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I. TECHNICAL DISCUSSION

The work performed by Science Applications International Corporation (SAIC) on

this contract, "Laboratory Plasma Studies," Contract Number N00014-86-C-2499, SAIC

Project Number 1-157-13-290, encompasses a wide range of topics in experimental, com-

putational, and analytical laboratory plasma physics. The accomplishments described in

this report were in support of the programs of the High Power Electromagnetic Radia-

tion Branch of the Naval Research Laboratory (NRL) and cover the period 12 September

1986 to 24 March 1989. In the following subsections we will describe each of the topics

investigated and the results obtained. Much of the research work has resulted in jour-

nal publications and NRL Memorandum Reports in which the investigation is described

in detail. These reports are included as Appendices to this Final Report. A portion of

this effort was conducted under subcontracts to Physical Sciences Inc. and to Mission

Research Corporation. The Principal Investigators for these studies were respectively Dr.

M.E. Read and Dr. T. A. Hargreaves.

A. Plasma Filled Gyrotron

Recently, there has been much interest in developing means of circumventing the

space-charge current limit in high-power microwave devices, notably the gyrotron. The

space-charge current limit is most severe in the gyrotron due to the nature of the instability,

which is most favorable when the beam alpha (a = 0//311, the ratio of perpendicular to

parallel velocity) is in the range 1 - 2, corresponding to low parallel velocity and therefore

low limiting currents. The concept of injecting a neutral background plasma into the

region of the electron beam has been investigated extensively in the Soviet Union, and has

recently been the focus of some investigation at the University of Maryland with regard to

Backward-Wave-Oscillators. The plasma is introduced to short out the self-electric field of

the electron beam and effectively remove the space-charge of the electron beam as a current

limiting obstacle. In order for this to be accomplished, the density of the neutral plasma

must be greater than the density of the beam electrons, so that sufficient background

electrons may be expelled from the region of the transiting electron beam to provide for
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neutralization. The other element of importance is for the interaction to be based on

a relativistic electron beam interaction; non-relativistic beams generate oscillations with

non-relativistic phase velocities, which in the background plasma are highly electrostatic

and trapped.

During the last year of the contract, an experiment to investigate the effects of a

neutralizing background plasma on a relativistic gyrotron device has been designed and

constructed, and is presently in place on the VEBA accelerator. The experiment is designed

to be an extension of an earlier, relativistic gyrotron in vacuum and uses the results of

that earlier experiment as a vacuum experiment baseline. The earlier vacuum experiment

involved a collaboration among researchers from NRL, SAIC, JAYCOR, and the Univer-

sity of Maryland and has been documented in NRL Memorandum Report 6419, entitled

"Megavolt, Multi-Kiloamp Ka-Band Gyrotron Oscillator Experiment." It is included in

this report in Appendix A and a paper on this work has been submitted to Physics of

Fluids. A previous Soviet result observed an increase in radiated power from 7 MW to

60 MW when a neutral plasma was introduced, corresponding to a factor of 2 increase

in the injected current and a factor of 4 increase in efficiency. Similar benefits applied to

our vacuum gyrotron baseline experiment would result in output powers P > 1 GW. The

results are summarized in the following Proceedings article from a talk on the subject given

at the Thirteenth International Conference on Infrared and Millimeter Waves in Honolulu,

Hawaii, during December of 1980 (see 198 Conference Digest, Volume 1039, p. 364):

EXPERIMENTAL INVESTIGATION OFTHE EFFECTS
OF A NEUTRALIZINGBACKGROUND PLASMA ON

THE OPERATION OF A HIGHCURRENT GYROTRON*

D.A. Kirkpatrickt, S.H. Gold, A.K. Kinkead, W.M. Manheimer,
C.A. Sullivant, T.M. Antonsen $, and B. Levush $

High Power Electromagnetic Radiation Branch
Plasma Physics Division

Naval Research Laboratory

ABSTRACT
We present plans for an experiment to investigate the effects of a neutralizing back-

ground plasma on the operation of a high current gyrotron. A neutral plasma filling
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the electron beam transport and gyrotron cavity regions allows for the propagation of
super-vacuum currents and for tuning of the interaction frequency through the neutraliz-
ing plasma density w'. The background plasma is completely ionized before the passageof the high current electron beam, and the plasma density (in the absence of the electron

beam) is a known, measured quantity.

INTRODUCTION

Recent developments in high current electron beams have led to substantial increases
in the output powers of devices based on the electron-cyclotron-maser' such as the gy-
rotron. The electron beam current propagated in these devices is approaching the vacuum
limit, where the space-charge field of the beam depresses the electron beam energy and
prohibits any further increase in the current transmitted. Well before this strict limit is
reached, the space charge field interacts with the beam electrons to increase their velocity
spread, reducing the device efficiency and limiting the output power.

Several experiments have already been carried out which use a neutralizing background
plasma as a means to transcend these difficulties2'3 . The background plasma which fills
the beam transport and radiation interaction regions must be dense enough to neutralize
and screen the charge in the high current electron beam, while at the same time it must
be tenuous enough to allow for the free propagation of the output radiation and not have
a deleterious effect on the desired beam interaction. An earlier experiment3 with a 320
keV, 1.2 kA electron beam noted an increase in the output 10 GHz gyrotron power from
7 MW to 60 MW when the neutral plasma density was increased from n,,_ 109 cm - 3

to n ,- 2 x 1011 cm - 3 . Increasing the plasma density further to np -, 5 x 10" cm - 3

resulted in a rapid reduction in the output power to about 10 MW. The beam current of
1.2 kA was greater than the vacuum current limit I,, = 640 A by slightly less than a
factor of two. The plasma in this experiment was produced by a secondary, low voltage
electron gun which was used to pre-ionize a background gas. Residual neutral gas which
might be ionized by the passage of the high voltage electron beam would contribute to an
uncertainty in n 0

p.

EXPERIMENT

We are presently modifying a 35 GHz gyrotron oscillator experiment 4 to operate in
the presence of a neutralizing background plasma. A 1 - 10 kA, - 1 MeV electron beam
is generated by a masked, cylindrical diode. The electron beam is spun up by means of a
rapid drop in the axial magnetic field caused by a small field-reversed coil placed well after
the cathode-anode gap. The beam is compressed into the gyrotron interaction region and
then dumped on the downstream side by the fringing magnetic fields. Recent experiments
in the absence of a neutralizing background plasma have produced 200 MW of RF power
at a frequency of 35 GHz. The maximum intracavity beam current was approximately 2
kA.

A neutralizing background plasma is added to this system by plasma guns5 situated
after the anode mask and before the field-reversed coil. The plasma guns are ideal for this
application in that they are compact and produce a highly directional, almost completely
ionized neutral plasma. Different plasma densities can be realized by firing the VEBA
accelerator (r .- 40 ns) at different times after firing the plasma guns. The plasma inventory
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as a function of time after the firing of the plasma guns is measured in situ by pairs
of electrostatic probes. The plasma density available from four plasma guns situated
symmetrically in the e 'muth is then variable between np - 1011 _-1013 cm - 3 corresponding
to w°/27r - 3 - 30 (Hlz. The number density of the high energy electron beam is n-beam

6 x 10" cm 3 F-r J ,-s 3 kA/cm , and the available range in neutral plasma density should
be able to scan through shielding the beam self-fields and approach cutting off the desired
35 GHz gyrotron interaction.

I- P. Sprangle and A.T. Drobot, IEEE Trans.Microwave Theory Tech., MTT-25 (6):528
(1977).

2. V.I. Krementsov, M.S. Rabinovich, A.A. Rukhadze, P.S. Strelkov, and A.G. Shk-
varunets, Sov. Phys.-JETP, 4(4):622 (1976).

3. V.I. Krementsov, M.I. Petelin, M.S. Rabinovich, A.A. Rukhadze, P.S. Strelkov, and
A.G. Shkvarunets, Soy. Phys.-JETP, 48 (6):1084 (1978).

4. W.M. Manheimer, S.H. Gold, J. Burke, A.W. Fliflet,and W.M. Black, Microwave and

Particle Beam Sources and Propagation, N. Rostoker Ed., Proc. SPIE 873, p. 2
(1988).

5. R.J. Commisso, D.D. Hinshelwood, J.M. Neri, W.F. Oliphant, and B.V. Weber, NRL
Memo Report 6057 (1987).
*Work supported by the Office of Naval Research.

Permanent address: Science Applications International Corporation, McLean, VA
22102.

Permanent address: University of Maryland, Plasma Physics Laboratory, College
Park, MD 20742.

The viewgraphs from this presentation are included as Appendix B. The plasma gun

system, interferometry system, and experimental apparatus are assembled and in the pro-

cess of being integrated with the VEBA accelerator.

B. Cyclotron Autoresonance Maser

Cyclotron Autoresonance masers (CARMs) involve the interaction of an electron beam

and an electromagnetic wave. They are characterized by the Doppler shifted cyclotron

frequency, providing a higher operating frequency than that of a gyrotron operating at the

same magnetic field. The dispersion relation for the CARM is

w - kvo - nQ, = 0,

where w is the operating frequency, k is the wave number, vo is the electron beam velocity,
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n is the harmonic number, and S2, is the relativistic cyclotron frequency.

SAIC and NRL scientists jointly designed a 100 GHz CARM oscillator experiment

operating with a 600 kV, 200 A electron beam. The resonant cavity is a Bragg reflector

cavity with a Q of 1500. The projected output power of the oscillator is greater than 10

MW at an efficiency greater than 20%. The electron beam for the CARM experiment is

generated using the TRITON accelerator. Modifications have been made to the accelerator

in order to match the impedance of the accelerator to that of the electron gun and to keep

the voltage ripple below the 3% design criterion. The magnets for the CARM have been

designed, fabricated, and installed on the experiment. We redesigned the electron gun

because the original gun was emitting off the anodized aluminum surface and the velvet

emitter was not well-behaved when immersed in a magnetic field. The redesigned gun is

a graphite ,cmitter on a stainless steel shank. The anode is also made of graphite with

annular pin holes to scrape the beam to reduce the current to approximately 200 A and

to improve the beam axial-velocity spread. We have transported a well-aligned, 200 A

electron beam through the system. Preliminary studies have been initiated on the CARM

experiment. We have detected radiation over 90 GHz and are continuing the experiment

with newly installed microwave diagnostics.

The design of the experiment is documented in NRL Memorandum Report 6273 enti-

tled "The Design of a 100 GHz CARM Oscillator Experiment," while the cavity design was

presented in the paper "Design of a Waveguide Resonator with Rippled Wall Reflectors for

a 100 GHz CARM Oscillator Experiment," Int. J. Electror ics 65, 463-475 (1988). These

papers are included here as Appendices C and D respectively.

A 280 GHz CARM Oscillator experiment is currently in the design and procurement

stage. This experiment ws designed by NRL and SAIC scientists. The 280 GHz exper-

iment will operate with a beam voltage of 500 kV, a current of 100A for 1 /Psec, and a

magnetic field of 60 kG. The resonator for the 280 GHz CARM is a quasi-optical design,

capitalizing on SAIC's expertise in quasi-optical gyrotron research. Contracts for fabrica-

tion of long-lead-time major hardware components of this experiment have been awarded.

The preliminary design of this experiment is documented in NRL Memorandum Report
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6388, 1989 "Development of High Power CARM Oscillators," and appears in this report

as Appendix E.

C. Quasi-Optical Gyrotron

A 150 kW quasi-optical gyrotron experiment has been designed, assembled and tested

at NRL. Measured efficiencies were as high as 12%. This experiment incorporated many

new features including several that set the quasi-optical gyrotron apart from standard

cavity gyrotrons. The resonant cavity mirrors were individually adjustable, allowing the

mirrors to be aligned with each other as well as with the electron beam, and per.mitting

the mirror separation to vary from 20 - 28 cm. This resulted in the output coupling from

the cavity varying from 0.4 - 3%. Changing the output coupling allowed the electric field

strength in the interaction region to be held constant at the value for optimum efficiency

over a large range of operating currents. Single-mode operation at powers up to 125 kW and

multimode operation have been characterized. The operating frequency of the device could

be varied from 95-130 GHz by adjusting the applied magnetic field and/or the electron gun

voltage. Details of the experimental design, numerical modeling and the data gathered are

described in NRL Memorandum Report 6459 (1989), included here as Appendix F. This

work, supported in part by a subcontract with Mission Research Corporation, is entitled

"Design and Operating Characteristics of a CW Relevant Quasi-Optical Gyrotron with

Variable Mirror Separation."

In addition, the results of an experiment on the NRL large cavity quasi-optical gy-

roton have been analyzed and compared with theory. These results were presented at a

symposium on gyrotrons and free electron lasers in Chengdu, China and were published in

a special issue of the International Journal of Electronics (Volume 65, 3, 309-325 (1988))

entitled, "Experimental Study of a 115 GHz Quasi-Optical Gyrotron with a Large Cav-

ity." The report is included here in Appendix G. This effort was supported in part by a

subcontract with Physical Sciences Inc.

D. Support for Experimental Microwave Program

As part of this contract, SAIC provided support to two additional projects. These

,,--,,, -- ,=i ~n im lilal [ []D 6



projects were (1) the development of a high power repetitively pulsed 10 GHz gyrotron for

the U.S. Army Walter Reed Medical Center ("Army gyrotron") and (2) the high-frequency

quasi-optical gyrotron (Q.O.). The former project was canceled prematurely due to a

failure of the funding agency to make their third annual installment on the project; the

SAIC support of the latter project ended when the existing hardware was dismantled in

order to make room for a new superconducting magnet. Nevertheless, the remainder of

this section will describe the SAIC involvement in each project.

1. Army Gyrotron

The purpose of this project was to deliver to Walter Reed Medical Center a turn-

key system capable of producing 10 MW pulses with 10 microsecond duration of 10 GHz

microwaves with a pulse repetition rate of 10 Hz. At the commencement of the SAIC

support, the electron gun and the gyrotron tube had been designed and parts were either

in house or on order. While a 1 microsecond modulator existed at NRL, a new modulator

sufficient to meet the specifications of the project had to be designed and built; this was

the initial SAIC support.

The design of the overall system consisted of an electron gun which was capable of

emitting 250 A of electrons with an energy of 250 keV. This implies a power requirement

on the gun of 62.5 MW with a gun impedance of 1000 ohm. The pulse transformer which

feeds the gun was designed to be a 16:1 step-up transformer with a 1 microhenry primary

inductance. This implied that the input to the transformer would necessarily be 4.0 kA of

current at 15.6 kV and that the matched load impedance of the transformer would be 3.9

ohms.

Given the above parameters, SAIC began the design of the modulator. Assuming a

matched load, a transmission line capable of powering the transformer described above

would require an impedance of 3.9 ohms and a voltage of 31.2 kV (2 x the output volt-

age required). Transmission line theory can be used to immediately determine the total

capacitance and inductance of the line for any desired pulse length:

7



C (nf) = 128.2 tau (microseconds)

L (microhenry) = 1.95 tau (microseconds)

Given a desire on the part of the staff of Walter Reed to have the potential for pulse

lengths of 1, 3, or 10 microseconds, the determination of the overall design then had to

be made compatible with this desire. Three different lines were initially considered - 1, 3,

and 10 microseconds long respectively. Each one of these lines, however, required different

capacitors and inductors. As a result, an alternative was developed which consisted of

a 1 microsecond line and a 10 microsecond line, each of which was not built to optimum

specifications (which would have required many different sizes of capacitors and inductors),

but rather built in a modular fashion (for simplicity and ease of maintenance). This

alternative consisted of:

Nc C(nf) L(nh) Tau (microseconds)

13 10 152 1.01

43 30 460 10.06

with the potential for tapping off the 10 microsecond line at multiple points to yield shorter

pulses (e.g. 3 microseconds).

Once the transmission line design was complete, the method of charging the line was

considered. The initial alternatives were: (1) inductively isolate the power supply from

the line; (2) resistively isolate the power supply from the line; (3) resonant charging; and

(4) actively control the power supply voltage. Assuming a 1 A power supply, inductive

charging would require a charging inductor which was unreasonably large (> 300 h) and

resistive or resonant charging would take too long (> 200 milliseconds). Only active control

was capable of achieving a charging time within the required specifications. Such a power

supply, however, was not readily at hand which led to the consideration of a fifth alternative

- a varactor circuit. A 0.5 A/50 kV varactor capable of a constant 15.6 kW output at 31.2

kV charging voltage would result in a charging time of approximately 40 ms for the 10

microsecond pulse forming line. This is well within the required specifications.

Having made the first guess at the electrical design, SAIC then proceeded to ana-

8



lyze the proposed modulator design using the simple transmission line code BERTHA.

BERTHA is the latest in a string of transmission line models developed at NRL all based

on the original Transmission Line Code (TLC) of John Shipman. BERTHA was a modi-

fication of the Standard Transmission Line Code (STLC), both of which were written by

David Hinshelwood. For this effort, SAIC modified BERTHA to run on an IBM PC by

converting it to MicroSoft Fortran. The modified program was then used to determine

the modulator output voltage time history for the various configurations. The results of

the BERTHA simulations for the 1 microsecond modulator, the 10 microsecond modula-

tor tapped at the 13th element to create a 3 microsecond pulse, and the 10 microsecond

modulator are shown in figures D.1 a-c. The key point to note in any design of a discrete

element transmission line is that the number of elements does matter; the 1 and, to a lesser

extent, 3 microsecond pulses are not as flat as the 10 microsecond pulse due to the limited

(13) number of capacitors (as opposed to the 43 capacitors in the 10 microsecond line).

Nevertheless, a flat-topped region is available which should be adequate for the design

considerations.

Once the electrical design was complete, the mechanical design commenced. This led

to the design of the cabinet shown in Figure D.2. This cabinet is constructed of angle

bracket with light aluminum walls. The top row is designed to hold the 1 microsecond

line with the lower three rows holding the 10 microsecond line. The modular design is

both simple and allows easy maintenance and repairs - both important considerations in

a turn-key system to be operated by researchers in other fields.

The final support to this program from the design viewpoint was the preliminary cost-

ing of the power supply/modulator/transformer system. These efforts are not documented

here as this data is out of date.

Other SAIC support on this program consisted of aiding in the fabrication of the

gyrotron tube once all of the pieces had arrived and in preparation for initial measurements.

As mentioned above, this work was stopped in mid-effort due to a failure on the part of

the funding agency to provide funds.
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2. Quasi-Optical Gyrotron

At the time of the commencement of the SAIC experimental support, the Q.O. project

was in a state of dis-assembly. The trim magnet had failed and had to be reconstructed.

This was accomplished and the cooling of the superconducting magnet commenced. Un-

fortunately, during the down time, some moisture must have condensed inside the magnet

because the cooling was not successful. The magnet was then allowed to come to room tem-

perature, pumped down, and the cooling process was re-commenced. The Q.O. was then

fircd up only to discover that the wavemeter/BFO system was not functioning correctly.

Considerable effort was then spent in trying to calibrate and automate the wavemeter/BFO

and data collection system. This process was ongoing at the time the decision was made

to dis-assemble the existing hardware due to the arrival of a new superconducting magnet.

E. Advanced Topics in Electrophysics

Investigations in the following areas were carried out: (1) to establish the requirements

for high peak power sources of rf radiation to drive linear supercolliders, especially with

relevance to Soviet progress in developing x-band girocons and oppportunities for NRL to

extend this work, (2) to design broadband output windows (eg., moth-eye windows) for

millimeter wave generators, (3) to design Bragg reflectors for use in defining a cavity for a

100 GHz CARM oscillator (Appendix D), (4) to optimize performance of Ka-band gyrotron

oscillators driven by intense relativistic electron beams. This work has been described

in the IEEE Transactions of Plasma Science 16, 142-148 (1988), entitled "High Peak

Power Ka-band Gyrotron Oscillator Experiment with Slotted and Unslotted Cavities,"

and appears here as Appendix H (see, also, Appendix A), (5) to determine the state-of-

the-art in free electron laser research, especially regarding the controversy over single mode

or multi-mode operation of FEL's intended for spectroscopic studies. Details of this effort

have been given in Comments in Plasma Physics XII, 217 (1989) entitled "Review of the

Tenth International Free Electron Laser Conference" and appear here as Appendix 1.
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F. Analysis of High Power Gyrotron Operation

During the contract period three projects concerning the operation of high power

gyrotrons were completed. The work was performed by Professor T. Antonsen of the

University of Maryland, consulting for SAIC on this contract, in collaboration with col-

leagues at the University of Maryland and at NRL. The following is a brief summary of

the research.

1) Self field effects in gyrotrons. A study was completed to determine the effect of

AC space charge on the operation of high power gyrotrons. The model used was one

developed during the previous reporting period. It was found that at high beam densities

the nonlinear efficiency of a gyrotron is modified significantly by the AC space charge

associated with the bunched electron beam. The currents at which this modification

occurs are higher than the typical currents in experiments carried out at NRL. Thus,

we concluded that AC space charge was not a significant factor in these experiments. In

Appendix J we present further details on this effect from a paper entitled "The Effect of

the Time-Dependent Self-Consistent Electrostatic Field on Gyrotron Operation," Phys.

Fluids 31, 375 (1988).

2) Effects of a background plasma on High Current Gyrotrons. Calculations were made

to determine the effect of a background plasma on the dispersion characteristics of wave-

guide modes in the interaction region of a high power gyrotron. The effect of plasma

density and magnetic field strength on the cut off frequency of TE modes was analyzed to

determine the extent by which the plasma could be used to tune the cavity over a range of

frequencies. Further, the possibility of using plasma to suppress the fundamental cyclotron

mode to allow for operation at the first harmonic was investigated. (See Proceedings article

in this report, Section I.A.).

3) Mode stability in quasioptical gyrotrons. An analysis of the stability of single mode

operation in a quasioptical gyrotron was made. The results indicate that over a range of

operating parameters single mode operation is stable independent of the separation of

the mirrors which define the quasioptical cavity. Various mechanisms for controlling the

operating mode, including prebunching for the beam and direct injection of RF into the
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cavity were investigated. A manuscript describing this work is still in the process of

being written. Appendix K gives further details from the Conference Proceedings of the

Thirteenth International Conference on Infrared and Millimeter Waves (Volume 1039, p.

281, 1988) from a paper entitled "Mode Stability in a Quasi-Optical Gyrotron."

G. Externally Modulated Intense Relativistic Electron Beams

The experimental demonstration1 of deep current modulation of an intense relativistic

annular electron beam (- 5 kA, 500 keV, rb = 1.9 cm) by a moderate external microwave

source (- 50 kW) suggested a strong potential for amplification of RF power to gigawatts

at frequencies between 1 and 10 GHz. This prompted the initiation of a theoretical effort

to understand this deep current modulation and to support the ongoing experiments at

NRL.

Several unusual properties were seen in the experiments, namely, the high degree of

phase and amplitude stability in the output signal and the ease with which the current

modulation was achieved and could be manipulated by the introduction of additional

undriven cavities downstream from the initial externally driven cavity.

Many aspects of these experiments are now understood as a result of theoretical and

numerical efforts. The modulation in the linear regime has now been verified via particle

simulation, with excellent agreement with theory and experiment. Here the device acts

largely like a classical klystron, with a velocity modulation causing ballistic bunching as

the particles move in a drift tube. Many nonlinear aspects of the problem have also been

explored and verified in the simulations. Among these are the strong current modulation

immediately following a modulating gap in the case where the gap voltage is greater than

a threshold voltage which has been calculated analytically. In this regime, unlike the linear

case, a drift tube is not required for bunching, and modulation levels as high as 80% can be

achieved. Other aspects of the problem, such as the amplitude stability, the phase locking

between the external RF input and the output signal, and the generation of harmonics

have also been explored.

The chief numerical tool for the simulations has been CONDOR,2 a two-dimensional,
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fully relativistic, fully electromagnetic, particle code. CONDOR is able to handle com-

plicated structures and boundaries, such as those existing in the experiments. Details of

these studies can be found in Appendices L-N: "Modulation of an Intense Beam by an

External Microwave Source: Theory and Simulation," Appl. Phys. Lett. 52, 431 (1988),

"Nonlinear Space-Charge Waves on an Intense Relativistic Electron Beam," IEEE Trans.

Plas. Sci. 16-2, 249 (1988), and "Externally Modulated Intense Relativistic Electron

Beams," J. Appl. Phys. 64, 3353 (1988).

H. Relativistic Klystron Amplifier

The success of the experimental and theoretical efforts to produce highly modulated

intense electron beams has encouraged experimentalists at NRL to pursue several exten-

sions of this work. One of these is the relativistic klystron amplifier, which is designed to

produce very high power radiation amplification in the 1-10 GHz range. Theoretical and

numerical efforts by SAIC have supported the relativistic klystron amplifier experiment at

NRL, which resulted in the generation of 1.3 GHz microwaves at a power of 3 GW with an

efficiency of approximately 25%. Details of this research can be found in Appendices O-Q:

"Relativistic Klystron Amplifier," Proc. Soc. Photo-Optical Instr. Eng. 873, 92 (1988),

"Operation of a Multigigawatt Relativistic Klystron Amplifier," to appear in Proc. Soc.

Photo-Optical Instr. Eng. (1989), and "On Certain Theoretical Aspects of Relativistic

Klystron Amplifiers," to appear in Proc. Soc. Photo-Optical Instr. Eng. (1989).

I. NRL Two-Beam Accelerator

The research into modulated intense relativistic electron beams discussed above has

shown that high electric fields can be established in RF structures by such beams. Such

a beam, which has power greater than 10' W, may be used as an RF source to power an

accelerator in which this low energy, high current beam interacts via a metallic structure

with a low current beam to obtain very high voltage gradients. This accelerator is the

subject of an ongoing experimental effort at NRL.

SAIC theoretical and numerical support has resulted in a series of computer simu-

lations in which the efficiency and transformer ratio (related to the maximum possible
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accelerating gradient) were characterized for this device. Preliminary experimental results

have verified these predictions. Details of this research can be found in Appendices R-T:

"Simulation Studies of Particle Acceleration Powered by Modulated Intense Relativistic

Electron Beams," NRL Memo Report 6409, (1989), "A Compact Accelerator Powered

by the Relativistic Klystron Amplifier," to appear in Proc. Soc. Photo-Optical Instr.

Eng. (1989), and "Numerical and Experimental Studies of Particle Acceleration Powered

by Modulated Intense Relativistic Electron Beams," to appear in Proc. IEEE Particle

Accelerator Conf. (1989).

J. Electron Beam Propagation in the Ion-Focussed Regime

SAIC efforts have contributed to the recently developed FRIEZR simulation code.

FRIEZR has been used for studies of IFR (ion focussed regime) and magnetic transport

of electron beams, as well as transitions between these two schemes, as in the Advanced

Test Accelerator (ATA) at LLNL (see Appendix U), "IFR Conditioning and Transport,"

LLNL Report CONF 8709146, 357 (1987)). FRIEZR is a two-dimensional, fully relativistic,

electromagnetic particle code that performs simulations in a coordinate system that moves

with the electron beam.

In IFR transport, the beam is injected along a plasma channel, with np< nb, so that

the highly relativistic beam electrons electrostatically force the plasma electrons from the

vicinity of the beam, forming an ion channel which focuses the beam electrons.

Several issues of importance to this transport scheme have been addressed. Of primary

importance for transport over long distances is the issue of beam head erosion, wherein

the physics at the beam head, which can be quite complicated, results in the loss of some

portion of the beam. An extensive numerical and theoretical study of this process in the

axisymmetric limit resulted in an improved analytical model of inductive erosion (losses due

to the inductive electric field at the head of the beam), and an improved understanding of

emittance-driven erosion, in which our numerical studies were used to discover and explain

erosion rates that tend toward zero over long distances, in contrast to previous theoretical

models. These erosion processes were confirmed by experiments carried out at NSWC.
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Details of the FRIEZR code, the erosion studies, and the NSWC experiment are given in

Appendices V and W "Numerical Simulations of Axisymmetric Erosion Processes in Ion

Focused Regime-Transported Beams," to appear in Phys. Fluids, and "Analysis of the

NSWC Beam Erosion Experiment,"Proc. of the Annual Propagation Phys. Rev. Vol. I,

85 (1988).

Further studies of electron beam propagation were carried out for the case where a

diffuse background plasma is present in addition to the plasma channel discussed above.

These simulations resulted in the discovery of wake field effects, wherein plasma waves

excited at the beam head copropagate with the beam. In regions where the field from the

plasma wave was decelerating, the beam was disrupted. Further studies showed that the

severity of this problem was affected by such parameters as the rise length of the beam

and that the plasma waves could be suppressed to some degree by chopping the beam at

a frequency higher than the plasma frequency of the diffuse background plasma. These

studies are detailed in Appendices X-Z: "Delphi Theory-Axisymmetric Erosion and Wake

Field Effects," LLNL Report CONF 8709146, 361 (1987), "Numerical Studies of Erosion

and Transport in Chopped and Unchopped Beams," Proc. of the Annual Propagation

Phys. Rev. Vol. I, 381 (1988), and "Relativistic Beam Propagation Through Diffuse

Plasmas," Proc. of the Annual Propagation Phys. Rev. Vol. I, 377 (1988).

Finally, several theoretical studies of diamagnetic effects associated with relativistic

electron beam (REB) propagation were performed during 1986. Some of the work was

classified. However, Appendices AA and BB describe unclassified aspects of the REB

effort. The titles are respectively "Diamagnetic Effects in Endoatmospheric Electron Beam

Propagation" and "Diamagnetic Cavity Formed During the Formation of a Laser Channel

in the Ionosphere."

K. FEL Studies

In vacuo, diffraction causes a beam of radiation of finite transverse extent to spread

out on a scale length referred to as the Rayleigh range, ZR. Over the past several years

it has become clear that in a free-electron laser (FEL) the emitted radiation tends to be
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guided and focused by the electron beam, thus permitting interaction lengths considerably

greater than ZR. This can lead to a significant improvement in the extraction efficiency

of the FEL.

Sprangle et al.4 have developed a technique for efficient numerical study of the de-

velopment of the radiation field in FEL's. Details of this work are given in Reference 4

and in "Guided Radiation Beams in Free Electron Lasers," Nucl. Instr. and Meth. in

Phys. Res. A272, 536 (1988), Appendix CC of this report. Using this technique, we have

examined in detail the phenomenon of optical guiding in the small signal, exponential

regime of operation. The most significant result of this study is that the radiation may be

perfectly guided by the electron beam. That is, the width of the radiation beam maintains

a constant, and unique, value throughout the exponential regime. This work is presented

in detail in Appendix DD, entitled "Optical gains, phase shift, and profile in free electron

lasers," Phys. Rev. A36, 1739 (1987).

In an FEL the synchrotron oscillation of electrons trapped in the ponderomotive

potential well may couple energy into sideband frequencies. The ensuing instability leads

to the modulation of the output signal and to an increase in its spectral width. In a number

of applications this is a serious drawback.

We have developed a multi-dimensional, time-dependent code to study FELs. This

code has been used to examine the development of sidebands in a FEL operating as an

amplifier. The most significant outcome of this study is that upon tapering the wiggler

magnetic field - which is the usual method of enhancing the efficiency - the growth rate of

the sidebands may be drastically reduced, the output radiation beam displaying very little

modulation. This work has been reported in detail in Nuclear Instruments and Methods in

Physics Research A272, 392 (1988) entitled "Comparison of Sideband Growth in Tapered

and Untapered Free Electron Lasers," and in Physical Review A38, 197 (1988), "Devel-

opment of Sidebands in Tapered and Untapered Free-Electron Lasers." These reports are

included in Appendices EE and FF.
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L. X-Ray Source for Lithography

Miniaturization of semi-conductor devices lies at the heart of the tremendous devel-

opments taking place in the electronics industry. Current state-of-the-art requirements

by the integrated-circuits industry call for the ability to pattern submission-size circuit-

dimensions on silicon wafers. This is presently achieved by lithography using UV radiation

(--, 200 [im). However, for mass-production of critical, leading-edge circuits for computers,

memories, signal processors and other devices, circuit dimensions less than 0.1 pm are

envisaged. It appears that radiation in the x-ray band will have to be used to achieve this

improvement in resolution.5 At present synchrotron radiation from storage rings is the

only viable source for this purpose. However storage rings are extremely costly (- $10M)

and not very efficient. We have considered the possibility of employing the spontaneous

x-radiation from the interaction of an electron beam with microwaves in a quasi-optical

maser for the purposes of lithography. Preliminary results indicate that this scheme may

provide a commercially viable source for mass-production of integrated circuits on silicon

wafers. (Patent application has been made.) A paper describing these techniques has been

submitted for publication in Electronics Letters "An X-ray Source for Lithography Based

on a Quasi-Optical Maser Undulator." It is included here as Appendix GG.

M. Studies of Coherent Radiation Sources

In the area of coherent radiation sources, the SAIC theoretical effort covered support

of both existing and planned experiments, and the pursuit of advanced concepts. The

analytic work was about equally divided between two areas of interest: gyrotrons and

FELs.

The tasks performed in support of the gyrotron program are summarized as follows:

(1) Small signal analysis, for the Quasi-optical CARM, or induced resonance electron

cyclotron maser (IREC). This is a promising source of submillimeter microwaves,

combining the frequency upshifting of the CARM, with the low wall loading and im-

proved mode separation of the open (quasi-optical) resonators. The linear growth rate

and the current to start-up oscillations in the cavity were derived. The sensitivity of
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the device to thermal spreads of the electron beam was also addressed, and an opti-

mization condition was found. This has been reported in NRL Memorandum Report

5986 (1987), "Small Signal Analysis of the Induced Resonance Electron Cyclotron

Maser," included here in Appendix HH.

(2) Operation of the Q.0. CARM in higher harmonics of the upshifted cyclotron period.

The slow-time equations describing the resonant interaction with a given harmonic

were derived. The small signal electronic efficiency was obtained, yielding the start-

up current. Small amplitude results were confirmed by simulations, which showed

considerable electronic efficiencies for high amplitude operation. This work has been

published in Phys. Fluids 31, 924 (1988) entitled "Higher Harmonic Generation in

the Induced Resonance Electron Cyclotron Maser," and appears in Appendix II.

(3) Modeling of the mode competition in the Quasi-optical Gyrotron. Non-linear effects

become very important at high power operation, as shown by experimental results.

Several modes are excited and interact in the cavity. Whether a final steady state exists

at all, how many modes participate in it, and whether a given steady state is accessible,

are inherently non-linear issues. A set of mode-coupling equations describing the mode

interaction has been derived. The particle dynamics have been absorbed in the mode-

coupling coefficients, of known analytic dependence, that mediate the interactions

among the cavity modes. Particle simulations can then be replaced by a set of ODEs,

cutting the computation time considerably. More substantially, the final steady state

can be found analytically from these equations, as a function of the control parameters.

The issues addressed in the field of FELs are summarized as follows:

(1) Study of the excitation of parasitic frequencies (sidebands). Using dynamic equations

in action-angle formalism, it was possible to include the thermal spreads in the syn-

chrotron frequencies of particles trapped in the ponderomotive fields. Novel results

were found for the structure of the sideband spectrum. For example symmetric up-

per and lower sidebands have opposite growth rates (complementary stability). Also

the growth rate, determined by the distribution of particles according to their syn-

chrotron periods, is much slower than predicted by previous results, which ignored
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thermal spreads. This is described in more detail in Appendix JJ, "The Structure of

the Sideband Spectrum in Free Electron Lasers," Phys. Fluids 31, 1708 (1988).

(2) Efficiency deterioration caused by sidebands. It is well known that particle motion in

a multi-frequency field may easily become chaotic. Therefore, excitation of sidebands

in FELs may cause particle detrapping and loss of amplification. The threshold in

sideband amplitude for the onset of stochastic motion was computed. The rate of

particle diffusion was studied and found to depend on the total sideband power. It was

also shown to depend on the kind of sideband spectrum, falling into one of the following

general categories: a narrow, a broad discrete and a broad continuous spectrum. The

length (in wiggler periods) required for the average particle to get detrapped was

found to be independent of the beam energy. This work, described in Appendix KK,

is entitled "Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers,"

NRL Memorandum Report 6365 (1988).

(3) Study of the reflection for Gaussian light beams in FEL resonators. An incident light

beam of a pure Gaussian mode will in general be reflected into other modes, as a result

of the finite mirror size, the deflection of the light beam, and spherical aberration

effects. It was shown that the shape of the appropriate mirror surface is connected

to the deflection angle for the light beam. The reflection process was modeled by

a reflection matrix that includes all the above effects. This work is described in

Appendices LL and MM respectively entitled, "Transformation of Gaussian Light

Beams Caused by Reflection in FEL Resonators," and "Reflection Matrix for Optical

Resonators in FEL Oscillators," NRL Memorandum Reports 6347 and 6285 (1988).

(4) Study of the cavity eigenmodes for the NBS FEL oscillator. The optical performance

of the racetrack microtron powered FEL was analyzed using a vacuum eigenmode ex-

pansion. The cavity eigenmodes were obtained by solving the eigenvalue problem for

the cavity transfer matrix. The latter includes the effects of multiple reflections on

the resonator mirrors as well as the transmission through the vacuum vessel aperture.

It was shown that the cavity has a very good optical performance (high Q) and model
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purity in the operation regime from 0.2pm to 10pm. This is described in Appendix NN

entitled, "Cavity Eigenmodes for the NIST/NRL Free Electron Laser," to be submitted

for publication in J. Appl. Phys.

N. Support to the NRL Charged Particle Beam Program

During this contract period SAIC performed several tasks in support of the NRL

research program to investigate the propagation of charged particle beams. These tasks

included creating and modifying graphical systems to analyze simulation data; developing

better ways of presenting results to the scientific community and, most importantly, par-

ticipating directly in the research effort by developing several computer programs which

use numerical methods and techniques to evaluate analytical solutions and theoretical ex-

pressions. To facilitate these tasks and the research of NRL scientists, it was necessary to

bring up and bebug a number of computer systems and software packages. This computer

knowledge has become valuable to NRL's Plasma Theory Branch as the basis for important

decisions concerning graphical hardware and software.

The most significant numerical project carried out during this period was the develop-

ment of an envelope equation model of a wire guiding cell for a particle beam. SAIC worked

with a model developed by Dr. R. Fernsler of NRL to solve a form of Maxwell's equations

numerically. The backbone of this code was the dynamic solution of the circuit equations

that determine the force felt by the particle beam due to the wire. The paper presented

at Beams '88, entitled "Beam Conditioning Using Resistive Wires," here in Appendix 00,

has an in depth discussion of the equations solved. Plotting routines developed under this

project, as described below, were used to display the solutions in graphical form. Such

quantities as the evolution of the beam radius and of the beam emittance were measured.

This code indicated that a wire cell could be used to emittance condition a particle beam.

The success of the aforementioned wire guide code, led to the development of a more

sophisticated model using a particle-pushing code to more thoroughly evaluate the effect

of the wire cell on important beam evolution characteristics. The particle-pusher was im-

plemented by Dr. S. Slinker of NRL. The paper, presented at DARPA 88, "Resistive Wire

Conditioning," in Appendix PP, more fully describes this code. As predicted, the particle-

pusher more accurately handled the emittance evolution of the beam and demonstrated

that the emittance conditioning was not as dramatic as predicted from the envelope code,

though still significant. The code did, however, demonstrate that the beam centering could
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be achieved using a wire cell.

SAIC devised several graphics analysis programs and routines to analyze data for the

Plasma Theory Branch's simulations and the data sets from NRL's experimental branch.

In addition to analysis, it proved necessary to make the graphical output more professional

and more efficient. SAIC created a Point Plotter package in the graphical language IDL,

for example. This plotter made it possible to use the VAXs to graph arrays of data, either

gathered by hand or output from simulation codes, and combine them on single graphs.

This freedom to blend different sets of data made such tasks as comparing simulation

results to theoretical results much simpler. The IDL plotter also provided the project

scientists with an alternative to the much slower process of hand plotting results and then

sending them to NRL's TID to have them redrawn.

SAIC modified NRL's major particle codes to take advantage of the NCAR Autograph

plotting package anU the improvements in character manipulation developed by Horace

Mitchell of SAIC. Using this combination of graphical enhancements, SAIC modified the

existing post-processors to output presentation quality graphics. With the increase in

quality, the need to touch up individual frames was eliminated, causing a marked increase

in efficient use of the scientists time and making the plots easier to interpret. Using a

version of NCAR that would allow slightly modified code to work on the VAX and the

CRAY, SAIC created an AUTOPLOT program that could be linked to post-processors on

both machines. AUTOPLOT eliminated the necessity for having separate versions for the

VAX and the CRAY and helped to standardize output from the various beam simulation

models. It was also necessary to reprogram the post-processors themselves to take full

advantage of the SAIC character improvements. While working on updating these codes,

a fault in the NCAR contour routines became apparent. Using the contour-smoothing

routine developed in NRL's Laboratory for Computational Physics to alleviate this fault,

SAIC subsequently installed this routine, SCROOB, in the new post-processor codes.

To view scientific phenomena that evolve in a complicated and nonobvious manner,

SAIC developed applications packages to exploit our scientific animation software. This

software made extensive use of the ATARI 1040ST's graphics abilities and of ANTIC's ex-

cellent line of animation software. With the addition of motion to previously still pictures,

dynamics effects such as wake-field accelerations in particle beams and channel tracking

in experimental simulations were more easily interpreted. In Appendix QQ, "SARLAC,

The Movie," an NRL-SAIC collaborative effort, the animation process is explained. This
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report also contains black and white reduced pictures from one of the animations.

To complement the graphical support SAIC provided to the Plasma Theory Branch,
we also solved a number of analytical problems and theoretical models numerically. The

solutions generated from these programs were used to test new ideas for simulation codes, to

check existing codes to determine if they agreed with theoretical answers, and to determine

input values for the various simulation codes. A list of these codes includes:

PRANGEB - Determines when the beam radius has expanded out of the IFR regime

for the PURE propagation mode. Used to prove that PURE mode is a viable propagation

mode.

PLREQA - Calculates Req for magnetic and IFR transport and plots these quantities
against propagation distance. Used as a diagnostic for particle simulation codes.

XENON - Calculates the ionization and excitation rates for xenon gas when it is used
in a IFR cell and is exposed to a laser pulse of a specific length, energy, and radius. Used

to determine input curves for particle simulation codes.

XENDIS - An extension of the XENON code which uses the DRGEARS integration

package to accurately determine the density of xenon ions at various times after a laser

beam has passed through an IFR cell. Used to refine the pressure ramp function for the

xenon density in the particle simulation model of an IFR cell.

MAGNET - Calculates the magnetic field strength felt by a beam in the ATA beam

line, based on tables of actual magnet settings used in ATA experiments. Used to determine
correct forces for simulations of ATA beam propagation.

RADLEE1 - Calculates beam radius in an IFR channel given channel size, radius,
and initial channel temperature as inputs. Used to compare simulation code results with

theory.

TRKPLOT - Evaluates and plots Fernsler's tracking force equation for a Bennett

profile beam in a square channel. Used to determine values of this force for entry into

particle simulation models of the tracking experiment.

FOIL1 - Calculates the momentum kick given to a flat-topped particle beam when it

passes through a thin foil, using Bessel functions. Used to model foils as tools for focusing

particle beams and as impulses for particle codes.

FOIL2 - Same as above code, but evaluates a Bessel profile beam.
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FOCFOIL1 - Determines and graphs the focal length and the emittance degradation

for a flat-topped beam passing through a foil. Used to determine the spacing between

foils. It proved that this focusing scheme degrades too much to be used by the NRL

experimentalists.

FOCFOIL 2 - Same as above code, but evaluates Bessel profile beam.

FBERN - Models the momentum kick a particle receives as it interacts with two

coupled foils. Used to determine that coupled foil models give more realistic results than

do isolated foil simulations.

To maintain a knowledge of the current state-of-the-art in presentation graphics for the

SAIC contract with the Plasma Theory Branch, SAIC tested numerous software packages

on many computer systems. Among these systems are: (CRAY) NCAR; (VAX) SAIC's

Animation Software, NCAR, IDL; (ATARI 1040ST) Cyber Animation Software, Degas

Elite, Spectrum 512; (MAC II) Pixel Paint, Mac Draft, Power Point, (IBM) Massl1 Draw;

(VAX Station) Interleaf. We determined which of these programs were best suited to

specific analysis tasks. We also became proficient at TEX, the typesetting language, to

assist in displaying the results of programming projects. A list of some of the reports

containing graphical or presentation materials developed under this aspect of the project

follows:

1. "Simulation of Stability, Tracking and Range Extension in WIPS Channels (U)," by
R.F. Hubbard, S.P. Slinker, W.M. Fawley, and G. Joyce.

2. "Experimental Program Options to Demonstrate Weapons-Scalable Propagation (U),"
by Martin Lampe, and Richard F. Hubbard.

3. "A New Laser Hybrid Scheme for WIPS-Mode Propagation (U)," by R.F. Hubbard,
R.F. Fernsler, A.W. Ali, S.P. Slinker, M. Lampe, and A. Prakash.

4. "SARLAC Hose and Tracking Simulations: The Movie," by R.F. Hubbard, P. Boris,

S.P. Slinker, W.M. Fawley, and G. Joyce.

5. "Simulation and Analysis of the ATA Transport Experiment," by R.F. Hubbard, G.
Joyce, S.O. Slinker, and M. Lampe.

6. "Resistive Wire Conditioning," by R.F. Fernsler and S.P. Slinker.

7. "Simulation of IFR and Magnetic Transport in Accelerators," by S. Slinker, R. Hub-

bard, G. Joyce, M. Lampe, and R. Fernsler.

In addition, SAIC has been assisting the experimental branch evaluate data from earlier
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tracking experiments. This project requires the use of data manipulation programs on both

the IBM and the MAC II including the IBM spreadsheet, Quattro, and the graphically

oriented MAC spreadsheet, WINGZ. In preparation for the arrival of the IRIS worksta-

tion, an SAIC staff member has taken courses through the NRL training facility, the C

programming language and the UNIX operating system. These subjects will also be useful

for future numerical projects involving the IRIS and the Connection Machine.

0. Modified Betatron Theory and Experiment

1. Theory

High energy physics experiments require electron beams with energy in the TeV range

at relatively low average current. In contrast most industrial and defense related applica-

tions demand high average beam current in the energy range from a few MeV to approx-

imately 1 GeV. In addition, while the compactness of the accelerator is critical in most

commercial and defense applications, it plays only a secondary role in the high energy

physics experiments.

The development of the modified betatron accelerator at NRL is motivated by its

compact size and its potential to generate high current beams of several hundred MeV

energy. Extensive theoretical studies over the last few years have shown that the modified

betatron accelerator has current carrying capability substantially higher than the conven-

tional betatron. The improved current carrying capability of the modified betatron is due

to the toroidal magnetic field that controls the minor radius of the circulating electron

ring.

The current carrying capability of the modified betatron can be further improved by

adding a strong focusing field. Details of this technique have been presented at the Con-

ference on the Application of Accelerators in Research and Industry at North Texas State

University, November, 1986. Appendix RR contains the viewgraphs from this presentation

and Appendix SS includes a resulting publication in Nucl. Inst. and Meth. in Phys. Res.

B24/25, 805 (1987) entitled "Improving the Current Carrying Capability of the Modified

Betatron."

Following the successful experiments with multikiloampere electron beams injected

into the NRL modified betatron, the research effort has focused on efficient trapping and

confinement of the ring as a prelude to acceleration. In these studies, a 0.5-1.0 MeV, 1-4
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kA beam is injected along the 1-3 kG applied toroidal magnetic field B9 in controlling the

minor radius of the beam and are in agreement with the theoretical predictions concerning

high current equilibria in the modified betatron.

The dynamics of high current equilibria in the modified betatron are dominated by

the forces due to the self-field images of the beam. At the matching value of the betatron

magnetic field B,, the forces due to the images, the Lorentz force eve x B, (where e is

the charge on the electron and ve is the toroidal velocity) and the centrifugal force are in

balance, and the beam does not drift poloidally. After one revolution around the major
axis, the beam returns to the injector and strikes the back of the cathode. However, in the

high current regime, if the betatron field is less than the matching value, the equilibrium

position req shifts radially inward, and the beam drifts poloidally about the equilibrium

position. The poloidal displacement can easily be adjusted to be sufficient so that the beam

does not strike the injector after one turn. For a wide range of parameters, the poloidal

drift trajectory is closed, and the beam returns to the injector after a poloidal oscillation

(bounce) period. This drift motion has been observed and confirmed with several different

diagnostic techniques and is in very good agreement with theory. To achieve trapping, the

equilibrium position must be shifted radially inward during the poloidal bounce period so

that the beam does not strike the injector.

Within a narrow range of parameters, 'self-trapping' is observed with , 80% efficiency.

Self-trapping is discussed in detail in the book "High Brightness Accelerators," Ed. A.

Hyder, M. Rose and A. Guenther, p. 773, Plenum Publishing Corporation (1988) and is

included in this report in Appendix TT. 'Self-trapped' rings with circulating current of

2-3 kA remain for 4psec (;, 200 revolutions around the major axis). Confinement for 10

psec is observed at 1 kA.

'Self-trapping' results from the localized magnetic field associated with current flowing

in the cathode stalk during a second pulse that follows z 200 nsec after the main injection

pulse. This afterpulse occurs because the diode is not matched to the pulse forming line of

the injector. Because plasma closure has reduced the diode impedance at the afterpulse,

a 1-4 kA current may flow although the applied potential is only - 150 kV. Thus, the

magnetic forces are larger than the electron forces and the net component produces a

radial inward shift of the beam.

This explanation is supported by experiments with a current carrying conductor, i.e.,
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a kicker coil, that is oriented along Be. When a short cathode stalk is used and the kicker

is not energized, the afterpulse does not significantly affect the beam. However, when

the kicker is energized, the shift is similar to that produced by a long cathode stalk with

afterpulse. The observed poloidal drift trajectories agree well with calculated orbits.

The use of a kicker coil for trapping avoids the disadvantage of 'self-trapping', namely

that the conditions for trapping cannot be adjusted independently from the injection con-

ditions. However, such a coil is unattractive. It must be driven with a sufficiently long

pulse so that the radius of the poloidal drift trajectory can be reduced by acceleration,

and the coil represents another obstacle that the beam must avoid. Therefore, a new trap-

ping scheme is being developed. In this scheme, an induction field is applied to a gap in

the torus. During the poloidal bounce following injection, the beam is accelerated by this

applied field and rq is shifted. A preliminary experiment to test this scheme has been per-

formed. This is explained in detail in "A Novel Trapping Scheme in the Modified Betatron

Accelerator," published in the Proceedings of the IEEE Particle Accelerator Conference,

Vol. 2, March, 1987 and contained in Appendix UU of this report.

Devising a scheme for extraction of the beam from the modified betatron turned out

to be a formidable problem. A preliminary study showed that when the energy mismatch

of the beam increases slowly in time in relation to the bounce period, the ring follows the

radially outward motion of its equilibrium position while its radius of rotation around the

equilibrium position (i.e. the fast motion) remains yery small. Analytic expressions were

derived which provided radially symmetric magnetic fields for any given radial dependence

of the field index. Based on these expressions, computer runs were made for the beam

dynamics for various radial configurations for the field index, such that the beam would

be shifted radially outward and eventually be captured by the extractor. These runs

were not successful since the radial velocity of the beam became prohibitively large and

the beam would hit the walls of the extractor. Another extraction scheme was studied

in which the extractor was made of a ferromagnetic material. In the region surrounded

by the ferromagnetic material, the magnetic fields are zero and the electron ring, as it

shifts into this region, by intentionally mismatching the magnetic flux and the betatron

magnetic fields, unwinds into a straight beam. Extensive use was made of the Poisson code

to compute the magnetic fields for various configurations of the ferromagnetic material.

External coils were also added to eliminate the distortion of the fields in the vicinity of

the ferromagnetic material due to the presence of the external fields. The computed fields
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were used in computer runs to study the beam dynamics. Again, the beam extractions

proved to be not feasible, since the amplitude of the cyclotron motion due to the toroidal

magnetic field increased to prohibitively large values as the beam reached the extractor.

Finally, an extraction scheme was devised that is easily realizable and has the potential

to lead to a very high extraction efficiency. The proposed extraction scheme is based on the

transformation stationary helix, in the toroidal direction, by exciting the resonance that

naturally exists for some specific values of the ratio of the vertical to toroidal magnetic field.

Transformation of the ring into a helix is achieved with a localized vertical magnetic field

disturbance that is generated by an agitator coil. As the minor radius of the helix increases

with each passage through the gap of the agitator coil, the electrons eventually reach the

extractor, which has the property that all the magnetic field components transverse to its

axis are equal to zero. Thus, the electron ring unwinds into a straight beam. Analytic
expressions were derived for the agitator and were used in computer runs to study the

proposed extraction scheme. As expected, the electrons of the ring performed a coherent

motion and a stationary helix formed in the toroidal direction. With successive passes

through the disturbance of the agitator, the radial excursion of the orbit increases until

the electrons reach the extractor, which is located at a slightly greater radial distance

than the agitator coil. The extractor is a completely enclosed conducting structure so that
fringing fields are absent. Special consideration was given in its design so that the effects

of the unwanted component of the toroidal magnetic field, which is normal to the direction

of the extraction pipe, are minimized. Computer runs that were made with the agitator

and the extractor present, demonstrated that this is a workable scheme for extraction of

the beam in the modified betatron. Viewgraphs from presentations from three meetings

of the APS-PPD (1986, 1987, 1988) describing the various extraction schemes are given

in Appendix VV. Appendix WW gives details of the latter scheme "Beam Extraction

Scheme from the Modified Betatron Accelerator," Phys. Rev. Lett. 61, 86 (1988) as

does Appendix XX, "Studies of a Multi-Kiloampere Electron Ring Confined in a Modified

Betatron Accelerator," Proceedings of 'Beams 88'.

2. Experiment

The NRL Modified Betatron Accelerator is a toroidal high-current induction acceler-

ator. Like the conventional betatron, it has a vertical field which keeps the electrons in

equilibrium and accelerates them. As of 10 December 1989, studies have been done on

the beam dynamics without any acceleration. Data on the betatron bounce period and
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equilibrium position had been taken. The vacuum chamber in these experiments was made

of stainless steel, and had a magnetic field diffusion time of hundreds of microseconds.

One of the problems associated with a pulsed experiment is that there is a great deal

of electrical noise on the data cables. In order to reduce this problem, the feasibility of

using intensity-modulated fiber-optic links was investigated. A commercial product was

located, and tests indicated that it would eliminate most of the noise. The data-taking and

display software system in use was judged to be inefficient and inadequate. A new system

was designed and implemented. Another problem is that there was not time-resolved

information on the beam position. Accordingly, probes to measure the poloidal field of

the beam were constructed, along with the necessary electronics. In addition, a modified

rogowski coil to measure the beam displacement above the midplane was constructed. The

poloidal field probes, along with other diagnostics, were used to document a discrepancy

between the observed and predicted beam bounce period.

Several hypotheses to account for this discrepancy were formulated. The first assumed

that no image currents flowed in the chamber, but this was disproved by measurement.

The second assumed perpendicular electron velocity, but it was found that even a 50%

velocity did not account entirely for the discrepancy. The presently accepted hypothesis,

suggested by J. Golden of NRL, is that there are low-energy electrons in the chamber.

A very simple model was formulated, and a software system to solve it and display the
results was implemented. It was found that the presence of low-energy electrons could

greatly affect the bounce period.

For beam equilibrium in the low-current regime (i.e. for high energy), the field index

must be between 0 and 1. In order to check this, a magnetic probe and gradiometer was

developed jointly with NRL. Since the index must be measured at many points inside the

chamber, a software system to map and display the index and field was developed. This

system was used to study the magnetic field penetration in the stainless steel chamber,

and the new fiberglass-epoxy chamber. The field index was found to be outside the stated

limits in some regions (e.g. near the ports). This problem was corrected.

In addition to the requirement of the index, the vertical field flux must satisfy a

condition for the beam equilibrium to remain inside the chamber. This was measured in

collaboration with FM Technologies. The flux was adjusted to satisfy the requirements.

In order to accelerate the beam, it must be prevented from hitting the diode after one
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bounce period (trapped). To do this, a set of external current-carrying coils was designed

and constructed, with the help of personnel from SFA. Beam trapping in the stellatron (a

modified betatron with stellarator windings) was numerically investigated. Both internal

and external current-carrying coils were considered.

After the beam is accelerated, its energy must be measured. At the suggestion of

C. Kapetanakos of NRL, detection of photoneutrons from the threshold of the giant res-

onance was investigated. Various targets, with thresholds from 1.7 MeV to 10 MeV were

considered. Yields from both the target and the surrounding structure were calculated.

Suitable detectors were located. Various methods to move the beam to hit the target were

considered.

P. Studies of the NRL Dense Z-Pinch Experiment

The primary focus of the research carried out on the physics of the NRL dense Z-

pinch (DZP) has been on the neutron generation. The experimental observation of some

109 neutrons per pulse and observed scaling of total neutrons varying with current at

N - I1 has, until recently, not been understood. It is now believed that the neutrons

are produced through a beam target interaction with the beam arising from the strong

electric fields associated with the m = 0 instability ultimately responsible for the plasma

column disruption. An analysis of the electric fields accompanying the column collapse

has been carried out and is described in detail in Appendix YY. This report, entitled

"On the Relationship Between Neutron Yield and Plasma Current in the Dense Z-Pinch,"

will be submitted to Physics of Fluids. It was shown that the maximum amplitude of

the z-component of the electric field occurs late in the fibre collapse. Acceleration of a

high energy deuteron beam would then occur late in pinch collapse and hence any beam-

target interaction would also occur late in the collapse. According to the analysis, the

acceleration and beam-target neutron production would occur in a time on the order of

one to two nanoseconds, consistent with experimental observation. Assuming that a beam

of deuterons does form with a background temperature equal to the Bennett temperature,

it has been shown that, depending on the mean beam energy, the total neutron yield scales

as I c' , 8.6 < a < 11.6. The value of a represents the mean beam energy in KeV relative to

the deuterium-deuterium cross-section. The details of the beam-target analysis are given

in Appendix YY.

In order to determine if a high energy deuteron beam forms during the fibre collapse,
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a particle simulation of the collapse dynamics has been carried out. Although the work

is currently in progress, sufficient evidence exists to support the early analysis leading to

the generation of large electric fields and accelerated deuterons. The simulations are being

performed with a hybrid model, particle ion and fluid electrons, due to Hewett.6 The hybrid

model treats a plasma-vacuum interface thus allowing reasonably realistic edge conditions

to be simulated. The density of the plasma varies from 1020 particles/cm 3 at the column

center to a few percent of this value at the column edge. The axial plasma current is

assumed to be uniform across the plasma column initially. The total value of axial current

is held fixed by specifying a value of the B9 component of the magnetic field at some outer

boundary to be constant in time. At subsequent times, the plasma current distribution is

determined.

Simulations to date have shown the column to collapse on the expected time scale of

one to two nanoseconds with large electric fields being generated. The initial simulations

have been carried out using a much reduced particle number than the code is capable of

treating. Typical results are shown in the following figures. Figure P.1. shows the initial

distribution to 4000 particles in "r" and "z", the axial averaged radial density distribution

and the radial averaged axial density distribution. The electrons have a uniform tempera-
ture of 100 ev, the ions are cold and the total axial current is 500 kiloamperes resulting in

the B9 profile shown in Figure P.2. Figure P.3. shows that the unstable pinch has already

collapsed to 1/2 the original radius. More detail on the m = 0 nature of the instability is

shown in Figure P.4. The maximum value of the Be field is seen to occur where the m = 0

perturbation is expected, namely, in the middle of the column's length. Figure P.5. shows

the radial and axial electric fields building up to a value of roughly 10' volts per meter.

The investigations have shown that particle simulation techniques can model the key

features of the DZP unstable collapse. The work is continuing and will be directed to-

ward resolving the final phase of the pinch collapse, the generation of fast deuterons and

eventually an understanding of the deuteron-target interaction responsible for the neutron

production in the dense z-pinch.
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Q. Experimental Studies of the Effects of Induced Spatial Incoherence (ISI) on

Laser-Plasma Instabilities

The direct drive approach to laser fusion requires a high degree of illumination unifor-

mity in order to reduce the probability of catastrophic break-up of the fusion target before

reaching the thermonuclear regime. NRL has pioneered the use of Induced Spatial Inco-

herence (ISI) as a beam-smoothing technique. ISI has been found, however, not only to

provide a high level of uniform illumination but also to suppress a number of important in-

stabilities associated with the reflection and absorption of the incident laser energy such as

stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS). The effect

of ISI on SRS and SBS as well as plans for extending the technique of ISI beam smoothing

to 0.25 pm KrF gas lasers is discussed in an article entitled "Laser-Plasma Experiments

at the Naval Research Laboratory," in the Proceedings of the Twelfth International Con-

ference on Plasma Physics and Controlled Nuclear Fusion Research (1988). This report is

included here as Appendix ZZ.

The effect of ISI on other laser-plasma instabilities, most notably the two plasmon

decay instability, had not been studied either theoretically or experimentally. Two plasmon

decay is important to laser fusion because electrons can be accelerated to high energies

by electron plasma waves (plasmons), thus preventing efficient pellet compression. A

detailed experiment was performed comparing the effects of laser bandwidth and ISI beam

smoothing on the two plasmon decay instability as inferred from 3w,/2 harmonic emission

obtained with the use of ISI or other beam smoothing techniques. It appears possible that

the two plasmon decay instability and the concomittant energetic electron and preheat

phenomena observed in many earlier experiments may be less important than previously

thought for laser drivers with ISI beam smoothing. This work was presented at the 30th

Annual Meeting of the American Physical Society Division of Plasma Physics. A detailed
article is in preparation for submission to Physical Review Letters. An abstract of the APS

presentation follows.

The Effect of Bandwidth and ISI on 3w/2 Emission at 0.53 um, T.A. PEYSER*, C.K.
MANKA, S.P. OBENSCHAIN, J.A. STAMPER, A. MOSTOVYCH, and K.J. KEAR-
NEY, Naval Research Laboratory. Plasma Physics Division, Washington, DC 20375-5000
- Plasma waves produced by quarter-critical density instabilities can excite energetic elec-
trons leading to preheat of ICF targets and poor compression. 3w/2 emission is a signature
of such quarter-critical instabilities.

Time-integrated spectrally- and spatially-resolved measurements were made of 3w/2
emission from planar CH targets irradiated at 0.53 pm with the Pharos III laser. Mea-
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surements were taken over a wide range of incident laser energies (25J < E < 250J) and
over a wide range of laser bandwidths (0.01 A < 6A < 10 A). 3w12 emission was found to
decrease by an order of magnitude at the 10 A broad bandwidth compared with the 0.01
A narrow bandwidth. An additional reduction in the 3w/2 emission was observed with the
use of induced spatial incoherence (ISI).'
* SAIC, McLean, VA 22102.
1 R.H. Lehmberg and S.P. Obenschain, Opt. Commun. 46, 27 (1983).

R. Electron Beam Energy Deposition in a KrF Laser

This project examines the techniques presently used to calculate energy deposition by

e-beams in a KrF laser, to determine whether these calculations will continue to be valid

for higher power systems.

The successful scaling of KrF lasers to higher energy output is an important part of

the program plan for direct-drive laser fusion. The new NRL KrF laser, Nike, is designed

to demonstrate the practicability of scaling KrF lasers to high power, as well as to test the

use of the laser in accelerating thin targets. A central feature of the Nike system will be

the use of energy deposition by electron beams to pump the amplifier. The ability to scale

this pumping scheme to higher powered systems is clearly one of the central elements in

the KrF program plan.

To determine the range of parameters within which present calculations of e-beam

deposition are valid, we carried out a systematic discussion with physicists active in this

field, and obtained the original papers on which these calculations are based. We then

analyzed the physics elements both included and omitted in various versions of the Monte

Carlo codes, and also analyzed the physics base for calculating e-beam deposition, ranging

from the seminal work of Bethe, Rose, and Smith in 1938 to the work of J. Jacob and

his colleagues in 1973-1982. To test the sensitivity of deposition calculations to physics

input, we constructed a simple computer model of electron slowing and diffusion in a KrF

gas (simple means that the code runs in less than a second on an 80286/287 personal

computer). We compared the results with output from Monte Carlo calculations, for

several beam energies and other parameters. In the present phase of the project, we are

carrying out the same process of survey-identification of physics elements - analysis and

calculations to delineate the parameters for which the existing Monte Carlo techniques

might fail. A report of the first phase of this work is in preparation.
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S. Experimental Study of Laser-Plasma Expan3ions in Magnetic Fields:

Laboratory Simulations of Space Plasmas

Laser-produced plasmas are similar in many important respects to plasmas encoun-

tered in our solar system and beyond. Laser plasma expansions into ambient magnetic

fields can provide laboratory scientists a rare opportunity to study plasma processes and

instabilities usually encountered only in space or astrophysical contexts. Over the past two

years, SAIC personnel developed new diagnostic techniques for the study of laser-produced

plasmas and were directly involved in detailed experiments on these phenomena.

A fast-framing camera developed by Kentech Instruments, Ltd. of Great Britain was

used to obtain two-dimensional images of the laser produced plasmas with time resolution

between 120 picoseconds and 5 nanoseconds. This was the first use of this new technology

in plasma physics and was reported at the SPIE 32nd Annual International Technical

Symposium on Optical and Optoelectronic Applied Science and Engineering in 1988. It

was published in the Proceedings of the Conference and appears here as Appendix AAA,

entitled "Nanosecond Framing Photography for Laser-Produced Interstreaming Plasmas."

The use of this diagnostic permitted NRL scientists to make the first laboratory study

of a large-larmor radius interchange instability that had been previously observed only in

barium release space experiments. These experiments were reported at numerous scientific

meetings and were the subject of several publications including a Physical Review Letter,

59, 2299 (1987), "Large-Larmor Radius Interchange Instability" (Appendix BBB) and

an NRL Memorandum Report 6154 (1988), "Structuring Processes in Expanding Laser-

Produced Plasmas" (Appendix CCC).

A second series experiments with hollow cylindrical targets studied the formation of

plasma jets, the propagation of plasmas across magnetic fields and various structuring

instabilities in addition to the large larmor radius instability mentioned above. Two pa-

pers were presented at the 19th European Conference on Laser Interaction with Matter

held in Madrid in 1988 entitled respectively "Laboratory Laser-Produced Astrophysical-

Like Plasmas" (Appendix DDD), and "Jets in Laser-Produced Plasmas" (Appendix EEE).

Two additional detailed papers on the velocity shear instability observed in these experi-

ments were presented first at the American Physical Society Topical Conference on Plasma

Astrophysics held in Santa Fe in 1988 and then at the 30th Annual Meeting of the Ameri-

can Physical Society Division of Plasma Physics. A lengthy article summarizing the work

on the cylindrical jets is currently in preparation and will be submitted to The Physics of
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Fluids. Abstracts of the presentations at the above two meetings respectively follow.
Jets in Laboratory Laser Produced Plasmas,+ T.A PEYSER,*, C.K. MANKA, B.H.

RIPIN, E.A. MCLEAN, J.A. STAMPER, K. KEARNEY, A.N. MOSTOVYCH, J. GRUN,
and J. CRAWFORD,** Plasma Physics Division, Naval Research Laboratory,
Washington. D.C. 20375-5000. Laboratory, laser-produced plasmas have many properties
similar or scalable to astrophysical plasmas. We describe several such experiments per-
formed with the NRL Pharos III laser facility. Laser-produced plasma jets with propagation
perpeadicular to the magnetic field have been studied with a variety of diagnostics, includ-
ing fast-framing camera photography and dark-field shadowgraphy. Large well-defined jets
are observed to persist over long distances and for surprisingly long times after plasma pro-
duction. Collimation of the expanding plasma into a jet occurs in the presence of strong
magnetic fields (up to 10 kG).' In addition, we will examine the effect of magnetic fields
on the Kelvin-Helmholtz instability.
+ Supported by DNA.
*SAIC McLean, VA 22102.

** Southwest Texas State U. San Marcos, TX 78666.
'C.K. Manka, T.A. Peyser, B.H. Ripin to be published.

Late-Time Large-Scale Structures In Laser-Produced Plasmas,* C.K. MANKA, T.A.
PEYSER,** B.H. RIPIN, E.A. MCLEAN, J.A. STAMPER, A.N. MOSTOVYCH, J. GRUN,
and J. CRAWFORD, +  Naval Research Laboratory. Plasma Physics Division,
Washington, D.C. 20357-5000-Recent NRL experiments have produced cross-field plasma
jets and other centimeter scale plasma structures which persist to several microseconds.
Laser energies were 30-300 J at 1.05 pm wavelength with FWHM 4 ns. Targets were
of various geometrical shapes, and an external magnetic field of up to 10 kG was applied.
The development of these structures has been studied using emitted light fast framing pho-
tography, laser probing shadowgraphy and other diagnostics. The plasma structures are
compared to those predicted from various plasma instabilities (such as Rayleigh-Taylor,
Kelvin-Holmholtz, etc.) which may be applicable in this parameter regime. Scaling to
atmospheric and astrophysical plasmas is discussed.
* Supported by the US DNA.
** SAIC, McLean, Virginia 22102.
+Southwest Texas State University, San Marcos, TX.

T. MHD Solar Coronal Plasma Code

During this period, SAIC wrote a numerical code to compute MHD equilibria in solar

coronal arcade geometries, i.e. geometries symmetric in z. This code allows the footpoint

displacement and the entropy to be specified, rather than the z-component of the magnetic

field and the pressure. The latter approach, which has been used by other authors in the

past, leads to bifurcations that have been suggested as the cause of solar flares, coronal

mass ejections, and other coronal activity. In collaboration with Dr. Chen of NRL, SAIC

used the above code, and found that the former, more physically relevant, specification of
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equilibrium quantities does not lead to bifurcations, and that, indeed, equilibria exist for

arbitrarily large values of footpoint displacement d and entropy s. For very large values

of d and s the configuration opens up, but does not develop the singular, sheet current,

configurations suggested by Sturrock and co-workers. This work was reported in NRL

Memorandum Report 6402 (1988), entitled "Equilibrium of Solar Coronal Arcades," and

appears here as Appendix FFF.
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MEGAVOLT, MULTI-KILOAMP

Ka-BAND GYROTRON OSCILLATOR EXPERIMENT

I. Introduction

Gyrotron oscillators have proved to be efficient sources of very high-power radiation in

the microwave and millimeter wave regimes. Conventional gyrotrons use thermionic

cathodes, with typical operating currents of -<50 A at voltages of -100 keV, and have

demonstrated hundreds of kW of average power at efficiencies approaching 50%. However,

some future applications of millimeter-wave radiation, such as radars and high energy linear

electron (and positron) accelerators, may require substantially higher peak power levels than

have been produced using conventional thermionic microwave tube technologies. The pursuit

of higher microwave powers inevitably requires the application of higher beam powers,

implying operation at higher currents and/or voltages. Gyrotron scaling to high current, high

voltage operation is relatively favorable, I and a number of high voltage (>250 kV) gyrotron

experiments have been reported in recent years'that take advantage of the substantially higher

currents and voltages available for short pulses (typically, -5100 nsec) from high voltage

pulseline accelerators driving plasma-induced field emission cathodes. Among these are a set

of experiments from the P.N. Lebedev Physics Institute of the Soviet Union that demonstrated

23 MW at 40 GHz in a linearly-polarized (i.e., non-rotating) TE1 3 mode with 5% efficiency,

using a 350 keV electron beam.2 Studies of gyrotrons driven by pulseline accelerators or

Marx generators have also been carried out at the University of Michigan and at the

University of Strathclyde in the United Kingdom.4

Manuscript approved January 24, 1989.
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In 1984, a program was initiated at the Naval Research Laboratory to investigate very

high power gyrotron oscillators driven by intense relativistic electron beams. These

experiments were designed to operate in Ka-band, with the principal interest at 35 GHz. The

early experiments were carried out on a compact Febetron pulser capable of producing a 600

kV, 6 kA, 55 nsec pulse into a 100 0 matched load.

A key requirement for intense beam gyrotrons, unlike most other high power

microwave devices driven by intense relativistic electron beams, is to produce an electron

beam with a large amount of momentum transverse to the applied axial magnetic field prior to

injection into the interaction region. The first series of experiments attempted to produce the

required beam a, where cc is the ratio of transverse to parallel momentum, by emitting

electrons across magnetic field lines at the cathode to produce some initial nonzero value of ax,

and then adiabatically compressing the beam into the gyrotron cavity to increase a while

positioning the beam to couple strongly to the desired waveguide mode. These experiments

operated at approximately 350 kV and 800 A, and produced approximately 20 MW of output

power at 35 GHz with 8% efficiency in a "whispering-gallery" TE6 2 mode. 5

When this approach was found to lack flexibility, a new approach was implemented, in

which the diode was designed to emit primarily along the direction of the axial magnetic field,

i.e. to produce a very low initial beam ox, and the at was then sharply increased by transit

through a localized nonadiabatic dip in the axial field, produced by a "pump" magnet, before

being adiabatically compressed into the gyrotron cavity. This allowed the use of a very

simple diode geometry, and provided a separate experimental control for beam a that greatly

increased the experimental flexibility.
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For this second series of experiments, the Febetron pulser was operated at its full rated

charge voltage and mismatched upward at the diode to produce voltages higher than 600 kV

(up to 900 kV) at lower currents. Due to the high impedance of the pulser, it was impossible

to employ relatively low impedance diodes, such as diodes with beam-scraper anodes, without

substantially reducing the operating voltages. The experiments were therefore carried out in a

foilless geometry employing a magnetic-field-immersed, cylindrical graphite cathode with a

sharpened edge, in which the cylindrical vacuum vessel served as the anode. In this

geometry, the diode produces a beam current determined by the space-charge limited flow of

the annular beam within the cylindrical vacuum enclosure in the vicinity of the cathode. In

general, this was more current than could be effectively employed in the experiment, and the

use of a "pump" magnet to increase the average beam a to a level sufficient to drive the

gyrotron interaction invariably resulted in the loss of a sizable fraction of the beam current.

Current loss occurred due to electron mirroring during the adiabatic compression stage, due in

part to the effects of beam space charge on the electron beam kinetic energy, and in part to the

effects of pitch-angle spread in the beam. It was not clear exactly where the reflexing

electrons were collected, or whether they caused a space-charge build-up that effected the

performance of the diode.

Based on single particle simulations of the effects of the pump magnet on electrons

entering with a small initial value of a and random gyrophase, it is apparent that the pump

magnet has the effect of greatly magnifying any initial spread in pitch angle. Fortunately,

gyrotron oscillators are not very sensitive to such pitch angle spreads. However, one result of

a large electron beam pitch angle spread is to limit the average beam a achievable by this

3



technique, since as the strength of the pump magnet is increased, the highest (X portion of the

particle distribution function will be reflected during the subsequent adiabatic compression

phase. Optimum high power operation generally occurred with pump strengths resulting in

the loss of half or more of the total beam current between the diode and the gyrotron cavity.

In addition, the diode voltage waveform was highly transient, with no true steady-state

conditions of current and voltage obtainable anywhere within the pulse.

The second series of experiments was carried out in both whispering-gallery TEm 2

modes and linearly-polarized TEIn modes. 6 '7 Results included a peak power of 100 MW at

35 GHz at 8% efficiency in a rotating TE6 2 mode, a peak power of 35 MW at 35 GHz in a

linearly-polarized TE1 3 mode through use of a slotted gyrotron cavity. The gyrotron signal

frequency could be step-tuned over the range 28 to 49 GHz in a sequence of TErn2 modes by

variation of the axial magnetic field. Results were in general agreement with the predictions

of steady-state gyrotron theory, with theoretical values of power and efficiency typically being

larger th",, experimental values by about a factor of two. However, due to the nonideal

voltage waveform provided by the Febetron pulser, the typical microwave pulse length was

only 15 nsec.

In order to extend these experiments to higher microwave powers and longer pulses, as

well as to gain some flexibility in the diode design in order to permit the production of a

better quality electron beam, these experiments were moved to the VEBA pulseline

accelerator, which can operate at voltages exceeding 1.5 MV and has a 20 a output

impedance and a 55 nsec FWHM pulse, of which approximately 40 nsec is relatively flat

(±3-5%). These new experiments initially employed a very similar experimental setup to that
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utilized previously in the Febetron experiments, except that the Q=250, TE6 2 cavity of the

100 MW experiments was replaced by a slightly shorter cavity with a cold-cavity Q of 180.

However, the best results have been achieved by replacing the foilless diode geometry with a

beam scraper diode. By varying the cathode-anode gap, the new diode geometry has

permitted control of the total current injected into the drift tube, and in addition, the more

planar cathode-anode geometry is believed to produce a lower spread in the initial beam pitch

angle, with the potential to produce a higher average value of cc in the gyrotron cavity.

Furthermore, in the new geometry, any reflexing electrons are likely to be collected on the

downstream side of the beam scraper anode, thus eliminating a possible space-charge build-up

problem present in the foilless experiment.

As a result of the higher beam power and improved beam quality, the output power has

been increased to approximately 250 MW at 35 GHz in a TE6 2 mode with an efficiency of

approximately 10%.

II. Experimental Setup

The 1.5 MeV VEBA pulseline accelerator with 20 0 output impedance and 55 nsec

voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive

plasma formation from a graphite cathode. Two diode geometries were employed. In the

first, the electron beam was produced by emission from the sharpened edge of a cylindrical

graphite anode in a simple foilless diode geometry. In the second, a more conventional planar

anode-cathode gap was used, in which emission takes place from the rounded edge of a

hollow cathode, and a small fraction of the total current is extracted from the diode through an

5



annular slot in the graphite anode. In either case, the beam is created in a uniform axial field

provided by the main solenoidal magnet.

Figure 1 illustrates the overall experimental setup employing the second of these diode

geometries. The initial transverse momentum is low, because the emission is predominantly

along the direction of the applied magnetic field. Downstream, the transverse momentum is

induced by transit through a localized depression in the axial field, which is produced by the

"pump" magnet. Finally, the beam is adiabatically compressed to its final radius by the cavity

solenoid. A Rogowski coil positioned between the pump magnet and the gyrotron cavity

measures the net current into the gyrotron. In order to achieve separate adjustment of the

electron transverse momentum, the magnetic compression ratio, and the final magnetic field

in the gyrotron cavity, each of the three magnets (i.e., the pump magnet, the cavity solenoid,

and the main magnet) is powered by a separate capacitor bank discharge. 6 By a proper !

selection of pump magnet strength and compression ratio, the beam diameter can be adjusted

to couple to the desired TE 6 2 mode in the cavity while the electron velocity pitch ratio a is

increased to a value near unity. The cavity itself is cylindrically symmetric with a diameter of d

3.2 cm and has a calculated cold-cavity Q of 180 for the TE6 2 mode. Beyond the cavity there

is a 5' output taper transition to a 120 cm long drift tube with diameter of 14 cm. Finally, a

one-meter-long output horn is terminated with a 32-cm-diam. output window.

In the foilless diode configuration, used in the earlier experiments, the beam current is

space-charge limited with a typical value of 10 kA; however, under the usual operating

conditions that maximize gyrotron microwave emission as a function of the strength of the

pump magnet, only one-third of this current actually reaches the gyrotron cavity. Due to
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emission from the edge of the cathode, the beam from this foilless diode possesses a relatively

large spread in pitch angle, which is greatly magnified by the pump magnet. This results in a

large uncontrolled loss of half or more of the beam current during the adiabatic compression,

as measured by the Rogowski coil, thereby limiting the achievable pitch ratio and potentially

causing space charge problems due to the reflexing electrons.

To improve the beam quality, the foilless diode was replaced by an apertured diode

configuration, in which a hollow ring-like cathode is placed from 1 to 2.2 cm from an anode

plate with an annulus cut in it to match the cathode ring. The mean diameter of the annulus

was 3.34 cm, and its radial extent was 1.5 mm. The anode functions in part as an emittance

filter, since it scrapes off the inner and outer edges of the annular electron beam produced by

the cathode, and in part as a control grid, since changes in the cathode-anode gap are a reliable

means to control the beam current, which is space-charge limited. A consequence of the use

of an apertured anode, rather than a foilless geometry, is the emission of a large amount of

cathode current (25-35 kA), with roughly 90% being scraped off before leaving the diode.

However, the more planar emission geometry and the controlled beam scraping provides the

beam with a lower initial ct and a smaller velocity spread before it enters the pump magnet

and beam compression regions. As a result, the beam quality is improved and the current loss

from the diode to the cavity can be reduced to approximately 10 to 15% under typical

conditions of gyrotron operation. This small fraction of reflected electrons is most likely to be

collected on the downstream side of the anode scraper plate, thereby preventing a build-up of

space charge anywhere in the system.
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The microwave measurement system consists of two separate detection channels, each

composed of calibrated "in-band" WR-28 components, including filters, attenuators and

directional couplers, and beginning with a small microwave aperture antenna positioned

within I cm of the output window. One aperture is maintained at a fixed position on the

output window, while the second is scanned. A band-pass filter limits the detected signal to a

narrow frequency band (1.6 GHz FWHM) centered at 35 GHz. These diagnostics as well as

the overall experimental setup are described in greater detail in Ref. 6. The changes affecting

the present work are in the diode region, the cavity Q, and the currents, voltages, and

magnetic fields employed in the experiment.

Ill. Experimental Results and Discussion

The waveforms for the diode voltage, diode current, cavity current, and 35 GHz

microwave pulses for a "typical" shot are shown in Fig. 2. The improved voltage waveform

and beam quality, compared to that described in Ref. 6, have generally permitted high power

microwave pulses with a duration of up to 40 nsec, nearly matching the duration of the flat

portion of the high voltage pulse applied to the diode. However, the microwave pulse is

subject to large shot-to-shot variation in amplitude and pulse shape. A set of measurements

were conducted as a function of beam energy, magnetic field, magnetic compression ratio,

and pump field amplitude, in order to find the optimum operating parameters.

Figure 3 shows a scan of the output mode of the device as a function of radius in both

I Er 2 and I E0 I 2 with a cavity magnetic field of B0=32 kG, a current of 2.5 kA, and a peak

diode voltage of 1.2 MV. The estimated experimental uncertainties are ±1.5 kG on the
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magnetic field, ±0.1 kA on the instantaneous current measured by the Rogowski coil, and

±0. I MV on the diode voltage, including the effect of voltage ripple during the voltage

flat-top. (The net current will be lower if current interception takes place between the

Rogowski coil and the gyrotron cavity. Fluorescent screen data taken subsequent to the

microwave measurements suggests that up to 20% of the current may have been intercepted

under these experimental conditions.) The peak beam kinetic energy should be corrected

downward by approximately 50 keV because of space charge depression, assuming an

average beam ax of 1.

The normalized beam radius (i.e., the ratio of the beam guiding center radius rb to the

cavity wall radius rw ) for this scan was approximately 0.725. However, there was some

spread in the electron guiding centers due to beam thickness (reflecting the 1.5 mm width of

the anode annulus) and finite decentering of the beam in the gyrotron cavity. This radius is

close to optimum for coupling to the circularly-polarized TE6 2 mode counterrotating to the

sense of electron gyration in the axial magnetic field. However, in the vicinity of 35 GHz, the

beam will also couple to the TE1 0 ,1 and TE 1 4 modes, and more weakly to the TM2 3 and

TM0 4 modes. The general shape of the measured profile in Fig. 3 fits reasonably well to the

TE 6 2 mode for both the radial and azimuthal polarizations of the rf electric field, and is

similar to that of Ref. 6. The peaks at small values of the radii may be due to parasitic

excitation of the TM0 4 mode. Mode purity at the output window may also be reduced by

mode conversion in the 50 output taper and horn. For instance, mode conversion to the TE6 1

mode might explain the higher than expected peak in I En 2 near the wall. A scan under
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similar experimental conditions with the foilless diode with its resulting poorer quality beam

revealed a higher content of undesired modes.

For the data of Fig. 3, the measured mode pattern can be used to calculate the total

gyrotron power by integrating over the output window, and correcting for the measured losses

in the detection system. This procedure has been described in detail elsewhere. 6 The power

estimate, which is based on the average of several shots per position in the scan, is 160 MW.

Subsequent data taken at a fixed position has shown the total equivalent output power to reach

a single-shot peak value of 275 MW, with 250 MW being measured on several occasions.

The single shot efficiencies, based on the Rogowski coil measurements of beam current,

varied from 9 to 14%. Based on error bars in the averaging process and in the calibration of

the various multiplicative factors, the overall uncertainty of the power values is estimated to

be less than 3 dB.

Figure 4 shows starting current and output isopower curves for the gyrotron interaction

with the counterrotating TE 6 2 mode, calculated from a steady-state model 8 for B0 =32 kG.

The beam current is assumed to scale as V1.5 with a maximum value of 2.5 kA at 1.15 MV,

and the beam (x is assumed to scale linearly with V, with a maximum value of a=l at 1.15

MV. The starting current and isopower curves are calculated assuming a half-sinusoidal

rf-field profile along the cavity axis with a length of 3.5 cm and a hollow beam with a radius,

normalized to the cavity wall radius, of 0.725. The dotted line models the behavior of the

electron beam current during the rise of the voltage waveform. The effect of increasing

voltage on the coupling to this mode may be inferred from this figure. As the voltage (and

current) rise to their flat-top values, the interaction will begin at the left of the figure, where
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the beam line crosses the starting current line labelled Ithr, and then progressively tune to

higher powers as the voltage and current continue to rise. The line ends at 2.5 kA and 1.15

MeV, and corresponds to predicted operation outside of the starting current curve, i.e. in the

"hard excitation" regime, with a peak power of approximately 400 MW. Aside from the peak

power predictions, this simulation is in reasonable agreement with the experimental

observations.

In order to better understand the time-dependent nature of the gyrotron operation, as

illustrated in Fig. 2, we have carried out a set of slow-time-scale single-mode time-dependent

simulations of gyrotron operation for the approximate experimental conditions corresponding

to the measurements shown in Fig. 3. Figure 5 shows a series of time-dependent simulations

of the gyrotron operation, 9 employing a simulated VEBA voltage waveform that models the

leading edge of the pulse, the duration of the approximately flat portion of the voltage

waveform, and a "typical" short-duration voltage "spike" during the "flat-top." These

simulations employ the same sinusoidal if-field profile used for the steady-state simulations,

and assume the same dependence of current and beam a on voltage. For the four runs shown,

only the magnetic field was varied. At the lowest magnetic field, B0 =31 kG (Fig. 5a), the

microwave signal occurs only during the rise and fall of the voltage waveform, and there is no

interaction at the voltage flat-top. The next case (Fig. 5b), for B0 =32 kG, corresponds to the

steady-state simulations of Fig. 4. In this case, the microwave signal grows substantially

during the leading edge of the voltage pulse, and persists up to the voltage flat-top. Figure 5b

demonstrates that the full voltage of the flat-top, corresponding to the upper end point of the

beam line in Fig. 4, results in a highly detuned state of the gyrotron interaction, corresponding
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to "hard excitation." This is evident because the short-duration voltage spike modeled at

approximately 45 nsec detunes the interaction further, causing the output power to fall off

dramatically, and the power does not begin to recover until the voltage falls below the flat-top

voltage. This case agrees well with the steady-state simulation of Fig. 4, and the peak power

predicted by this simulation exceeds the best experimental value by approximately a factor of

two, as in Fig. 4. At B0 =33 kG (Fig. 5c), the voltage flat-top no longer corresponds to hard

excitation, since the microwave signal falls off during the voltage spike, but then recovers

during the remainder of the flat-top. Finally, at B0 =34 kG (Fig. 5d), the simulation shows the

microwave power to follow the voltage signal for the duration of its flat portion including the

voltage spike, and the power actually increases during the voltage spike.

