag. to
20 ki and two byte integer representation of the in-phase and quadrature signals,
this would require 3 Mbytes of dedicated physical memory.

Another issue is the computational requirement of estimating power spectra for
the two beams in each resolution cell and calculating a velocity based on the
difference of the two spectra. Assuming that the spectra were estimated using
Fast Fourier Transforms (FFT)., about 1000 Hoating point operations per resolu-
tion cell would be required. For the same 20 km range coverage considered previ-
ously, this translates to 17 million tloating point operations per second. While
both the memory storage and processing speed requirements could be met, they
would certainly drive the cost of the signal processing computer higher.

A third issue arises from the large variance and coarse quantization of power
spectrum estimates obtained from a rapidly seanning airport surveillance radar.
As implemented by Weber and Noyes (1988), the low and high beam power spee-
trum estimates were caleulated from 31 successive pulses (2.6° in azimuth) and
incoherently averaged over three successive range gates (360 m). Veloeity resolu-
tion was about 2 m/s and the 90 confidence interval of the speetral estimates
was 7 dB. Monte Carlo stimulations indicate that the standard deviation of mean
velocity estimates using our implementation is approximately 2 m/s. Thus addi-
tional spatial Hltering had to be applied to the velocity field in order to achieve
acceptable performance from the microburst detection algorithm.

In this report, we evaluate an alternative dual-beam veloeity estimation tech-
nique that significantly reduces both memory storage and computational require-
ments. The basie strategy 15 to estimate the parameters of an assumed bimodal
Gaussian power speetra, based on low-order autocorrelation lags from the low and
high heam received signals. The desired low-altitude veloceity estimate is then
obtained directly as the center frequeney of one of the two components of this
speetral model. Beeause only the zero and one sample delay auwtocorrelation lags
for each heam are used, physical memory storage requirements would be reduced
to 0.5 Mbyte. Computational requireiments are about 2 million Hoating point




operations per second. Estimate standard deviations of 2 m/s can be achieved
without the need for range smoothing as required for the spectral differencing
approach.

Section II describes the double Gaussian spectral model and algorithms for
estimating its parameters from autocorrelation function measurements. This dis-
cussion draws heavily on measured microburst power spectra from our experimen-
tal ASR. In Section IlI, we evaluate the performance of the algorithm, using
simulated and measured ASR signals from microbursts. Automatic microburst
detection performance using this method and the spectral differencing approach
evaluated by Weber and Noyes (1988) is compared statistically for our 1988 field
measurements. Over the evaluated data set, the two methods provide similar per-
formance. Section IV summarizes our findings and describes ongoing work.




II. VELOCITY ESTIMATION BASED ON A DUAL GAUSSIAN SPEC-
TRUM SHAPE MODEL

A. Velocity Spectra in Microburst Cores

Figure II-1 shows examples of velocity spectra measured with our experimental
airport surveillance radar in the cores of cight "wet" microbursts near Huntsville,
Alabama. The spectra were estimated from FFTs of 34-sample Hamming win-
dowed data sequences, incoherently averaged over three contiguous range gates.
An adaptively-selected clutter filter (Weber,1987) was applied to the signals prior
to Fourier transformation: in most of the examples shown, however, the
reflectivity factor in the microburst core was sufficiently high that no filtering was
required. Although our experimental radar transmitted pulses at a uniform
repetition frequency (PRF), the eight/ten-pulse alternating PRF sequence to be
used by ASR-9s could be accommodated by preceding the clutter filters with a
shift-variant interpolation filter as deseribed by Weber (1987).

The plots show calemated spectra for both high (dashed) and low (solid) receiv-
ing beams. The left hand panels are for the approaching radial velocity cores of
the microbursts and those in the right column are for the receding cores. The
spectra have been normalized so that the areas under the curves are equal. For
reference, radial velocities measured by the pencil beam weather radar at the same
range-azimuth locations and times are indicated by dashed vertical lines. The
pencil beam radar was scanned at 0.6° clevation angle to estimate the near surface
radial wind speed.

As discussed in Weber and Noves (1988) the broad width and multimodal
nature of these power spectra result in significant differences between the "true"
near surface radial velocity and the ASR-based measurement when a conventional
mean Doppler estimator is used. The discrepancy results, of course because the
applicability ot the mean Doppler estimate rests on the assumption of narrow-
width, roughly symmetric power spectral shape. Of the displayed power spectra,
only those in the approaching core on 1 August exhibit symmetry. The remaining
spectra are strongly skewed and/or bi- or multi-modal. Some of this ccmplexity
arises from spectral estimate variance (recall that our procedure results in a 7 dB
90 confidence interval). As illustrated in Appendix C however, the dominant
features of the spectra can be attributed to the interaction of an ASR’s fan-shaped
clevation beam with the strongly sheared radial wind field in an a microburst
outflow,

Note that the low beam power spectral density always exceeds that of the high
beam near the indicated surface wind speed.  This refleets reduced high beam
antenna gain near the surface, and is the basis for the speetral differencing tech-
nigque alluded to above.
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B. Autocorrelation Based Dual Gaussian Fits to the Measured Spectra
I. Estimates Using R (7) and R (27)

Examination of the above measured spectra suggests that the parameters of a
double Gaussian power spectrum model might provide a better estimate of the
low altitude wind field than the conventional mean Doppler method. Physically,
the presence of two separated modes in the power spectra implies a radial velocity
field that is strongly discontinuous within the radar’s beamwidth, as at the top of
a shallow microburst outflow. In a region where the radial wind speed varies
linearly with height or is constant, the double Gaussian model can also adequately
represent the power spectrum that would be measured by an ASR since the two
components may overlap substantially, producing a broad, unimodal spectrum.

We assume therefore that the weather echo power spectra measured by the fan
shaped elevation beam of an ASR can be approximately represented as:

. i, 2 —(f =12
Si(f) = \/(;—7:01 exp] (1:201[] |+ \/—00 \[)[L‘.’.;_;T)—] (1)

where i=1,2 indexes the low and high receiving beams. The center frequencies
and widths of the two spectral components are assumed to be identical between
the two beams but the amplitudes will differ owing to the different weightings
from the antenna patterns.

