
NPS-54-89-09

NAVAL POSTGRADUATE SCHOOL
Monterey, California

0

N

DTIC
ELECTE
JUN 29 1989 L

HOW A STANDARDIZED CHANGE MANAGEMENT
METHODOLOGY CAN IMPROVE SOFIWARE

MAINTENANCE

Norman F. Schneidewind

May 1989

Approved for public release; distribution unlimited.

Prepared for: Navy Management Systems Support Office
Naval Air Station
Norfolk, VA 23511-6694

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM. R. C. Austin Harrison Shull
Superintendent Provost

The research summarized herein was sponsored by the Navy Management
Systems Support Office under N6856187P030034.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/, ' / .. .I

Norman F. Schtheidewind
Professor

Reviewed by:

David R. Whipe hi

Departmenteladby of AdministrativQ . cine

Released by:

Kneale T. Marshall ,
Dean of Information ardSPolicy Science

===,n =mm i m mmmu mmnnll Hi INMNm~ l

SE : IT" i AS'.-' a iTW PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSiFICATION 1b RESTRICTIVE MARKINGS

Ihnrl a.- i f- l
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION iAVAILABILITY OF REPORT
_Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution unlimited.

4, PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-54-89-09

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
__ _ | (if applicable)

Naval Postgraduate School

6c. ADDRESS (Ciy, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Navy Management If applicable)
Systems Support Office N6856187P030034

8c. ADORESS(City, State, and ZIP Code) 10 SOURCE OF rUNDING NUMBERS

Naval Air Atation PROGRAM PROJECT TASK WORK UNIT

Norfolk, VA 23511-6694 ELEMENT NO NO NO. ACCESSION NO.

11 TITLE (Include Security Clissification)
How a Standardized Change Management Methodology Can Improve Software Main-
tenance

12. PERSONAL AUTHOR(S)
Norman F. Schneidewind

13a. TY PE OF REPORT 1l3b TIME COVERED 114 DATE OF REPORT (Year, Month,.Day) 15S PAGE-COUNTTechnical Report rROMAug.88 TO My89 1 1989 May 31 26
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
SFIELD GROUP jSUB-GROUP

Software Maintenance; Local Area Network

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

.The Durpose of this report is to assist the Navy Management Systems Support
Office in performing software maintenance by showing a detailed example of
applying the software change management methodology which was described in
the previous report: 'Software Maintenance: The Need for Standardization',
Norman F. Schneidewind, February 1989, Naval Pbstgraduate School Technical
Report NPS-54-89-02. The maintenance 6f local area network software is used
as the example.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIFr ,,UNLIMITED - SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 2c, OFFICE SYMBOL

(408) 646-2719 F,
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

HOW A STANDARDIZED CHANGE MANAGEMENT
METHODOLOGY CAN IMPROVE SOFTWARE

MAINTENANCE

by

Norman F. Schneidewind

May 1989

. '

6

Dist
I!-

Page 1

How a Standardized Change Management
Methodology Can Improve Software Maintenance

by

Norman F. Schneidewind

May 1989

Approved for public release; distribution unlimited.

Prepared for: Navy Management Systems Support Office
Norfolk, VA 23511-6694

.* , m n m n u

Page2

TABLE OF CONTENTS

I. INTRODUCTION 4

II. PURPOSE 6

III. LOCAL AREA NETWORK EXAMPLE 7

IV. OBJECTIVE OF MAINTENANCE 12

V. METRICS FOR MAINTENANCE 13

VI. MODEL OF MAINTENANCE 14

VII. APPLICATION OF METRICS 16

VIII. STANDARDIZATION OF CHANGE DOCUMENTATION 18

IX. SOFTWARE COMMUNICATION MECHANISMS AND MAINTENANCE 20

X. STANDARDIZATION THROUGH EXAMINATION OF DEVELOPMENT 22
METHODOLOGIES

XI. SUMMARY 25

XII. REFERENCES 26

... __w ~ m m N I I i IlllI~lI I

Page3

LIST OF TABLES

I. METRICS APPLIED TO EXAMPLE PROGRAM
17

II. EXAMPLE INPUT-OUTPUT CHANGE RELATIONSHIP
19

LIST OF FIGURES

1. Token-Ring Network Diagram
8

2. Batch file for Token-Ring LAN User Computer Start
10

Program

3. State Diagram of a Token-Ring LAN User Computer Start
11

Program

4. Model of the Interaction between Development, Maintenance
15

and Metrics

a _iI II

(Page4I

Abstract- The purpose of the this report is to assist the Navy Management
Systems Support Office in performing software maintenance by showing a
detailed example of applying the software change management methodology which
was described in the previous report: 'Software Maintenance: The Need for
Standardization', Norman F. Schneidewind, February 1989, Naval Postgraduate
School Technical Report NPS-54-89-02. The maintenance of local area network
software is used as the example.