For the assumed voltage waveform, the best agreement between the experimental

microwave signals and the predictions of the single-mode time-dependent code, as a function

of magnetic field, occurs at the experimental value of B0 =32 kG. However, the experimental

values have error bars, as noted previously. In addition, the predictions of the time-dependent

simulation depend ii part on the exact shape of the axial rf-field profile assumed for the

interaction, and small variations in the assumed length of the sinusoidal profile, or in

substituting an approximately equivalent gaussian profile for the sinusoid, will change the

required values of the externally-applied axial magnetic field by one to two kG. The

time-dependent simulations of Fig. 5 suggest that the microwave signal should last longer and

reach higher power as the magnetic field is increased beyond the best experimental value of

B0 =32 kG. In general, this is not observed in the laboratory. A possible explanation for this

experimental observation lies in the area of mode competition. Specifically, as the magnetic
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field is increased, it becomes increasingly probable that a higher frequency mode will start

oscillation during the rise of the voltage waveform, and will interfere with the start-up of the

TE 6 2 mode at 35 GHz. The most likely competing mode in this situation is the

counterrotating TE7 2 mode. Time-dependent simulations carried out for the TE7 2 mode

indicate that it should begin to compete with the start-up of the TE6 2 mode at approximately

34 kG. A thorough analysis of the effects of mode competition and other transient

phenomena on the operation of a high voltage gyrotron would require the use of true

multimode simulations, such as the fast-time-scale particle-in-cell simulations carried out by

A.T. Lin et al. for the parameters of Ref. 6.10

In summary, a 35 GHz gyrotron oscillator has successfully operated at voltages

exceeding I MeV and currents of several kiloamps to produce peak power levels of up to a

quarter of a GW in a TE 6 2 mode at peak efficiencies exceeding 10%. Its interaction

efficiency has been improved compared to earlier experiments by the use of an apertured

diode, in piace of the foilless diode configuration used previously, which has allowed better

control of the current injected into the gyrotron and better beam quality. By comparison, an

earlier TE 6 2 experiment operating at approximately 800 keV and 1.6 kA at the same

frequency in the same TE 6 2 mode achieved 100 MW at 8% efficiency. Overall experimental

operation is in general agreement with the predictions of theory, with the best experimental

powers within a factor of two of the theoretical predictions.
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THE DESIGN OF A 100 GHZ CARM
OSCILLATOR EXPERIMENT

I. Introduction

High-power millimeter waves have many important applications. For example,
millimeter-wave radar systems will yield higher target resolution than lower-frequency
systems for a particular antenna aperture. Communications systems may benefit from a
more strongly-focused radiation beam and from the larger information bandwidth available
as the frequency is increased. Electron-cyclotron-resonance heating of fusion plasmas will
requirc high-frequency radiation when strong magnetic fieids are used to confine the
plasma.[lI]

The cyclotron auto-resonance maser (CARM) is a promising source of high-power
radiation in the 100 GHz to 500 GHz frequency range that may impact the requirements of
advanced systems for applications such as those mentioned above. The requirements for
guide magnetic-field strength and electron energy in a CARM may be advantageous when
compared with competing devices. Compared with a gyrotron, the required magnetic field
strength requirement is substantially reduced. The CARM can provide mm and sub-mm
radiation in the first electron-cyclotron harmonic using currently available magnet
technology. For example, the experiment at the Naval Research Laboratory is designed to
produce powers in excess of 10 MW at 100 GHz with a 600 kV beam and a magnetic field
of only 25 kG, while a first-harmonic gyrotron operating at 100 GHz with the same beam
voltage requires a magnetic field of over 70 kG. Compared with a conventional
magnetostatic-wiggler FEL, the CARM can reach sub-him wavelengths with a lower
electron-beam voltage. For example, a 500 kV CARM oscillator has the potential for
efficient multi-MW operation at wavelengths down to 0.75 mm with a 100 kG
superconducting magnet; a 500 kV FEL oscillator with a 3 cm period magnetic-wiggler will
produce radiation at 4.5 mm.[2]

The CARM can be either an amplifier or an oscillator. An oscillator design removes
the need for an input source and input couplers. In addition, amplifier operation requires
suppression of backward-wave instabilities.

The CARM oscillator, like the gyrotron oscillator, is a cyclotron maser. In contrast
to the gyrotron, which requires an electron beam with a large momentum pitch angle
(typically ptJpz > 1), the CARM has an electron beam with a low to moderate pitch angle
(p../Pz < 0.7) and a substantial amount of axial momentum. The CARM benefits from the
doppler upshift provided by the axial velocity of the beam: the operating frequency of the
CARM is approximately y2fc, where fc is the relativistic cyclotron frequency associated
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with the axial magnetic field, and y is the usual relativistic factor. The dispersion relation
for the NRL CARM is shown in Fig. 1. The CARM interaction corresponds to the upper
intersection of the beam cyclotron mode and the waveguide mode.

There is a fairly extensive literature on the theory and simulation of CARMs and
other doppler-shifted cyclotron maser configurations [3]-[ 10]. The only experimental
studies reported to date, however, have been the experiments of Botvinnik et al [1 1],[12],
who achieved 6 MW at a wavelength of 4.3 mm and 4% efficiency, and 10 MW at a
wavelength of 2.4 mm and 2% efficiency. A major objective of the present experiment is
the achievement of higher efficiency, -20%, which is predicted by theory for the CARM.

Fig. 2 shows the important components of the experiment. The electron beam is
launched from the velvet emitter surface into a uniform magnetic field provided by the gun
solenoid. A magnetic kicker supplies transverse momentum. Adiabatic compression in the
input taper region increases the momentum pitch ratio to 0.6 in a magnetic field of 24 kG.
The beam generates microwaves in a Bragg cavity[ 13], and is collected on the wall of the
output taper.

Competition between the desired mode and other available modes can lead to
unstable operation; the density of modes which can be excited by the CARM interaction is
generally high. In addition, gyrotron modes, which are nearly cut-off and operate near the
cyclotron frequency, also present significant competition. Electron beam velocity spread,
which leads to lowered efficiency, is also a critic.l factor in the design of a CARM
oscillator. This paper presents the design of an electron gun and a microwave resonator to
achieve a highly efficient CARM.

II. Design of the Bragg cavity

In order that the CARM oscillate in the correct mode at the Doppler-shifted
frequency, the oscillation-threshold current of the CARM mode should be lower than the
threshold currents of competing modes. The cavity and beam parameters chosen for this
experiment are based on the theoretical study of the CARIM interaction given in Ref. 14.
As shown in that paper, the efficiency of the CARM is optimized by choosing a normalized
interaction length . = 8, and a normalized wave amplitude F = 0.2, where t and F are
defined below.

j . j 2  (OL(1

1 -- Z/Oph

and,

F - CmnJms(kmnro)X( -4 (2)

Yomoc 213Io(1 - p(2)
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where H is the mode-equivalent-voltage amplitude[121, Pz is the axial velocity of the
electrons, P3ph is the phase velocity of the radiation, kmn is the wave number of the
radiation, ro is the mean radius of the electron beam, P3±o is the transverse velocity of the
electrons, L is the length of the cavity, w is the angular frequency of the radiation, and Cmn
is a beam-wave coupling coefficient that depends on the mode indices.[ 15]

Gyrotron modes are the most dangerous competing modes because the gyrotron
interaction is the strongest cyclotron-maser interaction; the cavity must be kept short to raise
the threshold currents of the gyrotron modes. The Q of the resonator is 1500 for the design
mode, which makes the oscillation threshold current for the CARM approximately 50 Amp;
the gyrotron interaction must have a higher start current. In order to minimize the total
cavity length, the reflectors must be short.

A cavity design that satisfies the criteria for a CARM oscillator is the Bragg cavity.
The Bragg cavity is a section of smooth waveguide connecting two rippled-waveguide
reflectors[13]. For the proper mode, for which the guide wavelength is twice the ripple
period, constructive interference of the small reflections from the ripples can provide a
strong reflection. Whispering-gallery (TEml) modes couple most strongly to the
corrugations[ 16], and therefore have the highest reflectivities. Other modes can have low
reflectivity. The Q of the resonator can be increased either by lengthening the uncorrugated
section, or by increasing the reflectivity of the corrugated sections. Since each reflector
provides a 900 phase shift, the length of the smooth section must be such that the total path
length of the radiation in one round trip of the resonator is an odd integral number of half
wavelengths.

If the corrugated sections are highly reflective, the Q of the Bragg resonator is

k2Leff
kz(1 - RIR 2) (3)

where k is the free-space wave number, kz is the waveguide axial wave number, and RI
and R2 are the reflectivities of the corrugated sections which are given by

R = Tanh 2 GL. (4)

Leff is the effective length of the cavity, which is larger than the length of the smooth-
waveguide section because of the energy stored in the rippled-waveguide sections.

Leff=L0+ -e- GILl)+ - e- G2L2), (5)

where LI and L2 are the lengths of the reflectors; G1 and G2, are the coupling coefficients
of the reflectors and are
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for the TE modes, and 4

G (02/C 2 + 32

fk p (7)

for the TM modes[3],[16]. 10 is the length of the rippled section, Xrn is the zero of the
derivative of the Bessel function with respect to its argument, m as the azimuthal index, a is
the waveguide wall radius, o is the angular frequency, 03 is the wave number of the
radiation, and c is the speed of light.

In order for the device to work successfully as a CARM, the threshold currents of
gyrotron modes must be greater than the threshold current of the desired CARM mode.
The CARM has a beam with a low to moderate ratio (c) of transverse momentum to axial
momentum, which raises the threshold current of the gyrotron modes. Even so, the Q of
the gyrotron modes must be kept as low as possible, which means the cavity must be kept
as short as possible. The smallest possible Q of a gyrotron mode in a straight cavity of
length L0 is the minimum diffraction Q:

Qmin C) , (8)

where Xfs is the free-space wavelength of the near-cutoff mode, and p is the number of half
wavelengths in the cavity. The shorter the cavity, the less dangerous the gyrotron modes.

Table I summarizes the design of the cavity for the NRL 100 GHz experiment, and
Fig 3 shows the relationship between the cavity geometry and the radiation envelope. The
Q of the resonator for the CARM must be high enough to ensure that that competing
gyrotron modes will not start before the CARM mode starts. For the parameters of the
NRL experiment,the highest Q gyrotron mode has a Q of approximately 500. In order to
satisfy the requirement that the CARM mode oscillates at a lower current than any
competing gyrotron mode, the Q of the CARM operating mode must exceed 1400. Since a
reflectivity of 90% was chosen for the downstream reflector and a reflectivity of 98% was
chosen for the upstream reflector, the smooth section of the resonator must be 2.5 cm long.
The upstream reflector is the shallower of the two corrugated sections, and hence has the
longer radiation e-folding length. The upstream and downstream reflectors are 3 cm and
1.5 cm long respectively.

The time dependence of the CARM oscillator driven by a pulsed-power system
must be considered. A model of the voltage pulse that consists of a linear voltage rise from
zero to the operating voltage, followed by a constant voltage for the rest of the pulse was
chosen to be used in a single-mode, time-dependent, fixed-field CARM oscillator code.
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The results of this code, shown in fig 4, indicate that a 70 nsec pulse is more than adequate
to drive the CARM mode to saturation. In addition, the start-up of the various cavity
modes during the rise of the pulse must be considered. Fig 5 shows a plot of the start
current for the modes in the Bragg cavity for a beam with the parameters outlined in the
next section. The starting currents are calculated for a fixed field profile and for voltages
ranging from 0 to 700 kV, while the magnetic field is kept constant. a is assumed
proportional to V. The current in the beginning of the pulse is assumed to vary as the
voltage to the 3/2 power in order to model space-charge limited flow from a relativistic
diode.. As the current rises in the pulse, the TE8 1 mode is expected to start first, followed
by the TE7 1, which is followed by the TE6 1 mode. The major competing gyrotron modes
are also plotted; they are denoted by the dashed line.

The ohmic Q of the cavity is approximately 16000[16]. For a 10 MW output
power, approximately 1 MW is dissipated by wall currents. Since the cavity wall has an
effective area of 20 cm 2 , the power density dissipated by wall currents is 50 kW/cm 2 ,
acceptable only for short-pulse, low-duty-factor operation.

III. The CARM electron beam requirements

For the NRL 100 GHz, 10 MW CARM design, the requirements for the electron
beam are unique. A 600 kV, 200 A. electron beam is needed for optimum efficiency with
the present cavity design. The beam requires transverse velocity v/c - 1/y to achieve high
efficiency with significant Doppler upshift. Thus, for the current design,
x= v I./v11 = 0.6. The waveguide mode is the TE6 1 whispering gallery mode, and has a

group velocity of 0.89c. Although this group velocity is less than optimum for
autoresonance, it leads to a short interaction length (approximately 8 cyclotron orbits) and
reduced sensitivity to beam spread.

The constraint on beam axial-velocity spread can be estimated by a simple
coherence argument, which leads to the condition AVz/vz < /M. The constraint on
energy spread for a beam with no pitch angle spread is

Ay/ < 1 - o(10)
AY (I + a2)(/Co- _y-2)

Nonlinear efficiency calculations indicate that if the velocity spread is within these
constraints, the efficiency of the interaction will be degraded only slightly. According to
Fig. 6, which plots the beam quality constraints, the interaction will be unaffected if the
axial velocity spread is kept less than 3%. These curves also show that there is greater
sensitivity to pitch-angle spread than to energy spread, a feature related to the auto-resonant
character of the interaction.
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Fig. 7, which shows the coupling strength[15] of the TE6 1 mode as a function of
radial beam position, demonstrates that the beam must have most of the current
concentrated near the wall in order that it interact strongly with the operating mode.

The electron gun is designed to produce a high-quality electron beam without
requiring beam scraping. The electrode shapes are chosen to compensate for space-charge
repulsion within the electron beam. The beam is launched parallel to the guide magnetic
field. Downstream from the diode, a nonadiabatic magnetic region provides the required
transverse momentum. Separation of the beam formation stage from the transverse
momentum pump allows each stage to be analyzed independently.

IV. Design procedure for the annular gun

The cold-cathode electron gun was designed in two steps: electrode synthesis, and
validation of the synthesized electrodes with an electron trajectory code[171. The
approximate electrode shapes were determined using an electrode-synthesis technique[ 18].
The synthesis code calculates the charge distribution due to a space-charge-limited, laminar
flow of electrons based on a one-dimensional, planar, relativistic model. From the charge
distribution, the code determines the equipotentials by solving Laplace's equation in
regions external to the beam. Electrodes are placed on these equipotentials. In order to
predict the behavior of the electron beam in a realistic, two-dimensional cylindrical
geometry, the electrode surfaces chosen for the gun were used in a number of electron
trajectory code runs. The trajectory code is the best way to determine the velocity spread in
the beam, as well as to determine the transverse momentum. Fig. 8 shows the shape of the
cathode and anode.

The anode-cathode system designed by the above procedure produces a cold
annular beam with negligible transverse momentum. In order to efficiently produce
radiation, the present CARM oscillator requires an electron beam with aX = 0.6. Therefore
it is necessary to impart transverse momentum to the beam. A magnetic kicker provides the
required transverse momentum.

The magnetic kicker consists of a local depression of the axial magnetic field and is
similar to the one used by Gold et. al[19] in the NRL high voltage gyrotron experiments.
If the magnitude of the magnetic field changes on a length scale shorter than a cyclotron
orbit, (dBz/dz)/Bz < 2Evtz/coc , beam axial momentum is converted to beam transverse
momentum. A magnetic kicker is simple to construct: a coil is wound on a section of the
vacuum vessel, and a current is driven through the coil to produce a field opposite in
direction to the main axial field. The combination of the nearly cold beam followed by a
magnetic kicker provides a flexible way to create an electron beam suitable for the CARM;
proper choice of operating parameters will generate an electron beam with any aX between
0.5 and 0.7, and an axial-velocity spread that shouldn't exceed 3%.
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At the operating voltage of 600 kV, the electron emitter must provide uniform
electron emission with an emitter surface field strength of 125 kV. At the same time, the
focus electrodes, which are subjected to a field strength of 400 kV/cm, must withstand
electrical breakdown. Therefore, the diode materials were carefully chosen. The emission
surface is cotton velvet. The tufts of the velvet provide local enhancements to the electric
field, and encourage electrical breakdown and plasma formation. Reliable emission at
electric fields less than 100 kV/cm has been achieved using cotton velvet cathodes[20]. The
velvet is attached to the aluminum cathode using silver-bearing epoxy.

The focus electrode is constructed of anodized aluminum. Hard coat anodization
creates a corundum surface .002" thick. This surface will prevent emission at field
strengths greater than 400 kV/cm, provided that the voltage pulse is less than 100 nsec
long[211,[221. Since the pulse length of the accelerator used for the CARM experiment is
less than 70 nsec, the anodized surface will hold off all emission from the focus electrodes.

V. Summary

The basic design for the 100 GHz, 10 MW NRL CARM oscillator has been
presented. The basic components of the CARM are a pulseline accelerator, a novel 600
kV, 200 A field emission electron gun designed for P±/pz = 0.6 and Apz/pz < 3%, and a
"whispering gallery" mode rippled wall cavity. The oscillator is designed to operate at an

efficiency of over 20%. Construction of the experimental apparatus is completed and the
electron gun is undergoing preliminary tests.
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Table I: NRL 100 GHZ carm oscillator parameters

Beam Voltage 600 kV
Beam Current 200 A
Pulse Length 50 nsec
Magnetic Field 25 kG
Phase Velocity 1.17c
Dfk 32 GHz

Ot = vJ./Vz 0.6
Efficiency 20%
Power 24 MW
Operating Mode TE61

Cavity Parameters:

Mean Wall Diameter 1.59 cm

Upstream Reflector

Length -3 cm (18 periods)
Ripple Depth 0.25 mm
Ripple Period 1.68 mm
Reflectivity 99%

Downstream Reflector

Length -1.5 cm (9 periods)
Ripple Depth 0.31 mm
Ripple Period 1.68 mm
Reflectivity 90%

Center Section Length 2.6 cm
Cavity Q 1500
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CARM DISPERSION RELATION
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Fig. 1. The dispersion relation for the NRL 100 GHz. CARM experiment. The
high frequency intersection of the electron beam line with the TE 6 1
waveguide dispersion relation is the CARM operating regime. The lower
frequency intersection is a competing gyrotron mode.
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Design of a waveguide resonator with rippled wall reflectors for a
100 GHz CARM oscillator experimentt

R. B. McCOWAN§, A. W. FLIFLET, S. H. GOLD +.

V. L. GRANATSTEIN11 and M. C. WANG

High Q Bragg resonators are studied for application to millimeter wave CARM
oscillators driven by electron beams with power greater than 100MW.
'Whispering-gallery' modes are shown to have the highest Q. The two effects that
cause reflections, impedance mismatch owing to variations in the wall radius and
currents driven in the walls of the reflector sections, are shown to compete, paving
the way for anomalously low Qs for some of the other modes. The effect of wall
resistance on the operation of the cavity is studied; as the frequency of the radi-
ation is increased to near 250GHz, wall heating severely limits the average power
rating of whispering-gallery devices.

I. Introduction

High-power millimeter waves have many important applications. For example,
millimeter-wave radar systems will yield higher target resolution than will lower
frequency systems for a particular antenna aperture. Communications systems may
benefit from a more strongly focussed radiation beam and larger information band-
width available as the frequency is increased. Electron cyclotron heating of fusion
plasmas will require high frequency radiation when strong magnetic fields are used
to confine the plasma (Granatstein 1987).

The cyclotron autoresonance maser (CARM) is a promising source of high
power radiation in the 100GHz to 500GHz frequency range, that may impact the
requirements of advanced systems for applications such as those mentioned above.
The requirements for guide magnetic field strength and electron energy in a CARM
may be advantageous when compared with competing devices. Compared with a
gyrotron, the required magnetic field strength requirement is substantially reduced.
The CARM can provide millimeter and submillimeter radiation in the first electron
cyclotron harmonic using currently available magnet technology. For example, a
planned experiment at the U.S. Naval Research Laboratory (NRL) will produce
powers in excess of 10MW at 100GHz with a 600kV beam and a magnetic field of
only 25 kG, while a fundamental harmonic gyrotron operating at 100 GHz with the
same beam voltage requires a magnetic field of over 70kG. Compared with a con-
ventional magnetostatic wiggler FEL, the CARM can reach submillimeter wave-
lengths with a lower electron beam voltage. For example, a 0.5MV CARM
oscillator has the potential for efficient multimegawatt operation at wavelengths
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CARM DISPERSION RELATION

100 KV, + 0c

20 -10 0 10 20
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Figure 1. The dispersion relation for the NRL 100GHz. CARM experiment. The high-
frequency intersection of the electron beam line with the TE,, waveguide dispersion
relation is the CARM operating regime. The lower-frequency intersection is a com-
peting gyrotron mode.

down to 0.75 mm with a 100kG superconducting magnet; a 0.5 MV FEL oscillator
with a 3 cm period magnetic wiggler will produce radiation at 4.5 mm.

The NRL experiment will use a 600kV, 200A electron beam. The NRL CARM
operates near grazing incidence, where autoresonant effects are weak, but where the
cyclotron maser interaction is strong. By keeping the interaction region short (less
than ten cyclotron orbits), the effect of velocity spread is reduced and the efficiency
can be quite high; computer simulations indicate that the device will operate at
efficiencies greater than 20%.

The CARM oscillator, like the gyrotron oskillator, is a cyclotron maser. The
dispersion relation for the NRL CARM is shown in Fig. 1. In contrast to the gyro-
tron, which requires an electron beam with a high pitch angle, the CARM has an
electron beam with a moderate pitch angle and a substantial amount of axial
momentum. The CARM benefits from the Doppler upshift provided by the axial
velocity of the beam; the operating frequency of the CARM is approximately 'If,
wherefc is the nonrelativistic cyclotron frequency associated with the axial magnetic
field, and y is the usual relativistic factor.

Because the CARM is a device that depends on a convective instability, the
oscillator operation must take place in a cavity that provides feedback of the radi-
ation onto the electron beam. For typical CARM operation, the resonator reflectors
must provide high reflectivity for modes that are far from cutoff. Furthermore, mode
selectivity is desirable, preferably with discrimination between modes differing in
either transverse or axial structure. In addition, modes that are near cutoff must be
suppressed in order to minimize competition from the gyrotron interaction. Finally,
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the CARM cavity must allow unrestricted passage of an electron beam parallel to
the axis.

A suitable realization of CARM resonator reflectors may be achieved by using a
small periodic corrugation of the waveguide surface. Each ripple provides a small
reflection of wave amplitude. If the corrugation period is such that the radiation
reflected from each of the corrugations adds in phase, the corrugated section can be
highly reflective and is known as a Bragg reflector (Bratman et al. 1983). This paper
treats the reflection of rippled wall sections as a mode conversion from a forward
wave to a backward wave, with an approach to the analysis that is similar to the
analyses of other mode converters (Solymar 1959).

Previous work on Bragg reflectors has focussed on the design of cavities where
the radiation modes are concentrated near the axis of the cavity (volume modes);
whereas for the NRL CARM, the primary considerations are modes that are peaked
near the wall (whispering-gallery modes). The results derived below have been pre-
sented without derivation by Bratman et al. (1983). Palmer (1987) derives results for
Bragg cavities from a different starting point and examines the effects of multiple
modes; however, he does not consider the effects of cavity wall resistance, and con-
siders applications only to FELs.

The dominant mechanism for the reflections is different for whispering-gallery
modes from that for volume modes; the physics of this difference is discussed below.
In addition, the effects of energy dissipation by the walls of the cavity have been
studied, and the ramifications of ohmic heating on frequency scaling for long-pulse
devices are examined.

The general case of waveguides with cross sections that change along the axis
has been treated by Solymar (1959), who formulated the equations governing the
waveguide modes as a set of coupled differential equations for the wave amplitude,
the 'generalized telegraphist's' equations. Each equation describes the amplitude of
either the forward or the backward component of one waveguide mode.

dA = I d(ln K,) A- + (S+A+ + S-A-) (I a)
dz - 2 dz pa)

dA = I d(ln K1) At + Y (P - + S.-A+)
dz = 2i A [- + 2 dA + S1+ A (Ib)

where A, is the amplitude of the ith waveguide mode, # is the wave number of the
mode, K is the wave impedance of the mode, and S is a wave-wave coupling coeffi-
cient. The designations + and - signify forward-going and backward-going com-
ponents, while the sum p is over all waveguide modes.

The mode coupling arises from two sources. The second term of the right-hand
side of the equations is the reflection owing to the impedance changes in the guide
that arise from a changing wall radius, and converts a forward wave to a backward
wave of the same transverse structure. The other source (the last term in the
equations) is radiation by the wall current driven by the radiation in the guide. As
indicated, this mechanism can couple any two modes.

The coupling coefficients SP represent the mode coupling because of the wall
currents in the waveguide, and can be expressed in terms of line integrals of the
waveguide modes around the boundary of the waveguide. If the interaction is
specialized to a single wave with forward-going and backward-going components,
the subscripts i can be dropped, the sum over p vanishes and the coupling coefficient
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Figure 2. The relationship between A and 0.

becomes

S tan 0 T ds (2)
2as

for TE modes, and

S- f tan 0 IT ds (3)
a n

for TM modes. S = 0 for both the TE and TM modes. The derivative O/Os is with
respect to the tangential path around the waveguide wall, and the derivative a/an is
with respect to the normal to the unperturbed (straight) waveguide wall. The angle 0
is the angle between the normal to the waveguide axis and the normal to the local
waveguide wall. Figure 2 illustrates the relationship between s, t and 0. The integral
is performed around the perimeter of the waveguide.

For circular waveguide sections of radius a, the wave functions 1P are:

ix'. r\ . .

-(r(X n  m2 )dj 2(x~) (4)

for TE modes, and

Ir = jx.. J',(x,.) 5

for TM Modes. J., is the Bessel function of the first kind, x.. is the nth zero of J,.,
J., is the derivative of J., with respect to its argument x . is the nth zero of J; m
and n are the azimuthal and radial mode indices. The normal and tangential deriv-
atives in the coupling coefficients can be written as derivatives with respect to the
coordinates r and 4.

eq _, and a_

an Or a s a(a4o)
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For axisymmetric variations in wall radius, tan 0 can be taken outside the integral.
The coupling coefficient becomes

_ tan 0 ) A ds(6)2 nx.,, J' , .(,,)

for TE modes, and

tan 0C
S=- 2 ds (7)

for TM modes.
Since the integrand is independent of the angular variable and the integration is

around the circumference of the waveguide, the line integrals collapse to 2nra, and
eqns. (6) and (7) are easily evaluated as

m2

S- = tan 0 a(x,2 - M
2) (8)

for TE modes, and S- = - t (9)
a

for TM modes.
In order to complete the equations governing the waves in the cavity, we must

evaluate the wave impedance in terms of the wall profile. The coefficient of the term
caused by the impedance variation is the derivative of the logarithm of the wave
impedance:

- (In K)=- d (in-d (10)
dz dz d7z

where w is the angular frequency of the radiation. Substituting the waveguide dis-
persion relation into eqn. (10), we derive the following relation for the wave coupling
due to impedance variations. For TE modes,

d x,2da

-(In K) =-
dz fi2 a 3 dz

For TM modes, this differs only by an overall minus sign and by a change from x,,
to xM.. By the definition of 0, da/dz = tan 0.

Using eqns. (2), (3), (8), (9), and (11), the equations governing the spacial evolu-
tion of the forward-going and backward-going wave amplitudes may be written

(1)2 2
dz -JA+ I X.a tan OA- + tan 0 a(x A- (12a)d- 2 2 

2

d z IfA X 2 . M 2x~ + Z-jfiA + tan OA+ +tan 2 (12b)
-,20 ax 2 - M2) 1b
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for TE modes, and

dA +  I xaj tan - (13a)dz- + 2 -- tanOA- +-aA- 1a
z2 #2 a3  a

dA- 1 X tan
dz 2 fi a a

for TM modes.
The equation pairs (12) and (13) can be expressed in the same form by combin-

ing the reflection terms caused by the impedance variation with the reflection terms
owing to the wall currents.

dA +

O A +  --HA - (14a)

dA -dz - =-j#A + HA +  
(14b)

Here

x -_m 2 a 2(-T n2'

tan 0 m 2 +

2 3(X- m2) (15)

for the TE modes, and

02

tan c
H 2a (16)

for the TM modes.
For the remainder of this paper, we assume a weak sinusoidal ripple in the wall,

a(z) = ao + locos(kbz + 460) (17)

where a. is the mean wall radius, 10 is the ripple amplitude, 21t/kb is the ripple
period, and 00 determines the corrugation phase. Equations (14) may then be sim-
plified by assuming a solution of the form A =f(z)e i. In this case, the reflected
wave term is only important when the Bragg condition (2k, kb) is satisfied, and
the equations for the mode amplitude become

Tf + jzf = -jGf- (18a)

df-

-z --jAf =jGf* (18 b)

where G = H(fPlo/tan 0) and A = 2k, - kb.
The strength of the coupling between the forward-going and backward-going

waves is governed by the magnitude of the coupling coefficient G. Figure 3 sum-
marizes the dependence of the coupling coefficient on mode; it is a plot of coupling
coefficient for the specific configuration considered for the 100GHz CARM. Figure
3 clearly shows that the coupling for the TM modes is independent of the mode
indices, although it is a function of the frequency of the mode. The coupling of TM

.... : ... nf a d i l l | a • • nnniI II ii ii H
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Figure 3. The coupling coefficient of rippled waveguide as a function of mode. The

geometry is that of the 100GHz, TE,: CARM cavity. The whispering-gallery modes
are dominant, while the TM modes are the strongest competing modes.

modes in this configuration is stronger than those of any of the TE modes with the
exception of those of the whispering-gallery modes.

For TE modes, the situation is more complicated. The denominator of the
expression for the coupling coefficient is minimized for the TE,, modes. Therefore,
the coupling is expected to be strongest for these modes. Large wall currents driven
by the electromagnetic fields, which are peaked near the walls, cause the strong
coupling of these whispering-gallery modes. The reflection caused by the wall cur-
rents is 180' out of phase with that caused by the impedance mismatch. The reflec-
tions driven by wall currents dominate in the case of the whispering-gallery modes.
Other modes will have reflectivities that are caused by a combination of both effects,
except for the TEO, modes, which have reflectivities due entirely to impedance varia-
tions. The point where G crosses through zero is a point of anomalously low reflec-
tivity; the contributions of wall current reflections and impedance reflection cancel.

Equations (18) are a pair of first-order homogeneous linear differential equa-
tions, and may be solved using elementary techniques. The general solution of the
equations is

r(z) = c1(-jG)ey" + c2(-jG)e-y (19 a)

f(Z) = CI(JA + y)e'" + C2(jA - y)e-yz (19b)

where Y2 = G2 - A', and c, and c2 are determined by the boundary conditions. If
G > A, the solutions are exponential; for G < A the solutions are sinusoidal. The
region of high reflectivity occurs mainly when y is real and the solution is exponen-
tially damped.



470 R. B. McCowan et al.

If the waveguide sections attached to the reflector are matched in order to
produce no reflections, the boundary conditions for a wave incident on the ripples
are

fJ(0) = 1 + Oj

if(L) = 0 + Oj

The solution of eqns. (19) for these boundary conditions is

(z) jA sinh y(L - z) + y cosh y(L - z) (20a)

jA sinh yL + y cosh yL

and

-jG sinh (L - z)
jA sinh yL + y cosh yL

For this case, the reflectivity is

R(A) = lf(0)12  7 sinhL 2

jA sinh jL + y cosh yL

At the centre of the reflection band (A = 0), y = G and the reflectivity is

R = tanh'GL (21)

The reflected wave is 90 out of phase with the incident wave. Equation 21 indicates
that, for a given waveguide, the reflection coefficient depends only on the product of
G and L. Since G is linearly proportional to the ripple depth, if the ripple depth is
halved and the corrugation length is doubled, the reflectivity at the centre of the
band will remain the same. As the ripple depth is decreased, however, the bandwidth
of the reflected radiation becomes narrower. Therefore, the selectivity of a Bragg
reflector can be increased by making the ripples shallower and the reflector longer.
This effect is illustrated in Fig. 4, which is a plot of the reflectivity versus frequency
in the TE61 mode for the two reflectors that make up the CARM resonator. The
upstream reflector has shallower ripples but a longer length than the downstream
(output) reflector. Hence, the upstream reflector has a narrower reflection band and
a higher reflectivity.

2. Making a resonator out of bragg reflectors
A high-Q resonant cavity can be constructed by placing a section of straight,

smooth-walled waveguide between two Bragg reflectors. Q is defined as the ratio of
the energy stored in the cavity to the energy lost per RF cycle. The Q of the reson-
ator is increased when the length of the straight section is increased or when the
reflectivity of the corrugated sections is increased. The length of the resonator must
be such that the total path length of the radiation in one round trip of the resonator
is an integral number of wavelengths.

0. + .04 + A00 + 2nLo =pt(2-' - F (22)

where 0. and (#d are the phase shifts from the upstream and downstream reflectors,
A00 = 00. - 00d, the phase difference between the beginnings of the two rippled
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Figure 4. The variation of reflector bandwidth on ripple depth. The narrow bandwidth
reflector has shallow ripples, while the broad bandwidth reflector has deeper ripples.

sections (see eqn. (17)), L. is the length of the smooth section between the rippled
sections and p is an even integer.

If the corrugated sections have high reflectivity, the Q of the Bragg resonator is

Q = k(23)k.(l - R, R2)

where k is the free space wave number, k, is the waveguide axial wave number, R,
and R 2 are the reflectivities of the corrugated sections, and

1 e_ L )  1- ,,)(4
Lef = Lo + (I - -GL)+ eG2L2) (24)

G, G2

G,, L,, G2 and L 2 are the coupling coefficients and lengths of the reflectors.
In a long cavity, there may be more than one axial eigenmode for each trans-

verse mode. If the modes are not close to cutoff, they are separated by approx-
imately Af = vpILo, where vp, is the phase velocity of the wave. If Af is too small
(Lo too large), the CARM may simultaneously oscillate in many axial modes of the
same transverse mode. In addition, if the frequency difference between axial modes
is nearly equal to the frequency difference between neighbouring transverse modes,
the CARM may operate in more than one transverse mode as well. When the reflec-
tor bandwidth is chosen to be sufficiently narrow, however, the eigenmodes are
reduced to one axial mode number per transverse mode, and the transverse modes
of the resonator will not overlap. The decrease in bandwidth is achieved by decreas-
ing the depth of the corrugations and increasing the length of the corrugated sec-
tions, thereby increasing the sensitivity of the reflector to wave number mismatch.

In order to design cavities for a high average power CARM, the ohmic heating
of the cavity walls must be considered. For an open-ended cylindrical resonator
where the field variations are small over a wavelength, the ohmic Q of a cavity is
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Figure 5. The ohmic Q of an open ended cylindrical cavity as a function of frequency for
various modes.

given by (Jackson 1975)

1 a ( pa 

(

2

'2 .21
Q = a x;. Lo/X M (25)

1+ )2 xm2

Q 1 pi a 
' 2x,,,

where 6 is the skin depth and p is the axial mode index of the cavity mode (p =
2Lo/.,). Figure 5 shows the dependence of ohmic Q on frequency as some prototype
resonators are scaled to shorter wavelength. The highest ohmic losses occur with the
whispering-gallery modes, because the fields of these modes are very strong near the
walls of the cavity.

When designing a CARM oscillator, one must carefully consider possible com-
petition from gyrotron oscillations. In order for the device to work successfully as a
CARM, the starting currents of gyrotron modes must be greater than the starting
currents of the desired CARM modes. The CARM has a beam with a low to moder-
ate ratio of transverse momentum to axial momentum (a). This raises the start
current of the gyrotron modes somewhat. In addition, the Q of the gyrotron modes
must be kept as low as possible, which means the cavity must be kept as short as
possible. The smallest possible Q of a gyrotron mode in a straight cavity of length
Lo is the minimum diffraction Q,

Qin 4n 
2

4P (Lo
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Beam energy 600kV
Beam current 200 A
Pulse length 50 ns
" - VWV, 06
Axial velocity spread AV/V, <3%
Magnetic field 25 kG
f), 32 GHz
Mode TE61
Frequency 100GHz
Wavelength 3.36 mm
Phase velocity 1"17c
Mean wall diameter 1.59cm
Upstream reflector

length 3.0cm
ripple depth 0.025 cm
ripple period 1.68 mm
reflectivity 99%

Downstream reflector
length 1 -5cm
ripple depth 0.031 cm
ripple period 1.68 mm
reflectivity 90%

Centre section length 2.6cm
Cavity Q 1500

Table 1. 100GHz CARM Bragg resonator parameters.

where Af. is the free space wavelength of the near cutoff mode and p is the number of
half wavelengths in the cavity. The length of the cavity must be kept short in order
to keep the Q of gyrotron modes small. This consideration puts a lower limit on the
bandwidth of the reflectors, because a narrow band reflector is the result of a long
waveguide with many small ripples.

3. The 100 GHz CARM cavity
The Q of the resonator for the CARM must be high enough so that competing

gyrotron modes will not start before the CARM mode starts. For the parameters of
the NRL experiment, the gyrotron modes have a Q of approximately 500. In order
to satisfy the requirement that the CARM modes start before the gyrotron modes,
the Q of the CARM operating mode must be more than 1400. Using a reflectivity of
90% on the downstream reflector and 98% on the upstream reflector, the required
length of the straight section of resonator is 2.5 cm. In order to retain only one high
Q TE6 t axial mode, the ripple depth must be no greater than 0.025 cm. The ripple
depth of the upstream reflector is the shallower of the two corrugations, and hence
has the longer radiation e-folding length.

The ripple depth requirement, coupled with the stated 90% and 98% reflectivity
requirements, forces the length of the rippled sections to be 1.5cm and 3cm long
respectively. The total cavity length is 7cm. Table 1 summarizes the design of the
cavity for the NRL 100GHz experiment and Fig. 6 shows the relationship between
the cavity geometry and the radiation envelope.

For the 100GHz CARM resonator design, the reflections owing to the imped-
ance mismatch cancel the reflections caused by the wall currents for the TE. 2
modes; only the whispering-gallery modes have high Qs. The separation between
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Figure 6. The geometry of the CARM cavity with the electric field amplitude profile.

the TE,,, axial modes in the cavity is approximately 6GHz. The bandwidth of the
upstream reflector is narrow enough to exclude all but one axial mode for each
transverse mode. The TE5 ,, TE61 , and TE7 , have frequencies of 97GHz, 100GHz
and 103GHz, respectively. The interaction can be tuned by varying the magnetic
field to prevent simultaneous oscillations in more than one of these modes. Figure 7
shows the oscillating modes and frequencies of the CARM resonator. The Q
increases with frequency, so that the TE,1 mode has a higher Q than the TE61
mode.

The ohmic Q of the cavity is approximately 16000. For a 10 MW output power,
approximately 1 MW is dissipated by wall currents. Since the cavity wall has an
effective area of 20cm', the wall loading is 50kW cm-', which is acceptable for
short-pulse, low-duty-factor operation.

0
STE 7 , 1

0
w

O TE 6 , 1ILI
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96 100 104

FREO(UENCY(GHz
Figure 7. The important modes of the 100GHz CARM cavity.

II
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Because of the resonant nature of the Bragg reflector action, the CARM reson-
ator must be fabricated to extremely high precision. For the 100GHz design the
machining accuracy must be 0.005 mm. These tolerances can be met using precision
electroforming techniques.

4. High frequency resonators

As the frequency of microwave devices is increased to 250GHz and beyond, the
limitations of the Bragg resonators as presented here become apparent, especially if
CW devices are planned.

The ohmic Q of the resonator scales with the inverse square root of the fre-
quency. The surface area of the resonator scales as the inverse square of the fre-
quency. Therefore the power density dissipated in the walls scales with frequency to
the 5/2 power. The wall loading on the whispering-gallery cavity, scaled to 250GHz
operation is 500 kW cm-2. Safe operation of such a cavity could only be achieved
with a duty factor of less than 0.5%.

Machining tolerances become more difficult as the frequency is increased. The
ripple depth for the whispering-gallery cavity at 250GHz is only 0-01 cm. In order
to hold tolerance for structures of this size, careful temperature control is necessary;
this is rather difficult to achieve with many kW cm -" of wall heating.

Clearly, in order to scale to high-duty-factor devices, cavities must be designed
in modes other than the whispering-gallery modes. Volume-mode Bragg resonator
designs will require much longer rippled sections and/or deeper corrugations than
the whispering-gallery designs. CARM designs using long resonators will have prob-
lems with gyrotron mode competition that are not easy to overcome.

5. Conclusions

The basic design principles for Bragg resonators for short-pulse CARM oper-
ation have been presented, along with a design for the 100GHz, 10MW NRL
CARM. The whispering-gallery modes are shown to provide a good combination of
high reflectivity and mode selectivity, while the TM modes have moderate reflec-
tivity but rather poor selectivity. Very selective cavities with Qs over 1000 are easily
achieved using whispering-gallery mode resonators less than 10cm in length.
However, the resistive losses in the walls of the whispering-gallery cavities are
shown to be prohibitively large for CW relevant devices. For high-duty-factor
devices, either volume-mode Bragg resonators or quasi-optical cavities must be
employed.
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DEVELOPMENT OF HIGH POWER CARM OSCILLATORS

1 Introduction

There is now a considerable research effort to develop high power, high frequency (millime-

ter wave to infrared) sources based on high voltage electron beams. These devices, the best

known of which is the Free Electron Laser (FEL), are inherently high power and produce

high frequencies by a doppler-shift effect which scales as the square of the relativistic mass

ratio -/. The U.S. Naval Research Laboratory (NRL) has recently initiated an experimen-

tal program on a related device called the Cyclotron Auto-Resonance Maser (CARM) [1].

The frequency of this device is doppler-upshifted by , -y2 from the relativistic cyclotron

frequency (that is, upshifted by -- y from the nonrelativistic cyclotron frequency). The ef-

ficiency potential of the CARM is similar to the gyrotron - of order 20-40% - but higher

beam quality is required. Compared to gyrotrons, CARM's can have larger cavity struc-

tures for a given wavelength and have lower beam pitch angle. These properties simplify

beam formation and reduce self-field effects as well as reducing cavity ohmic losses.

Because the interaction occurs with a forward propagating wave, electrons lose axial

momentum-and axial velocity-during the interaction, and this leads high efficiency po-

tential due to an "auto-resonance" effect. That is, the interaction resonance condition:

w = kiivii + Q /'y (1)

-where w is the wave frequency, k1l and vii are radiation wavenumber and electron beam

velocity components in the beam drift direction, and Q,, is the nonrelativistic cyclotron

frequency - is relatively insensitive to changes in beam energy. This is because the change

in the relativistic cyclotron frequency Q = f,/ - during the interaction is compensated by

a change in the the doppler shift kilvil. This effect reduces the detuning of the resonance

condition during beam-wave energy exchange. A combination of high doppler upshift of

the frequency and high efficiency occurs when OL_ = 1/,yo provided that

2-l' < -,2 ()

where _L. = vj/c and Oph = Vph/C = w/(kllc). The autoresonance effect leads to high

efficiencies without the need for efficiency enhancement schemes based on tapering the

Manuscript approved December 14, 1988.
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interaction parameters.

A 0.5 MV CARM has the potential for efficient, multi-MW operation at wavelengths of

1.1 mm (280 GHz) with a 63 kG superconducting magnet or 560 GHz with a 125 kG magnet.

With a 1 MV beam or operation at harmonics there is a potential for THz frequencies. This

potential makes the CARM an attractive candidate for development as a source for the

Compact Ignition Tokamak (CIT).

The NRL development effort has chosen to conduct its first experiments on CARM os-

cillator configurations for several reasons. The CARM circuit generally involves a highly

overmoded waveguide structure with the attendant probability of mode competition. Com- 4

pared to the amplifier, the oscillator configuration appears to offer more alternatives for

mode control. Waveguide cavities with ripi;led-wall Bragg reflectors can be highly selective

with respect to frequency and axial mode index. On the other hand quasi-optical cav-

ities have excellent transverse mode selectivity transverse mode selectivity. Because the

radiation traverses an oscillator cavity many times instead of once as in an amplifier, the

interaction length can be relatively short and this helps prevent the build-up of spurious

oscillations which are a major issue for amplifiers, particularly at high frequencies. The

short interaction length also helps reduce the sensitivity to beam velocity spread. Addi-

tionally, a free-running oscillator does not require a source of input power, an expensive and

scarce commodity at submillimeter wavelengths. The amplifier also requires an overmoded

but highly mode selective and nonbeam-intercepting input coupler, a difficult engineering

problem. The efficiency potential of CARM oscillators and amplifiers appears to be similar,

of order 20-40%. The circulating power in a high Q oscillator is generally much greater

than the output power. This leads to somewhat greater ohmic losses for a given output

power for the oscillator compared to the amplifier; however, oscillators can be designed for

megawatt CW powers.

NRL currently has an ongoing short pulse -, 50 nsec, 100 GHz CARM oscillator experi-

ment based on a 600 kV, 200 Amp electron beam produced by a pulseline accelerator. The

objectives of the experiment are to investigate CARM physics and to demonstrate the high

efficiency potential of the CARM oscillator at multimegawatt power levels. A 200-300 GHz
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CARM oscillator based on a 0.5 MV thermionic cathode electron gun is currently in the

design and planning stage. The device would have a pulse length of 1 microsecond and be

rep-rated. The goal of the "long pulse" experiment would be to achieve output powers of

about 10 MW and efficiencies in the 20-40% range.

2 CARM Efficiency Optimization

Consider the interaction of the electron beam with the TE mode of a vacuum waveguide.

The transverse electric field is the form:

f{(, t)= R IEo " x V. -(r) } (3)

where E0 is the field amplitude, w is the wave angular frequency, and 2k is the mode scalar

function. For a TEn,, circular waveguide mode, the scalar function is given by:

O(F) = C,,J,,(k,.r)em8 (4)

where Jm is a Bessel function of the first kind, m is the azimuthal index, n is the radial

index, and xm,, is the nth zero of J,,. The mode normalization coefficient C,,. is given by:

Cmn {~ i(X2n -m2)Jm(Xmn)} (5)

As shown by Fliflet [2], application of single particle theory to the CARM interaction for

the s"l harmonic leads to the following normalized equations of motion:

du = (1 -U)S/I { f , - 'I} /  (I-  b,)  (6)
d(6

do= (1 + u (1/ _RF e U/1 Rfie (I- bu)(7d) (- bu)(7
d( L

where u is the normalized electron energy:

= 03 i-!11/13rh) (I1 7/1o) , (8)

o is a slowly varying phase, F, is the normalized wave amplitude function, which for the

fundamental harmonic interaction is given by:

F, 2e - C.,.,J,-CJ1(k..,rb)Eo, (9)
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is the normalized axial coordinate:

2I nio 1-1 ph (wOz/c), (10)

A is the resonance detuning parameter:

2 ( 1 I/311 ph) 
(1

and b is the electron recoil parameter:

b =( o (12)
2/31lOph (1 - /0//3 0ph)

In Equation (9), e is the magnitude of the electron charge, and mo is the electron mass.

The electron axial and transverse momenta are given by:

pll = yom,cllo (1- bu) (13)

P.L = Yomecj-o /'i'-Fu (14)

The electron recoil parameter b characterizes how the axial momentum varies with beam

energy; as shown in Eq.(14), the larger b is, the more rapidly the axial momentum decreases

with decrease in -f. The CARM interaction is characterized by b ,-0.3-0.6, the gyrotron

regime is obtained by setting b = 0.

The electronic efficiency can be written in the form: ? = 77,p1 where 77,p is the is the

single particle efficiency given by:

2(1 - IO/ph)( - ')

and i7 is the normalized efficiency given by:

2r= u (p, Go) dOo 
(16)

where p denotes the normalized interaction length and 0 is the initial value of the slowly

varying phase parameter. For a given harmonic, recoil parameter, and axial profile for the

wave field, the normalized efficiency for optimized A can be presented on an F - p plot
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similar to the plot used to characterize the gyrotron (3]. The parameter F defined in this

paper divided by two is equal to the amplitude parameter F defined by Danly et al [3j in

the limit: b - 0, I3ph --* oo. A plot of optimized constant normalized efficiency contours as

a function of F and y is shown for the case of b = 0.4 and constant wave field amplitude in

Figure 1. The corresponding iso-A values are shown in Figure 2. Figures 1 and 2 show that

for a constant field profile, the maximum normalized efficiency is - 36% and the optimum

parameters are F = 0.2, y = 8, and A = 0.6. It is of interest to note that in the gyrotron

limit (b = 0), the optimum normalized efficiency is 42%. In the case of the gyrotron the

normalized efficiency can be increased to over 70% by suitably profiling the axial profile of

the wave field and it is expected that a similar enhancement for the CARM can be achieved

using this technique.

3 Short-Pulse 100 GHz CARM Oscillator

A Proof-of-Principle experiment based on a waveguide cavity with a Bragg reflectors has

been set up to investigate the CARM configuration. The device is designed to operate

at 100 GHz with a 600 KV, 200 Amp electron beam produced by a pulseline accelerator

with a pulselength of - 50 nsec. The choice of beam and cavity parameters is based on

the theory outlined in Section 2. This theory, which assumes a ruld beam, predicts an

efficien.:y of 20% at a power of 24 MW. A schematic of the device configuration is shown

in Figure 3. The annular electron beam propagates near the wall of the Bragg reflector

waveguide cavity which has been optimized for the TE 61 circular waveguide mode.

The ability to produce a high quality beam is considered critical to the success of this

experiment, a major objective of which is to demonstrate high efficiency for the CARIM in-

teraction. The beam quality requirement can be estimated by a simple coherence argument.

The constraint on axial velocity spread is:

AVll/Vil < A/(2L) (17)

for no spread in beam energy, Equation (17) can readily be expressed as a constraint on

pitch angle spread. The constraint on energy spread for a beam with no pitch angle spread
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is
A- < (1 - -o2)(A/2L)

-1 (1 + a2 )(Q/W - 7O ')

where a is the average momentum pitch ratio of the beam. These relationships lead to the

curves for axial momentum, pitch angle, and energy spread shown in Figure 4 for a 600

kV CARM with /3L = 1/0o. These curves show that there is greater sensitivity to pitch

angle spread than to energy spread, a feature related to the auto-resonant character of the

interaction. Note that the denominator of Eq.(18) can be small when -f > 1 since in this

case for the CARM w/ l - y2. The required tolerances are considered achievable except for

group velocities very close to the speed of light. To minimize sensitivity to beam velocity

spread, a group velocity of 0.86c was chosen for the 100 GHz short pulse experiment.

The cold cathode diode is expected to produce a highly laminar space-charge-limited-flow

beam via the use of nonernitting focussing electrodes. The cathode is anodized aluminum

with a velvet or graphite emitting surface. The diode is expected to produce a high quality

beam with only a few percent spread in axial momentum. This diode is based on a theory

of relativistic laminar flow diodes recently developed at NRL by Finn, Fliflet and Man-

heimer [4]. The transverse momentum required for the CARM interaction is provided by

a nonadiabatic dip in the applied magnetic field followed by adiabatic compression of the

magnetic field [5]. Simulations of the beam formation system carried out using the Her-

rmannsfeldt Electron Trajectory Code [61 indicate that an axial velocity spread of about

3% in the interaction region should be obtainable with this system.

An important feature of the Bragg reflector cavity is that it is has a high Q factor for

only a limited range of axial wavenumbers. Our design studies for the 100 GHz CARM

experiment indicate that this type of cavity can be highly selective with respect to both

transverse and longitudinal mode indices [7,8]. Other advantages of this type of resonator

include compactness which facilitates beam transport and magnet design, and the possi-

bility of profiling the cavity fields for efficiency enhancement similarly to what is done for

gyrotrons. A Bragg cavity and associated radiation profile are shown in Figure 5. The depth

of the Bragg ripples is considerably exaggerated. The TE 61 whisp. gallery mode wiLt

Q ; 1500 was chosen as the operating mode. This type of mode coples well to both the

6



electron beam and to the Bragg reflectors. Other whispering gallery modes with radial in-

dex n = 1 represent the principal CARM-type competing modes. The frequency separation

of 3 GHz should prevent competition between these modes while allowing step-tunability.

Another important feature of this cavity is that reflector bandwidth was chosen sufficienctly

narrow that there is only a single axial mode per transverse mode. The CARM mode Q

factor must be chosen high enough to prevent competition from low frequency (gyrotron)

modes.

4 Long-Pulse CARM Oscillator

The present 600 kV, 100 GHz CARM oscillator project is expected to provide important

data on the potential of the CARM as an efficient high power source. However, a thermionic

cathode experiment is essential for complete investigation of CARM issues. A preliminary

design has been obtained at for a 500 kV, 250 GHz thermionic cathode device. A 55

kG magnetic field -produced by a superconducting magnet-is required for operation

with O± = 1/-/. A TE14 mode has been chosen based on output power, e-beam size, and

wall heating considerations. High power operation in a waveguide cavity at wavelengths

< 1 mm requires group velocities close to the speed of light with attendant sensitivity

to beam quality. This results from the need for cavity dimensions large compared to the

wavelength and the need to control ohmic heating. A group velocity of 0.97c was chosen for

the preliminary design. An output power of 10 MW is obtained for 92% output reflectivity

and the wall loading is about 3 kW/cm2 for the optimum efficiency wave amplitude. The

peak electric fields at the wall are less than 50 KV/cm for the TE1 4 mode. Operation at

10% duty factor would result in an average power of I MW and an average wall loading of

0.3 kW/cm2 . The computed cold beam efficiency is - 20% and the required beam current is

100 Amps. The cavity radius is 9.3 mm and the electron beam radius for a beam placed on

the third E-field peak - this avoids coupling to whispering gallery modes which have high

ohmic losses - is 5.6 mm. An annular electron beam is generated by a temperature-limited

MIG type 500 kV electron gun. The cathode emission current density is '-, 10 A/cm2 at

a current of 100 Amps, a cathode loading compatible with high duty factor operation.
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The gun perveance is 0.28 /perv. For comparison, the gun for the SLAC klystron has a

perveance of 2 yperv; thus space-charge defocussing effects should be controllable. Very

low pitch angle spread (a critical CARM requirement) should be obtainable with this type

of gun. The design goal is an axial momentum spread of a few percent. This experiment

should provide highly a relevant technology base for a burst mode 280 GHz source for CIT

or Alcator C-Mod.

A preliminary electrode design has been obtained for a 500 kV, 100 Amp, 1 psec pulse-

length MIG-type electron gun. Based on calculations using the Herrmannsfeldt Electron

Trajectory Code, the electrodes produce a highly laminar, temperature-limited, annular

electron beam with a final momentum pitch ratio a .- 0.5 and very low axial velocity

spread, Av11 /vIl -- 1%. A schematic of the gun is shown in Figure 6.

Volume TE modes such as TE0, or TE1,, type modes have much lower wall losses due to

ohmic heating and lower peak rf fields at the wall than whispering gallery (TEn, m > 1)

modes and are therefore of interest for high duty factor applications. However, special cavity

designs are required to select these modes. Possible approaches include the use of axial

slots to select TEI, modes or suppression of axial currents (wire-walled waveguide) for TE,

modes. Quasi-optical cavity configurations will also be investigated. The attractiveness of

such cavities increases with increase in the radiation frequency since for high power it

becomes necessary to increase cavity size relative to the wavelength. Open mirror quasi-

optical cavities also allow the wave phase velocity to be controlled independently of the

transverse mode or transverse dimensions of the cavity. As discussed by Sprangle et al [9],

this control is obtained by varying the angle between the radiation and beam propagation

directions. The phase velocity can also be chosen to minimize the effect of beam energy

spread. Quasi-optical cavities have excellent transverse mode selectivity and should not

support low frequency (gyrotron) modes.
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Abstract

Results from a quasi-optical gyrotron experiment with a 20-28 cm mirror separation
will be presented showing operation at powers up to 150 kW and efficiencies up to 12%.
The output coupling could be varied from 0.4-3% by changing the mirror separation
and operating frequency. Operation was obtained over frequencies ranging from 95-
130 GHz by changing the axial magnetic field, limited on the low end by waveguide
cutoff in the diagnostics and at the high end by the maximum magnetic field achievable.
The output power varied by approximately a factor of 2 over this range. Frequency
variation of 4% was achieved by varying only the electron gun voltage; however, the
output power also varied substantially due to the fact that the electron beam power was
changing dramatically. Efficiency optimization by variation of output coupling and by
tapering the magnetic field has been demonstrated. Regions of single-mode operation
at powers up to 125 kW have been characterized and compared to recently developed
theory. Details of the experimental design and its numerical modeling, along with the
data obtained and its comparison to relevant theories are presented.
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I Introduction

There is currently a need for megawatt average power sources of 100-300 GHz radiation for

electron cyclotron heating of fusion plasmas. The leading candidate for such a source, the

waveguide cavity gyrotron [1], has produced output powers of 765 kW and efficiencies of

30% at 148 GHz in a CW-relevant configuration [2]. However, this gyrotron configuration

is limited at high frequencies by high ohmic heating and problems with transverse mode

competition, due to the highly overmoded configuration, and with beam collection, since

the beam must be collected along a section of the output waveguide. The quasi-optical gy-

rotron (QOG), first proposed in 1980 by Sprangle, Vomvoridis and Manheimer [3], features

an open resonator formed by a pair of spherical mirrors instead of a waveguide cavity and

has the potential for overcoming each of these limitations. The resonator mirrors can be

well removed from the beam-wave interaction region, allowing a large volume for the inter-

action and low ohmic heating densities at the mirrors. The beam direction is transverse to

the cavity so that beam collection is separate from the output waveguide. This geometry

is particularly well suited to the use of a depressed collector for electron beam energy re-

covery. The QOG operates in the lowest-order transverse (TEM00o) Gaussian mode of the

resonator, higher-order transverse modes being effectively suppressed by higher diffraction

losses. Output coupling is via diffraction around the mirrors and can be controlled inde-

pendently of other interaction parameters. The axial mode separation is small compared

to the interaction bandwidth in CW-relevant configurations so that multimode effects are

important.

The theory of multimode operation was developed by Bondeson, Manheimer and Ott [4].

The theory of quasi-optical gyro-klystrons and of operation at the harmonics of the electron

cyclotron frequency has also been examined [5,6]. The first QOG experiment was carried

out in 1984 by Hargreaves et al. [7] and used a resonator with a 4 cm mirror separation.

Consistent with the relatively low axial mode density of this resonator, single-mode oper-

ation was observed at powers up to 80 kW at a frequency of 110 GHz and an efficiency of

11%. The first experiment with large mirror separation (81 cm) was conducted in 1986 by
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Read et al. [8] and achieved an output power of 50 kW at a frequency of 115 GHz and an

efficiency of 7%.

The QOG is currently under investigation by several different groups. Alternate res-

onator configurations have been proposed and analyzed by Zhonghai, Shenggang and

Kongyi of the People's Republic of China [9,10] and an experimental study of different

output structures has been performed by Morse and Pyle [11]. Itoh et al. have utilized

yet another resonator design to produce 20 kW of RF power at an efficiency of 16% and a

frequency of 120 GHz [121. This experiment utilized a relatively low power electron beam

(V = 30 kV, I = 3.5 A). Experiments similar to those described here are being performed

by Tran et al. [13]. With limited experimental time, powers and efficiencies as high as

85 kW and 10% have been observed from a cavity with a mirror separation of 34 cm.

A resonator mirror separation of 81 cm is much larger than necessary for a CW device

and therefore has many more cavity modes than necessary within the interaction bandwidth

of the device. The limiting factor on reducing the mirror separation is the ohmic heating

of the mirrors. To be relevant to a CW device, the ohmic losses must be kept below a few

kW/cm2. To investigate the operation of a QOG with a minimum mode density consistent

with a CW device, experiments have been performed utilizing a resonant cavity with a

mirror separation of 20-28 cm.

A consequence of the use of a spherical mirror cavity with diffraction output coupling

is that the output coupling can be a sensitive functiou of the mirror separation while the

gyrotron interaction length, which depends on the radiation beam waist, remains approx-

imately constant. This feature has been exploited for the first time in this experiment

by using mirror holders which axe adjustable over a wide range. The ability to vary the

separation of the resonator mirrors from 20 to 28 cm allowed the resonator output coupling

to be optimized with respect to the electron beam power. It also allowed new tests of

the gyrotron scaling theory. The coupling of the annular electron beam to the standing-

wave radiation in the cavity could be varied by translating the cavity transversely to the

electron beam. Finally, precise mirror alignment-needed for optimum cavity Q-was easily

maintained.
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Several other aspects of this experiment have been upgraded from past experiments as

well. The vacuum window that the output radiation passes through which is used here

is made of thin (-,. A/10) mylar. Thus, the window is essentially completely transparent

over the complete frequency range of the experiment, making the measurement of the

relative amplitudes of the different modes possible. Also, the possibility of the RF being

reflected from the window back into the resonant cavity and affecting the electron beam-

RF interaction is minimized. The new superconducting magnet used in this experiment

was much more reliable than the magnet used in the past and also produced a much more

uniform axial magnetic field. Essentially the electrons now have a much lower magnetic

field bump to pass over as they travel into and out of the resonant cavity.

This paper presents results from a thorough and extensive experimental study of the

first QOG to operate at powers over 100 kW using a CW-relevant resonator. The QOG

was tunable from 95-130 GHz and operated at powers up to 148 kW and output efficiencies

up to 12%. The peak electronic efficiency is estimated to be 16 ± 2%. The main effect

responsible for the difference between the output and electronic efficiency is ohmic heating

of he mirrors which can be a significant fraction of the total output at low output coupling.

This effect becomes small at MW output power levels due to larger output coupling. Single-

mode operation was observed at powers up to 125 kW. Conditions for single-mode operation

in the highly overmoded system have been characterized and compared with theoretical

predictions. Efficiency optimization by variation of output coupling and by tapering the

magnetic field have been demonstrated. These results point the way to the realization of

megawatt level devices with output efficiencies of - 20%.

A detailed description of the experimental configuration and diagnostic systems is given

in Section II. Section III describes an investigation of threshold current behavior. Sec-

tion IV describes power and efficiency, and the frequency tuning measurements are discussed

in Section V. Section VI describes an investigation of single-mode or nearly single-mode op-

eration and the comparison of this data with new theoretical results. Section VII presents

additional discussion and conclusions drawn from the experiment. The technique used for

calibrating the calorimeter used in the power measurements is analyzed in the Appendix.
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II Description of Experiment

II-A Experimental Setup

A schematic diagram of the experiment is shown in Figure 1. The gyrating electron beam is

generated by the MIG-type electron gun at the bottom of the superconducting magnet and

propogates up through the drift tube and cavity before being absorbed in the collector. The

microwave fields interact with the electron beam between the collector and drift tube where

electrostatic space charge depression can affect the beam electrons' energy. The microwave

power diffracted around each mirror is collected as output and propogated through the thin

mylar window out of the vacuum. Design details of each of the experimental components

are given in the following sections.

II-B Microwave Cavity

The microwave cavity utilized in these experiments consisted of the Fabry-Perot type open

resonator shown in Figure 2. The spherical cavity mirrors formed an azimuthally symmetric

cavity about the cavity axis. The mode structure and stability of this type of resonator is

discussed by Yariv [14] who finds that the x-component of the electric field of the transverse

electric and magnetic (TEMm,n) modes in the cavity is given by:

XY )= EO woHm x-i) Hexp{. x+ 2
w(Z (Z) w(Z)x w2(z- J

sin {kz + p (x, y, z)} coswt (1)

where Hm is a Hermite polynomial of order m, w0 is the radiation beam waist,

k (x2 + y) (m + n + 1) tan- (z/zo) (2)
=' 2& (z)

is the wave phase shift,

w2(z) = w2 (1+z2/ z 2), (3)

R (z) = z (1 +ZOIZ (4)

zo = rw2 /A is the Rayleigh length, k is the wave number, A is the wavelength and w is

the angular frequency of the radiation, and R is the radius of curvature of the spherical
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wavefront. As can be seen from Eq.(1), the electric field of the TEMoo mode decreases

more rapidly as a function of radius than that of the higher order modes. Therefore it may

be expected that an appropriate choice of mirror diameter may yield a cavity where modes

other than the TEMoo are relatively unimportant due to their larger diffraction losses. For

an electron beam located near the center of the cavity (z < Zo), and with dimensions small

compared to the radiation beam waist, then p 0 and

E,"'(x,y,z) = Eoexp H O sinkzcoswt. (5)

The experimental cavity utilized 5 cm diameter mirrors with a 38.7 cm radius of curvature

and were separated by 20-28 cm. These values place the cavity well into the stable region

of parameter space as can be seen in Figure 3. A numerical code was used to calculate the

electric field profiles at the surface of each mirror and thus the diffractive Q factor of the

cavity. The details of the scalar theory on which these calculations are based are discussed

in Ref. (151. The calculated diffraction losses are lowest for the TEM00 mode, giving that

mode the highest Q value as expected. The diffractive output coupling for the TEM0O

mode calculated by the code is plotted as a function of mirror separation for frequencies of

110, 120, and 130 GHz in Figure 4. The corresponding calculated total Q factors including

ohmic losses for gold-coated mirrors (assumed conductivity: o = 4.5 X 107 siemens/m)

are plotted in Figure 5. Other calculated parameters for the cavity are shown in Table I

for various mirror separations.

The total ohmic losses in the cavity for a given electric field amplitude in the electron

beam interaction region are independent of mirror separation for constant output coupling

and are essentially independent of output coupling for constant mirror separation. There-

fore, the fractional power lost to ohmic heating increases as the output coupling decreases.

The ratio of power lost through ohmic heating of the mirrors (Po) to the diffraction output

power (Pd) is given by

V-2- 1 (6)

where c is the speed of light, T is the total round trip cavity diffraction loss, and Z0 = 377

is the free space impedance. The ratio of ohmic heating to radiated output power is plotted
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as a function of mirror separation for frequencies of 110, 120, and 130 GHz in Figure 6.

This figure shows that at 120 GHz and 20 cm mirror separation, the ohmic heating is over

40% of the radiated power. As shown in Eq. (6), this ratio would decrease to a much

smaller value in a higher power device with several times larger output coupling. The peak

heating density at the center of the mirrors can be expressed in the form

p (kW/cm) = 4.1 W 70L2 -'w 2'72j2 (1 + g) F 2 , (7)

where -1 is the electron beam relativistic factor, j. is the transverse velocity normalized to

the speed of light, g = 1 - d/R, where d is the mirror separation and R is the mirror radius

of curvature, and F is the peak normalized wave amplitude at the beam defined by

Eo8)

where Bo is the applied axial magnetic field. The heating density can be controlled by

allowing the parameter g to approach -1, that is, by moving the mirrors further apart.

Using the radius of the phase front, given by Eq. (4), it is readily verified that at z = d/2,

g > -1, but approaches the unstable limit g = -1 as d --+ oo. As shown in Figure 3 the

limit g = -1 corresponds to the concentric resonator which is on the boundary between

stable and unstable configurations. In the present configuration 0.3 < g < 0.5, which is

well within the stable region. To a good approximation, the average heating density on the

mirrors for a Gaussian resonator mode is obtained by dividing the peak heating density by

In T; 1, where T,, is the output coupling per mirror.

A final value calculated by the mirror cavity code is the amount of the diffracted power

that is actually collected as output compared to that diffracted around the outside of the

output collecting waveguide. In general, this fraction is highest for high output coupling

and when the output is collected off of both mirrors. A second reason for collecting output

from both mirrors is that it makes possible a completely symmetric system and simplifies

the analysis.
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II-C Cavity Mirror Holders

It is well known with cavity gyrotrons that the cavity alignment with the electron beam

is critical for optimum performance of the gyrotron. In the QOG, the cavity fields at the

electron beam form essentially a standing plane wave. The position of the the annular

electron beam (diameter: 3.2 mm) is not as critical, although there is a loss in coupling

efficiency with single-mode theory predicting a reduction of approximately 30% in the

output efficiency of the device relative to the case of a pencil beam. An overlay of the

electron beam with the cavity electric field for the case of the beam axis on the field

maximum is shown in Figure 7. On the other hand, alignment of the two cavity mirrors

with each other is critically important. For this reason, the cavity mirror holders were

designed so that each mirror could be individually aligned with the other mirror. The

mirror holders are shown in Figure 8. Each mirror can move 4 cm axially, allowing the

cavity to be translated as a unit relative to the electron beam as well as allowing for as

much as an 8 cm variation in mirror separation.

II-D Microwave Transmission System

The output waveguide system is an integral part of the mirror holder design shown in

Figure 8. The fact that each mirror must be able to move relative to its mounting flange

forces the output waveguide to be discontinuous, a less than desirable trait. The result of

this discontinuity may be some reflection of the output microwave power back toward the

resonant cavity, although the reflected power is expected to be relatively small due to the

large diameter of the waveguide compared to the operating wavelength.

The output waveguide has a diameter of 10 cm at the surface of the cavity mirror,

maximized to collect as much of the output radiation as possible, and limited only by

the size of the magnet cross-bore. A cone is attached to the back of the mirror, so that

the output system which begins as coaxial waveguide slowly tapers down to cylindrical

waveguide. The cylindrical waveguide then undergoes a seri of gradual tapers and two

discontinuities as shown in the figure, with the final discontinuity occuring at the vacuum

window. The tapers and discontinuities in the output waveguide are not expected to cause
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large reflections since the waveguide diameter is always large compared to the radiation

wavelength (d - 20A). The vacuum window used in these experiments was 0.013 cm thick

mylar. Its dielectric constant is estimated to be approximately 3.2, making the window

thickness < 0.1OA at 120 GHz. Therefore the window possessed the admirable quality of

being essentially transparent to any of the radiation produced in the experiment.

The two waveguide outputs were typically terminated in different diagnostics. The

microwaves from one were allowed to radiate from the open end of the waveguide toward

a modified laser calorimeter placed approximately 5 cm away. The microwaves from the

other output waveguide were allowed to radiate into a box lined with microwave absorber.

The open end of a piece of fundamental waveguide was inserted through the end of the

box into the radiation pattern and used as a pickup to measure the characteristics of the

microwave radiation.

II-E Electron Gun

The electron gun used in this experiment was a Varian VUW-8010 magnetron injection gun

originally designed for use at 35 GHz [16]. Two trim coils in the gun region augmented the

superconducting magnet coils. These coils were operated with opposing currents and were

used to vary the magnetic compression of the beam and to avoid beam interception in the

gun region. The fact that the QOG is relatively insensitive to the size of the electron beam

and its axial velocity spread eased the requirements on the gun, making the VUW-8010

gun usable.

The electron gun was modeled using the Hermannsfeldt electron trajectory code [17].

Modeling the electron trajectories from the gun into the cavity is a fairly time consuming

computational task due to the relatively large dimensions of the gun and beam drift tube

compared to the electron gyroradius. For this reason the electrons were followed into the

microwave cavity in only a few cases. Instead, the parameter space was experimentally

explored, essentially by optimization of the trim coil currents, with the electron trajectory

code being used to model specific experimental settings. The geometry modeled is shown in

Figure 9, and the results of the calculation are plotted in Figure 10. This run was stopped
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slightly after the position of maximum magnetic field. If the electron trajectories are then

adiabatically scaled down to the cavity field, the average alpha value is reduced from 1.4

to 1.3. The 37% spread in alpha calculated means that some of the electrons in the beam

are close to being reflected by the compressing magnetic field. This yields a beam with the

largest a and is consistent with the experiment, which tended to produce the best results

when the electron gun was operated on the edge of stability.

II-F Electron Beam Path

The electron beam is produced by the electron gun in a relatively low (B = 0.29 T) magnetic

field. As the electrons travel toward the cavity, they are compressed by the strengthening

magnetic field which peaks at 5.4 T (for a 5.0 T magnetic field in the microwave'cavity).

As the electron beam is compressed, the electron energy is essentially transferred from

motion parallel to the magnetic field into motion perpendicular to the magnetic field. It is

the perpendicular motion that mainly interacts with the microwave fields in the cavity to

produce radiation.

As the electrons emerge from the electron gun, they enter the drift tube shown in

Figure 11, the first section of which is a tapered piece of graphite. Since the magnetic field

and hence the electron beam velocity pitch ratio a is low, the chance of exciting gyrotron

modes in this section is minimal. This danger increases as the electron beam travels toward

the cavity and is compressed by the magnetic field. For this reason, dielectric rings (with a

large loss tangent) are used to heavily load any possible microwave cavity in the remainder

of the drift tube. The dielectric rings are alternated with copper "scraper" rings designed

both to prevent the electrons from hitting the dielectric and also to ensure that excessive

charge is prevented from building up on the surface of the dielectric, reducing the potential

and affecting the beam propogation. The second (inner) dielectric ring shown in this figure

has an intermediate dielectric constant to minimize reflections of the microwaves from

the surface of the lossy medium. The peak magnetic field experienced by the electrons

(where the electrons have their largest perpendicular momentum and, hence, free energy)

is actually inside the drift tube.
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In the QOG the electron beam experiences space-charge effects in the drift tube between

the gun and the cavity and in the open region between the end of the beam drift tube and

the collector. An estimate for the space-charge depression of the beam voltage in the drift

tube is [18,19]
AV 60I

'V8 C = oil In (Rd/rb,) (9)

where I is the beam current, Pli is the axial velocity normalized to the speed of light, rb is the

beam radius, and Rd is the drift tube radius which is 0.5 cm in the present experiment. For

typical parameters of 75 kV and a = 1, this leads to a voltage depression in the drift tube

of AV = 2 kV at 10 A. An accurate calculation of space-charge depression in this region

involves two-dimensional effects, but a simple estimate for the space-charge depression of

the beam voltage in this region can be obtained by replacing drift tube wall radius in

Eq. (9) by half the drift tube-collector separation L. Although this choice is somewhat

arbitrary and should be considered a temporary replacement for more accurate calculations,

the result depends only logarithmically on the ratio of beam radius to half the length of the

open space. A length of 5 cm was used in the present experiment. Cold tests showed that

at this separation the presence of the beam guiding structures had no measurable effect on

the cavity Q. The voltage depression of the beam due to space charge is plotted up to the

space-charge-limited current for several beam voltages in Figure 12. This figure suggests

that the highest currents at which the experiment was operated (which corresponded to

the highest output powers) were near the space-charge limit. This prescription leads to an

estimated space-charge depression of the beam in the optical resonator of AV = 4.8 kV at

10 A which is more than twice the space-charge depression occurring in the drift-tube.

As soon as the electrons have exited the cavity fields, they enter the collector. The

second peak of the magnetic field is inside the collector, which also serves to diminish

space charge effects. Once past the magnetic field peak, the electrons essentially follow

the magnetic field fines as they expand. Eventually, the magnetic field lines intersect the

collector wall and the electrons are absorbed by the collector.

10



II-G Diagnostics

A schematic diagram of the experimental diagnostics is shown in Figure 13. Standard

millimeter-wave wafer diodes were used to measure the RF pulse shape. The diodes were

terminated in 50 ohms to keep the response time of the diodes short compared to the

radiation pulse width. Diodes from both Baytron and Hughes were used during these

experiments with no inconsistencies observed.

The harmonic heterodyne system shown in Figure 14 was used to measure the frequency

of the output radiation. The gyrotron radiation was inserted into the RF port of a harmonic

mixer, and the power-leveled output of a frequency-locked 12-18 GHz YIG-tuned oscillator

was applied to the LO port. The radiation out of the IF port was then measured through one

of several bandpass filters used to vary the resolution of the device. The three frequencies

are related by 4

fRF = nfLo -- fF, (10)

where n is the number of the harmonic of the local oscillator (frequency fLo) that is mixed

with the RF frequency from the experiment. The different bandpass filters each have

a center frequency of 160 MHz so that for a given RF frequency, IF signals (frequency

fIF) will be measured for two different LO frequencies. The harmonic number may be

determined from the frequency difference between the two LO frequencies,

n = 320 MHz/AfLo. (11)

Once the harmonic number has been determined, it is straightforward to calculate the

experimental operating frequency from Eq. (10) above. The accuracy of this instrument

depends mainly on the accuracy of the LO frequency measurement and the bandpass filter

accuracy. Relative measui e,,cit depend only on the bandpass filter chosen so that accura-

cies of approximately ±10 MHz were possible. This was more than sufficient to differentiate

between longitudinal cavity modes which have a frequency spacing of Av = c/(2d) or ap-

proximately 500 MHz at the maximum separation of 28 cm. A second method of measuring

the frequency was to use the Fabry-Perot interferometer shown in Figure 15. The core of

this device is a mirror cavity similar to the resonant cavity used in the experiment. The
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electric fields in the interferometer are again given by Eq. (1), with modes other than the

TEM0o modes being effectively suppressed by the application of absorbing material around

one of the mirrors to decrease its effective diameter. The phase of the RF field at position

z in the cavity is given by

z - tan-' (12)

where zo = 40 cm is the Rayleigh length for this cavity. As the mirror separation is

increased, successive resonances occur as 0 is increased by 7r. To a good approximation, this

occurs as the separation is increased integral numbers of half (free space) wavelengths. Thus

by carefully measuring the distance that the mirror separation changes between successive

resonances, the radiation wavelength can be measured to approximately 0.1%.

The main power diagnostic was the laser calorimeter shown in Figure 16. The absorbing

surface was coated with several extra layers of paint, with its absorbancy being measured

between each coat at 120 GHz. The absorbancy is plotted in Figure 17 as a function of

paint thickness. Figure 18 shows the measured absorption of the calorimeter as a function

of microwave frequency after the additional paint had been added. The problem of a plane

electromagnetic wave incident on a dielectric layer backed by a conductor can be solved

analytically. The geometry relevant to the quasi-optical gyrotron (electric field parallel to

the boundary surface) is shown in Figure 19. The details of the calculation are given in

Appendix A, where it is shown that the power reflection coefficient is R i(1-D)/(1+D) 2.

The quantity D is given by

-cos6 /i e2[ 1 + e 2 k2frccos 1
D - cos60 Vo 01 - e-2sk2.-roJ , (13)

where 6i is the angle of incidence; 0t is the angle of transmittance; C2 = 72fo(l -z tan 6) is the

dielectric constant of the paint; 42, tan 6 and k2 are the associated real part of the dielectric

constant relative to vacuum, loss tangent and complex wave number, respectively; and r is

the thickness of the paint. Plots of the experimental data and the analytic calculations are

shown in Figures 17 and 18. For these calculations the real part of the dielectric constant

(f,2) was 5 and the loss tangent was 0.25. These values result in reasonably good agreement

once one realizes that the actual thickness of each layer of paint is unknown and probably
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varied. For the data plotted, however, each paint layer is assumed to be of equal thickness.

The voltages applied to both the cathode and the intermediate anode were measured by

capacitive dividers. Sample traces of each waveform are shown in Figure 20. The peak-to-

peak voltage ripple is approximately 4% over the 12 pusec flat top of the cathode voltage

pulse. The 10-90% rise time of the cathode pulse was 3.5 psec, and the 90-10% fall time

was 4 psec. The intermediate anode voltage waveform was adjustable in steps of 1% of the

cathode voltage. The shape (flatness and rise time) of the intermediate anode voltage trace

could be controlled within limits by varying the capacitance in parallel with the voltage

divider.

The collector and body currents were separately monitored by Pearson probes. These

probes had a rise time of 10 nsec and a low frequency cutoff of 140 Hz, making them

suitable for our purposes. The current trace is typically much longer than the flat-top of

the voltage trace, due to the use of a thermionic electron gun with a voltage pulse that

rises and falls somewhat slowly.

I-H Magnetic Fields

The magnetic field is produced by a pair of superconducting coils and modified in the

region of the electron gun by a pair of normal trim coils. The separation of the two

superconducting coils is set by the cross-bore diameter necessary for the microwave cavity

and radiation output structure. The presence of the cross-bore results in a magnetic field

axial profile that is less than ideal. To achieve the necessary magnetic field strength in the

cavity together with an appropriate cross-bore diameter, the superconducting coils had to

be separated slightly more than a Helmholtz pair. This extra separation resulted in the

cavity magnetic field being approximately 6.5% lower than the peak magnetic field along

the magnet axis. A plot of the axial magnetic field is shown in Figure 21.

The effect of the pair of trim coils is localized near the position of the electron gun. The

coil furthest from the superconductors acts to lower the magnetic field near the cathode

thus increasing the magnetic field compression ratio and the beam Ct in the cavity. The

second trim coil increases the axial field locally to compress the electron beam in order to

13



prevent it from being intercepted by the electron gun electrodes. The superconductor and

trim coil positions relative to the cathode position are shown in Figure 22.

II-I High Voltage Modulator

The modulator used to supply the high voltage to the electron gun is a standard capacitive-

discharge type followed by a pulse-forming network and a step-up transformer. The modu-

lator is capable of producing 50 A at voltages up to 90 kV. Most of the current is dissipated

in an oil-filled load box via a resistive shunt in parallel with the electron gun. This serves

to maintain a constant load impedence for the modulator despite the fact that the electron

gun impedence changes radically throughout the pulse. A straight resistive divider is used

to supply the necessary voltage to the intermediate anode. A schematic diagram of the

high-voltage source is shown in Figure 23.

III Threshold Current Studies

The threshold current for single-mode oscillation at the fundamental harmonic can be

derived using single particle theory in the small signal approximation. The result in MKS

units is [20]

thr = -1Amcy/I (A), (14)poe Q A 1 ± o(2krb)

where me and e are the mass and charge (magnitude) of an electron, jLo is the free space

permittivity, Q is the resonator quality factor, and Jo is a regular Bessel function. The

beam waist for the TEMoo Gaussian mode of the resonator is given by

/ (I + g\1/4
=O -g (15)

The normalized threshold current i is given by [21]

8 e 2 /2
I(~) rA2 14 -@ 2' (16)

where 4 = pA/2 is the kinematic phase-slip angle of the electrons transiting the resonator,

u = 27ra jwo/A (17)
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is the normalized interaction length, and

A L( -yew) (18)

is the resonance detuning parameter. The factor 2/ (1 - Jo(2krb)) in Eq. (14) accounts for

the annular beam geometry [22]. The + (-) sign corresponds to placing the electron beam

axis on a maximum (null) of the wave field as illustrated in Figure 7.

A comparison between the theoretical and measured threshold oscillation currents as a

function of magnetic field is shown in Figures 24-26 for mirror separations of 25 and 20 cm.

The beam accelerating voltage is 57 kV, rb = 1.6 mm, and the operating frequency is near

110 GHz in both cases. The data in these figures was obtained by varying the magnetic

field trim coils near the gun to minimize the threshold oscillation current. The theoretical

curves are based on a momentum pitch ratio a = 1.5 which is considered achievable in the

present experiment at currents up to a few amperes based on previous operating experience

with the electron gun and simulations of the gun. At higher currents the best estimate is

a -1 with some drop-off expected for currents above 15 A. Near the minimum threshold

current only a single-mode was observed to be present. Multimode operation was observed

when the current exceeded 2-3 times the minimum threshold current. Thus the single-mode

theory is valid only near the minimum oscillation current.

Results for a mirror separation of 25 cm are shown in Figure 24. For frequencies near

110 GHz the calculated resonator Q factor including ohmic losses and the diffraction output

coupling is Q = 38,000. The transmission coefficient T = 2.8% for this separation and the

separation between adjacent longitudinal modes is 600 MHz. The measured frequency of

the data denoted by the solid dots is 109.8:0.1 GHz. This data was obtained by translating

the mirrors while holding the separation constant to minimize the threshold current and

thus place the beam on the microwave electric field maximum for this mode as shown in

Figure 7. This had the effect of raising the threshold current of adjacent modes as expected

and, at currents below 1.5 A, the adjacent modes could not be excited. The data shown by

the open circles corresponds to the next lower frequency mode-which should also have its E-

field maximum at the beam axis. The measured frequency of this mode is 108.7 ±0.1 GHz.
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A frequency of 109.8 GHz was used in obtaining the theoretical result denoted by the solid

curve which is closest to the solid dot data. The other solid curves correspond to other

longitudinal modes of the resonator with frequencies shifted by multiples of 1200 MHz.

Consistent with the data, the solid curves correspond to modes for which the beam axis

falls on a field maximum. Theoretical results for the intermediate modes, for which the

beam axis falls on a field null, are shown by the dashed curves. Given the experimental

uncertainties, the agreement between theory and experiment near the minimum threshold

current is remarkably good. Probably the least well-known parameter is the beam a. The

sensitivity of the theoretical results to varying a is shown in Figure 25 which shows the

109.8 GHz data from Figure 24 compared with the corresponding theoretical results for

a = 1, 1.5, and 2. The best fit is clearly obtained for a = 1.5.

Figure 26 shows data obtained for a mirror separation of 20 cm. The resonator Q factor

and output coupling are calculated to be 82,000 and 0.9% for frequencies near 110 GHz. The

measured oscillation frequencies are 109.8 ± 0.1 GHz (solid dot data) and 109.2 ± 0.2 GHz

(open circle data). The expected frequency separation for this mirror separation is 750 MHz.

This data was obtained without minimizing either mode threshold current with respect to

electron beam position. The fact that these adjacent modes have essentially equal minimum

threshold currents indicates that the electron beam axis does not coincide with an E-field

maximum for either mode. To account for this, the theoretical threshold currents plotted

in Figure 26 represent an average of the threshold current obtained for the beam axis at a

field maximum and the threshold current obtained for the beam axis at a field null. The

theoretical curve closest to the solid dot data corresponds to a frequency of 109.8 GHz, and

the other curves represent the other nearby longitudinal modes for this mirror separation.

The threshold current dependence on the beam axis position is shown explicitly in

Figure 27. The data was obtained by translating the mirrors perpendicularly to the beam,

holding the separation fixed at 20 cm. This is equivalent to translating the beam relative to

the standing-wave pattern in the resonator. The resonator magnetic field (B = 43 kG), the

electron beam voltage (V = 52.4 kV), and the cathode magnetic field were held constant

during these measurments. Operation was single-moded at a frequency of 111 ± 0.1 GHz.
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The solid sinusoidal curve shown in Figure 27 is proportional to the standing-wave E-field

pattern in the resonator. The first maximum of this curve has been adjusted to coincide with

the beam position which gives the minimum threshold current. The positions of measured

threshold current maxima are then found to fall on nulls of the wave field. The ratio of

minimum to maximum measured threshold current is 0.6. This is in good agreement with

the theoretical ratio of 0.57 for an annular beam with rb = 1.6 mm and provides further

evidence that the electron beam is interacting with the TEM001 modes of the resonator.

IV Multimode Power and Efficiency Measurements

Output power measurements were carried out as a function of beam current and mirror

separation. A preliminary investigation of output power and efficiency showed that for

currents of less than 8 A, output power was a decreasing function of mirror separation.

Power measurements for a gun voltage of 66.7 kV and a current of 8 A at three mirror

separations are shown by the solid square data points in Figure 28. Consequently, initial

power and efficiency measurements were taken at the minimum mirror separation of 20 cm.

This minimizes the output coupling and so leads to the optimum saturated efficiency at the

lowest current, where beam quality should be highest. Mirror alignment and translation

were optimized by minimizing the threshold current for a magnetic field of 50 kG and

a beam voltage of 66.7 kV. A minimum threshold current of 0.25 A at a frequency of

125.8 GHz was obtained. For these conditions the calculated total resonator Q factor is

160,000 and the theoretical minimum threshold current for a = 1.5 is 0.12 A, or about half

the measured value. This discrepancy suggests that the experimental total Q factor may

be - 80,000, i.e, only half the predicted value, however, the calculated minimum threshold

current depends on a which is not well characterized in the experiment. Using the total Q

inferred from the threshold measurement and the theoretical ohmic Q leads to an estimate

of the diffraction Q of 96,000. The calculated diffraction Q is 250,000.

The output power was obtained by multiplying the calorimeter power measurement by

two, dividing by the repetition rate and the pulse width, and correcting for the absorption

efficiency of the calorimeter. The radiation pulsewidth was found to be equal to a good
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approximation to the beam voltage flat-top pulse width of 13 ilsec under most conditions

and this pulse width was used in the peak power calculation. The power output through

the two windows was checked and found to be equal within measurement accuracy. As

shown in Figure 18, the calorimeter absorptivity was measured to be 94% at 120 GHz and

to decrease with decreasing frequency to - 60% at 90 GHz.

The output power as a function of beam current is shown in Figure 29 for magnetic

fields of 44, 47, and 50 kG and a constant gun voltage of 71.5 kV. Based on the calorimeter

reflectivity measurements, a calorimeter efficiency of 95% was used used in the output

power computations for the magnetic fields of 47 and 50 kG; an efficiency of 88% was

used for the 44 kG results. The corresponding output efficiency is shown in Figure 30.

The observed maximum output efficiencies for these magnetic fields and conditions was

12% at 50 kG, 11.9% at 47 kG, and 11% at 44 kG. In obtaining this data no attempt

was made to promote single-mode operation and, consequently, operation was generally

multimoded. Typical multimode frequency spectra are shown in Figures 31(a)-(c). The

spectra correspond to magnetic fields of 44, 47, and 50 kG, respectively, and a gun voltage

of 71.5 kV. The beam current in Figures 31(a) and (c) is 8 A and is 14 A in Figure 31(b).

To obtain the electronic efficiency for a given output efficiency, it is necessary to correct

for ohmic heating losses according to

71 = (1 + Qd/Qo)7o,,t, (19)

where 7le, and 77ot are the electronic and output efficiencies, and Qd and Q, are the diffrac-

tion and ohmic quality factors.