Appendix A describes a method of estimating the eight parameters in equations
(1) using measurements of the low and high beam autocorrelation functions at
lags 7 and 2r. The solution is constructed using knowledge of the beam patterns
so that the parameters ¢; |, o, and f, represent the spectral component associated
with scatterers at low elevation angle. Figure II-2 plots the resulting dual Gaus-
sian power spectra for the microburst cores shown previously. Although these are
not optimum dual Gaussian fits to the measured spectra (for example, in a least
squares sense) they generally correspond well to the data.

Low altitude velocity estimates can be derived from the calculated speciral
parameters by reconstructing the spectra and implementing a low-high beam
differencing algorithm as described in Weber and Noyes (1988). Table II-1 com-
pares the resulting velocity shear estimates for these eight microbursts to those
measured by the pencil beam "truth" radar and to those calculated using the spec-
tral differencing technique applied directly to the measured power spectra. In
seven of the eight cases considered, both ASR-based velocity shear estimates are in
good agreement with the pencil beam measurements. For the spectra measured on
9-11-87, dual Gaussian fitting resulted in a substantially larger wind shear esti-
mate than given by the pencil beam weather radar and the spectral differencing
technique; this produced the larger overall RMS error associated with the dual
Gaussian approach.

The above results indicate that the fidelity of the dual Gaussian spectral model
to the measured signal characteristics may be sufficient to generate a reliable low
altitude velocity estimate from ASR data. However, the deseribed solution is not
(omputationdlly efficient. Calculation of the first and second auntocorrelation lags
requires 1.5 times as many operations as would be needed to estimate R(0) and
R (7). \1ore importantly, the double Gaussian spectral parameters are determined
iteratively (Appendix A}, followed by numerical integration to derive a veloeity
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Table II-1: Microburst Velocity Shear Estimates Using Spectral
Differencing and R(r), R(27) Dual Gaussian Fit
Date/Time Pencil Beam ASR Spectral ASR Spectral
Radar AV (m/s) Differencing Differencing
(Measured) (Dlﬁal Gaussian
Ijt
9-10-87 22:47 23 21 23
5-21-87 14:14 28 28 27
6-21-87 20:45 27 29 30
_6-21-87 20:38 23 23 22
-11-87 23:50 29 25 32
-14-87 19:33 19 15 16
6-14-87 19:18 32 33 32
8-1-87 20:30 19 17 292
AVase 0.96 1.05
Average AV
RMS Relative Difference AV, s, 0.09 0.15
VS, AVrpip

estimate. In the following section we describe an approximate solution for the
dual Gaussian parameters that leads to an efficient velocity estimation algorithm.

II. Estimates Using £(0) and R (7)
The number of unknowns in equations (1) can be reduced from eight to six by

assuming that the ratio of high and low beam amplitudes for each spectral com-
ponent can be determined from a known beam weighting function, w; ;:

ige

ay —f =/ ag —(f =/ 9)?
S: = w; ex | + w, 5 ex 2
z(f) 1,17 [—QFO'l P[ 2012 ! 1,274 /—27r02 P[ 205 l ( )

Appendix B describes a solution for the six spectral parameters using measure-
ments of R(0) and R(r) in the two receiving beams of an ASR. The important
result is that the center frequency of the "low altitude induced" spectral com-
ponent can be derived as:

1 -

f1=2mt3“ HRoy(r) — TA0) ns Ro(7)] (3)
Thus if this center frequency can be shown to accurately represent the low alti-
tude wind field, the ASR velocity estimation algorithm could be simplified to a
standard pulse pair estimate, preceded by linear combination of the low and high
beam autocorrelation estimates. This method was in fact proposed by Weber and
Moser (1987) although we indicated there that better performance would be
expected if the high and low beam signals were "orthogonalized" through linear
combination of their in-phase and quadrature components prior to calculation of
autocorrelation lags.

As described in Appendix B, the precomputed beam weights w; ; in equation
(3) can be parameterized by an upper elevation angle (corresponding to the height
of a microburst outflow) for the low altitude spectral component. In this report we
will treat this angle as range independent, although better performance might be
expected were it a decreasing function of range. For the microbursts treated pre-
viously, Table 1I-2 compares velocity shear estimates from cquation (3) with those
from the pencil beam weather radar. Upper elevation angles, 6, of 1%, 2° and 3°

11




were used in computing the w; ;.

Table 1I-2: Microburst Velocity Shear Estimates Using
R(0), R(7) Dual Gaussian Fit
Date/Time Pencil Beam | ASR (6,=3°) | ASR (8, =2° | ASR (8, =19
Radar AV
(m/s)
9-10-87 22:47 23 13 18 26
5-21-87 14:14 28 26 31 36
-21-87 20:45 27 20 22 28
6-21-87 20:38 23 18 22 27
9-11-87 23:50 24 17 19 25
6-14-87 19:33 19 12 16 22
6-14-87 19:18 32 33 36 39
R-1-87 2():30 19 14 18 25
Average AA;’ASH 0.76 0.91 1.20
RMS Relative Difference 0.27 0.15 0.19
AVicp VS, AVorpup

Note that as 6, is decreased, the weight w,o/w,, increases (see Appendix B).
When wind speed decreases with altitude as is normally the case in a microburst,
the magnitude of the phase angle of the high beam’s R(7) autocorrelation lag will
be smaller than that of the low beam. A simple vector construction illustrates
that these observations account for the observed inverse relationship between 6,
and the magnitude of the velocity shear estimate from equation (3).

Since the heights of microburse outflow winds vary considerably and since the
above events were at different ranges from the radar, the "best" value for §, was
variable; indeed in many of these microbursts the best velocity measure for the
approaching core corresponded to a different value for 8, than that for the reced-
ing core. Over the eight events however, weights w; ; computed using a value of
2° for 6, resulted in a shear estimates that on average were closest to those meas-
ured by the pencil beam radar; the corresponding RMS relative error was likewise
minimum for this setting. While the match to the pencil beam radar measure-
ments could have been improved by selecting a 6, slightly less than 2.0, we felt
that such fine tuning was unwarranted given the small number of events used for
the evaluation.