I. INTRODUCTION

Software maintenance is a major activity at the Navy Management Systems
Support Office (NAVMASSO). The purpose of the this report is to assist the
Navy Management Systems Support Office in performing software maintenance by
showing a detailed example of applying the software change management
methodology which was described in the previous report: 'Software Maintenance:
The Need for Standardization', Norman F. Schneidewind, February 1989, Naval
Postgraduate School Technical Report NPS-54-89-02. The maintenance of local
Area network software is used as the example. The methodology is qeneral and
can be applied to any programming environment and language. including COBOL.

As an introduction to the subject of software maintenance, we provide some
definitions 4ollowed by an explanation of the importance of the subject.

7-

A. Definitions

Software Maintenance: Modification of a software product after delivery
to correct faults, to improve performance or
other attributes, or to adapt the product to a
changed environment <13.

This definition is the conventional one and is useful if our interest in
modification to software is limited to changes that are made after the
software is delivered. However, it is a fact that changes are not confined to
the post-delivery phase: they are made during all life cycle phases. In some
cases, changes are made in significant numbers prior to delivery.

Maintainability: The ease with which a software can be maintained [1).

Change Management: The process of making changes to software and
controlling their effects during the entire life of
the software.

The last definition recognizes the fact that modifications to software must
be managed effectively during the entire life of the software. It is the
definition used here.

Page5

According to various sources, software maintenance accounts for a
significant amount of the total time and cost of running a data processing
organization. For example, one study reports the following: about half of
applications staff time spent on maintenance, over 40 percent of the effort in
supporting an operational application system spent on user enhancements and
extensions, and about half a man-year of effort allocated annually to maintain
the average system (2). In another report the same authors list the factors
which cause the significant maintenance effort: system age, system size,
relative amount of routine debugging, and the relative development experience
of the maintainers 3}. System age drives the other factors: with increased
system age, system size increases, leading to greater effort allocated to
routine debugging, and with increased system age, the relative development
experience of the maintainers declines due to organizational turnover and
change. All of these factors tend to increase the time and cost of performing
maintenance. Thus maintenance is an area that deserves a lot of attention.
Improvements in maintenance practices should result in reduced costs and
increased effectiveness of performing maintenance.

However there is a limit to reducing cost and increasing effectiveness
through improved practices, because the maintainability of the software has
largely been determined by the developer before it ever reaches the
maintainer. The maintainer can only influence quality during the maintenance
phase of the software life cycle. The quality of the software as designed is
determined, in part, by whether the software development methodology assists
the developer in producing maintainable software. Consequently, maintenance
practices, which maintainers control, and development methodology, which
developers control, are candidates for standardization t4). Significant
efforts have been made at the National Institute for Standards and Technology
(formerly the National Bureau of Standards) to promote standardized
maintenance practices through the publication of a series of auides on
software maintenance and software maintenance management{5}.

The obiective of standardization is to improve the maintainability of both
existing and new software. However, we should recognize the limitations of
using standardization to solve the 'maintenznce problem'. These are the
following: 1) Much of the software that is maintained was developed without
benefit of any methodology; consequently, methodology is of limited use in
these cases. 2) Conversely, methodology is most useful when applied to new
software. 3) Related to points 1 and 2 is the fact that improvements in
maintenance practices are only applicable to existing software. 4) An
important determinant of the maintainability of software is the knowledge and
skill of the developer and maintainer. 5) There are other aspects of a
development methodology, such as expressiveness, that are important when
evaluating it as a development tool in addition to its usefulness as an aid
for producing maintainable software. Points 4 and 5 are beyond the scope of
the paper as are the areas of software engineering environments and tools,
which can contribute significantly to the quality of both development and
maintenance.

Page6

The paper consists of the following sections:

II. Purpose

III. Local Area Network Example

IV. Objective of Maintenance

V. Metrics for Maintenance

VI. Model of Maintenance

VII. Application of Metrics

VIII. Standardization of Change Documentation

IX. Software Communication Mechanisms and Maintenance

X. Standardization through Examination of Development Methodologies

XI. Summary

Each orinciple of the change management methodoloqy is illustrated by the
aopropriate part of a local area network (LAN) software maintenance example so
that the reader can immediately see an application. The same example is used
throughout the paper to maintain continuity for the reader. This example is
used to illustrate how mistakes can be made if maintenance is performed
without using a formal change orocedure. The example is also used to show how
mistakes can be avoided by applying the change management methodology.
Following the statement of each change methodology principle is an example
drawn from the LAN application. The examples are delineated by the use of
vertical bars (!).

I1. PURPOSE

The first purpose of the paper is to present the case for standardizing
software maintenance practices and those aspects of software development
methodology that affect the maintainability of the delivered software. The
second purpose is to show how to apply the change management methodology.

Page7

III. LOCAL AREA NETWORK EXAMPLE

Since the example will be used throughout the paper, it is necessary to
present an overview of the LAN software maintenance application at this point.
A discussion of all aspects of the changes which were made to the LAN software
in the example is beyond the scope of this report.