As discussed above the ratio QdIQo depends sensitively on the diffraction Q factor,

which has not been directly measured. For operation at 50 kG, Qd/Qo = 0.2 based on Qd

inferred from the threshold current measurement, whereas QdIQ, = 0.55 based on Qd cal-

culated using scalar diffraction theory. The corresponding electronic efficiencies are plotted

as functions of IQ/d in Figure 32. Using the value of Qd inferred from the threshold current

measurement leads to a maximum electronic efficiency of 14%; using the value of Qd calcu-

lated with scalar diffraction theory leads to a maximum electronic efficiency of 18%. The
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figure also shows theoretical results based on a nonlinear, multimode simulation [4] using

parameters corresponding to the 50 kG data and assuming a = 1. These calculations yield

a maximum efficiency of 17.7%. The theoretical optimum value of QIld - 2.0 x 106 which

is in good agreement with the experimental results based on the Q factor inferred from the

threshold current measurement but not with the results obtained using the theoretical Q

factor.

The electronic efficienzy was not corrected for the space-charge depression of the beam

voltage, because the free energy for the interaction is associated mainly with the transverse

momentum of the electrons which is not greatly affected by the presence of space charge.

Space charge does limit the maximum beam power which can be propagated in the resonator

and reduces the achievable velocity pitch ratio.

As shown in Figure 30, for a magnetic field of 50 kG and a mirror separation of 20 cm,

the output efficiency decreases as the current is increased beyond 6 A. This effect of over-

driving the resonator is well known from cavity gyrotrons. Increased power and efficiency

at currents above 6 A can be obtained in the QOG by increasing the output coupling by

increasing the mirror separation until the optimum RF field amplitude is re-established i r

the cavity. This effect is illustrated by the solid data in Figure 28 which shows output

power optimization by variation of the mirror separation for a constant beam current of

13.5 A and a constant gun voltage of 71.5 kV.

The output power and efficiency as a function of beam current for a magnetic field

of 50 kG, gun voltage in the range 71-75 kV, and beam currents up to 24 A are shown

in Figure 33. Operation was generally multimoded with 4-6 modes being excited. The

frequency of the strongest modes was .- 125 GHz. The data indicated by the squares

corresponds to the minimu'a mirror separation of 20 cm and a gun voltage of 71.5 kV. The

calculated diffractive output coupling at this separation is 0.4% for 125 GHz radiation.

The data indicated by the triangles and dots correspond to a mirror separation of 23 cm

and a calculated 0.8% diffraction output coupling. The highest measured power, shown

by the solid dots, was 148 kW and was obtained at a mirror separation of 23 cm, a beam

voltage and current of 78 kV and 24 A, and a negative taper in the magnetic field of 2%
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across the interaction region. This current is estimated to be near the space-charge limit

for this voltage and Q = 1. No evidence of oscillation in higher order transverse modes was

observed from the frequency measurements at 50 kG or other magnetic fields.

V Frequency Tuning Measurements

In the QOG the operating frequency is approximately Q.,/7y, where 0,c is the nonrelativistic

electron cyclotron frequency, so that the operating frequency can be tuned by varying

either the magnetic field or the gun voltage. Figure 34 presents frequency and power

measurements for magnetic fields from 38 to 50 kG with fixed gun voltage (66.7 kV) and

current (,- 12 A). Operation was usually multimoded as indicated in the figure which shows

frequency variation from 95 to 130 GHz. Significantly, the power varied by < 3 dB for this

frequency variation. The QOG could have operated at still lower frequencies (at lower

magnetic fields), but such frequencies were below the cutoff frequency of the waveguide

used in the heterodyne frequency diagnostic.

Frequency variation with electron gun voltage was also investigated. Frequency mea-

surements were obtained several voltages between 43 and 72 kV for a magnetic of 50 kG

and a current of - 10 A. As shown in Figure 35, a 4% frequency increase was measured

for this variation in gun voltage. A disadvantage of this method of frequency tuning is

that power scales strongly with voltage and decreased from 70 to 25 kW as the voltage was

decreased.

VI Studies of Near-Single-Mode Operation

Since the longitudinal mode density of the QOG resonator is high, it might be thought that

the device is inherently multimoded, but this is not the case. The operating parameter

space was characterized by regions of stable single-mode or near-single-mode operation.

Single-mode operation was most common at lower powers but was also observed at powers

up to 125 kW. At a current near threshold, a single-mode having the highest growth rate

can be excited. It was found that if the current was then increased holding the magnetic
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field and gun voltage fixed, the cavity would oscillate in a sequence of higher frequency

modes as shown in Figure 36. The data plotted in this figure was obtained for a gun

voltage of 71.5 kV, a mirror separation of 23 cm, and a magnetic field of 47 kG in the

middle of the interaction region. The magnetic field had a negative 2% taper across the

interaction region. Alternatively, it was possible to vary the voltage while increasing the

current (keeping the magnetic field fixed) so as to maintain single-mode operation in the

mode initially excited. Figure 37 shows a region of single-mode operation in V - I space

obtained using the latter procedure. An untapered magnetic field of 47 kG was used

to obtain this data at an operating frequency of 119 GHz. The area of single-moded

operation is denoted approximately by the line thickness; voltage changes of - 0.5 kV led

to observable changes in the mode spectrum. The maximum power of the data in this

figure is 55 kW. Figure 38 shows the output power obtained during single-mode or near-

single-mode operation for mirror separations of 23, 25.5 and 28 cm. The magnetic field was

47 kG and the oscillation frequency was 119-120 GHz in all cases. Here, output powers as

high as 125 kW were obtained while maintaining nearly single-mode operation. At least

90% of the output power was in a single-mode, with most of the remaining power in the

two adjacent modes. Relative mode power was measured using the amplitude response of

the heterodyne frequency diagnostic.

As the current was increased above threshold, it was found that single-moded oper-

ation corresponded to progressively higher resonance frequency mismatches (w - Qcy).

Figure 39(a) shows frequency mismatch uncorrected for the space-charge effect versus the

beam current normalized to the oscillation threshold current for the data shown in Fig-

ure 38. Figure 39(b) illustrates the frequency mismatch obtained by correcting the electron

cyclotron frequency for space-charge depression of the beam as discussed in Section I-F.

To compare the theoretically predicted stable, single-mode operating regime [231 with

the experimental data, it is convenient to express the data in terms of the normalized RF

electric field amplitude, E, and the kinematic phase parameter for the interaction, P, which
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are given by

2v f ) WO (20)

8r 1 + a 2  ZOP
BoA (1 - '-) a -rc2 T, (21)

where P is the diffraction output power. The parameter E can be expressed in terms of

the normalized interaction parameters F and A according to E = Ftt, and as discussed

above, (D = pA/ 2 . An advantage of the new parameters is their relative insensitivity to a

which is not well determined in the experiment. Theoretically, the stable operating regime

for a fixed pu corresponds to an area in E-t space. Uncertainty in the beam velocity

pitch ratio a leads to a range of possible y values from 5-10. The region of stable, single-

mode operation predicted by theory corresponds to the area bounded by the solid curves

in Figures 40(a) and (b) which were obtained assuming a = 0.65 (p = 5) and a = 1

(# = 10), respectively. These plots were made for an annular beam of radius 1.6 mm

centered on the electric field maximum of the equilibrium mode. Equilibria with values of

E , ¢ outside the stable region are unstable with respect to the growth of neighboring modes

(sidebands). The use of an annular beam configuration has an important effect on the size

and shape of the stability boundary [23]. In particular, the stable region for an annular

beam is much smaller than that for a pencil beam. This reduction occurs because, unlike

the pencil beam, an annular beam couples to both the odd and even symmetry modes of

the resonator. If beam-RF coupling is optimized for the desired operating mode, coupling

to the two adjacent modes, which have opposite symmetry, will be weaker. The weaker

coupling of the principal competing modes inhibits saturation of their gain by the main

mode, an important factor in determining the region of stable operation. Comparison

of the Figures 40(a) and (b) shows that the predicted stable area is smaller for f = 10

than for p = 5. The reduction in stable region with increase in p is a general feature

of the theory for both pencil and annular beams. The experimental single-mode data for

mirror separations of 23, 25.5 and 28 cm, assuming either a = 0.65 or 1, is also shown in

Figures 40(a) and (b). The data indicates single-mode operation occurs for E : 2. This is

consistent with the theoretical results for p = 5 but not 1 = 10. However, nonlinear, time
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dependent, multimode simulations for p = 10 show that the unstable sidebands saturate

at a sufficiently low level that the resulting equilibrium appears single-moded within the

resolution of the experimental data (90% of power in main mode). Thus, the theoretical

results regarding single-mode operation are not inconsistent with a = 10 (ca = 1) in the

experiment. The experimental data is primarily limited to the lower halves of the stable

regions, whereas theory predicts that all points should be accessible. Simulations modeling

the finite rise time of the voltage pulse indicate that this is not a factor which limits the

accessible region. The inability to tune the gyrotron within the stable region without loss

of single-modedness is not understood, but may be related to the 4% ripple of the voltage

pulse which corresponds to a variation in the detuning parameter C

The measured electronic efficiency corrected for ohmic effects is compared in Figure 41(a)

and (b) with the theoretical annular beam single-mode efficiency for p = 5 and 10 and using

the measured detuning. The agreement is much better for p = 5 than 10. The calculated

efficiency for p = 10 is about 60% greater than the measured efficiency. In addition, the

calculated efficiency peaks at a value of E lower than that suggested by the data. The

calculated efficiency for p = 5 (a = 0.65) is in better agreement with the data both in

maximum value and dependence on E.

VII Discussion and Conclusions

Extensive results have been obtained for a CW-relevant QOG which demonstrate for the

first time many of the advantages of this configuration at output powers up to 148 kW.

A peak output efficiency of 12% was obtained which is estimated to correspond to an

electronic efficiency of 14-18%. The difference between output and electronic efficiency

is t .e mainly to ohmic heating losses which can dominate at low output coupling but

would not be a factor in a 1 MW device, which would typically have a much larger output

coupling. Single-mode operation was observed at powers up to 125 kW, and the frequency

was tunable from 95 to 130 GHz by varying the magnetic field. Frequency tuning of 4%

was obtained by gun voltage variation. Efficiency optimization by variation of the output

coupling and by tapering the magnetic field has been demonstrated. The region of single-
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mode operation of a highly overmoded quasi-optical cavity has been characterized for the

first time.

The use of resonator mirror holders allowing flexible and precise adjustment of mirror

separation, translation, and alignment has enabled the investigation of many interesting

features of the quasi-optical gyrotron, especially the ability to vary the output coupling

independently of other parameters. This allowed the output efficiency of the device to be

optimized over a range of beam currents and operating frequencies.

The theory of stable, single-mode QOG operation based on sideband suppression by the

dominant mode has been compared to experimental data for the first time. The theory

extends previous theoretical work on the stability of free electron lasers [24] to the QOG

with an annular beam [23]. The data confirms the prediction of significant regions of single-

mode operation in a highly overmoded system without the application of mode stabilization

or selection techniques. The annular beam geometry was found to have a strong effect on

the single-mode stability: the stable parameter region is reduced relative to the pencil beam

case due to the less effective sideband suppression by the main mode. The mode density

in the present configuration is moderate: the mode frequency separation of - 0.6% leads

to about 5 modes within the interaction bandwidth. Nevertheless, the region of stable

operation is not expected to be greatly affected for configurations with much greater mode

density, as may be needed in higher-frequency, megawatt-average-power systems.

As is the case for many high-power millimeter-wave experiments, the greatest unknown

here is the value of the electron beam velocity pitch ratio, a, and its spread. Numerical

modeling is difficult at best, and actual experimental measurements are even more so and

have not been made. The achievable value of a is typically limited in this experiment by

arcing in the electron gun circuit. This can be caused by magnetic mirroring of a portion of

the electron beam, or by some of the beam electrons intercepting the focusing electrodes in

the gun. Each of these causes may be controlled by varying the magnetic field (amplitude

and shape) in the electron gun region which is accomplished by varying the currents in the

two trim coils. When maximum power was desired, the trim coils were varied accordingly

and operation was limited by arcing. Usually the spectrum obtained in this manner was not
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single-moded, although occasionally at high beam current it was. To obtain single-mode

operation it was frequently necessary to adjust the trim coil currents to a region of reduced

operating power and presumably lower a. Consistent with the threshold current data, a

values of 1.5 are considered to be achievable at low currents. However, due to the spread

in a, the average a must be decreased as the current is increased to prevent arcing. The

amount of this decrease in average a is certainly debatable; however a = 1 seems to yield

reasonably good agreement between theory and experiment at currents above 15 amps.

For some of the single-mode operation at these high currents, a values as low as 0.65 yield

consistency between theory and experiment.

The accuracy of the theoretical modeling of the experiment is limited by the uncertainty

in the resonator Q factor as well as the uncertainty in the beam a. Cold tests are currently

in progress which should yield accurate data for the resonator Q as a function of mirror

separation. This data should resolve the discrepancy, discussed in Section IV, between the

Q factor inferred from threshold current measurements and the scalar diffraction theory

result.

Although the fraction of the total power lost which is dissipated in ohmic heating is

high in the present configuration, the ohmic heating density is relatively low. In the case

of operation at 125 kW and a frequency of 120 GHz-demonstrated in this experiment with

a 23 cm mirror separation and a 47 kG magnetic field-the average heating density (during

the pulse) on the mirrors was 0.6 kW/cm2. This is well within the ohmic heating limit

of a few kW/cm2 for CW applications. The peak heating density (at the center of the

mirror) for this case was 3 kW/cm2. The resonator used in this experiment has g -. 0.3.

The ohmic heating density could be reduced by a factor of four without changing the

interaction parameters (except for mode density) by decreasing g to -0.65 and increasing

the mirror separation to 75 cm.

In conclusion, a CW relevant quasi-optical gyrotron experiment has been performed

that substantiates many of the pertinent theories and demonstrates an understanding of

the basic physics of the QOG. The model used for the annular beam predicted very well the

change in the threshold current as the electron beam was translated relative to the cavity
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standing wave pattern. Threshold currents themselves were also in good agreement with

calculated values, with differences attributable to the imprecise knowledge of some of the

relevant parameters such as the a value of the electron beam. Frequency measurements

were obtained for several widely varied values of the magnetic field, electron beam current,

electron gun voltage, mirror separation, and electron beam alignment relative to the cavity

fields. With the exception of a few observed frequencies attributable to oscillations in the

drift tube region (i.e. near the peak of the magnetic field), each frequency measurement

was consistent with a TEM00 mode oscillating in the resonant cavity. Essentially, the

higher-order TEM modes were effectively suppressed due to their higher diffraction losses.

As discussed above, regions of single-mode operation and efficiency axe well predicted by a

relatively recently developed theory. Finally, efficiency optimization as a function of current

and mirror separation has been demonstrated. To within the limits that a is known, if the

value of QIld - lIT is held constant, the efficiency remains unchanged.

A series of several experiments are planned for the future. Immediate plans include the

incorporation of a higher-power electron gun capable of producing 50 amps at 80 kV. This

electron beam has a diameter of 1 cm in the resonant cavity, necessitating modification of

the drift tube, and the collector will also be modified to handle the higher-power beam.

During these modifications, a probe will be added to measure any buildup of charge that

may be trapped between the two peaks of the magnetic field. One benefit of using this

electron gun will be a better characterized electron beam, with average values of a ; 1.5

considered accessible at high currents, implying a much lower spread in a than in the

experiment described here. The higher input power from the electron gun will make possible

the use of a resonator with larger output coupling, again to keep the product lIT , QIld

the same as the lower-power experiments. Since the ohmic losses remain nearly constant,

the total Q value for the cavity will be essentially unaffected by the ohmic Q, resulting

in the measured efficiency being essentially equal to the electronic efficiency. This fact

will make interpretation of the data and comparison to theory more straightforward. One

value to be determined by the experiment will be the maximum value of current that can

be propogated through the resonant cavity. To enhance this value, provision has been
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made to add a DC electric field parallel to the magnetic field, possibly increasing the

amount of current that can be propogated through the cavity. A gyroklystron experiment

is also planned, incorporating a quasi-optical prebunching cavity with low mode density

(essentially single-moded) in addition to the overmoded output cavity. The circulating

power in the prebunching cavity will be low, allowing the use of a short mirror separation

while maintaining CW relevance.
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A Appendix: Calorimeter Calculations

The calorimeter described here consisted of a conducting plate covered with a layer of lossy

dielectric material (paint). The analysis of this situation is given here for the case of a

general dielectric material. The geometry is shown in Figure 19 for the case of the electric

field of the incident radiation perpendicular to the plane of incidence. The electric fields of

the plane wave incident (El) on and reflected (-) by the dielectric as well as the forward

(-+) and reflected (E-) waves in the dielectric are given by:

El = PEIe -  (1)

E2 = jEeItk '  (2)

where w = 2rf is the angular frequency of the radiation, k is the wave number, r' is the

position vector, P is the unit vector in the y direction and:

-= k,(xsin ,± ± zcos,) (3)

k2 = k2(Xsin O±zcos0e) (4)

where 0i is the angle of incidence and Ot is the angle of transmittance shown in Figure 19.

In region 1 (free space), the wave number is real, but k is complex in the lossy dielectric of

region 2:

k2 = W1vFii- (5)

f2 = l-2 fo(1-tan6) (6)

where the permeability of the dielectric, A2, is assumed equal to €o, the permeability of

free space, e. is the permitivity of free space, F-2 is the real part of the dielectric constant

relative to free space, and tan 6 is the loss tangent of the dielectric. The total electric fields

in regions 1 and 2 are given by:

E = - + El (7)

E 2  E2 + E2 (8)
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and E* are the peak electric field strengths of the waves travelling in the ±z direction.

Here we desire to calculate the reflection coefficient of the dielectric layer, i.e. we wish to

calculate EI/E+, and do so by applying the appropriate boundary conditions.

First note that the tangential electric field is zero at z = d, leading to the equation

E + = -E~e 2k2d ' °  (9)

The fact that the tangential electric field is continuous across the boundary at z = 0 leads

to Snell's Law,

k, sin0, = k2 sin Ot, (10)

and
E + -+ ET" = E+ + E '. (11)

The tangential part of the magnetic intensity (Ht.,,) is also continuous at z = 0, which

implies
ET -E+ = I cost 0 -

Cosr -4)., (12)
Using Eq.(9) and performing some algebra yields an equation for the complex reflection

coeficient,
ET 1-D (13)
E= 1+D'

where

D = (cos't /-, 1 + e - i2k2dcoset (14)
kCos O , , 1 - ei2dco~s (14

The power reflection coefficient is

R 1 i 2 . (15)

A similar calculation for the electric field of the incident radiation parallel to the plane of

incidence yields

1 - D'2  (16)
1+D'I

where

= CosG,' 2_ 1 + .et2dcosDLcosOt 1 - e-i2k2dccst (17)
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TABLE I

Mirror Diameter (2a) 5.0 cm

Radius of Curvature (Re) 38.7 cm

Mirror Separation (d) 20 24 28 cm

Frequency (f) 120 GHz

Wavelength (A) 0.25 cm

Longitudinal Mode Spacing (f/f) 0.63 0.52 0.45 %

Radiation Waist Radius (wo) 1.16 1.19 1.22 cm

Wo/A 4.6 4.8 4.9

A (E = 70 keV, a = 1.0) 9.8 10.1 10.3

Transmission Coefficient (T, round trip) 0.5 1.5 2.2 %

Diffraction Quality Factor (Qd) 198,000 80,000 61,000

Ohmic Quality Factor (Q,) 354,000 400,000 470,000

Total Quality Factor (Q) 127,000 67,000 54,000

Fresnel Number (a2/Ad) 1.25 1.04 0.89

G ((1 - d/R,)(aj/a 2)) 0.48 0.38 0.28
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Figure Captions

Figure 1 Schematic diagram of the NRL quasi-optical gyrotron experiment.

Figure 2 The quasi-optical gyrotron resonator showing the geometry of the external mag-

netic field (Bo), the RF electric field (Eqf), and the electron beam.

Figure 3 Open resonator stability diagram. The shaded (high-loss) areas are those in

which the stability criterion (0 < (1 -d/R 1 )(1 -d/R 2) : 1) is not satisfied. Note that

the experimental design lies well within the stable region.

Figure 4 Cavity diffraction loss as a function of mirror separation for resonant frequencies

of 110, 120 and 130 GHz. The 5 cm diameter cavity mirrors had a radius of curvature

of 38.7 cm.

Figure 5 Resonant cavity quality factor (Q) including diffraction and ohmic losses as a

function of mirror separation for resonant frequencies of 110, 120 and 130 GHz. The

5 cm diameter cavity mirrors had a radius of curvature of 38.7 cm.

Figure 6 The ratio of power lost through ohmic heating of the cavity mirrors to the RF

output power as a function of mirror separation for resonant frequencies of 110, 120

and 130 GHz. The 5 cm diameter cavity mrrors had a radius of curvature of 38.7 cm.

Figure 7 Geometry of the annular electron beam and the standing RF electric field (with

the beam centered on the peak of the electric field).

Figure 8 Adjustable resonant cavity mirror holder shown mounted in the superconducting

magnet cross-bore.

Figure 9 Electron gun geometry modeled using the Hermannsfeldt electron trajectory

code showing the calculated electron trajectories. Note in this calculation that 1 mesh

unit = 0.25 mm.

Figure 10 Alpha (a = v±/vII) values for different rays calculated by the Hermannsfeldt

electron trajectory code.
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Figure 11 Drift tube design showing the lossy and matching dielectric rings and the copper

scrapper rings.

Figure 12 The space charge depression of the electron beam voltage as a function of the

beam current for electron gun voltages of 50, 60, 70 and 80 kV. The momentum pitch

ratio was assumed to be equal to 1.

Figure 13 Resonant cavity and associated diagnostics.

Figure 14 The heterodyne diagnostic used for frequency measurements. The local oscil-

lator (LO) is frequency locked by the counter (FC) and power leveled by the power

monitor (PM). The RF from the gyrotron (QOG) is mixed with the LO signal by the

harmonic mixer (HM) and the IF signal is filtered by one of several bandpass filters

(BPF) before being amplified (A), rectified (DET), and measured on an oscilloscope.

Figure 15 Schematic diagram of the Fabry-Perot interferometer used to measure the fre-

quency. Radiation was input (I) from the experiment and coupled out (0) for detec-

tion through the planar mirror (A). The concave mirror (B) of the nearly semiconfocal

resonator was movable through the use of a micrometer (C).

Figure 16 Modified laser calorimeter used to measure experimental output power. The

incident radiation (A) is absorbed in the layer of paint (B) on an aluminum plate (C).

The temperature rise is measured by thermopiles (D).

Figure 17 Measured (solid dots) and calculated (solid curve) calorimeter absorption as a

function of lossy paint thickness. The calculations assumed e, = 5 and tan(b) = 0.25,

and the thickness of each coat of paint was assumed to be equal.

Figure 18 Measured (solid dots) and calculated (solid curve) calorimeter absorption as a

function of incident RF frequency. The calculations assumed e = 5 and tan(b) = 0.25.

Figure 19 Geometry used to calculate the calorimeter absorption showing the angles of

incidence (0j) and transmittance (0t), the dielectric constants of free space (e,) and

of the absorbing paint (e2) and the RF electric (f) and magnetic (H) fields.
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Figure 20 Voltage waveform applied to the cathode (a) and intermediate anode (b) of the

electron gun.

Figure 21 Profile of applied axial (B,, solid curve) and radial (Be, dashed curves) mag-

netic fields measured on axis (curve 1) and 0.7 cm off axis (curve 2).

Figure 22 Configuration of the electron gun emitter and the main and trim magnetic field

coils, The trim coil nearest the emitter generated a magnetic field in the direction

opposite the fields of the other coils and the origin of the z-axis (axis of symmetry)

indicates the bottom of the superconducting magnet dewar flange.

Figure 23 Schematic diagram of the 13 psec, high-voltage modulator used in the experi-

ments.

Figure 24 Threshold currents for a 25 cm mirror separation. The solid dots show data

with an oscillation frequency of 109.8 ± 0.1 GHz, and the open circles show data

with an oscillation frequency of 108.8 ± 0.1 GHz. The solid (dashed) curves show

theoretical results based on a = 1.5 for longitudinal modes with an electric field

maximum (minimum) coinciding with the electron beam axis.

Figure 25 Threshold current dependence on a for a mirror separation of 25 cm. The solid

curve shows the theoretical result for a = 1.5, the dashed curve corresonds to a = 1,

and the dash-dot-dash curve corresponds to a = 2. Othe parameters are as given

for Figure 24.

Figure 26 Threshold currents for a 20 cm mirror separation. The solid dots show data

with an oscillation frequency of 109.8 ± 0.1 GHz, and the open circles show data with

an oscillation frequency of 109.2 ± 0.2 GHz. The solid curves show theoretical results

based on a = 1.5 and the electron beam axis located midway between the electric

field maxima for adjacent longitudinal modes of the resonator. The two thicker line

theoretical curves correspond to frequencies of 109.05 (minimum oscillation current at

42.8 kG) and 109.8 GHz (minimum oscillation current at - 43.2 kG).
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Figure 27 Threshold current dependence on beam translation. The solid dots show data

for a 20 cm mirror separation, a gun voltage of 54.2 kV, a magnetic field of 43 kG,

and an oscillation frequency of 111 ± 0.1 GHz. The solid curve is proportional to the

amplitude squared of the standing-wave RF field of the resonator.

Figure 28 Output power vs. mirror separation for a 50 kG magnetic field. The solid

square data corresponds to a gun voltage of V - 66.7 kV and a beam current of 8 A.

The solid dot data corresponds to a gun voltage of V = 71.5 kV and a beam current

of 13.5 A.

Figure 29 Output power vs. beam current for 20 cm mirror separation and a gun voltage

of 71.5 kV. The magnetic field is 44, 47, and 50 kG for the solid square, solid dot, and

solid triangle data, respectively.

Figure 30 Output efficiency vs. beam current for 20 cm mirror separation and a gun

voltage of 71.5 kV. The magnetic field is 44, 47, and 50 kG for the solid square, solid

dot, and solid triangle data, respectively.

Figure 31 Typical multimode frequency spectra for a mirror separation of 20 cm and a

gun voltage of 71.5 cm. (a): B = 44 kG, I = 8 A; (b): B = 47 kG, I = 14 A; (c):

B = 50 kG, I = 8 A.

Figure 32 Electronic efficiency vs. QIld. The solid curve shows results from a multimode,

annular beam simulation. The solid dots and triangles show the estimated electronic

efficiency for the 50 kG power data shown in Figure 29. The solid dots are based on

the diffraction Q obtained from scalar diffraction theory, and the solid triangles are

based on the Q inferred from the threshold current data.

Figure 33 Output power and efficiency operation with a 50 kG resonator magnetic field

and gun voltages of 71-74 kV. The mirror separation for the data shown by the solid

and open squares is 20 cm, and is 23 cm for the data shown by the solid and open

circles and triangles. The resonator magnetic field has a 2% negative taper for the

data shown by the solid and open circles.
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Figure 34 Frequency tuning by magnetic field variation. The oscillation frequencies are

shown by +'s and the output power is shown by the solid dots. The gun voltage and

beam current 66.7 kV and 12 A, respectively.

Figure 35 Frequency tuning with gun voltage variation for a magnetic field of 50 kG, a

current of -, 10 A and a 20 cm mirror separation. The oscillation frequencies are

shown by the solid dots and the large dots indicate the dominant mode.

Figure 36 Mode frequencies as a function of current for a magnetic field of 47 kG with a

2% negative taper, a fixed voltage of 71.5 kV, and a 23 cm mirror separation.

Figure 37 A region of single-mode operation in V - I space. The magnetic field is 47 kG

and the frequency is 119 GHz.

Figure 38 Output power for single-moded or near single-moded operation for a magnetic

field of 47 kG and frequencies of 119-120 GHz. The mirror separation is 23, 25.5, and

28 cm for the solid dots, triangles, and squares, respectively.

Figure 39 Resonance detuning dependence on beam current normalized to the threshold

current. The detuning in (a) is uncorrected for space-charge effects, the data in (b)

includes a space-charge correction. The solid dots, triangles, and squares correspond

to the data shown in Figure 38.

Figure 40 QOG normalized operating parameter space for (a):ji = 5 (a = 0.65) and

(b):j = 10 (a = 1). The solid dots, triangles, and squares correspond to the data

shown in Figure 38. The solid curves indicate the boundary of the predicted region of

stable operation.

Figure 41 Comparison of theoretical and experimental electronic efficiencies for (a) p =

5 (a = 0.65) and (b) /i = 10 (a = 0.65). The solid dots, triangles, and squares

correspond to the data shown in Figure 38.
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Experimental Study of a 115 Giz Quasi-Optical Gyrotron

with a Large Cavity
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Naval Research Laboratory, Washington DC 20375

Abstract

The operation of a gyrotron based upon a quasi-optical cavity is reported.
The cavity mirrors were separated by 81 cm, allowing the use of mirrors large
enough in diameter to be in principle compatible with cw operation. The pulse
length in this experiment was 12 microseconds. The gyrotron operated between 113
GHz and 122 GIz, with a maximum output power of 50 kW. The highest efficiency
observed was 7.3%. The observed powers and efficiencies were lower than
originally anticipated, but when cavity losses and the actual performance of the
electron gun was included, agreed well with theoretical predictions based on
multimode simulations. The output spectra were measured, and again were in good
agreement with theory.
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I. Introduction

High power (P > I MW), continuous wave sources operating at frequencies in
excess of 100 GHz are expected to be required for heating of thermonuclear
fusion plasmas. The gyrotron has been shown to be a good candidate for such a
source. This is due to the fact that highly overmoded cavities can be used,
greatly extending the limits on power that are imposed by the ohmic heating in
devices based on fundamental mode cavities. Gyrotrons based on axisymmetric
cavities supporting TE modes have produced powers as high as 75 kW cw [1] and
650 kW pulse [2) at 140 GHz. As a method of going to even higher cavity
volumes, it has been proposed to use a quasi-optical Fabry-Perot resonator.[3]
This concept combines both the high intrinsic efficiency of the gyrotron
mechanism and the potential capability of handling multimegawatt powers at high
frequency. Numerical, multimode, simulations [4] of the time evolution of the
wave spectrum have predicted that efficiencies up to 28% could be reached using
presently available electron guns and a single quasi-optical cavity.
Implementation of a buncher cavity and the use of an electron gun specifically
tailored should result in efficiencies exceeding 40%.

In previous experiments, quasi-optical gyrotrons with a cavity small enough
to confine operation to a single mode were tested.J5,6] The length of the cavity
in the experiment of reference [5] was 4 cm. In this paper we report on the
results of experimentation with a gyrotron based on a quasi-optical cavity for
which simultaneous oscillation in several modes was expected. This cavity was
81 cm in length, and, in contrast to the previous cavity, could be cooled using
conventional methods to allow cw operation.

The original design of the experiment called for an output power of 100 kW
and an efficiency of approximately 25%. Due to the failure of the originally
intended electron gun, and the substitution of one less suited to the
experiment, the estimates for the power and efficiency were more than halved.
However, as is shown below, the results of the experiment were in good agreement
with theoretical predictions for the configuration actually realized. This
agreement gives substantial credence to the simulation, and the substantially
higher efficiencies and powers predicted for optimized configurations.

II. The Experimental Apparatus

A schematic of the quasi-optical gyrotron is shown in Figure 1. The geometry
is largely that of a previous experiment,[5] with the small cavity being
replaced by one with a mirror separation of approximately 81 cm. As before, the
magnetic field is provided by a pair of superconducting coils. One of the
constraints in the design of the magnet was the incorporation of a cross bore
large enough in diameter (10 cm) to avoid interference with the cavity mode.
This resulted in the magnet coils being placed farther apart than required for
optimum uniformity of magnetic field. The field profile is shown in Figure 2.
The coils could be independently driven, allowing the field to be tapered.

The electron beam was produced by an electron gun originally designed for
use In a 35 GHz gyrotron. [7] For use at the higher magnetic field of this
experiment (4.5 Tesla), both the magnetic field at the cathode and the magnetic
compression were increased. Operation under these conditions produced very
non-laminar flow, as is shown in Figure 3. This produced high spreads in
velocities, with A v / v of approximately 10 %. (V is the component
of the velocity normBprqo thRrggnetic field vector. A V per s the standard

perp
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deviation for the distribution of perpendicular electron velocities.) In
conjunction with the magnetic field profile, this velocity spread gave an upper
limit to the ratio of the perpendicular to parallel electron velocities. Higher
values in the ratio would result in too large a fraction of the beam being
magnetically mirrored, as shown in Figure 4. As discussed below, this limited
the efficiency of the gyrotron, since the only accessible electron energy in the
gyrotron is that associated with motion perpendicular to the magnetic field.

An approximate value for the upper limit to the velocity ratio can be found
by assuming a limit to the space charge caused by the reflection, and
calculating the reflection that would create that space charge density. A 100%
increase in the space charge density is equivalent to a doubling of the current.
This has been shown by simulation to cause a significant increase in the
velocity spread, and is a reasonable upper limit. The distance between the gun
and the first maximum in the magnetic field is approximately 30 cm, and, for an
average alpha of 1, the electron transit time is approximately 3.3 ns. For a
mirrored electron, the round-trip time is 6.6 ns. Thus, for a pulse length of
12 microseconds, there are approximately 1800 transit times. To limit the build
up of space charge to 100%, a reflection of less than 0.04% per transit is
required. We assume a Maxwellian disiribution in the perpendicular velocities,
and use the adiabatic invariant v /B to calculate the conditions for
mirroring. It is then found thatPI;Porder to limit the reflection to less than
0.04% per pass, the maximum velocity ratio, a (= vnrn v Vlsv ), in the cavity
must be < 0.95. The calculation is not particular?) rensi t~e to the allowed
degree oT build-up in the space charge. If only a 20% increase in the charge
density is allowed, the maximum velocity ratio is 0.9. Since this is clearly an
approximate calculation, with loss of charge by scattering, etc. not included, a
value of a = 1 has been taken for the calculation discussed below.

The other beam parameters are summarized in Table I.

The resonator consisted of two mirrors of different diameters, to allow for
a single output by diffraction around the smaller mirror. This form of
diffractive output was chosen over center hole coupling because the latter has
been found to preferentially load the desired mode, while poorly coupling to
higher modes. This results in oscillation in the higher order mode, but with
little output. A partially transmissive mirror, such as a dielectric with a
thin coating or a mesh, was rejected because it could not be cooled in a CW
system.

The output mirror radius was determined by use of a code by K. Yoshioka,[8J
in which the diffractive losses are found by use of a scalar Huygen's method.
From results of multimode simulations of the gyrotron, the optimum loss per pass
for the available beam current was approximately 1.5% - 2.0%. The chosen output
mirror radius was 4.15 cm, yielding a total diffractive loss from the resonator
of 21. Unfortunately, not all of the power diffractively lost from the cavity
is via the output coupling. Due to the finite extent of the mirrors, a
significant amount of power is scattered into the dewar. For the present
resonator, only 601 of the radiation is coupled out. This "efficiency" could be
increased to approximately 801 by shortening the separation between the
resonator mirrors or increasing the mirror radius of curvature. Neither of
these changes could be made given the constraints of the present experiment.

The quality factor Q resulting from ohmic losses was calculated from the

expression
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Qohmic = (L/4)(f 1 )/2

where L is the separation between mirrors, f is the frequency, a the
conductivity of the mirror material (copper) and p the permeability of free
space. Taking a equal to 3.5 x 10 mhos/meter (60% of the dc value for
copper),L9] an ohmic Q of 757,000 was calculated. This is 15% of the
diffractive Q. The total calculated Q (including all diffractive and ohmic
losses) was 86,000, and the total "efficiency" of the resonator was calculated
to be 53%.

Actual measurements of the cavity, performed while in place on the magnet
and with the magnet at operating temperature and under vacuum, indicated a total
Q of 90,000 +/-10,000. This is in good agreement with the calculations.

Such a good agreement between the experiment and the calculations indicates
tha the magnet cross bore diameter was large enough not to significantly
interfere with the resonator mode. This conculsion is also supported by the
observation that in both cold and hot tests the frequency separation between two
consecutive modes is exactly c/2L. c is the velocity of light in vacuum.

A summary of the resonator parameters is given in Table II.

In order to focus the output radiation into a nearly Gaussian beam, a
modified Cassegrain antenna was used. The system is shown in Figure 5. The
mirror system imaged the center of the resonator, and focussed the output
radiation to a 1.5 cm diameter spot. The 6 cm diameter output waveguide began
at this focal point, as shown in Figure 6.

The output power was monitored by a laser calorimeter which had been

modified for m-wave operation by the application of additional layers of
absorbing paint. The measured absorption coefficient was a function of
frequency, but for the frequency range of interest was approximately 90%. The

actual measured reflectance was incorporated in the calibration of the
instrument.

The frequency spectrum was measured via a heterodyne receiver using a
harmonic mixer. The harmonic number used was 8, with an intermediate frequency
(IF) of 160 MHz and a IF filter bandwidth of 30 MHz. The pulse shape was
monitored using a standard microwave diode. The signal for the measurements of
the spectrum and pulse shape was obtained via a beam splitter consisting of a
thin polyethylene film mounted at 45 degrees to the axis of the waveguide.

The pattern of the output radiation was observed using liquid crystal paper

with a resistive backing.[10J

III. Results

The gyrotron was operated with currents from 0 A to 16 A, and the magnetic
field varied from 43.9 Tesla to 47.4 Tesla. At a field of 44.7 Tesla,
corresponding to a radiation frequency of 115 GHz, a magnetic taper of + 5% or -

5% (over a distance of 4 times the radiation waist) could be produced without
exceeding the limits of the magnet.
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The results of the experimentation are summarized in Figures 7 - 13. In
Figures 7 - 10, the output power and efficiency are given as a function of beam
current. A maximum power of 50 kW was observed. As can be seen in the figures,
the power and efficiency were improved with a negative taper (one in which the
magnetic field decreased as the distance from the gun became greater). A
positive taper (results not shown) tended to decrease the efficiency.

In addition to the experimental results, several points resulting from
multimode simulations are given. A velocity ratio, a, of 1.0 was used for the
calculations, and a velocity spread of 0 was assumed. (Even without a spread in
velocity, the run times for the simulations took between 1 and 3 hours on a CRAY
I.) For the points given, the results from the code have been multiplied by the
resonator output coupling efficiency 0.53 to account for calculated non-output
diffractive and ohmic losses.

Frequency data, as measured with the heterodyne receiver, are shown in
Figures 11-13. Oscillographs showing the actual receiver output for a beam
current of 6 Amperes and an untapered magnetic field are shown in Figure 11. The
oscillographs include the filtered IF signal as well as the beam voltage. The
beam voltage is flat to within +/- 0.9% over 12 microseconds. The ripple appears
to have little effect on the microwave signal. Traces are given for the four
frequencies at which there was observable power. The modes with observable
power are separated by 184 MHz, 368 MHz, and 184 MHz. 184 MHz corresponds
approximately to the value of 185 MHz predicted by c/2L, where L is the cavity
length (=81 cm). As predicted by theory (and is illustrated in Figures 11 -
13), the lower frequency modes grow most quickly, but are replaced by higher
frequency modes at later time. For the example given, it appears that a steady
state has been reached by the end of the 12 microsecond pulse. This was the
case for most, but not all conditions.

The spectra for the data of Figure 11, along with those produced by the
multimode simulation, are given in Figure 12. Spectra for points 3.5 microsec,
7 microsec, and 11 microsec after the beam voltage had reached 99% of the
average maximum value. Spectra with a 5% negative taper with a beam of 6
Amperes are given in Figure 13. An exact agreement between theory and
experiment is not seen, but the number of modes (2 - 3) is approximately the
same. In addition, the prediction of average frequency as a function of time is
quite good. As predicted by theory, there is no substantial difference between
the spectra for the different operating conditions.

Under certain conditions single mode operation could be obtained. The factor
that most effected the ability to obtain a single mode was the relative position
of the beam along the cavity axis. This was expected, since movement of the
cavity mode pattern relative to the beam would change the degree to which the
annular beam intersected the maxima in the cavity standing wave. Indeed, the
changes in the operation appeared to occur periodically with 1/2 wavelength
changes in the relative positions. The output from the heterodyne receiver for
a case where only a single mode was observed is given in Figure 14.

Using liquid crystal paper, measurements were made of the radiation pattern
at the output window and the focal point of the Cassegrain antenna. The results
are shown in Figures 15a and 15b. In 16a, the pattern at the output window is
shown. As can be seen, the pattern is not uniform. Adjustment of the mirror
positions and tilts could alter the pattern, but not improve it. The power does
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appear localized near the edge of the output mirror, as expected. The pattern
of the beam at the focal spot is shown in Figure 15b. The diameter is
approximately 4 cm. This is consistent with the predicted waist of I cm.

IV. Discussion

Agreement of theory and experiment is good for both the efficiency and
spectra. The only major discrepancy is seen between the observed and predicted
spectra near the beginning of the pulse (3.5 microseconds), which is probably
due to growth during the finite rise time of the actual voltage and current. The
finite rise was not modeled in these simulations. Clearly, there is need for
improvement in the experiment. The non-ohmic resonator losses are large and can
be somewhat reduced by better design. Without the constraints of the present
experimental configuration, a resonator efficiency of 80% - 85% could be reached
with an improved mirror geometry. Higher efficiencies may be obtainable with
novel resonators and/or with the larger output couplings appropriate for higher
output powers.

A more dramatic improvement in the efficiency is predicted for an increase
in the velocity ratio of the electron beam. This can be done even with the
present magnet by using an electron gun with lower velocity spread. An electron
gun designed and fabricated by Hughes Aircraft Corporation has a theoretically
predicted spread in the perpendicular velocities of approximately 3.5%. This
would allow transmission of beams with a velocity ratio of over 1.5, as shown in
Figure 4. Results of the multimode simulation code indicate that efficiencies
as high as 28 % (neglecting losses) can be achieved with a single cavity similar
to the one used in the present experiment. The result of a simulation with a 10
Ampere beam and a magnetic taper of - 5% is shown in Figure 16.

Of note in Figure 16 is the great increase in the number of modes, over that
observed with a=l. Thus the results of the present experiment should not be
cause for concluding that the quasi-optical gyrotron will operate efficiently
with the 1 - 3 modes observed in this experiment. From Figure 16 it is clear
that mode selective methods such as the use of a pre-bunching cavity [4] will be
required to achieve near single mode operation.

In the experiment, tuning of the output frequency was achieved over a range
of 113 GHz to 122 GHz. The range was limited by interception of the beam in the
drift region, which could be easily modified to allow use of a much wider range
of magnetic fields, and, hence, output frequencies. Operation of a high power
gun over a range of 4.5 to 9 Tesla has been reported in experiments with a
microwave cavity based gyrotron.[2] A similar range could be expected with a
quasi-optical gyrotron, with this device having the advantage that the
transverse (i.e., output) mode would remain constant during a sweep of
frequencies. In addition, by simultaneous adjustment of the cavity length and
the magnetic field, a continuous sweep in the frequency should be possible.

Conclusion

Data have been presented showing the first operation of a quasi-optical
gyrotron with a resonator large enough to be relevant to megawatt cw operation.
Agreement of the results with those of a multimode simulation good giving
confidence in the code, which is the only method presently available for
predicting the performance of a quasi-optical gyrotron with a large cavity. The
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efficiencies and output powers were clearly lower than is required for
applications where high average power is required, but improvements discussed
above should allow a several-fold increase in these parameters.
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Table I

Electron Beam Parameters

Voltage 60 kV
Current 0 - 13 A
Radius 0.16 cm
Average a 1.0
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Table II

Cavity Parameters

Mirror separation 81 cm
Mirror radius of

curvature 48 cm
Cavity material OFHC Copper
output mirror radius 4.15 cm
Non-output mirror radius 7.3 cm
Q factors
output 160,000
non-output diffractive 248,000
ohmic 757,000
total 86,000

Total loss 2.3%
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Figures

Figure 1. Schematic of the quasi-optical gyrotron

Figure 2. Coil geometry and axial magnetic field profile of the superconducting
magnet.

Figure 3. Geometry and plot of the electron trajectories of the electron gun.
The trajectories were calculated using E-Gun [11]. One mesh unit
0.5 mm.

Figure 4. Plot of the distribution of v erp' assuming a gaussian distribution.
Solid line is for A v / vp P = 0.1 and a = 1.0. The line with
short dashes is for a -?.5 . P~ h of these are representative of the
seftor gun. The long dashed line is for A vprep / Vprep = 0.035 and

= 1.5 (the Hughes Gun).

Figure 5. Schematic of the Cassegrain output system.

Figure 6. Schematic of the diagnostic system.

Figure 7. Output power as a function of beam current, with no magnetic taper.

Figure 8. Output efficiency as a function of beam current, with no magnetic
taper.

Figure 9. Output power as a function of beam current, with a -5% magnetic
taper. (The taper is measured over 4 optical beam waists, or
approximately 5 cm. This is consistent with the definition of the
taper used in the efficiency calculations.)

Figure 10. Output efficiency as a function of beam currrent, with a -5% magnetic
taper.

Figure 11. Oscillographs of the output of the heterodyne receiver. The actual
frequency is given by the intermediate frequency (IF) multiplied by
8, plus 160MHz.

Figure 12. Spectra of the output radiation for a beam current of 6 A and no
magnetic taper. (a) T = 3.5 ps, (b) T = 7 ps, (c) T = 11 ps.

Figure 13. Spectra of the output radiation for a beam current of 6 A and -5%
magnetic taper. (a) T = 3.5 ps, (b) T = 7 ps, (c) T = 11 ps.

Figure 14. Output of the heterodyne receiver with a single mode. The two lines
of the spectra are the image of each other separated by twice the IF
frequency (2 x 160 MHz).

Figure 15. Radiation patterns as shown by liquid crystal paper. (a) At the
output mirror. The dark region in the center of (a) is actually
hotter than the light regions, and therefore the beam is solid. (b)
at the focal point of the Cassegrain antenna.

Figure 16. Power spectrum predicted by the simulation for a = 1.5, a beam
current of 6 A, and -5% taper.
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High Peak Power Ka-Band Gyrotron Oscillator
Experiments with Slotted and

Unslotted Cavities
S. H. GOLD, MEMBER, IEEE. A. W. FLIFLET, MEMBER, IEEE, W. M. MANHEIMER, SENIOR MEMBEr. lI-E.

R. B. MCCOWAN, R. C. LEE, V. L. GRANATSTEIN. SENIOR .E.MBER, IEEE, D. L. HARDESTY,
A. K. KINKEAD, AND M. SUCY

Abstract-A K.-band gyrotron oscillator powered by a compact pulse- of the TERn2 type were most readily excited. By varying
line accelerator has been operated using oscillator cavities with and the magnetic field in the cavity. TE,,2 modes from 28 to
without axial slots. The use of axial slots has been shown to suppress
low starting current "whispering-gallery' modes, in particular, modes 49 GHz were excited. with m ranging from 4 to 10. How-
of the TE,,2 type, allowing stable operation in a linearly polarized TE13  ever, the easiest modes to excite may not always be the
mode. A peak power of 35 MW has been observed at 6-percent effi- most desirable operating modes, either for reasons of
ciency. maximizing power or efficiency, or for ease of utilization

of the resulting RF emission. For instance, modes with
1. INTRODUCTION low start-oscillation threshold currents will also haveG YROTRON operation is generally optimized with re- lower optimum output powers than higher starting current

spect to the magnetic detuning (from exact cyclotron modes.
resonance), the interaction length, and the RF electric field An alternative to operation in the modes with the lowest
at the position of the electron beam. High-power gyrotron start oscillation threshold currents (at particular applied
oscillators must operate in high-order transverse modes of magnetic fields and beam radii) is to modify the simple
low-Q cavities in order to increase the ratio of output cylindrical cavity in order to favor other modes. One
power to the RF electric field at the electron beam, where straightforward means of raising the starting current of
Q is the quality factor of the cavity. This requirement many of the whispering-gallery modes is to bifurcate the
makes control of mode competition one of the major con- cavity by placing a pair of opposing axial slots in the cav-
straints in designing high-power gyrotron devices. A sim- ity wall. By this means, all modes will have their total Q
pIe cavity with circular cross section, when utilized at fre- lowered by diffraction losses through the slots. However.
quencies well above the cutoff frequency for the lowest modes such as whispering-gallery modes, which require
order TE, I mode, can support a large number of closely the presence of large wall currents at the position of the
spaced TE,,,, and T M,,, modes, (Here m is the azimuthal slots, will be most strongly affected. For that reason. a
mode index, and n is the radial mode index.) In earlier proper selection of slot width can often result in lowering
experiments operating at 350-775 keV, it was found that the Q for such modes substantially more than for other
the easiest modes to excite were families of "whispering- classes of modes. By this means, the ordering of modes
gallery" TE modes, i.e., TE,,, modes for which m >> n with respect to start-oscillation threshold current may be
[11. [2]. In particular, for electron beam radii ranging from changed, and modes with an initially higher starting cur-
approximately 40 to 85 percent of the radius of a 3.2-cm- rent may be favored to start oscillation. In particular.
diameter gyrotron cavity, it was found that cavity modes whispering-gallery modes can generally be strongly sup-

pressed by a pair of axial wall slots, while TE,, modes

Manuscript received October 14. 1987' revised November 3, 1987. This are less strongly affected [3]. Instead, the slots make the
work was supported by the Office of Innovative Science and Technology TEI,, modes linearly polarized along the plane of the slots.
of the Strategic Defense Initiative Organization. and was managed by Harry (It is straightforward to excite TE,, modes with small ra-
Diamond Laboratories. This work was also supported in part by the Office dius electron beams, since only the TEI,, modes couple
of Naval Research.

S. H. Gold. A. W. Fliflet, W. M. Manhcimer. D. Lr Hardesty. and exactly on axis. However, the beam positions in high-
A. K. Kinkead are with the High Power Electromagnetic Radiation Branch. current devices designed to operate at very high peak
Plasma Physics Division, Naval Research Laboratory. Washington, DC powers are subject to space-charge constraints, the beams
20375-5000.

R. B. McCowan is with Science Applications International Corporation. will generally be annular and cannot be too far from the
McLean. VA 22102. conducting wall of the cavity.) The Soviet literature dis-

R. C. Lee and M. Sucy are with JAYCOR. Inc.. Vienna. VA 22180. cusses high-peak-power gyrotron experiments at both 10
V. L. Granatstein is with the Electrical Engineering Department, Uni-

versity of Maryland. College Park, MD 20742. GHz 141, [51 and 40 GHz 161, 171 that employed axially
IEEE Log Numoer 8819781. slotted cavities to operate stably in linearly polarized TE,
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modes. The 40-GHz experiment employed a 350-keV r
electron beam and reported 23 MW at 5-percent efficiency - OUTPUT

with a beam current of 1.3 kA. CA ro=

In this paper, we describe a set of experiments corn-
paring the performance of slotted and unslotted cavities VACUUM

-- ~NCLOSUREin a high-voltage ( - 900 keV ), high-current ( - 500 A) GLUX C.- MAIN OUTPUT

gyrotron experiment operating at frequencies between ap- MICROWAVE ROOWSKI CAVITY
proximately 20 and 50 GHz. ABSORBER COIL SOLENOLD

FEBETRON
(600 kV. 6 kA. 55 ns4C)

II. EXPERIMENTAL SETUP Fig. I. Schematic diagram of the high-voltage gyrotron elperimental setup

Fig. I illustrates the experimental setup. A 600-kV
compact Febetron pulser with 100- impedance and 55-
ns output voltage pulse is used to generate an annular A

electron beam in a simple foilless diode geometry. The A
electrons are emitted from the sharpened edge of a cylin-
drical graphite cathode by explosive plasma formation.
(in order to optimize the compression ratio for these ex- -------- t A
periments, a graphite cathode was employed that tapered CUTOFF GYROTRON OUTPUT

SECTION CAVITY TAPER (S-)
down from a 1.75-cm-radius shank to a 1.27-cm emitting (10 = 2 34Cm

tip; as a result of some emission at the start of this taper,
a low-current halo was produced at - 0.4 times the radius
of the main gyrotron beam.) The beam is created in a uni-
form axial field provided by the main solenoidal magnet.
The initial transverse momentum is low because the emis-

SECT A-Asion is predominantly along the direction of the applied Fig. 2. Schematic of the 45* slot angle gyrotron cavity, showing z. side
magnetic field. Additional transverse momentum is in- view and a cross section through the cavity.

duced by tansit through a localized depression in the ax-
ial field, which is produced by the "pump" magnet. Fi-
nally, the beam is adiabatically compressed to its final TE22  r' 3TE,, rE23
radius by the cavity solenoid. In order to achieve separate TE5 , I( TE3 3

adjustment of the electron transverse momentum, the TE61 rE32  TE E,, I r E,,3

iE n" Et2 T c vt eE ,
magnetic compression ratio, and the final magnetic field 12 T i TE5 E,, TE,2in the gyrotron cavity, each of the three magnets is pow- I I r 11 11 1 1

ered by a separate capacitor-bank discharge. The overall 20 25 30 35 40 45 5 1 s
experimental setup has been described in more detail else- FREQUENCY (GHz)
where 121. The changes affecting the present work are in Fig. 3. Map of the cutoff frequencies of TE.,,1 modes falling between 22
the cathode radius and in the gyrotron cavity design. and 53 GHz for the unslotted TE, cavity.

Three 2.34-cm-diameter cavities of identical dimen-
sions were fabricated. A pair of opposing axial slots were
machined into two of the cavities. One received 330 full-
width slots, while the second received 45" full-width
slots. The third cavity was left unslotted. The 450 slotted o
cavity is illustrated in Fig. 2. These cavities were de-

signed to run in the TE13 mode at 35 GHz. v-ith the slotted To

cavities intended to suppress competiticr, from other
nearby modes. The calculated Q factor for these cavities
was -200 for the TE 1 mode, with the ax'4l slots not
significantly lowering this value. Fig. 3 sh'u1c a map of
the lowest axial wavenumber TE,,, modes between ap- o

proximately 22 and 53 GHz. (TM,,, modes are omitted, 00 oo 200 300 400
since the gyrotron interaction couples relatively weakly to SLOT ANGLE (-Emss)
these modes.) Fig. 4 shows the effect of slots on the cay- Fig. 4. Cavity Q versus slot angle for selected cavity modes near 35 and
ity Q of the TE,3 mode and on two competing modes, the 48 GHz.
TE 42 and TE 32 modes, as well as on two modes resonant
near 48 GHz, the TE14 and TE 62 modes. (The TE71 mode a theory and computer code described in [31 to calculate
near 35 GHz is not included in Fig. 4, because coupling the effect of finite slot widths on cavity losses. In addi-
to it is very weak for normalized beam radii (rb/ru) less tion, the output diffraction Q was calculated using a corn-
than - 0.6.) The data in this figure were generated using puter code employing weakly irregular waveguide theory
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[8) to calculate the diffraction Q for the TE13 mode, with 8
the Q factors for the other modes scaled from this value c -
as the square of their resonant frequencies. (Minimum dif- \
fraction Q for an I = I mode near cutoff in a gyrotron
cavity of length L is given by 47r(L/X)", where ! is the o,
axial mode index and X is the free-space wavelength as- Z /

sociated with the operating frequency.) The Q values were 4 \ rv .-4 i,
also corrected for the calculated ohmic losses for each 5
mode. ___

00 10 20 30 40 50 60 70

11. EXPERIMENTAL RESULTS AND DISCUSSION RADIUS (cm)

Fig. 5. Measured vertically polarized microwave power vcrsus posiion
A set of measurements were carried out on the opera- across a radius along the midplane of the experimental output window.

tion of the slotted and unslotted cavities as a function of The square points at 0 and 6.5 cm correspond to horizontal polarization

magnetic field, magnetic compression ratio, and pump- The data from each experimental discharge were normalized to the signal
from a fixed detector channel. Statistical error bars (.standard deviationfield amplitude. These measurements employed both time- of the mean of at least three shots) are shown.

resolved microwave techniques and time-integrated gas-
breakdown techniques. They were intended to examine
the operating modes of the slotted cavities, and in partic- ergy should be corrected downward to - 850 keV because
ular, to demonstrate the effect of the axial slots on the of space-charge depression, assuming a beam at - i,
suppression of mode competition with the TE13 mode at where a is the ratio of transverse velocity to parallel ve-
35 GHz. A careful study was made of operation of the locity. The 55-ns Febetron voltage waveform consists of
TE13 mode in the 45°-slot-angle cavity. In addition, an two separate voltage maxima separated by -30 ns, with
attempt was made to find other possible oscillating modes the valley after the first maximum decreasing to about 67
of the 330 and 450 slotted cavities, in particular the TE12  percent of the maximum voltage, and the second maxi-
mode at - 22 GHz and the TE 4 and TE62 modes at -48 mum rising to 75 percent of the height of the first. The
GHz. For the unslotted cavity, we examined the compe- two voltage maxima are roughly triangular, so that the
tition between the TE13 mode and nearby whispering-gal- voltage is changing during all times of experimental in-
lery modes, and did a scan with magnetic field to look for terest, including the period during which the microwave
other predicted modes, in particular, the TE,, 2 modes seen signal is growing from noise to its maximum signal. The
in earlier experiments. magnetic field is adjusted experimentally in order to place

the peak of the 35-GHz microwave signal at the first peak
A. Microwave Measurements of the voltage waveform. The implications of this time-

The microwave measurement system consists of two Jependent voltage on gyrotron operation for the earlier
separate detection channels, each composed of calibrated TE62 experiment were considered in detail in [2] in the
"in-band" WR-28 components (including filters, atten- context of steady-state gyrotron theory, and have been
uators. and directional couplers) and beginning with a further analyzed using time-dependent models by Lin et
small microwave aperture antenna positioned within I cm al. (9].
of the output window. In order to reduce the power den- Fig. 6 plots the square of the gyrotron coupling coelfi-
sity at the apertures, a I-in-thick ( -2.5 cm) phenolic cient (see (11), which is inversely proportional to the gy-
vacuum window is employed, which produces a measured rotron starting current, as a function of radius. The nor-
signal attenuation of 10 ± 0.5 dB. One aperture is main- malized beam radius in the cavity is 0.37. Under these
tained at a fixed position on the output window, while the conditions, with the axial slots suppressing competition
second is scanned. In order to normalize the data over the from other modes that might couple to the beam at the
large number of separate discharges needed to measure experimental beam radius, the expected mode of opera-
the output mode pattern, the ratio of the scanning detector tion is a linearly polarized TEI mode, the bLam location
to the fixed detector is calculated for each shot. These is close to optimum for coupling to this mode on the sec-
diagnostics are described in greater detail elsewhere [2]. ond radial peak. The expected pattern for this mode is

Fig. 5 shows a scan of the operating mode of the device illustrated in Fig. 7. There is substantial agreement be-
with the 450 slotted cavity employed, measured along a tween experiment and calculation, although it appears that
radius normal to the plane of the slots, and operating at the measured mode at the output window has undergone
B0 = 26 kG and -500 A, with a peak diode voltage of some mode conversion after exiting th. gyrotron cavity.
-900 kV. (Very similar results could be obtained with The appearance of the measured mode suggests that the
the 330 slotted cavity.) A narrow-band (I .6-GHz FWHM) TE 13 mode has converted in part to the TE, mode. In
filter limited the detected signal to a narrow frequency order to estimate the expected mode conversion in the 50
range about 35 GHz. The peak voltage results from mis- output taper from the gyrotron cavity, calculations were
matching the diode impedance upward with respect to the carried out using a computer code 1101 that integrate', the
Febetron output impedance. The peak beam kinetic en- differential equations for coupled :,ansverse modes
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in the net beam current. The highest )ower observed by
; E13 MODE this means was 35 MW at 6-percent efficiency at - 640

ZLEAR POLARIZATION A. Fig. 8 shows a plot of gyrotron start-oscillation thresh-
dold currents and output power contours for a linearly po-

larized TE13 mode as a function of beam current and volt-
-0 age, calculated assuming a sinusoidal RF-field profile in

the gyrotron cavity, and using a computer code based on
the general nonlinear theory of gyrotron oscillators pre-
sented in [11]. These are steady-state calculations. They
suggest that an output power between 30 and 60 MW

0.00 025 0.50 0.75 1o0 should occur at the experimental beam current as the volt-
r/rw age ramps upward to the maximum of - 850 keV and sub-

Fig. 6. Plot of the square of the gyrotron coupling coefficient versus nor- sequently decreases, in good agreement with the experi-
malized cavity radius fora linearly polarized TE13 mode. The calculation mental measurement, provided that the voltage ramp
is performed assuming an azimuthally symmetric annular electron beam. provides sufficient time for saturation to occur. For op-

eration in a linearly polarized mode, the efficiency could
be improved by use of a bifurcated cathode, since the

Melectrons near the RF null of the mode do not efficiently
SMODE transfer energy to the waves.

w LINEAR POLARIZATION An unsuccessful attempt was made to operate at higher

/2 output power with the beam located on the third radial
8 -maximum of the TE13 mode. Since the starting current in
0 this case is approximately twice as high due to the weaker

coupling coefficient (see Fig. 6), the failure to observe
high-power emission is believed to be related to the ina-
bility to achieve high-power oscillation during the short

0 0time provided by the Febetron voltage waveform.
0.00 025 0.50 0.75 1.00

r/rw  B. Gas-Breakdown Measurements

Fig. 7. Predicted microwave power as a function of position across a hor- In order to supplement the calibrated time-resolved sin-
izontal radius of the experimental output window for a linearly polarized
TE,3 mode. gie-position measurements possible with microwave ap-

ertures with a more global view of the microwave emis-
sion, a time-integrated gas-breakdown technique was

through the taper. These calculations suggest that approx- employed. The experimental setup is illustrated in Fig. 9.
imately 24-percent mode conversion from the TE13 mode It is described in detail in [21.
should take place in the output taper, yielding approxi- Fig. 10 depicts open-shutter gas-breakdown photo-
mately 12-percent mode content in the TE12 mode, 10- graphs obtained under conditions corresponding to the
percent mode content in the TE14 mode, and less than 2- data of Fig. 5. Photographs taken at two different ambient
percent in other TE1,, and TM ,, modes. There may be ad- pressures in the gas-breakdown cell depict the key fea-
ditional mode conversion due to irregularities in the out- tures of a linearly polarized TE13 mode. with some pos-
put waveguide. sible mode impurity from other linearly polarized TE,,

For the data of Fig. 5, the measured mode pattern can modes, most likely the TE 1, and TEI4 modes. probably
be used to calculate the total gyrotron power by integrat- due to mode conversion in the output taper and wave-
ing over the output window, and correcting for the mea- guide. (The small-scale azimuthal structure in the 8-torr
sured losses in the detection system. This procedure has discharge is believed to be due to phenomena in the low-
been described in detail elsewhere [2]. For the case of a pressure gas discharge, and not to reflect information re-
linearly polarized mode, the calculated power must be re- lating to the small-scale structure of the microwave mode
duced.by 3 dB compared to the result of integrating the pattern.) The importance of the axial cavity slots to the
measured radial pattern over the entire output window, stability of the TE13 mode is shown in Fig. i. which
Since the ratio of the measured power on axis to the total shows two photographs of gas-breakdown mode patterns
emitted power in the output mode pattern can be deter- corresponding to operation with an unslotted cavity under
mined in this fashion, it is possible to determine power conditions identical to Fig. 10. In Fig. I l(a). the strong
on a single-discharge basis. The best single-discharge presence of a circularly polarized TE13 mode is indicated
power in this data set was 28 MW. For the voltage, mag- by the appearance of a breakdown maximum on axis.
netic field, and beam radius corresponding to Fig. 5. However, on another shot with identical experimental pa-
power was experimentally optimized by small variations rameters. the pattern in Fig. I I(b) indicates the absence
in the pump magnet amplitude, producing slight changes of strong TE,1 mode content, and, based on data dis-
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1000 M

P.-90 MW

800-

80 MW
600W

30 MW
- 400-

200 .. hr

550 600 650 700 750 800 850

BEAM VOLTAGE (kV)

Fig. 8. Starting currenl and output power as a function o1 current and volt- (a)
age for a linearly polarized TE1 j mode. assuming B = 26 kG, a = 1.

= 0.37.

LOW PRESSURE CELL

OUTPUT OBSERVATION OPEN
WINDOW WINDOW SHUTTER

CAMERA

Fig. 9. Experimental setup or air-breakdown photographs of output-mode
patterns.

cussed in the next paragraph for the same magnetic field (b
and a larger radius electron beam, probably corresponds (b) !tthe excitation of a circularly polarized TE42 mode. (A Fig. 10. End-on open-shutter photographs of microwave-induced gas

to breakdown for B0 = 26 kG and a 2.34-cm-diameter cavity with 45* axial

comparison of the breakdown patterns of Fig. 1 (a) and slots, illustrating the observation of a linearly polarized TE,, mode at 35

(b) suggests that there may be TE 42 as well as TE 13 mode GHz. Pictures are shown at two pressures in the breakdown cell: (a) 8

Iorr and (b) 75 torr. An arrow indicates the 7-cm radius of the output
content in I l(a).) An attempt was made to scan the output waveguide. (The outer halo is a reflection produced by the walls of the

mode of the unslotted cavity with microwave pickups, but cylindrical breakdown cell. Crossing vertical and horizontal lines on the

the large shot-to-shot variation in the 35-GHz emission as window face define the center of the aperture. The horizontal line is
divided by centimeter rulings.)I

a function of radius, apparently due to the mode switching

illustrated in Fig. 11, made this impossible to carry out
in a systematic manner. 43, and 48 GHz. This was done by producing an output

The very crowded mode map shown in Fig. 3 for the mode with sufficient content of both of the two degenerate

unslotted cavity is greatly simplified for a cavity with two circularly polarized components of the specific TE,,2 mode

large opposing axial slots, since only the TEI,, modes re- to produce a strong "standing" component in the output

main. For the 450 cavity, an attempt was made to excite mode pattern. In general, this could be made to occur by

the adjacent TE,, modes. A very weak mode with a max- employing an electron beam radius that coupled strongly

imum on axis was observed via gas breakdown at B0 - to both circularly polarized components of the specific

16 kG; this is believed to be the TE12 mode at - 22 GHz. TE,, 2 mode, specifically, values ofrh/r, of -0.60.0.51.

An unsuccessful attempt was made to observe the TE,4  and 0.51, respectively, for these three cases. These ob-

mode at -48 GHz; this attempt was somewhat con- servations of TE,,2 modes are similar to those reported

strained by the difficulty of operating at B(, - 36 kG, in- previously in an experiment employing a 3.2-cm-diameter
cluding the somewhat restricted range of magnetic cylindrical cavity 121. It is believed that the TE7 2 mode

compression ratios that were experimentally accessible. was also excited, at - 53 GHz. but the resulting gas-

In the absence of the slots, operating at 26.0, 30.7. and breakdown photographs were less clear-cut than those in
35.5 kG, it was straightforward to demonstrate the TE4 2, Fig. 12, and the difficulty of operating at -40 kG pre-

TE5 2, and TE62 modes (see Fig. 12). at approximately 38. cluded a detailed evaluation of this mode.
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(a) (b)
Fig. 11. End-on open-shutter photographs of microwave-induced gs breakdown for B0 - 26 kG and an

unslotted cavity, illustrating the observation of (a) a circularly polarized TE. component at 35 GHz and
(b) another TE,, mode with n * 1

""(a) (b)

(()

Fig. 12. End-on opcn-shuttcr photcgraphs of micmwave-induced gas
breakdown for (a) B,. = 26 kG. (b) 30.7 kG. and (c) 35.5 kG with an
unslotted cavity, illustrating the observation of standing T. 4 z. TE,.. and
TEA! modes at approximately 38. 43, and 48 GHz.
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TE62 MODE
Z TE, 4 MODE

0 .

000 025 050 075 100

r/r w

Fig. 14. Plot of the square of the gyrotron coupling coefficient versus nor-
malized cavity radius for linearly polarized TE,. and TE,, modes. The
calculations are performed assuming an azimuthally symmetric annular
electron beam.

Fig. 13. End-oi open-shutter photograph of microwave-induced gas tally, via air breakdown photographs from slotted and un-
breakdown for 8,, = 35.5 kG and a cavity with 33° axial slots, illus- slotted cavities. The unslotted cavity has been operated at
trating te otservation of a linearly polarized TEj mode at 40 GHz. high power in TE42, TE 52 , and TE6 2 modes at 38, 43, and

48 GHz. A 33" slotted cavity has been shown to support
The width of the opposing axial slots determined the a linearly polarized TE 62 mode, while 450 slots have been

diffractive losses for particular cavity modes. Based on shown to suppress this mode, in agreement with calcula-
the calculations of cavity Q versus slot angle (see Fig. 4), tions based on the theory of McDonald era . [3].
it was predicted that the 330 slotted cavity would not ACKNOWLEDGMENT
completely suppress the TE62 mode at -48 GHz. This
prediction was confirmed by the observation of a linearly The authors gratefully acknowledge the assistance of
polarized TE62 mode at 35.5 kG (see Fig. 13). This mode Dr. J. Finn, who provided the computer code used to per-
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Comparison of Fig. 13 with Fig. 12(c) demonstrates the in its operation.
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cavity, the TE62 mode has a slightly higher Q value, fur- (6 S. N. Voronkov, V. 1. Krementsov. P. S. Strelkov. and A. G. Shkva-

unets. "Stimulated cyclotron radiation at. millimeter wavelengths
ther favoring this mode. Perhaps most important is the from high-power electron beams." Zh. Tekh. Fiz., vol. 52. pp. 106-
small radial extent of the third peak of the coupling coef- 108. 1982; also. Soy. Phys. -Tech. Phys.. vol. 27. pp. 68-69. 1982.
ficient for the TE14 mode compared with the very broad 171 V. V. Bogdanov etal., "Measurements of millimeter-range cyclotron

radiation induced by a high-current electron beam," Zh. Tekh. Fi:..
coupling curve for the TE62 mode, further favoring the vol. 53. pp. 106-113, 1983; also. So.. Phys.-Tech. Phys. vol 28.
TE, mode for a beam with finite spread in guiding-center pp. 61-65, 1983.
radius and, in addition, slight decentering. 181 A. W, Fliflet and M. E. Read. "Use of weakly irregular wavguide

theory to calculate eigenfrequencies. Q values, and RF held functionsIn summary, a 35-GHz gyrotron oscillator employing for gyrotron oscillators." Int. J. Electron., vol. 51. pp. 475-484,
an axially bifurcated cavity has successfully operated in a 1981.
linearly polarized TE13 mode at a peak power of 35 MW 19l A. T. Lin et al.. "Simulation of transient behavior in a pulse-line-
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Review of the Tenth International Free Electron Laser
Conference (Jerusalem, August 29- September 2,

1988)

The series of international Free Electron Laser (FEL) conferences
that was initiated under the sponsorship of the U.S. Office of Naval
Research (ONR) some ten years ago has developed into the most
important forum for reporting research results and applications of
the promising new FEL technology. The tenth conference in the
series was jointly sponsored by ONR, the U.S. Air Force European
Office of Aerospace Research and Development. Tel Aviv Uni-
versity, the Weizmann Institute of Science, the Israel Academy of
Sciences and Humanities and the Israel Ministry of Science and
Development. The participants in the conference represented eleven
countries including the United States. Israel, the major countries
of Western Europe, Austria, Poland, Japan, and the People's Re-
public of China. Over one hundred papers were presented.

One highlight was the scientific progress reported by the Los
Alamos National Laboratory (LANL) with a high power, r.f. linac
driven FEL including generation of -400 MW of peak power at
X = 10.6 1.m with over 4% efficiency. Fractional linewidth was
less than 0.2%, near the limit determined by the pulse length of
the electron beam, and sidebands were found to be readily sup-
pressed by detuning. Experimental results on the use of a Littow
grating in the cavity to successfully suppress sidebands was also
reported.

Commenta Plasma Phys. Controlled Fusion C 1989 Gordon and Breach.
1989. Vol. 12. No. 4. pp. 217-222 Science Publishers. Inc.
Reprints available directly from the publisher Printed in Great Bnitain
Photocopying permitted by license only
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Initial performance of the 10.6 jim, 45 MeV. induction linac "Exl

i ( driven FEL at the Lawrence Livermore National Laboratory (LLNL) r
was also reported. T. Meyer of the U.S. Strategic Defense Initi-

ative Organization (SDIO) described the groundbased FEL planned tro
Z iv for construction at White Sands. New Mexico and reported that a Re

J decision between deploying an r.f. linac or induction linac system mu
would be made in the coming year. ta

The University of California at Santa Barbara (UCSB) reported st
.*" ,.. on the early operation of a user facility employing a submillimeter
"-" wavelength FEL driven by an electrostatic accelerator; experi- R4

mental studies in material science, biology and medicine are under-
way. Reports were presented on plans for similar user facilities at con

, the FOM-Institute for Plasma Physics in the Netherlands, at the ma
Weizmann Institute in Israel. at the University of Central Florida e

' and at the National Bureau of Standards. Opportunities for FEL 14t
applications in medical research were described by C. Houston of volt
the SDIO and A. Louis of the Hebrew University of Jerusalem. bas
A. Lumpkin of LANL described application of FELs to research arai

, on high temperature superconductors. 5()
-,; ~ Another application of FELs which was discussed was electron

a heating in magnetic fusion plasmas; this application requires mega- ope
watts of average power at a wavelength of about I mm. The leading plic
candidate for this application to date is the CW gyrotron: FELs spe
are of interest since they scale well to submillimeter wavelengths. quir

. ,are tunable and may be capable of very high average power per Cou
- source. LLNL reported on progress in developing a repetitively N(

j . pulsed (5 kHz). induction linac driven FEL for this application. rin,
.- The LLNL approach involves the production of gigawatt-level peak 51)1

- powers using a multi-kiloampere. 10 MeV electron beam. The is K
University of Maryland presented a very different FEL design, datI

.g' i involving a short-period wiggler (micro-wiggler), and a sheet elec- wer
tron beam, which would allow for driving the FEL with an inex- trz

- pensive, conventional. d.c. power supply. Micro-wiggler devel- oun
- opment work was also presented by MIT and by the University of 41ud

Tel Aviv. By reducing the beam energy (Doppler upshift) needed tksc
to operate at a given wavelength, such wigglers could significantly L
reduce the cost and shielding requirements of the electron accel- -ih

,- -,t -erator. Several groups reported plans to investigate the use of pro
, electromagnetic wigglers to increase the FEL operating frequency. am

YI
, , e.-. . ,-, , .- ,.. -.' ,
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ie 10.6 I m, 45 MeV, induction linac Experiments on gyrotron powered electromagnetic wigglers were
Livermore National Laboratory (LLNL) reported by MIT.
,r of the U.S. Strategic Defense Initi- The conference included several papers on an FEL-like Cyclo-
lescribed the groundbased FEL planned tron Resonance Maser configuration called the Cyclotron Auto-
ands, New Mexico and reported that a Resonance Maser (CARM). The CARM is of interest as a
an r.f. linac or induction linac system multimegawatt source of millimeter and submillimeter wavelength

ing year. radiation based on a 0.5-1.5 MeV beam. Planned experimental
nia at Santa Barbara (UCSB) reported studies of the CARM, which is also a candidate for the plasma
user facility employing a submillimeter heating application, were described by MIT and by the Naval
v an electrostatic accelerator; experi- Research Laboratory (NRL). The MIT experiments include 35
:ience, biology and medicine are under- GHz and 140 GHz CARM amplifiers. The 35 GHz experiment is

d on plans for similar user facilities at configured as an amplifier with r.f. input supplied by a 100 kW
ma Physics in the Netherlands, at the magnetron and based on a 1.5 MeV, 5-300 A beam obtained by
.l. at the University of Central Florida emittance filtering a 20 kA beam from a field emission diode. The
i of Standards. Opportunities for FEL 140 GHz experiment will use thermionic cathode technology at
-arch were described by C. Houston of voltages up to 700 kV. A 100 GHz CARM oscillator experiment
the Hebrew University of Jerusalem. based on a 600 kV, 200 A, 70 ns pulsed electron beam is in prep-

-ribed application of FELs to research aration at NRL, and a 250 GHz oscillator experiment based on a
-onductors. 500 kV thermionic cathode electron gun is also planned.
ELs which was discussed was electron B. Newnam of LANL presented a paper on applications of FELs
ilasmas; this application requires mega- operating at UV wavelengths (below 300 nm). Most of these ap-
wavelength of about 1 mm. The leading plications, which include investigation of atomic and molecular
on to date is the CW gyrotron; FELs spectroscopy, surface physics, and biological structures, will re-
ale well to submillimeter wavelengths, quire very low levels of FEL amplitude and phase noise. M. E.
pable of very high average power per Couprie of LURE (Orsay. France), who had just returned from
progress in developing a repetitively Novosibirsk, reported on an FEL driven by the VEPP-3 storage

linac driven FEL for this application, ring which had achieved lasing over the wavelength range 1000-
-s the production of gigawatt-level peak 5000 A; this Soviet result using an optical-klystron configuration
tmpere, 10 MeV electron beam. The is believed to be the shortest wavelength operation of an FEL to
esented a very different FEL design, date. Other optical klystron experiments, planned or in progress.
,gler (micro-wiggler). and a sheet elec- were described by LURE and by the Brookhaven National Lab-
low for driving the FEL with an inex- oratory. Ongoing harmonic FEL studies to achieve coherent. vac-

power supply. Micro-wiggler devel- uum UV radiation were described by Stanford University. Planned
cnted by MIT and by the University of studies of harmonic FEL operation at millimeter wavelengths were
-im energy (Doppler upshift) needed described by NRL.
-ngth. such wigglers could significantly L. Shengang of the University of Electronic Science and Tech-
ng requirements of the electron accel- nology of China in Chengdu reported on two experimental FEL
,orted plans to investigate the use of projects. One was a 35 GHz, pulse line accelerator driven FEL
increase the FEL operating frequency. amplifier with a helical wiggler and an axial magnetic guide field.
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The beam voltage is 700 kV and the current is 500 A. An Extended
- V Interaction Oscillator provides the input signal via a quasi-optical

Ai. -.r 4-- input coupler. A peak power of 1.5 MW with 47 dB gain at 2%
AF ~ ' efficiency was reported. Multi-frequency output inclu4ding super-

3,24 -- radiant emission at 37.5 GHz was observed. The other project is
~D jydva Compton FEL driven by a 22 MeV r.f. linac upgraded for FEL

.*~ ..... research with a peak current of 0.5 A and a 1 .-s macropulse.
Sf Operation at 10 pLrm is expected by 1990.

J. M. Buzzi of the 8cole Polytechnique (Palaiseau, France) also
reported on a very carefully designed, millimeter-wave FEL driven
by the electron beam from a pulse line accelerator. Continuous
tunability from 75 GHz to 270 GHz was demonstrated at an output

• '~~ J ; power level of almost 10 MW. At 120 GHz, 20% efficiency was
Wl ~ achieved, which is unusually high for an FEL with an untapered

K. Mima of the Institute for Laser Engineering in Osaka, Japan

V reported on the development of a 6 MeV, 10 kA induction linac
~- .1for FEL research. Beam energy variation is designed to be <3%

4.,,.during the 70 ns pulse. Initial FEL experiments at reduced voltage
XOR and currents have produced -I MW at a wavelength of -I mm.

Planned experiments include a 498 ptm amplifier driven by a Cl-lF
laser, and development of a UV source using a C02 -laser-driven
electromagnetic wiggler.

.... ,, ....... , , An interesting scientific controversy arose concerning the degree
of coherence in the UCSB submillimeter FEL. It had been pre-
viously reported that with a 5 pLs electron pulse, this FEL had

-4. .,'~ t operated with a single longitudinal mode having a fractional line-
.4. J1.t~t~A ~width in the range 10-7'-10-1. However, at the Jerusalem con-

~ - ference, the University of Maryland group reported on a theoret-
* - .~-i'ical study of the competition between modes (with the same quality

7" ~, factor. Q) in low gain FEL oscillators. The results of this inves-
tigation showed that for such FELs to operate at a single frequency.

4 t~.~i'the electron beam current must be less than four times minimum
start oscillation current."-2 In addition, the calculations indicate
that for a long pulse, low gain, FEL oscillator to operate at a single

1i5 4frequency at the maximum efficiency, the electron beam current
should be roughly three times the minimum start-oscillation cur-

4 d6 -4rent,' and the last few percent of the voltage pulse rise should
4 ~ approach the designed value sufficiently slowly in timne.3 If one
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V and the current is 500 A. An Extended chooses the electron beam characteristics to assure FEL operation
ovides the input signal via a quasi-optical in the stable region, the theoretical model predicts that the time
ower of 1.5 MW with 47 dB gain at 2% scale for stable satellites to decay scales as -2, where £ = (v,,/u'b
Multi-frequency output including super- - 1) is the slippage parameter (v, is the group velocity of the
GHz was observed. The other project is radiation and Vb is the electron beam velocity).2 Thus, for small
3y a 22 MeV r.f. linac upgraded for FEL slippage parameters the time required to reach true single mode
rrent of 0.5 A and a 1 jAS macropulse. operation is long.

qpected by 1990. Furthermore, numerical simulation showed that the satellites do
le Polytechnique (Palaiseau, France) also not perturb the amplitude of the radiation field, only its phase.-'
Ily designed, millimeter-wave EEL driven The results of the theoretical investigation have been extrapolated
3m a pulse line acceler: r. Continuous to model the UCSB FEL experiment,4 for which E = 4.2 x l0- .
270 GI-z was demonstrated at an output It turns out that the time scale for stable satellites to decay is much
MW. At 120 Glz, 20% efficiency was longer than the pulse length in the UCSB experiment (5 vs). Thus.

ally high for an EEL with an untapered one would not expect single mode operation to be reached. The
I multimode simulations show that the spectrum is still rather broad

* e for Laser Engineering in Osaka, Japan I (about 130 modes or relative bandwith 0.13%) at a time corre-
nent of a 6 MeV, 10 kA induction linac sponding tothe end of the beam pulse (5 v.s). In fact, the estimates
dnergy variation is designed to be <3% indicate 2 that for relative bandwidth to be of the order 10-6 the
itiai EEL experiments at reduced voltage i pulse duration in the UCSB experiment should be of the order
ed -1 MW at a wavelength of -1 mam. 10-2 s.
.ide a 498 lgm amplifier driven by a CH2F The major experimental evidence offered by UCSB for single
• , a UV source using a C02 -laser-driven mode operation is the absence of strong amplitude modulation in

temporal behavior of the EEL output signal averaged over a period
controversy arose concerning the degree of time short compared with the inverse of the frequency difference
B submillimeter EEL. It had been pre- of adjacent modes but long compared with the wave period. The
h a 5 gs electron pulse, this FEL had University of Maryland theory predicts that the long-lived satellites
igitudinal mode having a fractional line- produce no perturbation in this quantity, and thus, their presence
• 10-8. However, at the Jerusalem con- would be undetected. The simulation shows that at the end of the

•Maryland group reported on a theoret- electron beam pulse (in the UCSB experiment) the amplitude of
n between modes (with the same quality the radiation signal is relatively constant, while the phase is strongly

It. oscillators. The results of this inves- modulated. Thus, inference of single mode operation based on the
ch EELs to operate at a single frequency, absence of strong amplitude fluctuations may be unjustified: what
must be less than four times minimum is required experimentally to resolve this controversy is direct
"In addition, the calculations indicate measurement of the spectrum.

~iin, FEL oscillator to operate at a single In summary, the Jerusalem conference revealed EELs as a ma-
o efficiency, the electron beam current turing technology with unique capabilities over a huge wavelength
mres the minimum start-oscillation cur- span from UV to mm waves. Generally, power, efficiency and
:rcent of the voltage pulse rise should tunability are superior to other coherent radiation sources, but
tue sufficiently slowly in time.3 If one questions concerning the degree of coherence which is achievable
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.. " 1 4sf.. remain to be answered. FEL applications are at hand in medical

...... ... and materials research. Potential applications in the future range
* .. ~ g,.u. . 4from deployment in ballistic missile defense systems to deployment

in controlled thermonuclear reactors.
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The effect of the time-dependent self-consistent electrostatic field
on gyrotron operation

Robert G. Kleva, Thomas M. Antonsen, Jr., and Baruch Levush
Laboratory for Plasma and Fusion Energy Studies. University of Maryland. College Park Maryland 20742

(Received 14 July 1987; accepted 12 October 1987)

The time-dependent self-consistent electrostatic field is shown to have a deleterious effect on
gyrotron operation. As the electron beam density increases, the nonlinear efficiency is seriously
degraded by the self-electrostatic field. Time-dependent multimode simulations demonstrate
that at sufficiently large beam densities the electron cyclotron instability is quenched and the
oscillation will not start. Contrary to previous investigations, electrostatic effects do not
necessarily increase the linear growth rate of the electromagnetic cavity mode and, depending
on the beam density, electrostatic effects can actually stabilize the mode. Typically, however,
considerations of linear theory are not important in an overmoded, open resonator gyrotron
because the system evolves nonlinearly into a state consisting of a single mode which is linearly
stable, but nonlinearly the most efficient mode.

I. INTRODUCTION' vorable resonance condition between the electrons and the

In recent years there has been a great deal of interest in cavity mode.

the use of gyrotrons (electron cyclotron masers) for the effi- (v) Considerations of linear theory are not important in

cient generation of short wavelength coherent radiation.' overmoded gyrotrons where the mode spectrum is dense.

Conventional closed cavity gyrotrons have generated high Typically, the system evolves nonlinearly into a state con-

power radiation at centimeter wavelengths. However, at sisting of a single mode which is linearly stable. Linear the-

millimeter and submillimeter wavelengths conventional gy- ory may be relevant to operation near the lowest-order fun-

rotrons are inadequate because the power level is limited as damental mode in a closed cavity gyrotron where the mode

the cavity dimensions decrease. Conversely, if one attempts spectrum is sparse.

to maintain a high power level by generating the radiation in (vi) Contrary to previous results, 0 " electrostatic ef-

a cavity whose dimensions are much larger than a wave- fects do not necessarily increase the linear growth rate. De-

length, then the presence of a dense spectrum of nearby pending on the beam density, electrostatic effects may actu-

modes makes it difficult to operate the gyrotron coherently ally result in linear stabilization at frequencies which are

in a single mode. The open-resonator quasioptical gyrotron otherwise unstable.

is one possible solution to this dilemma.' The large diffrac- The remainder of this paper is organized as follows. In

tion losses suffered by the higher-order transverse modes in Sec. iI we incorporate the effect of the self-electrostatic field

this open-cavity configuration lead to a mode spectrum that in a set of model gyrotron equations. The linear and nnlin-

is essentially one-dimensional rather than three-dimensions ear efficiency with which the electrons transfer their energy

al. As a result, coherent single-mode operation at a short to a single electromagnetic wave is calculated in Secs. III and

wavelength which is independent of the dimensions of the IV, respectively. In Sec. V we present the results of self-

cavity becomes feasible.' 5  consistent, time-dependent, multimode simulations of gyro-
trons which include the self-electrostatic field. We summa-The electromagnetic radiation in gyrotrons is produced nze and discuss our results in Sec. VI.

by the azimuthal bunching of electrons in their gyro-orbits.

In addition to the electromagnetic radiation, this charge
bunching also generates electrostatic fields."' In this paper 11. MODEL EQUATIONS

we examine the nonlinear effects of the electrostatic field on Consider the open-resonator gyrotron configuration il-
gyrotron operation. Our conclusions are as follows. lustrated in Fig. 1. The electron beam propagates along the

(i) As the beam density increases, the nonlinear effi- external magnetic field B, in the z direction transverse to the
ciency is seriously degraded because of self-electrostatic ef-
fects.

(ii) The time reqi ed for the electron cyclotron wave to ELECTRON BEAM CURVED MIRROR
GYRATING -AROiUN

saturate increases with increasing beam density, and the THE APPLIED
mode amplitude at saturation decreases. MAGNETIC FIELD

(iii) At sufficiently large team densities, the electron
cyclotron instability is quenched and the oscillation will not I.. I Z - ,
start.