Comparison of Tables II-1 and 1I-2 suggests that the simple velocity estimator
of equation (3) might provide comparable accuracy to the less constrained
approach discussed in the previous subsection, provided that a suitable weight
w9/ ws o were selected. The following section examines the extent to which a sin-
gle value for this weight would provide acceptable velocity estimates for a much
larger data set than evaluated above.
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III. EVALUATION OF VELOCITY ESTIMATES USING SIMULA-
TIONS AND FIELD MEASUREMENTS

This section compares ASR radial velocity estimates from equation (3) to those
derived from the full spectral differencing technique and to "truth" as defined from
microburst models (part A) or simultaneous measurements from the pencil beam
weather radar (part B). The data processing sequence involves the elements
described in Weber (1987) and Weber and Noyes (1988):

(i) clutter-map based high pass filtering of 34 sample sequences from the high
and low receiving beams;

(ii) velocity estimation using equation (3) or the spectral differencing algorithm
described by Weber and Noyes (1988). For the autocorrelation based
method, beam weights w; ; were calculated with §; set to 2.0°;

(iii) nine-point nearest neighbor spatial median filtering of the velocity field fol-
lowed by smoothing along the range axis with a five-point Gaussian filter;

(iv) divergence detection using the surface outflow portion (Merritt, 1987) of the
TDWR microburst detection algorithm.

All data used in part B were collected during 1988 in wet microbursts near Hunts-
ville, Alabama. We note that the value of 6, used in calculating the weighting
coefficient w, /w5 was derived from independent microburst data collected dur-
ing 1987 as described in the preceding section.

A. Velocity Estimates using Simulated ASR Signals

As a function of "true" surface outflow radial velocity, Figures 1lI-1 compare
the bias and standard deviation of velocity estimates from the spectral
differencing and autocorrelation based algorithms . Estimate standard deviations
are shown both before and after the spatial smoothing described above. The cal-
culations assume that the outflow velocity is constant from the surface to 100 m
height; the radial wind then changes linearly to an "upper level” velocity that is
one-third the magnitude of the surface wind and opposite in direction.
Reflectivity factor and spectrum width are taken as constant in altitude with
values of 10 dBz and 2 m/s respectively. Figure III-2 illustrates this model for a
surface outflow velocity of 15 m/s towards the radar.

The velocity estimate performance metrics were calculated using 500 trials of
the Monte Carlo signal simulation deseribed in Appendix C. Since essentially all
data from our experimental ASR in Huntsville were obtained at a uniform pulse
repetition frequency, the simulations here assume a constant PRF of 980s7'. We
show in Appendix C that utilization of the ASR-9's 8/10 pulse alternating PRF
waveform would produce only small changes in velocity estimate accuracy. [IMig-
ures 11I-1(a) and (b) correspond to a resolution cell where the weather signal to
ground clutter ratio is sufficiently large that high pass filtering is not required
(Weber, 1987). Part (a) assumes that the resolution cell of interest is at 6 km
range and part (b) considers a range of 12 km.

At 6 km range, biases associated with either method are less than 1 m/s. Esti-
mate standard deviations average about 2 m/s before spatial smoothing and are
reduced to 0.5 m/s after smoothing. Note that our spectral differencing algorithm
(Weber and Noyes, 1988) incoherently averages power spectrum density (PSD)
estimates using a running three gate average in range before caleulating radial
velocity. Thus, more extensive spatial smoothing is required for the spectral

13
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Figure I1l-1. Spectral differencing and autocorrelation based velocity estimate bias
and standard deviation versus "true” outflow velocity. The velocity model of Fig-
ure II[-2 is scaled proportionally to the abscissae. Solid, dashed and chain dashed
curves for standard deviation pertain respectively to single resolution cell esti-
mates, estimates after spatial median filtering and after Gaussian smoothing along
the range axis.

14




Bias (m/s)

Stand. Dev. (m/s)

Bias (m/s)

(m/s)

Stand. Dev.

SPECTRAL DIFFERENCING

> |
|

0] |
|

-5 T l T T . x I T 1

5.0

2.5—— \/\‘_—’/

0.0 T 1 ] | T 1 ] T

AUTOCORRELATION BASED

2 1
|

0 |
|

-5 T T l T T 1 1 ]

50T i
|

o ——

0.0 T | T I T T | I [ ‘

25 20 -15 -10 -5 0 5 10 12 20

True Veloaty (m/s)
(b) Range of 12 km and no clutter filtering are assumed.

Figure III-1. (continued)
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Figure III-1. (continued)
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differencing algorithm than for the autocorrelation based method to achieve the
stated estimate variance.

Near zero Doppler, the standard deviation of the spectral differencing estimates
increases slightly. In our model, there is no vertical shear in the radial wind for
zero velocity (i.e. at the microburst center). Without this shear, underlying high
and low beam PSDs are the same and the placement in the velocity domain of the
low-high beam difference spectrum’s positive lobe is governed by statistical
fluctuations in the spectral estimates. This lobe -- which is used to generate the
low altitude velocity estimate -- can occur anywhere where the PSDs are within a
few decibels of their maximum values. This circumstance accounts for the
increase in estimate standard deviation at low Doppler. Conversely, for the auto-
correlation based algorithm, velocity estimate standard deviations are minimum
at zero Doppler where the integrated spectrum width is smallest. This is con-
sistent with Zrnic's (1977) findings that the conventional weather radar pulse-pair
mean velocity estimate variance decreases with decreasing spectrum width,

The larger biases at 12 km range (IlI-1 (b)) represent an underestimate of the
surface wind speed: the error increases as surface veloeity and vertical shear
become larger in magnitude. Maximum calculated bias for the spectral
differencing and autocorrelation based algorithms are 3 m/s and + m/s respec-
tivelv. Standard deviations are slightly larger than at 6 km range.