Figure 1 shows Servers and User Computers on a Token-Ring LAN with the
pertinent batch programs keyed to the diagram. Briefly, the functions of these
programs are the following:

Server

Autoexec.Bat: Start the Server on network and share resources.

Profile.Pat: Process User Computer identifications to identifv
configuration (e.g., modem, EGA card, 3270 Ef.-,lation.
etc.).

Set configuration in memory (the environment,.

Application: Check configuration. E'ecute application program i+
Batch Files required hardware available. Otherwise, display error

message.

User Computer

Autoexec.Pat: Set User Computer identification in the environment.

User.Bat : Display logon instructions to the user.

Start.Bat : Start User Computer on network, request reSoUrces from
server and call Profile.'at.

U

Page8

* MULTI ACCESS UNIT MULTI ACCESS UNIT 1
I---- IRI RD!--------- RI ROI ----

a----------------------------a -- - - - - - - - -

- - - 1---NB ---- 1 --- NB----

-- -- -- -- - USER7 *.... USER12

--- NB - 1 ------ NB-: -NB - 1-NB-
PRINT I PROGRAM : I 1 1

t SERVER I I SERVER I t USER1 I.... I USER6

TN4 I TNS

Autoexec. Bat Autoexec. Bat

-- -- - User.Bat

I PRINTER I Profile.Bat Start.EBat

i - Physical Virtual
Disk C Drive E
Applications Programs

Virtual Virtual
Disk D Drive D
Application Batch Files

NB: TOKEN-RING BOARD RI: RING IN RU: RING OUT

Figure 1. Token-Ring Network Diagram

Page9

A batch (command file) for starting a user personal computer on a local
area network (LAN) and requesting resources provided by a server is shown in

0 Figure 2 (Start.EBat) and the corresponding state diagram is shown in Figure 3.
This batch file was modified to provide some additional network capabilities
as shown in Figure 2; the corresponding modification is shown in Figure 3 wirh
dotted boxes. The boxes represent states and the arrows represent state
transitions.

The enhancement provides the ability to store the User Computer
configuration (e.g., presence of a modem) in memory and to check the
configuration prior to executing an application which requires a given device.
The purpose is to prevent the user from wasting time if the required device is
not available, and to notify the user of this situation with a message that
identifies computers that have the required device. In addition, a significant
reduction in software maintenance is achieved by having only one set of
application batch files to maintain rather than various sets, with each set
tailored to a different configuration. Lastly, this approach achieves a
uniform user application program interface.

The numbers on the left side of the commands in the batch file correspond
to the numbers on the state boxes on Figure 3. The convention for labeling
state transition arrows is: Event/Action. In some cases in Figure 3 there is
no event; in these cases 'NE' is used to indicate this. The DOS and PC LAN
Program handle transfers of control implicitly (e.g., a transfer of control
occurs automatically from PC LAN Program to DOS under certain error
conditions). There is no capability in the batch file language for describing
error conditions explicitly, although they are shown in the state diagram to
clarify the operation.

Asterisks in the batch file identify comments. Unfortunately, the comment
concerning accessing the D drive was not changed with the modification. This
comment is no longer applicable and caused confusion in trying to understand
the program logic. With the modification, neither the D drive nor the
directory program 1DIR are accessed at this point in the program. The comment
should have been changed to refer to the E drive and the PROFILE program. This
affects the transitions from states 5 to 6 and 6 to 7. For the sake of
brevity, the error events and actions associated with states 6' and 7' are not
shown in Figure 3; they are similar to those for states 6 and 7.

Neither a state diagram nor another type of methodology that would show the
consequences of making a change was used in creating the batch program. The
use of such a methodology would have helped to avoid this kind of error by:

o Preventing side effects (erroneous comment)

o Providing ability to make selective change (replace commands 6 and 7 with
6' and 7" correctly).

f Identifying existing communication linkages (communication between
commands 6 and 7 and the D drive and its directories) and by identifying

6 changed communication linkages (communication between commands 6' and 7' and
the E drive and its directories).

Page 10

: *** Start.EBat For Token-Ring User Computer

1 ECHO OFF
: *** Establish Path to Network and DOS Programs Residing on User Computer
2 PATH C:\NETWORK;C:\APF-\DOS

*** Establish Access for IDIR Directory Program and its IDIRDATA
Sub Directory

APPEND C:\IDIRDATA
ECHO ON
*** Load Token-Ring Programs

3 TOKREUI
NETBEUI
*** Start the User Computer on the Network, Using Name Provided by

: User (Replaceable Parameter %1) and Specify Use of Resources
: (e.g., ASG = 10 Devices and Directories)
4 NET START MSG %I /SRV:l /ASG:I0 /PB1:16K /USN:3 /CMD:12 /SES:18