(iv) When the frequency mismatch is very small and the EM WAVE 8OUNCING

magnetic field is not tapered, the electrostatic field can some- INSIDE THE CAvITY

tunes actually enhance the efficiency by creating a more fa- FIG. I. Quasiopiacal gyrroo.
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lirection of electromagnetic wave propagation. The electro- is the guiding center position and f is the distribution func-

magnetic wave is characterized by a vector potential A. tion of guiding centers. Here we have assumed that the La-

which lies in the x direction and the electrostatic wave is placian operator is dominated by derivatives in the plane

described by the scalar potential IV. transverse to the direction of the beam and the applied mag-
Approximate equations of motion for the electrons can netic field. This assumption is valid provided the beam thick-

be derived using a multiple time scale formulation in which ness is smaller than the axial scale length over which quanti-
the wave frequency is taken to be near the gyrofrequency. ties vary. Equation (8) can be inverted by means of the

Then, the higher harmonics provide only a small amplitude, two-dimensional Green's function

rapid oscillation on a gyroperiod time scale t, to quantities G(x 1,x,) = (/2ir)InI(x -x: )1a

which otherwise vary slowly on along time scale t. Averag-
ing the equations of motion over a gyroperiod, one finds that which is the solution of

on the slow time scale t, the equations can be written in V1G(x,,x ) =6 (x, - X"

Hamiltonian form": and where a is an arbitrary scale length. In terms of the
d =Hla) Green's function, the potential 4> can be written as

dr1X (a))= z2q f x, d'u'ln x, X, A

4_6 -- (1b) a
dr1  _dU (10)

dp, 8H
= .- (1c) Performing the fast time scale average indicated in Eq. (6)

tt and using Eqs. (3). (7), and (9), one finds that

dz dH (d
dt, d, (q4(xo)) = -2Jd xo d'u'

where X f(x,',',ut1 )
its='mu /2fl0  (2)

£dt a() lnX10 -i -1 11

is the magnetic moment with o10 = qB, /mc the nonrelati- X do InI a '

vistic gyrofrequency, u, = yv, u,= y,, the relativistic fac- f a

tor y = + (Ul + U~2)/cI] I, the canonical momentum where

p, =mu,, and ~is an angle related to the phase angles by A = [u, (0 - fito) - u,(('- fto)] X/fM . (12)

" + 0at, (3) Consider now a distributed beam, that is, one which is

with W = kc the electromagnetic wave frequency. The much wider than a gyroradius:

Hamiltonian H is given by to p,.

H-- 7mc2 + (qb) - w, (4) wherep, is the electron gyroradius. We assume that the dis-

with tribution function varies on a scale length of w)p, in re-

]/2 sponse to the electromagnetic field. In doing this we ignore

7= I +q 0#-21(LU the possibility of the excitation of higher harmonic electro-
Mstatic Bernstein modes which produce variations in the dis-

(5) tribution function on the scale of a gyroradius. 6'-" In the

( the electrostatic potential and the angular bracket ( • ) simulations of Ref. 14 it was found that the fundamental

indicates a time average over the gyroperiod T = 2r'y/flo, mode with a= fl/y0 with the longest scale length grew to
largest amplitude. Our analysis retains only this fundamen-

(g) = 21 g. (6) tal mode. We evaluate (q((xo)) by taking the guiding cen-
ter distribution function f to be constant within a distance R

The perpendicular momentum u, can be written in terms of of x,, and zero for I x, - x,0 I > R, where w > R >p,. If the

the gyroangle " as resulting expression is independent of R (and hence w ), then

i, = u,(1 cos +P sin (7) we can treat the interaction as local in the transverse coordi-

nates.
For a distributed beam, Eq. (II) for (qk xo)) be-

comes
A. Electrostatic potential

The electrostatic potential 4V is described by Poisson's (q$(x)) - 2q2 d 'u'f [f , (13)

equation 
where

7' , -041rq fd 3UfX +a !1X_2,U, .u..t,) (8) a , t~
f). d -- 

d 2s lIn  +a (14)

where and s - ' x,,. After a transformation of variables from s

xo = x, +uX2,'flo (9) to s' = s +
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d8' s'ds'lni I (15) (qI )  4 t d d f d'fq-4.

where R,( ') is given by If the beam is a pencil beam with all guiding centers on a line,

(A. COS '--) 2 + (R. sin ') 2 fR2  (16) wefind

(see Fig. 2) and A '&'. Equation (16) can be solved to (q)) = -2fd2x; f d3u'fql In A.
yield

R,(0') = (R 2  
&

2  2 
0)112 + &CO 8 (17) In the linear regime, where the beam is weakly bunched in

gyroangle, all three situations give qualitatively the same
After performing the integration over s', one finds that Eq. potential. However, nonlinearly the pencil and sheet beam
(15) becomes have higher harmonic content in gyroangle. We will consid-

( 2' R (9') er only the distributed beam case because it is significantly
1= o ' R (0,)in R easier to implement numerically.

+T _L 2 -n L -_1 .(18)
B. Equations of motion

Since the second term on the right-hand side of Eq. (18) Thelowest-order electromagnetic mode in the open-res-
does not depend on u or 0, it will not contribute to the equa- onato r eleto a ssi mode f which
tions of motion and can be neglected. After inserting Eq. torconfiguration is the TEMo Gaussian mode for which
(17) for R, (') into Eq. (18) and expanding in A/R-p, the vector potential A1 at the beam can be written in the
/R A I, one can perform the integral over 0' in Eq. (18) to
obtain At =.A(z,1)sin wto , (22)

I= mrA2/2 + 0( IAR), (19) where

where from Eqs. (12), (7), and (3), A(zt,) =V-112 exp[ - (Z/ro) 2] A(t')
A2= [ut +uj -2utu[ cos( - ')/1". (20) Here, A(, )is a slowly varying amplitude and r0 is the spot

Inserting expression (19) for linto Eq. (13) for (P and per- size. We are restricting ourselves here to a single mode W.

forming the now trivial integration over to, one finds that, The generalization to many modes in an overmoded cavity is

for large R, given in Sec. V. The beam has been taken to be centered

between the mirrors with a sufficiently narrow width w<4..

(q4) (x 1 ) ) = -- 2 "d 3u' The Gaussian axial profile of Eq. (22) is also an appropriate
mflo J model for closed cavity gyrotrons.

X f [p +p' - (2,uu') ' 1 cos (6-')I, To derive the equations of motion for the electrons we
need to evaluate the fast ime scale average (u, -At ) with

(21) w fl,/y. Using Eqs. (22), (7), and (3) and averaging over

where we have used expression (2) fora. Expression (21) a gyroperiod (f 0/y) -= &)-', we find that
for 4) is indeed independent of R for R >p, and, therefore, (u. • A,) = j u, sin OA (zti) . (23)
the interaction is local. Thus, in our distributed beam model,
electrons interact if their guiding centers coincide. The The equations of motion can now be obtained by taking
strength of the interaction is proportional to the local elec- the appropriate derivatives of the Hamiltonian given by Eqs.

tron density. In our equations we will take this localdensity (4) and (5) with Eq. (21) for () and Eq. (23) for At. The

to be a parameter. result is

Other beam models lead to the following expressions for d U( + E.) + sin 4 E,0 (24a)
the average potential. If the beam is a sheet beam with all T, 2m
guiding centers lying in a plane, we find d f2 q

dtn, Y n,1 2mu,
x [cos 0 Ego - sin O(E. +E I), (24b)

where

E= - (oi/c)A(zt,)

R is the electromagnetic component of the electric field and
E , and E are electrostatic contributions to the electric

S PLANE field: 2
E. = d'u'u' sin 'f, (25a)

q noe.

FIG. 2. Tntiformonaofvambclsfromstos' s+ Ainthea cuauon E.- r .__ d3u ' u cos#'f. (25b)
of the electrwostuc poteatmiL q f
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In Eqs. (24) and (25) we have introduced the plasma fre- netic wave can be calculated by solving the linearized colli-
quency sionless Boltzmann equation. The mathematical details of

the calculation are presented in Appendix B. In Appendix B
w, 4rqn,'/m it is shown that the small signal efficiency q with which the

where no is the local beam density, and we have changed the electrons transfer their energy to the electroma-netic mode
normalization of the distribution function so that is given by

f I . (28a)
where K is given by

The parameter (wtflno)' is a measure of the strength of the
electrostatic effects. As a result of the nonzero beam density K = T-r sin 0 - cos 0
there are two distinct electrostatic effects: the dc frequency 2r. F,
shift a,& = W2 /2rioand the ac fieldsE' , and E. exp{- p [(Aai-- r,) 2 2 r }

The change in the axial momentum caused by a tapered X - (28b)
external magnetic field flo (z) is given by 862 yo(o - 1) ( + ')62,/2

dp, u df10 (z) and E' is a normalized electric field

dt, y dz (26)= -qr/(r" c)
In what follows we will consider devices in which the We have assumed a steady electric field profile consistent

magnetic field is nearly constant, having a weak variation with Eq. (22b):
which can b taken to be linear in the axial distance A (r,t) = ir-' sin ot cos ky exp [ - r2/r, ( y) A,

i n0 (Z) =flo(0) ( I + Cz/r o) . where r2 = x 2 + z2, the radiation waist r. ( y) is given by
In this limit, the axial momentum is approximately con- . (y) = r + 2y:/(rk 2)

served and only equations evolving u, and 4 are necessary.
Thedynamic equations (24)-(26) are notcomplete because and all electrons'guiding centers pass through x =y = 0. In
the evolution of the electromagnetic field amplitude A(t 1 ) Eq. (28b) the quantity e5 is given by
on the slow time scale t, has not been specified. An equation e,= eflorol(2rov)
describing A(t1 ) can be obtained from Maxwell's equations;
we will return to this point in See. V, where we examine the with
time-dependent behavior of the electromagnetic modes in an dfl(z)
overmoded gyrotron. Furthermore, in Appendix A the e =

equations are put into dimensionless form, indicating that fl (0) dz
there are four relevant dimensionless parameters. defining the rate of taper. The quantities ro, r,, and r. are

frequencies:
C. Efficiency r = 2 6 (4y2o) r a)/(4f),)

Suppose that a beam of electrons, each with initial ener- 1 P

gy y, mc2 , enters a gyrotron cavity in which the electromag- .= (F - rz )12

netic field amplitude E, is fixed at a given magnitude. Upon The quantity ro is a measure of the time of flight through the
traversal of the cavity the electrons will bunch in phase, with radiation field,
each electron losing (or gaining) energy and exiting with a
final energy y/mc 2. The total energy of N electrons upon "o = r,(I + f).
entering the cavity is W = 1. ., y,,.mc2 = N?,mc', and Ao is the mismatch frequency,
upon exiting is ,= y,(.mc'. The efficiency r with !
which the electrons transfer their energy to the electromag-
netic wave is defined as

17 I, - r, )rr, -- (2))rI  -, - - i.y,(y, - I) (27) The zero-density, constant magnetic field3 limit of Eq.

Note that in the absence of magnetic field tapering the maxi- (28b) is obtained by letting o and t go to zero:

mum theoretically possible efficiency is less than 100% be- r An . I
cause the energy associated with the axial streaming of the 8ro Va - 1), 2yoi,
electrons cannot be tapped by the electromagnetic wave.

X exp
Il1. LINEAR THEORY [ 2 x [ u,-

Before examining the nonlinear consequences of the We see from Eq. (28b) that for moderate values of c. the
electrostatic field, we first consider the effect of the electro- effect of tapering on the linear gain is not dramatic. In fact, it
static field on linear, small signal efficiency. The change in is approximately equivalent to changing the spot size from r,
the energy of a distribution of electrons as they traverse a to r/( I + fl. )1/2.
gyrotron cavity containing a small amplitude electromag- The self-field effects are somewhat different. The gain
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can become exponentially large when the parameter TABLE I. Gyrotron parametr.
r.ro/v, exceeds unity. The quantity r. is the temporal
growth rate of the electrostatic cyclotron maser instabil- fl0 (O) = 7.23X 10" rad/secy=L1137
ity.'" - Thus we see that if the time of flight of an electron y = 17

through the cavity is longer than the growth time of the = .oz
electrostatic instability, the small signal efficiency is altered r I = cm
dramatically.

Figure 3 is a plot of the linear efficiency normalized to
E , given by K in Eq. (28b), as a function of the beam den-
sity 2co, /fl )2 . The gyrotron parameters used are listed in pated Pd, = W/T, and using expression (28b) for 7, we
Table 1. The wave frequency o is nearly equal to the gyrofre- find that the oscillation will start if the current satisfies
quency frlo/, 1he difference specified by the mismatch pa- I> (wL /c) Io,/Q"(r - 1), (31)
rameter

where Io = mcj/(32q) = 5.31 X 10' A, and we have noted
6= (oi -flo/)/cz. (29) that the kinetic energy of an electron is given by

The curve in Fig. 3 is for 6 = 0.02. At small beam densities q V = (Vo - I )mc 2.
the efficiency is positive, indicating that the electrons lose
energy and the small amplitude electromagnetic wave IV. NONLINEAR EFFICIENCY
grows. As the beam density increases, the efficiency de- I2
creases and becomes negative, signifying that the electro- with In Sec. III we calculated the linear efficiency 71 =
magnetic wave islinearly stabilized by the self-electrostatic
field. At still higher densities the efficiency becomes positive small amplitude electromagnetic wave of amplitude E.. As

positv E% increases beyond the linear regime, the electrons bunch
again. in phase and the efficiency saturates. The maximum nonlin-

The current necessary to start the oscillation in a given ear efficiency obtained may have little relationship to the

cavity mode can be obtained by examining the power bal- linear efficiency. That is, considering two different modes

ance in a gyrotron. Consider an electron beam of current I with the same gyrotron operating parameters, while one

accelerated through a voltage V. If the electromagnetic field mode may be less efficient linearly, it may be more efficient

amplitude in the gyrotron cavity is A', then the beam will

transfer a fraction 77(A) of its input power P = VI to the nonlinearly.

field. Suppose that the electromagnetic energy W Stored in In this section we calculate the effect of the electrostatic

the cavity is extracted at the rate TIT, where Y is the frac- field on the nonlinear efficiency with which the electrons
toofthe eergy is em ed durin aherte , wavereflio tme transfer their energy. The gyrotron parameters used aretion of the energy removed during a wave reflection time those listed in Table I. Neglecting electrostatic effects and

T = 21 1c, with L the distance between the mirrors. Then the
oscillation will start if the power input from the beam is assuming that the electron beam is only weakly relativistic, it
osllaertion wil fthe power i rhas been found' 5'' that the efficiency of any gyrotron is a
larger than the power extracted: function of only three parameters: the normalized interac-

17(A) VI> (T/T) W. (30) tion length j = (Rl 1/0 )(21fr o/A) in our notation, the nor-
For the given electric field profile, the stored energy W is malized current which is related to the field amplitude E.
given by through the power balance equation (30), and the param-

W = (r L /321r) .) 2-; 2/c. eter A = 26/ '. The authors of Ref. 16 find that the optimal
efficiency at the fundamental cyclotron resonance occurs

Defining the cavity Q = c W/Pd,,., where the power dissi- whenji- 15-20 and A-0.5. For the gyrotron parameters in
Table I that we are using, 7 14.3. Thus these parameters
arecloseto, but not quite optimal (see Fig. I of Ref. 16). For
the parameters in Table I and A ,-0.5, the optimal mismatch

400, parameter 6 = 0.04.
We consider N electrons which are initially equally

200 spaced in phase angle (typically, N = 1000), with a given

beam density (a,,/flo)2 . For a fixed electromagnetic field
K o amplitudeE., the equations of motion (24), (26), and (ld)

for each electron with self-electrostatic fields described by
-20 Eqs. (25) are integrated numerically from z= - L to

-400 z = + L, where L = 4r, The distance L has been varied to
) ensure that the results are independent ofL. Atz = + L, the

0 o001 0 02 0.03 0.04 0.05 relativistic factor rf is obtained and the efficiency 77 is calcu-

(w 2 lated according to Eq. (27). This process is repeated for
Z-- several different values of E, to obtain the plot of 17 vs E.

F'Q3shown in Fig. 4() ih(o/flo)2  n lcrsaiFIG - I Linear e fficiency. The ratioK of'the linear efficiency 71 normalized to shwinFg4()wthw./o)=0(oelcrtac

E,'. given by Eq. (28b), is plotted as a function of the beam density effects) and 6 = 0.05. In the small amplitude linear regime,
77 increases as E . At larger E. the electrons bunch in phase
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-.. FIG. 4. Degradation of the efficiency due to electrostatic effects. The effi- FIG. 5. Degradation of the efficiency due to electrostatic effects. The effi-
ciency 17 is plotted s a function of the normalized electromagnetic field Zr ciency it versus normalized electromagnetic field T. for 3 - 2% and
for a mode with frequency mismatch 6 =5% and a beam density (wl.l) 2 =-(a) 0,(b) 6X 10', (c) I X10', and (d) 2X 10'.
(w,1111,0 )' -(a) 0. (b) I x 10'. (c) 3 x 10', and (d) 6X 10'.

ciency is degraded decreases as the frequency mismatch

and the efficiency saturates. At still larger values of E the (and frequency) of the cavity mode increases.
electrons overbunch and the efficiency decreases. The maxi- The dc contribution of the electrostatic field to the fre-
mum nonlinear efficiency obtained in the zero-beam -density quency, &, = a,/(2flo) in Eq. (24b), can actually en-
limit is 31%. Efficiency plots for increasing beam density are hance the efficiency when the zero-density frequency mis-
shown in Figs. 4(b)-4(d). For a beam density of match 3 is small and the magnetic field is not tapered. Figure
(oP/lo) - l x 10-2 (the corresponding value of the nor- 7 is a plot of the density dependence of the maximum effi-
malized density defined in Eq. (A6) for this case is ciency for 6 =0.005 and 0.01 for both tapered (closed sym-

= 0.921, the maximum efficiency drops to 22%. When the bols) and untapered (open symbols) magnetic fields. As the
beam density increases to (wo/1lo) 2 = 3x I- (h = 2.78), electrons traverse a tapered magnetic field the gyrofre-
the maximum efficiency drops to 9%, and for quency changes and a more favorable resonance condition
(Wofl ) 2 >6x 10 - 2 (5 = 5.56), 77 is negative, indicating
that the field gives up energy to the electrons and the electron
cyclotron instability is quenched. In these numerical simula- 40-_,

tions we have restricted the normalized electromagnetic
field EZ, < I. As can be seen from Eqs. (24) and (25), the ac
electrostatic fields E', and E', for a given beam density can
always be taken small if the electromagnetic field E, is suffi- 30
ciently large. However, the magnitude of E. is limited by
considerations of heat load on the mirrors. Note from Fig.
4 (a) that the overbunching of the electrons in phase occurs
for E, =03 when 6 = 0.05.

Efficiency plots for a lower frequency electromagnetic 7 20

mode with 6 = 0.02 are shown in Figs. 5(a)-5(d). In the
zero-beam-density limit, the maximum efficiency obtained is
22%-Ilower than in the 6 = 0.05 case. Again, as the beam
density increases the efficiency with which the electrons 0

transfer energy to the electromagnetic wave is degraded se-
verely because of the electrostatic field. Note that although
the higher frequency mode with 6 = 0.05 has a higher non-
linear efficiency in the zero-density limit, the lower frequen- 001 0.03 0.o6 00.2 0.5
cy mode with 6 = 0.02 has a higher linear efficiency for (,.,., ),
small E9. The consequences of this will be seen in the time-
dependent multimode simulat 4ns presented in Sec. V. FIG. 6. Degradation of the efficiency due to electrostatic effects. The den-

sity dependence of the maximum efficiency (percent) is plotted for 6 = 2%
The density dependence of the maximum efficiency for (trangles), 4% (crosses), and 5% (circles). When no symbol appears for

three different cavity modes with 6 = 0.02,0.04, and 0.05 is (s,,/flj = I x 10-' or 2 x 10 '. the maximum efficiency 1s then nega-
shown in Fig. 6. The critical density beyond which the effi- tive.

380 Phys. Fluids, Vol. 31. No. 2. February 1988 Kleve. Antonsen, Jr.. and Levushl 380



008 III i

0 010.

, , 7Z0
20-*0405

0  J
o 6

O7 0 05 o ,5 20 0 05 t 5 £0

0 0
0

I I 0.11

0.01 0.03 0.06 0.1 0.2 0.5

FIG. 7. The effect of the dc frequency shikt The density dependence of the 0 0.5 t o I 20
maximum eficiency is plotted for 6 - 0.5% (triangles) and 1% (circles)
for both tapered (closed symbols) and untapered (open symbols) magnetic
fields. For (&,/[f)lo > 0.2, the maximuf efficiency is negative in all cases. FIG. S. The effect of the ac electrostatic fields. The efficiency 17 is plotted as

a function of the normalized electromagnetic field C, for 6 = 6% and
(w,,/) 5 

= (a) 0. (b) 3X 10- , and (c) 6x 10- 2.

(frequency mismatch) for energy transfer from the elec-
trons to the cavity mode is attained. In contrast, when the
magnetic field is not tapered the electrons do not efficiently energy to a single electromagnetic mode of fixed magnitude.
transfer their energy to cavity modes with a small frequency However, the quasioptical gyrotron is overmoded since it is
mismatch. However, as the beam density increases, the dc designed to operate at a wavelength much smaller than the
frequency shift Aw, produced by the electrostatic field ef- length of the open resonator. Conventional closed cavity
fectively increases the frequency mismatch so that a more gyrotrons can also be designed to operate at a wavelength
favorable resonance condition is attained and the efficiency much smaller than that of the lowest-order fundamental
increases. Beyond a critical density, however, the electro- mode. Since the mode spectrum is dense in these cvermoded
static field quenches the electron cyclotron instability re, gyrotrons, many modes may be excited and operation in a
gardless of whether the magnetic field is tapered or not. single, coherent mode may be difficult. In previous time-

As can be seen from the zero-beam-density results dependent simulations that neglected electrostatic effects it
shown in Figs. 4(a) and 5(a), as 6 increases, the cavity field was found that it is indeed possible for an overmoded gyro-
E at which the electrons first completely bunch in phase tron to evolve to a steady state consisting of a single, coher-
also increases. When 6 exceeds 0.05, the first maximum in ent mode.' Here, we carry out time-dependent simulations
the efficiency does not occur until E. is larger than 1. Since including the self-consistent evolution of the electrostatic
the maximum electric field at which a gyrotron can operate field in order to determine the effect of this field on gyrotron
is limited by other considerations, the size of the mismatch 6 operation.
is also restricted. However, when the frequency mismatch is First, following Ref. 5, we generalize the equations of
large, the ac electrostatic fields E and E c actually act to motion (24a) and (24b) for many modes l with frequencies

increase the efficiency by bunching the electrons. Figure o,, = ( 1 + 11N); = 0, + 1, ± 2...± M with M.<N.
8(a) is a plot of the efficiency versus cavity field E, for Here, the frequency separation Aw betw( t modes is given
6 = 0.06 when the beam density is zero. The maximum effi- by Aa = wIN = 21rc/L, where L is the distance between the
ciency of only 9% occurs when E, = 1.3. Figures 8(b) and mirrors (see Fig. 1). The expression for the electric field at
8 (c) demonstrate the effect of the ac fields; the dc frequency the beam in the time-dependent case is
shift aw, produced by the electrostatic field has been ne-
glected. When (w,,./flo)' = 6X 10- ', not only is the maxi- E = i- e - (1z2 e2
mum efficiency raised to 21%, but the cavity field at which \.o1 1 2
the maximum occurs is reduced to E, = 0.3. The magnitude
of thie electromagnetic cavity field is too small to bunch the { e ( . )J (
electrons when E. =0.3. However, if the beam density is X E,(t)exp + c.c. (32)
sufficiently large, then the ac electrostatic field will bunch
the electrons. The bunched electrons then radiate energy where E., is a complex amplitude having magnitude E~j and
into the electromagnetic cavity mode. phase ,,

V. TIME-DEPENDENT SIMULATIONS E , = i.1 e'.

In Sec. IV we calculated the effect of the self-electrostat- Then, the equations of motion [(24a) and (24b)] can be
ic mode on the efficiency with which electrons transfer their written in the form
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u, Cos + W it+19t7 1/2 have taken the normalized current -,09 and the rest of

dt, 2m the parameters are those listed in Table 1. The frequency

separation of the modes is Aw./ o = 0.01, which corresponds
X exp{- ) +E' cosO+E,' sin,, (33a) to a distance L = 13cm between the mirrors for the param-

eters listed in Table I.

44 n0  i _ + q In Fig. 9 we show histograms of the electromagnetic
= _ - -- + -t- + mode amplitudes E,, at various times during a simulation

dt, r 2 fl, 2mu, with (wf,/fo)2 = 0 (no electrostatic effects). The-system

X i 11 )'-11 reaches a steady state which consists mainly of a single modeN (whose frequency mismatch parameter 6 = 0.05. Note that

. ) the modes which grow initially are at a lower frequency than
X exp + E', cos 4 - E , sin ,, (33b) the final steady-state mode. This is consistent with the effi-

0 .'f ciency calculations of Sec. IV, where it was found that while
dz =v, . (33c) the lower frequency mode had a higher linear growth rate,
dit the higher frequency 6 = 0.05 mode was more efficient non-

An equation for the evolution of the electromagnetic linearly. In fact, because of the loss through the mirrors, the

mode amplitudes E., can be obtained from Maxwell's equa- final nonlinear steady-state mode is actually linearly stable.
tions. Details of the derivation are given in Ref. 5. The deri- These results for time-dependent multimode simulations
vation exploits the fact that for constant E., the field (32) is without electrostatic effects are consistent with those found
periodic in time with period r = 2irN1,o. Thus, assuming previously.'
that E,, changes on a time scale-, r, one can advance E, as We now examine the effect of the electrostatic field by
follows. Integrate the electron orbits forward over a time r, considering beams of nonzero density. Figure 10 is a time
calculate dE,/dt from the currents, and then step E, for- series of histograms of E,, when (a,,/f1o)' = 3 X 10- 3.As
ward in time by a time step of order If r. Since the electron in the zero-density case, the system evolves to a steady state
equations of motion only have to be integrated for a time consisting of a single electromagnetic mode, although it
r <T this results in a large savings in computation time. Us- takes approximately five times longer to -reach this steady
ing this two-time scale formulation, one finds that the evolu- state for the same initial perturbation. In addition to reduc-
tion equations for the electromagnetic mode amplitudes E., ing the growth rates of the electromagnetic modes, the elec-
are given by trostatic field also causes a reduction of approximately 30%

in the amplitude of the final steady-state mode. Thus the
r) ( efficiency with which electrons transfer their energy to the

-9 + )electromagnetic mode is decreased.
8= r /2 zWhen the beam density increases to (w/lo)2

dz Uj e' "4 e- ""IN )', l10 -, the electrostatic field quenches the electron cy-
L "' ~ u clotron instability entirely. As shown in Fig. I1, the initial

(34)

where the loss rate r cT/4L and the angular average 04

means averaged over an ensemble of initial phases 0 and K,'

entrance times 1o,,, where t, = + z~v If we normalize ,4 03"

E., as 1,0.003

E., = qroE,(m't 2nmc2 ) , 0.002

then Eq. (34) becomes 0.001 01

(F + 009.6 ,, 111 99 ,0o6 ,,

= F Z !1 e 00 e - , (35) td)

where 0.3- o.3

321/f v(mc/q) IO 0f2 -0.2.

Equations (33a), (33b), (25a), (25b), (26), and (35) 0, o.,
form a complete set of self-consistent equations which de- 0

scribe the nonlinear evolution of the electrons and the elec- 8% o6 1.u o 1 o
tromagnetic and'electrostatic fields. We have solved these ,(.o") 1,(.1")
equations numerically for a system consisting of 20 electro- FIG. 9. Time-dependent multimode simulation. Histograms of the electro-

magnetic modes. The modes are evolved by determining the magnetic field amplitudes E,, are plotted as a function of frequency f for
current in Eq. (35) using 2500 particles distributed uniform- 1 = 0.09, (.,,/fo)I 0, and t(iusec) = (a) 0.3, (b) 3. (c) 15. and (d) 45
ly in gyrophase and entrance time. In our simulations we after application of an arbitrary perturbation.
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FIG. 12. Power balance in a gyrotron. The solid curves represent the func-

FIC. 10. Time.-dependent multimode simulation. Same as Fig. 9 except tional dependence on E, of the left-handside of the power balance equation
(w,/ll)l -, 3X 10-' and r(/zsec) - (a) 0.3, (b) 3, (c) 77, and (d) 106. (36), while the dashed curves represent the right-hand side.

perturbation decays away and the oscillation does not begin. the beam density increases the efficiency is degraded to the
The system is nonlinearly, as well as linearly, stable. For the solid curve labeled 2 in Fig. 12(b). Now the energy flow
steady state obtained in the zero-density case (see Fig. 9), from the beam to the field is less than the energy extraction
when the density is increased to (Wo,/flo) 2 = I X 10 - 2, the rate from the cavity for all E, and the oscillation will not
mode then decays away rapidly and the oscillation is lost*. start. By reducing the rate at which energy is extracted from
Thus, for a sufficiently large beam density, the electrostatic the cavity [ dashed line 2 in Fig. 12 (b) 1, one can regain oper-
effects not only degrade the efficiency, but can also lead to a ation at the point labeled B in Fig. 12 (b). However, both the
failure of the gyrotron to oscillate at all. power and the efficiency are greatly reduced at point B as

The reason the oscillation does not begin can be under- compared to point A. As the beam density increases further,
stood by examining the power balance in a gyrotron. From the efficiency becomes negative and operation is not possi-
Eq. (30) and -the definitions which follow it, the power bal- ble.
ance in a gyrotron is described by We have repeated a series of time-dependent simula-

7(E.)V!=(w1/Q)E~roL1321r. (36) tions with the current increae to 2 = 0.9 and with all the
other parameters the same as before. The results are qualita-

Neglecting electrostatic effects, the dependence of the left- tively the same as in the 2 = 0.09 case, but the steady-state
hand side of Eq. (36) on E, is given typically by the effi- mode amplitude in the zto-density limit is approximately
ciency curves shown in Figs. 4(a) and 5(a). This depend- three times larger and the -eam density required to stop the
ence is illustrated schematically by the solid curve labeled I oscillation is roughly three times larger.
in Fig. 12 (a).- The quadratic dependence on E. of the right-
hand side of Eq. (36) is given by the dashed curve in Fig.
12 (a). The intersection of these two curves, denoted by A, is VI. SUMMARY AND DISCUSSION
the operating point. The rate at which energy is transferred The time-dependent self-consistent electrostatic field
from the beam to the field is equal to the rate at which energy has been shown to have a deleterious effect on gyrotron oper-
is extracted from the cavity when E. = E,,. However, as ation. As the electron beam density increases, the nonlinear

efficiency is seriously degraded by the self-electrostatic field.

8- Based on the dimensionless equations presented in Appen-
6 b, dix A we anticipate that the degradation occurs for values of

6- /

. _ eters considered (i.e., those in Table 1) this corresponds to

02 302

'o 4 o a'/flo-1O -z and a current density of J=2.0×10'
,. A/cm' .

2 0 2 While the maximum nonlinear efficiency appears to al-

_k ways be degraded, for some choices of parameters, viz., mis-
0 . I match and electric held strength, the efficiency is enhanced.
096 1.06 1.17 0.96 1.06 1 .j7 This is also reflcted in the efficiency in the linear regime,

f (Xo") f (o") which may be increased or decreased by space charge effects
FIG. 10. Time-dependent multimode simulation. Same as Fig. 9 except depending on the value of the mismatch. b e

(w flo 2 
=x l0

- and t(psec) - (a) 0.6 and (b) 6. Time-dependent multimode simulations demonstrate
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that, as in the case without space charge effects, operation = h d 'u' u'fcos 4' (Mb)
with a single nonlinear mode is possible. Typically, the sys- # J
tern evolves nonlinearly to the most efficient mode even where
though this mode may be linearly stable. We have found that
the time required to reach saturation increases and the mode (A6)
amplitude at saturation decreases as the beam density is in- measures the beam density.
creased. Thus we see that the weakly relativistic equations de-

pend on four dimensionless parameters: the strength of the
ACKNOWLEDGMENTS electromagnetic field e,, the mismatch A, the beam ener-

One of the authors (TMA) would like to acknowledge gy/interaction length j7, and the beam density F. Thus, the
useful discussions with A. Bondeson. introduction of the space charge into the model has added a

This work was supported by the Office of Naval Re- new parameter A. This quantity can be expressed in terms of
search. the beam current density 1:

ii = 2JArd,1fIJ ,
APPENDIX A: DIMENSIONLESS EQUATIONS wherelA = fmyn,'/e = 1.7 x 0W,y 0, A is the Alfvin cur-

T1.z parameter space of our nonlinear system can be rent, and .A is the vacium wavelength of the radiation. For
reduced by rewriting the equations of motion in dimension- the parameters of Table I a beam current density of 2.2 x 103
less variables. 11.6 At the same time we will make the further A/cm" is required to produce hi = I. If all the current were to
approximation that the beam is weakly relativistic and we be confined to a pencil beam whose radius is one quarter of a
will replace 7/ by y, m I everywhere it appears except in the wavelength A = 0.3 cm, the value of current to which this
combination w - fl9/y, which we approximate as corresponds is 40 A.

o no 1 Iu - u APPENDIX B: SMALL SIGNAL EFFICIENCY
To \ 2 c ", " In this appendix we present the mathematical details of

the calculation of the small signal efficiency 71 given in Eq.
(28). Consider an ensemble of electrons with a distribution

We now rewrite Eqs. (24) employing the following normal- function f described by the Vlasov equation

izations. Time is normalized to the time of flight through the

interaction region 9f + .I -t- dp, af (B+ I) -K Af

=t, dz dt, dp, dt, 90 dt, 3,u

wherev, is the assumed constant axial velocity. The quantity where dp,/dt, d/dt,, and du/dt are given by Eqs. (26),

u, is normalized to oo,, where v,0 is the injected value of (24b), and (24a), respectively. The total distribution func-
tion f can be decomposed into equilibrium ( Jo) and per--1  turbed (?) pieces: f=fo +f. The equilibrium distribution

U =ui/olo . function r satisfies

The components of the electric field are normalized in P*o a!fo I dflo 3fo
the following way:

43t ym az y dz .p.
e. = qr0E /(yov1 ,0v m ), ' = qroE 1/(y0 ou ,um ). [ o I 1 o _
The resulting nonlinear equations can then be written as + + 2"-lo / (132)

d- u = [(e. + eSb)cos + e'. sin 0] (Al) Equation (92) is satisfied by fo( Wu), where fo is an arbi-
d" trary function of the electron energy W = p'./2m + ,ufl and

magnetic moment1.T, (A+I(u'- 1)) Linearizing Eq. (BI), one finds that the perturbed dis-di-

tribution function fobeys
+_![elcos -(e, + 4)sin~] (A2) 

-11a2u af ? +n 1  z -L ),~ awith at 5i + NO 2 TlJ I#

j7 (=loro/V.)O o (A3) + {[E + E, (z Icos 44 + E, sin 0}1 A -- 0,
2m lu I

measuring the perpendicular beam energy and interaction (B3)
length and where the magnetic field has been taken to have a linear

= ro(W - f'yo + jlP1,/)/( #1 flo) (A4) taper

measuring the frequency mismatch. The electrostatic corn- flo(z) = fl,( I + ez/r o ) , (B4)
ponents of the field are given by where F-- f rfo(0) 1dflo(z)/dz. The perturbed distribu-

= h f d .'u'f sin 0', (Aha) tion function has no explicit time dependence for the single-
J mode efficiency calculation considered here. Rather. f de-
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pends on axial distance, being zero at the point of injection The relationship between the electrostatic field E4, and the
(z = - oo ) and developing in z in response to the fields. For electromagnetic field E, ± is obtained by inserting expres-
sufficiently small c (weak taper), the electron velocity along sion (BI0) for f± into the Fourier transform of Eq. (B6):
the magnetic field is nearly constant and we introduce a new E ( -,± (± , - ,v± (,) ] ,
time coordinate r related to z by z = vr in Eq. (B3). (B11)

Let us write r in the form ? f fe" +f-e - '. Insert-
ing this expression for finto Eq. (B3) and then multiplying where
bye t"and integrating, one finds the following equations for r(t A2 r f ul du, afo B
f. and f-: x: (, ) = ± B d- 1 ' (12)

a - + i w, - + +,, with

+f = -O (B5) r 2 nB13)
4 m U, representing the beam's susceptibility.

where The change in y, Ay = rf - y,, for a given electron is
E. E,= E T- X'o idefined as

2 Ay I ,d- d ~ (B 14)-U' du, (1316) dr - r dr 2

Equation (B5) can be simplified through the use of an inte- Using relationship (2) between At and u, along with Eq.
factor. Lus define ? (24a) for du/dr, one finds that the average change in r for agrating t.Let s by distribution of electrons is

exp( ro _). (B7a) ar= dr udduf -- 'E (vr)cos .

and (B3S)

,E =E.(,-)exph n. v After integration over 46, Eq. (B 15) becomes
Sro 2

r exp ( if  4 1 10 ) (B7b) fd +.

0 r2

Then in terms of ?f, Eq. (B5) becomes The time integration in Eq. (B16) can be replaced by a fre-

- 2 quincy integration through the use of Parseval's theorem:
a, ; "-r 2 , U2J'

-y - q( dEf f a , ,U
2fm (13) l.Z>o 21r r

We define the Fourier transform f Z (;) of ( (r) by x [1. _ ( _ 5)f, (Z) + Z;), 7 ( _ ). (a)]

f ,-r)f !: '± (Z;) Imn(Z) > 0 (139) (Bl7)

with a similar definition for the transforms E ± (Z) and Consider a cold beam of electrons characterized by the
E, : (5) ofE, ± (r) and E.t (r), respectively. The inver- equilibrium distribution function
sion contour for the Fourier transform of f: (r) defined in fo = (2 7ru 0) - (u, -u 1 ) . (B8)
Eq. (B9) must be taken to lie in the upper half Z plane. This
is a consequence of the fact that f± (r) vanishes at the point Then using the Fourier transform of relationship (B6) be-
of injection r = - ccbut does not vanish at the point of exit tween f and E in expression (B17) for Ay, one obtains

r = + o. Similar considerations apply to the Fourier trans-
form of E. . The same contour may also be used for E,, q d" d
because it decays sufficiently rapidly as I rl - oo. One obtains Ay = i q f d21
the solution of Eq. (B8) in the form 4(w /f)B~mcy0 J

1 q E,. (E() - E,x ()

4 m Z n,[- /y+ (fn,/2)(,I/flo))]  (B19)

where Yo r(uo ). Finally, in.ertion of Eq. (B I I) relating
o (BIG) E,* and E, into Eq. (B19) yields
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Ay= -i q ____
d

__ Jm

Cdei

4(a Oooo) 2 T-

" )E ( )E + ( - 7) (x20) x

where for the cold beam distribution of Eq. (B18) X ± is
given by

2 Yo ( (B21)
- +r :FZ )-)yo W

The Fourier transform E, (Z) of E, (r) given by Eq.
(B7b) is

Zr: (Z) [(- ( A'/c)/ '7-]exp( - Z;2 /4a± ), FIG. 13. integration contours. The integrauoncontour Ci thecomplexZ
plane in (a) is deformed to the contour C' in (b).

O==(v,/r, )2 i(Ef1ov,/2Tr o )  (B22)

The integrand in Eq. (B20) contains poles at the zeros given in Eq. (28) for the efficiency = -1 - Av/(Yo - 1) in
of 1-K ±( ). From Eq. (B21) the solution of the small amplitude, linear limit.
1 -x.(5) = 0 is given by D w' ... where

S- r ± o - , (823) 'R S.Symonsand H. R..Jory,Adv. Electron. Electron Phys. 55. 1 (1981).(B23) i-- 2V. L. Granatstein, Int. J. Electron. 57, 87 (1984). -S( l) 2~~ n2/)2 l /4To, (B24a) 'P. Sprangle, J. L. Vomvoridis, and W. M. Manheimer, Appi. Phys. Lett.38, 310 (1981).
r, = (g,/) 2 flo/4 (B24b) 'A. Bondeson, B. Levush, W. Manheimer, and E. Ott. Int. J. Electron. 53

547 (1982).
Similarly, the solution of 1 - ,- (w) = 0 is given by 'A. Bondeson, W. M. Manheimer, and E. Ott, Int . Infrared Millimeter
Z;= w where Waves 9, 309 (1983).

.I. S. Kovalev, A. A. Kurayev. S. V. Kolosov, and G. Ya. Slepyan, Radio
w -+ aw + r, ± ir - F . (B25) Eng. Electron. Phys. 19, 149 (1974).

The L. Hirshfield. Int. J. Infrared Millimeter Waves 2.695 (1981).
The poles corresponding to the zeros of I - K are shown in . Charbit, A. Herscovici, and G. Mouner, Int. 1. Electron. 51. 303
Fig. 13. The integral in Eq. (B20) for Ay can be performed (1981).
by deforming the integration contour shown in Fig. 13 (a) to 'L. Shenggang and Y. Zhonghai Int. J. Electron. 51. 341 (1981).
the real 5 axis, as shown in Fig. 13(b). First consider the '°G. Dohler, Int, J. Electron. 56, 481 (1984).

"T. M. Antonsen, W. M. Manheimer, and B. Levush. Int. ]. Electron. 61,
contribution to the integral of the portion of the contour 823 (1986). -
which lies along the real D axis. For real Z, *2A. Bondeson and T. M. Antonsen, Int. J. Electron. 61, 855 (1986).

X ( -) = X, (Zi) andET , ( -) =E ± (Z). Because "K. R. Chenand K. R. Chu. IEEETrans. MTT34,72 (1986).
ofthesesymmetries, th contribution of the realaxis to the 'K. R.+Chu and L.-H. Lyu. IEEE Trans. MTT 34. 690 (1986).

'A. 1. Gaponov, U. 1. Petelin, and V. K. Yulpatov. Izv. Vuz. Radiofiz. 10,
integral is zero. Calculating the contribution of the poles to 1414 (1967).
the integral in Eq. (B20), one finally obtains the expression "B. G. Danly and R. J. Temkin, Phys. Fluid. 29, 561 (1986).
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"Mode Stability in a Quasi-Optical Gyrotron"

Wallace Manheimer, Code 4740
Naval Research Laboratory, Washington, D.C.

Thomas Antonsen and Baruch Levush
University of Maryland, College Park, Maryland

The stability of modes in a quasi-optical depends on the application. The klystron model is
gyrotron is examined analytically and numerically also analytically tractable in examining the
for both free running, mode locked and phase locked stability of a directly injected phase locked
equilibria. One key to the analysis is the fact equilibrium. We find that the effect of the
that the mode eigenfrequencies are nearly integral directly injected signal into the cavity has a
multiples of a fundamental frequency corresponding small stabilizing effect on the equilibrium,
to the reciprocal of the radiation transit time principally in the stabilizing effect it has on the
between mirrors. Analytically, results are phase unstable mode. However the use of a directly
obtained with the use of a klystron model.1' 2  injected signal also could have the effect of
Here, the radiation field in the optical resonator setting up the oscillator in one preferred mode out
is approximated as essentially two delta functions of many possible stable equilibria. For the case
separated by the radiation waste length. It is not of the prebunched beam, the klystron model is
exactly two delta functions because the field must analytically tractable only for the case cf the
be square integrable. However, if the separation 'ultimate prebunching', that is all particles
is sufficiently large (u>>l, where v is the entering at a particular phase. For this case, the
dimensionless length unit in normalized gyrotron stability boundary for the quasi-optical gyrotron
parameters) the klystron model is approximately is significantly affected.
valid. This model gives a good approximation to
the linear and nonlinear behavior of a single moded For a more realistic field profile in the
quasi-optical gyrotron with realistic field profile resonator, the stability is computed numerically
as long as 0 < u& < m where & is the dimensionless with a modification of the multimode simulation
frequency mismatch parameter in normalized gyrotron developed earlier.4  Once the equlibrium is
parameters. Using the klystron model, one may obtained, perturbed orbits are calculated and
solve analytically for the time dependence of the inserted in the equations for the two sidebands.
field amplitude. For instance one can calculate The growth rates for these two modes are then
the frequency shift in the initial linear regime, computed numerically. For the free running
as well as in the final nonlinear regime. By going oscillator case, for a particular value of u, a
to a multimode state, one can calculate plot of the stable regions in the space of 6 and
analytically the condition for instability. The field amplitude parameter F is obtained. Typically
instability takes one of two possible a mode can be stable for values of current as high
characteristics. In one case the phase may be as twenty times the start oscillation threshhold
unstable; here the nearest mode is always unstable, current. Results will be presented for direct
In other cases, the amplitude may be unstable; injection phase locked equlibria and prebunched
here, it is generally not the nearest mode which is beam phase locked equilibria, and the results will
unstable. With the klystron model, one can be compared with the results for free running
determine the parameter space of stable and equilibria.
unstable single mode equilibria.

One way to control the mode in a quasi-optical * This work supported by the Department of Energy.
gyrotron is to mode lock it in some manner. There
are two basic methods of doing this which we 1. N.S. Ginzburg and S.P. Kuznitsov, in

consider. First one may directly inject a signal Relativistic High Frequency Electronics, p 101 IPF
into the optical cavity, or second one may prebunch USSR Acad. Sci. Gorky (1981)
the beam with a separate prebunching cavity.? In
either case, the frequency shift of the injected 2. T.M. Antonsen and B. Levush, to be published;
signal from that of the free running oscillator (or also see U.Md. Plasma Preprint 88-039
equivantly, the phase shift between the injected
signal and oscillator signal) adds one additional 3. A. W. Fliflet and W.M. Manheimer, to be
dimension to the parameter space. If the signal published; also see NRL Memo 6180
used is obtained from a separate rf source, the
equilibrium produced will be phase locked to this 4. A. Bondeson, B. Levush, W, Manheimer, and E.
separate source. On the other hand, if the signal Ott, Int. J. Electronics, 53, 547, (1982)
is obtained in some way from quasi-optical gyrotron
itself 4 , the signal will be mode locked. Whether a
phase locked or mode locked source is desired
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A time-dependent, fully electromagnetic particle code is used to simulate the current
modulation in an intense relativistic electron beam by an external rf source. It is shown that
the intense beam may serve as a power amplifier with good phase stability, as suggested in
earlier experiments. Increase in beam bunching by the dc space charge is demonstrated with a
simple analytical model.

The experimental demonstration' of deep current mod- shown) is attached to the outer wall of this cavity and
ulation in an intense relativistic electron beam ( - 5 kA, 500 .pumps" ff energy into the cavity at a frequencyf= 1.37
keV) by a moderate external rf source ( - 50 kW) suggests GHz, the resonance frequency of the cavity. At t = 0, the rf
strong potentials'-' to amplify if power to gigawatts at fre- drive is turned on. At t = 6 ns, after the fundamental mode
quencies between I and 10 GHz. Several unusual properties of the cavity has saturated, the beam current is ramped up,
were discovered in the experiments,"4 namely, the high de- reaching its full value at t - 1! ns (5 ns rise). The simulation
gree of phase and amplitude stability in the output signal.' continues until t = 20 ns.
the ease with which the current modulation can be achieved For rf drives yielding gap voltages with amplitude V,
and may be manipulated by the introduction of additional, 30 kV and V, = 6 kV, the axial distribution of the nor-
undriven cavities downstream, and the possible avoidance of malized if current 1, (z)/] in steady state is shown as solid
electrical breakdown at the gaps, even at a high level of beam lines in Fig. 2. Curves predicted by linear theory' 7 for these
modulation.' These unexpected features are only partially parameters, plotted as dashed lines, show close agreement
understood. The major obstacle to a complete understand- and demonstrate the validity of the simulations. The tempo-
ing is the highly nonlinear interaction in complex geometries ral evolution' of the beam current at a distance z = 28 cm
involving the kinetic energy, rf energy, and the potential en- from the gap center is shown in Fig. 3 (a) for the V, = 30
ergy of the beam, all of which are of the same order of magni- keV case.
tude. The crucial role played by the potential energy, which To obtain a current modulation comparable to I., V,
necessarily accompanies an intense beam, renders the classi- should also be of the same order of the beam voltage. It is
cal picture of beam bunching invalid, impractical to excite such a large-gap voltage directly from

We therefore, resort to a time-dependent, two-dimen- an external rf source. Instead, one may insert a second cavity
sional, fully electromagnetic particle code, CONDOR, 6 to Sim- downstream (Fig. l(b)], at a location where the current
ulate the response of an intense beam to an external rf excita-
tion. This amplifier configuration has never been subject to
particle simulation, although self-excited oscillations have
been studied in the past.7 We found that when the external rf
drive is low, the induced if current agrees well with the small
signal theory.'7 Addition of a second cavity in the drift re- r
gion significantly enhances the current modulation, without 2-
loss of phase stability, as observed in earlier experiments.' 01
An analytical model is presented to show that the dc space 0 10 20 30 40 50
charges associated with the intense beam may encourage l
current bunching as the beam traverses a modulating gap. INTENSE Ee6AM

The harmonic content is assessed. The details, together with
experimental observations, will be published elsewhere.' f oRIVE

Tc mimic the experiments as closely as possible, the sim- -
ulation geometry (Fig. I) consists of a 500 keV, annular '
IREB with beam radius r, = 1.9 cm and beam current
1o = 5 kA propagating along a metal cylinder of radius r. 2
= 2.4 cm. A static 10 kG axial magnetic field confines the
IREB. A gap feeding a coaxial cavity 5.6 cm long is inserted 0 10 20 20 40 60

into the drift tube. An infinite radial transmission line (not t1b) CENTER AXIS Ie.)

FIG. I. (a) The geometry. Current modulation is provided by the external-
"Science Applications Intl. Corp.. 1710 Goodndge Drive. McLean. VA ly driven cavity at left. (b) A second cavity is inserted to enhance current

22102. modulation.
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current measured immediately downstream from the second

0 - - /V, 30 kV gap.The harmonic content of the beam was assessed anal% ti-
cally. Retaining fully the nonlinearity due to charge o\erxak-
ing and accurately accounting-for the change in the electron

00- / density in the drift region, we found that the nth harmonic in
-SIMULON the current modulation is given by

ANALYTICAL 1, (z) ==21,J, (n T'sin 1),()

005 where J, is the Bessel function of order n. and T' and Y are.
, v, =6kv respectively, the normalized gap voltage and the normalized
S -axial distance from the gap, defined so that the small signal

limit. 7 1, (z) = 1, Vsin 2. is recovered as P-0. The crucial
0 10 20 30 40 50 assumption used to derive Eq. (I) is that the collective

,cfzn forces that the electrons experience in the drift tube have
been linearized and contain only the fundamental frequency

FIG. 2. Fraction of the modulated current for Fig. I (a). at two levels of the component. The estimates according to Eq. ( 1 ) are in quali-
rf dnve. tative agreement with the simulations and experiments, with

significant harmonic content only when V>~ 0.3.
modulation (by the first cavity) reaches a maximum'. This One interesting property of an intense beam which is not
second cavity is identical to the first, but is not externally shared with that which is characteristic of a classical klys-
driven. Using the same rfdrive as that for Fig. 3 (a), we show tron is the possibility of substantial current modulation im-
in Fig. 3(b) the temporal evolution of the beam current at 6 mediately beyond a modulating gap. In a simple model.
cm downstream from the second gap, at which the gap vol- where a rf voltage V, sin wt is imposed across the gap. the
tage is 330 keV. The total current modulation there increases instantaneous values v (speed),fl, and y of an electron are
to 57%, including all harmonics. In fact, the modulation given by
level continues to increase over the remaining 10 cm of prop- 1,, jej V, sin w(t
agation distance, reaching 85%. No particle reflections were 7. = Y + "+ (2)
observed at the second gap, nor were transients important. m,c '
These results compare favorably to both the experimental where !, = 8.53 kA/tn(r,,./r) and y,m,,C2 is the electron
two-cavity result, in which the cavity separation was 5 cm energy at injection. It is easy to show that Eq. (2) does not
and modulation greater than 80% was observed at 1.328 admit a (real) solution for13 and y if V, sin wt > V,, where
GHz.' and to more recent results in which the separation is mc2 - ( 3 (" 1) 1, 21.
32 cm.' 1i this situation, the harmonic content is consider-
able, with as many as 11 harmonics clearly observable in the and I

an L -1 1y -)3/ is the limiting current from dc the-
ory. The current modulation at the gap exit is absent if V,

00 < Vs, but rises rapidly once V, > V,, and becomes insensi-
tive to V, if the latter substantially exceeds V,. These fea-

1 - tures are also r.-flected qualitatively in experiments. The
" 30 amount of current modulation at the gap exit is estimated to

be

60 4 8 1 16 20 ) dt sin t l - (4)60 4 12 is 2 ..
(al ti vw

where t= (/w) sin-'(Vh/V . ).
0 .Finally, the phase locking between the external rf and

. ,,.- the current modulation, implicit in the linear amplifier con-
' ::!');!. -figuration, was tested for the fully modulated beam in the

- ' 'two-cavity geometry [Fig. 1(b) 1. We varied the phase ofthe
llj input signal and observed a corresponding phase shift in the

9. peaks ofthe current response (see Fig. 3(b)]. We found that
12 as the input signal is shifted by ir, the fully modulated beam

0 8 a 12 16 20 is phase locked to within an error of 1.1 +- 0.6%, in agree-
Ibl Inv ment with experimental observations.'

FIG. 3. (a).Current response measured at: = 28 cm from the gap for Fig. in summary, several unusual features observed in It-

t(a). wthgapvoltage V, - 30 k V. ,b) CurrentrepunbcineAsuredat 6m periments on the modulation of an intense beam ire con-

downstream of the second ( right) cavity in Fig. I (b), with V, = 30 kV at firmed in the particle simulation. Useful analytic models are
the first cavity- constructed.

432 Appl. Phys. Lett., Vol. 52. No 6, 8 February 1988 J. Krail and Y Y Lau 432



We are grateful to M. Friedman and V. Serlin for many 'I. Friedman, V. Serlhn. A. Drobot. and A. Mondelli. IEEE Trans Plasma
stimulating discussions, and for their support. We are also Sci. PS-14. 201 (1986).

'M. Fnedman. 1. Krall. Y Y. Lau. and V Serlin dnp.bllshed)

indebted to Scott Brandon and Adam Drobot for their assis- 'M. Friedman and V. Serlin (private communcatlion)

tance in applying CONDOR8 to this problem. This work is 'co,oio is an extension of the MASK particle code, discussed in A. Pa-

supported by the Department of Energy under contract No. levsky and A. Drobot. in Proceedings of ihc.th Conference on Numerical

DE-AI05-86 ER 13585. Simulation of Plasmas. July 1980 (Northwestern UmNersit%. Esanscon.
IL) (unpublished).

'M. Fnedman and V. Serlin. Phys. Rev. Lett. 55. 2860 (1985), M. Friedman, V. Serlin. A. Drobot. and L Seftor. Phss Rev Lett 50.
'M. Fnedman and V. Serlin, Appl. Phys. Lett. 49, 596 (1986).. 1922 (19831; J. Appl. Phys. 56. 2459 (1984).

433 Alpl. Phys. Left., Vol. 52. No. 6, 8 Feoruary 1908 J. Krall and Y. Y. Lau 13



APPENDIX M

Nonlinear Space-Charge Waves on an Intense
Relativistic Electron Beam



1 -PS 16 1946<

Nonlinear Space-Charge Waves on an Intense Relativistic

Electron Beam

V. Y. Lau

J. KraII

M. Friedman

V. Serlin

Reprinted from
IEEE TRANSACTIONS ON PLASMA SCIENCE

Vol. 16, No. 2. April 1988



IEEE TRANSACTIONS ON PLASMA SCIENCE. VOL. 16. NO. 2, APRIL 1988 249

Nonlinear Space-Charge Waves on an Intense
Relativistic Electron Beam

Y. Y. LAU, 1. KRALL, M. FRIEDMAN, AND V. SERLIN

Abstract-The propagation characteristics of the large-amplitude Here, we restrict our attention to the evolution of an
space-charge waves on a modulated intense relativistic electron beam intense beam which is subject to a velocity modulation by
are calculated. It is shown that the slow space-charge waves may cease
to propagate if the modulating voltage is sufficiently high, whereas the an external RF source. The beam is assumed to propagate

fast waves are relatively unaffected by the nonlinearity. The limiting inside a straight drift tube, and is guided by a strong axial
electron velocity inferred from the analytical theory is in excellent magnetic field. Only the analytic and simulation results of
agreement with particle simulation. The implications are discussed. this relatively simple system will be given here. Experi-

mental observation, and a detailed discussion of various

I. INTRODUCTION other issues related to an intense beam, are given else-

where [61.
NeINTENSE relativistic electron beam (IREB), by The nonlinear evolution of space-charge waves is for-
definition, carries a lot of power. This beam power mulated self-consistently in terms of a single partial dif-

would be efficiently converted to radiation if the beam is ferential equation. This equation takes full account of
modulated. Thus, the experimental demonstration [1] of charge overtaking, dc space-charge effects, and harmonic
complete current modulation of an IREB (500 keV, 5 kA) generation, and even governs the electron motion through
by a moderate to e ce(50 kW, 1.3 Hz) is of great the regime when the instantaneous beam current exceeds
interest to particle acceleration, RF heating, and many the limiting value. The small-signal limit [5] is easily rec-
other applications [2] which require coherent RF sources ognized. We have not entirely solved this equation. In-
at the gigawatt level and beyond. The experiments dem- stead, we calculate the modification of the propagation
onstrated excellent phase and amplitude stability in the characteristics of the space-charge waves as a result of
modulated current 1]. In this paper, we study the prop- nonlinearity (in addition to the dc space-charge effect).
agation of space-charge waves on a modulated IREB, We show that the slow space-charge waves are consider-
paying special attention to nonlinearity and to the effects ably more affected by nonlinearity than the fast waves.
of dc space charges. These issues are clearly important to Crossing of the slow-wave characteristics occurs at a rel-
the above experiments; they have received only scanty atively low modulation level, implying a stronger current
theoretical treatment in the literature, modulation than the linear theory would indicate. From

The significant amount of dc space charges on an IREB the governing equation, we estimate the local electron
leads to many properties not shared by a classical ten- speed which may be expected as the limiting current is
uous, nonrelativistic electron beam. For example [31, in reached via nonlinear interaction. In that case, the (non-
the dc state, an IREB cannot propagate if its current 10 linear) slow space-charge wave ceases to propagate. This
exceeds a critical value I4. When the beam is modulated, limiting electron speed is also evident in the particle sim-
the interaction between the RF and the beam involves not ulation to be reported below.
only the kinetic energy but also the potential energy. In In Section II, the model is described and the governing
many cases of interest, the RF, kinetic, and potential equation for the evolution of space-charge waves is for-
energies are all of the same order of magnitude [4]. The mulated. In Section III, we calculate the nonlinear prop-
small-signal dispersion relation [5] shows that the phase agation characteristics, using the method developed by
speed of the slow space-charge waves approaches zero as Lin [7] and Fox [8]. Some simulation results obtained
10 approaches 1. There are other interesting properties from a particle code, CONDOR,' will also be given there.
unique to an intense beam [6], such as the possibility of Certain issues will be addressed in the last section.
electrostatic insulation, and the enhanced current bunch-
ing in the beam-gap interaction, etc., all being caused by
the dc space charges of the IREB. II. MODEL AND GOVERNING EQUATION
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fined by a strong axial magnetic field and drifts inside a 25

metallic pipe of radius r,,. Perpendicular motions of the 7

electrons are ignored. The beam is assumed to be infini- E'n (keV 700

tesimally thin with unperturbed surface charge density co. /
Since potential energy has been used to set up a space- 2.0o

charge depression in the drift region, the kinetic energy 600
of the propagating beam is reduced to (,yo - I mo c. 1

Conservation of energy requires /3

-f. = -yo + /!,0 'o Yo + .,, =y + o (I) ........300

where 10 is the beam current, io ( - y' 2 )1 2, and I

I, = 2r omoc 3 /e ln(r./rb) = 8.53 kA/In (r,/rb) io0  0.5

a = /4400 = io/fo. (2) I/15
Here, o is the free-space permittivity. mo is the rest mass Fig. I. The mass factor -y) of a propagating beam as a functton of the beam

current, at several injection energies. according to the di. theor) (ee

of an electron, c is the speed of light, e is the electron (I)).
charge. rb is the beam radius, and a subscript (0) in "yo and
0o denotes the value of the propagating beam in the drift where the long-wavelength approximation [5], [101 is in-
region in the dc state. The dimensionless parameter ai is yoked. Note the linearity between a and E. in (6). a con-
introduced to represent the current. Another useful di- sequence of Maxwell's equations.
mensionless parameter Uo = Io/1,3o is introduced in (1). At the risk of some redundancy, we shall show that the
It represents the potential energy and will appear in the system (4)-(6) includes phenomena of current limitation.
nonlinear partial differential equation. (7), given below, say, in some steady-state solution as an example. In the

Given the injection energy Enj = (",,j - I ) moc 2 and steady state, O/ar = 0, (4)-(6) reduce to
the normalized current Io/!, , the propagating -Yo can be
determined from (1). Fig. I shows the solution of yo, for 'Yoc 2 + e = -Yi, moc 2 = constant
several values of E,,. Only the branch with the higher av = constant
value of yo is the stable solution 13] at a given value of
lo/l, (Fig. 1). There is no meaningful solution to (1) if _ E 4 , r
> 4, where [3] di = , _ 2 / 3 - ) 3( 3

4I l(-,<j - 1 (3) which may be combined to yield

is the limiting current (Fig. 1). 10
The nonlinear evolution of the beam may be readily for- Ynj = Yo + U,-

mulated if the beam is sufficiently close to the wall, in
which case the approximation of long axial wavelength This is just (1) where the limiting current is discussed.
[51, [10] may be used. The instantaneous velocity of the We shall consider below the nonlinear evolution of the
beam v(z, t), the surface density a(z, t), and the axial beam whose unperturbed state is characterized by a(. 3n.
electric field E.(z, t) experienced by the beam are gov- "o. !o, and vo, all of which are constants.
emed by the following three partial differential equations: Without any further approximation, (4)-(6) may be

combined into a single partial differential equation (see

3 + V (4) Appendi., A):
"v~~ V+ (7) - . 4

a; + (UV) = 0 (5) (a + = ( - )7
where ao = Io/1,3o is a constant already defined in (1).

dE a a, I a 2 a Physically, s is the nonlinear displacement from the un-

d az = U2 C2 812a (6) perturbed position of a fluid element whose instantaneous
position is z at time t. In terms of s, the instantaneous

Here, -y = ( - v 2 /c 2 ) -
2 denotes the instantaneous current is

value associated with the instantaneous velocity v (z, t), o as Z, )
and d = rb In(r./r). Equations (4) and (5) require few I(z, t) = 1 + - at (8)
comments; their solution yields the density response a to VO at
some imposed axial electric field pattern E., whereas the and the instantaneous velocity is
solution to (6) gives the excitation of E. due to some
charge distribution a(z, t) at the location of the beam. '(z, t) = v' + a+ 1o as 9)
The derivation of (6) is given in Appendix A (cf. (A5)) I - as/az I at 8z
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with a corresponding value of y(z, ) = (I - o
1)/c -2 1 C- 2

The derivation of (7)-(9) is given in Appendix A (cf. O8- 341

(A21), (A23). and (A13)).
It is interesting to note that, in the governing equation, o - 28

(7). all of the complicated nonlinear processes (charge 1 / - ,M

overtaking, dc and ac space-charge effects, and local tran- 0.4, .47 <

sition through the limiting current, etc.) are already in-, -

corporated in the v term (and through I in the 3' term) of 02- ." .

17) in a rather simple manner. In other words, the way (7) .

is written, the beam density parameter F0 remains unaf- 00- -
0o 2O 0 4 6 8 ,0

fected by nonlinearity. This is not a trivial result that can 0

be expected from the outset.

The linear dispersion relation 15] Fig. 2. The local Nelocaty 3 c3.,,, c oithe electrons w hen the nonlinear Nlow

T lspace-charge waves cease to propagate. Also labeled is the correspond-

({ - ki,o) = a(kc W2) (10) ing kinetic energy E,..

may be readily recovered from (7) if we approximate v this nonlinear equation with the corresponding linearizedby v'0 and y' by 3r0 in that equation. The propagation con- hsnniereuto ihtecrepniglnaie
stants k and k of the linear fast and slow waves are ob- one allows us to expect that the initial perturbation will
tants nd o f t0) li r a and s wpropagate along the characteristics of the linear fast waves
taied from (10) (cf. [1] and 141): and slow waves. These characteristics are modified by

k.Vo_ kf. , Vo nonlinearity. When the initial perturbation is small, the
I +c (I a am) = 1- ( 11) nonlinearity may be handled by a perturbation technique.

Let us assume that a modulating gap at z = 0 imparts
where as = (a: + a/y0)'-/3, 6 =g/( 3g -0 ). upon the beam with a velocity modulation given by
The linear slow space-charge waves cease to propagate
as Io - !4, in which case -yo -. y"" and oa/k, -' 0 (cf. t',(0, t) = (Ei'o/2) sin wt = v (t) (13)

[4]. and [51 and also Fig. 1). and
The simplicity of the governing equation, (7), suggests

a qualitative answer to the question: What would be the s(O. t) = 0 (14)
local electron speed when the current perturbation on the where E is the modulation depth. The initial condition (141
beam is so large that the nonlinear slow space-charge implies that there is no initial current modulation at z =
waves cease to propagate'? Call this nonlinear limiting 0. Nonlinearity modifies the propagation characteristics
speed vv, and v, = vv,./c. Since (7) has the same struc- of the fast and slow waves, given by the t = constant and
ture as the corresponding equation in the linear theory, its I = constant curves, respectively, in the (z-t) plane. If
local dispersion relation is also similar. Thus. , is de- E is sufficiently small, the characteristic equations are
termined by modified to read [71. [81

= (12) z + EG(.

where -y,,= (I - 032,)-' 2. The solution of 3 ,v,, as a
function of d0 is shown in Fig. 2. The limiting velocity - t + eH({, '7) (15)
vv. is approached nonlinearly, as the initial current 10 is to the lowest order in e. Here. c., = w/kj,. In the limit
less than !,.. but it does not depend on how the large-am- e - 0. the characteristic curves are straight lines in the
plitude perturbation is set up. Note that if 32%,, << 1. (12) (z-t) plane, they represent the contours of constant phases
gives 3,,, = do'" oc (Io/,)' These estimates are based of the linear slow and fast space-charge waves. Current
on a local theory of an exact formulation of the nonlinear modulation results from the beating of these waves.
processes, and they are in excellent agreement with par- When e is small but finite, nonlinearity is introduced
ticle simulation, as will be shown below. Note that the and the characteristics are no longer straight lines in the
nonlinear limiting velocity t'm is different from the lim- (z-t) plnne. The explicit forms of G and H are given in
iting velocity c( I - 'y,- 3) 2 according to the dc theory (B21) and (B22) of Appendix B. The approximate solu-
(cf. Fig. i). The latter quantity is independent of the beam tion vi is given in (BI5) in terms of the characteristic
current. variables and 77. They may even be valid beyond the

time at which the characteristics intersect [71, [81.
I11. PROPAGATION CHARACTERISTICS AND SIMULATION In Figs. 3 and 4. we show the propagation character-

RESULTS istics over one cycle of the modulating voltage that is lo-
Given some initial data on s and as/at. (7) may be cated at z = 0. Each characteristic is spaced a quarter-

solved, in principle, for the evolution of s, and hence I cycle (wt = ir/4) from a neighboring one initially. The
from (8). for subsequent times. The great resemblance of amplitude of the modulating voltage V, is specified in the
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Fig, 3. The nonlinear fast- and slow-wave characteristics for I,.I, = 0.38.
(a) XF voltage V, = 30 keV. (b) V, = 100 keV

figure; it is related to the velocity modulation amplitude 0.8. The fast-wave characteristics are hardly modified by
t by V, - r'iomoby/6 [11, (4j. The fast-wave charac- the nonlinearity even if VI is as high as 100 keV. How-
teristics are shown on the left and the slow-wave charac- ever, the slow-wave characteristics are significantly mod-
teristics on the right. ified even if V, is only 30 keV; crossing of the slow-wave

The parameters used in Fig. 3 are E,nj = 425 keV, I0 = characteristics occur half a wavelength from the modulat-
4.86 kA. I, = 36.5 kA, I, = 12.8 kA. -yo - 1.665. and ing gap. When V, is raised to 100 keV, crossing of char-
430 = 0.8. When the modulating RF voltage V, is low, the acteristics occurs at z = 0, implying a strong current mod-
fast- and slow-wave characteristics are not significantly ulation at the exit of the modulating gap. Comparing the
different from the linear theory, as shown in the V, = 30 slow-wave characteristics between Figs. 3 and 4, we see
keV case in Fig. 3. There, crossing of the slow-wave that the dc space charges of an IREB have a strong and
characteristics occur at a considerable distance down- favorable nonlinear effect on the current modulation It is
stream. When VI is raised to 100 keV, the fast-wave char- interesting to note, for the V, = 100 keV case of Fig. 4.
acteristics remain essentially unchanged. whereas the that the slow-wave characteristics orginating at wt = 3ir/2
slow-wave characteristics cross at about one wavelength has an almost zero slope, whereas those originating at Wt
downstream, implying a stronger current modulation as a = 5ir/4 and at wt = 71r/4 show some soliton-like be-
result of nonlinearity, havior.

The modification of the slow-wave characteristics is When the gap voltage V, is high. the perturbation
more apparent if the dc beam current /0 is raised to ap- method, given in Appendix B. based on small e( V, ).
proach the limiting value I, as shown in Fig. 4. In Fig. would be invalid. Particle simulation has been used to
4, E,, = 425 keV, -y.nj = 1.83, /1 = 10.3 kA, 1, = 36.5 analyze the response of the electrons when V, is large.
kA. 1,. 12.8 kA, 2,o = 1.44, 3 = 0.72, and 1o/I = The simulation code used in the present study, CON-
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hu, 4 ia) and ib) Same as in Fig. 3. except I,, = 0.8 1.

DOR.' is time dependent. two dimensional., and fully IV. DiscUSSION

electromagnetic. The simulated model consists of a gap The present nonlinear study partially fills the gap be-
feeding a coaxial cavity, resonant at 1.37 GHz. which is tween the small-signal regime and the highly nonlinear
inserted into a drift tube. The drift tube and the beam pa- state analyzed via particle simulation. Whereas detailed
rameters are the same as in Fig. 3: 1, = 4.8 kA. I = 36.5 agreement has been obtained between experiments, the-
kA, i = 12.8 kA, and -y,)= 1.67. The cavity is externally ory, and simulation in the linear regime, only highly
driven at the resonant frequency by a radial transmission idealized models have been constructed to understand the
line, producing gap voltages of amplitude V, = 150, 200, fully nonlinear state [6]. We believe that the "simple
250. and 330 keV. Phase-space plots for these four cases looking" equation, (7), provides an accurate description
are shown in Fig. 5. The particles are injected at z = 0 of the essential nonlinear processes.
and cross the modulating gap at z = 5 cm. These plots The nonlinear solutions in terms of the characteristic
are given for a time late er-uih in the simulation that variables ( , -q) contain harmonic components. To extract
transient effects due to the hnite beam rise time are not this information would require a transformation of the so-
significant. lutions back to the (z, t) variables. This may be done

Several features are noteworthy. 1) A low-encrgy pop- analytically in an iterative manner. A simpler, perhaps
ulation emerges from the gap region at the high values of less accurate, assessment of the harmonic content is given
V, given in Fig. 5. (This population vanishes for lower elsewhere [6], [9]. There, we show that the harmonic
values of V1.) 2) The mean axial velocity of this second content is significant only if the fundamental component
population coincides with O3*N,.c given in Fig. 2. This ve- of the current modulation is a sizable fraction of the dc
locity is represented by the dash-dot curve in Fig. 5 and current of the beam.
is independent of V, (cf. (12)) 3) There are few or no In summary, this paper provides insight into some of
reflected particles, even when V, is high. Further simu- the mechanisms by which an intense relativistic electron
lations of this nature, which more closely mimic the mod- beam is more readily modulated than a classical (tenuous,
ulation experiments, are given in 16). nonrelativistic) beam. These mechanisms are a result of
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Fig. 5. Phase-space plots of the electrons at high values of modulating
voltage. The modulating gap is located 5 cm from the left. The four

reference lines represent (from top) the axial momentum associated vith
the diode voltage, the limiting velocity according to the dc theory (see

(1)), the limiting velocity according to the nonlinear theor (see (12)).
and zero energy.

the beam's significant dc space charges. We found that Operate (AI) by a/az. (A2) by a/at. add the resultants.
there ib a rapid nonlinear deceleration of the slow waves, and then integrate from r = r, to r,, to yield
especially when the beam current is a substantial fraction a a2 r) a
of the limiting current. (-- - z. r) Er(r.:jhdrz,

(C! 0  az
APPENDIX A

DERIVATION OF (6)-(9) W)

In this Appendix, we shall first derive (6) from Max- where we have used the boundary condition of a perfectly
well's equations under the long-wavelength approxima- conducting pipe: E.(r,, z, t) = 0. No approximation has
tion. We next show that the nonlinear system, (4)-(6), is been made to obtain (A3). We now introduce the long-
equivalent to (7)-(9). wavelength approximation [51, [101:

A surface charge a(z, t) on a thin annular beam excites
electromagnetic fields with components E,(r, z, t), E (r, E,(r, z, t) I a( ,- t). (A4)
Zt t), He(r, z, t). In the vacuum region between the sheet f0 r

beam (r = rh) and the outer conducting wall (r = r,), Equation (A3) then becomes
these fields satisfy Faraday's lawal I aE .)E rh InE rz

aHt = 1 (aE aE) (AI) ( ,-a a, ((
(A5)

and the rcomponent of V x F1 = f 0aElat gives which is just (6) of the main text where we use E.(z, t)
al _ 0 aE, (A2) to denote E,(rh, Z, t), the axial electric field experienced

S Uaby the beam. (The validity of the long-wavelength ap-
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proximation may be justified in a number of circum- Substitution of (A16) and (A 17) into (A8) gives (A 13).
stances, one of which is when the beam is sufficiently In the unperturbed state. the amount of charge between
close to the wall. A detailed examination of this long- zo and zo + dzo is aodzo. In the presence of perturbation.
wavelength approximation has been given in [10].) the electron at zo moves to z, + z, (z). r) and the electron

To derive (7)-(9), we shall now assume that the beam at zo + dzo moves to (zo + dzo) + z, (:o + d.f. r ). Let a
in equilibrium is characterized by constant density a0 . be the instantaneous charge density in the presence of per-
uniform drift speed vo, and current I0. Instead of using turbation. Conservation of charge requires
the Eulerian variables (z, t), we introduce the "polariza-
tion variable" (zo, r) which is related to (z. t) by [11 aodzo = a[zo + dzo + zI( z + dzo. r)

z = Zo + Zi(zo. r)' (A6) - (Zo + z,(z., r))]
't = r (A7) which gives, as dzo - 0.

where zo is the coordinates of an electron fluid element at o as
time t in the absence of perturbation, and z is its displace- a = = ao I - . (A18)
ment from zo in the presence of perturbation. We do not I + az1(zo, r)/azo az/
assume z, to be small. Thus. z is the instantaneous posi-

'..- tion of the fluid element at time t. The instantaneous ve- In writing the last expression, we have used (AI6). Sub-
locity of this fluid element is, from (A6), stitution of (A18) into (6) gives

az(zo, r) azI(.o, r) (ao (AI9)
v = dz/dt = vo + vo a + a A - - .L E a S. (A19)

or Since

am V0 + V, ~(A9)a aa aY
+ V v = + v (A20)where the perturbation velocity v, is

v) vo azi(zo, r) azi(Z., (A10) by (A9) and (A12),-we substitute (A19) and (A20) into

azo as (4) to obtain

Let us denote the displacement by s:a+ a)zs=U(ca2-:)s A1
-z,(Zo. T) s(z, I) (All) ( + v  :P : F

in the Eulerian variable. Since v is also the Eulerian ve- which is (7) of the main text. where the constant Zo is
locity of the fluid element which, at time t. occupies po- defined.
sition z. we have Finally. the instantaneous current /(: t) is given by

(i + Is a ) s(z. t). (A12) 1(z.t)= i t( /. (A22)

Using (A9) in (A) 2). we have
n (Inserting 

(A13) and (AI8) into (A22). we obtain

v = Vo +as/a + 1'as/az (A13) I asI - as/az 1(zt) = 1I + (A23)
which is (9) of the main text. Alternatively. we obtain L

(A 13) from (A6) and (A7), which give which is (8) of the main text.

(a/ao), = (1 + az,/ao) (a/az), (A14)
APPENDIX B

(a/a,-r). = (a/at). + (azl/ar) (a/a:). (AS) NONLINEAR CHARACTERISTICs OF THE FAST AND SLOW
SPACE-CHARGE WAVES

Apply -1 to the left-hand sides and s to the right-hand sides In this Appendix, we calculate the nonlinear propaga-
of (A 14) and (A 15) to yield tion characteristics of the fast and slow space-charge

~z(zo, r) as(z. t/az waves governed by (7), by a perturbation technique de-
zo =) _ -as(z. )/z (A 16) veloped in [71 and (8]. We shall restrict our discussion to

- 8 I the evolution of nonlinear space-charge waves when the

3z1 (zo, r) as(z, t)/at beam is subject to a weak velocity modulation at z = 0:

as - as("' t)/a( v 1(t) = (Evo/2) sin t. (B I
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The beam itself need not be weak; that is. U0 need not be (Cf., - V,) [2 - 3-y -1'1)i 4)
small. Rf., (B34)

In the linearized theory. the characteristics of the fast 2(c,., - o + ctcf.,)

and slow waves are straight lines in the (z, t) plane: to first order in v1 . Here, v,( is understood to be expressed
in terms of the E, n variables. To proceed further, we need

Z - one crucial observation as , itself is unknown at this

q = z - c't (B3) point. In the theory of perturbation of characteristics, to
the lowest order. the solution in terms of the characteristic

where p and q are the characteristic variables for the fast variables remains the same as the linearized theory. only
and slow waves, respectively, whose propagation speeds the dependence of the characteristic variables on ( z. r) is
cf., = w/kf., are constant and k1 , are given by ( 11) of the modified by the nonlinearity [7). 18). Thus. from (84).
main text. In the small-signal theory, it is easy to show we have the lowest order solution:
that the RF velocity v' may be expressed as

L = - ) sin k p + () sin k,q (B4) 2 k 2 k

in terms of and ij. This solution is to be inserted into

in terms of the characteristic variables p and q. Here. (B 13).

Wf M w - k-t o To determine G and H, from (B7) and (18). we obtain

W1 m w -k,vo (B5) I -[t - 17 +  E(G - H)] (B16)

Ak i k, - kf. (B6)

Because of the nonlinearity in (7), the characteristic =c, - cf, + e (cG - cH)j (B17)
curves are no longer straight lines. Instead of p and q. we
shall use e and 17 to denote the nonlinear characteristics where
associated with the fast and slow waves. If the initial ve-
locity perturbation () is small, these nonlinear character- w W8

istics may be obtained by a perturbation method. In sev- k, -(

eral cases, this technique has been proven [7) to be
uniformly valid. To the lowest order in E, the character- Substituting (816), (B17), and (12) into (89). we ob-
istics equations, (12) and (83), are modified to read tain, after some manipulation,

z - ct + eG(, '7) (87) G(. n) -Au/
--___ - ( constant) (B19)

Z - st = + EH( , 7) (88) a71 AC

where G and H are to be determined. Since (7) is quite to first order in E. Similarly. (B 10) gives
complicated, based on physical argument, we expect the I

characteristics in the (z, t) plane to be governed by f (. Au, (,7 = constant) (820)
3 ACO3z 0t

-_ = u1f- ( = constant) (89) to first order in e. Equations (B19) and (B20) are now
a07 57 easily integrated, since their right-hand sides are linear
z = u, at (7= constant) (B10) combinations of sin kf , and sin k, 7 by virtue of (B13) and

at at c(B15). This integration yields, upon using the boundary

conditions for z = 0.
where the nonlinear phase speeds uf, u, are the solution "

to the local dispersion relation (cf. (7)): GR(\ 1 = - c, E 1c( ) sin kf

(u- 1 v ) = -3 ( - -0.(11 , \
= o U,,). (B )

+k.f- ) II (Cos k, ' cos k1 (B21

Note that u,.f depends on the amplitude of the perturba- k(
tion. If v = vo + , and if v , << to, we obtain from
(B 11), after some algebra, H(R, 7) = skf cos k,

Us = C, + AUC

u C '+ AUj (B12) + ( c7/c,) sin k,17. (122)

where In (B21) and (822), R/and R, are defined in (B14): Ac is

u., =R/., v, (B13) defined by (318), Ak by (B6), w., by (B5), and kf., by
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(11) of the main text; and cf, = o/kf,s. Note that in the walls," Phvs. Rev. Lett., vol. 50. p, 1922. 1983.
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The physics of modulation of an intense relativistic electron beam by an external microwave
source is studied in this paper via experiment, theory, and simulation. It is found that the self-
fields of the electron beam, in general1 intensify the current modulation produced by the
external source. The linear and nonlinear theory, together with the simulation, show that the
classical klystron description in the drift tube region is substantially modified by the beam's
high density. In the modulating gap, electron bunches may be generated instantaneously
without the necessity of propagating the beam through a long drift tube. These properties,
which have no counterparts in low-density beams, lead to the generation of large amplitude,
coherent, and monochromatic current modulation on an intense beam. The excellent
amplitude stability and the phase-locking characteristics ( < 2*) of the modulated current,
demonstrated in experiments, open new areas of research in high-power microwave generation
and compact particle accelerators.

I. INTRODUCTION eral advantages of rf amplifiers based on the new mechanism

In the last two decades there has been considerable in- over a more conventional approach (klystrons) for generat-

terest in generating pulses of high-power rf radiation. This ing high rf power. Such new devices would be useful in (a)

interest has risen, in part, from the availabilty of intense rela- generating trains of nanosecond and subnanosecond high-
tivistic electron beams (IREBs) with power 10-1012 W voltage pulses,4 (b) wake-field' acceleration of electrons or
and, in part, from demands for iigh-power rf sources, espe- ions, and (c) other applications which require monochro-
cially from the accelerator community.' matic, amplitude stable, and phase-locked bunches of elec-

There are many different mechanisms for generating rf trons.
power; one of these is based on longitudinal bunching of This paper addresses the development of if amplifiers
electrons. This mechanism transforms a velocity nonuni- based on IREB modulation by an external rf source. Unlike

formity into density nonuniformities in the electron distribu- the previous work,2 self-excited oscillations and transient be-

tion, i.e., bunching. havior are unimportant here.
It is- possible to extract rf radiation from electron In Sec. II, studies of the small-signal regime are given. In

bunches with an intensity Sec. III, we report our findings in the nonlinear regime. In
both sections, results from experiments, analytical models,

Iti G n , (1 ) and particle simulation are presented. In Sec. IV, some po-

where Nb is the number of bunches/unit time, n, is the num- tential applications of modulated IREBs are indicated. The
ber of electrons in a bunch, and G is a form factor which conclusion and a summary of our findings are given Sec. V.

. strongly depends on the microshape of the bunches and is
large for bunches with sizes <A /2 , where A is the wave-
length of the extracted rf radiation. II. SPACE-CHARGE WAVES ON INTENSE

Equation (1) reflects the requirement of having a large RELATIVISTIC ELECTRON BEAMS-SMALL-SIGNAL
nb, in order to produce high rf power. A necessary condition REGIME
to achieve a large nb is to employ high-current electron A. Introduction
beams (e.g., IREBs). As we have stated earlier, the bunching mechanism oc-

Recently, a new mechanism capable of completely mo- curs while the IREB propagates through a drift region, and
dulating IREBs was discussed in the literature."• This mech- is strongly influenced by the electric and magnetic fields of
anism hinges on the intense space charge of the beam. The the electron beam. At a high-current level, the electric self-
fact that the modulation of an IREB can be significantly field of the IREB generates a potential hill through which
different from a classical (tenuous, nonrelativistic) beam is the electrons are moving. The energy of an individual elec-

. already apparent in the small-signal theory. As we shall see tron is split between kinetic and potential energies. From the
below, nonlinearity accentuates such differences. Using this conservation of energy, the following relationship is ob-
mechanism, one can get a large n, which can be used in high- tained:
power rf klystronlike oscillators and amplifiers.

The simplicity and the experimentally demonstrated r., = o + lo/,. 6 o m ro + ao o, (2)

high efficiency of generating modulated IREBs suggest sev- where

Present address: Science Applications International Corp., McLean, VA a. = 10/ ( 1 ° ) '  ""

22102. , = 2n'1emoc3/(e In r,/rb),

3353 J. Appi. Phys. 64 (7), 1 October 1988 0021-8979/88/193353-27S02.40 0 1988 Amencan Institute of Phystcs 3353



lo is the IREB current, moc2 C"0 - 1) is the electron kinetic -= /
energy, 1.25- kv, l+ a

1 =(-6Z /-" 2 , lo=Vo/C, 2--

v, is the electron drift velocity, P 1.00 . . -- ..

m~c2 ( y,., eI =V.

is the electron total energy at injection, and r, and r, are the 3 o.7/-
respective radii of the drift tube (assumed round) and of the -

IREB (assumed tobe annular in shape). From Eq. (2) it is 050 v11+
obvious that by increasing the IREB current, the kinetic en- 0 1+ +
ergy of the electrons will be reduced. At a current level 1,
where - 0.25C

8.5(r, 3  - )3/2 
" (.. .. ,( )

S= n r) = 1, (0
3  

1)
3 2,  0.2 0.4 o.6 0.5 i.o

In(r b kA 1%( /Ic

the electrons cannot lose anymore kinetic energy and beam
propagation is disrupted." At this current level, the kinetic FIG. . Dispersion relation of waves on a magnetically focused IREB in a
energy of the electrons is m(,c2 (y,/ - I) and the potential metallic pipe. Broken line represents fast space-charge waves; solid line rep.

resents slow space-charge waves; dotted line represents the "beam line."
energy is

moc 2(y , - l,3 )/e.

7. The disperion elation tron beams, the dispersion relation curves for the fast and

The classical dispersion relation that was obtained for slow waves are not symmetric with respect to the beam line
space-charge waves on low-density electron beams is invalid wa/(kvo) = I. This asymmetry makes the bunching mecha-
for IREBs. Briggs derived' a dispersion relation for space- nism for IREBs unique and novel.
charge waves on IREBs under a long wavelength assump-
tion ,>2r,. More generally, for frequencies f<f, 2. Transmission line model of space-charge waves on
= 2.405c/2irrr, the dispersion relation reads' IREBs

(w - kvo)2 = ao(k 2c2 - ow2)R, (4) Bloom and Peter 9 described a useful analog between a r
where R (.< 1) is a reduction factor that depends on the ge- classical (tenuous, nonrelativistic) electron beam and a
ometry and frequency and ct is defined in Eq. (2). Without transmission line. This analog is extended here to include

IREBs. It expresses the rfcurrents and voltages on the beam
loss of generality we can write a, R = a and we can assume in terms of the values upstream.
in the rest of the discussion that R = I.-' Solving Eq. (4), Assuming that the ac current consists of two compo-
one gets nents associated with slow and fast space-charge waves, one

D obtains the ac current and ac voltage on the beam:

1+a k 1 ( If., expj(wt - kz), (6a)

where f- ( - kflu.v expj(wit - k,z), (6b)
weee6 10 W

a/2 (a 2 + a/) /2///o, which may be written in a matrix form (see Appendix A): C(,, =,6',6 -a)
0 0 A) 10 epj~~t -0),(7)

and the subscriptsfand s stand for fast and slow (waves). (FI ) (A)(l')expj(oat -),
The quantity v,/(k., v) versus the electron beam current for in terms of the current and voltage modulation I,,) and Vo at
the case y, = 2 is shown in Fig. 1. Unlike in classical elec- z = 0. Here,

A (cos(apO) - j" sin(a/2) j(Il/Z)sin(a/2) M (8)
jZ(I - ' )sin(ay/O) cos(atO) +j sin(aMot)/'

w=ca6z/vo, = (I -6)/a 6= -1 /6'u (4<0), tained from (A) with 0 replaced by -90.
Z --md~'od0,au /e1. = R,,/( - )

0  3. IREB interac/on with gaps

60 [n (Pr, ,6 ,] (M. (9) Equation (7) predicts the ac current and kinetic voltage

Note that Det(A) = 1, and that the inverse of (A) is ob- behavior in a drift tube. Similar transform matrices describe
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the change in the ac current and voltage as the IREB tra- Real 0
verses a gap. Ra (ExH,)dS= - sin2 (a#0)>0. (19)

a. First gap interaction with the IREB. With the bound- s
ary conditions 1, = 0 and V, =/,,o expj(wi) imposed at The above relationship means that the dc energy of the
the modulating gap z = 0, one obtains from Eq. (7) the fol- bean has been extracted and Convered into ac kinetic ener-
lowing ff quantities at z = z,: gy which in turn is converted into electromagnetic energy so

I, =j - (a ) 0, Z, as to maintain power conservation.
Z &c In contrast, for a low-density classical electron beam,

V, = V,o[cos(ac9,) +jIsin(ap,)I. (10) Eq. (19) will become

Unlike in the interaction of a low-density (classical) elec- Real EXH, dS=O(
tron beam with a gap, 1, and V, are partially in phase. R

b. Second gap interaction. If at z = z, the IREB en-
counters a second gap feeding a structure of impedance Z, a B. Experimental Investigation of IREB modulation in the

new kinetic voltage V and a current I will develop: small-signal regime

1. Description of the experiment
( 1 ) B 1 (11) The experimental arrangement shown in Fig. 2 consist-

ed of a foilless diode" emitting an annular iREB of radius rb
When a resonant cavity is used as a structure, Z, ( R,) is - 1.9cm and thickness.0.3 cm. A 10-kG quasi-dc magnet-
a real number and one gets ic field confined the IREB inside a metal tube of radius

V; = Vo(cos(a/u9,) +jf (R,/Z) + ]sin(a/,9,)}. (12) r, =2.35 cm. A gap feeding a coaxial cavity was inserted in
akinetic gain as GA, the drift tube. The characteristic impedance of the cavity

was 45 fl and its length was L = 17 cm corresponding to a
GA = I (V'/Vo)I resonance frequency of 410 MHz. Four thin Nichrome wires

= (I + { (R,/Z) + -2_ l}sin2(ap,))1/2,. (13) connectedtheinnerwallofthecoaxialcavitytoitsouterwall
so as to reduce the Q of the cavity at 410 MHz. The wires did

A sufficient condition for the gain GA > 1 is not influence the Q of the cavity at the 1328-MHz resonance

R,/Z + '> 1. (14) (Q> 1000). The presence of the wires shifted the first reso-

Since < 0, (14) is equivalent to nance from 410 to 6 10 MHz and reduced the Q to below 30.
An external rf source (a magnetron) "pumped" microwave

R, >Rt I- 1/ ), energy into the cavity for a duration of 3 /ps at a frequency
Ro= 60 [ In (rr)/1,611, (I5) f= 1328 MHz. Sometime during the 3-ps period a Blumlein

transmission line with an output of 500 kV energized the

Eq. (i5) can be easily satisfied. foilless diode for 120 ns, and a -5 kA electron beam was
launched through the drift region. The base pressure in the
drift region was < 10 -'Torr.