In Figure 11lI-1{c¢) we repeat the 6 km range calculation assuming that high pass
clutter filtering as described by Anderson (1987) or Weber (1987) is required. The
tilter's stop band width is £47 m/s, providing 39 dB attenuation of scan modu-
lated ground clutter. In addition to removing low Doppler signal power, the 17-
coefficient filter reduces the number of valid data points for velocity estimation
from 34 to 18. We did not include a ground clutter-induced spectrum component
in our signal simulation. Thus, simulated weather spectrum distortion may be
larger than would occur with real data where the additional low Doppler power
from ground clutter would at least partially offset the filtering.

The overestimate of velocity magnitude resulting from spectrum distortion is
maximum when the surface velocity approaches the edges of the filter stop band:
at this velocity biases are about 2 m/s for either algorithm. stimate standard
deviations are also large at low Doppler where most of the weather power spoe-
trum lies inside the filter's stop band: even after spatial smoothing. estimate stan-
dard deviation would be about 2 m/s for low Doppler signals. At higher Doppler
velocities, the effect of the smaller number of available data samples is evident in
increased estimate variance relative to the no-filter situation; this inerease is more
pronounced for the antocorrelation based algorithm.  Outside the low Doppler
interval however, spatial smoothing is effective in reducing the standard deviation
for either method to less than 1 m/s.

Figure HI-3 plots velocity estimate bias and standard deviation as a function of
microburst reflectivity factor. The ealeulation used the profile of figure H1-2 (sur-
face velocity -15 m/s) except that the reflectivity factor was varied from 30 dBz
down to -10 dBz. We assumed a range of 6 km and a sensitivity time control
function that places the receiver noise level at an equivalent weather retlectivity
factor of 0 dBz (see Weber and Noser. 1987).  When the reflectivity factor is
greater than 0 dBz. both the speetral differencing and autocorrelation based velo-
city estimates exhibit minimal bins and standard deviations less than 1 m/s after
spatial smoothing.  As the signal to noise ratio becomes negative, hins and
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Figure HI-3. Spectral differencing and autocorrelation based velocity estimate bias
and standard deviation versus outflow reflectivity. The velocity model of Figure
-2 is assumed. The curve for standard deviation pertains to estimates after spa-
tial median filtering followed by Gaussian smoothing along the range axis.




standard deviation increase rapidly. The positive bias reflects the trend of the
velocity estimates towards O m/s when noise dominates the spectrum. Note that
this calculation does not consider the impact of ground clutter. Weber (1987)
showed that ground clutter may prevent accurate velocity measurements at short
range when the reflectivity factor is less than 20 dBz.

The dependence of velocity estimate accuracy on the vertical extent of the
outflow is illustrated in Figure 1lI-4. Here, bias and standard deviation are plot-
ted as functions of outflow height, assuming a range of 6 km. The radial velocity
profile is that of 11I-2 scaled in height by a factor varving from 0.25 to 2.25. The
shallowest outflow considered, therefore, has maximum radial winds extending 25
m above the surface and reaches the "upper level” velocity at 250 m. For this
height, both algorithms result in significant underestimates of the near surface
radial wind magnitude. The bias is 6 and 7 m/s respectively for the spectral
differencing and autocorrelation based algorithms. With increasing outtlow depth,
the bias decreases rapidly to values less than 1 m/s when the outflow layer is 75
m deep. Listimate standard deviation increases by about 50 percent for very shal-
low outflows.

For Huntsville microbursts in 1987, Weber and Noyes (1988) plotted the distri-
bution of heights at which the mdml velocity dropped to half of its maximum
value. The median value for this "half-height" was 350 m and about 15 percent of
the microbursts exhibited half-heights less than 200 m. These data were com-
piled from events centered as far as 12 km from the radar where the 3 dB beam
width spanned 300 m. Thus, angular resolution may have been inadequate for
measuring the actual depths of some of the microbursts. Biron and Isaminger
(1989) analyzed RHI scans of microbursts within 8 km of Lincoln Laboratory's 1°
pencil beam weather radar. Vertical resolution was therefore 140 m or better. The
median half-height for microbursts they measured during 1986 in Huntsville was
400 m: all events were between 300 and 1000 m deep by this measure. For
Denver microbursts observed during 1987, the half-height distribution extended
from 200 to 1100 m with a median value of 600 m. The median height of max-
imum velocity in both locales was within the lowest 200 m AGL. For comparison
with these statisties, the upper abscissa labels on IH-4 give the half-height for the
vertical wind profile we assumed in our caleulations. At 400 m half-height, esti-
mate bias is less than | m/s for either method: the shallowest 15 percent of
outflows measured in Huntsville during 1987 would be subject to biases 2.5 m/s or
greater at 6 km range.

Radial velocity versus range signatures through a model microburst are simu-
lated in Figures [11-5. The basic profile is again that of [I-2 but the surface
outflow velocity was varied simsoidally with range and upper level winds were
scaled proportionally. Thus the overall structure exhibits surface divergence with
compensating convergence aloft as is characteristic of measured microburst wind
fields. The model’s maximum approaching and receding velocity  cores are
separated by 2 km. In each plot. the solid line is the "true” surface radial wind
pattern: dashed and chain-dashed curves are single realizations of the velocity sig-
nature estimated with the spectral differencing and autocorrelation based algo-
rithms.

In 11-5(a) and (b) the "microburst” is centered at 6 and 12 km respeetively: the
upper panels in each figure simulate velocity estimates where no spatial smoothing
has been applied. The variance of the unsmoothed velocity estimates disrupts
the monotonically inereasing pattern between the velocity extrema to the extent
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Figure III-5. Simulated microburst radial velocity versus range measurements
from an ASR. The solid sinusoid is the model for the surface radial wind associ-
ated with the microburst. Dashed and chain dashed curves represent estimates
using the spectral differencing and autocorrelation based algorithms. The upper
plot simulates single resolution cell estimates; the lower plot includes the spatial
filtering described in the text.
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that the TDWR microburst detection algorithm might not identify shear seg-
ments. The lower panels simulate the spatial smoothing described above. The
smoothed velocity fields correlate well with the model wind pattern although the
bias indicated in Figure III-1(b) is evident when the microburst is centered at 12
km range.