*** Request Use of Server Directories on Server TN3 and Printer on TN4:
: Application Directory APPS (Virtual Drive E), Application Batch Files
: DISKD (Virtual Drive D) and Printer PRINT
5 NET USE E: \\TN3\APPS

NET USE D: \\TN3\DISKD
NET USE LFTI \\TN4\PRINT
*** Access D Directory which Contains IDIR and Application Program

* Batch Files
6 D:

*** Load IDIR
7 1DIR

Incorrect
Modification: Replace commands 6 and 7 above with commands b" and 7':

(comment was not changed)

*** Access D Drive which Contains 1DIR and Program Batch Files
6' E:
: *** Load Profile
7' PROFILE

Correct
Modification: Replace commands 6 and 7 above with commands 6" and 7":

(change comment)

*** Access E Drive, which contains PROFILE program. PROFILE is located
on the Server. PROFILE processes User Computer identification in
order to identify the User Computer hardware configuration. The
execution of Profile will ultimately lead to the loading of IDIR 4
and access to application batch files.

6' E:
: *** Load Profile
7" PROFILE

Figure 2. Batch file for Token-Ring LAN User Computer Start Program

Pagel 1

o v * LOAD START FILE

- - - - - - - - - - - - -

IDLE ----------------------------- CAN'T LOAD START
------- FILE/ERROR MSG.

NE/LOAD START FILE FROM DOS
1 v v

--------- 1 CAN'T LOCATE -
1 START 1 DIRECTORIES/ERROR MSG. I BACK AT
SFILE - - ------------------------ >1 DOS
1 LOADED 1

1 NE/EXECUTE PATH &
APPEND COMMANDS

2 v
--------- CAN'T LOAD TOKEN-RING
!DIRECTOR-: PROGRAMS/ERROR MSG.
:IES - i
!LOCATED

1 NE/LOAD TOKEN-RING
* PROGRAMS

3 v
CAN'T START NETWORK/ERROR MSG.

TOKEN-
RI NG
PROGRAMS!
LOADED

NE/START NETWORK

4
RESOURCES NOT
AVAILABLE/ERROR MSG.

NETWORK - i

STARTED * CAN'T LOAD 1DIR/ 1 i

ERROR MSG. AT D
--------- - -------------------- PROMPT

NE/REQUEST RESOURCES 1 -----

5 v 6 v , 7
- 1 NE/ACCESS NE/LOAD

DRIVE D IDIR DIRECTORY
:RESOURCES! .------------- > DRIVE D - ------------- >!PROGRAM
!ASSIGNED 1 ACCESSED: (1DIR)

ILOADED

1 DRIVE NOT DEFINED/ERROR MSG. 1 AT NET!
1 1 --- -- -- --- -- -- --- -- -- > 1 MENU

6" - - i 7'

NE/ACCESS . NE/LOAD PROFILE
DRIVE E . DRIVE E . PROFILE . PROGRAM

------------------- >. ACCESSED. -------------- >. LOADED

Figure 3. State Diagram of a Token-Ring LAN User Computer Start Program

Page12

IV. OBJECTIVE OF MAINTENANCE

The objective of maintenance is to make required changes in software in
such a way that its value to users is increased. Required changes can result
from either the need to correct errors or to increase the functionality of the
software.

A. Maintenance Process

In the broad view of maintenance, it is not limited to making post-delivery
changes. Rather, it is a process that starts with user requirements and never
ends (6). Even the installation of and changes to a replacement system can be
considered part of the maintenance process. Our approach to identifying the
maintenance functions which should be standardized is to: 1) Adopt the view
that maintenance is a process of change management and 2) Identify tasks in
maintenance that are concerned with making changes to software, including
changes to documentation (e.g., specification, design, listing, test plan,
etc.).

B. Maintenance Tasks

Using the concept of change management, the following maintenance tasks can
be identified:

o Identify need for change

1 The change is desired to prevent users from accessing resources that are

not available to them. This will save user time and reduce frustration.

o Determine whether change should be made, based on benefit-cost
analysis

The cost is approximately one man-day maximum to code, document and test the
change. This amounts to about $ 300 (with employee benefits). This is
equivalent to about 100 users saving 5 minutes each, assuming salary of user
(with employee benefits) is approximately equal to implementer salary, on the
average. The break even point could be achieved within two weeks of
implementation, given the number of users and uses of the affected application
programs. :

Evaluate the effects of change, including possible side effects

o Determine whether change can be made without creating an
incompatibility with the rest of the software

The change will not affect user logon instructions. Thus, User.Bat, which
contains logon instructions, will not be affected. A change will be required
in the user Autoexec.Bat to set the environment (i.e., establish the user
computer configuration). This change will have no effect on the user
operation. Changes will be required in the application batch files (e.g.,
Smartcom.Bat) that are stored on the server to add checks of the configuration
to see whether the user has the resources necessary to carry out the attempted
operation. If this is not done correctly, there will be errors in the
operation (e.g., the user will be allowed to attempt an operation that is not
possible or will told that the operaticn is not possible when, in fact, it is
possible).