4. ac power relationship

The physics of space-charge waves on an IREB is differ- 2. Dlagnomtlcs
ent from the physics of space-charge waves on a classicalelectron beam. This can be seen from the ac power relation- The electron beam current was measured by magnetic
ship. probes (B& loops). The voltage that appeared on the probes

The relativistic Tonk's theorem' states that was proportional to the product of the current and frequency
of the modulated IREB and even for small probe areas could

~v.(ExH~J>= T(MHz ++eEz+I)

(16) MAGNETRON

MAGNETIc
where T is the relativistic kinetic energy per electron. As- PROBES

suming small-signal behavior, one obtains- MR

Real(.(ElXH+ ( Te)J~}= 0. (17) -IN-I
Integrating Eq. (17) over a volume of a drift tube enclosed I.. L P

between two surfaces of cross sections S1 and S2, we have -. ECTROSTATIC PROSE

Real (E, xH,)dS= -Real~ L J, dS, (18) -H.V.

where T,/e = V, is the kinetic voltage. The integral JU, dS 4-NICHROME WIRES--- MAGNETIC COILS

is the ac current flowing through a cross section S. Locating
S, at a position where 11o = 0 one gets [using Eq. (10)] FIG. 2. Experimental arrangement when only one cavity was used.
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mgei b1/1
4  After the corrections were made, the dl /dt signals wereoq Prooc\ Fourier analyzed and integrated to obtain the ac currnt.

50a Line. \T; CouplingHo ,, TuFigure 4 shows the typical probe signal and processing.(Note that the results obtained from the digitizing system
Drift Tub .. are distorted due to the discrete nature of the signal acquisi-

7103/ / 04 tion system. For example, d/dt and I signals showed low-
rTRoMIX50 frequency amplitude modulation and the fast Fourier trans-

form had spurious harmonic contents and a possible error in
Resonance at > 3 GHz frequency of + 50 MHz.)

Oscill 0,
0 MHZ - 2 H ceElectrostatic probes were inserted inside the cavities to

oe n r Codulor Used measure the electric field. The calibration of the probes was
done after connecting the cavity in series between two 50-f4

FIG. 3. Magnetic probes and the calibration arrangements. transmission lines. The current I, that was flowing in the
system was measured directly and compared with the vol-
tage V. developed on the probes. The voltage developed in
the cavity is

exceed a 1000 V. In order to reduce the probe sensitivity and V, =jl, Z tan [ (ir/2) ( f/f) ], f f, (21)

IREB disruption by the probe mountings the arrangement wheref, is the resonance frequency of the cavity and Zc is

shown in Fig. 3 was used. The probes were inserted inside an the characteristic impedance. V, and V, were used to obtain
enclosed toroidal-metallic enclosure that was coupled elec-' the calibration factor for frequencies f f. The calibration

tromagnetically through holes to the drift tube. factor of the probe forf =f, was interpolated.

The probes were calibrated in situ at different frequen-
cies. This was done by placing a center conductor coaxially
within the drift tube, converting it into a 50-1 coaxial line. 3. Frequency and phase measurements

This coaxial line was connected at one end to an oscillator For many applications the purity of the rf spectrum and
and at the other end to an oscilloscope or a power meter. The phase locking are necessary requirements. Figure 5 shows
magnetic probe signal was measured as a function of ampli- the arrangement that was used to measure the phase-locking
tude and frequency of the oscillator. From these measure- capabilities and the purity of spectrum of the modulated
ments probe sensitivity was derived. IREB.

The signal from the probe due to the IREB current was A signal from a magnetic probe (A) was passed through
displayed on the Tektronix digitizing system and/or on Tek- attenuators and a 700 MHz high pass filter. The signal was
tronix oscillosccpe model 7104/7103. The signals were cor- then split into two parts which were attenuated further. The
rected for the attenuation of the cables, oscilloscope, ampli- rf signals were passed through coaxial cables (C) and (C')
fiers, probe sensitivity, etc. whose lengths differed by an amount (2n + 1 )A /2 (n is an

X 1012

0 I l- 330 MHz

0.0

-0 O 20 0 6 12 FIG. 4. Experimental results when only one cavity was

nsec GHz used. Top left: dI/dt. Bottom left: It , the rfcomponent of
the current. Top right: spectrum o( dI/dt. Bottom right:
dJ/dt detected using a Tektronix I GHzosctlloscope 7104.

0

U,
0-

10 20 140 nsec

nsec
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(Al Magnetic Protel 1 0

A>l 0

700 MHz High Pass Filter]

0 100 200

nsec

FIG. 6. Experimental result showing phase locking < 2. obtained from the
arrangement of Fig. 5.

5' Length 5'
(C ) (2n + ) X/2[ ' ' (C')

Alen. Alen. Allen. Atten. A similar technique was used to measure the frequency
of the modulation. One of the variable attenuator settings

(F) Cr stal Cr stol (F') was increased by a factor of 100. With this arrangement the

(E) magnetron rf output was mixed with the magnetic probe
signal. No oscillating signal was recorded. However, when

a we replaced the magnetron with an oscillator of frequencyf,

an oscillating voltage appeared at the output with a frequen-
Directiona! cy (f- 1.328) GHz. Hence, we conclude that the frequen-

SCoupler from cy of the modulated IREB is the same as the frequency of the
-. r rf from the magnetron.

Variable 7A26 Variable 4. Expeimental results and compareon with theory
Aiien. A ilr Aln Four magnetic probes spaced 15 cm apart, the first of

FIG. 5. Block diagram of the experimental arrangement that was used to which was located 12 cm from the gap of the cavity, were
measure phase locking. used to analyze the electron beam that emerged from the

cavity. Figure 7 displays the variation of the current ampli-

integer). The signals were then fed into crystid detectors. 400-

The two outputs were equalized by variable attenuators be- 0
fore being electrically subtracted by a 7A26 Tektronix am- 30. o

plifier (zero voltage output was obtained). At the same time E a
an rf signal from the magnetron (D) that was used to modu- -'_ 200

late the IREB was passed through a slotted transmission line
into a matched load. Out of the slotted line an rf signal,
whose phase could be controlled, was picked up (E) and

split into two parts. These two signals were fed into the crys-
tal detectors (F) and (F') and mixed with the signal from 2 0 60

the magnetic probe. The output of the 7A26 amplifier did z (Cm)
not change as long as the experimental parameters were kept
constant. Moreover, once the slotted line was adjusted for a 0
minimum output signal of the 7A26 amplifier, any consecu- 400-

tive operation also showed the same minimum output (Fig. f
6). Under this condition the phase between the rf signals 300-

from the magnetron and the magnetic probe would be

A& = V/2 ' T , 200

where V, was the voltage amplitude from the 7A26 pream-

plifier and V, and V,, were the output voltages from the ,o-/
crystal detector when either the magnetron or the IREB was
turned off and one of the variable attenuator values was in-

0
creased manyfold. V, was always <0.5 mV, V,, and V,2 = 5 o so so o so

mV, hence. A <4 0.05 rad or AO<3. Thus, the magnetron Z (cm) -f

output and the modulated IREB were phase locked to better FIG. 7. Peak bunch current as a function of propagation distance from the
than 3". modulating gap.
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tude versus propagation distance for two different IREB vol- 4.0

tages. Best fits to the results are in the following form:

for Yo = 500 key,

21,= 4SOsin[O.0523z(cm) j A; 0

for Vo = 400 keV,
2.0'

21 -4251sin(O.0671z(cm)]I A. "heery

The theoretical prediction is (Eq. (10)1

211,1 = 2( V,01Z)Isin (ap(owbl5/Ic)z] ; (22) !
since the rf amplitude Vio was kept constant the following
conclusions were drawn: i) Z is insensitive to the IREB
electron energy eV. (ii) apt6lc depends on the IREB 0. ,.15 2.5 3!

electron energy e V0. Relative Units LOG (POWER INPUT)

Using the small-signal theory we plotted Z and - 1
L [ (oc)/ap4] as a function of Vo under the assump- FIG. 9. Dependence of the 1REB rf current on the input rf power.
tion that V, /I o const. As a reference point we took Vo

500 kV and 1-- 5.6 kA. Figure 8 agreed with the experi-
mental results. The weak dependence of Z on Vo (and 1a)
could explain the excellent stability of 1, even under condi-
tions where Vo (and 1o) was varying during the operation of without the presence of the small cavity. Using Eqs. (10),
the high-voltage electron source. (10, and (8) we get, for z,,< 15 cm,

The amplitude of!, depends linearly on Vio. We record-
ed!, as a function ofthe input rfpowerP. SincePac V1o we , =j(Vo/Z)sin(auO), 1, =woz/fl3c. (24)

get from Eq. (22) At z2 = 30 we have

. =KP or log(I')=logP+logK, (23) 1 .V= o Vil

where K is a constant that does not depend on V0, and 1, . Z Z
Figure 9 displays experimental of log(I I) vs log(P). The wL
slope of the best-fit straight line is unity in accordance with ,Z sin a) i sin[a#( - ], (25)

Eq. (23). 02 W & 110 C,
The interaction of the modulated beam with a cavity

was investigated. A small cavity was introduced in the drift since z, 2z, = 30 cm we get
tube 15cm dow, -n of the gap of the modulating cavity. I1r. + oL sin(aud0,)
The impedance avity at 1.328 GHz can be written as Z 2 cos(au0,) I
Z, =joL, L = dculated from geometry). The cur-
rent amplitudt downstream, was 40% higher than (1 + EL tan aMO2 1.5, (26)

where

I ? =j( V,o/Z)sin(aM0OzB,

in complete agreement with the experimental result.

L C. Partil simulation

0- 
1. lntrductlon

t tLater in this paper we investigate the generation and
- -- -propagation of a fully modulated IREB. The physics of fully

so .... modulated IREBs is highly nonlinear and the theory is not
Z yet completely developed. Theoretical models will be devel-

-oped to explain the nonlinear processes involved. Some of
N 40 these models are not self-consistent and in order to check

their validity we rely on numerical simulations.
The computer simulation code, CONDOR, " was exten-

30 sively used in this research." This code is fully electromag-
Zo I , netic, time dependent, and considers self-consistent interac-

2o 300 350 400 450 oo tions between azimuthally symmetric electromagnetic fields
Vo (kV) . and an electron beam. These simulations provide us with

insight into dynamical processes which are impossible to
FIG. 8. Dependence of the parameters I and Z on the IREB voltage, measure by experimental diagnostic techniques.
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As we shall see throughout this paper, the numerical r DIMVE

simulations confirmed experimental results and theories, 6

showing that the mutual interaction between IREBs and 6

cavities loaded with rf energy caused beam modulation. 4__
These calculations also showed that complete modulation - (al
does not require particle reflections. Only two cases of IREB 2

propagation through the drift region were found to be of 0
importance in the calculations: 0 10 20 30/ 40 50

(a) The "static case" of I REB propagation in which the /
presence of gaps leads to enhanced electrostatic potential INTENSE E-BEAM

depression and (b) the "time dependent case" in which the
dynamics of the individual electrons is influenced by the ex-
ternal rf sources or by the mutual interactions of parts of the rf DRIVE

electrons and their response at the cavities. In either case,
transients of the IREB current are of no importance.

Although we tried to simulate the experiment as accu- 4

rately as possible, there was one major difference. Unlike in - -W
the experiment in which the current and the voltage of the 2

- " beam injected into the drift region have an interdependent 0
time varying form, in the numerical simulation, particles 0 10 20 30 40 so
were injected with constant energy and the beam current was CE'TER AXIS (cmi

allowed a finite constant rise time. A less significant differ-
ence between the experiments and the simulations should FIG. 10. (a) Top: geo'metry of the computer simulation when only one cav-
also be noted. In the experiments, the external rf source was ity was used. (b) Bottom: geometry of the computer simulation when two

fixed at 1.328 GHz, and the cavity was adjusted until reso- cavities were used

nance was achieved. In the simulations, the geometry of the
cavity was fixed, and the frequency was adjusted to obtain
resonance. As a result, the simulations utilized rf energy at
1.37 GHz.

The calculations summarized in this section deal with a
relatively low rfcurrent (1, <10 ). The geometry of the simu-
lation is shown in Fig. 10 (top).

The simulations presented here proceeded as follows:
At t = 0-ns, the rf drive was turned on. The Q of the cavity lent agreement with linear theory (Fig. 7) and with the ex-
was chosen in such a way that the saturation of the funda- perimental results.
mentalTEM mode was reached at t = 6 nas. At this time, the As in conventional klystrons, the amplitude of the rf
IREB was injected with a current rise time of 5 ns. The simu- current varied sinusoidally. The axial position z,,, where
lation continued until t = 20 ns. Simulation parameters were maximum modulation occurred, agreed very well with the

Ar = 0.2 cm, Az = 0.4 cm, At = 2X 10 - " s, and, typically, linear theory:
nP 2800 particles. The results did not vary when
Az-Az/2, At-At/2. or n. -4np. z, = r,60c/2at& ,= 28 cm.

Changing V,o did not change z,,; only 1, varied. For exam-
2. Sirnulationin the smallsignal regime ple, for VIo = 6, 18, and 30 kV the peak currents in the elec-

When the simulations were restricted to cases for which tron bunches were 21, = 270, 800, and 1400 A, respectively.

I, <I nonlinear effects were of little importance and com- These results confirmed that 1, was proportional to V,,, in
plete agreement between the linear theory and particle simu- agreement with Eq. (10). However, when V, exceeded a

lation calculations were obtained, critical value, deviations from Eq. (24) were seen (Fig. I I).
The initial IREB conditions were as follows: current of 5 These nonlinear aspects of the simulation will be discussed

kA, energy of 500 keV, and the geometry of the IREB was later.
annular, with a radius of 1.9 cm. This IREB was injected The amplitude stability and phase-locking characteris-
through the drift tube into which a coaxial cavity has been tics were also investigated. The dc current I, and the dc vol-
inserted. This cavity was loaded with rf energy via a radial tage V, were changing in the same way as in the experiment
transmission line at the outer wall of the cavity. The imped- ( V, /1 = Zo = coast). It was found that even though V,
ance of the radial transmission line was 15 fl. if-gap voltages, was changing, the amplitude of the rfcurrent did not change
V10 , of6, 18, and 30 kV, always at a frequency of 1.37 GHz, much. To check the phase-locking capability, the phase of
were used. The gap voltage introduced nonuniformities in the rfsignal was varied. We found that the phase of the elec-
the electron velocity distribution which were translated, tron bunches changed in accordance with the input rf. with
after propagation, into density modulation. The amplitude an uncertainty error of 2 + 1% in agreement with experi-
of the rf current versus propagation distance showed excel- ments.
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frequency f= 1.328 GHz ±: I MHz.
100- The IREB that emerged from the second cavity was

highly modulated. The peak current in the bunches was

80- -80% of the dc current (Fig. 13). However, on many occa-
sions the amplitude of the dc current varied erratically and

0 60 the amplitude of the rf current decayed to almost zero. We
4found that by reducing the rf power from the magnetron, the

N dc current behaved normally and the amplitude of the rf-40 .
- 40 current (still 80% of the dc) did not vary with time. The

explanation for such a behavior was that the two-cavity sys-
20 tem was operating in the nonlinear region and that satura-

tion of the bunching mechanism was achieved.
0 I

0 100 200 300 2. Generation and propagation of highly modulated

VIe ( W) IREBs-Experlmental results

In order to explore the physics of highly modulated
FIG. 11. Percentage modulation as a function of the rf gap voltage accord- IREBs, a few experiments involving modulated IREBs were
ing to computer simulation. The three points near the origin are in the linearreime. perforned. The results will be used to compare with the the-

ory and the computer simulation, which were later devel-
oped in response to these experiments.

It. FULLY MODULATED INTENSE RELATIVISTIC
ELECTRON BEAMS

A. Experiment
1. Introduction 0

It is well known that nonlinear effects in rf devices be-
come important when the rf current 1, is of the order of the
dc current lo.

Pretending that Eq. (10) is valid even for cases for
which I, is of the order of 1, one can estimate the rf voltage <
that has to be imposed on the gap so as to fully modulate a 5
kA IREI. For the present experimental setup this voltage is
of the order of 100 kV, corresponding to 20 MW of injected
if power. Since an rf source with this kind of power was not
available, we used instead the partially modulated IREB to o 25 50
energize a second coaxial cavity (Fig. 12) and to generate a nsec
high oscillating voltage ( - 150 kV) on its gap.

The gap of the second cavity was inserted in the drift
tube at an axial position for which f, was maximum (29 330 MHz

cm). The second cavity with a Q > 2000 was tuned to the FI
0 2.5 5.0

---- IROEWIRES - -- MAGNETIC COILS -- -- - GHz

MAGNETIC
SPROSE

ELECTROSTATIC PROBES ".,

N M I Ma 5nii4 140 nsec

MAGNETRON FIG. 13. Expenmental results when the configuration of Fig. 12 was used.
Top: if current of the modulated IREB. Middle: Spectrum of dl Idt. Bot-

FIG. 12. Expenmenta arrangement when two Cavities were used. tom: duldt traces obtained from a I GHz Tektronix oscilloscope 7104.
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In the first experiment, the propagation of a highly mod- and of the position where the measurements were taken.
ulated IREB was investigated. The peak current of the
bunches, 2 1t, was measured at 12, 27, 42, and 57 cm down- 3. Harmonic generation
stream from the second gap. We found that the if current Previous experimental investigations of the generation
varied in an oscillatory fashion: 21, (peak bunch current) of modulated IREBs showed-that when I, was of the order
varied between a maximum of 4.5 kA to a minimum of 2.5 of I,, harmonics of the main frequency appeared.' Here,
kA. At any axial position the spectrum was monochromatic harmonics are not shown in the spectrum of the current. The
(to within ± 2 MHz) and the phase-locking characteristic reason for it is the high attenuation of signal cables and ascii-
was observed. When a third cavity, tuned to .- 2 GHz, was loscopes at frequencies above 1.3 GHz.
placed 12 cm downstream, the amplitude of the rf current The presence of the second and third harmonics in the
increased so that 21, = 7 kA. The third cavity behaved as an current modulation was detected by mixing the signals from
inductor of - 5 nH to the 1.328 GHz rf current. magnetic probes with local oscillators working at frequen.

In a different experiment the second cavity was replaced cies -2.5 and -3.8 GHz (Fig. 15). The rf current at the
by a variable length cavity. With this cavity, the resonance second harmonic was measured relative to the rf current at
frequency could be varied between 800 MHz and 2.9 GHz. the fundamental. When the configuration of the high Q cav.
The cavity Q was <400 (at a frequency of 1.3 GHz). Because ities was used, the rf current ratio of the second harmonic to
of the low Q, the input impedance of the gap was complex, the fundamental was 0.3.
i.e.,Z, = R, +jX, even at frequencies close to the resonance As was found in an earlier work by the authors, the
frequency. It was found that by raising the magnetron rf spectrum of modulation can be modified by propagating the
power, no disruption of the IREB current was observed, modulated IREB through additional cavities." A similar
Moreover, the rf current amplitude of the IREB increased by approach was used here to change the level of the current of
a factor of --1.6 to 21, =7 kA. Figure 14(a) shows the ex- the second harmonic. For example, when a third cavity
perimental setup. Figure 14(b) shows the variation of 21, as ,tuned to 2.6 GHz was placed downstream of the second cay-
a function of the resonance frequency of the second cavity ity, the ratio of currents increased to 0.8. When the third

cavity was tuned to -2 GHz this ratio decreased to -0.1.

B. A quasi-dc theory
(a) The linear theory [Eq. (10)] gives good agreement

Is CM between the calculated depth of the current modulation (us-
A - - co ~ing the measured second gap voltage -ISO kV) and the

measured peak bunch current. However, the current modu-
lation is at maximum at the second gap. The linear theory is

8.0-

FREOUENCY Of RF INPUT (b)

6.0 t RF SCOE I
D.C. CURRIENT A .

4.0- (a) LOCAL ScoPE 2
OSCILLATOR

2.55 GHt

2.0_
2o1 21 2.1.2 krA 21 .5 kA

8

14 c

0 500 0 0 00 2000 (b)
, Resonance Frequency - 140 140 nsec"

of Second Cavity

FIG. 14. (a) Top: Experimental 4iTangement. (b) Bottom: Peak bunch
current as measured by the four magnetic probes. The shaded area repre- FIG. 15. (a) Top: experimental arrangement that was used to measure the
sents the dc current. The arrow marked 1,, is the level of the peak bunch fundamental and second harmonic of the modulated IREB. (b) Bottom left
current measured between the cavities. The arrow at the lower left-hand displays a signal after passing through a high pass filter (H.P.F) and beat-
corner shows the level o( the background noise. ing it with a local oscillator. Bottom right displays dl/dt.
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not applicable here since I is of the order of I, and it is Hence, an oscillating V, will induce current ocillations
unlikely that low amplitude slow and fast space-charge larger than the ones shown in Fig. 16 (bottom). This picture
waves can truly explain the nonlinear mechanism involved resembles a "classical" electron tube amplifier with a negati.
in the physics of modulated IREBs. Later on in the discus- vely dc biased grid. V, corresponds to the grid ac voltages.
sion we will use particle simulation techniques to investigate When the amplitude of V, is small compared to the dc grid
nonlinear mechanisms involved in the modulation of voltage (the dc grid voltage corresponds to the potential
IREBs. In this section we chose to discuss a simpler model near the gap when V, = 0) the system will behave like a class
that has given us insight into the nonlinear process. This "A" amplifier; for V, large enough the system will behave
model calculates equipotentials for the geometry of a cavity like a class "B" amplifier.
such as in Fig. 2 when a time-independent voltage V, is ap-
plied on the gap. The potential Vis found at any point inside C. Computer simulation-Nonlinear results
the geometry by numerically solving I V - p/e, assum- The nonlinear processes that take part in the generation
ing puo = const, where p is the electron charge density. of fully modulated IREBs can be found from computer sim-

We found-that the presence of the gap with the applied ulations in which the rfcurrent is comparable to the dc cur-

voltage iinflumaceg the maximum IREB current 1,, that can rent. To achieve this situation we first simulated the experi-
propagate. Figure 16 shows potential profiles in the vicinity mental configuration as accurately as possible. The goals of
of the gap at the position of the IREB for various gap vol. the simulation were to obtain macroscopic results such as
tages and for currents close to I,. Assuming that the IREB electron beam current profiles at various axial positions, the
flow through the cavity is laminar and that the current is harmonic contents, phase locking characteristics, etc., and
controlled by V we can construct (as in a high-power elec- to compare them with the experimental results. Once these
tron tube) a "dytamic transfer" curve that gives an oscillat- results were obtained and compared favorably, we looked at
ing current as a response to a sinusoidally time-dependent microscopic quantities, such as phase space pictures, in or-
voltage. However, the IREB flow is not laminar and when an der to reveal the nonlinear mechanisms responsible for
oscillating voltage is applied on the gap the following hap- IREB modulation.
pens: (1) The flow of the IREB is disrupted when V, < 0 and Similar to the experimental arrangement of Fig. 2, the
a time-dependent "virtual cathode" is formed reducing the simulation geometry was arranged by placing an undriven
propagating IREB current well below the current, I., calcu-
lated above. (2) When V,>0 the "virtual cathode" disap-
pears and the flow of the IREB is restored to its original
level. In the case of nonlaminar flow of an IREB, Fig. 16
(bottom) should be modified by reducing the values of I, 0"

for V, < 0 but keeping the same values of I., for V, > 0. -3

X-6!
(a)

X10
5

V Xl V0 xIO V -9
-2 4 -22 -1.9

tmM5k t .4 kA Vk

-2.4-10 V9-O -. 6 -12

0 60a 14 0 68 4 0 68 4 0 4 a 12 16 2
cm cm cm nsec

ZmtV)mb) '3

II

XVV_ 2

-1501 -1 5 0 is lio1,V8

t 6

2 '0 20 30

f (GHz)

FIG. 16. (a) Top. potential profiles near the gap of a cavity for a quasi-dc
current L,. and a quasi-dc gap voltage V. The gap is located at axial posi- FIG. 17. Simulation result for the geometry in Fig. 10(b), showing (a) the

tion 6-8 cm. (b) lksttum: dynamic transfer curve showing the current re- current at 6 cm downstream of the second gap (top), and (b) the Fourier

sponse to an oscillating gap voltage. power spectrum of this modulated current (wuttum ).
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14.88 nsec 15.60 nsec 16.32 nsec

* FIG. 18. Phase space plots for the two-cavity case at
WE 4 i....- - ~ ' ~ - ntervals of acyc ler =0.73 ns.Slid Iintes show y6c

0 - - - - -- -- -- -- - - - - -- -- -- - at injection. Broken lines show .flr cat a condition of
o 2----------------dc limiting current (y=rZl Dotted lines show

'C y,, = 0.

CQ- 0 50 0 50 0 50
>1cm cm cm

second cavity into the drift tube at an axial position where gap Vo = 330 MV The current modulation of the IREB after
the rf current reached maximum (Fig. 10, bottom). This passing the second gap is shown in Fig. 17.
cavity was excited by the fundamental frequency component The percentage of IREB modulation was calculated as-
of the partially modulated IREB current. The voltage that suming a current profile of I = 10 + 1, cos(awt). This was
appeared on the second gap depended on V,, and was typi- done so as to compare simulation results with experimental
cally of the order of the voltage applied on the IREB diode results. We found that 11 /I0 = 13.3% before the IREB en-
V0. For example, for Vio 30 kV, the voltage at the second tered the second cavity and 1, 1 10 = 58% 6 cm downstream

14.48 nsec 14.56 nsec 14.64 nsec 14.72 nsec 14.80 nsec

U6

0
0 ................................ t........................ ....................... ........................

4

0

14.88 nsec 14.96 nsec 15.04 nsec 15.12 nsec 15.20 nsec

0. ........

6,

4

0

cm cm cm cm cm

FIG. 19. Phase space plots and electrostatic potential contours for the two-cavity case. The interval between plots is 0.08 r. in the phase space plots, solid
lines show rfl,c at injection, broken lines show ro c at condition oftdc limiting current (y = Y,.$') and dotted lines show y,,c =0. In the electrostatic
potential contour plots, the potential isO 021 54eV on the dotted curves, 0. IS N4eV on the solid curves. 0. 15 5eV on the dash-dot curves. 0.0 IMev On the
dashed curves, and 0.05 MeV on the dash-dot-dot curves.
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of the second gap. Other macroscopic results such as phase- Vo 150 kV V*o 200 kV
locking features ( < 2) and the variation of , /1o versus the
axial position were obtained. All these results agreed with
experimental observations.

Inspecting phase space plots (ryc vs z) of the electrons 4 -,- .. Y. .

revealed important information. These plots were obtained - .

for different times, from time t = 0 ns to t = 18 ns at regular 2 - --

intervals. We found that the bunching mechanism reached -- -- ----- .-.-.-- '-'.-.'
equilibrium almost instantaneously. Figure 18 shows phase 0 ...................................
space pictures at different times but at a similar phase of c ,
three different if cycles. The three nearly identical plots 0
show that the mechanism is highly stable from cycle to cycle. X Vo 250 kV V,01 330 kv

Figure 19 shows a sequence of phase space pictures and the U 6
corresponding electrostatic field contours, all obtained dur-
ing one rf cycle. Three straight lines were drawn in Fig. 19 to '
guide the interpretation of the physics. The first line (solid) 4

is Oryc of the injected electrons. The second line (broken) is
..rc of the electrons moving at a velocity corresponding to 2
the quasi-dc critical current [Eq. (3)1. The third line (dot-
ted) is 6 = 0; any particle with a "signature" that appears 0 ..................... ... i
below this line qioves backward to the diode. o ... 0

Figure 19 gives the following results: cm cm

( I ) No reflected electrons (6r <0) exist.
(2) During part of any rf cycle, (Jyc of the electrons IO. 20. PhasesPa-e plots of the electronsathigh values of the modulating

drops below the value associated with critical current. This voltages, using a single cavity. The gap is located at 5cm from the left. Solid
line: yfcat injection. Broken line: Acat dc limiting current (y

in turn reduces the propagating current, but no reflection of Dash-dot line: yflcat the limiting velocity according to the nonlinear theo-
the electrons occurs. ry. Dotted line: yflc = 0.

(3) Half a rf cycle later, 1Or of the electrons near the
second gap increases above the injectedfly.

(4) Two distinct particle populations emerge from the
second gap. The bulk of electrons has high kinetic energy
while the second population consists of slow electrons with
energy below 50 keV. this threshold voltage was V, .200 kV. It should be noted

(5) One can see electron bunches moving from left to that once V, > V, the second population of slow electrons
right on the electrostatic field contour figures. The contours appeared in phase space with tyc< 1.2 X 10'0 cm/s (see
are proportional to electron density. Figs. 19 and 20). This result corresponds to fif6l ,, where

The first result points out that the bunching mechanism fl... is the nonlinear limiting velocity (to be discussed be-
is different from the one discussed for the self-modulation of low in the nonlinear theory section, where the threshold vol-
IREBs." The second and the third results confirm the quali- tage is also estimated). 6.,,_ is independent of Vo.
tative quasi-dc theory given earlier. The fourth result is in Since the length of the geometry in the computer simu-
excellent agreement with nonlinear theory and will be dis- lation was limited, the only way to see the evolution of the
cussed in the nonlinear theory section that follows. It follows IREB bunching versus distance was to use a single-cavity
from the behavior of the nonlinear space-charge waves near geometry in which V, = 330 kV. Figure 21 shows phase
and below the critical current. The last result shows that space plots and the electrostatic potential contours (which
electron bunches are created near the second gap at a time are proportional to the electron density). In this figure one
when ,6y is minimum, can see electron bunches being generated near the gap and

As was shown in Fig. 1I once the rf excitation voltage propagating through the drift tube. In this case we found
V, exceeded a threshold voltage V,, the rf current 1, was no that 1, /1, saturated at 92% at z = 26cm from the gap. Only
longer proportional to V3o. We investigated the IREB mod- at z = 46 cm did the electron bunches start to decay, drop-
ulation by a single cavity when V, exceeded V, ( Fig. 20). ping to 1, /10 = 79%.
We found that the high-voltage gap behaves in a way analo-
gous to a gate. When the gate is closed instantaneously cur- D. Nonlinear theory
rent stops flowing and potential energy is increased. For a
finite time charge accumulates at the gate without reflection. 1. Introduction
If after this time (and before reflection occurs) the gate The highly nonlinear behavior exhibited in the experi-
reopens, current flow resumes and the potential energy is ments and in the computer simulations given above cannot
converted into kinetic energy. be expected to be adequately described by the small-signal

In the simulation (or experiment) the rf voltage opens theory. Harmonic generation, substantial slowdown of the
and closes the "gate." From the simulation we found that electrons as the instantaneous local current reaches ,, etc.,
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The harmonic content cannot be readily quantified

6 (a) without a complete solution to the self-consistent formula-tion mentioned above. We therefore introduce several as-
sumptions. Chief among them is that the individual elec.

• -, .," trons are assumed to respond to a linearized force, whilekeeping the nonlinearity due to charge overtaking accurate-
ly. This is in line with the classical picture of beam bunching

2- where charge overtaking can be shown to be the dominant
C 2nonlinear process (see Appendix D). The main result of thissimplified "quasilinear" study is that harmonic generation

S .. in the drift region would be significant only if the rf drive
0 were sufficiently strong to cause substantial current modula-

tion in the fundamental component. Another result is that
the axial location at which the maximum current modula-

(b tion occurs shifts toward upstream as the modulating vol-
tage increases. These are in qualitative agreement with ex-
periments.

4 The nonlinear interaction between the beam and the gap
r.. is far more difficult to handle accurately in a self-consistent

E --..- manner because of the complex geometry. Here, we only
'. .. ... . -......- employ a rather crude model to illustrate some novel proper-2 ~ l '! :' ? ties ofbeam bunching associated with an intense beam. Spe-

cifically, we show that the presence of a quasi-dc potential
Ibarrier tends to strengthen the current modulation. When

0 the rf drive at the gap is sufficiently strong, a substantial0 50
cm amount of current modulation may result even at the exit ofthe gap. This is a result which is not expected from the classi-

FIG. 2 1. (a) Top: Phase space plot for a strongly driven single cavity with cal klystron theory, but may have occurred in the experi-
Y10 = 330 keY; The solid lines, broken lines, dash-dot lines, and dotted ments. (We should caution that our description of beam-gap
lines are the same as in Fig. 20. (b) Bottom: Corresponding contour plot of interaction in the presence of a dc space-charge potential is
the electrostatic potential showing bunching of beam electrons. The poten- highly idealized. It is not self-consistent, but portrays what istial is - 0.187 MeV on the dotted curves, - 0. 147 MeV on the solid curve, conjectured to be happening in experiments)
- o. 111 MeV on the dash-dot curve, - 0.0744 MeV on the dashed curves,

and - 0.0377 MeV on the dash-dot-dot curves.

2. A seIf-consistent formulation

We shall first give a self-consistent formulation of the
evolution of space-charge waves in the drift region. In keep-

cannot be accounted for with a linear theory ofspace-charge ing with the small-signal theory outlined above, we shall as-

waves. Given below are some analytical models which incor- sume (I) that the annular electron beam is infinitesimally
porate these nonlinear processes. thin, (2) that the axial magnetic field is so strong that onlyporate tsninearhtwith prheest amoaxial motion is considered, and (3) that the beam is suffi-

To gain insight with the least amount of complication,
we shall treat the drift region and the gap region separately' ciently close to the drift tube to permit the use of a long
We shall emphasize the novel effects of the dc space charge wavelength approximation' on the Maxwell equations.
of the intense beam on the evolution of the beam current. Under the above assumptions, the nonlinear evolution

In the drift region, the nonlinear evolution of space- of the beam velocity v(zt), the beam surface density olz,a),
charge waves is formulated self-consistently in terms of a and the axial electric field E. (zt) experienced by the beam
single partial differential equation. This equation takes full are governed by the following three partial differential equa-
account of charge overtaking, dc space-charge effects, har- tions:

monic generation, and even governs thi electron motion /0 + v E,, (27)
through the regime when the instantaneous beam current 2t )z) m o
.exceeds the limiting value. The small-signal limit is easily d
recognized. We have not entirely solved this equation. In- - + _(av) = 0, (28)
stead, we extract certain information. This includes the at

modification of the propagation characteristics of the space- E -o
E

-(7 (29)charge waves as a result of nonlinearity (in addition to the dc d 3z a? c2 t,-)
space-charge effect), This equation also allows us to esti- Here y - ( I - v2/c2 ) - " denotes the instantaneous y asso-
mate the local electron speed which may be expected as the ciated with the instantaneous velocity u(z,t), and
limiting current is reached via nonlinear interaction. In that d = rb ln(r./rb). Equations (27) and (28) require little
case, the (nonlinear) slow space charge ceases to propagate. comment since their solution yields the density response a to
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some imposed axial electric field pattern E,, whereas the v term (and through v in the r' term) of Eq. (30)'in a rather
solution to Eq. (29) gives the excitation of E, due to some simple manner. In other words, the way Eq. (30) is written,
charge distribution o'(zt) at the location of the beam. The the beam density parameter &o remains unaffected by non-
derivation of Eq. (29) is given in Appendix B (cf. Eq. (B5) I linearity. This is not a trivial result that can be expected from
where the long wavelength approximation is invoked. Note the outset. The linear dispersion relation (4) may be readily
the linearity between o, and E. in Eq. (29), a consequence of recovered from Eq. (30) if we approximate v by v,, and y by
the Maxwell equations. r, in that equation.

Before proceeding further, we shall show that- the sys- Given some initial data on s and as/at, Eq. (30) may be
tern of Eqs. (27)-(29) would indeed include phenomena of solved, in principle, for the evolution of s, and hence I, for
current limitation, say, in some steady-state solution as an subsequent times. The great resemblance of this nonlinear
example. In the steady state, 8/t = 0. Equation (27) be- equation with the corresponding linearized one allows us to
comes expect that the initial perturbation propagates along the

av cdy = e E= - e characteristics of the fast waves and slow waves. These char-
z dz mo m= = E acteristics are modified by the nonlinearity. When the initialperturbation is small, the nonlinearity may be handled by a

This is just the energy conservation relation perturbation technique. .16 In terms of the small parameter

yImc2 + e(V = yi.,m oc2 = const, (27a) =-v, /2vo, which is a measure of the depth in the velocity
where we use 7,., to denote the value at injection, before the modulation, the " and r7 characteristics of the fast and slow
space-charge potential 4 is set up. Equation (28) gives the waves are modified (see Appendix C):
conservation of charge z-(ak,)t

av = const, (28a) z- (/k)t =7 + H( , ), (33)
whereas Eq. (29) gives because of the nonlinearity. The explicit forms of G and H

(fo/d) b a, (29a) are given in Eqs. (C21) and (C22) of Appendix C. Some of
which relates the electrostatic potential to the surface charge these characteristics are shown in Fig. 22. The approximate
density under the long wavelength approximation. Equa- solution ut is given in Eq. (C15) in terms of the characteris-
tions (27a)-(29a) combine to yield tic variables (g,71). It is possible that they may be valid be-

ini Yo + (Io/4l6) yond the time at which the characteristics intersect. "
In Figs. 22(a) and 22(b), we show the propagation

which is just Eq. (2) where the limiting current is discussed. characteristics over one cycle of the modulating voltage that
We shall consider below the nonlinear evolution of the beam is located at z = 0. Each characteristic is spaced a quarter
whose unperturbed state is characterized by ro, j3o,, lo, cycle (at = nr/4) from a neighboring one initially. The am-
and vo, all of which are constants. plitude Vo of the rf gap voltage is held at 30 keV. The pa-

Without any further approximation, Eqs. (27)-(29) rameters used in Fig. 22(a) are: E,, = ( I,,, - l)moc2
may be combined into a single partial differential equation 425 keV, I, = 36.5 kA, Ic = 12.8 kA, I, = 4.86 kA,
(see Appendix B) yo = 1.67,6, = 0.8. Neither the fast wave nor the slow wave

(0.+v) 2 
2 __(c" 2) characteristics in this figure are significantly different from-at s(z't) = 7 dZ2  at 2 s~~) 3) the linear theory. Crossing of the slow wave characteris-

where &o = 1/I,6, is a constant. Physically, s is the nonlin- tics-a property of nonlinearity-occurs at a considerable
ear displacement from the unperturbed position of a fluid distance downstream. Thus, the current response within awavelength of the modulating gap can be adequately de-
element whose instantaneous position is z at time t. In terms wareben by the ma iga heory.
of s, the instantaneous current is scribed by the small-signal theory.

In Fig. 22(b), we raise -T to 0.8 1,, keeping the rest of
I(z,t) =to+ A° s(zlt) (31) the input parameters the same as in Fig. 22(a): E,,, =425

Uo at keV, I, = 36.5 kA, I, = 12.8 keV, I = 10.3 kA. r = 1.44,

and the instantaneous velocity is fl0 = 0.72. We se here that the fast wave characteristics
1 /s 13s) remain unchanged, whereas crossing of the slow wave char-

V(z,') = Vo + s + o k z)'- (32) acteristics occur only half a wavelength downstream from
12 s zthe modulating gap. Comparing with Fig. 22(a), we see that,

with a corresponding value of y(z,t) ( - u2/c2) -u2 z. at the same rf voltage drive, an intense beam is able to pro-
The derivation of (30)-(32) is given in Appendix B [cf. duce a stronger current modulation as a result of nonlinear-

Eqs. (B21), (B23), and (B13) 1. ity and dc space-charge effects. Further discussion of the
nonlinear space-charge waves may be found in Ref. 17.

The bending of the characteristics in the (zt) plane im-3. Propagation characteristic plies that the current modulation contains harmonic con-
It is interesting to note that, in the governing Eq. (30), tent. However, the harmonic content cannot be readily ex-

all of the complicated nonlinear processes such as charge tracted from the solutions in terms of the characteristic
overtaking, dc and ac space-charge effects, local transition variables ( ',q), since the conversion from the ( ,r7) vari-
through the limiting current, etc.. are all incorporated in the ables to the (z,t) variables cannot be obtained in a simpler
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FIG. 22. Nonlinear propagation characteristics of the fast and slow space-charge waves for E,, = 425 keY. , = 12.8 kA. VIO = 30 keV. (a) Top:1o = 4.86
kA (1 /1, = 0.38). (b) Bottom: Io = 10.3 kA (o /1, = 0.8).

manner. (We shall estimate the harmonic content via a dif- electron speed when the current perturbation is so strong
ferent approximation in the next subsection.) Instead, from that the nonlinear slow space-charge wave ceases to propa-
the structure of Eq. (30), we estimate here the local electron gate? Call this nonlinear limiting speed uN, and /f,,
speed when the limiting current is reached nonlinearly. =u,/c. Since (30) has the same structure as the corre-

From the small-signal theory, we recall that as sponding equation in the linear theory, its local dispersion
the dc beam current approaches the limiting value, relationship is also similar. Thus, uv,_ is determined from
the beam's unperturbed drift speed approaches the value
v,,, = c( - l/j, 1 ) 1/2, which depends only on the injec- .I- = all, (34)

tion energy. Under this condition, the small-signal slow where rv. (0 - ' - The solution of 6,, as a
space-charge wave ceases to propagate. In the present prob- function of "o is shown in Fig. 23. The limiting speed is
lem of a nonlinear amplifier, the situation is different. Here, approached nonlinearly, as the initial current Jo is below the
both y,,, and 10 are specified, which in turn determines the critical current I1. However, the above estimate of the limit-
unperturbed drift speed v,, and hence &, = 1/,3,. [cf. Eq. ing speed v,,, does not depend on how the large amplitude
(2) 1. The question then becomes: What would be the local perturbation is set up. It is based only on a local theory of an
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10 rby o (b) We assume that only the fundamentarf requen-
6461 cy component (a) of this force would act on the electron. As

0,- -3, a consequence, we may approximate9 -/3z2 by - al"-/uv in.
-05 r'i the right-hand side of Eq. (30). Thus, Eq. (30) becomes

0.6- -12 3
0.,I- , -

0.4 4 + -- s(z), (38)25., Tt + o z t go
L2' 1[- 0.5

2.6 in which v(z,t) depends on s nonlinearly [cf. Eq. (32) ]. in
S24 0 essence, Eqs. (38) and (32) take full account of nonlinearity

S60due to charge overtaking and charge conservation whereas
we pretend that the electrons are subject to a linear collective
field with only one frequency component. In some sense, thisFIG. 23, Normalized local electron speed B , when the nonlinear space- procedure may be regarded as a quasilinear approximation.

charge waves cease to propagate. Also labeled is the corresponding kinetic
nergy ... (We shall show in Appendix D that such a quasilinear ap-

proximation yields excellent agreement with particle simula-
tion when the procedure is applied to the conventional klys-
tron model," in both the space-charge-dominated regime
and the high amplitude nonlinear regime. See Fig. 32 in Ap-
pendix D.)

The calculation outlined in Appendix D allows us to
solve -the coupled nonlinear partial differential equationsexact formulation of the nonlinear processes. Note that if (3)ad 38.T eis nt eoscr nt 31 ati ett

4 1,Eq. 34)give,6,. = &0) 12 x (II,)(32) and (38). The instantaneous current (3 1 ) at time t at
i,- 1, Eq. (34) gives N,,--- (o) :( .position z reads

The estimate according to (34) is in close agreement
with the simulations (Fig. 20), where we have (lo/I,) 1

2  
--

0.3708. This corresponds to an energy of 39.34 kV and a 1(,,t) = 1+ nl 1 (z)cos na - (39)
momentum, yflc = 1.198 X 10o cm/s. This value corre- '-

0

sponds closely to the low-energy population of particles that where the nth harmonic component is given by
can be seen in the phase space plots of Figs. 20 and 21. In
addition, these simulations verified thatfl,,,, is independent I, (z) = 21,f (n Vsin 7). (40)
of V,, as predicted. This can be seen in Fig. 20, in which
phase space plots for V'o = 150, 200, 250, and 330 kV are
plotted. Note that in all cases, the low-energy population of V= (eV 1/nmoc)6/(yo 1 a,' 2 ),
particles has yc r,,,fi,,,c = 1. 198 1 10 cm. Y = (ojzc) a t1/ 21,6

4. Harmonic content and the rest of the symbols have been defined earlier. The
Equation (30) allows us to assess the harmonic content, fundamental component It (z) = 210 J, (V sin 1) may be ap-

especially when the unperturbed current is sufficiently small proximated by
(&, -t 1). In that case the right-hand member of Eq. (30) 1, (z) = P sin
becomes small and may be treated perturbatively. For the
amplifier problem, we are interested in the current down- when V<0.3, indicating that the maximum value of 1, (z)
stream at z, when an external rf signal causes an initial dis- occurs at 2 = 1r/2. The last expression is simply the familiar
placement s(O,t) and initial velocity v, (0,t) at z = 0: result from the linear theory and has been shown to be in

excellent agreement with simulation. When "V becomes
s(O,t) = 0, large, the maximum value of t (z) saturates, it occurs at a
v, (O,t) = -e- o sin wt. (35) value 1 < 7r/2 [cf. Eq. (40), Fig. 32 ]. Thus, when the rfdrive

These initial conditions are equivalent to imposing an rf cur- is very strong, the location at which maximum current mod-
rent 1, and rf beam voltage V, at z = 0- ulation occurs shifts toward upstream. This is in qualitative

agreement with experimental observation.
It (Q,) =0, The estimate given by Eq. (39) suggests that the har-
V, (0,t) = V, sin wit, (36) monic components (n>2) would decrease rapidly with Vif

where, from Eq. (A 11), T<O.3. However, they become nontrivial if the beam is driv-
en very hard. Figure 24 shows the peak value of the harmon-

V = E(muc'/e)r ,f o/26. (37) ic content at different levels of V, according to Eq. (40). In
We now introduce two assumptions for the right-hand this figure, we see that significant harmonics would be excit-

side of Eq. (30), which physically represent the collective ed if the rf gap voltage drives the fundamental component to
force acting on the electron displacement s. (a) Since i"o is a high level. This result is also in qualitative agreement with
assumed small, we linearize this force by replacing the factor experiments and simulation, as discussed in earlier sections.
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FIG. 25. Trajectories of two electrons, labeled A and B, in the absence
(straight lines) and in the presence (curved lines) of a.dc retarding field.

.. 0.30.1

0 2 4 6 a 2 14 when u and to are small This equation simply illustrates
the conversion of a velocity modulation to a current modula-
tion according to the classical klystron theory. "

FIG. 24. Harmonic content of the modulated current as a function of the rf To see how a dc retarding potential influences the
voltage drive (which gives rise to the peak value of1, /1, as labeled). bunching, for simplicity, we assume that there is an almost

constant electric field E0 m 0,/L between z = 0 and z = L.
Thus, electrons are decelerated between z = 0 and z L
with a deceleration

5. Increase In current modulation by the dc space- - IeE0/r0mi - je4I/, moL I

charge effect Thus, electron A will arrive at z = L at time t; (Fig. 25)

In this subsection, we shall give an intuitive argument where t is to be solved from

which strengthens our perception that current modulation L = [v. + v, (to) ] (t ' - to) - ao(t 1 - to)2,

may be more readily achieved in an intense beam than in a whereas electron B will arrive at z L at time t I + At
classical tenuous beam. Such a difference has its origin in the which is to be computed from
dc retarding potential caused by the self-field of the intense
beam. Specifically, by means of a simple model, we illustrate L = (Uo + t (to + Ato) (t I + At - (to + Ato)

how a velocity modulation on the beam would be more read- - Ia. [ (t + At ) - (to + At,) 2.
ily converted to current modulation if the beam drifts
against an electrostatic barrier than when such a barrier is From thelast twoequations, weobtain, for small Ato and v,

absent. At (AtL) I + v2 M2
Consider an electron beam which, at z = O, is velocity At ( ) +,

modulated: v = vo + v1 (t). If the electrostatic barrier is ab- where
sent, an electron (A) arriving at z = 0 at time to will reach
z = Lattimet, to + LIv o + u,(t.)] (Fig. 25). Similarly, 1-i-( I , (43)
an electron (B) arriving at z = 0 at a later time o + At, will xVJI -x
reach z= L at t, + At, (Fig. 25), where with

at t At0 + ( X L (44)

A0o+ (to) vo+U 1 (to+Ato) X_ 2leI/mt 0

Charge conservation requires Again, charge conservation requires

JoAto = (Io + I,)At1, I0Ato (I0 + [ )At 1 (45)

which yields yielding

4,= L -o ti- t, (41) 1 -- o do , --- to) (46)
7Ldv:) 0_M___
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which is the curren: modulation at z = L in the presence of a 6. Current modulation at the gap exit
dc potential retardation. Comparing Eq. (46) with Eq. Toward the end of Sec. Ill D 3, we indicated that;.for a
(41), we see that the presence of a potential barrier has the given injection y and the dc current, there exists a minimum
same effect as increasing the velocity modulation by a factor electron speed below which the rf current ceases to propa.
of M. The dependence of M on X is shown in Fig. 26. For gate. When an intense beam passes a modulating gap, it ex-
small X, M=- 1 + X. Note from Eq. (44) that M depends periences a rather strong retarding dc potential associated
only on the height of the potential barrier $b,, but is indepen- with the space charge. If the rf modulating voltage is high,
dent of the distance L over which the electron is decelerated, the kinetic energy of the beam, the rf voltage across the gap,

The physical reason for the increase in current bunching and the retarding dc potential at the gap would all be of the

by a dc retarding potential may be understood by referring to same order of magnitude. Thus, it is possible that. for a suffi-

Fig. 25. In this figure, electron B has a higher initial velocity ciently strong rf gap voltage, there is a portion of the rf cycle
than electron A. Under the same deceleration, it would take during which the rf voltage, together with the dc self-voltage
electron A a longer time to reach z = L than electron B. of the beam, would reduce the propagating speed below the
Another way to see this is that electron B would travel a critical speed. This would then lead to an effect similar to a
shorter distance to eventually catch up with electron A, periodic "gate" for the beam current (see also Sec. III C).
when a retarding potential is present. Thus At, < At, which As a result (contrary to the classical klystron theory), sub-

is the reason for the enhancement in current modulation. stantial current modulation may arise once the beam exits
It can be shown that the same enhancement in the cur- the modulating gap.

rent modulation persists if between the region z = L and We shall now estimate the minimum if gap voltage for
z = 2L there is an accelerating electric field of the same mag- the above phenomena to occur. We next estimate the current

nitude. That is, at z = 2L, the current modulation is in- modulation at the gap exit once the rf voltage exceeds this
creased by the same factor M if there is a retarding electric threshold value.
field between z = 0 and z = L and an accelerating field of the I . Let the gap be short and the rf voltage across it be
same magnitude between z = L and z = 2L. V, sin at. The instantaneous speed v, and the corresponding

Finally, we remark that the above account may have values of # and r of an electron are approximately given by
already underestimated the effect of the dc potential. The 1, lei V, sin ct (47)
nonlinear acceleration is proportional to E/y', (not Yi.i = r+ ,6 + moc(

Eo/1?). It would have a stronger effect on the slower elec-
trons, especially when the rf voltage is high. It is easy to show that Eq. (47) does not admit a (real)

The simple illustration of the physical processes which solution for aand y- ( 1 -/6 ) - 1/2 if

lead to the enhancement factor M given above is strongly
suggestive, even if the dc potential barrier has not been V, sin ct> Vh, (48)
solved self-consistently, where

Y1.= [I - + 2/(, -1) "2. (49)

in (49), 1,-- , - 1)3/2 denotes the limiting current.
Thus, if V, < V,h, the modulating process at a short gap is
similar to the classical picture-there is no current modula-
tion immediately beyond a short gap which provides the (ye-

4 locity) modulation.
However, if V, > Vh , we expect a strong current modu-

lation by the gap. The amount of current modulation at the

2 gap exit is estimated to be

2(I, =_ 10 dt sin cit

-(217r) - Y,h /V,. (SO)

IX In (50),t - ( l/c)sin '( Vh / V). The rf current (1, ),,,, at

the gap exit as a function of V1/ V,h is shown in Fig. 27. As
shown in this figure, the current modulation is absent if

X V1 < V,, but rises rapidly once V, > h, and becomes insen-
0 0.2 0.4 0.6 0.8 1.o sitive to V, if the latter substantially exceeds V,,. These fea-

tures are also reflected qualitatively in experiments and sim-

FIG. 26. Magnification factor M as a function of the normalized static po- ulations, and are a (yet another) novel property, associated

tential Xn2Ie0, l/mocYB 0'. with an intense beam.
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EA = (moc/eT(#AyA -KYKr) - (Q/2eA0 ), '(51)
0.64 -...--....--.. ---.... -- --- ---

0.6. where Tis the transit time of an electron across the gap,Q is
the total charge/length stored between the plates, Ao is the

2 zplate area, and the subscripts A and K indicate parameters

measured at plate A and K, respectively. It was shown that
0.4 for any V, there is an electron current for which E. (and

E,) was positive. Hence, no electron emission from the elec-
-trodes can occur.

The one-dimensional representation of a gap is not real-
02 istic. Typically, a gap is of two dimensions. Such a gap is used

in our experimental work, and is shown in Fig. 28. Solving
numerically Poisson's equation for a two-dimensional gap,
we obtained equipotential lines for different gap voltages and

. 3IREB parameters. We observed that, in general, the intensi-

v, / V, ty of the electric field on the negatively charged electrode
was reduced and with some critical IREB parameters a po-

FIG. 27. Current modulation at the gap exit as a function of modulating gap
--, voltage.

IV. APPLICATIONS OF MODULATED IREBs
A. Electrostatic Insulation

There are many processes which limit the power flow in
rf devices. Two of these processes are associated with high-
voltage gaps: (1) multipactor effect t9 and (2) arcing and

vacuum breakdown.10 These processes result from electron
emission from the negative electrode. Electron emission de-
pends on many parameters, such as electric field, geometry,
frequency of rf, etc. The above limiting processes can at best -

300 k
v

divert the rf power by acting as a shunt load, and at worst 0 oV
cause vacuum breakdown and "shorting" the cavity.

At first sight, these processes may limit the power that
the modulated IREB can deliver. However, we show here
that using an IREB offers ways to suppress electron emis-
sion. This possibility is based on our recent research showing
electrostatic insulation of high-voltage gaps." We found
that the electric self-field of an IREB with a current in the
kiloamp range can modify the electric field configuration in
a high-voltage gap in such a way that the voltage gradient on
the negatively charged electrode is reduced and even re-
versed in sign. When this happens emission of electrons is
suppressed, eliminating the conditions necessary for vacuum
breakdown.

The research on electrostatic insulationl was presented N
elsewhere; here we give only the results necessary for this E. sEAM Ia ASCLE

discussion. 0 1 2 3 4 5 6

Electrostatic insulation can be qualitatively investigated -4 v k -350 kv

in a simple geometry of two parallel plates A and K through -350 kv -00 v

which an electron beam of particle densityp is flowing (from 1 kV

electrode A to electrode K). A voltage Vo is applied on elec-
trode K changing the electron energy. The electric field on FIG. 28. Equipotential lines in a two-dimensional geometry in which the

voltage between electrodes is 350 keV. Top figure does not include the
electrode A can be calculated using Poisson's equation IREB. In the bottom figure. 3n electron beam of 10 kA propagates from left

A6 V = - pele and the equation of conservation of charges to right. Note the potential reversal near the the high-voltage electrode in

cpv = const: the bottom figure.
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tential hill was established. Figure 28 shows an example of V,- IZ,.. (53)
the existence of a potential hill inside a two-dimensional de- The following conditions had to be satisfied for Z,_ and the
celerating gap. A 10 kA electron beam with infinite energy geometry of the coaxial line: , 1) Z,_ be real at the frequency
propagated through the gap. The applied voltage on the gap fo in order to extract power from the modulated beam. (2)
was - 350 kV. For the above example secondary electrons Z,. be chosen such that (a) Vo >IZ,A for the frequencyf, and
with energy less than 50 keV were reflected back, eliminat- (b) Z,, be small for frequencies around f= l/T 0 . (3) The
ing the multipactor effect and quenching vacuum break- coaxial line with a large transverse dimension to reduce the
down. This picture remains the same for the propagation of a electric field on the metallic surfaces but small enough to fit
finite energy IREB through a similar gap. inside the magnetic field coil.

In order to satisfy the above conditions we chose
B. rf extraction from modulated IREBs A, = c/f 0 . This translates into Z,, = ZL. ZL was adjust-

Many applications (e.g., rf accelerator) demand high rf ed by the two movable plungers to satisfy conditions (1) and
power in a TE,, mode of a rectangular waveguide. In this (2a). Condition (2b) was satisfied by reducing Z,. Condi-
section we describe extraction of rf at a frequency of 1.328 tion (3) could not be satisfied. At the high power planned for
GHz from a modulated IREB. The experimental setup is the converter, electric field greater than 500 kV/cm could be
shown in Fig. 29. It consists of the device shown in Fig. 12 generated. In order to circumvent a possible vacuum break-
and an rf converter.2 ' The rf converter consisted of a coaxial down the coaxial line was immersed in a strong axial mag-
line which intersects a rectangular waveguide through its netic field. The rectangular waveguide dimensions were
broad side. Two movable plungers were used to vary the 16.6 x 8.3 cm 2, ensuring operation at the TE, mode. The
lengths of the coaxial line and of the rectangular waveguide. rectangular guide was connected to an rf horn. A vacuum
The input impedalice seen by the input of the coaxial line is window was placed on the horn and was monitored during

ZL +jZ, tan(kl) the operation by a still camera in order to detect flashover or
Z,. = Zo Z, +jZL tan(kl)' (52) rf breakdown. The whole converter was kept at a base pres-

sure of less than I0-Torr.
where Z, is the characteristic impedance of the coaxial line, The power inside the rectangular waveguide and in free
ZL the impedance connected at the end of the coaxial line, I space was monitored by electrostatic probes. These probes
the length of the coaxial line, k = 2i,/A, and A the wave- were absolutely calibrated. A known rf power at 1328 *d4
length (At = 21rc/w). was fed into the "coaxial line" through a 50-1 slotted

The modulated electron beam that was used to excite mission line. The movable plungers were adjusted so tha,
the coaxial line had a current o -= 5 kA, for a duration of voltage standing wave ratio (VSWR) of I was achieved. Un-
T 0- 100 ns, energy eV, = 600 keV, and a frequency der this condition all of the input power P, was transferred to
f= w/27r = 1328 MHz. The voltage at the input of the coax- the rectangular guide. From the response of a probe V, the
ial line was required calibration was found relating voltage V to powerP.

LOW POWER CAVITIES
MAGNETRO4 OUTPUT

CAVITY

ELECTRON
GUN

ECT; S AM PARIALLY OULATEO FULLY MOOVLATID
E---- P S EAM [LECTRON -eAM ELECTtON sau

-HNV. FIG. 29. Experimental arrangement used to
generate nf power and to inject it into the atmo-

MORN RF sphere. The bottom figure shows the evolution

CURRENT CURRENT CURREN4T O POWER OUT of the IREB as it traverses, from the diode,
through the first and the second cavity, and the
ff extraction.
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P = P, (V/V, ). (54) longitudinally by thin metallic rods, cantilevered from the

Even though the rf power in the modulated MIREB was end wall of the cavity.

of the order of - 3 GW for a duration of 140 ns, only a The MIREB is terminated at the first disk. The frequen-

fraction of the rf energy was extracted out. Typically we got cy of modulation and the cavity geometry are chosen such
1.8 GW of rf power for 30-50 ns. The easy access to the that a resonance interaction between the MIREB and the

rectangular waveguide helped us to determine that vacuum cavity occurs, leading to the transfer of energy from the
breakdown, at the junction coaxial cavity-rectangular wave- beam to the structure.

guide, occurred. Only after reducing the IREB power to 1.2 (4) After some predetermined time a second electron
GW we extracted 500 MW of rf power for the IREB dura- beam traverses the cavity through holes located at the

tion ( 140 ns). centers of the disks, draining the stored energy. This electron
beam is initiated and controlled by a laser beam that illumi-

C. Particle accelerators powered by modulated intense nates the center of the first metallic disk. Since the laser light
relativistic electron beams (Ref. 5) can be intensity modulated by the external rf source the sec-

Future progress in accelerators and their applications ond electron beam will be also modulated at the same fre-

may depend critically on development of new mechanisms quency. If the second bunched electron beam is in the

capable of generating high-voltage gradients. It was shown "right" phase with the electromagnetic wave in the struc-

that a high electric field can be established in structures by ture, all the electrons are accelerated by the electric field and

MIREBs (of power > 109 W). The simplicity and the high gain the same energy.

efficiency of generating MIREBs suggest possible advan- The aclerator community often uses the SUPERFISH

more con- computer code23 to find axial symmetric modes in cavities.
sage ofaccleraorspowredby MRE~ ovr aWe have applied this code to the geometry of a structure

ventional approach (e.g., rf linac) for generating high cur- W aeapidti oet h emtyo tutr
rents of high-energy particlesi consisting of 12 radial cavities. This program calculates the

r hens hai g ptes newaccelerelectric field configurations, shown in Fig. 31.
The mechanism of the new accelerator employs two The maximum voltage that can be developed along the

beams of particles which interact via a metallic structure. axi o a imu l e tha c 0) deeo e vog th

The first beam generates an electromagnetic field which in axis of any hdial line V(r = 0) depends on the voltage that

turn accelerates a second beam. This effect is large, only,

when the second beam is much weaker and shorter in dura- V(r = 0) = V(r = R)JD(0)/Jo(kR). (55)
tion than the first. From a previous work done by the authors on inverse diodes,

The new accelerator is shown schematically in Fig. 30. one finds that V(r = R) >0.5 Ek,, /e, where Ek,, is the kinet-
The major parts of the new accelerator are: ic energy of the electrons in the bunch. By choosing a large

(1) An IREB generator that injects an annular electron diameter MIREB (R-n-A) one gets Jo(O)/Jo(A) = 10.
beam of radius R, voltage V, current I for a duration Tinto Hence for Ekf = I MeV, V(r = 0)> 5 MV, and since the
the bunching region (e.g., V= 1 MV, I= 10 kA, and axial distance between two disks is a few cm, the electric field
T = 10- " s). The electron beam is confined by a strong axial along the axis is > 100 MV/cm.
magnetic field. In order for the structure to be loaded uniformly with

(2) A bunching region which is immersed in the mag- electromagnetic energy the following condition has to be sat-
netic field and where a low-level rf source (magnetron) isfied: T> L,/Vg, where L, is the total length of the struc-
modulates the IREB. . ture (e.g., 3 m). For the proposed structure L,/V, = 50 ns,

(3) The modulated annular electron beam is guided by which is smaller in comparison witf" the MIREB duration of
the axial magnetic field into a cylindrical cavity of radius B. T= 150 ns. The unloaded energy gain of a constant-imped-
The cavity is loaded with a structure that consists of thin ance accelerating section is'
metallic disks, of radius.4 and thickness 6, which are spaced
along the cavity with a separation A. The disks are supported

1333 MHz

.H :-- : ' -l[ nlt

CATHODE Z"rucTuRa I0 cm 

FIG. 30. Expnmemntal arrangement proposed for particle acceleration us- FIG. 31. Electric field configuration, obtained from the sua RFlsm code,
ing a modulated IREB. for particle acceleration.
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V. = (pL, Po) I/[ (2/i)12( I - ) l, strong and favorable effect on current modu.)ation. The

r (L,/2 V, Q. (56) space charge can also provide significant electrostatic insula-
tion against breakdown at a modulating gap. We have dis.

For L, = 3 m, V,= 3 x 101 V, the shunt impedance cussed several potential applications which exploit these un-
p = 3 X 10' fl/m, and Q - 10', one gets that P0 = 3 X 10' W usual properties of an intense beam.
which is a level of power that can be obtained from a In the small-signal regime, where the beam is subject to
MIREB. a weak velocity modulation throughout, we found complete

Conventional linear accelerators have scaling laws for agreement between experiments, particle simulation, and
voltage gain, instability thresholds, cost, etc., as a function of analytic theory. This comparison, together with the details
wavelength, power input, geometry, etc. The only point that of the experimental diagnostics and the transmission line
differs here from a conventional accelerator is the power of model presented in See. 11, is given here for the first time.
modulated intense relativistic electron beams. Since we be- These results strengthen our perception that an intense beam
lieve that the power of a MIREB is independent of wave- may serve as an amplifier when it is modulated by an exter-
length, the scaling law for the accelerating voltage that can nal signal. While there might be considerable similarities
be derived from Eq. (56) is V-A, where - I <a <0.5 and with the conventional klystron, we note that, even at the
a is a function of A too. For large values of A, a= I; for a small-signal level, there are two important features unique to
small value of A, a z.-0.5. The maximum accelerating voltage an intense beam:
corresponds to A = 5 cm. (a) A dc beam, upon exiting a modulating gap, carries

The shortest wavelength of an externally induced an ac current which is partially in phase with the ac beam
MIREB achieved to date is A = 22 cm. However, the theory voltage. This is a consequence of the de space charge of the
behind MIREB generation predicts that reducing A by a fac- beam. As a result, the dc energy of the beam is extracted and
tor of 2-4 is polsible. converted into ac kinetic energy which in turn is converted

The total energy in the MIREB is another important into electromagnetic energy, by power conservation (rela-
parameter for various applications. IREB generators of tivistic Tonk's theorem).
power >5 X 100 W are available and beam duration of 250 (b) Both the fast and slow space-charge waves are non-
ns is possible. The total energy in a single pulse is > 12 kJ. dispersive, when the annular beam is close to the wall of the
Above these value of power and energy IREB generators drift tube. The slow space-charge waves do not propagate as
become too cumbersome to operate. IREB generators are the dc beam current approaches the limiting value.
typically one-shot devices. However, recent developments in In the nonlinear regime, the experiments show that the
the technology of spark-gap switches and magnetic switches beam may be fully modulated by a moderate rf source (-.50
make it possible to construct an IREB generator with a repe- kW) if a second cavity (undriven, but properly tuned) is
tition rate of 1000 pulses/s. 24  placed at an appropriate distance downstream of the first

Although our discussion was centered on electron accel- modulating gap (Figs. 12-14). The output rf current exhib-
eration one can use the same technique to accelerate protons. ited excellent amplitude and phase stability throughout the
The phase velocity of waves in the structure can be slowed beam pulse. The harmonic content was measured and found
down to V, =0.3c and even lower. The phase velocity can be to be in qualitative agreement with numerical simulation
easily changed by varying the geometry in order to match and analytical models. Harmonic content may also be ma-
the velocity of the protons. nipulated by additional cavities.

The particle simulations confirm much of what was ob-
served in the experiments, in particular we demonstrated

V. SUMMARY AND CONCLUSIONS phase locking even when the beam was fully modulated. In
In this paper, the interactions between intense relativis- addition, the simulations showed that transients are unim-

tic electron be, s (- 500 keV, > 5 kA) and active rf struc- portant and that particle reflections (virtual cathodes) are
tures were investigated. Experiments, theory, and numerical absent, again demonstrating that an intense beam may serve
simulations have provided us with a view of the mechanisms as a power amplifier in the highly nonlinear state. The phase
involved in IREB modulation by an external rf source. We space plots (Fig. 19) illustrate the strong nonlinear modua-
have identified linear and nonlinear mechanisms capable of lation of the beam at the modulating gap. This effect, where a
coherently bunching IREBs with power levels in the drift region is not required for bunching to occur, is due to
gigawatt range and above, the dc space charge of the beam and is described in a qualita-

Modulation of an IREB was found-to differ from the tive manner in Secs. III B and Sec. III D 6.
conventional klystron mainly in the potential energy (dc The analytical models developed here include the for-
space charge) residing with the IREB. In the cases studied mulation of nonlinear space-charge waves. The simple-look-
the potential energy and the kinetic energy of the beam were ing Eq. (30) governs all of the complicated nonlinear pro-
of the same order of magnitude. The beam-gap interaction, cesses such as nonlinear charge bunching, harmonic
the evolution of space-charge waves, and the resulting cur- generation, dc and ac space-charge effects, and local transi-
rent modulation on the beam were significantly modified tions through the limiting current. The nonlinear propaga-
from the situation of the classical, tenuous electron beam tion characteristics of the fast and slow space-charge waves
(whose potential energy can usually be neglected). In gen- were calculated. They imply an increase in the current mod-
eral, the dc space charge of an IREB was shown to have a ulation as a result of the substantial slowdown of the slow
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space-charge wave in the decelerating portion of the modu- I, = I,.,expj(wt - kf.z), (A3)
lation cycle. The predicted nonlinear limiting velocity, oc- If._ , t - kf.,Vo
curring when the propagation of the slow space-charge wave , -o expj(ai: - kfz), (A4)
ceases, was observed in the simulations. The harmonic con-
tent was evaluated analytically. The beneficial effects of the and with the use of Eq. (5)
dc space charge on the beam's current modulation are 7, = 1, expj(wt - 0)
further illustrated in the simple analytic models in Secs.
III D 5 and III D 6. The predicted threshold gap voltage for = [I/expj(cqzO) + I, exp -j(apO)]
the onset ofthe strong nonlinear modulation was observed in X exp j(At - 0), (A5)
the particle simulations.

From the experiments, and the supporting theories and
simulations summarized above, we conclude the following: = (vo/1o){ ( I - 6(1 - aii) ]expj(ayt6)

( I) IREBs can be modulated by rfsources of low power + 6(1 + gu) ]exp -j(azO)
with high efficiency.

(2) The modulated IREB current has a stable ampli- x expj(wt - 0), (A6)
tude and is phase locked to the external rf source. where 6 = (wo6z)/(6oc). At time t = 0 and position z = 0,

(3) The shape of the electron bunches can be tailored by , - Io and v, = vio. Inserting values If and I, into Eqs.
changes in the geometry. (A5) and (A6) one obtains

(4) The bunching mechanism for a fully modulated
IREB is unique in its behavior and, using this mechanism, a I = Ito[cos(aM6) -j sin(ap0) ]
long drift region is unnecessary for operation (unlike a clas- +jvo(4o/aA.6vo)sin(aluO), (A7)
sical klystron).

Experiments, theory, and numerical simulations ItJ(v°I)6z( 2
-1)sin(ali6)]

showed that the self and induced electric fields generated by + vo[cos(a/gg) +j sin(a/O)J, (AS)
IREBs play important parts in the bunching mechanism.
The numerical simulation showed that quasi-dc virtual cath- where
odes need not be formed and that electrons are not reflected " = (1 - 6)/ayb = - I/O 'u.
even at high levels of modulation. Transients and shock exci- Note that " < 0.
tation of cavities are unimportant in the amplifier configura- Equation (AS) may be rewritten in terms of the "kinetic
tion studied in this paper.Eqain(8maberwitnntrsofhekntc voltage" V. This quantity is derived as follows: The total

Many applications for modulated IREBs by an external energy of an electron is
if source can now be envisioned. Out of these applications,
we mention here the two that are now being actively pursued E = mc 2 (' - 1), (A9)
at the Naval Research Laboratory: (a) Wakefield accelera- hence the change in energy AE due to the change in the drift
tion of particles by modulated IREBs and (b) ultrahigh velocity Afo (or vice versa) is
power if generation. '90o (A 1)-' &~E =mc°'o -o '-o" A0
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We similarly define the small-signal kinetic voltage at any

APPENDIX A. DERIVATION OF THE point as
TRANSFORMATION MATRIX [EQ. (8)] V, = vvomoyo /6e. (A 12)

From the continuity equation Substituting Eq. (A 12) into Eq. (A8) we get the transmis-

dl ap = sion line analog for an IREB, Eqs. (7) and (8).
dz d

APPENDIX B: DERIVATION OF EOS. (29H32)
where Jis the current density andp is the charge density, one
gets, after expanding the variables into the zero-order (sub- We shall first derive Eq. (29) from Maxwell equations
script 0) and the first-order wavelike perturbations (sub- under the long-wavelength approximation. ' We next show
script 1), that the nonlinear system, Eqs. (27)-(29), is equivalent to

aj, Eqs. (30)-(32).

+= pv, + vp,. (A2) A surface charge ca(z,t) on a thin annular beam excites
Z at electromagnetic fields with components E, (rzt), E, (rz,t),

Assuming that the ac current consists of two components H(rz,t). In the vacuum region between the sheet beam
associated with slow and fast space-charge waves one ob- (r = rb ) and the outer conducting wall (r = r.), these fields
tains the ac current and ac velocity, satisfy Faraday's law
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8H, (OE Or)' (BI) ~ U~ ~)(B12)dt = k5 -z _,] d ar

and the r component of VxH =eo E/dt gives Using (B9) in (B12), we have

Me E, sa (B13). .. .t I - CIS/ &

Operate (Bl) bya/oz, (B2) by a/at, add the resultants, and which is Eq. (32). Alternatively, we obtain, from (B6) and

then integrate from r = rb to r. to yield (BT),

( 8 f) 'E,(rz,t)d r- a+Oz2 A

--- E,(r,z,t), (B3) a \ / a

where we have used the boundary condition of a perfectly ( - =JIA + (- -) .
conducting pipe: E, (r,z,t) = 0. No approximation has
been made to obtain (B3). We now introduce the long-wave- Apply z, to the left-hand sides and s to the right-hand sides

length approximation7': of (B 14) and (B 15) to yield

E, (rv,t) =(lIEo) (rb/r)o(z,t). (B4) O (z0,r) aS(z,t)/1& - "

Equation (B3) then becomes 3zo 1 - as(z,t)/a ' (B 16)

Po In; = -E. (r5 ,z,t), (B5) azt(zor) - s(z,t)/Ot (B/a)

which is just Eq. (29) where we use E, (z) to denote Oar -I - s(z,t)/oz

EZ (rb,z,t), the axial electric field experienced by the beam. Substitution of (B16) and (BI7) into (B8),gives (B13).
(The validity of the long-wavelength approximation may be In the unperturbed state, the amount of charge between
justified in a number of circumstances, one of which is the z, and z. + dz is oodz,. In the presence of perturbation, the
beam being sufficiently close to the wall. A detailed exami- electron at zo moves to zo + z, (zo,r) and the electron at z.
nation of this long-wavelength approximation has been giv- + dz, moves to (zo + dzo ) + z, (z, + dzo, r). Let ube the
en in Ref. 8.) instantaneous charge density in the presence of perturba-

To derive (30)-(32), we shall now assume that the tion. Conservation of charge requires
beam in equilibrium is characterized by constant density o,
uniform drift speed ii, and current 1. Instead of using the oodzo = cr{zo + dz, + zI (AI + dzo, r)

Eulerian variables (z,t), we introduce the "polarization vari- - Izo + Z. (zoT) I
able",25 (zo,r), which is related to (z,t) by which gives, as dzo--O,

t= .+ (B7) 01 +Oz(zr)/z 0  . (B18)

where zo is the coordinates of an electron fluid element at In writing the last expression, we have used (B 16). Substitu-

time t in the absence of perturbation and z, is its displace- tion of (B 18) in (29) gives
ment from z, in the presence of perturbation. We do not s ( l3 2)

assumez, to be small. Thus, z is the instantaneous position of -' E - at- -- 2 s. (B19)

the fluid element at time t. The instantaneous velocity of this d ., - .-
fluid element is, from (B6), Since

V =dz = V + V ( 4- (B) V-+L 1  +v ,Ist (B20)
020 49r (23t z t V Ozi-(

or by (B9) and (B12), we substitute (B19) and (B20) into
(27) to obtainV--Vo + V, (139) 22

where the perturbation velocity v, is (t +v zS -c2 )s, (B21)

1 Z , (Z o ,r ) 1 z , (z o 0 )

v3  Vo + 9 (BIO) which is (30), where the constafit &o is defined.
zor O8 Finally, the instantaneous current I (z,t) is given by

Let us denote the displacement by s I(z,t) = 10(avo/Cro0 ). (B22)

2,(Zo,) =_-s(z,f) (BI 1) Inserting (B13) and (BIB) into (B22), we obtain

in the Eulerian variable. Since v is also the Eulerian velocity I(z,t) = I,(1 + ± (3, (B23)
of the fluid element which, at time t, occupies position z, we o ti

have which is Eq. (31).
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APPENDIX C: NONLINEAR CHARACTERISTICS OF THE where

FAST AND SLOW SPACE-CHARGE WAVES.Au, = R1 3,)
We calculate the nonlinear propagation characteristics _(cf., - v) 2 - 3(Co.l(c3, - v)c C

of the fast and slow space-charge waves governed by Eq. Rf, - , (Cl4)
(30), by a perturbation technique pioneered by Lin" and 2(cf, - vo + a0c.,)

Fox." We shall restrict to the evolution of nonlinear space- to first order in v, . Here, v, is understood to be exnressed in
charge waves when the oeam is subjc-iA to a weak velocity terms of the " and s7 variables. To proceed further, we.need
modulation at z = 0: one crucial observation as v, itself is unknown at this point.

vI)= (Ev2)sin wt. (C) In the theory of perturbation of characteristics. to the lowest
order, the solution in terms of the characteristic variables

The beam itself need not be weak, that is, ao need not be remains to be the same as in the linearized theory, only the
small. dependence of the characteristic variables on (z,t) are modi-

In the linearized theory, the characteristics of the fast fled by the nonlinearity. Thus, from Eq. (C4), we have the
and slow waves are straight lines in the (zt) plane: lowest-order solution

P = Z -Cft, (C2) Vsnk f snk 7 (C15)q z- c,t, (C) 2 A Ak

where p and q are the characteristics variables for the fast in terms of 4 and 7/. This solution is to be inserted in (C 13).
and slow waves, respectively, whose propagation speeds To determine G and H, from (C7) and (C8), we obtain
cf., = talkf are constant and given by Eq. (5). In the small- t = I/Ac) 1- + e(G - H) (C16)
signal theory, it is easy to show that the rf velocity v, may be
expressed as z = ( /Ac)[c, - c 1 + e(c, G - cfH)], (C17)

where

42 A 2 (A) k q Ac= c, -cf=- (alk,) - (tr/kf). (C18)
in terms of the characteristics variablesp and q. Here Substituting (C12), (C16), and (C17).into (C9), we ob-

wf ---w - kfv, a, = W - k, vo, (C) tain, after some manipulation,

Ak=k, - kf. (C6) C dG(,)=- - A ("_const) (C19)

Because of the nonlinearity in Eq. (30), the characteris- Ac
tic curves are no longer straight lines. Instead of p and q, we to first order in E. Similarly, (CO) gives

shall use " and 77 to denote the nonlinear characteristics asso- 77H(T,) Au,
ciated with the fast and slow waves. If the initial velocity e =- (77= const) (C20)

perturbation (e) is small, these nonlinear characteristics to fc

may be obtained by a perturbation method. In several cases,Equations (C19) and (C20) are now easi-
this technique has been proven to be uniformly valid." TO ly integrated, since their right-hand sides are linear combina-
theiloest order inhasbee chraerstics be unif y valid ( ) tions of sin k4" and sin k,7 by virtue of (C13) and (C15).
the lowest order infi the characteristics Eqs. (C2) and (C3) This integration yields, upon using the boundary conditions
Sare modified to read for z = 0,

z - cft = * + G( , " (C7) R 1

z- ct = 7 + H(,,77), (CS) c -A c. /c 1)sin k4

where G and H are to be determined. Since Eq. (30) is quite + ' (cos k, v - cos k4) (C21)
complicated, based on physical argument, we expect the k,
characteristics in the (z,t) plane to be governed by Ic/\2k\1k

at = ,9 = const), (C9) H(4,s1 ) A ) y.(cos k4 - cos

817 + a, (4 - c 7/c, )sin.k, 7 7. (C22)

az at (77=const), /
-=u -- (C I) ln (C21) and (C22),R.andR, aredefinedin (C14), Acby

(C1S), Ak by (C6), wf., by (C), kf., by Eq. (5), and c.,
where the phase speeds uf. u, are the solution to the local = wd/kf,. Note that in the derivation given in this Appendix.
dispersion relation [cf. (30) 1. we only assume that the velocity modulation e is small. We

(U,1 - V) 2 
= (O,/y

3 ) (C2 
- U.). (ClI) did not assume &0 to be small, however.

Note that u,, depends on the amplitude of the perturbation. APPENDIX D: DERIVATION OF EQS. (39) AND (40) AND
If v = vo + v, and if v,< Vo, we obtain from (CII), after A COMPARISON WITH THE CLASSICAL THEORY
some algebra, When the collective force acting on an electron fluid

u, = c, + Au,, u = cf + Au 1  (C12) element is assumed to be proportional to the displacement,
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as in Eq. (38), the harmonic content may be analyzed rather same as that passing the point Z = L in time dT, we have, by
accurately using the technique developed in the classical the- charge conservation,
ory of electron bunching in a drift tube." 2 Even if such a Idt, = I(L, T)dT. (D9)
theory is based on the assumption of small perturbation, we
shall see that the analytical results thus obtained compare With this change of variable, (D8) becomes
very well with particle simulation even when the modulaung (a1o t"'
gap voltage is very large. Perhaps what is meant by such a a 2 L) = -j dt1 cosf[naff(t) )] (D10
close "agreement" is that the most important nonlinearity where T(t ) is given by (D6). The integral in (DI0) can be
originates from charge overtaking and from charge conser- calculated explicitly-
vation, which is treated accurately.

Let us recapitulate here the classical theory of nonlinear a,(L) = 1J. In 62 sin(.,L 'cos( nL, (13)
evolution of a nonrelativistic electron beam. In keeping with a 2c) sn )j cost (Dl
the literature, instead of using the Eulerian description for where J, is the Bessel function of order n. Use of (D I I) and
the displacement s(zt) and the polarization description z, a similar expression for b, in (D7) gives
(z,r), we shall use the Lagrangian variable to describe the
displacement ,X( t,t1 ): I(z,t) = 10 + X I. (z)cos[nw(t - Z/VO) ], (D12)

X = s z, =Xt~h).(DI) .where we have replaced L by z and Tby t, and
That is, X(t,t1 ) denotes the displacement, at time t, from the
equilibrium position of an electron which arrives the modu-
lating gap at an.earlier time t. The gap is assumed to be in which
located at z = 0, upstream of which the beam propagates
with a uniform speed v, and a current I.. If the "debunch- V" I (E / ,) (D 14)

ing" force due to the ac space-charge effects is assumed to be
proportional to X', the equation of motion reacds ' 0(l

p o to , tIn Eq. (D12), 1. (z) is the axial distribution of the nth

dt(D2) harmonic of the current modulation at distance z down-
stream of a gap which provides a velocity modulation

where o, is the (reduced) plasma frequency associated with (evo/2) sin at on the beam there. Its derivation has been
the electron beam. For a short gap, the electron receives a based on two assumptions: Linear dependence of the force
velocity modulation on the displacement X' [cf. (D2)] and weak modulation

= (evo/2)sin wt, (D3) (low e) to permit the inversion from (DS) to (D6). To test
which depeids on the phase ofthe gap voltageat the time the validity of (D12), we compare the axial distribution ofwhih dpens o th phse tof he ap oltge t te tme the fundamental component I, (z) according to (D 13) with
of arrival. Here, e is the "modulation depth." The solution to
(D2) subject to (D3) is that obtained from particle simulation."' This comparison is

=shown in Fig. 32 for various values of V, whose values range
"(t,t1) : (ed/2,)sin , sin a,(- t), (D4) from V= l/(2x0.12) =4.17 to V= 1/(2X1.8) = 0.277.

where we have used the initial condition Xy = 0 at t = t1. Highly nonlinear current modulation is present within this
We are interested in the current at z = L. From the de- range of V. The close agreement between simulation and the

finition of X, the electron arrives at z = L at time t = T, analytical theory over such a wide range suggests that the
where Tand L are related by nonlinearity associated with charge overtaking and charge

L = vo(T- t) + (evo/2w,)sin wt sin ci,(T- t1 ). (DS) conservation [cf. (D9)] are the decisive factors in determin-
ing the current modulation, and these factors are handled

We now introduce the small-signal assumption (small e) to accurately (cf. (D9) I in the present analytical theory. Per-
express Tin terms of t : haps in the averaging process over a cycle which is involved

L C +LiL in the evaluation of the a. (L) in (DIO), the error commit-
Ttt + - - - sin(wG)sin -P-t (136) ted in the approximate expression T(t, ) [cf. (D6)] is con-

siderably reduced, thereby leading to good agreement with

The total current I (L, T) at z = L contiins all harmonic simulation over a much wider range of V than can be expect-
frequencies and may be represented in a Fourier series as ed from the outset.

Let us return to the problem of harmonic generation in
J(LT) = ' L s(D7) an intense beam as discussed in Sec. III D 4. We see that Eq.

(,T a(L)cosoT+b.(L)sinnT]. (D7) (38) is identical to (D2) if we identifyow in (32) by

The Fourier coefficient is given by ( o/'o)w'( _ I + I/a ),
whereas the velocity modulation parameter e appearing in

a. (L)'= dTI(L,T)cos(ncoT), (D8) (D3) is the same as in (35) and (37). With such a substitu-
2r f -/ tion in (D 12), we immediately obtain the solution (39) and

and a similar expression for b.(L). Since the amount of (40). We thus see that Eq. (39) takes into full consideration
charge passing through the gap at z = 0 in time dt, is the of the nonlinearity associated with charge overtaking and
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ABSTRACT

The physics of modulation of an intense relativistic electron beam by an external microwave source and its usefulness for klystron-like
devices are studied in this paper via experiment, theory, and simulation. It is found that the self fields of the electron beam, in general, inten-
sify the current modulation produced by the external source. In the modulating gap, electron bunches may be generated instantaneously
without the necessity of propagating the beam through a long drift tube. The excellent amplitude stability and the phase locking characteristics
(<20) of the modulated current, demonstrated in experiments, open new areas of research in high power microwave generation.

1. INTRODUCTION

In the last two decades there has been considerable interest in generating pulses of high power rf radiation. This interest has risen, in
part, from the availability of intense relativistic electron beams (IREBs) with power 109 - 10" Watts and, in pat, from demands for high
power rf sources. There are many different mechanisms for generating rf power; one of these is based on longitudinal bunching of electrons.

RF radiation can be extracted from electron bunches with an intensity

I = G Nb n11 (1)

where Nb is the number of bunches/unit time, nb is the number of electrons in a bunch, and G is a form factor which strongly depends on the
micro-shape of the bunches and is large for bunches with sizes < VJ2, where X is the wavelength of the extracted rf radiation. Equation (1)
reflects the requirement of having a large nb in order to produce high rf power. A necessary condition to achieve a large nb is to employ high
current electron beams (e.g. IREBs).