This simulation based analysis indicates that velocity estimates from the auto-
correlation based and spectral differencing algorithms exhibit very similar bias and
standard deviation. A representative value for standard deviation after spatial
filtering is 0.5 m/s. The most significant factor determining the bias associated
with either algorithm is the rate of change of radial velocity with elevation angle.
For very shallow microbursts (“half-height" less than 200 m) and microbursts
beyond about 12 km range, differential velocity underestimates of 15 percent or
more could be expected. However, for the majority of microbursts in the opera-
tionally significant region within 12 km of an ASR, our analysis indicates that the
accuracy of either velocity estimator is good.
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B. Field Measurements from Huntsville Experimental ASR

Lincoln Laboratory’s airport surveillance radar weather detection experiment in
Huntsville, Alabama during 1987 was described by Weber and Noyes (1988).
Equipment and operating procedures during the summer of 1988 were identical
except that the scan rate of the C-band pencil beam radar used for "truth" was
increased. The basic scan pattern for microbursts in 1988 consisted of two 360°
PPI scans at elevation angles of 0.6° and 1.5°, followed by two RHI scans through
the outflow. This sequence was repeated at one minute intervals.

Figures [1I-6 compares images of the radial velocity field estimated from our
airport surveillance radar’s signals with that measured by the pencil beam
. weaiher radar. Data are from a microburst preducing thunderstorm on 15
August 1988. The upper left panel is the pencil beam measurement from a scan
at 0.6° elevation angle. Two microbursts were present, a strong outflow centered
at 10 km range/130° azimuth and a weaker event at 15 km/65°. ASR estimates
using the low-high beam spectral differencing technique are shown in the upper
right panel with the corresponding autocorrelation based estimate in the lower
left. High and low beam signals from the same antenna scan were employed for
these estimates. The autocorrelation based estimate obtained when the high beam
signal was collected from the following antenna scan is shown in the lower right.
For current ASRs, this mode of data collection would be required for operation
using circular polarization.

The velocity fields derived from the ASR signals are in good agreement with
that measured by the weather radar. In particular the presence of the two micro-
bursts is clearly indicated and the ASR velocity differential estimates are within 1
m/s of the pencil beam measurements. The spectral domain and autocorrelation
based wind field estimates from the ASR signals are likewise in good agreement.
particularly within the microbursts. Collection of high and low beam autocorrela-
tion estimates on alternate antenna scans (lower right panel) did not significantly
change the velocity estimates.

We suspect that the 1.4° beamwidth of the weather radar was too large for
accurate measurement of the receding outtflow component in the microburst to the
southeast. As in some of the other cases presented below, the stronger, more
homogeneous receding volume depicted in the ASR-based fields may well be a
better representation of the actual wind field.

Additional examples are shown in Figures IlI-7 through 11I-9 . In each figure,
the upper panel displays the pencil beam radar 0.6° velocity field. The lower left
. and lower right panels are ASR-based estimates using respectively the autocorrela-
tion and spectral differencing approaches. High and low beam signals were from
the same antenna scan since we do not normally transfer data from adjacent scans
. for analysis.

These examples again indicate good agreement amongst the pencil beam and
ASR derived velocity fields.  For the displayed scans on 21 June and 25 June,
both ASR based velocity differential estimates are within 2 m/s of the pencil beam
radar’s measurement. The velocity <hear estimate from the autocorrelation bhased
ASR field depicted in Figure II-8 is 6 m/s (2390) larger than that derived from
the pencil beam radar: the spectral differencing approach resulted in a 3 m/s
"overestimate” in this case. Note that the the divergent outflows shown in these
examples extend to ranges as large as 20 km (Figures 1H-8 and [11-9).
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A more extensive evaluation of the accuracy of the ASR velocity estimates was
derived by "scoring” detections from the TDWR surface outflow detection algo-
rithm against truth as determined from manual examination of the pencil beam
weather radar data. The procedure and associated scoring rules are described in
Weber and Noyes (1988). Our evaluation utilized approximately 600 scans from
the airport surveillance radar in 1988, taken during 35 microbursts on 13 separate
days. The scoring was confined to microbursts centered within the operationally
significant area extending 12 km from the radar.

Table III-1 summarizes the resuits of scoring on a scan by scan basis. The
listed performance metrics are:

(i) probability of detection -- the number of detected microburst signatures
- divided by the total number of microburst signatures;

probability of false alarm -- the number of algorithm alarms not associated
with microbursts divided by the total number of alarms;

bias -- the average difference between ASR-based and pencil beam radar
microburst differential velocity estimates. This is expressed both in absolute
units (m/s) and relative to the pencil beam radar AVp measurement;

(iv) root mean squared (RMS) difference between the pencil beam radar and
ASR-based velocity differential estimates. This equals the square root of the
sum of squared estimate bias and estimate variance.

These metrics are tabulated separately for all microbursts and for microbursts
with differential velocities greater than 15 and 20 m/s.

TABLE 1l-1. Microburst. detection algorithm
performance for ASR-based velocity fields.,
Dual Beam Autocorrelation Method
AVe > 10m/s AV, 15m /s AVp > 20m /s
Detection Probability 0.91 0.90 0.96
False Alarm Probability 0.05 0.04 0.0
AVe Bias (m/s) 2.4 0.9 0.5
Relative Al Bias 0.19 0.05 0.02
RMS AV, Discrepancy (m/s) 1.8 3.8 3.7
MS ative AV, Discrepancy 0.36 0.19 0.16
Low-High Beam Spectral Differencing
DVp - 0m/s AV, - 15m /s Al - 20m/s
Detection Probability 0.93 0.93 0.97
[False Alarm Probability 0.02 0.02 0.0
AV, Bias (m/s) 0.4 -1.0 -1.0
_Relative AV, Bias 0.05 -0.05 -0.04
RMS AV, Diserepancy (n/s) 3.4 3.2 3.4
RMS Relative AV Discrepaney 0.23 0.15 0.1

The results confirm the favorable prognosis for an ASR's capability to detect

wet microbursts that we derived from analysis of data collected during 1987
(Weber and Noyes, 198%). Both velocity estimation algorithms supported detec-
tion and false alarm probabilities within the 0.9/0.1 bounds called for by the FAA
in its TDWR syvstem requirements statement.  Over all microbursts scored, the
dual-beam autocorrelation method resulted in somewhat reduced detection perfor-
mance relative to full specteal differencing: detection probability deereased hy two
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percent while the false alarm probability and discrepancy with pencil beam radar
AVp measurements increased. These differences disappeared when scoring was
restricted to the subset of microburst scans where the velocity differential exceeded
20 m/s.