Page13

o Make the change, if warranted, and only if it can be done in a
standard way

The change is warranted based on the very favorable cost-benefit
relationship. The change can be made in a standard way by using the change
management methodology that follows.

V. METRICS FOR MAINTENANCE

In order to manage software change it is desirable to measure the effects
of change. This is accomplished with quality metrics. A quality metric is
defined as follows: a quantitative measure of the degree to which software
possesses a given attribute that affects its quality t1). Ideally, there would
be agreement on a set of application-independent, language-independent,
software structure-independent metrics ('universal metrics'). Agreement does
not exist in the software engineering community on a universal set. Lacking
this agreement, metrics which are known to be related to the effectiveness and
efficiency of the software development process are used during develoment to
measure and improve the development process; these are called orocess metrics
T73. It is assumed that their use will result in maintainable software.
However. process metrics, like traceability, have little to do with measuring
whether the system achieves its quality requirements. For that we need product
metrics like reliability, accuracy, response time, throughput, etc. The two
types of metrics are related in the sense that high process metric values will
contribute to high product metric values. Product metrics are beyond the scope
of this report.

The role of metrics in maintenance can be demonstrated by oosing the
following question:

When a maintenance action is taken, how are the relevant metrics values
affected?

o What are the relevant metrics?

Traceability

o What were the original values?

100 % between code and state diagram

o What are the new values?

100 % . Can't trace from Start.Bat of User Computer to Server
application batch files 1

a

Page 14

o Examine incremental changes

: Are they in the right direction (e.g., reduced complexity)"

1 No. Increased complexity. 1

* Are they approximately the right values (e.g., within the bounds of
experience with respect to the maintenance action)?

Traceability will be lost if the change is extensive.
The change should not involve more than about 30 % of the
batch file. If this is not the case, the batch file should
be rewritten (rule of thumb regarding percentage of
statements changed). :

VI. MODEL OF MAINTENANCE

To explain the dynamic interaction between development and maintenance, as
exemplified by the changes in metrics values that result from development and
maintenance actions, the model in Figure 4 is provided. A model of the
maintenance process is essential for standardization to be achieved. Different
organizations may want to use different metrics, depending on the relevance of
the metrics to their maintenance environments and projects.

If'I

Page 15

1 Development
1 Methodology

- -----------------

Contributes 1 Affects Ability
to Original I to Make Correct
Metrics Values Changes

-- - ------- -- -- -- -- -

v New Metrics v
- Values

:Compute & Recompute -------------------- >: Maintenance
:Common Metrics 1< ------------------- I Actions
--------------------- Changes Metric= -

I Values

V V

(Sample List) Add
Completeness -, Delete
Consistency * Modify
M-dularitv -- Improved
Traceability Maintainability"
Verifiability -

VV

-- - ----------- ____ -- - - - - -- - - - - - - - -

Metrics Data Base 1 1 Maintenance Data
(Metrics and !-->!Correlation!<--: Base (Maintenance 1
Projects History) ? 1 I I Action History)

--- -- -- -- -- -- i -- - - - - - - - - - ----- ----- ----

Figure 4. Model of the Interaction between Development, Maintenance and
Metrics.

Page 16

This model may be understood and applied as follows:

A. Evaluate: Estimate the incremental change in metric value of a proposed
maintenance action. If the software change is made, measure its effect after
the change is made. To the extent feasible, quantify the effect of the change.
The following questions are relevant when considering a change to software:

o Given the development methodology and a maintenance action, how will the
metrics values be affected (magnitude and sign)? Will they change in a
direction to indicate the software will be (or has been) improved? Or will the
change indicate that the software will be (or has been) degraded'

This model would assist the maintenance organization to: 1) determine
whether a change should be made, 2) determine whether a change improved
maintainability, if it was made, and 3) document the history of the project
and the change so that this information can be used when making future change
decisions.

B. Feedback: Understand that taking a maintenance action changes metrics
values and that the new metrics values will influence future maintenance
actions.

C. Data bases: Maintain data bases of project characteristics, metrics, and
maintenance actions as an aid to learning from the past: Was a given metric a
good predictor of the effect of a given maintenance action? Which maintenance
actions improved and which degraded the software for given project
characteristics? Did the nature of the development methodoloay influence the
maintainability of the software"

VII. APPLICATION OF METRICS

It was mentioned previously that metrics are part of the maintenance model
-- they assist in evaluating the effects of change. When used over hundreds of
software components (an element of a software system, like a module), the
metrics can assume numerical values (e.q., for Completeness: ratio of
completed components to total number of components in the system). For a
single component, as in the example, a qualitative interpretation is
appropriate. This is done below for the example, using typical metrics.
Although the modification has improved functionality, it has degraded
maintainability.