This paper addresses the development of rf amplifiers based on IREB modulation by an external rf source.' Unlike in the previous
work, 2 self excited oscillations and transient behavior are unimportant here.

2. SPACE CHARGE WAVES ON INTENSE RELATIVISTIC ELECTRON BEAMS-SMALL SIGNAL REGIME

2.1 Theory

The bunching mechanism occurs while the IREBs propagate through drift regions, and is strongly influenced by the electric and magnetic
fields of the electron beam. At a high current level, the electric self field of the IREB generates a potential hill through which the electrons are
moving. The energy of an individual electron is split between kinetic and potential energies. From the conservation of energy, the following
relationship is obtained

vi 0 = o + ayol, (2)

where a = o/(,y ), , = 2reomoC 3/(e in r,./rb), !o is the IREB current, moc 2
(yo - 1) is the electron kinetic energy,

-o = (I - Ao)" 1/ 2, e = vo/c, Y. is the electron drift velocity, moc2(yi - 1) = e Vo is the electron total energy at injection and r, and rb
are the respective radii of the drift tube (assumed round) and of the IREB (assumed to be annular in shape). From Eq. (2) it is obvious that by
increasing the IREB current, the kinetic energy of the electrons will be reduced. At a current level 4, where

8,5 (,,2
3  

_ 1)3/2ili 1A=1(,Y31 - 1(3/

I= In (r./rb) , = "31

the electrons cannot lose anymore kinetic energy and beam propagation is disrupted.3 At this current level, the kinetic energy of the electrons
is moC 2 (.y. 3 - 1) and the potential energy is 0 = Moc

2 (-, -(,* 3)_e.

The classical dispersion relation for space charge waves on low density electron beams is invalid for IREBa. Briggs derived4 a dispersion
relation for space charge waves on IREBs under a long wavelength assumption l >> 2r,,

(W - kyo) = a (k2
c

2 
- 0,2) (4)
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Solving Eq. (4), one gets

W-k v. f& k1 v.

where UP = (62 + a/-y)f/2/., 6 0/.A62 - a), the subscripts f and s stand for fast and slow (waves). Unlike in classical electron
beams, the dispersion relation curves for the fast and slow waves are not symmetric with respect to the beam line 4a/(kv0) = 1. This sym-
metry make the bunching mechanism for IREBs unique and novel.

Bloom and Peter6 described a useful analogue between a classical (tenuous, nonrelativistic) electron beam and a transmission line. This
analogue can be extended here to include IREBs. It expresses the rf currents and voltages on the beam in terms of the values upstream
(z = 0).

It = 110 {cos() + j" sin(a~l)l - j (VtO/Z) sin(aAe)

V, - -j 110 Z(l - r) sin(aA) + V1o {cos(cai) - j r sin(agD)l (6)

Here, 0 - (oj.)IO0 c, Z = moc 2"y.30,2Q6l(e) = RoI(- ), - (1 - W)Iah = -l1/i21, R. - (600/0) In (rw/rb). and V10, 1, are the
excitation voltage and modulating current at z = 0.

With the boundary conditions I - 0 and V1 = V10expj(wr) imposed at the modulating gap z = 0, one obtains from Eq. (6) the follow-
ing rf quantities at z =z

= I V10  , 1 sna~) (7)-J smn(a,8); e - -, V, = V1o (cos(a9 1) - j" sin(csp)(

Unlike in the interaction of i low density (classical) electron beam with a gap, 11 and V, are partially in phase. 1

2.2 Experimental investiation of IRE! modulation in the small signal regime

The experimental arrangement shown in Fig. (I) consisted of a foilless diodes emitting an annular IREB of radius rb = 1.9 cm and thick-
ness = 0.3 cm. A 10-kG quasi-DC magnetic field confined the HEB inside a metal tube of radius r. = 2.35 cm. A gap feeding a coaxial
cavity was inserted in the drift tube. The characteristic impedance of the cavity was 450 and its length was L - 17 cm corresponding to a
resonance frequency of 410 MHz. Four thin Nichrome wires connected the inner wall of the coaxial cavity to its outer wall so as to reduce the
Q of the cavity at 410 MHz. The wires did no influence the Q of the cavity at the 1328-MHz resonance (Q > 1000). The presence of the
wires shifted the first resonance from 410 to 610 MHz and reduced the Q to below 30. An external rf source (a magnetron) "pumped"
microwave energy into the cavity for a duration of 3 psec at a frequency f = 1328 MHz. Sometime during the 3 gisec period a Blurnlein
transmission line with an output of 500 kV energized the foilless diode for 120 usec, and a - 5 kA electron beam was launched through the
drift region. The base pressure in the drift region was s 10-5 Torr.

MAGNETRON

MAGNETIC
PROB ES

ELECTROSTATIC PROBE

HY

- 4- NICROME WIRES - - - MAGNETIC COIL S-- --

Fig. 1. Experimental arrangement when
only one cavity was used.

For many applications the purity of the rf spectrum and phase locking are necessary requirements. The arrangement that was used to
measure the phase locking capabilities' and the purity of spectrum of the modulated IREB, is shown elsewhere. We found that the magnetron
output and the modulated IRE were phase locked to better than 3*, and that the frequency of the modulated HE is the same as the fre-
quency of the rf from the magnetron.

Four magnetic probes spaced 15 cm apart, cte first of which was located 12 cm from the gap of the cavity, were used to analyze the elec-
wone bem the emerged from the cavity. Best fits to the results are in the form

for V. - 5( keV 21, - 450 1 sin (0.0523z(cm)) I Amps, for V - 400 keV 21, = 425 1 sin (0.0671z(cm)) I Amps
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The experimental result is favorably compared with the theoretical prediction (Eq. (7))

2 11,1 =2-V I sin(ap, c z)!. (8)

Since the rf amplitude V,0 was kept constant the following conclusions were drawn

(i) Z is insensitive to the IREB electron energy eV. and (ii) awj6i0oc depends on the IREB electron energy eVo.

The amplitude of It depends linearly on V10 . We recorded It as a function of the input rf power P. Since P a VI we get from Eq. (8)

I =K P or log(1 2 ) = logP + logK (9)

where K is a constant that does not depend on Vo, and I,. Figure 2 displays experimental results of log (I 2 ) vs log (P). The slope of the best
fit straight line is unity in accordance with Eq. (9).

4.0

0
.-

Theory

20

0.5 1.5 2.5 3.5

Relative Units LOG (POWER INPUT)

Fig. 2. Dependence of the IREB rf current on the input rf power.

2.3 Particle simulation

The physics of fully modulated IREBs is highly non-linear and the theory is not yet completely developed. Theoretical models will have
to be used to explain the non-linear processes involved. Some of these models are not self-consistent and in order to check their validity, we
rely on numerical simulations. The computer simulation code, CONDOR' was extensively used in this research.'0 The calculations summar-

ized in this section deal with a relatively low rf current (11 << o). The geometry of the simulation is shown in Fig. 3 (top).

The simulations presented here proceeded as follows: At t - 0 s, the rf drive was turned on. The Q of the cavity was chosen in such a
way that the saturation of the fundamental TEM mode was reached at t = 6 ns. At this time, the IREB was injected with a current risetime of
5 ns. The simulation continued until t = 20 ns.

The initial IREB conditions were as follows, current of 5 kA, energy of 500 keV, and the geometry of the IREB was annular, with a
radius of 1.9 cm. This IREB was injected through the drift tube into which a coaxial cavity has been inserted. This cavity was loaded with rf
energy via a radial transmission line at the outer wall of the cavity. The impedanc of the radial transmission line was 150. Rf-gap voltages,
V,,, of 6, 18, and 30 kV, always at a frequency of 1.37 GHz were used. The gap voltage introduced nonuniformities in the electron velocity

distribution which were translated, after propagation, into density modulation. The amplitude of the rf current versus propagation distance
showed excellent agreement with linear theory (Fig. 41 and with the experimental results.

As in conventional klystrons, the amplitude of the rf current varied sinusoidally. The axial position, z,. - 28 cm, where maximum
modulation occurred agreed very well with the linear theory, (c.f. Eq. (8)]. Changing V 10 did not change zm; only I varied. For example,
for Vi0 = 6 kV, 18 kV and 30 kV the peak currents in the electron bunches were 21, = 270 Amps, 800 Amps, and 1400 Amps, respectively.

These results confirmed that 11 was proportional to Vto, in agreement with Eq. (7). However, when Vie exceeded a critical value, deviations

from Eq. (7) were seen. This non-linear aspects of the simulation will be discussed later.

To check the phase locking capability, the phase of the rf signal was varied. We found that the phases of the electron bunches changed
in accordance with the. input rf, with an uncertainty error of 2@ ** 1, in agreement with experiments.
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Fig. 3. (a) Top, geometry of the computer Fig. 4. Fraction of the modulated current
simulation when only one cavity was used. for Fig. 3a, at two levels of the rf drive.
(b) Bottom, geometry of the computer
simulation when two cavities were used.

3. FULLY MODULATED INTENSE RELATIVISTIC ELECTRON BEAMS

3.1 Experiment

It is well known that non-linear effects in rf devices become important when the rf current I, is of the order of the DC current I. Pre-
tending tha Eq. (7) is valid even for cases for which II is of the order off., one can estimate the rf voltage that has to be imposed on the gap
so as to fully modulate a 5 kA IREB. For the present experimental set-up this voltage is of the order of 100 kV corresponding to 20 MW of
injected rf power. Since an rf source with this kind of power was not available, we used, instead, the partially modulated IREB to energize a
second coaxial cavity [Fig. 51 and to generate a high oscillating voltage (- 150 kV) on its gap. The gap of the second cavity was inserted in
the drift tube at an axial position for which 11 was maximum (29 cm). The second cavity with a Q > 2000 was tuned to the frequency f -
1.328 GHz * I MHz. The IREB that emerged from the second cavity was highly modulated. The peak current in the bunches was - 80% of
the DC current [Fig. 61.

In a different experiment the second cavity was replaced by a variable length cavity. With this cavity, the resonance frequency could be
varied between 800 MHz and 2.9 GHz. The cavity Q was s400 (at a frequency of 1.3 GHz). Because of the low Q, the input impedance of
the gap was complex, i.e., Z, = R, + jX, even at frequencies close to the resonance frequency. It was found that by raising the magnetron rf
power, no disruption of the IREB current was observed. Moreover, the rf current amplitude of the IREB increased by a factor of - 1.6 to
21, -' 7 kA. Figure 7 shows the experimental setup. It also shows the variation of 21, as a function of the resonance frequency of the second
cavity and of the position where the measurements were taken.

3.2 Computer simulation-non-linear results

The non-linear processes that take part in the generation of fully modulated IREBs can be found from computer simulations in which the
rf current is comparable to the DC current. Similar to the experimental arrangement of Fig. 5, the simulation geometry was arranged by plac-
ing an undriven second cavity into the drift tube at an axial position where the rf current reached maximum (Fig. 3, bottom). This cavity was
excited by the fundamental frequency component of the partially modulated IREB current. The voltage that appeared on the second gap
depended on VI. and was typically of the order of the voltage applied on the IREB diode, Vo. For example, for Vo 1- 30 kV, the voltage at
the second gap Va, - 330 kV. The current modulation of the 1REB after passing the second gap is shown in Fig. 8. The percentage of IREB
modulation was calculated assuming a current profile of I - 1. + 11 cosKar). This was done so as to compare simulation results with experi-
mental results. We found that 1/1. = 13.3% before the IRMB entered the second cavity and 11/1o = 58% 6 cm downstream of the second
gap. Other macroscopic results such as phase locking features (<2) and the variation of 111 vs the axial position were obtained. All these
results agreed with experimental observations.

Phase space plots (ow vs z) of the electrons revealed important information. These plots were obtained for different times, from time t
= 0 nsec to t = 18 nsec at regular intervals. We found that the bunching mechanism reached equilibrium almost instantaneously. The phase

space plots are nearly identical from cycle to cycle, implying transients are unimportant. Figure 9 shows a sequence of phase space pictures
and the corresponding electrostatic field contours, all obtained during one rf cycle.
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Fig. 6. Experimental results when the configuration of Fig. 7. (a) Top: Experimental arrangement. (b) Bottom: Peak
Fig. 5 was used. Top: rf current of the modulated IREB. bunch current as measured by the four magnetic probes. The shaded
Middle: Spectrum of d!/dt. Bottom: dl/dt traces area represents the DC current. The arrow marked Im is the level of
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the lower left corner shows the level of the background noise.
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Figure 9 gives the following results:

(I) No reflecting electaons (0-y < 0) exist.
(2) During part of any rf cycle, Oyc of the electrons drops below the value associated with critical current. This in turn reduces the pro-

pagating current, but no reflection of electrons occurs.
(3) Half an rf cycle later $y of the electrons near the second gap increases above the injected y.
(4) Two distinct particle populations emerge from the second gap. The bulk of electrons has high kinetic energy while the second popula-

tion consists of slow electrons with energy below 50 keV.
(5) One can see electron bunches generated at the second gap and moving from left to right on the electrostatic field contour figures. The

contours are indicative of the electron density.

The first result points out that the bunching mechanism is different from the one discussed for the self-modulation of IREBs. 2

The second and the third results confirm the qualitative quasi-DC theory given elsewhere. 1.7 The fourth result is in excellent agreement
with non-linear theory and will be discussed at the non-linear theory section. It follows from the behavior of the nonlinear space charge waves
near and below the critical current. The last result shows that electron bunches are created near the second gap at a time when 0-y is
minimum.

As was indicated earlier once the rf excitation voltage VFo exceeded a threshold voltage, V, the rf current I was no longer proportional
to Vt0. We investigated the IREB modulation by a single cavity when VIe exceeded V, (Fig. 10). We found that the high voltage gap behaves
in a way analogous to a gate. When the gate is closed instantaneously current stops flowing and potential energy is increased. For a finite
time charge accumulates at the gate without reflection. If after this time (and before reflection occurs) the gate reopens, current flow resumes
and the potential energy is converted into kinetic energy.

V,. 150 kV VIo 200 kV

6

4-

tO2-------------

.. I_________Ol __ .. .. ,___ ,__o_.__
E .......... oo. ..... ..... .o.... ......... •......

2
0
X Ve 10 250 kV Vo - 330 kV

047.......... ... *7.
0 50 0 50

cm cm

Fig. 10. Phase space plots of the electrons at high values of
the modulating voltages, using a single cavity. The gap is
located at 5 cm from left. Solid line: y =c at injection. Bro-
ken line: 7rOc at DC limiting current (y = yQ3 . Dash-dot
line: 70,c at the limiting velocity according to the nonlinear
theory [cf. Eq. (12)]. Dotted line: 7BOc = 0.

In the simulation (or experiment) the if voltage opens and closes the "gate." From the simulation we found that this threshold voltage
was V = 200 kV. It should be noted that once V, a V, the second population of slow electrons appeared in phase space with 0yc < 1.2
x 10'0 cm/sec (see Figs. 9, 10). This result corresponds to $ s ON. where $N. is the non-linear limiting velocity (to be discussed below in
the Non-Linear Theory section, where the threshold voltage is also estimated). ON. is independent of V10 .

Since the length of the geometry in the computer simulation was limited, the only way to see the evolution of the IREB bunching vs dis-
tance was to use a single cavity geometry in which V1 o = 330 kV (Fig. 10]. In this case we found that 1 1/l saturated at 92% at z - 26 cm
from the gap. Only at z = 46 cm did the electron bunch start to decay, dropping to I 1/1. = 79%.
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3.3. Non-linear theory

3.3. I. Introduction To gain insight with the least amount of complication, we shall treat the drift region and the gap region separately. The
non-linear evolution of space charge waves is formulated self-consistently in terms of a single partial differential equation. This equation takes
full account of charge overtaking, DC space charge effects, harmonic generation, and even governs the electron motion through the regime
when the instantaneous beam current exceeds the limiting value. The small signal limit is easily recognized. We show the modification of the
propagation characteristics of the space charge waves as a result of non-linearity (in addition to the DC space charge effect). We estimate the
local electron speed ( ,,.c) which may be expected as the limiting current is reached via non-linear interaction. In that case, the (non-linear)
slow space charge ceases to propagate. We shall also show via a simple model that when the rf drive at the gap is sufficiently strong, a sub-
stantial amount of current modulation may result even at the exit of the gap, in contrast to the classical klystron theory.

3.3.2. Formulation of non-linear space charge waves In keeping with the small signal theory we shall assume (I) that the annular electron
beam is infinitesimally thin, (2) that the axial magnetic field is so strong that only axial motion is considered, and (3) that the beam is suffi-
ciently close to the drift tube to permit the use of a long wavelength approximation4

.
5 on the Maxwell equations.

Under the above assumptions, the non-linear evolution of the displacement s(z ,t) is governed by' 2 .7

± + v ! s(zt) = i 2  - a2 s(zt). (10)

Here, y = (I - v 2/c 2
)

-
1
/ 2, T, = o /1 0, is a constant determined from the equilibrium state, and s is the non-linear displacenent from the

unperturbed position of a fluid element whose instantaneous position is z at time t. In terms of s, the instantaneous current is
I(zt) = 10 + (o/vo)as 1at and the instantaneous velocity is

v(Z,t) =-v. + I (It)
Il-Ous/8z Iat 0 I

It is interesting to note that, in the governing Eq. (10), all of the complicated non-linear processes such as charge overtaking, DC and AC
space charge effects, local transition through the limiting current, etc., are all incorporated in the v term (and through v in the -y3 term) of Eq.
(10) in a rather simple manner. In other words, the way Eq. (10) is written, the beam density parameter 5o remains unaffected by non-
linearity. This is not a trivial result that can be expected from the outset. The linear dispersion relation (4) may be readily recovered from
Eq. (10) if we approximate v by Y. and -f by y,, in that equation.

3.3.3. Propagation characteristics and the nonlinear limiting velocity Given some initial data on s and as/at, Eq. (10) may be solved, in prin-
ciple, for the evolution of s (and hence I) for subsequent times. The propagation characteristics of fast and slow waves are modified by non-
linearity. When the initial perturbation is small, the non-linearity may be handled analytically by a perturbation technique." The details are
given in Refs. (7), (12). Some of the characteristics are shown in Fig. 11. We see here that the fast wave characteristics remain unchanged
whereas crossing of the slow wave characteristics occur only half a wavelength downstream from the modulating gap, implying a stronger
current modulation as a result of non-linearity.

The simplicity in the structure of Eq. (10) provides a qualitative estimate of the local electron speed when the current perturbation is so
strong that that non-linear slow space charge wave ceases to propagate. Call this non-linear limited speed vN. and N. m vNm/ c. Since (10)
has the same structure as the corresponding equation in the linear theory, its local dispersion relationship is also similar. Thus, vN, is deter-
mined from

(12)

where yfi a (I - S.) - " 2 . The solution of 6N as a function of 0 is shown in Fig. 12. Note that the limiting speed Yv. does not depend
on how the Large amplitude perturbation is set up. It is based only on a local theory of an exact formulation of the non-linear processes. The
estimate according to (12) is in close agreement with the simulations [Fig. 101.

3.3.4. Curret modulation at the gap exit When an intense beam passes a modulating gap, it experiences a rather strong retarding DC poten-
tial associated with the space charge. It is possible that, for a sufficiently strong rf gap voltage, there is a portion of the rf cycle during which
the rf voltage together with the DC self voltage of the beam would reduce the propagating speed below the critical speed. This would then
lead to an effect sinilar to a peridi "gate" for the beam current. As a result, (contrary to the classical klystron theory), substantial current
modulation may arise once the beam exits the modulating gap.

W. the gap be short and the rf voltage across it be V, sin ta. The instantaneous speed v, and the corresponding values of 0 and -y of an
electron are approximately given by

1o 1e IV, sin, (
SPI V l + P +3P n (13)
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Equation (13) does not admit a (real) solution for 0 and, - (1 - 2)-1 2 if

V, sin (a > VA (14)

where
V .MoC2 1/3 C' 2/y3 3/2)5

m ic - yin (i'in~ j j (15)

Thus, if V, < V,, the modulating process at a short gap is similar to the classical picture-there is no current modulation immediately beyond
a short gap which provides the (velocity) modulation. However, if V, > Vi,, we expect a strong current modulation by the gap. The amount
of current modulation at the gap exit is estimated to be ) = 10 (2/wr)(I - V / V')112 . This current modulation rises rapidly once
V, > V, and becomes insensitive to V, if the latter substantially exceeds V, [Fig. 13J. These features are also reflected qualitatively in
experiments and simulations, and are yet (another) novel property associated with an intense beam.

064- - -------------------- - - - - - --
0.6

2 V2

0 0.4

0.2- Fig. 13. Current modulation at the gap exit as a

function of modulating gap voltage.

V, / V,1

4. RF EXTRACTION FROM MODULATED IREBS

Many applications demand high rf power in a TE0 1 mode of a rectangular waveguide. In this section we describe extraction of rf at a
frequency of 1.328 GHz from a modulated IREB. The experimental set-up is shown in Fig. 14. It consists of the device shown in Fig. 5 and
an rf converter. 13 The rf converter consisted of a coaxial line which intersects a rectangular waveguide through its broad side. Two movable
plungers were used to vary the lengths of the coaxial line and of the rectangular waveguide. The input impedance seen by the input of the
coaxial line is

ZL + jZ tan (kl) (16)Z, + z jZ L tan (4t) '(

where Z, is the characteristic impedance of the coaxial line, ZL the impedance connected at the end of the coaxial line, I the length of the
coaxial line, k = 21r/h, and X the wavelength (X = 21c/w).

The modulated electron beam that was used to excite the coaxial line had a current 4. = 5 kA, for a duration of T - 100 ns, energy
eV0 = 600 keV, and a frequency f = ad2r = 1328 MHz. The voltage at the input of the coaxial line was

Via = IZ,*. (17)

The following conditions had to be satisfied for Zia and the geometry of the coaxial line: (1) Zia be real at the frequency f in order to extract
power from the modulated beam. (2) Zia be chosen such that (a) V, Z 1Z4 for the frequency f and (b) Zia be small for frequencies around
I T. (3) The coaxial line with a large transverse dimension to reduce the electric field on the metallic surfaces but small enough to fit inside
the magnetic field coil.

Even though the rf power in the modulated MIREB was of the order of - 3 GW for a duration of 140 nsec, only a fraction of the rf
energy was extracted. Typically we got 1.8 GW of rf power for 30 - 50 nsec. The easy access to the rectangular waveguide helped us to
determine that vacuum breakdown, at the junction coaxial cavity-rectangular waveguide, occurred. Only after reducing the IREB power to 1.2
GW we extracted 500 MW of rf power for the IREB duration (140 nsec).
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Fig. 14. Experimental arrangement used to generate rf power and to inject it into the atmosphere. The
bottom figure shows the evolution of the IREB as it traverses, from the diode, through the first and the
second cavity, and the rf extraction.

5. CONCLUSIONS

In this paper, the interaction between intense relativistic electron beams and active rf structures was investigated. Experiments, theory,and numerical simulations have provided us with a picture of the mechanisms involved in IREB modulation by an external rf source. We have

identified linear and non-linear mechanisms capable of coherently bunching IREBs with power levels in the gigawatt range and above.

In this paper we showed experimentally that
(1) IREBs can be modulated by rf sources of low power with high efficiency.
(2) The modulation of the IREB current has stable amplitude and the bunches are phase locked to the external rf source.
(3) The shape of the electron bunches can be tailored by changes in the geometry.
(4) The bunching mechanism for a fully modulated IREE is unique in its behavior, and using this mechanism, a long drift region is

unnecessary for operation (unlike in classical klystrons).

A simple theoretical model based on linear theory successfully explains the experimental results associated with low modulation levels
(i.e., linear region). Numerical simulation extended our understanding to the non-linear region, where several simple analytical models were
constructed to help to interpret the simulation and experiments.

Experiments, theory, and numerical simulations showed that the self and induced electric fields generated by IREBs play important parts
in the bunching mechanism. The numerical simulation showed that quasi-DC virtual cathodes need not be formed and that electrons are not
reflected even at high levels of modulation. Transients and shock-excitation of cavities are unimportant in the amplifier configuration studied
in this paper.

Many applications for modulated IREBs by an external rf source can now be envisioned. One of the applications which is now being
actively pursued at the Naval Research Laboratory is ultrahigh power rf generation.
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ABSTRACT

This paper addresses the new development of high pcwer RF Klystron
- like amplifiers using modulated intense relativistic electron beams.
This research followed an earlier work in which the interaction
between a high impedance ( 120 ohm) intense relativistic electron beam
and a low power RF pulse resulted in the generation of coherent
bunches of electrons with excellent amplitude and phase stabilities.

In the present experiment a low impedance (30 Ohm) large diameter
14 cm ) annular electron beam of power - 8 gigawatts was modulated

using an external RF source (Magnetron) of 0.5 megawatt power. The
sequential interaction of the modulated electron beam with a structure
generated a 3-gigawatt RF pulse that was radiated into the atmosphere.

1. INTRODUCTION

In this paper we describe the construction and operation of new RF
amplifiers that use intense relativistic electron beams (IREB'S).
These amplifiers exploit the unique properties of IREB's - the high
self electric field-to generate electron bunches and to prevent RF
breakdown of high voltage gaps.

In 1983, we found that a high level of coherent current
oscillation appeared on IREB'S propagating through a drift region
consisting of a smooth metallic tube in which two or more coaxial
cavities were inserted(!). The following characteristics(2) were
observed in these early experiments of self modulation.

(1) The frequency of oscillation depended strongly on the geometry
and weakly on the IREB current and voltage.
(2) The frequency of modulation was monochromatic.
(3) Electron beams of voltage of up to 3 MV and current of up to
50 kA were fully modulated with efficiency approaching 100%.
A simple theoretical model' -4 showed that the "classical" space

charge waves on tenuous electron beams were modified by the self-
electric field of the beams. The modified space charge waves played an



important role in the new bunching mechanism. The theoretical model
agreed with the experimental results. Numerical simulation agreed with
-the theory and extended our understanding of the mechanism into the
non-linear region. Both theory and simulations showed that the self
fields of the IREB and the induced electric field that originate from
IREB propagation through cavities caused redistribution of energy and
density within the beam in such a wy that coherent bunches of
electrons were formed.

The theory and simulation predicted that the modified space charge
waves could also be launched by external RF source and used in
klystron-like amplifiers. This theoretical prediction was verified
experimentally in 1986 31. Later on, a series of experiments combined
with theory and numerical simulations showed that 4 ':

(1) IREB's could be modulated, by external RF source of low
power, with high efficiency.
(2) The amplitude of the current modulation was stable and the
electron bunches were phase locked to the external RF source.
(3) The shape of the electron bunches could be tailored by changes
in the geometry.
(4) The bunching mechanism for a fully modulated IREB was unique
in its behavior and using this mechanism a long drift region was
unnecessary for operation (unlike in a classical klystron).
It is known that RF power can be extracted from modulated electron

beams. We demonstrated extraction of RF power from modulated IREB'S
with efficiencies of about 40%.

A drawback of RF sources based on this mechanism was the high
impedance (120 ohms) of the"IREB, necessary for the mechanism to work.
This drawback makes it difficult to efficiently match the high
impedance electron beam to the relatively low impedance of IREB
generators (30 ohms). To achieve an efficient transfer of energy, the
impedance of the IREB generator has to be equal to the impedance of
the electron beam. However, low IREB impedance can easily be obtained
by increasing the diameter of the electron beam.

In this paper, the construction and operation of an RF amplifier
that employs a large diameter IREB is described. The IREB parameters
were: diameter 14 cm, thickness 0.3 cm, current 16 kA, beam impedance
30 ohms, total power - 8 gigawatts, and beam duration 120 nsec. This
electron beam was strongly modulated by an external RF source at a
frequency of 1.328 GHz (Section 2). About 3 gigawatts of RF power was
extracted from the modulated IREB and radiated into the atmosphere
(Section 3). Summary and conclusions are given in the last section.

2. MODULATION OF A LARGE DIAMETER HIGH CURRENT IREB
The physics of externally modulated IREB'S was detailed in our

earlier paper (1). Here, we shall give only results needed to explain
the construction and operation of the amplifier. Specifically, we will
discuss three aspects:

(a) First gap interaction-small signal analysis.
(b) Second gap interaction-large signal analysis.
(c) Electrostatic insulation of high voltage gaps.



(A) First gap interaction-small signal analysis.
Following similar arrangement as in our previous work, anIREB was partially modulated by the first cavity (Fig 1). Here a

RF In
WINDOW CONVERTER 100 KWo1ls

2nd CAVITY 4

RF out 3 ~os 4t- INTEuSE RELATIVISTIC ELECTRON4 BAt M=

1s t CAVITY CATHODE

COLLECTOR
RADIATOR

FIGURE 1 Experimental Arrangement

voltage pulse of 500 kV and 120 nsec duration was applied on a foiless
diode. As a result, the diode emitted and launched an IREB inside a 14cm diameter metallic drift tube. The IREB diameter was 13.2 cm with athickness of 0.3 cm. The IREB current was 16 kA. The drift tube wasimmersed in a quasi dc magnetic field of 10 kgauss and was evacuated
to a base pressure of less then 10-5 Torr. A gap feeding a cavity was
inserted in the drift tube. This cavity supported many resonance
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FIGURE 2 Electric Field Configuration Inside 1st Cavity

modes, one of which was a hybrid of a coaxial TEM and TM modes (Fig 2)
with a frequency of 1.328 GHz. The "Q" factor of the cavity was 1100.
An external RF source pumped power into the cavity for a duration of 1
psec. The electrical parameters of the cavity were calculated using
the SUPERFISH computer code. We found:

(1) That the gap voltage, Vg was half as high as the largest
voltage in the cavity.

(2) The electrical parameters of a same geometry cavity made out
of copper. (power dissipation P, energy stored W, quality factor Q and
gap voltage Vg).

Using these parameters one can calculate the relationship between
input power and Vg for any real cavity of the same geometry. It is
easy to show that for two cavities (subscript 0 and 1) of the same
geometry but of different "Q" the following relationship exists:

V g I  = v g °  P ) ( 1 )

From SUPERFISH code one calculates that for a cavity made of copper

Q0 = 39700 and for P0 = 5.25 Xl04 W One gets Vo = 87 kV

. . . . . . , ,, i a l l I I I II i-l



Hence, Eq (1) will give that: Vg, - 63.2P (2)

The power injected into the cavity in the experiment was typically
0.5 Megawatt. Using Eq (2), we found the gap voltage to be:

Vg1 = 45 kV

Sometime after the voltage at the gap reached its maximum value a
Blumlein Transmission line energized the diode, resulting in IREB
propagation through the gap of the cavity.

The oscillatory voltage Vg,, imposed on the gap partially
modulated the IREB generating at point z an RF current I, (z) and
RF voltage V1 (z)

1  (z) - sin (kz) (3)
Z

V1 (z) = M Vgl [cos (kz) - jC sin (kz)] (4)

where Z, k and C are quantities that depend on the geometry and beam
parameters, (4) and M<1 is the gap factor due to finite transit
times(S). (Note that unlike in a classical klystron, I(z) and V1 (z)
are partially in phase.(See Ref 3) ).

Using the experimental parameters and the ecuations in Ref. 3
one gets:

Z = 16 ohms, k = 0.039 cm-1 and C -0.35

M was evaluated from a particle simulation Code "CONDOR" (which
was discussed in Ref. 4). We found M = 0.6 . From Eq (2) we obtain
that maximum I, - 1800 Amps at a distance 40 cm downstream.

"CONDOR" cave 1, = 3200 Amps at a distance of 44 cm from the gap,
using an oscillating voltage of 50 kV amplitude.

Experimentally we found that the IREB RF current reached the
maximum at a point z = 35 cm. At this point I, = 1750 Amps.



We believe that the discrepancies came from assumptions made on
the values of the experimental parameters, e.g., the geometry of the
cavities in the simulation differ from those used in the experiment.

(B) Second Gap Interaction-Larqe Signal Analysis.
At a point z - 35 cm downstream of the first gap a second gap

was inserted in the drift tube. This gap was feeding a coaxial cavity
of low impedance, Zc - 10 ohms. The length of the cavity was 3/4 X (f
a (c/X) - 1.328 GHz). In this cavity (Fig 1) 4 resistive wires were
placed radially, connecting the inner and outer conductors. The
purpose of the wires was to reduce the "Q" of the cavity at resonance
frequencies lower than 1.328 GHz.

The geometry of the second cavity was chosen such that:
(a) The ratio of gap voltage to peak voltage was maximized.
(b) The shunt impedance of the cavity, Rs, was maximized.
Using SUPERFISH") computer code and experimenting with various

cavities we found the best cavity geometry that fulfilled the above
conditions (Fig 3). For this cavity the ratio the of gap voltage to

Resistive Wires
Vg V

R 3.6"2

R =2.7"

FIGURE 3 Electric Field Configuration Inside 2nd Cavity

the peak voltage was 0.8. The shunt impedance of this 3/4 X cavity was

Rs - 0.8(3n/4)Q(Zc) (5)

When a modulated !REB traversed such a cavity, an induced RE
voltage appeared on the gap increasing the depth of the current



modulation by a gain factor GA which reached 
maximum at an axial

position L - 1/k cm

GA - (M2 (Rs/Z + C)) (6)

GA was evaluated and found to be GA-30.

Using this gain an RF current exceeding 
the DC current was

obtained. The result indicates that a non-linear treatment 
is needed

to explain experimental observations.

The IREB current downstream from the second gap was found (Fia 41

to have the following time dependence

II - 17.5 kA

140 nsec

FIGURE 4 Time Derivative of the IREB Current Measured

by I GHz 7104 Oscilloscope

1 - 10 + 11 cos ( t) +. ........

i, reached a maximum value of 8.5 kA at a distance 39 cm from

the second gap.



Large changes in the RF power input into the first cavity affected
1, only marginally. Hence, we assumed that saturation of the
mechanisms was achieved. But unlike our previous experiment(3) in
which I, /I, - 0.8, here I, /I. - 0.5 and could not be further
increased. Since the RF current measurements were inferred from
measuring the magnetic field associated with the electron bunches we
investigated whether this magnetic field differed from the one
associated with DC IREB current. Using linear theory (5 1 we estimated
that:

2
1 (REAL) = 1 (MEASURED) x (7)

i+C

where

rw -rbj

c exp - (8)

1, (real) is the real RF current and I, (measured) is the measured RF
current and where rw and rb are the radii of the drift tube and the
IREB respectively, IS = v, / c, v, is the speed of the electrons in
the drift tube and IC is the critical current in the drift tube.
Substituting the experimental results one gets

I, (zeal) = 1.4*I (measured) - 12 kA (9)

Note that (1) Eq (7) was not solved self-consistently since we
substitute I = I + 1, (real) and (2) only linear theory was used to
derive Eq (8). We can conclude that the measured RF current is
probably lower than the value of the true RF current.

(C) Electrostatic Insulation("
The output power of a classical RF generator is limited by

voltage breakdown across cavity gaps. The factors that influence the
breakdown are electric field, geometry, frequency of the the RF,
material used, vacuum and cleanliness. These factors are optimized in
high power RF devices so that the largest voltage possible can be
sustained across a gap. Most of these factors cannot be optimized in
the environment of IREB generators. Moreover, in the experiments
discussed earlier no special care was taken to prevent vacuum
breakdown. Even so we found that voltage of the order of 0.5 MV
appeared and sustained on the gaps without any indication of vacuum
breakdown.



The reason for such behavior were discussed by us before. It is
rooted in the unique properties of IREB'S, properties that do not
exist for tenuous electron beams. We found that the self electric
field of an IREB modifies the electric field configuration of a high
voltage gap in such a way that the voltage gradient on a negatively
charge electrode is reduced and for high IREB current can even reverse
its sign. This effect suppresses emission of secondary electrons and
eliminates conditions necessary for vacuum breakdown. we called this
effect electrostatic insulation.

In the next section we shall show that electrostatic insulation
plays a role also in RF power extraction. This effect is of critical
importance in any device in which IREB's interact with high voltage
gaps.

3. RF EXTRACTION FROM MODULATED IREB'S
It is well known that RF power can be extracted from a modulated

electron beam. Since the electrons in an IREB are relativistic there
will be less reduction in particle velocity (or IREB current) while
electrons are loosing energy. Hence, we can model the modulated IREB
as a constant current source I

I = I, + I cos (wt) +........ (10)

The interaction of this current source with an RF structure can
lead to transfer of power from the electrons to a load. The structure
can be described as an electrical element with an input impedance of
Zi.. A voltage Vin will develop across the electrical element

V= * I (11)

To extract maximum RF power, from the IREB, with a frequency w/2n
the following requirements have to be fulfilled:

(a) Vin < V. otherwise the constant current source model for the
IREB will not be correct and the flow of IREB will be disrupted.
(b) Zi (- Z(w) ) has to be real at the frequency of the
extracted RF.
(C) The absolute value of Zin at other frequencies has to be
smaller than Z(w).
(d) Zin = 0 at low frequencies of the order of l/T where T is the
beam duration (in the experiment T = 120 nsec).
in order to transport this power into a load an additional
requirement has to be fulfilled:
(e) Elimination of RF breakdown.
The device shown in Fia. 1 addresses all of the above requirements
and consists of the following parts:
(1) A high vol tage gap across which the electron bunches are

moving and losing energy. Electrostatic insulation is of importance
here since voltages of the order of 0.5 MV will appear across the gap
when efficient extraction of RF Dower is taking place. The maximum
current that :an propogate across the cap is given in Ref. 5.



(2) The gap is connected to an antenna via a coaxial transmission

line. The center conductor is supported by thin metallic rods which
are terminated in 4X cavities (Fig 1). The axial positions of these
rods are the locations of zero-amplitude node points of stand-ing
waves. The total impedance of the parallel circuits formed by the rods
is large and can be considered infinite for the 1.328 GHz component of
the RF current. This impedance is lower for higher frequencies and
zero for the low frequency and the DC components of the current.

At the far end of the inner conductor an RF "obstacle" in a shape
of a disc was placed. The axial position and diameter of the disc
could be varied. This part of the convertor was modeled using
transmission line calculations. Fiq. 5 shows the model. The cap is

IZin Co Zo C_!,

-- _ _ _______I I

Zin = R + jX

FIGURE 5 Ecuivalent Circuit of the RF Convertor

represented by a capacitor of value C., the obstacle is represented by
a capacitor C, the load is R1 and the transmission line is cf length Q
and impedance Z,. Realistic values for the parameters in the model



were found in the following way: C, was calculated from the shift of
the resonance frequency of an ideal LX cavity with a similar gap
geometry

1
+ j2nfC °  = 0 (12)

where f. is the resonance frequency of the ideal 'X cavity
and f is the resonance frequency of a cavity with a gap of capacitance
C'. we found that C0 - 6pF.

The value for Ri was assumed to be equal to Z. The reason for this
was that when the obstacle was removed the VSWR was close to I over a
wide range of frequency. C and C were left as free parameters that we
tried to optimize so that the input impedance Zi, - R + jX would be
real qt 1.328 GHz and of value a between 50 ohms to 100 ohms. Note
that can have a series of solutions separated by wavelength.
Fig. 6 displays one solution for

x R

+10- +45.4- XR /

E 0 +35.4

-1 ± 25.4-

-20 +15.4

i I /30 +5.4-\

90 91 92 93 94 95

cm

FIGUIRE Real and Imaginary Components cf the imput
impedance Z n vs Length



F and X. We found that had to be chosen with great accuracy and
that the value of R increased when C was increased.

The model is only qualitative in nature since it does not take
into account the existence of non TEM modes at various places inside
the convertor.

(3) The last part of the convertor was the antenna which has a
conical shape for both the inner and outer parts. The length of the
antenna was a few wavelengths. A lucite plate 5 cm thick acted as a
window.

A set of experiments were performed in which and C were adjusted
so as to get maximum radiated power. With optimum conditions we
observed radiated power (outside the horn) of 2.7 gigawatts (Fig. 7).
The IREB parameters were: 16 kA current and 500 kV voltage. (Note that
the lucite window attenuates the RF power by 10%).

3
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FIGURE 7 RF Power Vs Time for Shot No 1118

The total radiated power was derived in two ways:
(1) The radiation pattern was measured and the power/cm2 was

obtained. The total radiated power was then obtained by integration.



(2) An external RF source of 50 ohms impedance was connected at
the gap via a slotted transmission line. The electrical parameters of
the convertor were adjusted to achieve a VSWR of 1 measured by the
slotted line. This implied that the convertor acted as a matched load
to the external source. Measuring the input power and the response of
a receiving horn yield the calibration factor. Excellent agreement of
the two power measurements were achieved.

In the power measurements cases the receiving horn was connected
to a 7103 Tektronix 1 GHz oscilloscope. All of the electrical
components that were used in measuring the power were calibrated
whenever a series of experiments were performed.

From Fig. 7 one can see that the radiated RF power had a slow rise
time, about 60 nsec. It takes a time T to fill a cavity
with RF

2

- T1/e ; I/e = 2Q/w (13)
M

Experimentally, we found Q : 80, hence, T : 60 nsec. At low
RF output power the decay time of the power also lasted 60 nsec. At
high power the decay time was shorter and at a power of 2.7 gigawatts
this time was 30 nsec long. We speculate that the gap lost its
electrostatic insulation due to the drop of the current at the end of
the IREB pulse.

On occasion when the current was terminated earlier due to flash
over in the diode the falltime of the current and the duration of the
RF power was even shorter.

4. SUMMARY AND CONCLUSIONS
In this paper, the construction and operation of a high power

amplifier were detailed. An intense relativistic electron beam of low
impedance (30 ohms) and of high power (8 gigawtts) energized the
amplifier. The gain of the amplifier was 37 dB and radiated power was
3 gigawatts. Power efficiency was 35% and energy efficiency 20%.
Unlike in the classical klystron, long drift tubes were not necessary.
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ABSTRACT

This paper addresses several issues which are relevant to the high power
klystron amplifier experiments at the Naval Research Laboratory. To a large
extent, these issues originate from the DC self field of the intense beam and
therefore are not treated in the conventional klystron theory. Among them inciude
electrostatic insulation, limiting current which can flow through a gap in the
presence of a biased gap voltage, and the modification of the transit time effects
by the beam's space charge. We e,:amine the proper interpretation of magnetic probe
measurements of current modulation on an intense beam. Particle simulation of the
large diameter beam yields excellent agreement with experiments and theory.
Magnetic insulation in the coaxial rf extraction st:ucture is shown to 'be adequate,
in agreement with experimental observations.

INTRODUTI0N

In this paper, we consider several issues whi:h arose from our high power
klystron amplifier exoerinents.- The resolution of these issues requires extension
of the conventional theory, as an extremely high perveance beam was being used (500
kV, 20 kA).

With simulation and analytical theory, we demonstrate here
(a) that a large diameter beam carrying a high current can indeed be modulated

efficiently by an external rf source of lo=,power, and
(b) that significant electrostatic insulation ' against rf breakdown across

the gap is obtainable. These results are strongly supported (and
suggested) by the present experiments.

Also given is an analysis of
(c) the lii:ing current which can be transported across a gap that is subject

to a biased gap voltage,
(d) the significant mocfcation of transit time effects in a gap when the

space charge of the beam can no longer be neglected, and
(e) the proper interpretation of magnetic probe measurement and the inferred

current modulation on the intense beam.

Item (a) is an extension of our earlier simulation. Results from Item (b)
are a corroboration of the e:p:erimenzal observation that rf breakdown at the gap
could be consideraZ1v reduced" by the electrostatic self-field of the beam. Item
(c) gives some cons:raint on the efficiency of the rea::v:szic klystron amD . ier.
7- also gives an est:ma:e of the ma::imum amount of charze which can be maintained
in a diode. Items (d) and (e) are yet other novel properties associated .;th the
space charge of the intense beam. not shared by conventional klys ron amplifiers.
.inally, we verify that the e::ternai magne:ic field - hn:n vas used in our



exeriment is sufficien.t to Prohibit e ectron or ion flow across the coaza.
geometry n tne r: e::rac-:on section, in agreement with e-perimen::.

A. Modulation of a Larre niameter Beam
,4

The particle simulation previously used (CONDOR code) may readily be
extended to determine whether a large diame:ze beam is as easily modulated as a
beam of sma!.er diameter. Although some preliminary studies suggest the answer to
be positive,- the simulation given here shows excellent agreement with
experiments. ;e shall present results on the current modulation, energy
modulation, and phase space evolution of the beam.

The geometry for the two-cavizy simulations is given in Fig. 1. The firs:
cavity was driven by an external RF source, star:ing at t = 0 nsec. The low 0 of
the (numerical) cavity was such that at t = 6 nsec, the fundamental TEM mode of the
cavity saturates, producing a gap voltage of 40 kV at 1.24 GF!z. At this time the
beam was injected with a current rise time of 5 nsec. The simulation continues
until t = 20 nsec. The impedance of the radial transmission line from which the
first cavity is driven is 6.25 ohms, so that the DC energy of the beam is lowered
as it crosses the first gap. The RF interaction is unaffected. The gaps are
located at z = 2.8 and z 36.S cm.

Q.

(Z) ( cm

< FI .

" I j ;" .

- 20

)Z (cm)

Fig. 1. The geometry (top) and the Fig. 2. Phase space plots a: z . 20 ns.
-rren: modulation (bottrm).

The ina::ae 2.,E conditions are as follows: Current 16 L. energ- 600 keV
(500 KeY afer the first: diame:er 12.6 cm. thickness 0.2 cm. The first gap
produced rf current i. = 2. 6 ka at 31) cm from :he firs- gap. This current
modulation -ue to the firs: gac. being in good agreement vith the linezri:es
tneory, exalted the fundamental TEM mode of tne second cavity to produco an



osc:i.ia:.ing volage of 4.^ kV a: the second ga:. Th .- increases to
12.8 kA, 3., cm be,!onc tie seccnd gap. versus z pLo:ed in Fig. . Figure 2
is the phase space plot of the particles at t - 20 r.ec. This figure shows
modulation of particle energy and the bunching of elec:rons at the second gap. Our
simulation verified the following results for the large diameter beam:

(1) The bunching mechanism reaches steadv-s'ate a:'er a few RF cycles. Phase-
space plots, electrostatic potential plots, and modulated current are iden:ical
from RF cycle to RF cycle.

(2) Transients are of no importance and par:ice reflections are not necessar;
for the mechanism.

(3) During each cycle, the energy of the beam is decreased at the gap to a
critical value a: which point theoretical analysis indicates that the propagation
of the slow space charge wave is halted and electr:ns are slowed to a nonlinear
limiting velocity, corresponding to y4c = 1.2 x 100 m/se: shown in Fig. 2. An
artifact of this interaction is the low energy population of particles that can be
seen in this figure.

(4) Half a cycle later, the energy of the particles is increased beyond the
injection value. These particles have a narrow enerr, spread.

40-

< 30

20-

I0 . " 9. 19. "- -

- T (ns)

Fig. 2. Current modulation and energy modulation a: = 66.8 cm.

For the present case, we additionally diagnosed the -EB in some detail at z
66.8 cm, where the peak modulation was observed in the exper:imenzs. Total beam
energy (potenzia- plus kineic) and current are olot:ed versus t:ine over to rf
cy:cles, from t = 1.5 nsec to t = 20 nsec, in Fig. 3. This figure contains t6e
following resul:s:

(I) The par:icle energ; is modulated as Z(:) - .s4n with
Z =175 keV and is stable from c".-cle to cycle. The ene-gy modulation appears to
b out of ohase with the current modula -on. but the sma1, _Dozuat:on of particles
at high energy and low current carry ver[: -ttle power:.

(2) The 500 keV beam was not modulated by the full 2 Ka. ampitu6e o the
voitage at :he second gac. indica:ing a finite :rans" time effec:. [See Setion D
below. The coupling e-zient, P.. a=e-rs to be C. a: low current and
at peak current.



(2) Significant compression of RF pover has oc rred with more -- an 60% of the
power compressed into less than 30% of the RF c.'zce.

(4) Comparison of these results with tnose obtained when the first gap voltage
is increased to 50 kV shows only a 2.1% increase in the peak modulation at 66.8
cm, from 12.8 k.A to 13.2 kA, indicating near saturation of the mecnanism.

B. Elec:rostatc Insulation
The iact that g-gavact levei of rf power has been extracted without evidence of

breakdown difficulties at the gaps can be attributed to the electrostatic
insulation provided by the annular intense oeam.- To corroborate these
experimental findings, we perform s-mulaztons on the geometry shown in F-g. 1 in
which the second gap 4s sealed. An annular intense beam is injec:ed into a drift
tube with E = 500 keV and i = 16 k.A., with a current rise time of 5 ns, past the
radial cavity. The gap voltage is controlled externally via a radial transmission
line which has an impedance of 6.25 ohms. At t = 6 nsec, the externally applied
voltage across the gap is increased linearly from zero to 400 kV over 4 nsec, and a
second beam, I -1 amp, Z = 1 kV, is injected continuously from the left-hand gap
wail at z= 2 cm. The simulation continues until t 10 nsec.

0.4 .

1. 1300-0.4 --

/ 1200

- 100-

0 2 4 6 8 10

T (ns)

Fig. 4. Imposed gap voltage (V ) and the .eakage current )across the gap.

g

Voltage across the gap versus time is plotted in Fig. L. Figu.,re 4 also shows
the leakage current crossin E :ne gap as a fun:cion c: time, measured at z 2.2 cm.
initially, the rising DC current -of the beam and the transmission line impedance
cause a voltage drop which reaches 100 kV at t = 5 nsec. The e::.e: of the
external!y applied voltage can be seen therea::er. The sudden increase in gaD
leakage current at t = 8.6 nset indicates insulation for voltages less than 150 kV.

The effect of the electrostatic field of zhe in:ense beam has been ver:ifed by
plots of particles in (yic,:) phase-space at t = E-4 nsec and at t x 8.8 nsec. In
tne corner, ne gap:Z :n...ec anc tne iow-energ" part:cirs in the gap are
re ected, :r the latter case, the par:icles are :ransttted. obtaining 150 kV as
they cross the gap.



Theoretical analysis indicates tat as the i .i
-n current is a:Droahe, he

kinetic energy of te inzense beam vil be lowered near tne gap, causing an
increase in the net charge near the gap and a corresponding increase in tne
electrostatic insulation.

C. Limiting Current Across a Gao vith a Biased Voltage
The moouiatea oeam yieias its Kinetic energy to r- ;hen it is retarded by the

decelerating voltage across the gap of the extraction section. One limit on the
extraction efficiency is governed by the maximu retarding voltage which the gap
can substain without the formation of a virtual cathode. Eauivalently, we may ask:
Given a biased gap voltage, what is the maximum current which can be transmitted
without the formation of a virtual cathode? Here, we analyze this question via the
use of the simple parallel plate model. The extension to the actual exDerimental
setup will be given toward the end of this section. Ve also point out that this
analysis is also of interest to diode (or inverse diode) physics, as it yields the
maximum charge which can be held vithin the diode region. This problem was treated
in some limiting cases in Refs. 6-9.

Consider an ideal gap consisting of two parallel plates of area A., separated by
a distance D. The left plate K (Fig. 5) is grounded and the right plate A is held
at a voltage V1Cos wt. In this section, we assume that the transit times of the
electrons are so small compared with the rf period 2m/w that we may pretend w = 0.
Thus, when traversing the gap, the electrons see only an essentially static field
and the charges are adjusted instantaneously within the diode to be consistent with
the instantaneous diode voltage and current. A strong axial magnetic field allows
only one-dimensional motion.

Z.=O Z:1

V

K

X=O X=

Fig. 5. A simplified model for beam-gap interaction.

Let J be the-:urrent density of the electrons impincing on plate K. Let 9,
v./c. y; (-5T) - '  be the normal=d velocity and ncrmali:ed energy of t:le
electrons when the,' enzer pl.ate K. and E v:/c and y. oe tne corresponding values
wnen the electrons exit plate A. Since Oe ar6 ncw deailnc vith a static problem.
conser';ation-of energy gives y, = y- le iV, /. C- and conser:;at:icn of charge gives

Al 0



J = je nv = I/A, a cons:ant e'/er;'-fhere, where r, an v are :he number denzi:." and
veloci:. of the eecz:ons. Lei -7 be the elec::.c field. ;e need to so>'e tne
force law and the Poizson equation:

a- ( YO) =-(1)

.(2;

;C

Here, we have introduced the normalized variables: z a x/D, c a leIED/m0 c,

a JeD le /m 0 c3 C0 (> 0). Equations (1) and (2) may be combined to yield

r- (y8) = J = constant, (3);z ;z

vhose solution is

121- + < cl + yi~i, (a)

where & is a time-like independent variable related to z by

z = j(

0

and c, is a constant to be determined. In writing (4), we have used the boundary
condition at plate K: y$ = yi8. when = z = 0. The conszant ¢I is related to the

normalized transit time &:

YfS= C y (6)
±- 2~

It can be show-n8 that the total amount of charge, 0, vi:hin the plates is
proportonal to Z,,:

Q = -C, x (5:1 keV), (7)

where C is the cacaci:ance of the gap. which in this case is simp Ar 0 /D. Note
that , is determined from [cf. Eq. (5)]

i f
1 f Z (')d-'. (8)

0

It can be shown that, vith

(9)



Eq. (8) may be re'ritzen as

I

'U"= dn P(1 ) (10)

where

P ( r) = ( ) 2_ n) - . 1l (Y . - Y

Equaticr (10) deter-mines the limiting current as a function of the biased gap
voltage as follows. Supoose that we specify y. and y, (i.e., initial beam energy
and gap voltage), the right-hand side of (10), denoted

by F(A), is a function of A. The critical value of J is then given by the

stationary value of F, and the critical amount of charge within the plates (i.e.,
&,) is deter.mined from (9) using those values of A which yield stationary values
of F.

In general, there are "vo cr:tical currents J ,, I f or given values of Yi Yf.
The one with the lover value, JC , is given by C. Cf

c!. = J f f ( 3}~f (12)

where

z

o4f~z)= {dt ..t 4 (13

0

whose properties are cescribed in consierable detail in Ref. 9. Physically, Jcl
is the minimum value of J which is reauired to re:ard some electron to zero
velocity somewhere wizhin the diode, at a given value or yy (yx > 1). The other
critical current, Jc2 is the ma:imum amount o: current which Zan 5e transmitted, at
a given value of Y,,y=. A: the moment, we have not found an analytic solution for
c-. Shown in Fig: 6'are the values of J ! and J1, as a function of the gLo

voltage Vg = V when Yi = . Also shown fl Fig. 6-is c corresoonding to J
g ii
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Fig. 6. The normalized limiting currents J c, J1 and the
normalized transit time [. corresponong to J¢2 "

Finally, we comment on the extension of our analysis and the use of Fig. 6 for
other realistic geometries. The crucial quantity is the current scale, I,, which
enters in the definition of the normalized current J. In general, we wrile

s

where

I = Cm0 c /e)/T, (15)

and C is the capacitance (in vacuo) and T is the time requi:red for light to
traverse the system. In the parallel plate system, C = A r /D and T = D/c, and the
normalized current J in ('4) is consistent vith the one introcuces in Ec. () It
is of interest to note that the current scale 7 introduced in (I) is also an
adequate one to describe an enzirely different systen--tnat of a thin annular beam
of radius rb drifting in a circular vavegide of racius r.. and leng:h t. in this
geometry, C - 2%. U/tn(r dr..) and T . tic. :.cuaton (5)'then yie;ds i 8.53
k/Cn(r/r ), vnicn is the current scale which enters reoeatec v in our stud es o-b I 1. -1 • -

tnis system. Finally, for the present r: exr7ac::on emper:ment, C-is the
capacitance at the extrac:ion gap and = D/c vhere D is the gap -eng:h. [See Ref.

for the determ:ina:on of C1. 7or C =6 picofarad and D= 2 cm, 1 - 6 k-. If
y. - 2 and Y. = 1, Fig. 6 gives j , 2, 0.5 and J Z5 k. . Note
t~at this value of 2 kA is vert, £1-se z6 "he peak curreft obefZ/ in the
exmeriment.

D. Tra5: fiee A.ez Aoss 1 Finite ga
Trans z:::.e e::ecz:: u:nzo are Ignorea in the Previous section, are now

considered. These e-ec-s are aell-kno-nu for the case Cf a tenuous oeam. Here ve
extend the .I a a .._ z-"s for an iRB3. The es-zimazs ;iven here sno t at te



s.ace cna=ge e ne esF-f-anea r is a s:a -e rac:ion cf
the lii::Ing curren-.

For our geometry of an annular beam, the transit time effec: can be ana..yzed by
solving the equation'

^ 1) I IeE_(:)
vc - S sin wt. (16)

Y 2L z m oY3

In this equation. S is the (nonlinear) displacement of an elec-ron a: positionrime and = i /(: e ). The last term in tne right-hand side of this ecuation

represents tne moau aw=ng electric field r (:) at the gap, and the remalning terms
on the right-hand side recresent the collet-ive forces due to the space charges or
the beam. ;e shall assume that E(z) is a nonzero constant for 0 < z < D and is
zero elsewhere. The classical rransit time effect is deduced from (16) if we set

+ - 0.
0

A linearized study of Eq. (16), to be published elsewhere, shows that the
electrons, as they cross the gap, experience an equivalent elec:ric field which is
reduced by a factor

M = Mc Icos 01 (17)

where Hc = [sin(u./2v )]/(wD/2vo) is the well-known transit time factor for a weak

beam and 0 = c 6 wD/v Here, a 1 13 5 , = (2 + 2 )2e 6
-0 0 SOC 0

o o

For D = 2 cm, w = Z x i.3 GHz. v = 0.8 c, =/E- 1.5 (beam current Is 50 per
0 0

cent of the limiting current), then M = 0.97 and cos 01 = 0.7Z3. For d = 3 cm

and the remaining parameters unchanged, H = 0.95 and Icos 01 = 0.434. There is a
substantial reduction in the effec::ve ga5 voltaze which the bean exoerienzes cue
to space charge e::ects. Thus, in the energ; diszribu:ions of the electrons [cf.
ig. 3], the peak energy is no: necesarily equal to the sum of the peak gap

voltage and the peak kine:ic energy.

Relationshio Betveen ane-ic Fe B " and

The value of B. measurec at the C>y:ncr:ca_ ;aveguide wall (r..) deends on the
beam current '= -n a ratner comi:cazec manner i the beam current is highly
modulated. Th@ DC reationshic i.!2/r no longer holds. How one should
interpre: the modula-es; current . crom :ne measurec vale or B.. requires a more
careful considerazion. to be glves here.

Ccnsider a thin annular electron beam of radius r. c-rying an a::: . ..urrent
... :) :.exp( - :) v'nere .. is a constant a.c w., are ccns:-.ts. This

a?nular ele:tron snee: gives rise :5 a value c. a
r= ., re-ate to -. y

-. = x l'zr.) (E



where

2 22

and J is the Besse! function of order zero. In the DC limit, w - C, k - 0 and
p + 0, (1g) gives

I (DC) = HIO x 2-- (9)

which is the well-known relation. This relationship has been frequently used to
infer the beam current from B-dot loop measurements.

In the present experiment, the beam current I, is a superposition of the fast
and slow space charge waves. Since we are consiering the relationship between I
and B1 , through Maxwell's equations (which are linear) we may separately consider
the fat wave component and the slow wave comoenent. For the present geometry w
and k are governed by the dispersion relation

2v 2 2 2 (0(w - kvo) = (kc 2 _ 2) (20)

0

which yields k,,k s, the wave number of the fast and slow waves.
Let us denote

J0 (Pr.) 1o (0 - )C-=- =~b - - (21)

where rl f- p 2, and is the modified Besse! func:ion of order zero. Referring

to Ec. (18) we see thai Cf c > 1., the true value of T would be greater, by a
factor of c, than the value inferred f:oM B . under t~e assumption of the DC
relationship (19). Of interest are the values c. corresponding to the fast and
slow waves. Useful expressions may be obtained t1-s-he lo, curren, limit f= a)
and in the high current limit, as the limiting current is approached (/& "+ ).

In the limit of very weak curren:, m - 0, both k. and k approacns
k =k = w/v

by Eq. (20). Thus,

S :.s =
0.0 0

and we have

1 (1C
s ~ ~ ~ ~ ~ 'O V L o"o J "



in obta nin (g ) , .e have use: :ne a:.mztc:-. c e:..:res.ons for " (7: ). or
Z2 cm. .. = .4 cm, 5 v = 1.., tne ennancemen z factor c,, c are
approximateiy equal to 1.06. Thus. for very low DC current, one may use rhe DC
relationship, the error being of the order of six per cent. This is in good
agreement with our simulation using the CONDOR Code.

When the limiting current is approached, k, - w(l )/2v . Then 7, - (w/c)(1
- e)/2:s a n/(y-5) and 0 0

=f exp { (r - b. (23)

In our experiment, c. = I to within three per cent. Thus, the fast wave component
of the current modul~:ion would give rise to B -Vith a magnitude close to the DC
case.

The above conclusion does not apply to the slow wave component of the current
modulation vhen the limiting current I is approached. After some manipulation, we
find

- c c (1 - I /c) X ( - I c )

as I 0  1 • Thus,o

o (r - rb); (2k)

which gives a large value if I 4 1 . The presence of the slo- wave componen: may
lead to an underestization of he cuur-nt modulation (-hen the limitin; current is
aoproached), if one azc:ies only the DC relationship (19) to the measured value o:

In fact one might even be'tempted to use . the instantaneous current, in

p;ace of I in Eq. (24) when the beam is highl-: modula:ed.
0

For e:amle., take r. = 6.3 cm. r = 6.8 cm (c.f. Fig. ], = 0.8, X = 2 cm.
= 0.75, then c. I and :=.. f e further assume ta the fast and s'ov

wave components of the curren: modulation are abou: equa, then i. z E m x 2ny.. x
l) = x .x .. Thus, the use of m8) nay un~erestmnate tue

moau ate6 cur~ent b,'as mucn as forty per cent - a point suggested by our
exneriment and consistenz tm our s:mu;at:ons.

F. ane:ti nsualcn :n a £ca:ia' Geomet:r.
."e aDil:ty zo e :trac: nign Poer m::crovaves deoencs cr l -  on the

sunoression of electron and ic fbovs across the coa.:al line by the e e.na......
°npose l a na. magcn --e • The fo1owing estimates snou that the axial

magnetic fied (- 0 NG' use .. n the -. rren- experiment is sufficiEnt to provie
tne reouirez i--,;aticn.

Since the :- wrecueno','. . is considerab-y less than the rela:ivistic ee:t
cyclotrcn frequency, -.e mav trest tine :- fielas as e__en.. s:atic as far as



e_e::ronlc mc:ions are concernec. Uncer this azsumt: on, the rea:-.sz Hu"

cut-off condi:ion used :n agne:ron s:udies would give the magne:i. field required

for insularion. For a coaxial line of inner radius a and ouzer radius b :ne
required magne:ic field to provide .agnet:c insulation is given by-

B k ) - 1.07 kC, _____ - ! 0.098 [F o Ij (I2)

where Z = (60M) x n(b/a) is the charac:erisci: imoedance of :he coaxial line,hi
is the current flowing along it and D - (b - a.)/:a is the ecu'.'alent gap vidh.
If a . 6.8 cm, b = 11.5 cm. then D = 6.3 cm and Z . 31.53 5. For a maximum
current o 30 k.. say, B 0.73 kG. T~e imposed magne:ic field is 10
kG, which is0 aout 14 times higner than Bothe value recuired or magneicinsulation. Thus, magnetic insulation against electron flow is virtually

guaranteed.

For the ions, their cyclotron frequencies w . are much smaller than the rf
frequency, we may not use the static formula. Instead we solve the equation of
motion and place an upper bound on their displacement across the field line.

The ions satisfy the nonrelativistic force law, m dv/dt = e(: . v + B ) where,
for simplicity, we ignore the rf magnetic field in coarison vith the
magnetic field. and 7 4s the radial rf eiec-:ric field. One can readily show that,
if x(O) - 0, and x(0) . 0,

Ix(t)I < e-E/m LO - W (26)
0 C C_"

For m i = 1840 me t Bo = 10 kG. W = 0.06 GE:, and W = 2% x 1.3 x 10sec -, hen
(26) gives Jx < 0.78 mm if E< 300 kV/- cm. Thus, magnetic insulation for the

ions are also assured.
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SIMULATION STUDIES OF PARTICLE ACCELERATION POWERED BY
MODULATED INTENSE RELATIVISTIC ELECTRON BEAMS

I. Introduction

Future progress in accelerators and their applications may depend

critically on the development of physical mechanisms capable of generating

high voltage gradients. It has been shown that a high electric field can

be established in rf structures by modulated intense relativistic electron

beams (MIREBs) of power greater than 109 W and that such a beam may be used

as an rf source to power an accelerator, obtaining voltage gradients as

high as 100 MeV/m or greater.I '2 Such accelerators, in which a low power,

high current beam interacts via a metallic structure with a low current

beam to obtain very high energies have been suggested by an number of
3

authors, including Voss and Weiland, in addition to the accelerator

outlined in Ref. 2. Wakefield acceleration has recently been observed in

experiments carried out by Figueroa et al.
4

Theoretical discussions of accelerators powered by MIREBs2'5 have

suggested unusual properties that may be present in the following devices:

Firstly, the demonstrated conversion of the high dc power of an intense

relativistic electron beam (IREB) to high rf power in the MIREB by the use

of tuned radial cavities implies that the MIREB may be coupled to an rf

structure so as to drain significant power (> 1 GW) from the beam at high

efficiency and, secondly, geometrical effects may allow for sizeable

variations in efficiency, field gradient, and coupling between the high

power MIREB and the rf structure with small changes in the experimental

parameters.

In the present paper we study these issues via an axisymmetric

particle simulation using the CONDOR6 code, which has been previously and

successfully applied to the physics of such intense beams.7 The

accelerator configuration to be studied is similar to that outlined in Ref.

2 and is pictured in Fig. I.

Manuscript approved December 28. 1988.
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(1) An annular IREB generator injects a beam of radius rb = 6.3 cm,

current 10 = 16 kA, energy Einj = 500 keV and duration T = 150 ns into a

drift tube of radius r. = 6.8 cm. The IREB is guided by an axial field,

B = 10 kG.
0

(2) The IREB is fully modulated at f = 1.3 GHz by a pair of tuned

radial cavities, the first of which is externally driven by a low level rf

source (magnetron). The modulation region is immersed in the axial

magnetic field.

(3) The MIREB is guided into a cylindrical cavity of radius 9.6 cm.

The cavity is loaded with thin disks of radius 9.0 cm and separation

1.88 cm. The MIREB, which has a frequency of modulation corresponding to

the desired mode of the rf structure, is terminated at the first disk. A

resonant interaction occurs at the gap defined by the end of the drift tube

and the first disk of the rf structure, transferring energy from the beam

to the rf structure.

(4) An emitter, located on-axis on the surface of the first disk,

emits electrons when the fields within the structure reach a sufficiently

high value. This secondary beam is then accelerated by the rf fields,

guided by the axial magnetic field.

The modulation stage of this device has been studied in some detail

for a 1.9 cm radius annular beam in a 2.4 cm radius drift tube 5'7'8 and has

been successfully repeated at I° = 16 kA and rb = 6.3 cm in a drift tube of
9

radius 6.8 cm.

In the present paper, we will investigate the coupling between the

modulated beam and the rf structure and the subsequent acceleration of the

secondary beam and shall proceed as follows. In Sec. II, we give

theoretical background on the expected field gradients in the rf structure,

define a transformer ratio for this acceleration scheme, and present

2



numerical results from the Superfish 10 code on the modes of the rf

structure. In Sec. III, which contains the main results of this paper, we

will simulate particle acceleration and will see that power in excess of 1

GW may be transferred between the primary and secondary beams. Here we

will consider the effect of geometrical variations on the beam-rf structure

coupling and on the transformer ratio. Section IV will contain a detailed

discussion of the numerical issues that effect the ability of these

simulations to correctly predict experimental results. Section V

concludes.

II. Fields in the RF Structure

The process of energy transfer between the primary and secondary beams

in this accelerator resembles that of the wakefield schemes described in

Refs. 3 and 4 in the use of fields excited by the primary beam in a disk

loaded structure. In these schemes, the two beams travel colinearly such

that the transformer ratio is defined as R = E2/E1 where E1 is the

magnitude of the decelerating field experienced by the primary beam and E2

is the accelerating gradient experienced by secondary beam. In the present

case, however, the interaction of the primary beam with the rf structure

takes place only as the beam traverses the gap near the first disk of the

rf structure, where the beam is terminated, while the secondary beam is

accelerated along the entire length of the rf structure. The transformer

ratio is then defined as

<Eai >LR axis-
R E d (1)

gap
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where d is the gap length, L is length of the rf structure, E is thegap

decelerating field in the gap (assumed spatially constant) and <Eaxis> is

the average field experienced by the accelerated secondary beam particles.

This geometry has been modelled as an interaction between a

sinusoidally varying current source and a transmission line consisting of a

series of R-L-C circuit elements. 2 This model exhibited many features that

have been found in the numerical simulations, but such a model has a

limited predictive capability.

Some ins4ght into this problem may be obtained by assuming that the

disk structure will behave like a resonant cavity. The normal modes of

this cavity may be solved for by neglecting the interaction region at the

2gap. For the purposes of this discussion, however, we may consider the

only fundamental mode of a disk-loaded cavity of length L = nX/2 where X is

the wavelength of the rf and n is a positive integer. In this case, the

z-component of the electric field of the fundamental mode varies

sinusoidally along the axis and radially as

E z(r)/E z(r=O) = Jo(kr)/J0 (r=O) , (2)

where J is a Bessel function and k = 2n/X. In the analysis of Ref. 2, it

was conjectured via a heuristic argument that the ratio of the field

experienced at the gap by the primary beam, r = rb, to the peak field

on-axis, r = 0, would follow this radial variation. This suggests that the

radial position of the primary beam in relation to the mode structure

within the rf cavity is of some importance for the strength of the

interaction, the efficiency, and the obtainable transformer ratio.

The normal modes for a given axisymmetric cavity may be calculated

numerically by using the Superfish1 0 code. The Superfish result for one

such cavity is shown in Fig. 2. Here, a disk loaded cavity of length L = X
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is used and the gap region is included. Except for the metallic boundary

condition imposed at the right-hand wall, this geometry closely resembles

that of Fig. 1, where the right-hand boundary is an open drift tube for

which the 1.33 GHz cavity mode is below cutoff. This result and a series

of similar results, where the location of the right-hand wall was varied,

show that the expected cavity mode is obtained.

III. Numerical Simulations

The simulation geometry (Fig. 3) consists of a short drift tube region

with radius rw = 6.8 cm, a gap of length d = 1.57 cm and a disk-loaded

structure of length L = 22.2 cm = X, where X = c/f, and f = 1.27 GHz is the

frequency of the accelerating mode of the cavity, and was determined

numerically.

The primary beam is injected from the left-hand wall with radius

rb = 6.4 cm, energy Ein j = 2.0 MeV and current Iinj (kA) = g(t)

[16 + 8sin(2nft)], where g(t) is an envelope function that increases

linearly from zero to unity during the time 0 < t < 15 ns and remains

constant thereafter. At a selected time, t > 15 ns, the secondary beam

- th 12 = 10 Amperes and E2 = 0.1 MeV is injected continuously from the

center of the first disk and is accelerated along the axis by the rf

fields. Each simulation continues until t = 30 ns.

Note that in order for the cavity-mode approximation of Sec. II to be

of use the parameters L, v and T must be such that L/v << T, where vg isg gg

the group velocity of E-M radiation within the disk-loaded structure and T

is the duration of the primary beam pulse. If this relation is not

satisfied, the disk structure will behave, not like a cavity, but like a

travelling wave tube. In the numerical geometry of Fig. 3, we have

arranged the separation between the outer disk edges and the cavity wall so
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that v /c = 1. In this case the condition, L/v << T, is easily satisfiedg g

within the 30 ns duration of the simulations.

Several differences between this configuration and that of a practical

experiment must be noted.

(1) In a practical experiment the disk structure would be longer so as

to obtain higher energies in the secondary beam. Another difficulty is

that the high group velocity of the E-M waves in the simulation structure

and its short length and small volume would allow rf fields to build up so

quickly that they might reflect the primary beam in an actual device.

(2) An actual device would have support rods to hold the disks in

place. These would also provide a path for the dc current of the primary

beam. Because such supports cannot be modelled axisymmetrically and

becau. we require a dc current path, we inserted a center conductor to

serve this purpose. It will be seen in Sec. IV, below, that the presence

of this center conductor does not significantly effect the results.

(3) In the simulation geometry, the left-hand boundary is a metallic

wall. In an actual device and in Fig. 1, this boundary is an open drift

tube, for which the 1.27 GHz frequency of the rf field is below cutoff. The

metal boundary of the simulations will have the similar effect of

reflecting incident radiation at this frequency, but is clearly not tOe

same.

(4) The simulation structures are defined on a grid such that the

effective skin depth of the material is one grid cell (Ar = 0.2 cm,

6z = 0.3133 cm), making the cavity extremely lossy, with Q of crder 10.

A typical value for a metallic structure is of order 1000.

Figures 4 and 5 show the z-component of the electric field plotted vs.

time in the gap and on-axis, respectively, for a simulation with parameters
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described above. The plot on-axis is taken at the spatial location of the

peak electric field. We see that the fields increase continuously,

reaching values of 56.3 MV/m at the gap and 94.2 MV/m on-axis before the

simulation is halted. The plot of the gap electric field shows evidence of

a weak, lower frequency mode which may have been excited by the increase in

dc current from t = 0 to t = 15 ns. The rf cavity mode, as expected, is a

standing wave, varying sinusoidally in z and as a Bessel function, J0 (kr),

radially. This is seen in Figs. 6 and 7 which show Ez vs. z and Ez vs. r,

respectively, at fixed time.

For the simulation shown, the secondary beam was injected continuously

for t > 17 ns with 12 = 10 A and E2 = 0.1 MeV and was bunched and

accelerated by the rf fields. This acceleration may be observed in Fig. 8,

which plots particle positions in phase space, yJc vs. z, where 0 is the

axial particle velocity normalized to c and y = (1 - 1- )_ . The

particle positions, plotted at fixed time at intervals of 0.2 ns, show a

maximum energy increase, of 8.60 MeV over 22.2 cm to give an accelerating

gradient of 39.2 MV/m. With this result and the observed 56.3 MV/m at the

gap, we see that for this case a transformer ratio R = 9.85 has been

achieved.

Several interesting aspects of this simulation should be noted.

(1) The build-up of rf in the cavity is of a transient nature. Were

the simulation not halted at t = 30 ns, the field amplitudes would increase

beyond the observed 94.2 MV/m until limited by reflection of the primary

beam. In an actual device, other limitations may include breakdown in the

rf structure, losses due to the 0 of the cavity, termination of the primary

beam, or acceleration of a sufficiently high quantity of secondary beam

current.
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(2) The conjectured relationship between the gap field, Egap , and the

peak axial field, Eaxis' which was discussed in connection with Eq. (2)

above, does not hold. Here, we have E axis/Egap = 1.67 and Jo(O)/Jo(krb) =

2.51. While the conjectured relation does not hold in a precise way, it

may still be useful as a qualitative guide. We sill expect that an

increase in Jo(O)/Jo(krb), obtainable by increasing rb, will result in an

increased E axis /E gap. This will be investigated below.

(3) The electric field of 56.3 MV/m that is observed across the

1.57 cm gap indicates that the primary beam loses 0.883 MV as it traverses

the gap. This energy loss is verified in the phase-space plots of Fig. 8,

where the primary beam particles, which have 0 < z < 10 cm, are deflected

in momentum space by the gap voltage. This indicates a power drain of

7.07 GW at 1.27 GHz and is sufficient power to accelerate secondary beam

current in the 500 A range over this short distance. With a longer

accelerating structure, lower currents may be accelerated to higher

energies.

To test our conjecture that higher current may be accelerated to

obtain high power in the secondary beam, we repeated the simulation of

Figs. 4-8 with the secondary beam current increased to 200 A. We found

Egap = 51.6 MV/m and E axis = 91.3 MV/m. Secondary beam particles, injected

at 0.1 MeV, were accelerated to 8.02 MeV to give <Eaxis> = 35.7 MV/m so

that R = 9.78. A comparison of these results with those of Figs. 4-8

indicates that the 200 A secondary beam does not significantly load the

cavity. We also see that 1.58 GW of rf power has been transferred from the

primary to the secondary beam.

While the supposed relationship between Egap and E axis discussed in

connection with Eq. (2) has already been proven imprecise, the possibility

of obtaining very high transformer ratios as the primary beam radius
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approaches rb = JO,11k, where J0(jO,) = 0, remains intriguing. We

investigated this by repeating the simulation of Figs. 4-8 with rb = 8.0

cm. This necessitated an increase in the drift tube radius to rw = 8.4 cm,

a change in geometry which shifted the resonance slightly to 1.34 GHz. At

this frequency, jO0 1 /k = 8.57 cm. The results of the simulation are shown

in Figs. 9-12. We found field gradients of Egap = 13.5 MV/m and E axis =

34.4 MV/m. Particle plots (not shown) indicated that the secondary beam

particles, injected at 0.1 MeV, were accelerated to 3.27 MeV to give

<Eaxis> = 14.3 MV/m so that R has been increased to 15.0. Figures 9-12

contain the following results:

(1) With rb = 8.0, we have Eaxis /Egap = 2.55, an increase from the

value of 1.67 that was obtained at rb = 6.4 cm, but not nearly as large as

Jo(0)/Jo(krb) = 11.9. Note that the transformer ratio was similarly

increased, from 9.85 to 15.0. As stated above, we have only a qualitative

ability to predict results as r b is changed.

(2) Figures 9 and 10 show that the build-up of rf fields in the cavity

is of a transient nature, as before, but much lower amplitudes are reached

at t = 30 ns than in the rb = 6.4 cm case. This indicates that as the

Eaxis /Egap ratio is increased, the interaction between the primary beam and

the rf structure is weakened. This occurs because, at a higher transformer

ratio, the same accelerating field in the rf structure gives a lower

decelerating field at the gap and less energy is drained from the primary

beam per cycle. The low frequency excitation of the cavity, apparent in

Figs. 4 and 9, is unchanged, making it more prominent in the latter case

where the rf fields are weaker.

(3) The peak electric field on-axis, plotted in Fig. 10, appears to be

saturating as the simulation is terminated. It is not clear whether this

is a result of the low Q of the numerical structure or if we are driving
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the cavity slightly off resonance. We can also see, from Figs. 11 and 12,

that the mode structure is unchar ed from the previous cases.

Finally, we must note that at r. = 8.4 cm, f = 1.34 GHz is very close

to the cutoff frequency, fc = Jo,ic/2nrv = 1.37 GHz. In a practical

device, it may not be possible to increase rb and rw to such large values

at this frequency.

IV. Numerical Effects

To understand the applicability of the simulation results to an actual

device, it is necessary to examine the differences between such a device

and the numerical model. Many of these have already been addressed. One

which was not is the addition of a center conductor to the drift tube

region of the simulation geometry, which provides a path for the dc

component of the primary beam current. The significance of this addition

may be examined by considering equivalent circuit elements for the rf

structure, a capacitive load, and the center conductor, an inductive load.

These elements are connected in parallel and are driven by an oscillatory

current source. The inductance of a coaxial line varies as L a log(rw/rC),

where r c is the radius of the center conductor. The equivalent circuit

model suggests that an increase in r c will lower the inductive load

relative to the capacitive load, lowering the voltage across the

capacitance. This was verified by increasing the radius of the center

conductor to rc = 5.0 cm in the rb = 6.4 cm case. This had the effect of

lowering the field amplitudes in the gap and on-axis by a factor of 1.7,

but left the transformer ratio unchanged. Conversely, the circuit model

suggests that for sufficiently small values of r c, the inductance will be

so high that it will behave as an open circuit. In this ideal case, the

entire load lies across the capacitance.
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To discover whether or not the radius of the center conductor is

sufficiently small, we repeated the rb = 6.4 cm simulation with the dc

component of the primary beam current removed, so that Iinj(kA) =

g(t)8sin(2nft), where g(t) is an envelope function as before. This was

accomplished by superimposing an appropriately modulated electron beam with

a dc positron beam, and allowed us to compare results with and without the

presence of the center conductor. With the center conductor, we found

Egap = 56.1 MV/m, Eaxis = 92.6 MV/m and <Eaxis> = 38.8 MV/m, comparable to

the results of Figs. 4-8. Without the center conductor, we found E =gap

60.0 MV/m, Eaxis = 103.6 MV/m and <Eaxis> = 41.5 MV/m. This indicates that

the presence of the center conductor reduces the fields by 5-10 Z.

V. Conclusions

We have demonstrated that high fields and transformer ratios can be

supported by a MIREB-driven accelerator, with several interesting

properties. The most crucial of these is that the MIREB is so strongly

coupled to the disk-loaded rf structure that power in excess of 1 GW may be

transferred from the primary to the secondary beam, despite the low Q of

the numerical structure.

We have found that the build-up of the rf fields in the structure is

transient by nature and, in the simulations, peak accelerating gradients

were limited only by the brevity of the simulations. In an actual device,

these fields will continue to increase in amplitude until limited by

breakdown in the rf structure, reflection of the primary beam at the gap or

by termination of the primary beam pulse.

We have also considered variations of the geometry to successfully

obtain an increased transformer ratio, but at the cost of weakening the

coupling between the primary beam and the rf structure. We have also found
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that the conjectured relationship between the decelerating field

experienced by the primary beam at the gap and the peak accelerating

gradient on-axis, which is discussed in connection with Eq. (2), provides

only a qualitative guide to these geometric variations. As the original

conjecture, contained in Ref. 2, is heuristic in nature and pertains to an

idealized physical model, this is not a surprising result.

Finally, the differences between these simulations and a practical

experimental configuration have been discussed in some detail, suggesting

that similar power levels, fields and transformer ratios may be obtainable

experimentally.
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ABSTRACT

The high field-gradient accelerator employs two beams of
electrons which interact through an RF structure. The first, a
large-diameter modulated intense relativistic electron beam
(MIREB), generates an electromagnetic field which in turn
accelerates a second beam. This effect is large, only, when the
second beam is much weaker and shorter in duration than the
first. The accelerating structure is designed in a way to produce a
resonance interaction with the MIREB, leading to the energy
transfer from the beam to the structure. The electromagnetic
wave induced in the structure, converges radially, generating an
average electric field of the order of 100 MV/m on the axis. The
short duration of the MIREB pulse (140 nsec) allows us to
establish these high electric fields in the accelerating region and
complete the acceleration before breakdown can occur.

A secondary particle beam is injected on the axis and
accelerated by the high electric field. This particle beam can be
initiated and controlled by a modulated laser light, phase-locked
to the RF source used to modulate the MIREB. The high power
RF established in the structure by the MIREB allows acceleration
of up to 100 Amps of electrons, in the present ex:perimental
configuration.

Preliminary results show electron acceleration of at least
3MeV with a beam current of about 100 Amps.

1.INTRCOUCTION

Progress in particle accelerator technology requires the
development of new mechanisms capable of generating high
voltage gradients and means of avoiding the resulting electrical
breakdown. Modulated Intense Relativistic Electron Beams
(MIRPB'S)l can easily provide the high power necessary to
establish the accelerating gradient. Also, the interaction of intense
beams with high-voltage gaps can enhance the electrical
insulation at these gaps and prevent breakdown. This mechanism
is due to the high electric self-field of MIREB'S and doesn't exist
for "classsical" low density beams. 2

The mechanism behind the new accelerator 3 employs two
beams of particles which interact via a metallic structure. The
first beam generates an electromagnetic field which in turn



accelerates a second beam. This effect is large, only, when the
second beam is much weaker and shorter in duration than the
first. The accelerating structure is designed in a way to produce a
resonance interaction with the MIREB, leading to the energy
transfer from the beam to the structure. The electromagnetic
wave induced in the structure, converges radially, generating an
average electric field of the order of 100 MV/m on the axis. A
secondary particle beam is injected on the axis and accelerated by
the high electric field. This particle beam can be initiated and
controlled by a modulated laser light, phase-locked to the RF
source used to modulate the MIREB. This scheme results in a
modulated secondary particle beam, traversing the accelerating
structure in phase with the electromagnetic wave.

This concept is a variant of Wakefield accelerator schemes 4 -5

proposed in the past few years. The main differences with respect
to the original proposal by Voss and Weiland 4 are that the
primary beam in our experiment zonsists of a long shell of
electrons that is terminated before the accelerating structure.
Thus, the two beams propagate in separate axial regions and can
interact only via the passive accelerating structure.

In this paper, we describe the construction and initial
operation of the wakefield accelerator. Section 2 describes the
conceptual design, supported by theoretical considerations and
numerical simulations. Section 3 describes the actual experimental
setup and the inital results of electron acceleration.

2. DESIGN OF THE WAXEFIELD ACCELERATOR

The new accelcrator takes advantage of the very high power
RF fields that can be extracted from MIREB's6 -7 . Elsewhere in
these proceedings7 -8, the operation of the Relativistic Klystron
Amplifier (RKA) is described. RKA is the power source for the
accelerator described here. The concept of the wakefield
accelerator is shown schematically in figure I.

MAGNETRON 2nd CAVITY

Ist CAVITYr

MAGNET

IREBJ MIRED LBIJ N AE

T ''STRUCTURE TcOH.V. -CATHOD

Figure .. Schematics of the wakefield accelerator.
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The major parts of the new accelerator are:

(1) An IREB generator that injects an annular electron beam
of radius R, voltage V, current I for a duration T into the
bunching region (e.g., V = 1 MV, I = l0kA, and T = 10- 7 s). The
electron beam is confined by a strong axial magnetic field.

(2) A bunching region (RKA) which is immersed in the
magnetic field and where a low level rf source (magnetron)
modulates the IREB.

(3) The modulated annular electron beam is guided by the
axial magnetic field into a cylindrical cavity of radius B. The
cavity is loaded with a structure that consists of thin metallic
discs, of radius A and thickness 6, which are spaced along the
cavity with a separation A. The discs are supported longitudinally
by thin metallic rods, cantilevered from the end wall of the
cavity.

The MIREB is terminated at the first disc. The frequency of
modulation and the cavity geometry are chosen such that a
resonance interaction between the MIREB and the cavity occurs,
leading to the transfer of energy from the beam to the structure.

(4) After some predetermined time a second electron beam
traverses the cavity through holes located at the centers of the
discs, draining the stored energy. This electron beam may be
initiated and controlled by a laser beam that illuminates the
center of the first metallic disc. Since the laser light can be
intensity modulated by the external rf source the second electron
beam will be also modulated at the same frequency. If the
second bunched electron beam is in the "right" phase with the
electromagnetic wave in the structure, all the electrons are
accelerated by the electric field and gain the same energy.

The process of energy transfer from the primary beam
(MIREB) to the secondary (accelerated) beam, is of major
importance. The two beams couple via the passive accelerating
structure. The primary modulated beam is term-inated immediately
beyond the input gap of the accelerating structure. The resonance
frequency of the structure is adjusted to match the frequency of
the primary beam. The SUPERFISH 9 computer code, which
calculates axisymmetric RF modes in cavities and accelerating
structures, was used to design a structure supporting the necessary
modes. Figure 2 shows the SUPERFISH output for a structure of
length L = 1, with the input gap region included. The structure's
geometry closely matches the experiment, except for the overall
length and the ommission cf radial support rods and other non-
axisymmetric elements, that could not be modelled by
SUPERFISH.
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Figure 2. Electric field configuration for the structure
and input gap

The phase velocity and the dispersion relation for RF waves
established in the structure were obtained from electromagnetic
field theory 3 and SUPERFISH. Figure 3 shows the dispersion
relation and the phase velocity calculated for the structure used
in the experiment.
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Figure 3. Phase vel ocitv and L-k diagram of the experimental
structure

The horizontal bars are obtained from SUPERFISH. The middle
bar corresponds to a mode with phase velocity close to c, and
frequency matched to that of the RP'A.



The transfer of power between the primary and secondary
beams is characterized by a "transformer ratio", defined as
R=V 2/VI, where V1 is the decelerating voltage in the input gap
and V2 is the accelerating potential experienced by the secondary
beam. In our geometry,

R = <Ea:is>L / <Egap>d (1)

where d is the gap length, L is the length of the RF structure,
<Egap> is the average electric field in the gap, and <Eaxis> is the
average field experienced by the secondary beam. By treating the
accelerating structure like a resonant cavity of length L = n /2,
where n is integer and A is the wavelength of the RF, we can
obtain the following relationship for the axial components of the
electric field,

Ez (r=0) = Ez (r) J0 (r=0) / J0 (kr) , (2)

where Jo is the Bessel function and k = 2w/A. For large r the ratio
J0 (0)/J 0 (kr) can be as high as 10. It is conjectured that this
relation holds for the ratio of the decelerating field at the input
gap to the peak accelerating field on the structure's axis. Hence,
the importance of using a large diameter MIREB as a power
source. In addition a large diameter beam allows for higher
propagating currents, increasing the power content of the primary
beam.