Detailed analysis of these data indicates that, for either velocity estimation
method, eighty percent of the missed detections were associated with recognizable
(by a human observer) divergence patterns in the ASR-based radial velocity field.
The automatic microburst detection algorithm did not declare an alarm in these
cases because its spatial size and/or continuity requirements were not met (Mer-
ritt, 1987). The remaining misses occurred in weak microbursts (AV, <15m/s)
where the ASR based velocity differential estimates did not exceed the 10 m/s
microburst threshold. Our analysis of missed detections does not suggest that
divergent outflows are depicted more clearly in spectral differencing versus auto-
correlation based velocity fields. Given the subtleties of the automatic microburst
detection algorithm, we regard the 2 percent overall difference in detection proba-
bilities using the two velocity estimators as insignificant.

Almost zall false alarms ocecurred in regions where the pencil beam radar meas-
ured divergence, but below the required threshold. As seen from Table IlI-1, auto-
correlation based estimates of velocity divergence were larger on average than
measured by the pencil beam radar, particularly for weak (AVp <Z15m/s) micro-
bursts. This "bias" produced the higher overall false alarm rate associated with
that estimator.

Our simulations (Section III-A) predict that biases, if present, should
correspond to underestimates of velocity differential and should be larger for
strong microbursts where the vertical gradient in radial wind speed is highest.
This is clearly inconsistent with Table 1lI-1. A possible explanation, as alluded to
previously, is that the beamwidth and/or ground clutter suppression capability of
the pencil beam radar were inadequate for accurate measurement of the strongest,
near surface microburst winds. A uniform increase in "true” velocity differential
for the 1988 data set would at least produce the expected trend for bias versus
microburst intensity.t

Overall, these statistics confirm the previous simulations and case studies indi-
cating that the dual-beam autocorrelation based velocity estimate of equation (3)
should support wet microburst detection at approximately the same level of
confidence as would be obtained through full spectral differencing. Examination
of the storm cases used for the detection performance statisties in Table 1I-1 is
continuing. The analysis will provide more detailed understanding of missed
detections or false alarms, and the small differences in detection algorithm perfor-
mance observed using the two velocity estimators.

* Measured bias for the spectral differencing algorithm applied to our 1987 data set was
aqualitatively consistent with simulations in Section IH-A. Compare for example Figures
IE-1{b) from this report and the "shear ratio” (i.e. bias) plotted in Figure VI-15 of Weber
and Noves (1988).
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IV. DISCUSSION AND FUTURE WORK

The analysis herein confirms our previous assessment that a suitably modified
airport surveillance radar would provide an operationally useful capability for
automatic detection of "wet" microbursts. In this report, we developed an
efficient, autocorrelation based low altitude velocity estimator based on the
assumption that the power spectrum of weather echoes measured by an ASR
could be adequately represented with a bimodal Gaussian model. Evaluation of
microburst detection algorithmm performance using the resulting velocity fields
indicated that accuracy comparable to the most effective velocity estimator
treated by Weber and Noyes (1988) -- low-high beam spectral differencing -- might
be achieved with considerable reduction in computational and hardware require-
ments. The combination of high confidence and computational efficiency make
this technique an attractive initial candidate for implementation in our real time
wind shear processor.

Ongoing evaluation of ASR velocity estimation techniques will seek to further
quantify tradeoffs between accuracy and processing complexity. In addition to the
autocorrelation based and spectral differencing methods treated here, we are con-
tinuing to assess:

(i) low beam only estimators, for example pulse pair processing following high
pass filtering. Necessary front end modifications would be reduced if an ASR
wind shear processor only accessed signals from the low receiving beam:

(i) mapping from the phase of the cross spectral density between low and high
beam signals to elevation angle (Anderson, 1989). This technique may pro-
duce more accurate near-surface velocity estimates and offers the potential for
three-dimensional reflectivity and wind measurements. Note however that
high and low beam signals must be accessed simultaneously; thus on current
ASRs this method could not be employed during operation with circular
polarization.

[cach of the candidate algorithms will be scored against all available data from
our tield experiments in Huntsville and our current site near Kansas City, Mis-
souri.  Our goal is to develop reliable performance statisties in order to specify the
design of an ASR wind shear processor.

We did not consider here the use of reflectivity factor measurements from an
ASR as a supporting and/or precursory indicator of microburst activity. Field
measurements with pencil beam Doppler weather radars have shown that deseend-
ing reflectivity cores frequently presage the development of strong surface outflows
(Isaminger. 1988). While temporal growth of the reflectivity field measured by the
low beam of an ASR may provide indirect evidence of a descending core, less
ambiguous information could be be derived from comparison of reflectivity in
"upper' and “lower” beams. The high and low beams could be used directly in
this manner although they overlap substantially. Better differentiation would he
provided by combining data {rom the two beams in an effort to explicitly separate
received power into upper and lower altitude components. This could be done in
the frequency domain using techniques analogous to those deseribed for velocity
estimation.  Alternately. amplitudes from the dual Gaussian speetral model -- cal-
culated as in the appendices to this report -- could provide the desired reflectivity
measures.  We are examining the development of the reflectivity field as seen by
our experimental ASR to determine appropriate data processing approaches for its
use in microburst detection.