..I l i m l I(

Page 17

TABLE 1

METRICS APPLIED TO EXAMPLE PROGRAM

Metric Original
Program Modified Program

Completeness:

Are all required Yes No. The correct comment is missing.
software components
present?

Consistency:

Are the code and Yes No. The comment contradicts the
documentation commands and vice versa.
uniform and free
of contradiction?

Modularity:

Is the structure No No. Quirks of the DOS language
costesive and self- inhibit modularity, but similar
contained? commands are grouped.

Traceability:

Can the program Yes No. Can't trace between commands,
parts be traced drives and directories.
from one to

another73

Verifiability:

Can the correct Yes No. The erroneous comment confuses
operation and the verification.
performance of
the program be
verified?

Pagel8

VIII. STANDARDIZATION OF CHANGE DOCUMENTATION

Because there is a great difference in applications, progra."ming
environments, etc., in various organizations, the maintenance standard snould
accommodate those differences and specify only a minimum set of requirements
and procedures.

Standardization can be viewed as a process of posing questions prior to a
maintenance action and having the maintainer answer them. The purpose of this
is to ensure that the maintainer has thought about the consequences of
proposed changes and is alerted to potential pitfalls. Maintenance decisions
and actions should be recorded in a data base for use in making future
maintenance decisions.

The entities which are subject to change are software components. For the
sake of brevity, 'software component' will hereafter be called 'component'.

A. Documenting the Effects of Change

It should be a standard procedure of maintenance to document a proposed
change in the following format (or similar format) and, if the change is made,
to fill in as much detail as possible about the change. The items to be
considered in deciding on a change are more important than the specific format
used to document the change. The X5 in the matrix indicate a relationship
between an input item and an output item, and 'DNA' means 'DOES NOT APPLY'.

Change an input (add or modify)

Type: Batch file statements

Format PC DOS batch file conventions

Value (How are outliers handled? Are they used or rejected?) 1 DNA

Range (e.g., extremes of numbers): : DNA

Precision (e.g., number of decimal points): : DNA 1

Accuracy (e.g., number within X % of actual value): 1 DNA

Name (Standardize name; should say what component does): ; (Start)

Starts User Computer on network and requests resources

Questions:

* What is the effect of input on outputs?

Link between Start.Bat on User Computer and Server application
batch files

* What is the effect of input on computation of function?

* Computation within bounds? (i.e., does input cause computation
to be outside feasible range of numbers in application?):! DNA

Page19

TABLE 2

EXAMPLE INPUT-OUTPUT CHANGE RELATIONSHIP

OUTPUT (Name)

Type Format Value Range Precision Accuracy

INPUT
(Name)

Type X

Format X

Value X X X X

Range X X X X

Precision X X X X

Accuracy X X X X

Type: New statements in Start.Bat on User Computer creates need for new
statements in application batch files.

Format: If syntax incorrect, won't work. If output not correctiy related
to input, could make wrong decision about executing aplication
program. '

Add/Modify a function or statements: What resources, functions or
statements must be present so that change can be utilized?
(Need, for example, paths, directories, and disks defined)

page20

B. Documentation Requirements

As a minimum the following should be standard documentation for supporting
maintenance: requirements specification, design specification, program
listing, test plan, and test results, as summarized below.

Phase Documentation

Requirements Analysis Requirements Specification

Need environment variables
to improve useability of
LAN and to simplify
maintenance.

Design Design Specification

State Diagram

Coding Listing

1 Batch File

All Test Plan, Test Results

Test use of application
batch files from all User

Computers.Allow access if
configuration permits it:
otherwise, disallow it.

IX. SOFTWARE COMMUNICATION MECHANISMS AND MAINTENANCE

Mechanisms which are available for communicating between components are an
important aspect of maintenance because of the serious consequences of making
an error in adding or changing a linkage. As opposed to other types of
software changes, a change in a communication mechanism affects more than one
component. This is particularly important for networks where a defective
mechanism can adversely affect the operation of computers at remote sites.

A. Kinds of Communication Mechanisms

o Data linkages (for the transfer of data):

- Message passing (can also be control message): I DNA

- Transaction (e.g., update in a data base management system): DNA

- Mail Box (i.e., store data in standard location where it can be used
by other processes)

Autoexec.Bat on User Computer stores data (its ID) in standard
location (environment) that can be used by Prafile.Bat on
Server

Page21

o Control linkages (for the transfer of control)

- Subroutine call: DNA

- Procedure call: DNA

- Remote procedure call (RPC): : DNA 1

B. Characteristics of Communication Between Software Components

1) Explicit:There is an actual transfer or exchange of data or
passing of parameters, or an output from one component
is the input to another component, or one component calls
another component.

: Start.Bat on User Computer calls Profile.Bat on Ser'. r

2) Implicit:Pased on the position of the given component within 3
sequence of components (e.g., instruCtions in .

Since PF:OFILE is needed to determine the User COto.Oter
config,_ration, it is called as t- ist c - n .'
Figu-e 2.