The RF structure described here can operate either in a
traveling wave mode or in a resonant cavity mode, depending on
the relationship between the length of the structure - L, the
group velocity of the RF wave - Vg, and the duration of the
primary beam - T. If L/v <<T then the structure is filled
quickly with RF energy ana the resonant cavity mode will be
established, provided L-nA/2 . If, on the other hand, L/Vg<<T
is not satisfied, the structure will operate as a traveling wave
amplifier. The group velocity may be adjusted by simple changes
in the geometry of the structure.

In order to simulate the acceleration mechanism, a time
dependent, fully electromagnetic particle code CONDOR1 0 was
applied1l to a geometry and beam parameters similar to those in
the experiment. Figure 4 shows the z-component of the electric
field versus time, on the axis of the accelerating structure. The
Plot is taken at a spatial location where the electric field is
maximum. The field amplitude increases continuously, reaching
94.2 MV/m before sinulation is halted. The RF cavity mode is,
as expected, a standing wave varying sinusoidally in z and as a
Bessel function J0 (kr) radially.

The simulation results show that the accelerating gradient on
axis is 39.2 MV/m and the resulting transformer ratio is R=9.85.
The MIREB is shown to be strongly coupled to the RF structure,
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resulting in power transfer in excess of 1 GW fromI the primary
to the secondary beam.
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Figure 4. Plot of Ez vs. time on axis.

consideration has to be given to instabilities affecting the
secondary beam. One of the most serious of those is the beam
break-up (BBUJ instability12 . The excitation and growth of BBU
was analyzed1 for our experimental parameters and it does not
appear to be a significant problem.

3. EXPERIMENTAL RESULTS

Figure 5 shows Ithe actual setup used in the initial

experiments.

500kW RF in

___ 10 CM > 0 3 m 4 Cm-

Figure 3.Experimental arrangement for wakef-Jeld acceleration.



An annular IREB with the following characteristics was generated
by a high voltage diode and launched into a 13.6cm diameter
drift-tube:

voltage - 500 kV
current - 16 kA
duration - 140 nsec
diameter - 13.1 cm
beam thickness - 0.3 cm

This IREB was subsequently modulated by the R}A mechanism.
RKA is extensively described in 2 papers elswhere in these
proceedings7- 8 . The RKA part of the setup consists of the two
coaxial cavities on the right, both tuned to 1.328 GHz, the
frequency of the external RF source (magnetron) feeding the first
cavity. The IREB is partially modulated by the first gap. The
depth of this current modulation varies along z. At a point 34 cm
downstream from the first gap, where the amplitude of
modulation is maximum, a second gap was inserted, feeding a
passive coaxial cavity. This second cavity was excited by the
premodulated beam and in turn increased the bunching on the
beam, resulting in a peak AC current of (15±5)kA. The gap
feeding the accelerating structure is located, again, at a point 30
cm downstream of the second gap where the modulation reaches
its maximum of - 15 LA.

The accelerating structure consists of 57 thin round plates,
held by 6 longitudinal rods, placed at a radial position
corresponding to a minimum electric field, as given by
SUPERFISH. These rods are fed through small 1/4A cavities,
tuned to the beam frequency, located on the input side of the RF
structure. This is done to choke off the RF path to ground that
would bypass the structure. The structure is also supported by 6
radial rods in the input section, used to prevent sagging, and
similarly fed through 1/4A cavities. The structure's diameter is
18.8 cm, while the plates have a diameter of 28.0 cm. The plates
are 1 mm thick and have a 1 cm diameter hole in the center,
through which the secondary beam is accelerated. The distance
between plates is 1.84 cm and the overall length is 110 cm,
corresponding to about 5 wavelengths. The MIREB is terminated
on a thick graphite ring, immediately following the structure
input gap. The graphite is surrounded by lead, to prevent any X-
rays from reaching the RF structure and initiate breakdowns.

The primary beam was diagnosed by a magnetic loop probe
located just in front of the structure input gap. The current of
the secondary accelerated beam was diagnosed by a magnetic
-robe on the output cf the RF structure. The whole exoeriment
was evacuated to better than 10- 5 Torr and immersed in a auasi-
DC magnetic field of -10 kG. Figure 6 shows the magnetic
probes' signals of the primary (top) and secondary (bottom)
beams. The MIREB current is -15 IA. The secondary current is
-100 Amps, consistent with theoretical predictions.

In this geometry, the group velocity is vg - 0.07c
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Consequently, L/vg - 50 nsec, where L = 110 cm is the length of
the structure. The beam duration is T = 140 nsec, which means
that the structure is operating in a traveling wave mode.

The short duration of the secondary beam was probably due
to several electrical breakdowns occuring in the structure, and to
the reflection of the RF wave from the end of the structure. One
breakdown took place along the external magnetic field lines,
across the 1/4A cavities housing the radial rods, which supported
the front end of the RF structure. The other breakdown occured
radially, from the edges of the plates to the outer wall, which was
only 4 rmm away. This latter breakdown may have been also
related to the reflection of the RF wave.

CURRENT OF MODULATED
INTENSE RELATIVISTIC ELECTRON BEAM

li!!, ~ i

200 nse.

CURRENT OF ACCELERATED ELE-CTRONS

C-n

200 nse:

Figure 6. Magnetic Probes' signals showing the currents.

The energy of the secondary beam was approximately
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obtained from the depth of penetration of the accelerated
electrons into a lucite target. The "tree" left in the target was
about 1 cm long. This length gives the lower bound on the range
of the accelerated electrons in lucite. From range-energy tables
we obtained - 3 MeV as the peak energy of the secondary beam.
There was no attempt to use more sophisticated energy
diagnostics, since the acceleration process was obviously disrupted
by breakdowns in the structure, and this problem had to be
addressed first.

The upper limit on the temperature of the secondary beam
was deduced from the size of the beam diameter ( 0.4 cm
diameter spot on a witness plate ). Equating this diameter to 2
Laimor radii in the external magnetic field yielded - 10 ):eV as
the upper bound on the transverse electron energy.

4. CONCLUSIONS

Electrons were accelerated by the wakefield mechanism to
about 3 MeV. The accelerated beam current was - 100 Amps, the
beam diameter - 0.4 cm, and the transverse energy s 10 key.
The accelerating structure was plagued by electrical breakdowns,
resulting in a much lower electron energy than anticipated. A
new structure has been constructed, alleviating most of the
problems encountered by the previous one. This new structure is
currently being tested.
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NUMERICAL AND EXPERIMENTAL STUDIES OF PARTICLE ACCELERATION

POWERED BY MODULATED INTENSE RELATIVISTIC ELECTRON BEAMS

J. Krall*, M. Friedman, V. Serlin and Y.Y. Lau
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Washington, DC 20375-5000

*Science Applications Intl. Corp.

McLean, VA 22102

Abstract: A fully electromagnetic particle code (4) An emitter, located on axis on the surface

is used to simulate the transfer of energy from an of the first disk, emits a secondary beam which is

annular modulated intense relativistic electron beam -accelerated by the RF fields.

to a secondary low current electron beam via a disk- Moduvation of an IREB has been previously

loaded structure. It is shovn that the modulated reported , ,8 and has been repeated experimentally

intense beam can be used to ctive such an accelerator with the present parameters.
9

at a high transformer ratio (R = 10) with an
accelerating gradients in the - 100 MV/m range. MAGNETRON ' CAVITY
Power in excess of 1 GV was transferred from the
primary to the secondary beam. An experiment was 11VITY
performed in which such a beam (diameter 13 cm, peak
power 8 GV) dumped RF power into a disk-loaded G MAGNET
structure of length one 'meter. This RF power was
transferred from the structure to a secondary V

electron beam resulting in acceleration of electrons
to an energy much greater than 10 MeV with current of ,'
the order 300 Amps.

Introduction S.RUcT -- Dgruchui

It has been shown that high electric fields of
the order of 100 MV/m can be established in RF Fig. 1. MIREB-driven accelerator schematic.
accelerating structures by modulated intense
relativistic electron beams (MIREB's) of power Fields in the RF Structure
greater than 109 V.1 92  Novel accelerators, in which
a low voltage, high current beam interacts via a The interaction between the primary and
metallic structure to power a low current beam to secondary beams in this accelerator is different than
very high energies have been suggested by Vo£ and the wake field schemes of Refs. 3 and 4, where the
Weiland,3 among others. Wake field acceleration has two beams travel colinearly. Here, the interaction
been observed in experiments by Figueroa et al. 4  of the primary beam with the RF structure takes place

Accelerators powered directly by MIREB's h v only as the beam traverses the gap, while the
several advantages over c€nventional accelerators:2

#,  secondary beam is accelerated along the entire length
(1) Previous results suggest that the high RF .of the RF structure. The transformer ratio is

power of a MIREB may be coupled to an RF structure so defined as
as to drain significant power (> 1 GV) from the beam
at high efficiency. <Eaxis>L

(2) Geometrical effects may allow for sizeable R - E d
variations in efficiency, field gradient, and gap
coupling between the MIREB and the RF structure.

In the present paper we study these issues vi w where d is the gap length, L is RF structure length,

an axisymmetric particle simulation using the CONDOR9 Egao is the gap field and <Eaxi > is the average

code and present preliminary experimental results. field experienced by the accelerated particles.
The accelerator configuration to be studied is The normal modes of the RF structure can be

similar to that outlined in Ref. 2 and is pictured in solved for by neglecting the interaction region at

Fig. 1. the gap. 2  Here, we consider the only fundamental
(1) An IREB of radius r = 6.3 cm, current Io - mode of a disk-loaded cavity of length L - nX/2 where

16 kA and energy Einj - 500 keV is injected into an X is the wavelength of the RF and n is a positive
evacuated drift tube of radius r, = 6.8 cm. The IREB integer. The z-component of the electric field of

is focussed by an axial field Bo - 10 kG throughout. the fundamental mode varies sinusoidally along the
0 '_ - - -'axis and radially as

(2) The IRE$ is fully modulated at a frequency f
= 1.3 GHz by two tuned cavities. The first cavity is Ez (r)/Ez (r-O) = J0 (kr)/J 0 (r.O) (2)
externally driven by a low level RF source
(magnetron). The second cavity is undriven. where J0 is a Bessel function and k = 2R/X. It was

(3) The MIREB is guided into a drift tube of(3)TheMIRD s gide ino drft ubeof conjectured in Ref. 2 that the ratio of the field
radius 9.6 cm. The tube contains an accelerating conjectnred i e tha t the rio of the

structure which consists of thin disks of radius 9.0 experienced at the gap by the primary beam to the

cm and separation 1.88 cm. The MIREB, which has a peak field on axis would follow this radial variation
frequency of modulation corresponding to the desired so that Eaxis/Egap = 1/J(krb).
mode of the RF structure, is terminated at the first The normal modes for a given axisymmetric cavity
disk. A resonant interaction occurs between the may be calculated numerically by using the

IRE and the R fields, extracting ener from the Superfishlo code. Superfish calculations have been

MIREB at the gap fied bythe en f the performed for a disk-loaded cavity of length L = X
be a the fs (defined by the end o the drift with the gap region included. A series of such

tube and the first disk of the RF structure). calculations shoved that the expected cavity mode was
obtained.1 1



The nonaxisymmetric modes for this structure halted. The plot of the gap electric field snows
have also been studied to shov that beam breakup evidence of a weak, lover frequency mode vh ch may
growth due to such modes is benign for the par meters have been excited by the increase in DC current from
of the present proof-of-principle experiment. 11 t - 0 to t - 15 ns. The RF cavity mode, as expected,

was a standing wave, varying sinusoidally in z and
Numerical Simulations radially as a Bessel function, J0 (kr).

The acceleration of the secondary beam can be
The simulation geometry (Fig. 2) consisted of a seen in Fig. 4. Here, particle positions were

short drift tube region with radius rw . 6.8 cm, a plotted in phase space, yrc vs. z, where 8 is the
gap of length d - 1.57 cm and a disk-loaded structure axiallparticle velocity normalized to c and y - (1 -
of length L - 22.2 cm a X, where X . c/f, and f - 0- )- 7. The particle positions, plotted at fixed
1.27 GHz is the frequency of the accelerating mode of time at intervals of 0.2 ns, show a maximum energy
the cavity, and was determined numerically, increase of 8.60 MeV over 22.2 cm to give an

The primary beam was injected from the left-hand accelerating gradient of 39.2 MV/m. With this result
wall with radius rb - 6.4 cm, energy Eini - 2.0 MeV and the observed 56.3 MV/m at the gap, a transformer
and current Iin (kA) - g(t)[16 + 8sin(2nt)J, where ratio R - 9.85 has been achieved.
g(t) is an envelope function that increases linearly

1rom zero to unity during the time 0 < t < 15 ns and 90
remains constant thereafter. At t - 17 ns, the
secondary beam with 12 - 10 Amps and E2 - 0.1 MeV was (a)
injected continuously from the center of the first
disk and was accelerated along the axis by the RF 60
fields. The simulation continued until t - 30 ns.

Note that in order for this structure to behave
like a cavity, the parameters L, Vg and T must be
such that L/v << T, where vg is the group velocity E 30
of E-M radiation within the disk-loaded structure and
T is the duration of the primary beam pulse. In the
geometry of Fig. 2, vg/c is a sizable fraction of
unity, satisfying this constraint within the 30 ns 0

duration of the simulation.
Several differences between this configuration

and that of an experiment must be noted. -30
(1) In an experiment the disk structure would be

longer so as to obtain a higher energy secondary
beam.

(2) An actual device would have support rods to -60

hold the disks in place, providing a DC current path
for the primary beam. Because such supports cannot
be modelled in two dimensions, we added a center 80

conductor between the first disk and the left-hand
boundary (grT nd). This did not significantly effect
the results.Y

(3) In the simulation geometry, the left-hand 40
boundary was a metallic wall. In reality, this _
boundary is an open drift tube, for which symmetric E

N,RF modes at a frequency of 1.27 GHz are below cutoff.
(4) The simulation structures were defined on a

grid such that the effective skin depth of the
material is one grid cell (ar - 0.2 cm, Az - 0.3133 W
cm), making the cavity extremely lossy, with 0 of -40
order 10. A typical value for the experimental
structure is of order 1000.

-80

Primary Beam

0 6 12 is 24 30
10 t (nsec)

Fig. 3. Ez versus time at the gap and on axis (at

-~~peak field) for the rb =6.4 cm case.

Several interesting aspects of this simulation
0 10 20 30 40 should be noted.

(1) The build-up of RF in the cavity was of a

Z (c M) transient nature. Were the simulation not halted at
t - 30 ns, the field amplitudes would increase beyond

the observed 94.2 MV/m. Realistically, limitations
Fig. 2. Simulation geometry. The secondary beam is may include breakdown in the RF structure, low 0,

injected on axis at z = 12 cm. termination of the primary beam, or loading due to

high current in the secondary beam.
Figure 3 shows the z-component of the electric (2) The conjectured relationship between rb and

field plot:ed versus time in the gap and on the axis Eaxis/Ea, discussed in connection with Eq. (2)
of the RF structure. These fields increased above, i8 not hold. Here, we have Eaxis/E - 1.67
continuously, reaching values of 56.3 MV/m at the gap and 1/JO(krb) - 2.51. The effect of varyigprb will
and 94.2 MV/m on axis before the simulation vas be investigate below.



(3) The electric field of 56.3 MV/m that was Experimental Results

observed across the 1.57 cm gap indicates that the

primary oeam loses 0.883 MV as it traverses the gap. An eteriannulas bee o rmedurn wi a an

This energy loss is verified by the phase-space plots cm diameter annular IREB of DC current 16 kA and

of Fig. 4, where the primary beam particles, which voltage 500 kV was fully modulated at a frequency of1.328 Hz. The modulated electron beam as

have 0 < z < 10 cm, were deflected in momentum space terminated in such a way that the RF energy was

by the gap voltage. This indicates a power drain of tra ed in the d ad tht e as n Fig
7.07GV t 127 Gz ad i suficint owe to transferred into the disk-loaded structure as in Fig.

7.07elerat 1.27nr band iscufient pwe t oe 501. A cold emission cathode was placed at the center

accelerate secondary beam current in the 500 Amp of the first disk. The electron beam emitted from
range over this short distance. With a longer this cathode had a diameter of 1 mm and current of

accelerating structure, lower currents may be ti ahd a imtro madcreto

accelerated to higher energies. 300 Amps. This electron beam propagated along the

length of the structure (1 meter) without loss of

current or radial expansion.
Preliminary diagnostics based on the stopping

XI 10'0 f Z , ,29.6n, range of the accelerated electrons in absorbers
S..indicate that electrons with energy much greater than

10 MeW were present. More sophisticated diagnostics

£- oare currently being designed.

0Conclusions

SWe have demonstrated that high fields and

Zo transformer ratios can be supported by a MIREB-driven
oV- , -accelerator, with power in excess of 1 GV transferredfrom the primary to the secondary beam, despite the

- low 0 of the numerical structure.

910. .29.8 s I.30.O,, We have found that the build-up of RF fields in

.. the structure is transient by nature with peak

accelerating gradients limited only by the brevity of

9£70 M.V the simulations. In an actual device, field
' amplitudes will continue to increase until limited by

such mechanisms as saturation (low 0) or termination

S.ag -of the primary beam pulse.
,... .~ ~We have also shovn that by varying the primary

beam radius, the transformer ratio may be increased,

" . but at the cost of weakening the coupling between the

primary beam and the RF structure.
Finally, in a preliminary experiment electrons

0 00 to 3o 0 a t 20 so

o eMn z,o ) were accelerated to energies in excess of 10 MeV and
m(CM) with peak current of 300 Amps.

Fig. 4. Particle positions in phase-space, vBrzC

versus z, at intervals of 0.2 nas. The Acknowledzemenz

primary beam is on the left, 0 < z < 10 cm. This work was supported by the Department of
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IFR CONDITIONING AND TRANSPORT
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I. INTRODUCTION

IFR (Ion-Focused Regime) propagation is extensively employed in ATA

and other electron beam experiments to transport and condition the beam
before injection into the atmosphere. Laser-guided IFR is used within the

ATA accelerator to guide the beam and damp transverse oscillations. It is
also employed in the airline section of ATA to recenter the beam after it
has passed through a bending magnet. ATA and other devices have employed

beam-generated IFR transport in a conditioning cell to taper the beam
radius prior to injection into the atmosphere. The ATA beamline also
contains regions where vacuum solenoidal transport and thin magnetic lenses
control the beam. In addition, scattering foils and apertures are inserted
at various points. The complexity of the ATA beamline introduces a number
of transitions where beam current, emittance, or transverse noise can be

degraded.

The Livermore propagation code BEAMFIRE 1-3 is an axisymmetric particle
simulation which can treax many of the situations described above. As in
the NRL IFR code ROTH,4 secondary electrons are assumed to be
instantaneously ejected. This paper describes modifications to the NRL
FRIEZR code5 which make it possible to treat the variety of IFR and
magnetic transport regions found in ATA. Because FRIEZR must follow
secondary electrons, it is an intrinsically slower code than BEAMFIRE. We
believe the code to be best suited to studying the detailed physics of
matching from one transport region to another.

II. CODE DESCRIPTION
Overview: FRIEZR is similar to conventional particle simulations in

-that particles are advanced in time t with a fully-relativistic particle
pusher and Maxwell's equations are solved without the ultrarelativistic
approximations often employed in beam codes. However, the axial variable
is - ct-z rather than z, so relativistic beam particles tend to stay
within the same slice. Beam and secondary plasma particles are pushed in
the same way but are separated for diagnostics purposes. Since only
particles from one C-slice are in the system at any one time, careful
bookkeeping and I/O management is required to keep track of particles
slipping from one slice to the next.
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Pre-existing ion channels: In laser-generated IFR, the beam head

encounters new plasma at each time step. In FRIEZR, new plasma electron

particles are created in such a way as to follow the ion channel density

Pi(r). As the propagating beam passes, the plasma electrons are

accelerated radially while plasma ions remain fixed. (Some versions of

FRIEZR follow ion particle motion.) The channel density is defined by a

channel strength f - NI/Nb, where Ni and Nb are the ion and beam line

densities, and a channel radius ac.
Beam-generated IFR: Beam-generated IFR is important when the pressure

P is in the 10-100 mtorr range. The ionization rate vi a 10 6 sec-l-mtorr-
1, and the number of secondary electron-ion pairs produced in a time step

At is W Vi tNb. Here Nb is the number of simulation particles in at s i b

beam slice. At each time step and C-step, bN simulation particles are

chosen at random, and the secondaries are loaded at the same locations as

the chosen subset of beam particles. (The code usually holds constant

and adjusts particle weights accordingly.)

Other optional features: The code allows an axial guide magnetic

field Bz , so solenoidal transport can be studied with or without an ion

channel present. Magnetic focusing lenses are modeled using the thin lens

approximation: a lens pf focal length F is specified at some location z, I
and beam particles are given velocity kicks 4vx - -x/F and Avr a -y/F whenyI
they pass that location. Algorithms for treating foil scattering are

contained in HOTH but not yet implemented in FRIEZR.

Axial variations in parameters: Treating transitions between regions
requires that f,P, and Bz vary with z. This is implemented in FRIEZR by

defining nominal values f, P, and Bzo and generating multipliers f, p,

and % at specified axial positions Zk. The individual quantities vary

linearly between zk and zk+l. The position zk generally defines the

location of a transition between one type of transport (e.g., laser

guiding) to another (e.g., beam-generated IFR).

III. ATA TRANSPORT EXAMPLES

Laser-generated IFR and tapered Benzene channels: FRIEZR is

particularly well-suited for treating such cases because of the importance

of plasma electron motion. Contour plots of plasma electron density

n e(r,) reveal that they are ejected in an annular shell. The finite

ejection time affects ohmic erosion and the shape of the beam head. The
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beam does not usually taper except in the beam head. "Benzene tapering", a
method employed successfully in the December, 1985 ATA experiments to tune

the beam shape, has been modelled with FRIEZR by varying f(z) - af(z)f o .

The pressure P is usually small in these regions.

IFR Conditioning cells: In a conditioning cell, the pressure P is

usually chosen so that vilr < 1 where Tp is the pulse length. FRIEZR

simulations in the ATA regime appear to be insensitive to secondary
electron motion because ne << nb near the beam at all times. In these
cases, the beam pulse is tapered in radius as it propagates through the
cell. An example with a higher pressure, resulting in virp a 2 revealed
that plasma electrons are well-ejected from the beam head, but remained
close to the beam in the beam tail. This did not appear to disrupt
propagation, however. This overneutralized regime, which corresponds to
P = 100-500 mtorr for ATA, has not yet appeared to be disruptive in the

simulations.
Multi-region example: Figures 1-3 are taken from an ATA simulation

with an 80 cm long laser-guided IFR region with f - 0.5 followed by an 80
cm vacuum expansion region and a 160 cm long IFR conditioning cell with P
100 mtorr. The beam radius shows little taper in the first two regions
(Figs. 1 and 2) but emerges with a substantial taper at z - 320 cm when it

emerges from the conditioning cell. Similar radius variations have been
produced in the ATA experiment.

Conclusions: The ATA experiment contains several different regions of

IFR and vacuum transport. The recent modifications to the FRIEZR code
allows detailed simulations of these regions and should prove useful in

suggesting methods for improving the performance of the machine.
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Erosion rates for a relativistic electron beam propagating through a

low density plasma channel in the ion-focused regime are computed via

axisymmetric particle simulation. Steady-state inductive (ohmic) erosion

rates are found that are in quantitative agreement with new theoretical

results which correctly account for the relativistic dynamics of electrons

at the beam head. In cases where the finite emittance of the beam is

expected to be the dominant loss mechanism, the beam does not develop

steady-state erosion, as suggested by previous analyses. Asymptotically,

such a beam is characterized by a low emittance population at the beam

head, a long rise length, and an erosion rate that tends toward zero.
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I. Introduction

An electron beam propagating along a low density plasma channel in the

ion focused regime (IFR) is characterized by a freely expanding head, a

pinch region, where the plasma electrons are ejected from the channel and

the beam pinches to its equilibrium value, and the beam body. When N <C

Nb, where Nc is the line density of the plasma channel electrons and Nb is

the line density of the beam electrons, the channel electrons are fully

expelled from the vicinity of the beam and the remaining ions reduce its

space charge potential. This has allowed stable propagation of intense

beams over distances of several tens of meters, as demonstrated, for

example, in the Advanced Test Accelerator. 1 The pinch region of the beam

is associated with increasing net current and azimuthal magnetic field and

an inductive Ez spike. Energy loss, due to the inductive field, causes

electrons to be removed from the beam head. Additional particle losses can

result from the finite emittance of the portion of the beam that is not

fully pinched. Both of these processes cause the pinch point to erode

backwards in the beam frame. These beams are also subject to

instabilities, such as the transverse two-stream and ion hose

instabilities. 2 ,3 ,4 In the present paper, we work within the constraint of

azimuthal symmetry, in which the dominant (transverse) instabilities are

not present.

The physics of IFR propagation has developed over a number of years

and was recently discussed in some detail.2'5 We will focus on the

transport losses associated with inductive and emittance effects at the

beam head. To complement and illuminate the previous analyses, we perform

particle simulations in sufficient detail that erosion rates can be

measured directly from the motion of the pinch point relative to the motion

of the beam body. Such simulations have not been previously presented.
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The simulations are a product of FRIEZR, a fully electromagnetic two-

dimensional (r,z) particle code that has recently been developed to study

IFR propagation and transport of electron beams. It features fully

relativistic beam and channel electrons and treats the ions as an immobile

fluid. A notable feature of the code is that it solves Maxwell's equations

and propagates the beam in a coordinate system which moves at the speed of

light. The coordinates are r,C,T where C - ct - z and T - t. An eroding

beam appears to move slowly backwards in these coordinates. FRIEZR is

discussed in the appendix.

The remainder of this paper proceeds as follows. In Sec. II we derive

a new expression for steady-state inductive erosion which is valid in cases

where scattering and secondary ionization may be neglected. Simulation

results are then presented for comparison. In Sec. III, we cite previous

analyses of emittance-driven erosion and compare these results with

simulations. Here, we will find that the assumption of self-similar radial

expansion of the beam head that is contained in these analyses does not

hold. The simulations provide some insights into the relevant physics.

Section IV concludes.

II. Inductive Erosion

In IFR propagation, where energy losses due to scattering may be

neglected, the inductive (ohmic) erosion rate per unit propagation distance

of a beam pulse may be simply approximated by

D 8o - =(1)
0p z range'

where Cmax is the pulse length, 00 is the beam velocity normalized to c and

0p is the velocity of the pinch point so that 00 -p is the rate of beam
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loss with respect to time. Note that the first equality above implies that

losses are confined to the beam head, as is the case when scattering and

radiation losses may be neglected. This also requires that the beam be

matched to the plasma channel, so that the beam body is in equilibrium.

The range, which appears in Eq. (1) above, may be calculated from the

beam energy that is lost to the inductive axial electric field per unit

propagation distance and the available energy of the beam electrons. Using

a reduced set of Maxvell's equations for relativistic beams, the electric

field at a fixed radius r - r c has been calculated to be
2

E2(r 2 log (fib) , (2)

where rc is the radius of the plasma channel, f - Nc/N b is the ratio of the

line densities of channel ions to beam electrons and Ib is the beam current

(taken to be positive), rises from zero at 0 to reach a constant value

behind the pinch point. In deriving (2) it was assumed that the plasma

electrons are ejected from the channel and move out to a conducting

boundary at a finite radius rw. Beam energy lost to the induce#field is

transferred to the channel electrons as they are moved to large radii and

the channel potential is established. The assumption of a finite

conducting boundary is necessary because of the logarithmic nature of this

potential. Averaged over the entire pulse (2) gives

1, Cm0ax
ax Ezr' ) d

L fI b
- L,~ (3)

Cax Imax
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where Lc = 2log(rw/r c is a dimensionless inductance. The range may now be

calculated as

22
range = (Yin] - yf)MC 2 4)

where m is the electron mass, (Yinj - 1)mc 2 is the energy of the beam upon

injection, and (yf - l)mc 2 is the final energy of the particles as they are

lost from the beam. Note that unless the beam is fully neutralized by the

plasma channel (f = 1) the propagating gamma of the beam, yo, is less than

Yinj:

Yinj - + YU (5)

where YUmc2 is the field potential energy:

elbLb(l - f) (6)
YU =  mc3 "(6

"mc

Here, Lb = 2log(r /rb ) is a dimensionless inductance and rb is the beam

radius. Note that for the vacuum case (f - 0) the above gives the familiar

expression for the limiting current of a beam with y - yU propagating in a

drift tube of radius rw. Using Eqs. (3), (4) and (5), the erosion rate may

be written in terms of equilibrium beam and channel parameters, 0p and yf:

pI
ef b L coP0.. ° -0-p . (7)

0 - mc3(Yo + YU - Yf) -

The value of Yf can be estimated via a simple argument. In the case

where Eq. (7) holds, the erosion process establishes a constant velocity

for the pinch point, vp B p c. Assuming the energy of the beam is lost to

the Ez spike adiabatically, a particle with a velocity infinitesimally less
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than v will fall behind the pinch region, where the Ez spike is localized.

The final velocity of this beam particle, vf, is therefore approximated by

p- 0. (1- 1)1/2 = 1 _ 1 (8)

Yf f

Substituting 0 p from (8) into (7), we obtain a cubic equation which

determines Yf:

3 2 2 2 2
Yf - (y 0 +yU+ 2Cyo)f- o f + (Yo + U + c)Y 0 (9)

where

ef- b L (10)

mc

Note that yf may be solved for numerically without the approximation of the

(1 - 1/y 2 )1 /2 term included in Eq. (8) above. For the examples to be givenf
below, however, this approximation is reasonable as it has an order 1%

effect on the results.

To verify the theoretical inductive erosion rates predicted by Eq.

(7), simulations with FRIEZR were performed over a range of values for the

beam current, Ib - 2-10 kA, and the plasma ionization fraction, f - 0.2-

1.0, with Yo - 10. The beams generally showed the characteristic trumpet

shape as expected, but also had features that were not accounted for in the

simple model that produced Eq. (7), such as the multiple Ez spikes that

were observed at high Ib and f values. In these cases, oscillatory

behavior at the beam head was characteristic of the relativistic electron-

electron two-stream instability.

In the relativistic limit, where the beam electrons have longitudinal

and transverse effective masses which differ significantly, the fastest
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growing mode of the two-steam inZtability is characterized by a wave vector

that is not parallel to the direction of propagation. Here, we consider a

cold beam interacting with a cool plasma of density n c, where n c is the

channel electron density. Typically 6 ,2 the fastest growing wave vector

features k,, W b and kI - kr = where (c " 4 nnc e /m and r b is taken

to be the lowest available ki . Because we are constrained by axisymmetry,

ke 0, giving the mode a sausage-like structure in r and C. Results of a

FRIEZR run in which these oscillations were observed are shown in Fig. 1.

The plot of Ez versus C on axis shows the oscillations and corresponding

plot of R1/2, the radius within which one-half of the initial beam current

is enclosed at a given C, shows the sausage structure of the instability.

Note that in the figures, the beam is moving to the left. Note also that

the beam has been assigned a positive charge so that Ez < 0 is

decelerating. As can be seen in the figures, the oscillatory behavior is

confined to the beam head, where the channel electrons have not yet been

fully ejected. This means that over the length of the interaction region,

the channel electron density is dropping from its peak initial value to

zero. In this run, Ib . 5 kA, rb = 1 cm, rc = 2 cm and f - 1. With these

parameters, the initial average channel electron density is nc - 8.3 x 1010

-3
cm so that the oscillations will have an initial wavelength of Xc 11.6

cm which increases as the channel density drops. The three distinct peaks

in the Ez plot of Fig. 1 show increasing separation consistent with this

scenario. Channel electron and beam electron densities on axis are also

plotted in Fig. 1. Note that the oscillations in Ez and R1/2 correspond to

oscillations in nc. Note also that the nc and nb plots show the value on

axis, rather than the lower average value in the channel. Because the

values of all parameters are changing over the course of each oscillation

wavelength, the instability does not lend itself to a more detailed
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analysis. It is of interest, however, that this phenomena is confined to

the beam head and, as we shall see below, does not adversely affect the

argument that produced Eq. (7).

Beam head erosion is ideally measured from simulation results by

observing the movement of the pinch point, as a function of time, to largeL

C values, where C = ct - z. In the presence of the complicated beam head

dynamics discussed above, however, the location of the pinch point is

sometimes difficult to define. In all cases, we looked at a number of

features, but the most reliable measurement has proven to be Iencl versus

C, where Iencl is defined to be the current enclosed inside the radius r -

5 rb. Examples of this diagnostic are given in Figs. 2 and 3. Figure 2

shows superimposed plots of Iencl versus C at c - 5 meters and 10 meters

for the beam pictured in Fig. 1. The superimposed plots give a reasonable

measurement of the erosion rate, despite the dynamics at the beam head.

Figure 3 is a similar superposition of Iencl versus C plots at cT - 30 and

40 meters. The parameters are Ib - 2 kA, f - 0.2, rb - 1 cm and r. - 2 cm.

Corresponding plots of Ez, R1/2, nb and nc versus (see Fig. 4) show that

this beam lacks the instabilities seen in Fig. 1, having a well defined

pinch point and Ez spike. In such cases, these other features corroborated

the erosion rate estimated from the Iencl plots.

Erosion rates for various values of Ib and f are shown in Table I. In

all cases, y 1 -0, rb a 1 cm, rc - 2 cm, rw M 33 cm, Cr (beam rise length)

- 50 cm, and Smax = 100-400 cm. The erosion rate predicted by Eq. (7) is

also given. These rates were seen to be insensitive to the channel radius,

as expected, and additional runs at Ib - 10 kA and f - 0.2 showed correct

scaling with y and with rw. It is interesting that the results agree so

closely with theory, even when the beam dynamics are complicated. It is

also true, however, that as long as the energy losses are confined to the
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beam head, as in these cases, the energy balance argument that produced Eq.

(7) still applies.

It is important to note that Eq. (7) differs from previous analyses

mainly in the treatment of yf, which is calculated by solving Eq. (9). A

common feature of previous treatments 2 of inductive erosion in this regime

is to assume either Yo >> Yf or yf = 1. It is easy to see that, for our Ib

= 2 kA cases, either of these approximations will cause the erosion rate to

be underestimated by as much as 50%, because the particle dynamics limit

the amount of energy that can be extracted from the beam. Another

consequence of these dynamics is that a population of particles with y - yf

may remain behind the beam head. In those cases where yf is large, as in

the Ib - 2 kA cases, a significant portion of these particles may remain at

small radii, near the beam, and will show up in the Iencl plots as an

apparent current enhancement behind the beam head (see Fig. 3). Because

these particles are behind the pinch region, they are an artifact with no

effect on the beam head dynamics.

III. Emittance Driven Erosion

For a beam propagating in near-equilibrium, transverse emittance

losses are confined to the beam head, where the pinch force is not

sufficient for confinement. In cases where this is the dominant erosion

mechanism, the loss of particles in the radial direction causes the length

scale for pinching to increase so that an increasing portion of the beam is

susceptible. One expects these losses to be significant only when the

pinch force and inductive Ez spike at the head of the beam are weak, as in

the case of low current. When considering the decrease in the erosion rate

as the current is lowered, emittance losses would appear to place a lower

bound on the erosion rate given by Eq. (7).

9



2
This issue was recently addressed in this regime by Buchanan, who

7
employed the envelope equations of Lee and Cooper, which require that the

radial profile of the beam be a function that is parameterized by R(C,z),

the root mean square radius. This radial function is specified and R(C,z)

is solied for. In Buchanan's analysis, a Gaussian profile was used. The

resulting equations could not be solved analytically, but the lack of an

equilibrium solution (characterized by 8/Bz = 0) was demonstrated,

indicating a nonzero erosion rate for all time. When the equationq were

solved numerically for a wide range of parameters it was found tha. the

asymptotic erosion rate is a constant given by empirical expression

00 - Op M 018 c-L -) 2 ( + f ) O  (11)

This was addressed independently by Nguyen and Uhm,8 who again applied

the envelope equations of Lee and Cooper to a beam with a Gaussian radial

profile. They made the additional assumption that, after a short

transient, the erosion rate is constant and the axial profile of the beam

is fixed so that all relevant qualities vary only as X - vpt - z, where vp

is the velocity of the eroding pinch point. As above, the envelope

equations were solved numerically with resulting erosion rates summarized

by the expression:

S 0.094 f0.85 f > 0.1 (12)

0 0.044 f f < 0.1

From Eq. (7) and Eqs. (11) and (12) we expect that emittance erosion

should not contribute significantly to losses in high current beams, which

is apparently the case for the parameters used in Table I. At low current
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(< 1 kA) and high y 0 
(> 20), however, these equations suggest that

significant effects should be observable in the simulations.

We investigated this possibility by making several runs with I - 1

kA, yo - 20, Cr - 10 cm, Snax . 100-400 cm. The values used for the

ionization fraction, 0.055 < f < 1.0, and the ratio of beam to channel

radius, 1.0 < rb/rc < 3.0, were chosen so as to satisfy two conditions:

(1) we require nc < nb throughout the channel so that all channel electrons

will be expelled and (2) the predicted emittance erosion rate must dominate

over the inductive effects. From Eqs. (11) and (12) erosion rates ranging

from $ - 0p < 0.01 up to o- 0 p > 0.08 were expected for these

parameters.

As in the inductive cases, erosion was measured from plots of Iencl

versus C once steady-state erosion was established. In contrast with the

inductive case, where this could be determined from the average particle

energy in the beam head, we had to rely on axial profiles of beam

quantities to indicate steady-state, or near steady-state behavior. In all

cases, we found erosion rates of .01 < o- 0 p < .03, which varied only

sluggishly with f and rb/rc. The measured rates also varied with the

numerical parameters, 6C and -r, indicating that the erosion rates were

less than or of the order of the numerical errors.

To clarify these data, we repeated several of the runs with y0 = 5.

This reduction in T0 should double the rate of emittance erosion, according

to (11) and (12). Inductive erosion effects were removed in these cases by

specifying Ez - 0 in the part of the simulation where the beam particles

are acted on by the fields (the particle push routine). In all cases, we

found ° - 0p = 0.005, a reduction in the erosion rate that is opposite the

scaling predicted in (11) and (12). Because the measurements were made in

the asymptotic limit as required to obtain steady-state behavior, we
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concluded that the rate of erosion due to the finite emittance of the beam

tends toward zero in the asymptotic limit. This conclusion is supported by

further analysis of the simulations.

To further investigate the results, the beam was diagnosed for average

transverse emittance as a function of C throughout the simulation. Plots

of Iencl versus C from a run in which Y= 5, f = 1, rb - rc - 2 cm, Ib = 1

kA and in which E = 0 were specified in the particle push routine as shown

in Fig. 5. Early in the simulation, at cT - 4 meters, the initial rise

length of 10 cm has increased to 100 cm, and a low emittance population of

particles, with T < T /2, has developed at the beam head, where T0 is the

initial transverse temperature of the beam. Beyond c - 4 meters, the

axial profile evolves slowly, with both the rise length and the low-

emittance population continuing to increase and the rate of increase in

these quantities tending toward zero. Note that because of the low energy,

y 0 5, a = 0.98, the beam motion relative to the coordinates will be

discernible over the course of the simulation, which continues until cT

40 meters. This motion can be seen in the the ct - 4 m and cT - 40 m plots

of Fig. 5. When measuring the cumulative effects of the transient erosion

process over a long distance, this must be taken into account.

The progress toward an asymptotic state can be seen in Fig. 6, where

the growth of the low emittance population is shon by plotting 1T versus

z, where CT is the coordinate of the point at which the beam particles have

transverse temperature T - To/2 and z - c'r. Particles with C < 1T will

have lower emittance. As the beam reaches an asymptotic state, the motion

of ZT(z) will match the motion of the beam body, Cb(z) - (1 - $)z, so that

CT(z) and Cb(z) will have the same slope. A line with slope dC/dz - 1 - 0

is also plotted in Fig. 6. Note that for z > 20 m the two slopes have

converged to within numerical fluctuations.
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The result of an asymptotically vanishing erosion rate is clearly a

departure from the predictions of Eqs. (13) and (14). The discrepancy

resides in the assumption of self-similar radial dynamics which is
7

fundamental to the derivation of the envelope equations. Note that self-

similarity implies that <v r> = (r/R)dR/dt, where the beam density profile

is a fixed function with a scale radius R and the brackets indicate an

average over particles within a thin annulus of radius r. In other words,

a Gaussian beam remains Gaussian as it expands. Departures from self-

similar dynamics have been observed in our simulation results via plots

(not shown) of beam density versus radius both in the head and in the body

of the beam. We found that the beam profile at the head of the beam,

initially zero for r >> rb, developed "wings" at large radii while

remaining peaked on axis. The formation of this highly non-Gaussian

profile occurred early in time, when the high temperature particles escaped

the weak pinch potential. Low temperature particles, which remained

trapped near the axis, contributed to the increased rise length of the

beam. The radial profile was preserved in the beam body throughout.

IV. Conclusions

We have seen that numerical simulations of inductive erosion agree

closely with the theory over a wide range of parameters, even when the beam

dynamics are complicated by unstat3 behavior in the beam head. These

results demonstrate that at low energies (< 5 MeV) careful consideration of

the relativistic dynamics of the beax. particles are required for accurate

prediction of inductive erosion rates. This, in effect, limits ones

ability to reduce the erosion rate by various means because a lower erosion

rate results in a higher yf. At higher energies, the yo >> Yf

approximation holds, and our results are in agreement with previous

formulations.
2
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In the case of emittance erosion, simulations indicate that a steady-

state erosion rate is not established and that the radial expansion at the

beam head is not self-similar, thereby departing from previous theoretical

assumptions.2'8 As the beam-channel equilibrium is established, these

beams develop a long rise length of lov-emittance particles, with an

erosion rate that tends towards zero. Because the simulations show that

this asymptotic behavior establishes itself only over large propagation

distances, this may not be easily observable in laboratory cases of

interest. For these cases a new analysis, in which the radial dynamics are

treated more carefully, would be required.

Acknowledgments

We are happy to acknowledge many helpful and stimulating discussions

with M. Mostrom of Mission Research Corporation.

This work was supported by the Defense Advanced Research Projects

Agency, under contract number N60921-86-WR-WO0233.

14



Appendix: The FRIEZR Simulation Code

For these studies we have used an electromagnetic particle simulation

code, FRIEZR,9 which was written to study the propagation of high energy

electron beams in the Ion Focus Regime in an axisymmetric coordinate

system. The elements of the code are beam and plasma electrons which are

treated as particles, and plasma ions which may be treated as an immobile

background. The code is written in a transformed coordinate system

(r, ,t), where ct - z and x - t. For a highly relativistic beam, the

axial variable, , measures distance behind the beam head. The beam moves

slightly slower than c so the beam head slips slowly backward in the

coordinate system, but for high energy beams and short propagation

distances, the slippage is not significant relative to the size of the

simulation region. The particle dynamics are determined from the solution

of Maxwell's equations written in the (r,C,t) variables with current and

charge densities determined from the simulation particles. We write the

equations for the vector and scalar potentials, X and *, in a gauge
10

suggested by Lee which is particularly convenient for axisymmetry. In

this gauge, which has the condition

7 1 A1  0 (Al)

we may write the parallel and perpendicular components of Ampere's law as

,92~z 3A 1 90 L -- 147' (A2)

and

A 1 E z 4ni (A3)A z c T - 1z



Ve change variables to the (r,.=ct-z,x=t) coordinate system and write

and

j(a + ) + + (A5)

where

a =A - (A6)

and

E - L + Ja a (P)
z a-Cc aT

Using the continuity equation,

v.3l -. J Z a0 + c . o (A8)

and Gauss' law,

aE
+ = -4Mp , (A9)

we may write equations (A4) and (A5) as

_L aP (AlO)

and

1 aEz 4n
+ -a = -(Pc - J) (All)

16



In axisymmetry, Ar 0 and the A. equation is decoupled from the a and

equations, so that

L2 - -2 - L , L)A - . (A12)
r

These equations determine the dynamics of the system and are solved at

each time step to determine the potentials from the charge and current

densities. The electric and magenetic fields are then obtained from the

potentials in the usual way. The field equations are differenced

implicitly in both the radial and axial directions, but an alternate

version with explicit differencing in the axial direction has also been

used. Once the fields are calculated, the code pushes all particles

relativistically in Cartesian coordinates using standard techniques. In

order to determine the densities, we use a particle lay-down scheme which

is quadratic in the radial direction and linear (or Nearest Grid Point in

the alternate version) in the axial direction. The code should be valid

for moderate energy as well as high energy beam propagation studies.
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Ib (kA) f 0o-0p (FRIEZR) 0o-0 p [Eq. (7)]

2 0.2 0.024 0.022
2 0.5 0.039 0.046
2 1.0 0.094 0.084

5 0.2 0.043 0.040
5 0.5 0.085 0.090
5 1.0 0.16 0.17

10 0.2 0.061 0.062
10 0.5 0.15 0.14
10 1.0 0.28 0.26

Table I. Erosion rates from simulation results and corresponding values
predicted by Eq. (7).
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Fig. 1 Ez versus C, R1/2 versus C, and nc and nb versus C are plotted

separately at cT - 7 meters for a beam with parameters: Ib . 5

kA, f = 1.0, y a 10, rb - 1 cm, rc = 2 cm and rw . 33 cm.

Fig. 2 1encl versus C plots overlayed for ct = 5 meters (solid) and 10

meters (dashed) show erosion of the current. Iencl is the total

current within r = 5rb. Here, parameters are the same as for

Fig. 1. Such plots were used to measure the erosion rates given

in Table I.

Fig. 3 1encl versus C plots are overlayed for ct - 30 meters (solid)

and 40 meters (dashed) for a beam with parameters: Ib W 2 kA,

f = 0.2, yo . 10, rb - 1 cm, rc - 2 cm and rw - 33 cm.

Fig. 4 E versus C, R1/2 versus C, and nc and nb versus C are plotted

separately at ct - 30 meters. The parameters are the same as in

Fig. 3.

Fig. 5 1encl versus C plotted at cT - 4 and 40 meters shows an increase

in the rise length, Cr' and the development of a low-emittance

population at the beam head. Areas with low transverse

temperature, T < T0 /2, are shaded. Parameters are Ib = 1 kA,

f = 1, Yo - 5 and rb - rc = 2 cm. Ez = 0 is specified in the

particle push routine.

Fig. 6 The coordinate location of the T - T /2 point, C, is plotted

versus ct for the simulation pictured in Fig. 5. As the

asymptotic near-equilibrium state is reached, this point will

become stationary with respect to the beam body, attaining a slope

dC%/dz = dC b/dz - 1 - 6, where dCb/dz is the velocity of the beam

body relative to the simulation coordinate frame and z = cT. A

line with slope 1 - is also plotted.
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ANALYSIS OF THE NSWC BEAM EROSION EXPERIMENT

K. Nguyen, J. Smith*, R. Schneider, H. Uhm
and J. Krall**

Naval Surface Warfare Center
. . . . . .. . . . . *Titan/Spectron

**Science Applications Intl--Corp.-

Recently an experiment was performed at NSWCI . The objective of this
experiment was to quantify beam head erosion as a result of energy loss due to
the inductive axial electric fie d4in propagating through a preformed IFR plasma
channel, i.e., inductive erosion " . Inductive erosion occurs at the beam head
where the channel electrons are expelled to set up a potential minimum (the
positive ion channel) so that the rest of the beam pulse can follow. In this
paper, a theoretical analysis of the experimental results is presented.
Theoretical calculations and experimental data are found to be in good
agreement. A detaild description of the experimental setup can be found in
reference (1).

The inductive axial electric field can be found from Poisson's equation,
together with the pertinent component of generalized Ampere s and Faraday's
equations. In cylindrical coordinates, these equations can be written as

15 bE
T -(rEr) + " 4e(ni ()

SE

1-6 ((3B + J + 1 Z (2)r Fr " c zb ze c 6t

6Ez 6E - 6B6

6r bz c 6t

where the subscripts (i, e, b) denote ions, channel electrons and beam,
respectively. Assuming beam electrons are moving a: speed v Z c so that we can
neglect beam self-fields, then Eqs. (1) and (2) can be combined by using
Gallilean transformation - ct - z to give (assuming ions do not move)

1 - [r(E - B )) - e [n(r) - n (r, )] - " J (r, ) (4)
r7r r ' 1 e c ze

Whereas, Eq. (3) can be rewritten as
SE_6Ez 6

Tr "- (Er Be)" 5)

We can combine Eqs. (4) and (5) to have

6 Rw  eN e(r',) I (r", )
E ' 2 rw [ Cr"" + er' ]dr, (6)

or

Ez(r, ) L [4 (r, ) - A er, )j. (7)
z 6g e ze
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Here R is the conducting wall radius, 0 and A are the scalar and vector
potential, respectively. If we neglect any axial motion of the channel
electrons, then Eq. (7) can be further reduced to

6EeEz(r, ) " -- (r, ). (8)

In this form, we can readily relate the inductive axial electric field and hence
beam energy loss to the expulsion of the channel electrons. It is important to
note that if, due to some physical reasons, the channel electrons can return
before hitting the wall, then Eq. (8) indicates that the beam electrons can also
be accelerated.

Thus beam energy loss (or gain) can be found from Eq. (8) to be

2d 6
mec z [ ) - -1 1 (c). (9)

For steady state erosion where beam current and energy axial 3pEofiles are
uniform, Eq. (9) can be integrated to yield an erosion rate

A eNe in (RT/Re)  (10)
Az 8.5 ( - 1)

Here N is the line density, Re is the channel radius, and RT is the final radius
where most of the channel electrons are trapped. However, for part of the
initial rise time of the beam pulse, no steady state erosion exists since not
all the channel electrons are promptly expelled. The propagation range
required for complete erosion of this transient portion of the beam is given by

17 [ 1) d

LZt I b( l) L

where I is defined as Nb(l) - Ne, and L - In (RT/Re) is a dimensionless

inductance. No meaningful erosion can be measured unless the propagation range
is larger than AZ . Furthermore, no steady state erosion exists if beam
current and energytaxial profiles are not flat, even after the initial transient
period. In this case, the erosion formula is given by

AZ -AZ +17 e 11()"I d(', (12)e t LI 1 I ()
1 e( )

where we have defined

eNec for N < N
I e e ( (13)e Ib( ) for N > Nb

In obtaining Eq. (12), we have assumed that the beam only expelled a sufficien:
number of channel electrons to neutralize its own space charge and these
electrons remain trapped at radius RT. Eq. (12) is the main equation that we
use in analyzing the data of the present experiment.

The experiment was performed with the Febetron 705X accelerator which was
capable of producing a beam with peak energy of 2.8 MeV. However, for the
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present experiment the accelerator was only charged up to 2 MeV at peak which
gave us a nominal triangular shape beam of 30 ns long ( -15 ns rise, -15 ns fall
time), with peak current of about 4.5 kA for a 2 cm diameter fine grain graphite
cathode or 6.5 - 7.5 kA if a velvet cathode of the same size was used. The beam
was injected into a stainlesI steel drift tube of 25 cm in radius which was
filled with Argon at 2 x 10' Torr. The drift tube was also immersed in a 120
Gauss axial magnetic field. This field was necessary in order to confine the
plasma channel cfeated by 4direct ionization-with--a -low-energy-electron beam (400
Volts) from a Godfrey gun . The channels were carefully diagnosed with a
Langmuij probe to have a nominal j diuslof I cm and line densities ranging from
5 x 10 cm- to more than 1 x 10 cm" depending on the adjustable low energy
beam current.

It is important to note at this point several effects of the 120 Gauss
axial field will have on this experiment. Firstly, at moderate current (i.e.,
4.5 kA), the energy gained by the channel electrons are not sufficient to allow
their escape to the wall and they are consequently trapped at some large
radius. Secondly, the gyro-motions of trapped electrons can modulate the beam
pulse at the gyro-frequency. Thirdly, trapped channel electrons can return
during current fall time, upon seeing a positive ?et charge, and accelerate the
beam tail end. Finally, plasma wakefield effects due to the diffuse plasma at
large radius are expected to be much reduced by the axial magnetic field and the
beam long rise time in this experiment. To verify these phenomena,a simulation
was performed with the NRL's FRIEZR code. In this simulation, the beam was
injected with a triangular current profile of 30 ns long (15 rise,-15 fall) and
a corresponding triangular voltage trace that starts at 800 kV, peaks at 2 MV,
and falls back to 800 kV as expected from the experiment. Snapshots of beam
current profile and contour plot of the channel electrons density at ct - 800 cm
are 1own -n Figures 1-a and 1-b, respectively. The channel line density was 5
x 10 cm . The fact that the channel electrons are trapped at large radius
and eventually return at the beam tail are clearly observed. Beam current
modulation also begins to show at this point. After 9 meters of propagation,
beam tail energy is accelerated to 1.3 MV from an initial 800 kV and the beam
profile is clearly seen to be modulated at gyro-frequency.

Two series of shots were performed in the experiment. In the first series
of shots, a graphite cathode was employed to obtain a beam with peak current of
4.5 kA (13 as rise, 17 ns fall times). The corresponding voltage trace peaks at
2 MV with a base that starts and ends at 800 kV. Input and output current
traces were obtained with Rogowski coils (7.5 cm radius) as new sections of
drift tube were inserted (at 8', 16', 28', lid 40i). In most of these shots,
the channel line density was about 9.3 x i0 cm 'e(I - 4.3 kA) or
larger. Input and output traces for Iemax - 4.3 kA case at 8' and 28' are shown

in Figs. 2-a and 2-b, respectively. No erosion was observed at 8' as expected
due to transients. At 28 ft., the beam had eroded about 17 ns as measured from
the initial beam edge to the leading edge of the remaining pulse where the
current is half of the observed peak. Theoretically, we expected about 14 ns by
using Eq. (12) and assuming RT - 15 cm (Fig. 1-b). The discrepangy can probably
be attributed to the transient beam head emittance driven erosion due to the
large initial transverse temperature ( -35 kV) as measured by vacuum free
expansion . Current traces at 40 ft. was observed to be indistinguishable from
those at 28 ft. indicating substantial energy gain of the beam tail as expected
for these experimental parameters. 4 ns more of beam pulse would have eroded
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away if theie was no energy gain. We also note that for case in which channel
exceeds beam peak line density, experimental data was observed to be similar to
the case presented here, where Ne - Nbma This observation justifies the
assumption that the beam only expels a sufficient number of channel electrons to

neutralize its own space charge. In order to avoid channel trapping by the
axial field and to reduce the beam emittance, a velvet cathode was employed
which allowed us to increase beam peak current to about 6.5 - 7.5 kA (15 ns
rise,_15 ns-fall)-for a peak beam energy of-2 MV. The higher current allowed us
to perform the experiment at Ne < Nbmax and still observe substantial erosion.
The propagation range in these cases was 40 ft. Input and output current traces
were obtained with Rogowski coils. A simultaneous current trace was obtained at
25' (or 14') by using a B-dot probe located 25 cm from the beam axis. The
experimental results are shown in Figs. 3-a to 3-d. Fig. 3-d is the result of
two shots under similar conditions. It is interesting to note the oscillations
seen in the B-dot current traces which are near the electron gyro-frequency.
These oscillations were not picked up by the Rogowski coils which had a 7.5 cm
radius. A plausible explanation for this observation is that the beam may have
perturbed the diffuse plasma at large radii and/or a small fraction of the
expelled channel electrons may have been trapped near the wall, thus the
electron gyro-motions are only picked up by the B-dot probe which locates near
the wall. Comparisons between theoretical predictions and experimental data are
shown in table 1. Excellent agreement between theory and experiment strongly
indicates that inductive erosion has been observed.

FiRure Ibmax (kW Ne/Nbmax Z(ft) Exp (ns) Theory (ns)

3-a 6.5 0.65 25 13 15
40 20 21

3-b 6.5 0.92 25 17 19
40 23 26

3-c 7 >1 25 22 21
40 30 27

3-d 7.5 >1 14 18 15
25 24 22
40 30 28

Table 1. Comparisions Between Experinent and Theory [Eq. (12)).
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Fig. 1-a: Snapshot of Fig. 1-b: Snapshot of channel
beam current at ct=800 cm electrons density contours at

ct = 800 CM

2Ons/Div lOns/Div
I~~ I I I

Fig. 2-a: Input (top) and Fig. 2-b: Input (top) and
output traces for Z S' output traces for Z =28'

2kA/ Div
IOns/Div

Fig. 3-a: Current traces at Fig. 3-b: Current traces at
input, 25' and 40' input, 25' and 40'

I I I I I I I___ I__ A__ -__ I__ I__ I__ I

Fig. 3-c: Current traces at Fig. 3-d: Current traces a t
input, 25' and 40' input, 14', 25' and 40'
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DELPHITHEORY
AXISYMMETRIC EROSION AND WAKE FIELD EFFECTS

Glenn Joyce, Martin Lampe, Richard Hubbard, and Steve Slinker
Naval Research Laboratory

and
Jon Krall and K. Popadopoulos

Science Applications International Corporation, McLean, VA

A laser guided relativistic electron beam experiences a loss of energy
as it ptpagates due to the expulsion of plasma electrons from the plasma
channel produced by the laser. The energy loss occurs mostly at the head
and results in an erosion of the beam front. A number of studies of this
phenomenon have established the amount of erosion as a function of the beam
and plasma parameters. If, in addition to the laser generated channel
there is an ambient plasma in the vicinity of the beam, the beam can
produce large amplitude plasma oscillations which can extract energy from
the beam. These oscillations look like standing waves to the beam and cause
the beam to lose energy in some axial regions and to gain energy in other
regions. The effects are similar to those of a plasma wake field
accelerator although the maximum energy which can be gained by any beam
segment is twice the initial energy. One of the effects of the wake field
is an enhanced erosion of the beam but another consequence is that the beam
may lose its equilibrium and break up into bunches of shorter beams. The
consequences of this beam break up are not fully understood. We have
studied both inductive erosiqn and wake field effects using the axi-
symmetric particle simulation code FRIEZR.

The theoretical formula for axi-symmetric erosion is given by

Erosion rate = fIbL/17Yo

where f is the channel neutralization fraction, I is the beam current, L
is the system inductance, and yo is the beam energy.

The table on following page shows the results of a number of code runs
and compares the erosion measured in the numerical experiments with the
theoretical result. We have chosen a beam energy comparable to the energy
we expect from the SUPER IBEX experiment at NRL and have used propagation
ranges similar to what we expect from that experiment. Some of the methods
of measuring the erosion, such as monitoring the position of the Ez spike
as it moves backward from the beam head, are easy to determine in a
numerical simulation but may be quite difficult to measure in an
experiment, while others may be easier to duplicate experimentally. The
results obtained from a number of methods give erosion values which are
close to each other and to the theoretical result.



The plasma wake field is an electrostatic wave which is set up by Lne
beam. As the beam propagates in the plasma, electrons are repulsed by the
beam head and travel radially outward leaving behind an ion charge. If the
rise time of the beam is sufficiently long, a volume of electrons will move
out to a radius such that the beam plus the surrounding ion cloud will be
charge neutral. If, however, the rise time is short, the electrons will
overshoot the charge neutral radius and an excess of positive charge around

the beam will attract the electrons. The oscillation of the plasma across
this boundary occurs at the plasma frequency and will result in a wave of
wavelength 2nc/w as measured from the beam head. This wave has an
associated electric field whose axial component, Ez, alternates sign.
During half the period, the field extracts energy from the beam and during
the other half, the field adds energy. An example of the field structure
is shown in Fig. 1. Over long distances of propagation, the effect of the

electric field is to deplete the energy from some axial regions of the beam
and to energize other regions.

For beams propagating in plasmas whose boundaries are far from the
beam, there may be situations in which wake field effects do not occur
since there are beams with so much charge that electrons will be pushed to
such a large radius before reaching charge neutrality that they either
never return (for practical purposes), or they lose any coherence with be
beam before they return. This radius appears to be on the order of the
electromagnetic skin depth, (c/l ) since past this distance the fields of
the beam cannot easily penetratepthe plasma. If we require that the skin
depth be equal to or greater than the radius for charge neutrality, we
obtain

Ib < 17/4 Ka.

Note that the plasma density does not occur the inequality and the
condition is on the beam current only. For ms with currents less than
about 4 kiloamperes, the structure and size the plasma wave depends
little on the beam, but mainly on the diffuse plasma. The wave can exist
for a number of periods with only slight variations of the peak Ez field
from peak to peak.

An examination of the equations governing the electromagnetic fields
and the beam dynamics shows that a number of physical parameters scale with
the beam radius. That is, if we know the properties of the beam
propagation at one radius and diffuse plasma density, we can infer the
properties at other radii and densities. The figure on the following page
shows the dependence of the peak Ez field over a large range of plasma
densities. In addition, this figure shows that the peak field is
relatively independent of the beam radius at a constant plasma density. 4
Using this information, we can understand some of the implications of the
energy loss due to the wake fields. For example, y = 2*Ez*z where z is
the propagation distance, and if y =40, and n =10 , some segments of the

beam will lose most of their enery after a p pagation distance of about
10 kilometers. Most of this energy will be transferred to the other

portions of the beam.
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The portions of the beam which lose energy will eventually be lost from

the beam. There are three mechanisms for the loss. The first and

strongest can occur if the returning plasma electrons create a region

around the beam in which there is an excess of negative charge. In this

case, the radial confining force is reversed and becomes defocussing which

causes the beam electrons to quickly spread to large radii. The second

occurs even if the returning plasma is too diffuse to reverse the confining

force. In. this case, the beam eventually loses equilibrium because beam

emittance is mismatched for the lower energy segments of the beam.

Finally, the low energy particles may simply slow down and be left behind.

Any of these effects will cause the beam to evolve into a train of beams

with a length of half a plasma period. The front half wavelength of the

beam which always loses energy will relatively quickly erode away and the
half wavelength following will then become the beam front. As this

happens, the phase of the plasma wave with respect to the beam will change

and the long term consequences of this are not completely understood. We
have done a simulat;on of this effect for a relatively high density, low
energy beam (n -10 ",-10) and in this case, the beam becomes fairly
incoherent aftfi the beam front disappears. The plasma density, for this

example, was high enough to quickly disperse the low energy portions of the
beam.

Wake fields may have important consequences in the propagation of laser

guided beams. Even with fairly low density plasmas surrounding the beam,

if the propagation distance is long enough, the beam may be broken into a

train of pulses. The combination of beam head erosion and wake fields can

cause the shorter pulses to be broken up as well.

100
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NUMERICAL STUDIES OF EROSION AND TRANSPORT OF CHOPPED AND UnCHOPPED BEAMS

J. Krall*, G. Joyce and K. Nguyen**

Naval Research Laboratory
*Science Applications Intl. Cuvp.
**Naval Surface Warfare Center

An electron beam propagating along a low density plasma channel in the ion
focused regime (IFR) is characterized by a freely expanding head, a pinch region,
where the plasma electrons are ejected from the channel and the beam pinches to
its equilibrium value, and the beam body.

The pinch region of such a beam is associated with increasing net current
and azimuthal magnetic field and an inductive Ez spike. Energy loss In the beam
electrons due to Ez causes electrons -o be lost from the beam head. Additional
losses can result from the finite emittance of the portion of the beam that is
not fully pinched. In this study, we use the FRIEZR simulation code to measure
these effects and make comparisons with theoretical results.

In cases where a diffuse background plasma is present, it has been observed
that wake fields are excited at the beam head as long as the rise length is less
than the plasma wavelength, XD = 2nc/ . 1 These wake fields move with the beam,
causing periodic disruptions, and have been observed in IPROP simulations where
they are not reduced by 3-D effects.2 Mostrom et al. 2 have observed, using IPROP
simulations, that chopping the beam at a frequency wc > wp will reduce wake field
effects, apparently as a result of the ability of a chopped beam to maintain a
long rise length. Here we use FRIEZR to verify these results, survey values of
wc/Ip for optimum conditions, and contribute our own insights.

INDUCTIVE EROSION

In IFR propagation, where energy losses due to scattering may be neglected,
the inductive erosion rate of a beam pulse is given by

3

efIbLc 8 p 

(

mc (yo + YU - Yf

where 8O is the beam velocity, Op is the velocity of the pinch point, (rf - l)mc 2

is the final energy of the particles as they are lost from the beam, Lc
2log(rw/rc ) is a dimensionless inductance and rc is the plasma channel radius.
The field energy, which erodes with the beam energy, is given by Yumc 2, where

e bLb(I - f) (2)

3mc

Here, Lb = 2log(rw/r b ) is a dimensionless inductance and rb is the beam radius.
For the vacuum case (f = 0) the above gives the familiar expression for the
limiting current of a beam with y = YU propagating in a drift tube of radius rw.
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The value of Tf is determined by solving a cubic equation which is the
re.Ilt of a simple argument given in reference 4:

3 22 2 2

Yf - (Yo + yU + 2Cyo)y- oYf + (Y + Y + C)y = 0 , (3)

where C = efIbLb/mc 3. Note that for Yo >> 1, the yU = 0, Tf = 1 approximation
used in previous treatments 5 holds. Some of our own results at To - 10 are
within this regime.

Numerically determined erosion rates for various values of Ib and f are
shown in Table 1. In all cases, T = 10, rb = 1 cm, rc - 2 cm, rw - 33 cm,

Cr(beam rise length) = 50 cm, and max = 100 - 400 cm. The erosion rate
predicted by Eq. (1) is also given. We see that the results agree closely with
theory.

1b (WA__ f 00-__p (FRIEZR) 0 -_Op (Eq. (1)]

2 0.2 0.024 0.022
2 0.5 0.039 0.046
2 1.0 0.094 0.084

5 0.2 0.043 0.040
5 0.5 0.085 0.090
5 1.0 0.16 0.17

10 0.2 0.061 0.062
10 0.5 0.15 0.14
10 1.0 0.28 0.26

Table 1. Erosion rates from simulation results and corresponding values
predicted by equation (1).

EMITTANCE DRIVEN EROSION

This issue was recently addressed in this regime by Buchanan,5 and
independently by N5 uyen and Uhm.

6 Both analyses employed the envelope equations
of Lee and Cooper, which require the radial structure of the beam be
parameterized by R(C,z), the RMS radius. The radial function is specified and
R(C,z) is solved for. In both cases, a Gaussian profile was used. The resulting
equations could not be solved analytically, but numerical solutions over a wide
range of parameters demonstrated nonzero erosion rates and resulted in empirical
expressions for each case.

From these analyses we expect that emittance erosion should not contribute
significantly to losses in high current beams, which is the case for the
parameters used in Table 1 above. At low current (< I kA) and high yo (> 20),
however, they suggest that significant effects should be observable in the
simulations.

We performed several runs with lb = 1 A, Yo = 20, Cr = 10 cm, 4max - 100-
400 cm. The values used for the ionization fraction, 0.055 < f < 1.0, and the
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ratio of beam to channel radius, 1.0 < rb/rc < 3.0, were chosen so as to satisfy
two conditions: (1) we require n nb throughout the channel so that all
channel electrons will be expelled and (2) the predicted emittance erosion rate

must dominate over the inductive effects. Erosion rates ranging from 0 - p <
0.01 up to 0o - o > 0.08 were expected for these parameters. In all cases, we
found erosion rates of .01 < 00 - op < .03, which varied only sluggishly with f
and rb/rc. The measured rates also varied with the numerical parameters, 6C and
6x. indicating that the erosion rates were less than or of the order of the
numerical errors.

Ve repeated several of the runs with Yo a 5, which should double the ra e of
emittance erosion, according to the analytic expressions which scale as y- 1/1.
Inductive erosion effects were removed in these cases by specifying EZ W 0 in the
FRIEZR particle push routine. In all cases, we found 0o - Ap = 0.005, a
reduction in the erosion rate that is opposite the predicted scaling. 'e
conclude from this that the rate of erosion due to the finite emittance of the
beam tends toward zero in the asymptotic limit. This conclusion is supported by
further analysis of the simulations.

To further investigate the results, the beam was diagnosed for average
transverse emittance as a function of throughout the simulation. Analysis of a
run in which yo - 5, f - 1, rb = rc = 2 cm, Ib = 1 kA and in which E. - 0 was
specified in the particle push routine showed an increase in rise length from 10
cm at z = cT = 0 to 100 cm at z = 4 meters to 150 cm at z = 40 meters. Vithin
this long rise length the emittance diagnostic showed that the high emittance
particles were lost, so that an increasing portion of the rise length is composed
of very low emittance particles. From z = 4 m to z = 40 m the axial profile
evolved slowly, with both the rise length and the low-emittance population
continuing to increase and the rate of increase in these quantities tending
toward zero.

PROPAGATION IN A DIFFUSE PLASMA

A Delphi beam propagating through a diffuse plasma will excite a plasma wave
which will travel in phase with and disrupt the beam, unless the beam rise length
is longer than the plasma wavelength, XD = 2nc/ . It has been observed,
however, that such a beam will self-sharpen at the beam head so as to eventually
excite these waves. 1 Recent simulations have shown that a rapidly chopped beam
will develop and preserve a long rise length, reducing the amplitude of the
plasma waves.

2

In these studies we considered an Ib = 2 kA, yo = 10, rb - 1 cm, Cmax = 350
cm, beam propagating in an f - 0.5 channel with a background density np - 109.
This results in a plasma oscillation of wavelength X = 110 cm. In our initial
survey, we considered sinusoidally chopped beams with chopping wavelengths of X.
a p/1.5, Xp /2.0 and Xp/2.5 respectively. These runs were carried out to ten

meters where, in an unchopped case, the electric field amplitude is 25 kV/cm. Ve
found in the Xc = Xp /1 .5 case that each pulse in the pulse train appeared to act
independently of the others, exciting a 25 kV/cm wake field behind each pulse.
In the kc = X /2 case, the wakes from the beam head disrupted alternate beam
pulses so tha? after ten meters, this beam resembled the unchopped result with

correspondingly high electric fields. In the Xc/x p = 2.5 case, thc beam did not
undergo severe disruptions and peak field amplitudes were less than 15 kV/cm. In

this case, the beam experienced high transient fields before the rise length
increased and the the field amplitudes decreased.
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In an effort to understand the effects of this transient, we ran two cases
with Xc - Xa/2.5, one with a rise length Cr = 5 cm " Xc and one with Cr - 50 cm
> Xc, as well as an unchopped beam with Cr * 50 cm. We measured the average
energy per unit length in the beam as U . (Y<5 - 1)I<5, where Y<5 is the average
gamma and I<5 is the average current for particles enclosed within r < 5rb. The
presumption is that particles at radii greater than 5rb are not useful for Delphi
applications. This was compared with an ideal value, UI, where the only losses
are due to inductive erosion at the beam head as calculated via Eq. (1). After
18 meters, the Cr = 50 cm chopped case developed a rise length of 150 cm with Ez
less than 6 kV/cm. The energy diagnostic showed U/UI = 0.69 for this case, U/U1
- 0.62 for the unchopped case and U/UI - 0.38 for the Cr - 5 cm case, indicating
the importance of the transient fields in developing the long rise length. Note
that with the 350 cm of beam used in the simulations, we are modelling only the
region near the beam head and expect the low field amplitudes in the Cr - 50 cm
chopped case to cause significantly less disruption of the beam body than is
expected in the unchopped case.

CONCLUSIONS

We have seen that numerical simulations of inductive erosion agree closely
with the theory over a wide range of parameters. These results demonstrate that
at low energies (< 5 Mey) careful consideration of the relativistic dynamics and
field self-energy of the beam are required for accurate prediction of inductive
erosion rates.

The result of asymptotically vanishing emittance erosion rates is clearly a
departure from the analytic models. The discrepancy resides in the assumption of
self-similar radial structure which is fundamental to the derivation of the
envelope equations. This assumption appears to be too limiting in this case,
where the beam must be parameterized, at the very least, by c(C,z) as well as
R( ,z), where c(C,z) is the average emittance of the particles at a given C and
z. The beam may in fact assume a highly non-Gaussian profile at early times,
when high temperature particles escape from and low temperature particles remain
trapped by the weak pinch potential.

The survey of frequencies for fast chopping of these beams indicates that
p /)c > 2 is required for effective suppression of wake fields in a background
asma. We also find that the transient fields can cause significant energy

losses in the beam head of a chopped beam unless the pulse train has an initial
rise length Cr > Xc" With this initial rise length, we find that energy losses
in the region of the beam head are reduced relative to the unchopped case and
that field amplitudes are reduced by a factor greater than four.
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A relativistic electron beam injected into a laser produced plasma channel

can propagate for long distances while being guided by the channel. This

propagation mode is known as Ion Focussed Regime (IFR) propagation. If, in

addition to the laser generated channel, there is an ambient plasma in the

vicinity of the beam, the beam can, under certain conditions, excite large

amplitude electrostatic plasma oscillations or wake fields which can extract

energy from the beam. These oscillations are standing waves in the beam frame

and cause the beam to lose energy in some axial regions and to gain energy in

other regions. One of the effects of the wake field is an enhanced erosion of

the beam but another consequence which may be more important is that the beam

may lose its equilibrium and break up into bunches of shorter beams. In

addition to the generation of wake fields which are primarily axisymmetric, the

beam is unstable to a transverse electrostatic instability called the transverse

two stream instability. We have studied the wake field effects using the

axisymmetric particle simulation code FRIEZR, and have developed a dispersion

relation to help understand the transverse electrostatic instability.

I. AXISYMMETRIC EFFECTS

The plasma wake field is an electrostatic wave which is set up by the beam.

As the beam propagates in the plasma, electrons are repulsed by the beam head

and travel radially outward leaving behind an ion charge. If the rise time of

the beam is sufficiently Long, the electrons will move out to a radius such that

the beam plus the surrounding ion cloud will be charge neutral. If, however,

the rise time is short, the electrons will overshoot the charge neutralization

radius. The oscillation of the plasma across this boundary occurs at the plasma

frequency and will result in a wave of wavelength 2mc/w p as measured from theP
beam head. Thi, wave has an associated electric field whose axial component,

Ez , alternates sign. During half the period, the field extracts energy from the

beam and during the other half, the field adds energy. An example of the field

structure is shown in Fig. I. Over long distances of propagation, the effect of

the electric field is to deplete the energy from some axial regions of the beam

and to energize other regions.

For beams propagating in plasmas whose boundaries are far from the beam,

there may be situations in which wake field effects do not occur since there are

beams with so much charge that electrons will be pushed to such a large radius
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before reaching charge neutrality that they either never return (for practical

purposes), or they lose any coherence with be beam before they return. This

radius appears to be n the order of the electromagnetic skin depth, (c/wp ).

If we require that the skin depth be equal to or greater than the radius for

charge neutrality, we obtain Ib < 17/4 k.A. Note that the plasma density does

not occur in the inequality and the condition is on the beam current only. For

beams vith currents less than about 4 kiloamperes, the structure and size of the

plasma wave depends little on the beam, but mainly on the diffuse plasma. The

wave can exist for a number of periods with only slight variations of the peak

Ez field from peak to peak.

An examination of the equations governing the electromagnetic fields and the

beam dynamics shows that a number of physical parameters scale with the beam

radius. That is, if we know the properties of the beam propagation at one

radius and diffuse plasma density, we can infer the properties at other radii

and densities. Figure 2 shows the dependence of the peak Ez field over a large

range of plasma densities. Using this information, we can understand some of

the implications of the energy loss due to the wake fields. For example,

Ly=2zE~ where z is the propagation distance, and if yo=20-40, and np1=104 105,

some segments of the beam will lose most of their energy after a propagation

distance of about 10-20 kilometers. Most of this energy will be transferred to

the other portions of the beam.

The portions of the beam which lose energy will eventually be lost from the

beam. There are several mechanisms for the loss. The first and strongest can

occur if the returning plasma electrons create a region around the beam in which

there is an excess of negative charge. In this case, the radial confining force

is reversed and becomes defocusing which causes the beam electrons to quickly

spread to large radii. A second occurs even if the returning plasma is too

diffuse to reverse the confining force. In this case, the beam eventually loses

equilibrium because beam emittance is mismatched for the lower ene- v segments

of the beam. In addition, the low energy particles may simply slow down and be

left behind. Any of these effects will cause the beam to evolve into a train of

beams with a length of half a plasma period. The front half wavelength of the

beam which always loses energy will relatively quickly erode away and the half

wavelength following will then become the beam front. As this happens, the

phase of the plasma wave with respect to the beam vill change and the long term

consequences of this are not completely understood. We have done a simulation

of this effect for a relatively hig ensity, low energy beam (npl- 109 , Y-O) and

in this case, the beam becomes fair-. incoherent after the beam front

disappears. The plasma density, for this example, was high enough to quickly

disperse the low energy portions of the beam.
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II. TRANSVERSE EFFECTS

A set of three-dimensional simulations of a beam propagating in a flat-

topped IFR channel surrounded by a diffuse plasma by Mostrom 1 show a strong

transverse instability which disrupts the beam on a much shorter time scale than

the axisymmetric effects of wake fields. The instability appears to be

electrostatic in nature and is similar to one studied by Sharp and Yu2 for the

PURE mode. We have derived a dispersion relation for transverse electrostatic

oscillations which can be applied to either the PURE case, or that of IFR

propagation in a channel. The results are similar to Sharp and Yu for PURE and

the details of the calculation are presented by Lampe, et al. 3 The major

difference between PURE and IFR propagation is that the beam particles in the

IFR channel oscillate in the potential well of the channel and generally have a

spread of betatron frequencies which cause the instability to be convective

instead of absolute. The dispersion relation is given by

1 I ) [1 ,j G
2 4 1 -fch 3'h

up0  1- 1/2 [1h G
nch

where n p, nb nch are the plasma, beam, and channel densities,

fch is the charge neutralization fraction of the channel,

2 2

2 4n n 2 
4 mnche

po me m2yc2m

and G is the spread mass dispersion function.

For the case of a beam propagating in a Bennett-like channel we c estimate

the maximum growth at the beam tail.

When n b--nch >> np the amplification is approximately given by

exp [N .2... 1 i-]
ch) - ch

where N is the number of plasma wavelengths from the head to the tail of the

beam. For typical Delphi parameters, we expect N=20, np In ch=O -3 and fch=1/2.

The growth, then, is quite small. If the channel were flat-topped as in the

case of Mostrom's simulation, the instability would be absolute and

catastrophic. Later simulation work has confirmed thi 1 .sult.5

Wake fields may have important consequences in the propagation of laser

guided beams. Even with fairly low density plasmas surrounding the beam, if the
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propagation distance is iong enougn, the Deam may De oroken into a train of

pulses. The combination of beam head erosion, nonlinear effects, and wake

fields can cause the shorter pulses to be broken up as well. The transverse

instability effects do not seem to be important for beams propagating in diffuse

plasmas if the plasma density is much less than the beam or channel density.

1. M. Mostrom, "Effects of Background Plasma and Beam Chopping on IFR
Propagation", This Volume (1988)

2. W.M. Fawley, et. al., "A Pure Primer", UCID-21374 (1988).

3. M. Lampe, "PURE Mode Instabilities", this Volume-(1988)
4. See, for example, M. Lampe, V. Sharp, R. F. Hubbard, E. P. Lee and R. J.

Briggs, Phys. Fluids 27, 2921 (1984).
5. D. Welch, "Background-Plasma Effects on Transverse Instabilities in E-Beam

IFR Propagation, this volume (1988).
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Diamagnetic Effects in Endoatmospheric

Electron Beam Propagation

I. Overview

The current theoretical understanding of relativistic

electron beam (REB) propagation as developed in the steady

state treatment of Sharp and Lamp. (Phys. Fl. 23, 2383

(1980)) is as follows. The head of the REB propagating into

the predominantly neutral gas expands freely due to its

emittance since the radial forces due to the space charge

and the beam self magnetic field nearly cancel at the beam

head. Behind the head ionization of the ambient gas raises

the conductivity and neutralizes the space charge in such a

way as to pinch the beam at a backward point, called the

"pinch pointO, to an equilibrium radius determined by the

balance of the beam pressure and the radial magnetic force.

As a result the beam takes on a characteristic "trumpet"

shape (Fig. 1). A similar picture arises during for

propagation in a preionized gas, with the only difference

that beam pinching occurs as the return current decays

resistively. Further on beam front "erosion" due to

expansion coupled with energy loss results in an almost

constant motion of the pinch point backwards while the beam

front erodes. In a simplified fashion we can view the beam

head to pinch point geometry (Fig. 1) as stationary in the
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reference frame moving with the pinch point.

For REF propagation in the earth's atmosphere the useful

propagation range of the beam as well as its targeting

accuracy depends on the motion of the pinch point as well as

the backward part of the beam. In the presence of the

earth's ambient magnetic field Bo, it is usually assumed

that the beam motion is controlled by its gyromotion caused

by BO . Such an analysis implicitly assumes that during the

propagation of the beam head, which occurs during a time t =

C/c, the induced plasma currents do not have any significant

effect on the value of the ambient magnetic field. This

appears to be the cause for currents carried by the bulk of

the plasma due to their high collisionality. However,

electrons whose mean path X>vt=n/cl have the potential to

generate diamagnetic currents thereby reducing the ambient

Bo and altering many of the targeting considerations. For

endoatmospheric REB propagation 8-rays (i.e. electrons with

transverse energy - 10 keV), satisfy this condition. The

purpose of the present work is to assess the extent to which

diamagnetic currents caused by O-rays modify the magnetic

field seen by the Opinch poinLt anid the subsequent part of

the REB and itd consequences to targeting.

2. The Physics of the Diama netic Effect for Axisymmetric

Situations (Simple Physical Considerations)

In order to visualize the physics of the diamagnetic
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currents generated by the trumpet like part of the beam we

examine a simple axisymmetric situation, where the beam

propagates along go (Fig.2 ). We, of course, realize that

for this case changes in the value of -o do not affect the

REB targeting, and the transverse propagation is the

relevant one. However, this case provides an easier

visualization of the physical effects, and thus facilitates

the discussion of transverse propagation.

Referring to Fig. 2 the relevant question is "What is

the value and spatial distribution of the diamagnetic

current caused by the motion of the 8-rays generated by the

beam head on a time equal to the transit time t = I/c? =

In the absence of an ambient magnetic field (i.e. Bo

0), the 8-rays expand radially with initial velocity vr.

Since they feel no forces in the azimuthal direction J9 = 0.

The presence of an ambient magnetic field however forces the

electrons to gyrate about it, thereby transforming part of

vr to ve. Since the transit time t (< Oe-1 (Me - 6x2.07),

the 6-rays rotate only a small fraction (i.e. Oet) of their

gyro-orbit. A diamagnetic electron current layer rotating

in the e-direction is thus created during the transit time

t. The value of the magnetic field inside the beam at the

*pinch point* and behind can be computed easily on the basis

of the electron equation of motion
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dye e E VrBzdv9  e [Ee  T3  (1)

and the spatial and temporal production rate of 0-rays. For

our purposes it is sufficient to consider the value of the

field inside the diamagnetic current by viewing it as a

solenoid. It will be given by

4nje(vrt)
2Bd = c (2)

so that the field inside the layer will be

S  (vt) (n eve) (3)

where n, is the density of the 0-rays. Solving Eq. (1) we

find v9 at time t as

eB0

mc r
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Note that since e8o/mc t ( I we can take vr as almost

constant. From (3) and (4) we find that the total magnetic

field at the *pinch point' is given by

B~ Bo  Bo(Vrt)2

0 c2 0 rmc

or

ci2
B = - c (Vt)2 (5)

Complete diamagnetic situation occurs if

2

-i (Vrt) > 1 (6)

Criterion (6) implies

n /tm > 1.5 x 10" °  10 keV to- 9 2 7[ Lke 1 (7)

where ea is the energy of the 0-rays.
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A complete self consistent solution to the axisymmetric

problem will be given later.

3. _Diamagnetic Effect for Cross Field Propagation (Simple

Physical Consideration)

We proceed next to examine the diamagnetic effect of

8-rays for the most important case, that of REB propagation

across So. The essential question concerns the critical

value n& of the 8-rays required to achieve in a position

z=zo a time dependent magnetic profile with a time variation

such as shown in Fig. 4. Namely, at any point Z along the

propagation path and for a magnetic field A - Boy, the

diamagnetic current induced by the 8-rays to be sufficient

to exclude the field from the propagation region in a time

t. The analysis can be performed in a planar geometry and

assuming the beam to have a finite tranverse thickness Ax,

while it is infinite in the field aligned y direction. The

relevant 8-rays are emitted in the x direction and in the

presence of B - eyBO turn in the z-direction forming

diamagnetic current sheets 3 z on both sides of the beam

which tend to reduce the value of Bo inside Ax. The

relevant equations are

as 4v4w J(8)
(5 z

Sz a enAvz (9)
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dvz • v (dt -- Vx y (10)

Integrating (10) for net((1 we have

eB oVz = mc Vxt (11)

and from (8) and (9)

4,m e2

4mA 2
Bylt) 0 - (v t)BO (12)

In deriving Eq. (12) we integrated form 0 to x v vyt.

Therefore

2

B (t) , i VeA t) 2 (13)

0- (v

The condition is similar to the axisymetric case Eq. (6).

it is equivalent to

r A  _ _ 1 2

> 7x1O 10 keY 10(14)#/ca3  1 A- (4
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4. The Role of the Transverse Electric Field of the 8 e-

in the equations of motion of 8-rays (Eqs. (1) and (12)]

we have neglected the influence of the beam fields. Since

the dominant force is due to the radial electric field, the

above results will not be affected except for replacing the

energy ( of the 8-rays in Eqs. (17) and (14) by the

potential U,& (r(Vrt) where cr is the part of the radial

electric field transverse to !o-
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DiamaEnetic Cavity Formed Durinx the Formation of a Laser

Channel in the Ionosphere

1. Overview

Relativistic electron beam (REB) tracking through the

use of ionization channels in the IFR mode appears to be a

viable mode for propating REB's in the ionosphere across the

ambient magnetic field. The value of the ambient magnetic

field Bo inside the ionization channel is a critical

parameter determining many of the beam and channel

requirements for a desired range. For example

(M) The value of the line density ratio of channel to

beam electrons (f) required to electrostatically

overcome the magnetic forces, depends linearly on

the value of So.

(ii) The rate of magnetic erosion scales also linearly

with BO .

(iii) The beam current at which the ohmic range equals

the magnetic range scales quadratically Bo.

In the calculations today, the value of the magnetic

field inside the channel was taken as equal to the earth's

magnetic field Bo(- 1/3G). This implies that the dia-

magnetic currents due to the channel formation as well as
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the ones potentially induced by the front of the beam in the

plasma can be neglected. Such an assumption is highly

questionable at least for a range of heights and can result

in lower rates of magnetic erosion and values of f. In this

work we make a preliminary study of the diamagnetic effect

due to the channel formation and before the REB is injected.

Diamagnetic effects caused by the beam front will be

addressed elsewhere.

2. The Dynamics of the Channel Formation

Following the ionization stage by the laser the

expected density and temperature profiles are shown in Fig.

1. In our preliminary analysis we assume complete

ionization of the ambient neutral gas, while leaving the

electron Lemperature Te specified at this stage. In the

regime of interest (100-600km) the value of the ambient

plasma density no - 10 3-10Scm- 3 of the ambient temperature

Teo - .05-.2 eV and of the ambient neutral density N -

10 3 -10 7 cm- 3. Relevant graphs are shown as Fig. 2. The

ambient magnetic field is of the order of Bo-l/3G giving an

energy density Bo2/8w = 3.6x10-  erg/cm3 = 2x109 eV/cm 3.

Typical values of Bo = noTeo/Bo/8w - 10-4-10-7.

If we assume complete ionization in the channel and take

Te- IV the resulting values of $-5x103-10 - 2 . It is obvious

that for a wide range of altitudes 0>1, and the magnetic

field will not be able to prevent the expansion of the
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channel electrons. We therefore expect that the expansion

will create diamagnetic currents that will alter the value

of the magnetic field inside the channel. The time scale

for this to occur iu of the order of 10- 7 -100asec. Since

the reduction of the field greatly decreases the rate of

magnetic erosion and targeting is not affected by even

1OO sec time long, it might be desirable for relevant

altitudes to delay the beam pulse by the appropriate time.

Figure 3 shows a particular 1-D hybrid simulation of the

plasma expansion for values of the channel B-4. The value

of the magnetic field inside the channel has been reduced by

a factor of five.