As pointed out by Weber and Moser (1987), slightly lower gain and increased
"beamfilling loss" for an ASR’s high beam reduce sensitivity to low reflectivity
weather. This may limit the utilization of dual beam techniques for "dry" micro-
burst and gust front detection. As currently implemented, our dual-beam velocity
estimation algorithms compare received power from both beams to receiver noise;
if only the low beam signal passes this threshold test, we revert to a standard low
beam mean velocity estimate for that resolution cell. Analyses of gust fronts
observed in Huntsville and simulation of dry microbursts using volume-scan pencil
beam weather radar data are underway to quantify the ability of ASRs to detect
low reflectivity wind shear. These will establish firm low-end reflectivity limits for
ASR wind measurements.

We noted previously instances where the accuracy of our pencil beam "truth”
radar’s velocity field was questioned owing to its relatively broad 1.4° beam. Lim-
ited clutter suppression capability and slow scanning also reduce confidence in
velocity measurements from this radar. To more reliably quantify the accuracy of
ASR wind estimation algorithms, we have located our experimental ASR at the
same site as Lincoln Laboratory’s TDWR test bed. That system will provide a
narrower beam (1° in 1989 and 0.5° after conversion to C-band operation in
1990), good clutter suppression and rapid volumetric scanuing. The scan strategy
facilitates direct comparisons with an ASR’s surface wind estimates and under-
standing of errors through analysis of the three-dimensional wind field. Field
measurements will continue in 1990 at Orlando, Florida. Collection and analysis
of ASR wind measurements in these varied environments will refine our under-
standing of the capabilities of ASRs for wind shear detection.
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APPENDIX A: ESTIMATION OF DUAL GAUSSIAN SPECTRAL
PARAMETERS USING R(r) and R (27)

The first three autocorrelation lags associated with the assumed dual Gaussian
spectra in equation (1) are:

R;(0) = a; 1+a; o (A-1)
Ri(7) = a; jexp(—2m°0 ir)exp(12mf 17) + a; sexp(—2m°0 5 )exp(12nf o1)  (A-2)
R;(27) = a,-,,exp(—87r201212)exp(i47rfIT) + ai'gexp(—Sﬂzogr“o)exp(Mnf 27)  (A-3)

where i=1,2 indexes the low and high beams.

Measurement of R;(0) and R;(7) provide only six relations for the eight unk-
nown spectral parameters whereas the addition of R;(27) results in an over-
determined system of equations. We derive therefore a solution based on measure-
ments of the autocorrelation function at lags 7 and 2r.  We first eliminate
between the two beams in equations (A-2) and (A-3) the autocorrelation function
components due to one of the spectral modes. For example:

a- aq1029—a1 20 9 9 ,

Ry(1)=—2Ryr) = [ fexp(—2mafrexp(i2nf 1) (A4)
ayo a;,ay9—0; 90 o o .

R(27)— 1"'32(21') = | 1122 1221 lexp(—8m%a #r¥)exp(idnf 7) (A-5)

(B} (12’2

e

The center frequency f, of this spectral component may be determined itera-
tively by finding the weight (a;,/a,.) such that the phase angle of equation (A-5)
is twice that of (A-4). The phase angle of equation (A-5) may have to be unfolded
before comparison to that in (A-4). In performing the search, we make use of the
known high and low beam patterns to constrain the possible values of this weight.
Our convention is that the first Gaussian component in equation (1) is associated
with low altitude winds (below an elevation angle §;) and the second with winds
aloft. Thus the desired weight:

Z(0)B,(0)B(0)d 6
- = (A-0)

Sy 2|

Z(0)B,(0)B{0)d6

i A
N

can be shown to be in the range 0 to 1.0 for reasonable values of f, and the
reflectivity factor profile Z(8). Here B, and B, are the low and high heam one-
way elevation antenna patterns.

Having determined the weight (a;./as,) the spectrum width oy is caleulated by
dividing the magnitude of (A-4) by that of (A-5):

a1,

|R1(T)'* . R (1) |
o = ! 22 (A-6)

L 11 o
ST k20 =212 g yon) |

[

L)
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The factor [al’la2‘2_al’2az’l] is now readily derived from either (A-4) or (A-5).
G2,2

' An analogous procedure is used to derive the center frequency and width of the
'upper level" Gaussian component as well as the ratios (a;i/ag;) and

110220 1,2¢2 . .
[ i : |. Four functions of the ¢; ; have now been determined; from

a1
these thc valucs of these amplitudes can be readily determined.
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APPENDIX B: ESTIMATION OF DUAL GAUSSIAN SPECTRAL
PARAMETERS USING R (0) and R(7)

We now assume that the two spectral components have intrinsic amplitudes g;
that are modified by known beam weighting coefficients w; ;. The welghtmg
coefficients are determined by equating the integrated power of the spectrum in
equation (2) with that which would be determined from a known profile of the
radar reflectivity factor Z(6):

R;(0) = a w; y+asw; o

7
= [Z(0)B\(6)B;(6)d 6 (B-1)
0
90 2
=7\ _aug fB Bi(0)d0 + Zy_gy fB B;(6)d 0

Note that the radar constant is taken as unity in equation (B-1). The amplitudes
a; are seen to be "average" reflectivities within assumed lower (below 6,) and
upper elevation angle intervals. The w; ; are integrals between the appropriate

elevation angle limits of the low or high beam two-way elevation patterns.

The first two autocorrelation lags of the the spectra in equation (2) are given by
the first line in (B-1) and:

Ri(1) = w; lalexp(——‘.271"30‘127’2)exp(z'27rf 7))+ wi'2a2exp(—27r20227'2)exp(i27rf.zr) (B-2)

The six unknown parameters are now the a;, o; and f; of the two Gaussian spec-
tral components.

The amplitudes «; are easily computed by applying the inverse of the precom-
puted beam weighting matrix w; ; to the measured R;(0). Center frequencies and
widths of the two spectral components can be determmed by eliminating the other
component between the high and low beams in equation (B—‘)). For example:

Wy

= Ro(1) = |

Wy 9 wa

WiWo o™ Wa Wy o

R (7)— ja,exp(=2n°0? )exp(i‘lnflr) (B-3)

IS

The phase angle of (B-3) determines the center frequency f,. The spectrum width
o, can be determined from the magnitude of (B-3), since the a; are now known.
An analogous procedure can be used to compute [, and ..