3) Indirect:&3sed on one component proviidkin "e.o., J:.t- l o
Feccznd3ry ztor?,:e) t- e-other c mont

~rr~~~0a on ;er'*r sets c ln-ai e",-ert.
rpplirItion bttch t!e will e ,

?e'o0e :7-jcnOnts e :dded , q -eted iodi''e', 1 t 'n be tncrd

COeo-e' "
-?f" Ce. of . .. _ _ on ' --

-03 iI'- , _,meted ooLt the ch3--e. as suqoested by tte cues I one

4) Ar' P o~onn

o What other comprent, will the giver component communicate with
once it *+ added- : component = batch file statement :

Start.E9at on User Cof:puter will communicate with Profile.B?t
on Serve-. The environment will communicate with application
batch files on Server

o L hat are the communication linkages? (parameter passing, message
exchange, RPC, etc.?)

* Start.Bat on User Compiter names an executable batch file (e.g.,
Profile) and causes the file to be loaded and executed.
Autoexec.Bat sets the User Computer identification. Profile.Bat
on Server sets the configuration.

o What existing communication linkages will be affected by the
change': ; None

Page22

5) DELETE a component 1 DNA

o What communication linkage will be broken bv the deletion-

o What are the new communication linkages that result from the

deletion?

6) MODIFY a component

1 Modify Start.Bat and application batch files. These are the
components to be modified.

o What is the existing communication linkaqe which involves this
component?

None between Start.Bat and application batch files

o How will this communication linkage be modified bv the change in
the component ?

A communication lin-age will be established between U-e-
Computer and Server via the environment

x. STANDARDIZATION THROUGH EXAMINATION OF DEVELOPMENT METHODOLOGIES

There is evidence that the characteristics of development methodologies (8)
and the characteristics of programming languages (9} can in'luence
maintainabi I itv.

A. Characteristics of Development Methodology

When we maintain software we may not be cognizant of the development
methodology which was used to produce the software, but it will affect our
ability to maintain the software. The evaluation hinges on a single criterion:
does the methodology support the creation of software which is easy to change
without inducing side-effects (an unexpected and undesirable result of making
a change)? This objective will be achieved if the methodology forces the
designer to formally consider the consequences of making a change once the
software has to be maintained (10). It follows that in order to capitalize on
a methodology that supports maintenance, it is necessary to use that
methodology to maintain the software. The following is a standard procedure
for evaluating a methodology with respect to its capability to support
maintenance.

l I I !

Page23

Does the methodology (e.g., state diagram) assist to:

1) Identity side-effects when performing maintenance

1 The state diagram (see Figure 3) can assist in
identifying potential side-effects because it shows: changes

) of statt in a program, events that cause changes in state, and
.resultatjactions. For example, in Figure 3 the modified state

F diagramjows *a transition from the Resources Assigned state
(step 5) #o the 'Drive E Accessed'- state (step 6') that could
have aN effect on loading the directory program (step 7)
because the modification has intervened in the original
program execution sequence. We could have a problem if this
intervention prevents the directory program from eventually
being loaded. '

2) Provide ability to make selective change (i.e., don't change or
destroy another part of the software when making a change)

* Obviously, no methodology is foolproof in identifying the
consequences of making a change, but a methodology like the
state diagram forces the maintainer to consider the effects of
change and makes visible the relationship between programs.
For example, it says in Figure 3 that a program called
'PROFILE' is to be loaded. This raises some interesting
questions for the maintainer: What is the program PROFILE'?
What does it do? Where is it located? The incorrect
modification does not answer these questions. The
correct modification does. However, notice that the state
diagram does not suggest to the maintainer that the
comments are incorrect; only the listing can do that. This
suggests the impossibility of higher level documentation
providing a complete description of program logic. :

3) Make visible the dependencies between inputs, processes and
outputs (dependencies make it difficult to change the software
without affecting something else which was working correctly
prior to the change)

Dependencies are created by the change between Start.Bat and
application batch files and between Start.Bat and PROFILE.
These are unavoidable, given the approach for checking User
Computer configuration. However, the state diagram helps to
make these dependencies visible. They would be more visible
to the reader if the state diagram for the processing of the
PROFILE program were shown (not shown because it is beyond the
scope of this report). 1

4) Determine whether change can be made without creating an
incompatibility with the rest of the software

* This would be determined by analyzing the application batch
files and state diagrams to see whether an incompatibility
in their operation would be created by checking the User
Computer configuration. :

Page24

5) Support a rational change policy:

o Make a change, if warranted, and only if it can be done in a
standard way, a .standard way' being defired as being in
conformance with the above procedure for assessing the impact
of change.