The important result is Lhat the phase angle of equation (B-3) is proportional
to the desired "low altitude" Doppler velocity. The phase angle, however, will be
incorrectly computed if the amplitude a, is negative. In order that a, be positive,
it can be shown that I (0) must be greater than w, o R 0)/uwy, or about 0.6 R ,(0).
Owing to the stochastic nature of weather echoes and the limited number of sam-
ples available from an ASR for integration. this condition may not be met, partic-
ularly if the autocorrelation lags for the two beams are computed on alternate
antenna scans. To ensure valid determination of the phase angle, we solve a
modified set of equations where the high beam data samples are scaled to have Lhe
same integrated power as the low beam. The resulting estimate for the "low-
altitude” mean Doppler frequency f is equation (3) in Section [I-B-2.
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APPENDIX C: SIMULATION OF AIRPORT SURVEILLANCE
RADAR SIGNALS FROM MICROBURSTS

The power spectrum, S, measured in an range-azimuth cell by a fan beam ASR
can be expressed in terms of the elevation angle resolved field of velocity spectra,
S, as:

5(6,¢,8 ,v)Brp(0)dd

O, 0|

§(¢’R:v) = (C-l)

{BTR(O)(M

where Bpp(6) is the two-way elevation power pattern of the ASR antenna. Given
either measured or assumed vertical profiles of weather velocity spectra, this rela-
tionship can be used to synthesize the power spectrum that would be measured by
an ASR.

As an example, Figure C-1 shows power spectra that would be measured in the
model "microburst” described in Section III-A. Plots in the left column are for the
approaching radial velocity cores and those in the right column are for the reced-
ing cores. Center ranges of 3, 6, 9 and 12 km are assumed. Recall that in both
cores, the magnitude of the surface radial wind component is taken as 15 m/s
(dashed vertical line), decreasing to 5 m/s with opposite sign 1000 m above the
surface. The simulations are in good agreement with the bimodal spectrum model
assumed in this report. The more complex structure sometimes observed in meas-
ured spectra results from vertical wind profiles more complicated than assumed, or
from statistical error in the spectrum estimates (see below).

The stochastic nature of radar signals scattered from precipitation can be
simulated using a Monte Carlo method proposed by Zrnic (1975) and used by Sir-
mans and Bumgarner (1975). Equation (C-1) is evaluated on a discrete grid of
equispaced frequencies spanning the Nyquist interval. A single realization of the
discrete Fourier transform (DFT) of a signal conforming to this spectrum shape is
then simulated by multiplying the square root of the spectral lines by randomly
generated complex numbers. The amplitudes of these numbers are Rayleigh dis-
tributed and the phases are distributed uniformly between 0 and 27. An inverse
DFT then provides synthetic in-phase and quadrature radar signals with the
appropriate spectral distribution. Our simulations employed 64-point Fourier
transforms, from which the 34 samples required for emulation of the signal pro-
cessing operations described in the text were extracted.

Simulation of spatial smoothing was accomplished by generating the appropri-
ate number of independent signal realizations. Adjacent range and azimuth gates
in real radar data are not fully independent because radar pulse and beam shape
create an overlap region where the same scatterers contribute to the echoes. This
effect was not simulated and would result in estimate variance slightly larger than
our calculations.

Figures C-2 are simulated power spectral estimates for the underlying spectra
in Figure C-1. Incoherent averaging of three independent realizations has been
performed to reproduce the range averaging applied to our real data. Substantial
distortion of the underlying shapes occurs owing to the large variance for power
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Figure C-1. Simulated underlying ASR power spectra for microburst wind field
model of Figure III-2 (and its mirror image). Plot format is as in Figures II-1 and
[1-2.
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spectrum estimates with three degrees of freedom. 1n general however, the esti-
mate fidelity is sufficient to show the overall width of the spectra and the impor-
tant low-high beam amplitude relationship in the velocity interval associated with
near surface scattering.

Signals from an ASR-9’s 8/10 pulse alternating PRF waveform can be simu-
lated by expanding the frequency domain for spectrum synthesis to a value equal
to the reciprocal of the largest time increment that is a submultiple of both pulse
repetition intervals. After inverse Fourier transformation, the non-equispaced
data samples are extracted from the resulting oversampled sequence. Using simu-
lated alternating PRF data, Figure C-3 repeats the calculations of velocity esti-
mate bias and standard deviation shown previously in Figure IlI-1. As described
by Weber (1987), a four-coefficient shift-variant interpolation filter has been used
to reconstruct a uniformly sampled data sequence prior to clutter filtering and/or
velocity estimation. The bias of velocity estimates would be unchanged by use of
the alternating PRF waveform; estimate standard deviation increases slightly rela-
tive to the constant PRF calculation. After spatial smoothing, calculated esti-
mate standard deviation varies from 0.5 to 1.0 m/s increasing with range and the
magnitude of the true surface velocity. As previously, larger standard deviations
apply for low Doppler weather when a clutter filter is used (part c).

Note that the interpolation procedure would break down for weather signals
that exceed the Nyquist velocity associated with the lower PRF (about 25 m/s).
In this situation, aliasing to different parts of the velocity spectrum would occur
at the two PRFs, causing potentially significant spectrum distortion. To prevent
resulting velocity estimate errors, tests should be performed on received signal
parameters within each PRF block (for example, the first spectral moment) to
detect differential aliasing. Appropriate dealiasing procedures could then be
applied to the signals prior to velocity estimation.
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(a) Range of 6 km and no clutter filtering are assumed.

Figure C-3. Spectral differencing and autocorrelation based velocity estimate bias
and standard deviation versus "true" outflow velocity. The simulations used here
reproduce the alternating PRF waveform of an ASR-9 and the use of a four-
coefficient interpolation filter. Plot format is as in Figure III-1.
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Figure C-3. (continued)
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Figure C-3. (continued)
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