1 To assess the effect of the change, we determine how the
changed Start.Bat will affect the application batch files.

There are three possibilities:

- They will no longer work at all

- They will deny program access when the required equipment
is available

- They will allow program access when the required equipment
is not available

- They will work satisfactorily 1

o Make changes in small, controlled increments

By breaking the logic into discrete state transitions (e.g.,
transition from 'RESOURCES ASSIGNED' (Step 5) to DRIVE E
ACCESSED (Step 6) in Figure 3), changes are kept small.
Also the individual changes are kept small by distributing
parts of the total change to several batch files (e.g.,
Start.EBat, Profile.Bat and application batch files). However,
the incorrect modification in Figure 2 is uncontrolled,
raising questions about the function and location of PROFILE
and its relationship to Start.Bat.

B. Characteristics of Programming Language

Characteristics of the programming language can also sionificantly
influence the ability to maintain (9). Two brief examples from the DOS
language will be given:

o FATH command: If this command appears once and is repeated, the most recent
occurrence of the command is the only one in effect. This means that any paths
used to establish directories in a previous occurrence are lost unless they
are repeated in the new PATH command. In effect, this means that a new path
must be a superset of the previous path, if all original directory information
is to be retained. However, this could result in long path commands and,
without writing complicated logic, commands are limited to a single line! Thus
the maintenance principle of being able to make a selective change (i.e., one
wants to just add or delete parts of the PATH command, not write a new one)
cannot be achieved with this command.

I I I i(

Page25

0 IF command: The IF command has the format: IF stringl==string2 command. The
requirement for the second '-' is unexpected. This nuance of the language has

caused us to make several errors in writing network batch files. This

seemingly minor item can cause havoc in maintenance because a frequent change
to batch files occurs as the result of adding capabilities to the network that
are conditioned on the availability of certain resources. The IF command is

key to specifying these conditions.

XI. SUMMARY

We have proposed that maintenance can be improved through standardization.

The elements of the proposed standardization process are the following:

o Metrics

o Model of maintenance

o Change documentation

o Software communication mechanisms

o Development methodology supportive of maintenance

An example was presented of the application of one development methodology
-- state diagrams -- to illustrate how proposed and accomplished changes can

be illuminated so that errors can be avoided and maintainability improved.

Various methodologies could have been used to illustrate the change
management methodology. What is important is not the particular development
methodology, but the consistent application of a selected methodology, using
the change management methodology which has been described. Additional
research is needed to test other types of applications, programming languages
and changes aqainst the change management methodology.

Page26

XII. REFERENCES

(1) An American National Standard IEEE Standard Glossary of Software
Engineering Terminology, ANSI/IEEE Standard 729, 1983.

(21 Bennet P. Lientz and E. Burton Swanson, "Problems in Application
Software Maintenance", Comm. ACM, vol. 24, no. 11, pp. 763-769,
Nov. 1981.

(33 Bennet P. Li-pntz and E. Burton Swanson, 'Software Maintenance
Management"', Reading, MA: Addison-Wesley Publishing Co., 1980.

(41 Norman F. Schneidewind, "Software Maintenance: The Need for
Standardization", Proceedings of the IEEE, April 1989

(5) James A. McCall, Mary A. Herndon, and Wilma Osborne, Software
Maintenance Management, National Bureau of Standards Special
Publication 500-129, October 1985.

f6) Meir M. Lehman, "Programs, Life Cycles, and Laws of Software
Evolution", Proc. of the IEEE, vol. 68, no. 9, pp. 1060-1076,
September 1980.

(71 Rome Air Development Center, RADC-TR-85-37, Final Technical Report,
February 1985.

(8) Bob Britcher and Jim Craig, "Upgrading Aging Software Systems
Using Modern Software Engineering Practices: IBM-FSD's Conversion
of FAA's National Airspace (NAS) En Route Stage A Software From
9020s to S/370 Processors', Proceedings, Conference on Software
Maintenance-1985, Computer Society Press, pp. 162-170.

(9) Grady Booch, Software Engineering with Ada, The Benjamin/Cummings
Publishing Company, Inc., 1983.

(lO}Harlan D. Mills. "Stepwise Refinement and Verification in
Box-Structured Systems", Computer, vol. 21, no. 6, June 1988, pp.
23-36.

!

Page27

DISTRIBUTION LIST

Mr. Roger Daugherty, Code 01B
Navy Management Systems Support Office
Naval Air Station
Building R52-7
Norfolk, VA 23511-6694

Commanding Officer
Navy Management Systems Support Office
Naval Air Station
Norfolk, VA 23511-6694

Technical Director
Navy Management Systems Support Office
Naval Air Station
Norfolk, VA 23511-6694

Prof. Tarek Abdel-Hamid

Code 54Ah
Naval Postgraduate School
Monterey, CA 93943

Prof. Norman Schneidewind 10
Code 54Ss
Naval Postgraduate School
Monterey, CA 93943

National Technical Information Center 2

Cameron Station
Alexandria, VA 23314

Knox Library2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Computer Center Library
Code 0141
Naval Postgraduate School
Monterey, CA 93943

Administrative Sciences Department Library
Code 54
Naval Postgraduate School
Monterey, CA 93943

Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