3. Practical Consideraticn

If we assume a complete channel ionization and Te-leV

the expected value of B as a function of altitude is shown

in Fig. 4. Values pf B-1 can be achieved up to 280km

altitude. If the channel temperature can be controlled so

that higher values of Te can be achieved the maximum

altitude can be raised substantially. The dynamics of the

expansion for A-.-- have not been studied in detail and can

possibly help in raising the altitude. Another area in need

of study is the effect of shaping the laser profile.
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GUIDED RADIATION BEAMS IN FREE ELECTRON LASERS

P. SPRANGLE, A. TING '), B. HAFIZI 2) and C.M. TANG
Plasma Theor Branch, Plasma Physics Divsion. Nacal Research Laboratos, Washington. DC 20375.5000, LSA
' Berkeley Research Assoc., Inc., Springfield, VA 22150. USA
-' Science Applications Intl. Corp., McLean. VA 22102. USA

In a free electron laser (FEL), the radiation field, wiggler field and electron beam resonantly couple and modify the refractive
index in the vicinity of the electron beam, such that the radiation beam will tend to focus upon the electron beam. From the radiation
envelope equation derived from the source dependent expansion (SDE) method of solving the 3-D wave equation in FELs. conditions
and parameters necessary to achieve guided radiation beams (constant radius) in the Compton exponential gain regime are obtained
for FELs driven by either induction linacs or rf linacs with various transverse profiles of the electron beam. From the efficiency of the
guided radiation beam, the trapping potential of the ponderomotive potential prior to saturation and the required beam quality of the
electron beam can be obtained. The wiggler field could be tapered to further increase the operating efficiency. The possibility of
bending or steering radiation beams in FELs is discussed and a condition necessary for radiation guiding along a curved electron
beam orbit is obtained.

1. Introduction can be derived using the SDE method, and it is very
appropriate for studying perfect guiding of the radia-

In many short wavelength free electron laser devices tion beam in FELs operating in the exponential regime.
the radiation beam will not be confined or guided by a We have obtained analytic expressions for the spot size,
structure such as a waveguide. Furthermore, in order to wavefront curvature, phase shift and growth rate of the
provide high gain and efficiency, it is usually necessary perfectly guided radiation beam in FELs operating in
for the interaction length (length of wiggler field) to be the Compton regime for different transverse profiles of
long compared to the diffraction length (Rayleigh the electron beam. The intrinsic efficiency of the FEL in
length) associated with the radiation beam. In the FEL the exponential gain regime with guided radiation can
the tendency of the radiation beam to diffract away be calculated from these expressions, and from which
over a distance of a few Rayleigh lengths can be over- the trapping potential and desired beam quality at
come by a focusing phenomenon arising from the reso- injection can be estimated. It is found that high current
nant coupling of the radiation and wiggler fields with rf linacs [13,141 with their higher energy and better
the electron beam [1.21. This radiation focusing effect beam quality, are quite suitable for driving relatively
plays a central role in the practical utilization of the short wavelength FELs to beyond saturation where the
FEL [3]. This phenomenon was first analyzed for the wiggler is tapered to enhance the efficiency. These re-
low gain FEL with transverse effects where it was suits have been verified by simulations based on the
shown that the diffractive spreading of the radiation SDE method for FELs driven by either induction or rf
beam could be overcome by a focusing effect arising linacs.
from the modified index of refraction [1]. Experimental One of the consequences of optical guiding in FEL is
evidence indicating optical guiding in the FEL has also the bending of the optical beam by a curved or mis-
been observed recently [4-7]. aligned electron beam [17]. The SDE formalism allows

Optical guiding in FELs operating in the small signal us to obtain a condition on the curvature of the electron
exponential gain regime has been studied for the beam in an FEL that the radiation beam will remain
asymptotic behavior of the radiation beam [8-11], indi- guided.
cating that it is possible for the propagation of self-simi-
lar transverse modes. Recently, a general formalism for
optical focusing, guiding and steering, called the Source 2. Refractive index associated with FELs
Dependent Expansion (SDE) method, has been devel-
oped and applied to FELs [12]. The SDE method is an In our model, the vector potential of an axially
excellent analytical and numerical technique for solving symmetric, linearly polarized, radiation field is
the wave equation that governs the FEL interaction. An
envelope equation for the radiation beam in the FEL A R(r :, t) A (r. :) e'" ...- ;2 + c.c., (1)

0168-9002/88/S03.50 1 Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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where A( r, :) is the complex radiation field amplitude, where
w is the frequency and c.c. denotes the complex con- e d:.4'
jugate. a, = t fU . I---

The wave equation governing A R is moc" u

(1 a a - 
2  1 a, AR--- J i, (2) and the to integration is over all entry times. Equating

rr "r+ a' 2  c"2 a
2 . eq. (7) with eq. (5) and carrying out the integration over

where J,(r. z. t) is the driving current density. Sub- to , we find the index of refraction associated with the

stituting eq. (1) into eq. (2) leads to the following FEL to be given by

reduced wave equation. [ :, a)i1 a wat 2i 7 )fnFEL(r. "-a)--I +-= -. - e"/> .  (8
-r - + 2i4 a(r. z)S(r, z. a). (3)

where a(r, z) = e A/mo c 2 = f a exp(i ) is the nor- where

malized complex radiation amplitude and we have as- ( + - aln - __ )d_+__

sumed that a(r, :) is a slowly varying function of z, k .(z, -Io')
i.e., I(aa/az)/a I s- /c. The source function, S, is 01

given by, is the relative phase between the electron and the
4 2,,/., ponderomotive wave, 4,o = -wto is the initial phase of

S = - -- J J,(r. , t) e ) dt. (4) a given electron and ( ), = (2r)- If/2' d 40 is an en-
semble average over the initial phases. The radial profile

It is possible to relate the source function, S. to the of the index of refraction as given by eq. (8) supports

index of refraction associated with the medium by not- se ing of eradtion in an eL. It sodb
ing hatthewaveequtio forAR n anonmgneic, self-focusing of the radiation in an FEL. It should be

ing that the wave equation for A in a nonmagnetic, noted, for completeness, that the relative phase satisfies
time-independent, nonlinear medium is tepnuu qaingvnb

(72 )I2)82atlthe 
pendulum equation given by

(V 2 -(n 2 (r, z, a )/c 2 ) 2/ 2 )AR=O, 2p k ()[ 1 a

where n is the index of refraction associated with the 2- _ - - - k awa sin 4, . (9)
medium and is, in general, complex and a nonlinear 8z az -c 4 z

function of a(r, :). Comparing the reduced wave equa-
tion written in terms of n(r, z, a) with eq. (3) we find
that the source function can be written in terms of n, 3. Radiation beam envelope equation

S(r, z, a) = (w/c) 2 (1 - n 2 (r, z, a))a(r, z). (5)

The refractive index associated Wh FELs can be In order to solve eq. (3) we will use the source
obtained from the following derivation, where a number dependent expansion (SDE) method [12]. This for-
of simplifying assumptions are made. For example: the malism has the merit that with only a few modes it
beam electrons are monoenergetic without betatron permits an accurate solution of the wave equation
oscillations and that the radiation is of a single frequency throughout the interaction region. In this method, we

[15]. We write the nonlinear driving current density, J., choose the following representation for a(r. :) in terms

as of Laguerre-Gaussian functions,

J = - Ienb(r) t.(z)vo:J8(z - !(t, to)) dt o , (6) a(r2 ) a()rL

where nb(r) is the ambient beam density, v0, is the M (z ) "

axial electron velocity at z=0, to is the time a given xexp(-(I -ia(z))r 2/1r2 (:)). (10)
electron crosses the z = 0 plane, where m = 0, 1, 2..... In eq. (10). a,(z) are the com-

(z) - ( I e I A./ymoc)(e ' + c.c.)i,/2 plex amplitude coefficients, r(z) is the radiation spot

is the wiggle velocity. y is the Lorentz factor, A. is the size, a(z) is related to the radius of curvature of the
vector potential amplitude of the planar wiggler field radiation beam wavefront, R - - (w/2c)r,2/a and L.
and k. = 2w/Aw is the wiggler wave number. Substitut- is the Laguerre polynomial. Solving for the unknown
ing eq. (6) into the expression for S, eq. (4) gives quantities a,,,. r. and a in terms of the source term S

S Wb '(r) )2 21/,w w allows us to completely describe the radiation dynamics.
S = (---f-- a, f t.'--2 The representation in eq. (10) is underspecified, since,

when eq. (10) is substituted into eq. (3) and moments of

J dto exp -i((- + k ... ) - Wt) the source function taken, there remain more unknown
J ( -\ i( ]] 'quantities than available equations. The additional de-

z8(t- r(z o , t 0 ))/Y, (7) grees of freedom in our representation allow us to

11(c). OPTICS AND OPTICAL GUIDING
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specify a particular functional relationship for the un- 4. Guided radiation beams in the exponential gain reg.
known quantities r, and a in such a way that, if the ime
radiation beam profile remains approximately Gaus-
sian, the number of modes needed to accurately de- By considering the lowest order transverse mode
scribe the radiation beam is small. This yields the (Gaussian profile) of the radiation beam, we find that
following first order coupled differential equations for the source term appropriate for the high gain Compton
r, and a, regime is
r, -2(1 wr "1 (I a S(r. z) ( ,,(r)/c) (a.k.fB)2 r, ( 4 ,ba' -2()1 /(IrI,=2SHr. ~))= (llb)Xz)=B,(r :). (14a. b)

20+ a2 )c '= 2(HR -aH) y(1 + aW/2)(1k - i)

and a set of first order ordinary differential equations
for the complex amplitudes am(z), where Ak and F are the wave number shift and growth

a,+ Aa, -i[ Fm - mBa,- (m + 1) B *a.+u rate respectively and fi is the usual difference of Bessel
functions due to the linear wiggler. The lowest order

(llc) mode is taken to have the form

where H= F,/a o. " a/az. and ( )Rl denotes the real
and imaginary part of the enclosed function. In eqs. a(r, :) = a 0 (O) exp~if (Ak - iF) dz'

(1a-c), the functions A., B, and Fm are given by

Am 1 2) C k a i) For th -( I). (15)A,.(z)fi + i(2m+l1) (1 +a 2  - a +

For the purposes of illustration, we will consider the

rI ( a2 ) C - (r' 2ac Compton FEL regime in which the electron beam has a
r (r a, Gaussian density profile, nb(r) - no exp(-r 2/r2). The

conditions for a guided radiation beam required that

Fm(z) = - d' S(', z)L,,(') exp(- {(1 + ia)'), the waist and curvature of the radiation beam remain
constant (r,' = a' = 0). Setting r' = a' = 0 in eqs. (I1a. b)

where r 2/r 2 . and solving for F, Ak, rs, and a (see Appendix), the
Eqs. (1la, b) can be combined to give the following following results for a guided beam are obtained.

envelope equation for the radiation beam = ( + a2)1 (h +2!) 1F0 . Ak=aF, (16a, b)

r" + Kr = O, (12)

where _WV11

K 2 - (2C w) 2(- 1 + Ck(sin 0.)2 + 2C(cos 0) 2 BTyfB/2  aW/2

+(w /2c)rsC'<sin 4,))r- 4, (13) x j"/(+ (16c)

C(z) = (2 v/y)G(z)a./ ao(z) 1, measures the coupling (1 + 3f/2)1/4 (c"

between the radiation and electron beam., P a = (f/(2 + 3f)) 1/2,  (16d)
(Wbrb/2 C)2 - b/1 7 X 103 is Budker's constant, It, is a=(/2+3) 1d
the electron beam current in amperes, G(z) - (1 -f)/ where Fo = 2fB(v/V)l/ 2a kW(1 + a2/2) - ' /2 and f=
(I +f)2 and f(z) = (rb/r) 2 is the filling factor associ- rb/r/2 is the filling factor. In the special case of f= 1,
ated with a Gaussian electron beam density profile. The
first term on the right-hand side of eq. (13) is the usual ( y Q-/, 1(l + a',/2
diffraction term, the second and third terms are focus- r4 (f=) 02 - .all/2)/2
ing while the last term provides a focusing or defocusing -

contribution. In the high gain trapped particle regime, Similar procedures can be performed for other trans-
(sin 4,) and (cos ,) are approximately constant, while verse profiles of the electron beam. Conditions for
I ao(z) I increases with z. Hence, K depends on z and guided radiation beams in the Compton regime for
a guided beam (r,' - 0) cannot be exactly maintained in Gaussian, parabolic, and flat-top transverse electron
this regime, although the radiation envelope is still beam profiles are summarized in table 1.
reasonably well-confined. In the low gain trapped par- In fig. 1, we show the spatial evolution of the radia-
ticle regime I a0 (z) I increases slightly and, therefore, a tion waist for the induction linac-driven FEL parame-
guided beam can be approximately achieved. In the ters in table 2. The parameters in table 2 are consistent
Compton exponential gain regime, we can obtain the with eq. (16) and have been chosen to produce a guided
necessary conditions to achieve stable guided radiation radiation beam in the Compton exponential gain reg-
beams. ime. The guided beam conditions can be shown to be
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Table 1
Guided radiation beam conditions for compton exponential gain regime

Electron beam profile r.2k.F° a2  (I + a2 )F/ o  _1k/F 
2a(1+ a 2 ) (2k,kv,y)

Gaussian (1 + 2f )2 f/(3f+ 2) 1/(1 + 2f)

Parabolic 02( e- 2f l) (3f-I)+( -f) e -2 f (l )'

Ie-2/ I-(I+2f) e-2/ f $1

Flat-top 2f3e- 3e-(3-2) e/

stable [16], and fig. 2 shows that irrespective of the with the ponderomotive wave is needed. For linearly
initial value, the spot size asymptotes to the matched polarized waves, the fractional trapping potential is
(guided) beam value. Fig. 3 shows the evolution of the I +4 trap aa 1/2
spot size for the rf linac-driven FEL parameters in table 2 - 2F2 2(17)
3. As in table 2, the parameters in table 3 have been ymoc2  I + aw1 2 )
chosen to produce a guided radiation beam in the The radiation amplitude at saturation can be obtained
Compton exponential gain regime and are consistent from the intrinsic efficiency of the FEL. Using argu-
with eqs. (16). ments based on electron trapping in the ponderomotive

Free electron lasers driven by either induction or rf wave, we find that the insic efficiency in the
linacs could initially operate in the guided, exponential exponential (maximum) gain regimeis
gain regime until saturation occurs. Immediately prior
to saturation, the ponderomotive potential can be large 1 = ,Ak/kw. (18)
enough, as in the above illustrations, to trap a signifi- Using the induction linac parameters in table 2 as an
cant fraction of the beam electrons. At this point, the illustration, we find that the intrinsic efficiency is 11 =
wiggler field can be spatially tapered to achieve a sig- Ak/kw = 0.66%. From this, the fractional trapping
nificant increase in the operating efficiency and a some- potential at the end of the exponential gain regime is
what smaller input signal into the FEL amplifier. I e I §,.p/ymoc2 = 6%, making it possible to trap the

To determine the viability of tapering the wiggler, electron beam while tapering the wiggler field. In
prior to saturation, the trapping potential associated

Table 2
0.34 Parameters associated with an induction linac-driven FEL in

the exponential gain regime

Electron beam
current 1,=2kA (P=0.118)
energy Eb = 50 MeV (y - 100)
radius rb = 0.3 cm

0.20 emittance c, < 34x 10-3 cm rad
0Wiggler field

wavelength X = 8 cm
wiggler strength ,= 2.3 kG (a, -=1.72)

01 0 -Radiation beam
wavelength X = 10.6 jsm
spot size

(guided beam) r, = 0.25 cm (ZR - 2 m)
0.00 c-folding length L, - 1/F - 94 cm

01 2 34 Intrinsic efficiency ,1 -A k/k, - 0.66%

Fig. 1. Spatial evolution of the radiation spot size in the Saturated power p,, - 660 MW (a- 7x 10- 4)

exponential gain regime for induction linac-driven FEL param- Trapping potential I e I Otrap/Ymoc2 = 6.0%
eters given in table 1.

111(c). OPTICS AND OPTICAL GUIDING
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0.4 Table 3
Parameters associated with an rf linac-dnven FEL in the

Eexponential gain regime
U Electron beam

- 0.3 peak current I1 500 A
energy E= 150 MeV

0 radius rb =1 mm
emittance < 7X10-3cm rad

0.2 Wiggler field (planar)
o wavelength ,= 12 cm
o- wiggler strength B, =900 G (a. = 1)

o Radiation beam
0.11I wavelength X = 1 Am

0 4 812 spot size
z(in) (guided beam) r1(0) = 1.1 mm (ZR 3.8 m)

c-folding length Le = I/I' = 196 cm

Fig. 2. Spatial evolution of the radiation spot size in the

exponential gain regime for initial spot sizes: (a) 0.35 cm. (b) Intrinsic efficiency ij = Ak/k = 0.25%
0.24 cm. and (c) 0.15 cm. Saturated power Pa, = 180 MW (a - 7.25 x 10 5)

Trapping potential I e 0tr.p/ troc
2 

= 2%
addition, the initial fractional energy spread of the
electron beam must be somewhat less than -q. This
places a limitation on the fractional energy spread of
the electron beam, SE/Eb < 0.66%. One contribution to stringent requirement on the beam quality, c < 0.007 cm
the beam energy spread is the transverse emittance, rad, in an rf linac-driven FEL.
8E/Eb = (1/2Xfn/rb)2 . Therefore, the normalized Fig. 4 shows the relative power for ten transverse
beam emittance must satisfy e, <(2,1k/k 1)'/2 rb= modes used in a simulation of the guided radiation
0.034 cm rad. beam for parameters in table 2. The fundamental mode

Similar estimates can be carried out for the rf linac is at least three orders of magnitude larger than any of
parameters in table 3. Even though the intrinsic ef- the higher modes, indicating the SDE method is an
ficiency is only 0.25%, the fractional trapping potential excellent numerical scheme and the analytic results ob-
of 2% prior to saturation is still large enough to trap the tained with only the fundamental mode are well justi-
electron beam and the wiggler field can be tapered. fied.
However, the small intrinsic efficiency puts a more

12

-- 0

6 - -2_

4 .

0 2 4 6 8 10 0

ZZ Z(m)

Fig. 3. Spatial evolution of the radiation spot size in the Fig. 4. Spatial evolution of the power in 10 SDE modes.
exponential gain regime for rf linac-driven FEL parameters I a,(z )I2/Iao(O)l12, i =0 . . for FEL parameters given in

given in table 3. table 2.
nnn mnnnai um•m nmnmN I~m nn

m
-mn3
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5. Bending and guiding of radiation beams

Using the SDE formalism, it is possible to discuss
the bending of a radiation beam by a curved electron
beam in an FEL. For small displacements of the elec- Ro
tron beam centroid, a nonaxisymmetric modal expan- RADIATION

sion similar to eq. (10) can be performed and the spatial P X
evolution of the centroid of the radiation beam found.
Fig. 5 shows the centroids of the electron and radiation
beams for an FEL in the trapped particle regime with
parameters given in table 2. Steering of the radiation 2%

beam by the electron beam is clearly demonstrated in CURED

this figure.
It is interesting to consider the conditions under

which the radiation beam could be guided by a curved Fig. 6. Configuration showing guiding of radiation beam by a

electron beam. We denote the radial position by r = R 0  curved electron beam with radius of curvature, R 0 .

+ x. where R0 is the radius of curvature of the electron
beam and x is the radial displacement from the center
of the curved electron beam, as shown in fig. 6. The
FEL refractive index (correct to order x/R 0 ) is ing parameters, y = 100, 1 = 2 kA, rb = 0.3 cm, a. =

n = nFEL + x/Ro, (19) 1.72, f= 1 and f. = 0.85 (table 2). For these parame-
ters, the minimum turning radius required for a guided

where rFEL is given by eq. (8) In the exponentlal gain radiation beam is R - 455 m.
regime, a guided radiation beam in a curved FEL is
possible if R 0 _> R ,,, where

R=. - r,/j Re(1 - nFEL) I. (20) 6. Conclusion

Substituting the expressions for r, .1 k and r4, from eq.
(16), into eq. (20) yields The Source Dependent Expansion (SDE) method

+ 2f )(3f+ 2 provides an excellent analytical and numerical tech-
R =4(1 +f)fyrb[(1 nique for studying optical focusing, guiding and steer-

21/2 /21 ing in FELs. We find that guided radiation beams in the
+ a,/2) (v,/y) . (21a) FEL can be achieved in the Compton exponential gain

R.(f= 1) regime but cannot be maintained in the high gain
trapped particle (tapered wiggler) regime. Conditions

1.2y'rb[faw(I +a/2)(/ -" (21b) for guided radiation beam with different transverse
r a n l e profiles of the electron beam have been derived in the

SFor a numerical example of R n, consider the follow- Compton exponential gain regime of an FEL.

Free electron lasers driven by either induction linacs.
such as the ATA. or high current rf linacs can operate
in the guided, exponential gain regime until saturation

os c doccurs. At this point, the wiggler field could be spatially
XL/rb( tapered so as to operate the FEL in the trapped particle

regime in order to further increase the operating ef-
a ficiency.

1P 0 We also examined the possibility of bending or steer-
*Xb/rb"Oe-beam centroid) ing radiation beams in FELs. We found a condition

-0-o.4 which places a lower limit on the radius of curvation of
the electron beam necessary for the radiation to be

o guided along a curved path.

0 2 4 6 a 10 12
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Fig. 5. Electron and radiation beam centroids, Xb and XL for a
displaced electron beam, Xb = ( -sech(k,:)) with x, This work is supported by SDIO and managed by

rb/
4 and A, = 2,f/k, = 4ZR. SDC.

111(c). OPTICS AND OPTICAL GUIDING



542 P. Sprangle et al. / Guided radiation beams in FELs
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The gain, phase shift, wave-front curvature, and radius of the radiation envelope in a free-electron-
laser amplifier are obtained in the small-signal regime. The electron beam is assumed to have a
Gaussian density distribution in the transverse direction. Numerical calculations indicate that the ra-
dius and curvature of the radiation beam entering a wiggler asymptote to unique spatially constant
values after a finite transition region. However, in the asymptotic region the wave fronts are diver-
gent. Analytical expressions for the gain, phase shift, curvature, and spot size are derived. It is
shown analytically that small perturbations of the optical waist and curvature about the matched
value are spatially damped out, indicating the stability of the matched envelope. When the electron-
beam envelope is modulated in space, the optical spot size oscillates with an almost identical wave-
length but is delayed in phase. In the case of small-amplitude long-wavelength betatron modulation
of the electron-beam envelope, generation of optical sidebands in wave-number space is examined and
the effect on the dispersion characteristics of the primary wave is found to be negligible for typical ex-
perimental parameters.

I. INTRODUCTION lowed to oscillate at the betatron wavelength and the re-

sulting radiation profile is examined. It is found that t'le

A well-known feature of the free-electron laser (FEL) is optical-beam envelope follows that of the electrons with
that the refractive index of the medium is a complex func- almost identical wavelength, but retarded in phase. Sec-
tion and hence the radiation is amplified and to some ex- tion IV discusses the results, deriving formulas for the
tent focused in the vicinity of the electron beam.' 2  It matched radiation-beam profile (i.e., radius and curvature)
may then be possible for the electron and radiation beams in terms of the electron-beam and wiggler parameters. It
to interact over an extended length along the wiggler, with is shown analytically that perturbations of the profile are
the diffractive tendency being compensated by the FEL spatially damped out, consistent with the numerical obser-
interaction, thereby enhancing the efficiency of the pro- vations indicating a unique, asymptotic matched radius
cess. and curvature. Appendix A presents the necessary details

Considerable progress has been made in studying this required to derive the source term, for the wave equation,
process by several authors. - S The purpose of this paper for a planar wiggler and an electron beam with uniform
is to apply the formalism of the Gaussian-Laguerre modal density along the direction of propagation. Appendix B
source-dependent expansion (SDE) of Ref. 8 to examine considers the effect of the modulation of the electron
the propagation and guiding of the optical wave in an beam on the optical wave. Specifically, a simple analysis,
amplifier operating in the exponential gain regime, for a taking into account sideband generation, indicates that the
variety of operating conditions. dispersion characteristics of the primary wave are only

The plan of this paper is as follows. In Sec. 11 the for- slightly modified for typical experimental parameters.
malism of the SDE is employed to obtain the evolution Appendix C presents the details of the stability calcula-
equations for the radius and the curvature for the lowest- tion.
order mode of the optical beam, along with the relevant
dispersion relation for a Gaussian electron beam driving II. MATHEMATICAL FORMULATION
an FEL amplifier in the small-signal regime. In Sec. III The purpose of the present section is to present the
numerical solutions of the single-mode equation for the salient features of the source-dependent expansion
radius of the optical beam are presented and compared to method8 so as to fix the notation and for reference in the
the result from a multimode truncation of the radiation subsequent sections.
field. In this case, and for cases not presented herein, the For a planar wiggler, it is appropriate to assume a
single-mode and multimode results indicate that the linearly polarized radiation vector potential
radiation-beam profile entering the wiggler asymptotes to
a unique form after an initial transient. Additionally, the
numerical values of the radius of the radiation envelope A=A(r,i9,z)exp i Lz-ot e,+c.c.
and of the wave-front curvature are in fair agreement, ir-
respective of the degree of mode truncation, indicating the with angular frequency w and complex amplitude A. In
usefulness of the single-mode equations. Limiting our- the slowly-varying-envelope approximation, the wave
selves to these equations, the electron beam is then al- equation reduces to

36 1739 © 1987 The American Physical Society
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r, a I a 2iw a a r( ponents of the refractive index are given by

r 8r ar r2 i Inz= 1+ CAk -i c F-ia (9a)

where a =e I A/moc 2, and the source function is given I r;

by 2crfy , = _L (a + i 0 9 b )

S(r,O,z) I a ) 2

8 -re L Ji (r,6,z)exp -i -Co -. Assuming the electron-beam profile to be given by
- I x I0)

mOc 3  [ C 5slow2

(2) nb(z}=nbO r~z exp rz (10)
Here e is the charge on an electron of (rest) mass ino, ?bZ I')zI

J,(r,O,z) is the current density, and I Jsk, indicates that where rb(Z) is the electron-beam radius at z and nb0 is the

only the spatially and temporally slow part of the quantity beam density at rb(z)= rb0, the source term in Eq. (1) may

in braces is to be retained. be readily evaluated (Appendix A) to obtain
The basic premise of the work presented herein is that

the radiation field is azimuthally symmetric and the vec- Cj 2 CokO 12f 2 Iab0 wb x _- k .,,a

tor potential is expressible as S(r,z=f 2y 3c 2  rb(z) e - c(Ak -F) 2 '

a (r, 6,z). a. WzD, ( ,z) ,(3)(I1

m=O

with D,, =Lm( )expI -- [I -ia(z)]4/2], where where the vector potential of the planar wiggler of periodi-

g=2r2 /r-(z), r,(z) is related to the radiation spot size, city 27r/k is given by

a(z) is proportional to the curvature of the wave front, A,, = A,,cos(k,.z)e , (12)

and L. (g) is the Laguerre polynomial of order m.
Now, if the transverse profile of the radiation beam is a, = j A./moc2 

, (13)

close to a Gaussian, the lowest-order mode is expected to
dominate, 3 '5.7 and,, following Ref. 8, it is simple to show y is the relativistic mass factor, fB is the usual differenceof Bessel functions, f,=J( )-J) ), =)l/4)a /[l

that the associated vector potential evolves according to o (12se] and
+( 1/2)a'], and

-- A o o -~ (4) CJO=(47r I e 12nba/ma)I/2aoz is the plasma frequency of the electron beam with density

and the spot size and wave-front curvature evolve via nb0.
o 2ca FSubstituting Eqs. (8) and (I 1) into Eq. (6) and making

d -rc , (5a) use of Eqs. (4) and (5), it is simple to show that the equa-

dz aor [o tions reduce to

_ -a +a' 1 = (Sb) dca =2{I,. I

dz C [0 R ao j d(kz'-'----- 2H +a 2 )[ kr) 2

where

Ao=- r,+f(I+a2),? c . - r+ a +2a ,.,
r, dz5  

oirs2 r dz 2 dzd(k s2 4a c , 21 -L I k.r)U4b

the Fs are given by the following overlap integral: d(k,.z 1 w - j kwr ) (14b)

F. (z) = -E- f" d S ( ,z)D,,',,',zl, (6) A -i2 (6 Ak - + 2 c k. -ia

and the label R (I) indicates the real (imaginary) part. k. k,. (k,. ,)2

Noting that Lo(41 = 1, the normalized vector potential 2 1 -L -II +I 0 (1c
is seen to be given by [Eq. 3)] +2 aO where

where, in the exponential gain, small-signal regime, A 2y Jr[ 1 (r5/r)2

c/c,. r b(z) J2-y' [I+ 2 (rb/r, )J

a(z)- a (O)exp i he dz, [Ak (z-iF • (8) Ak _i_ (14(1
Here a (0) i% the innut -ianal at r (3 and the two rnm- k ,
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The spatial evolution of the system is governed by the from Fig. l(a) that after a transient oscillation over a dis-
differential system (14a) and (14b) along with the disper- tance of about 20 Rayleigh ranges, the radiation spot size
sion relation (14c), the solution of which yields a(z), r,(z), approaches a value quite close to that obtained with the
Ak(z), and r(z). two-dimensional FEL code FRED at the Lawrence Liver-

more National Laboratory (LLNL).' We also find that

III. NUMERICAL RESULTS for all the numerical cases examined, a unique, asymptot-
ic spot size is obtained irrespective of the initial optical

Having obtained the single-mode system of Eqs. (14), it waist. Figure l(b) shows the spatial evolution of a, indi-
is of interest to determine the extent to which it approxi- cating that it, too, approaches a constant value after an in-
mates the general solution in (3). Once it is established itial transient behavior.
that Eqs. (14) provide an adequate representation of the The solid curve in Fig. 2 shows the evolution of the lie
general solution, it is then possible to study a variety of width of the radiation amplitude with a five-mode
problems of interest by solving a simple set of equations. (m=0,l,2,3,4) source-dependent expansion calculation us-
Briefly, the numerical procedure for solving an initial- ing the same set of FEL parameters. The radiation field
value problem is the following. Substituting Eq. (14d) is represented by Eq. (3) and the source term is given by
into Eq. (14c) yields a cubic (algebraic) equation for Eq. (11). With the assumption that the fundamental
Ak-ir which may be solved, at each z, in terms of r, (z), mode dominates, only the Ak and r of ao(r,z) are in-
a(z), and rb(z), thus enabling Eqs. (14a) and (14b) to be volved in the source function and they are obtained from
stepped forward in z. Since in the absence of source terms Eqs. (14c) and (14d). It is found that the fundamental
an input radiation signal diffracts away on the scale length mode remains dominant over many Rayleigh lengths.
defined by the Rayleigh range zR, For comparison, the dashed curve in Fig. 2 shows the

0jr,2(z) fundamental mode spot size of Fig. 1(a), and the asymp-

ZR = (15) totic results are seen to differ by about 10%. This sug-
2c =0 gests that the single-mode system of Eqs. (14) may be re-

it is informative to present the numerical results with the garded as a reasonably accurate simplification of Eq. (3).

distance along the wiggler measured in units of the Ray- Henceforth, the results presented pertain to Eqs. (14).

leigh range. In all the numerical results to be presented, B. Caw 11
the radiation field is assumed to be in the form of plane
waves at the entrance to the wiggler, i.e., a(z =0)=0. Figure 3 presents the results for a case where the elec-

tron beam is not matched, i.e., the envelope of the elec-
A. Case I tron beam is modulated:

To begin with, Fig. I shows the results for the follow- rb(z)=rbo+8rbsin(kfz) , (16)
ing parameters: beam current Ib=270 A, rb0=0.01 cm,
Y=2000, 2/k, = 10 cm, a , =6.15, and r,(z =0)=0.02 where 8rb is the amplitude of the modulation and for sim-

cm. Noting the factor of 21/ 2 difference between the plicity k, is chosen to be equal to the betatron wave num-

definition of a. in Eq. (13) and that in Ref. 4, it is clear ber 9 k~a,/(V'2yl), neglecting self-fields) 0 $, is the
beam speed along the wiggler axis normalized to c. The

0.03 T7.~Z~j~ 0.40

.02I 
0.30"

- 0.20~

0.01i 0-1i0.00

(a) b
0.001 ± 0.00

0 10 20 30 0 10 20 30 F
Z/ZR Z/ZR U

1.5 00 3X0 -3 ) 0 301 03

9z. d .2m

7 50I

550'

40
3.50 1 1 d

0 10 ZZt20 30 0 10 Z/Zft 20 30 0 10 Z 20 30

FIG. 1. Spot size (rd), a, phase shift (Ak), and gain (r) vs dis- FIG. 2. (Ile) width of the optical field vs distance along the
tance along the wiggler. z is normalized to the Rayleigh range wiggler. Solid curve, five-mode system; dashed curve, one-
ZR. mode system.
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parameters, typical of the Advanced Test Accelerator ex- ic limit irrespective of the initial value. The asymptotic
periment at LLNL, are Ib =2 kA, rbo =0.3 cm, r= 100, value of r, and of a is determined by the fixed points of
21r/k.=8 cm, a,=1.72, and r,(z=0)=0.35 cm. (The Eqs. (14a) and (14b), i.e., at the fixed point
reader is referred to Refs. 9 and 11 for details.) In Fig. 3, " I
where 8rb/rbo=0 I, it is observed that the optical spot 2(1 + 2 ) k -
size follows the modulations in the electron envelope ap- 'o (kwrs)2

examined with 8 rb/rbo up to 0.4. In all cases the electron +2 F -a =0 H 7a)

and optical beams oscillate with almost identical wave- [kkao k ao
length, although the radiation beam appears to lag behind[ck ~kF
in phase. Defining the modulation depth A=4(r)ma 4 c k - -2 -F, I (k r5 )2 =0 . (I7b)
-(r)min]/[(r)m.+(r) jn], it is found from Fig. 3(a) that W ,a I
A,=0.087 whereas, from Eq. (16), Ab=8rb/rbo=O.1. Combining Eqs. (17a) and (17b) one obtains
Although the modulation depth of the electron beam
differs from that of the radiation beam, it is found that A, Sk - fk ,' F,I =
increases with 8 rb. (1 - ia)" 0 r ka0

More generally, allowing for the defocusing effect of
self-fields, there is always the possibility of a small- which, upon making use of Eq. (14d), yields
amplitude ripple on the electron-beam envelope and hence k2 b 71/2
on the radiation-beam envelope. In Appendix B, genera- Ak - _a_ =Ak/a ,
tion of sidebands is considered in a simplified model and 1 +2f 1 +a'
found to have, for typical cases, an insignificant effect on
the linear dispersion characteristics of the primary optical
wave, as implicitly assumed by employing the source term 2 1-wk' ' _] I 1 -' ' 1,oI' a'
in Eq. (11) in the present case. c7 =fJ r_ a 3ck ckw b 2

IV. ANALYSIS OF RESULTS and f =(eb/r,)2 is the filling factor. Substituting the ex-

One interesting feature of the numerical results is that pressions for Ak and r into the dispersion relation (14c),

in all cases the radiation spot size has a unique, asymptot- one obtains

a=Lf/(3f +2)11/2 ,
1 0.6 /)1/ 1+ 14 /0.3 -

. 1 . (y/v)" 4  ( +a 1 /2)3/4 fI/(1 +2f)' /

0. O .2f i rs 2,,/3 4 kwf /2  a1/ 2  (1 +3f/2), '4

°2!" 0.3

where v=(WbOrbo/ 2c)2 is Budker's parameter. These ex-
0 pressions may be used to obtain the asymptotic spot size

(a) 00 for a given filling factor, and then one obtains the corre-
0.0 3.0 6.0 0.0 3.0 6.0 sponding electron-beam radius via rb =rsf1/2 . To avoid

z/z, Z/ZR complications arising at the outer edges of the optical
T- beam, where the field amplitude is small, typically a filling

65 factor f 5 1 is appropriate. It is also possible to rearrange

the expression for r, to obtain
6.0 f 3 +f+(1-Tq)f-q=0,

where
5.50 16 4

0.0 q= a2 i 1a-

-135.,0- g:77I'77 - The cubic equation for f may be solved to obtain an expli-
* cit expression for r,. Noting that the sum and the prod-

1.30 4 0.20o uct of the three roots of the cubic equal - I and q, respec-
- i i tively, it follows that there is a unique, real value for the

0.10 asymptotic spot size r,.

I.0d lTo examine stability, it is convenient to define

0.0 3.0 6.0 0.00 3.0 6.0 y _ k . r
Z/Z" ZIZ' =k I

FIG. 3. Spot size (r,), a, phase shift (Ak), gain (r), and ra- and subsititute Eq. (14d) into Eq. (14c) to obtain the local
dius of electron beam (rb) vs distance along wiggler. dispersion relation
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ck3 1rj, which may be solved iteratively. It turns out that for the
Y+2 Y - 2ck1 L 2 parameters of case 1, at the lowest order, the right-hand

( 1r 1  side balances the quadratic term on the left. The relevant

l+(rb/r)2  root, with Ak, r>0, may be substituted into Eq. (14d) to
[1+2(rb/r) 212 , (18) obtain, fora>0,

F, -ck, 1-ia I I / a-i l+( +a 2 )1 2  (kwr,)2  (k r,)(k,.rb)
kwao- Co) (kjrS)2+(k rb) 2  2 2(1+a 2 ) [I +(l+a 2 )1/2]1/2 (kwrs) 2 +2(kwrb) 2 [(k r,) 2 +(kwrb) 2]1/ 2

(19)

Perturbing Eqs. (14a) and (14b) about the fixed point and J.(rO,z)=- le I nb(r,6,z)Vx
making use of Eq. (19), it is simple to show that the per-
turbation is spatially damped, thus indicating the stability - e I 285be

of the fixed point. The algebraic details are relegated to 2ymoc
Appendix C.

Another aspect of the results which is of interest per- where bnb is the perturbed beam density and the relation
tains to the nature of the phase fronts and the flux of opti- v =v, = Ie A, cos(kwz)/ymoc has been used. Equa-
cal power in the asymptotic region. From Eqs. (7) and (8) tion (2) can then be written as
it is simple to check that, in differential form, the s'irfa;es
of constant phase are given by (a)/c+Ak)8z e - 4r Ie I 2nba. -il(k+k(A1)
+ (2ra/r 2 )br=O, and hence, noting that Ak, a>0, the S(r,,z)- 2.. , (Al)

wave fronts are divergent in the direction of propagation. y c Jow
Consistent with this, there is a nonvanishing transverse where k =w/c.
component of the Poynting flux. Specifically, for r/r, < 1 The perturbed beam density can be evaluated from the
the ratio of flux of optical energy in the transverse direc- continuity equation
tion to that along the z axis is -ar/krl << 1. dSnb a8 (

dt nb' ,(A2)
dr az

V. CONCLUSION and the equation of motion in the z direction,

Based on the results presented herein, the simplicity
and accuracy of the single-mode Gaussian-Laguerre ap- A - -l ei Iv.,B, v, v ) (E,)W)
proximation to the solution of Maxwell's equations have di - YM 0  C C2  ,
been demonstrated. It is shown that, in the exponential
gain regime of operation of an FEL amplifier, there is a where electron self-field effects are neglected. Taking the
unique, asymptotic spot size for the radiation beam ir- convective time derivative of Eq. (A2), and incorporating
respective of that at the entrance of the wiggler. There is, the linearized version of Eq. (A3), one can arrive at the
however, a transverse flux of optical power. It is shown following equation for the perturbed beam density: ""
analytically that the asymptotic profile (i.e., the radius and
the curvature at large z) is stable to small-amplitude per- d 28nb -le nb a a FV a
turbations. With a spatially modulated electron-beam en- . 1o + tjpmd A4)
velope, that of the optical beam is found to oscillate on dt2  yMo az I C2 at

the same spatial scale. where

-pond= le e!A eiik+ A-et+c.c.ACKNOWLEDGMENTS on -4y m 0c2

Discussions with Dr. W. P. Marable and Dr. C. M.

Tang are gratefully acknowledged. This work was spon- With the assumption that A (r,0,z) is a slowly varying
sored by U.S. Army Strategic Defense Command. function of z, i.e., I alnA /az I <<k. <<k, Eq. (A4) be-

comes
d28nb le InbAWA .- qkk ,,

APPENDIX A: SOURCE TERM d -2  - I 2 Ac e +c.c. (A5)dt 2  2y2m6c 2

In this appendix, the details of the evaluation of the
source term S in Eq. (11) are presented. where the resonance condition w=v,(k +k,) is used.

The FEL source current, J,(r,O,z) in a linear wiggler is For a near-Gaussian radiation field in the exponential
given by gain regime,
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A (r,6,z)_ Ao(r,O,z) by Eq. (12),

Ao(O)exp i f: [Ak(zj )-iF(zj )]dz, A.- A,[exp(ik z)-c.c. ]e,

where A is purely imaginary, and that of the linearly po-
-[ I-iaiz)]-- larized radiation field is taken to be of the formrs (z) A= [ A .exp(ik _z -iwat)+ A - exp(ik - z -iwt)

and assuming that Ak, [, a and r, are slowly varying
functions of z, Eq. (A5) can be integrated immediately to + A0exp(ikz-iwot)+c.c. ]e,
give where it "is assumed that the electron density, modulated

8nb e 2nb A Akkw illk +k )z-wt) A6) at the betatron wavelength 2ir/ks, has the simple form

2-y 2M +C 4c. A6 r2N 0
no=No+ T [exp(ikz) + c.c.]

When Eq. (A6) is substtuted into Eq. kAI), taking into
account the usual difference of Bessel functions for a pla- with ko <<k <<k, and k + = k + ko, k- - k -kg.
nar wiggler, and Eq. (10) for the beam profile, the source Following Ref. 12, the wave equation is found to be
function in Eq. (1) is then given by Eq. (Q1). a2 1 2 n

APPENDIX B: SIDEBAND GENERATION az2  c2 at2 y Ic2  Yomoc 2 n '

In this appendix generation ot sidebands to the primary where yo is the relativistic factor in the absence of the ra-
optical wave, due to the spatial modulation of the electron diation field, tab = (41rn 0 1e 12/m 0 )i12, and Sn is the den-
beam, is analyzed. It is to be emphasized that the follow- sity perturbation caused by the radiation.. Note that the
ing analysis is intended merely to show that the dispersion velocity v,0 along the wiggler axis is not affected by the
characteristics of the primary optical wave are only slight- betatron oscillation and hence yo, to lowest order in
ly modified [-(5No/No) 21 for typical experimental pa- JeA./rnomocY2 , is not a function of z. Defining the
rameters, as implicitly assumed in applying the results of ponderomotive potential
Appendix A to the case of a modulated electron beam in
Sec. III. The development of the linear theory herein --on2 A,,, A
generalizes that of Sprangle et al., 12 to which reference yomoc2
should be made for further details.

The form of the vector potential of a planar wiggler em- the momentum, continuity, and Poisson's equations may
ployed in this appendix is slightly different than that given be combined to obtain

d2 v~o 8n~o d 8 41rnoIeI 12 ejs 8 no es. . a 0t o d moroy - - moror az az  - o az Z (BI)

where 7y=(l--Io/c2) - , D is the scalar potential, and where e=(SNo/2No) and m3,m 31=O(e2). It is then
terms such as a2no/az2, which are on the order of kb, simple to show that, correct to 0(e 2 ), the dispersion rela-
have been neglected. tion is given by

Writing k, =k+k, k- =k-k o2 3

Sn,2 -m 32m23 +M 12 M21
n =Ibn+expi(k+ +k)z-iwt] 2N in33  1

+ n-exp[i(k_ +kw)z-iwt] + No I 2  a+ ..-=-' ja22+M22 + ao
+Snoexp[i(k +k )z-iot]+c.c.j 2No i 33  mi

where
noting that, on the left-hand side of Eq. (B 1), the ratio of 2
the fourth to the third term is on the order of ka/k << 1, M 22 =m 22(k)- [o-(k +k.)vzo] 2- 2b

one finds that 2

M11  _ EM 12  1 X - 73 kk,, ,

Cm 2 1 m 22 +e 2 a 22  Cm 23  A0 -O ,

SE3is the usual matrix element for the primary wave,
[ '1.31 em 32 mn33 +' 2a + A..-in 11 =m 22(k+), m 33 =n 22(k_),
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M 12 =m 12(k+,k,kol 2 SJNo I'1a2 a <64o [w-(k, +k.,)Vo1' 2NO M33 Mi
70- Tra+ i.e., if

k~vbO I ( 2k)~j b0 -3 /2 1/2 in/4
{~ e0ZN0I  -N2k,3c(w)o3/2(2kvzo),/2 ' ,r /+ fkpv~a-(k-+.kw )vo-Y-----1 SN--' 2 3  2k'y," ;b

Yoyz No
SIk . bo 2

cOk + 2 For typical experimental parameters, the right-hand side
c2 2 of this eqtlation exceeds unity, whereas 6No/No <<1, im-
Sy Yplying the insignificance of the effect of modulation on the

M 2 =M12(k,k , -k), M 23 =m12(k,k- ,k0) dispersion relation.

M32 =fmll2(k_,k,-k ) , APPENDIX C: STABILITY ANALYSIS

a22=- y 2ryc2 + 2 The purpose of this appendix is to establish the stability2+ y0C 2  of the fixed point (r3,a) of Eqs. (14).

Perturbing Eqs. (14a) and (14b) about the fixed point

+; =4 kpu.o[w - (k + k,,o)v.o]P tbo and making use of Eq. (19), it is seen that the perturbation
roc2  7Y2' evolves according to

and wbo-(417e2 NO/M0)U2. Note that with the definition _d f o Jia 3 JJs1
chosen for A, in this appendix, a2 =(e/moc2 )2 <0. dk.z) lx 1=2 1 a02 022 Sx

To proceed along the lines of Ref. 12, it is convenient

to write where x= (k, rs )2 , y=(k, rb )2,

-a= -(ck,,/1w) aM22=M22+C2 all - +y /)X + a-(XR - aX1),

where 
-H+a 2 )(ck/o)y(2x ) a

M22
= 1-(k +k,)Vzo]2_ 1 bO  a12= + (XR-aXj}

y y2 0 x(x + y) ,x

____a a
X k2 -  2 + C 2 a-( axxa(ckwo) a

and a2 (x +y) 2  ax2--2wbo .. 2 and
C22 = Y0 kk,,.a., anda ( a)/

C22 y Krua,, X=-- /2 2 a-i[l+ll(l-+_a) 2 )

is the "coupling" term. The dispersion relation then be- 2(1 +a 2 ) [ +( la 2 )1/2 ]12

comes [ ]/2
2 _ __ 2 a X . (Cl)

++ .x'2y jx+y

2 Assuming that 8a,8x -exp(.k,z), one finds that

=No j . C22 (ck, +2

+ N I m12 m 2 1  m 32 m2 3  X+Y2 /2
+ + o Mi22 I a(ck, .)x

(B2)j(X+y)2 I
(B) where

aXR ax,
Sl = - -+ a -

M 22 yields the dispersion relation for uncoupled elec- 8a aa
tromagnetic and space-charge waves. The right-hand side a
of Eq. (B2) introduces the FEL interaction and coupling S 2 =- (xX/,
to sidebands, and its effect is included iteratively. At the ax
lowest order, M22=O for some (a,,k). Substituting in the - X1 ax',J -l +a 2 (ck.,/co)y(y + 2x)
right-hand side, the second set of terms vanishes; the term S 3 = -4x a- a x 2

(Xy)
proportional to C22 survives.

Substantial modification of this dispersion relation is ex- a
pected if + - (XR -axi)

. .. . . mma
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(Note that all the variables in this appendix are evaluated the perturbation solution for Eq. (18) implies

at the fixed point.) Making use of Eq. (Cl), it is simple to S, < a(ck./ w)/(x +y), one finds that ReX < 0, thus indi-

show that X/a- aX,/8a >0, a(Xt -aX,)/ax < 0, cating the stability of the fixed point to small-amplitude

whence S 3 > 0 and hence, noting that S 2 + S I > 0, and that perturbations.
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Section HI. Theory: (b) Beam transport and sidebands

COMPARISON OF SIDEBAND GROWTH IN TAPERED AND UNTAPERED FREE
ELECTRON LASERS

B. HAFIZI *, A. TING *, P. SPRANGLE, C.M. TANG and I. HABER
Naval Research Laboratory, Washington, DC 20375-5000, USA

Development of sideband frequencies in a free electron laser is studied numerically and analytically in axisymmetric geometry. In
the case of small input power the sidebands grow independently in the exponential gain regime. For large input power an instability
develops whereby the carrier is coupled to the sidebands via the synchrotron oscillation of the electrons. In a tapered system, the
growth rate of sidebands decreases with increasing rate of taper. However, maximum extraction and efficiency is obtained when the
particle motion is marginally nonadiabatic.

1. Introduction The optical field is taken to be of the form

In a free electron laser (FEL) the synchrotron oscil- a,(r, z, t) Ia(r, z, t) exp[i( tz-o+c.c,

lation of electrons trapped in the ponderomotive poten-

tial well may couple energy into sideband frequencies. where A, = mca r/I e Iis the radiation vector potential.

The ensuing instability leads to the modulation of the The wiggler field is assumed to be plane-polarized, of

output signal and, in consequence, to an increase in its amplitude B. and period 2ir/k,:

spectral width. B,(z) - i
The growth of sideband frequencies has been the -- B, exp(ikYz)ey +c.c.,

subject of discussion in a number of papers [1-7]. In the where transverse variations of the wiggler field are
work presented herein this process is examined by means neglected. The equations of motion of the jth electron
of a time-dependent code in an assumed axisymmetric are then given by
geometry. Both tapered and untapered wigglers are ex-
amined. Two regimes of sideband development are ex- d y, - iar

Y_ Da, L. (2 r/r2)amined in detail. In one, the carrier amplitude is small dt 4-J
and all frequencies within the linear gain spectrum
develop independently. In the other, the initial ampli-, xexp[iip, - (1 - ia) r/r,2 + c.c.. (1)
tude of the carrier is large and hence coupled to the d, 2
sideband modes via the synchrotron oscillation of the -a = ck . (I . /' 1 2 (2)
electrons. Simplified analytical models of sideband

growth are outlined, where
The purpose of this work is to contrast the develop- 2 _ ( /ck )(l + a/2) (3)

ment of sideband growth in tapered and untapered FEL

systems. In this connection, the issue of sideband start- defines the resonant (i.e., synchronous) relativistic fac-
up from the spontaneous emission appropriate to the tor, a. = I e B,/mc2 k. is the normalized vector
electron beam and wiggler parameters employed is not potential of the wiggler, r is the radial distance of the
addressed. jth electron, and 4= = (cw/c + k,)z, - wt is the relative

phase. The results to be presented in this paper pertain
to the case where only a w is tapered and the period of

2. Basic equations the wiggler is taken to be constant.
The envelope of the radiation field is expanded as

This section presents the equations that form the follows:
basis for the investigation of the FEL interaction. a(r. z, = -Ea(z. t)L,[2r 2/r]21

Science Applications International Corporation. McLean, X exp[ - (1 - ia)r 2/ r 1.
VA, USA.
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wavefronts, r,(z. t) is the spot size, and L,(2r2/r) is =2 51 102

the Laguerre polynomial of degree n. Following Spran- 10- 4

gle et al. [8,91, the optical field evolves according to:2co1-6 7 - 0
T,=2c 2a -c W cB,, (4)

( +c a= r) +2c(BR-aB), (5)

10-0'
+c + cA. a, .

=inBca,.I + i(n + 1)Bca,+ - ic,., (6) 10-2

where
10-14

F. P. 2c [22[o' L. (2r,2/r$2))
-,c r2,( I19a1W2

Z {rm)

xexp[ -iOs - (1 + ia)r2r,2J. (7) Fig. 1. Evolution of three spectral components along the wig-

2ic gler when 100 W is input into the 10.6 Am wavelength (8 =
A, = W (2n + 1 - ia) + i(2nB, + B), 2.51 x 10-2) at the entrance to the wiggler.

and denoted in terms of the relative shift 8-- (X/A,) - 1
from the resonant value. Note that the wavelength of

B = F/a, =- B + iB,. (8) the carrier is given by 21rc/w.

In eq. (7) the sum on j runs over the electrons in a
given ponderomotive bucket and N denotes the number 3.1. Multifrequency, small input power
of electrons initially therein, and , = Jb/(mc 2v/ Ie 1) is
the Budker parameter, where lb is the electron beam Fig. I shows the development of three spectral com-
current. ponents of the optical field when the input signal is at

10.6 um (8 = 2.51 X 10- 2) and 100 W. Of course there
are many other spectral components besides those shown

3. Numerical results in fig. 1; however, the curves shown do indicate the
general trend in the development of the sideband fre-

For definiteness the parameters for the computations quencies. Note in particular that in the exponential
presented herein correspond to those of the Paladin regime the growth rate of the component at 8 = 0.77 x
experiment at the Lawrence Livermore National 10-2 exceeds that of the main signal. This result is
Laboratory [101, and are listed in table 1. discussed in section 4.

In the linear regime the maximum growth rate ob- 3.2. Multifrequency, untapered magnet
tains at the resonance wavelength A,, = 10.34 tm. In
what follows, where appropriate, a wavelength A will be Fig. 2 shows the development of the carrier for the

case where 800 MW of 10.6 pm radiation (8 = 2.51 x
10-2) is injected into an untapered magnet. Again.
there are many modes in the spectrum that grow alongTable I the length of the wiggler. The dashed curve in fig. 2

Parameters of the Paladin experiment indicates the maximum amplitude, or the envelope, of

Electron beam the rest of spectrum as a function of z. Fig. 2 also
Current 2 kA shows in detail the evolution of one of the fastest
Energy 50 MeV growing modes, at 8 = 5.71 X 10-2, indicating the trend
Radius 0.45 cm in the development of the instability. At the end of the

Magnet wiggler (25 m) the amplitude of the sidebands is large
Induction 2.3 kG enough to modulate the optical field by about 30%.
Period 8 cm
Length 25 m 3.3. Mulufrequency, tapered magnet

Radiation field
Wavelength 10.6 jAm As is well known, for practical purposes the magnet
Initial spot size 0.36 cm employed in an FEL device must be tapered so as to

111(b). BEAM TRANSPORT
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sidebands saturate at a level substantially below that of
the carrier. As expected. the optical field is observed to

Carrier be only slightly modulated. The efficiency of the tapered

10 - 6  system is 16% at the wiggler exit.

4. Analysis of results

An understanding of fig. 1 may be obtained by

performing a single-bucket linear stability analysis of
u- eqs. (1)-(7). The presentation is limited to the funda-

10-12 mental optical mode, and a monochromatic electron
beam of energy yomc 2 per electron.

Defining 4 0 = Ck,(1 -ry,/), 4=- (-ot , r,=
Jy0, A = ia exp(i4ot), the equilibrium corresponds to

6 12 18 24 A=O, J1,'exp(-in;,) )=0(n=1. 2... ).

Z (M) Perturbing eqs. (1)-(7), defining collective variables
as in ref. [11J, and assuming a temporal dependence of

Fig. 2. Evolution of carrier (10.6 pm) starting from 800 MW in th forexp [1 n, the foluing dpenren is

an untapered wiggler. The dashed curve indicates the upper

bound for (or the envelope of) the rest of the spectrum. Also obtained

shown is the evolution of the sideband at 8 =5.71X10 - 2  T'+ [0- 2c 2 (l - ia)/lwr] Tr2

(10.93 pm).

+ v(awfB)
2 (. ¢) T

enhance its efficiency and extraction. Fig. 3 shows the Ny, r.

development of the carrier and of the maximum ampli- (.L 2 (a f)2 (c 12
tude of all the sidebands through a device where the -2ck . j2 N 3 ) 0 0,

normalized vector potential a. = I e I B/mc
2 k,, is 70 N

tapered. The form of the tapering employed in the where
computations is obtained by simply prescribing a con-
stant rate of decrease of energy for a synchronous =2'_(1-r//r) exp(-2,2/r5 ).
electron, at an assigned radius. From eq. (3) with
d'y,/dz = constant, one obtains a.(z). Comparing figs. Perturbing B (defined by eq. (8)), and numerically
2 and 3 it is apparent that in the tapered device the solving eqs. (4) and (5) along with the cubic in T, one

obtains the growth rate, efficiency, spot size, and a in
the exponential regime for any given angular frequency

10-3.

Carrier Fig. 4 shows the growth rate F and efficiency 71, in
the case of a small input power as a function of 8 =

-1, where X - 2irc/w. The crosses are the

1 10-6 results of single-bucket simulations. The curves are ob-
CLtained from the linear stability analysis of the preceding

paragraph. It is seen that the agreement is quite good.
aAn important feature of fig. 1 may now be under-
' 10-9 stood with reference to fig. 4. In the small signal regime

- and therefore prior to particle trapping - eqs. (1)-(7)
may be linearized to show that there is no coupling

10-12 between the various spectral components. In other
words, the development of the spectral components

proceeds independently and at a rate approximately
__ _ _ _ _ _ _ equal to that indicated in fig. 4. Referring to fig. 1, it is

6 12 18 24 thus seen that the larger growth rate of the sideband at

Z (M) 8 = 0.77 x 10-2 as compared to the carrier at 8 = 2.15

Fig. 3. Evolution of carer (10.6 lim) starting from 800 MW in x 10 - 2 is consistent with fig. 4.
a tapered wiggler. The dashed curve indicates the upper bound It is also possible to set up and analyze a simple

for the rest of the spectrum. model of the FEL interaction so as to obtain an under-
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for the perturbation, one obtains the follovking disper-
22 sion relation (12]:

116 X (0-2  ... "1-8 1 = X/2 + • ( 11 )

1 6 x 1 4 N~

r,, 1 0 where

06 X ;= -(I +a 2 /2)217By,.
1.0 0 2

0.2 =cAk(1 + a-/2)/2 25 y,

0.29 - a/( )1 +ar 5

0.27 1 2 and

0,25 -o 1. 12/N- (12)
y

rs(cm) 0.23- 0.8 a The dispersion relation in eq. (11) is similar to that

0.21 0,6 given in ref. [6]. Inserting numerical values into eq. (11).
one finds that the range of unstable modes encompasses

0.19 0.4 that obtained in the simulations. The maximum growth

rate obtained is about a factor of 5 larger than the0. 17 -0.2
I Iaverage value observed for one of the fastest growing-2.5 15 -0.5 0.5 1.5 2.5x 10 - 2 modes in the simulations (cf. fig. 2.) That the growth

6 rate deduced from eq. (11) should exceed that observed
Fig. 4. Normalized growth rate F/k, and efficiency Y(%) in the simulations is to be expected for two reasons.
versus 8 m (X /X, ,)- 1, where X = 10.34 tim. Crosses repre-
sent results of simulations. Curves are obtained from the First, diffraction of the optical field (neglected in deriv-

linearized equations for the exponential, matched-optical-field ing eq. (11)) is bound to reduce growth rates. Second. in
regime. The electron beam radius is 0.3 cm. the simulations the electrons are distributed throughout

the ponderomotive bucket with synchrotron frequencies
ranging from S2, down to zero. whereas the analysis
leading to eq. (11) assumes all electrons to bounce at the
bottom of the ponderomotive wells, at the largest syn-standing of the gross features of the sideband instability chrotron frequency (cf. eq. (9)).

ensuing from the synchrotron oscillation of the elec- Trnn exe cse o e r m t
trons in a large-amplitude carrier wave. Turning next to the case of the tapered magnet. the

Neglecting diffraction and considering the funda- question arises as to why the growth rate of the side-
bands is about a factor of 6 smaller than that in themental mode of the optical field only. writing -y= Yr + untapered magnet (cf. figs. 2 and 3). As is well known,

Ay=(t), s= o + AP,(t), a = a(') I exp[ip(°)], the upon tapering, the electrons separate into roughly two
equilibrium is described by 4' + 0 °0) + ar,2/r 2 = 2nsr groups. For the tapering employed, the decelerating
(n, an integer), I a j 1 constant, group - which is responsible for stimulated emission -
d2  comprises 25-30% of the total number of electrons.

-t2 -,A#. (9) However, the sideband growth rate for such a fraction

of the number of electrons is still large compared to the

2a + a' 2c\ 2  fsa., observed value. There appear to be additional reasonsa, 41 (10) for the small growth rate of the sidebands. In the
context of a high-extraction FEL with a tapered magnet

where the synchrotron frequency is given by f21 -- it is generally assumed that the change of parameters
[ck , a,,f 1 1a°)I,/y 1,. = exp( - r /r), and Yr (a. and/or k,) is slow enough so that the action
is defined by eq. (3). Note that eq. (10) describes a Is - f d, 1 (-y - "r,) is an adiabatic invariant (1]. For the
linear increase in the equilibrium phase. Inserting an case considered here, however, it turns out that dyr/dt
average value for r, (between 9 m and 25 m) the rate = Q, (y, - y,). implying that the action J. is not an
obtained from eq. (10) is within several tens of percent invariant [12]. Additionally, the y of trapped eiectrons
of the numerical value. decrease more or less monotonically with time, modify-

Next, perturbing the equilibrium state and assuming ing the "equilibrium" electron distribution on the same
a dependence of the form f') - expi -i(Awt - Ak z)] time scale as that of the synchrotron motion. Physically.

111(b). BEAM TRANSPORT
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A time-dependent, axisymmetric code is employed to examine the development of sidebands in a
free-electron laser. For the case where the input signal undergoes an extended period of exponential
growth, a broad spectrum of sidebands with growth rates comparable to that of the signal is excited..
In general, in an untapered system the optical field displays considerable modulation after several
synchrotron periods. An analytical model, in qualitative agreement with a number of features of
the simulations, is discussed. In a tapered system the amplitude of the sidebands approaches a
quasisteady level that is several orders of magnitude below that of the untapered case, and the out-
put optical field displays only a slight modulation. The optimal rate of tapering employed, to max-
imize efficiency, leads to substantial reduction in the growth rate of sidebands. This result is dis-
cussed in connection with the nonadiabatic nature of particle motion in the tapered system.

I. INTRODUCTION tion of the optical field.
The optical field is taken to be of the form

In a free-electron laser (FEL) the synchrotron oscilla-
tion of electrons trapped in the ponderomotive potential ,0=1a .. ,t e lp , i +
well may couple energy into sideband frequencies. The a
ensuing instability leads to the modulation of the output
signal and, in consequence, to an increase in its spectral where A, = mc 2a, /e I is the radiation vector potential,
width, m is the rest mass of an electron, I e I is the magnitude

The growth of sideband frequencies has been the sub- of the electronic change, c is the speed of light in vacuo, o
ject of discussion in a number of papers. 1-

7 In the work is the radian frequency, and Z. is the unit vector along
presented herein, this process is examined by means of a the x axis. The wiggler field is assumed to be plane polar-
time-dependent code in an assumed axisymmetric ized, of amplitude B. and period 21r/k.,
geometry. Both tapered and untapered wigglers are ex-
amined. Two regimes of sideband development are exam- B (z)= -Bexp(ikz ,c.c.
ined in detail. In one, the carrier amplitude is small and 2 y
all frequencies within the linear gain spectrum develop where transverse variations of the wiggler field are
independently. In the other, the initial amplitude of the neglected, and Z is the unit vector along the y axis. The
carrier is large and hence coupled to the sideband modes equatio n of m is the t ectron, te y2 M 2h
via the synchrotron oscillation of the electrons. equations of motion of the jth electron, of energy bymc
Simplified analytical models of sideband growth in the are then given by
two regimes are presented as an aid to understanding the dyj ioaf,
important features of the simulations. dI a

It should be emphasized at the outset that the numeri- 4y

cal work reported herein is intended to contrast the de-
velopment of sidebands in untapered and in tapered FEL Xexp[i$ -(1 - ia)r/r,2]+c.c.
systems. In this connection, the important issue of side-
band startup from the noise spectrum appropriate to the (1)
electron-beam and wiggler parameters employed is not d-kj
addressed. = 2-r2/rJ) (di c w , yj (2)

I. NUMERICAL MODEL where

This section presents the equations that form the basis y 2 ='(rock.)(1+a2 2) (3)
for the invetigation of the FEL interaction.

The electrons move under the influence of the pondero- defines the resonant (i.e., synchronous) relativistic factor,
motive force due to the beating of the wiggler field with at, = e I B. /mci 2k, is the normalized vector potential
the optical field. The computations are simplified by em- of the wiggler, r, is the radial distance of the jth electron,
playing the Gaussian-Laguerre source-dependent expan- 1=(w/c +k, )z, -wot is the relative phase with z, the ax-
sion (SDE) technique, 8

.
9 thereby minimizing the number ial location of the jth electron, and fa =Jo( )-J,(g) is

of Laguerre polynomials required for an accurate descrip- the usual difference of Bessel functions, with

38 197 © 1988 The American Physical Society
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=(a. /2) / 1 +a 2 /2 ) .frequencies may be incorporated in several ways. As anexample, the noise level may be estimated from the Lar-

The results to be presented in this paper pertain to the mor formula and spread uniformly but with random
case where only a. is tapered and the period of the phase over the computational spectrum. Although there
wiggler is taken to be constant. are fluctuations between runs with different initial ran-

Following Sprangle et al.,8 the envelope of the radia- dom phases, the general trend of sideband development is
tion field is expanded as follows: as described herein. Finally, in all the computations, the

initial electron distribution is taken to be monoenergetic,
a(r,z,r)= a,(z,t)L,(2r2 /r.)exp( -( I -ia)r 2 /r,] . the radial profile of the electron beam is taken to be para-

n bolic, and betatron motion is neglected.

Here a(z,t) is related to the curvature of the optical III. NUMERICAL RESULTS
wavefronts, r(z,t) is the spot size, and L,(2r 2/r") is the For definiteness, the parameters for the computations
Laguerre polynomial of degree n. The method of SDE presented herein correspond to those of the experiment of
then permits a complete specification of the optical fieldby solvings Orzechowski et al. at the Lawrence ILivermore NationalLaboratory, and are listed in Table I. In the linear re-

-- a 2c 2a gime the maximum growth rate is obtained at the reso-
+C = - cB1, (4) nance wavelength .=10.34 um. In what follows,[at az ] ~r where appropriate a wavelength X will be denoted in

a2c'( I +a') terms of the relative shift 8 =(X)L r)- I from the reso-at a a= wot2 + 2 c(BR -aB,) (5) nant value. Note that the wavelength of the carrier is
given by 2irc/wo. Spectra are obtained by performing a

a a cA,,spatial Fourier-series analysis of the optical field
[-a + c A, a,, a (r =0,z,t) along the mesh. The result, displayed in theat figures as Fourier amplitude, is dimensionless.

=inBcan_l+i(n + l )B*ca,, +-icF, , (6) (a) Multiple frequencies, small input power, untapered
magnet. Simulations of a pulse of radiation extending

where over many ponderomotive buckets, formed by the in-
2 _teraction of the wiggler and optical fields, permit the de-

I 1 f .a IL(2r/r) velopment of frequencies besides that of the input signal
Nw r J F j and, as electrons slip relative to the radiation pulse, the

sideband instability may develop.
exp[ - i-( 1+i )r~2 /r 2 ] Figure 1 shows the development of three spectral com-

ponents of the optical field when the input signal is set at

(7) 10.6 I.m (8=2.51x 10-2) and 100 W. Of course, there
A, r2n +I -i)+i(2nBt +B) are many other spectral components besides those shown

2n,' 1 nin Fig. 1; however, the curves shown do indicate the gen-

eral trend in the development of the sideband frequencies.
and Note, in particular, that in the exponential repime the

B =F,/a o  growth rate of the component at 8=0.77X 10- exceeds
that of the main signal. This result is discussed in Sec.

=BR +iB . (8) IV.
(b) Multiple frequencies, large input power, untapered

In Eq. (7) the sum on j runs over the electrons in a given magnet. Figure 2 shows the development of the carrier
ponderomotive bucket and N denotes the number of elec- for the case where 800 MW of 10.6 A m radiation
trons initially therein, and v=Ib/(mc2v:/ e I) is the (8=2.51X10-2) is injected into an untapered magnet.
Budker parameter, where 1b is the electron-beam current. Again, there are many modes in the spectrum that grow

A detailed presentation of the SDE approach is given
in Ref. 8. For orientation, however, it'should be noted TABLE I. Parameters of the experiment of Orzechowski
that, in vacua, one has the well-known result, et aL

r,(z)=r,(0)(I +z 2 /4z )2/2, a=z/zR , Electron beam
Current 2 kA

where r,(0) is the minimum spot size (at z =0) and Energy 50 MeV
zR = (w /2c )r,2(0) is the Rayleigh range. These results fol- Radius 0.45 cm
low from Eqs. (4) and (5) upon neglecting B, i.e., neglect- Magnet
ing the electron beam. Induction 2.3 kG

Typically ten optical modes (n =0, .. . ,9) are includ- Period 8 cm
ed in the computations. As noted in the Introduction, Length 25 m
the question of the proper spectrum and noise level for Radiation field
the sidebands due to spontaneous emission is not con- Wavelength 10.6 Am

......... .. ~ ~ ~~~~ -,m, w H i lliB
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FIG. 1. Evolution of three spectral components along the along the wiggler.
wiggler when 100 W are input into the 10.6-pm wavlength
(8=2.51 x 10- ) at the entrance of the wiggler. carrier with a group of Stokes and anti-Stokes modes on

either side, Fig. 5. The approximately symmetrical form
along the length of the wiggler. The dashed curve in Fig. of the spectrum, which is a reflection of comparable
2 indicates the maximum amplitude, or the envelope, of growth rates for modes symmetrically disposed with
the rest of spectrum as a function of z. Figure 2 also respect to the carrier, is discussed in Sec. IV.
shows in detail the evolution of one of the fastest growing 'c) Multiple frequencies, tapered magnet. As is well
modes, at 8= 5.71 X 10-2, indicating the trend in the de- known, fr practical purposes the magnet employed in an
velopment of the instability. At the end of the wiggler FEL device n,'t be tapered so as to enhance its
(25 m) the amplitude of the sidebands is large enough to efficiency and extractio Figure 6 shows the develop-
spatially modulate the optical field by about 30%. Figure ment of the carrier and of the 14,.num amplitude of all
3, which shows the phase of the carrier along the wiggler, the sidebands through a device where tny .- rmalized
will be discussed in connection with the analytical model vector potential a,, = I e I B./mc 2k. is tapered as si-.,,,
for the instability in Sec. IV. At the wiggler exit the in Fig. 7. The form of the tapering employed in the corn-
electron-beam distribution function has a clear multis- putations is obtained simply by prescribing a constant
tream character as indicated in Fig. 4. The spectrum of rate of decrease of energy for a synchronous electron, at
the optical field at this point consists principally of the an assigned radius. From Eq. (3), with dr,/dz =const,

one obtains aW(z). Comparing Figs. 2 and 6, it. is ap-
parent that in the tapered device the sidebands saturate

Carrier

10 6

V .2

.0

10.12

0

6 12 18 24
z (m)

93 95 97 99 101

FIG. 2. Evolution of carrier (10.6 pm) starting from 800 MW Y
in an untapered wiggler. The dashed curve indicates the upper
bound for (or the envelope of) the rest of the spectrum. Also FIG. 4. Electron distribution function (i.e., number of elec-
shown is the evolution of the sideband at 8=5.71 x 10-2 (10.93 trons) vs relativistic mass factor y at the end of the wiggler.
Jim). (Ordinate scale is linear.)



200 B. HAFIZI, A. TING, P. SPRANGLE, AND C. M. TANG 38

1 0-310
-  

- Carrir

10--2 -

0

10-12
10-

7

I I

-5.22 2.51 10.25x10 - 2  6 12 18 24
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6 FIG. 6. Evolution of carrier (10.6 pm) starting from 800 MW
FIG. 5. Spectrum of optical field vs b- ./,-1 at the end in a tapered wiggler. The dashed curve indicates the upper

of the wiggler. bound for ihe rest of the spectrum.

at a level that is substantially below that of the carrier. ergy v 0mc. per electron.
As expected, the optical field is observed to be only Defining
slightly modulated in space. The electron distribution
function (not shown here) consists principally o two 0o=ck.( 1 Y 2
groups, an untrapped group and a trapped soup at lower
energy. Finally, Fig. 7 also shn-' the efficiency of the =

FEL, with 16% being , ecntOld improvement over the r, = Yj/,,
peak efficii"y- iur the untapered device. A =inexp(i 0t ),

"IV. ANALYSIS OF RESULTS
the equilibrium corresponds to A =0, r,=1,

An understanding of Fig. I may be obtained by per- I, exp( -in j)=0 (n = 1,2,...). Perturbing Eqs.
forming a single-bucket linear stability analysis of Eqs. (1)-(7), defining collective variables as in Ref. 12, and as-
(l)-(7). The presentation is limited to the fundamental suming a temporal dependence of the form exp(-iTt),
optical mode, and a monochromatic electron beam of en- the following dispersion relation is obtained:

T3+ No- 2c2(1-ia)/r
2 ]T 2 + v(afB)2  C I1y-2ck vafB)N'o -s 7T2c 1 o NY3g ",

where r=2 1 (1-rJ/r2)exp(-2r /r2). Perturbing B 16 1.8

[defined by Eq. (8)], and numerically solving Eqs. (4) and
(5) along with the cubic in T, one obtains the growth 1.6
rate, efficiency, spot size, and a in the exponential regime 12 -
for any given angular frequency w. 1.4

Now, as is well known, the FEL interaction has the
rather important property that the optical field tends to 1.2
be guided by the electron beam. In an amplifier operat- C J
ing in the exponential regime, it is found that, irrespec- .- 1.0
tive of the initial spot size, the radiation beam asymptoti- t
cally approaches a unique spot size r, and wave front cur- 0.8
vature (-a - 1 ) (Refs. 8 and 9). Figure 8 shows the 4
growth rate r, efficiency 7, matched spot size r, and 0.6
matched a in the case of a small input power as a func-
tion of b=(./X.)-l, where X=21rc/c. The crosses 0.4
are the results of single-bucket simulations. The curves 6 12 18 24
are obtained from the linear stability analysis of the Z (m)
preceding paragraph. It is seen that the agreement is FIG. 7. Efficiency (%) and a. along the length of the tapered
quite good. magnet.
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2.2 where the synchrotron frequency is given by

1.6 x 10-2 1 I a
r/k,,, 1.4.q (O )  =exp( -r_2/r), and y, is defined by Eq. (3). Note that

1.0 Eq. (10) describes a linear increase in the equilibrium
1.2 - phase. Inserting numerical values corresponding to the

0.6 wiggler entrance, Eq. (10) yields a rate of increase that is
1.0~02 about a factor of 4 greater than that observed in Fig. 3

(beyond 9 m). Due to diffraction, however, the spot size

r, increases along the wiggler. Thus, inserting an average

0.29 value for r, (between 9 and 25 m), the rate obtained from
Eq. (10) is within 10-30 % of the numerical value.

0.27 1.2 Next, perturbing the equilibrium state and assuming a

0.25 1.0 dependence of the form f '-exp[-i(Awt--Akz)] for
the perturbation, one obtains the following dispersion re-

rs(cm) 0.23 0.8 a lation (Appendix A):

0.21 - 0.6 1=_-_+ (_ )2 __ x-_

0.19- 0.4 where
0.17 0.2 X=AW(l+a /2)/2fy, =cAk(l+a'/2)/2flBY,

-2.5 -1.5-0.5 0.5 1.5 2.5x10 - 2  
_ _ _ _ +a.' I

FIG. 8. Normalized growth rate r/k., efficiency il(%), I IO ,V k., j/

spot size r,, and a vs 8=(X/.,)-I, where X.,=10.34 pm.
Crosses represent results of simulations. Curves are obtained and
from the linearized equations for the exponential, matched- a= f2/N . (12)
optical-field regime. The electron-beam radius is 0.3 cm. 8

The dispersion relation is obtained in the diagonal ap-
An important feature of Fig. I may now be understood proximation, wherein ters of the form f ")Aj, f l Aj

with reference to Fig. 8. In the small signal regime-and are neglected. The dispersion relation in Eq. (11) is simi-
therefore prior to particle trapping-Eqs. (1)-(7) may be lar to that given in Ref. 6. The last term on the right-
linearized to show that there is no coupling between the hand side of Eq. ( 1), which is due to terms proportional
various spectral components. In other words, the devel- to y,-') and is neglected in Ref. 6, increases the growth
opment of the spectral components proceeds indepen- rate by about 10%. In reference to the electron distribu-
dently and at a rate approximately equal to that indicated tion function show In Fig. 4, it is interesting to note the

in Fig. 8. Referring to Fig. 1, it is thus seen that the similarity of E wq. (i F to the dispersion relation for a mul-

larger growth rate of the sideband at 8=0.77x 10 - 2 as tistream system. Neglecting the third term on the right-

compared to the carrier at 8 = 2.51 X 10-2 is consistent hand side of Eq. (1), it is seen that-as discussed in Ref.

with Fig. 8. 6-the dispersion relation has a symmetrical form about

It is also possible to setup and analyze a simple model the carrier (Ak =0), with identical growth rate for

of the FEL interaction so as to obtain an understanding (-AAk) and (AAk ). The spectrum in Fig. 5 is con-

of the gross features of the sideband instability ensuing sistent with this general feature of Eq. (11).
from the synchrotron oscillation of the electrons in a Inserting numerical values into Eq. (11), one finds that

Nlarge-amplitude carrier wave, the range of unstable modes encompasses that obtained in
Neglecting diffraction and considering the fundamental the simulations. The maximum growth rate obtained is

mode of the optical field only, writing Yr = r, + Ayj(t ), about a factor of 5 larger than the average value observed

0"--, jo+Aj(t), a = I a jlI exp(io ° )), the equilibrium for one of the fastest growing modes in the simulations
is described by (cf. Fig. 2). That the growth rate deduced from Eq. (11)
sjo+0'° +ar;/r=2nir (n is an integer) should exceed that observed in the simulations and the
d2'rj S ni i discrepancy in the rate of increase of the phase of the car-
d A rier are to be expected for two reasons. First, diffraction

dr2" - ' of the optical field [neglected in deriving Eq. (11)] is
bound to reduce growth rates. Second, in the simula-

l at -const 'tions, the electrons are distributed throughout the pon-

- a 10 v 2 f~a dermotive bucket with synchrotron frequencies ranging
+C0) , (10) from tQ down to zero, whereas the analysis leading toNJaL (J I P, Y, Eq. (11) assumes all electrons to bounce at the bottom of
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the ponderomotive wells, at the largest synchrotron fre- . ~
quency [cf. Eq. (9)]. + C a) 2c 41a , )+ofH)

Turning next to the case of the tapered magnet, the at-+ J N , Y, (

question arises as to why the growth rate of the sidebands
is about a factor of 6 smaller than that in the untapered [at0o) oz] Iil)
magnet (cf. Figs. 2 and 6). As is well known, upon taper- at az
ing the electrons separate into roughly two groups. For 2 fa ~ i i'
the tapering employed, the decelerating group-which is C 212 fBa,

responsible for stimulated emission-comprises 25-30 % - r'-I- r', Ia'0 +,
of the total number of electrons. However, the sideband (A 1)
growth rate for-such a fraction of the number of electrons d . ro).f. E (awf 0 (0. +46 ) ,
is still large compared to the observed value. There ap- dt 2y, a

pears to be additional reasons for the small growth rate of d
the sidebands. In the context of a high-extraction FEL - j =
with a tapered magnet, it is generally assumed that the dt j

change of parameters (a. and/or k,) is slow enough so Note that the term proportional to r9 on the right-hand
that the action Ij = f do(yj -y,) is an adiabatic invari- side of Eq. (A ) was neglected in Ref. 6 where a similar
ant.' For the case considered here, however, it turns out analysis of sideband growth was presented.

that dy, Idt == f1Aj - r,), implying that the action Ij is Defining collective variables

not an invariant (Appendix B). Additionally, the yj of X e k(I) k . ), E/N

trapped electrons decrease more or less monotonically k - 1 J IN, Yk----- N Ek = /

with time, modifying the "equilibrium" electron distribu-
tion on the same time scale as that of the synchrotron one obtains

motion. Physically, as the radiation pulse slips relative to a a ( 1 =_ ___

the elcctrons, it is modulated not only by the synchrotron ' +c- I I a (X+El0 ('))

motion but also by the temporal variation of y,. This has at a oi r ,
a detuning effect and renders the sidebands quasistable.
Indeed, by increasing the rate of tapering and therefore a(°1 _1 + C-)1 a ilI

the rate of variation of y,, the modulation of the optical at
pulse is reduced further, although the efficiency is also di- Lc.I 2 fsa, I+EI I
minished due to increased particle detrapping. _ _----)k2c E a+

Finally, it is important to remark that the tapering em- -W) ] y t- yr a'°1

ployed here leads to the same efficiency for a single- d 2ck.
bucket, sinigle-frequency case as for a many-bucket, mul- d 2ck1,
tifrequency case. In other words, for the given analytical dti ,.

form for aW(z), the optimal rate of tapering naturally d y= a-fl (

leads to the observed reduction in the growth rate of side- ' 2d, a I)(X2+E2 d"1 )

band modes.
V. CONCLUSION d 2ck '

The work presented here contrasts the development of d - - ,

sideband frequencies in an untapered and in a tapered etc. This hierarchy may be truncated by assuming that
magnet. For the tapering employed, optimal operation
(i.e., maximum efficiency) is achieved when the electrons X2=1 EjX,/N, E2 =7 EsE I/N, whence

trapped in the ponderomotive buckets are nonadiabati- d2

cally decelerated, leading to substantial suppression of dt_ -f_ (Xl+E#"')

the sideband frequencies relative to the untapered system.
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APPENDIX A: MULTIFREQUENCY LINEAR right-hand side is due to the term proportional to rl onSTABILITY ANALYSIS the right-hand side of Eq. (Al).

In this appendix some of the details leading to the APPENDIX B: TEMPORAL VARIATION
dispersion relation in Eq. (11) are presented. Upon OF ADIABATIC INVARIANT
writing y =y,+Ay+,y'. 0s =bo0+A s'+' .,

(a I - ia(°)I + It ) and neglecting In this appendix the law of variation of the action vari-
terms comprising products of the form Ay,0,'), AgJ4''. able for the tapered magnet is obtained. For a synchro-
etc., one obtains, at first order, nous particle, the energy and phase evolve according to
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d wawfB2 These formulas are valid for the length of the magnet ly-

- 2y, a lEsin(,+0+ar,/r) ing between 6 and 21 m where fy is found to be remark-
ably constant in the simulations. Thus the variation of y,

d =0 is the only factor contributing to the breaking of the adia-
dt "  " batic invariant !j. (Generalization of the formulas to in-

Defining yy=y,+byj, 0,--,+8j, the Hamiltonian clude the variation of lsy, in the other sections of the

for small-amplitude oscillations-is magnet is straightforward.) The change in the action
variable over a synchrotron period is then found to be

ck a a I , r,2)6 given by

Defining the synchrotron frequency of such a particle, 2 I dy,/dt 1/2

flsyn[ckwoaf B I a I E, cos(*, + +ar,2/r,2 )]1/ 2/y, I 2rlls I

following Ref. 13, the action (1i) angle (w 1 ) variables are _10 - 1.
found to evolve according to

d Ij d y, cos(2w) It is important to notice that although this variation is

= - y, dt relatively small, it is nevertheless much faster than the

usual case for an adiabatic invariant where A! --0 ex-

d- = Slyn+ 2y, dt sin(2wj) . ponentially as dy,/dt--0.
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BASED ON A OUASI-OPTICAL MASER UNDULATOR
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Abstract

We propose the use of electromagnetic waves as an undulator in order

to generate x-rays in the wavelength range required for fabrication of

integrated circuits. The configuration consists of a quasi-optical maser

cavity through which a beam of relativistic electrons is made to propagate,

spontaneously emitting x-rays of thedesired energy. For 5" silicon wafers

covered with a sensitive resist such as PBS, this translates into a

throughput of 26 vafers/hr using an aggressive stepper. The scaling of x-

ray pover vith vavelength indicates that the throughput can be increased

substantially using resists vhich are sensitive to shorter wavelength x-

rays.

Science Applications International Corp., McLean, VA

+ FM Technologies, Inc, Alexandria, VA



I. Introduction

A major contributor to the tremendous developments taking place in our

ability to process information is the miniaturization of semiconductor

devices marketed by the electronics industry. It is nov recognized that

over the next few decades the economic vell-being of the United States is

dependent on its ability to maintain a leadership position in the fast-

developing technology for fabricating smaller and cheaper integrated

circuits (IC) (see Ref. 1).

A process by vhich IC's are mass produced is lithography. Using this

technique, a predetermined pattern can be rapidly replicated on the surface

of a semiconductor chip using a beam of radiation or particles. A

reliable, efficient and compact source of radiation or particles is

critical to the economic viability of lithography. This is especially so

because of the high capital expenditure required for the sources

necessitated by further miniaturization.

In this report we propose a novel design concept for a source of x-ray

radiation for the purposes of lithography. In order to motivate the design

concept and to provide a comparison with other sources presently being

considered, the following section is devoted to a brief description of the

salient aspects of the lithographic technique. Section III describes the

x-ray sources currently under study and/or development. Our proposed

scheme is detailed in Sec. IV, followed by a derivation of the x-ray power

formula in Sec. V. In Sec. VI we consider the availability of the two

major components (electron beam and electromagnetic undulator) required by

the proposed scheme, and we present parameters for an actual device based

on a preliminary analysis of the power-formula scaling. In Sec. VII we

compare our design-parameters with an x-ray source based on a conventional

bending-magnet storage ring. Our conclusions are contained in Sec. VIII.

m m m m m m miim ~ mrh- 1



II. Lithography
2

The crystal-groving industry routinely provides silicon crystals about

5" or more in diameter. Once a single-crystal ingot is grown, it is sliced

into thin wafers, which are then used for device fabrication. Planar

technology consists, for example, in selective introduction of dopant atoms

into small precisely predetermined areas of the silicon surface to form

regions of p- and n-type material. Dopant atoms can be introduced

simultaneously into many separate, small regions of a wafer. Therefore,

the use of larger diameter wafers and smaller device dimensions minimizes

processing cost per device.

The technique for replication of a predetermined pattern on a silicon

wafer is referred to as lithography. The pattern may correspond, for

example, to an opening for introduction of dopant atoms by diffusion or

implantation. Lithography consists in the application of a thin film of a

radiation-sensitive plastic -- called a photoresist -- onto the surface of

the wafer. The photoresist is then exposed to radiation through a mask,

bearing the desired feature, to create a shadow image on the resist.

A. Resolution

Current state-of-the-art miniaturization requirements by the IC

industry call for the ability to resolve submicron minimum features of

patterns to be replicated. Hovever, for mass-production of critical,

leading-edge circuits for computers, memories, signal processors and other

devices, resolutions approaching 0.1 um will be required. Resolution,

therefore, is a determining factor in the quest for greater device density.

However, as is well-known, diffraction provides a fundamental barrier for

resolution. If d is the line width of the feature on the mask to be

replicated and X is the wavelength of the radiation, the diffraction angle

is X/d, so that if s is the mask-to-resist separation, the blur on the

2



resist is (X/d)s. Thus, to reduce blur, it is necessary to use short

vavelength radiation (x-rays) or energetic particle beams.

B. Sources

As far as resolution is concerned, x-ray radiation or particle

beams are satisfactory sources. It is, hovever, necessary to consider

other factors such as throughput and yield in order to be able to select

*the most appropriate source for lithographic purposes. Direct-vrite vith

tightly focussed electron or ion beams is frequently used for extremely

high-resolution processes. The vavelength X of an electron of momentum p

is X - h/p vhere h is Planck's constant. Thus, for a 20 keV electron beam

= 2.5 x 10- A. With such short wavelengths, computer-controlled

particle beams are ideal for making high-quality patterns on masks vhich

are then used for resist exposure in quantity. Hovever, the main problem

with the electron-beam direct-vrite process for mass production is that it

is slow compared to parallel exposure through a mask. In addition,

particle beams spread out upon impinging on a resist, and there is also

some backscattering and thus possible damage to the mask.

3



III. X-Ray Lithography

Since x-ray sources have high throughput compared to direct-write

techniques, we nov concentrate on three sources of x-ray radiation that are

envisioned for lithography. These are: a) electron-impact (x-ray tube),

b) high-temperature plasma, and c) synchrotron radiation. To compare

these, we list the important characteristics that must be considered in

making a choice between different sources.

i) Emission intensity

ii) Efficiency of x-ray generation and usage

iii) Spectral character of radiation (lines, continuum, etc.)

iv) Energy range of emitted photons

v) Source size (important for resolution)

vi) Emission solid angle (determines collimation and exposure area)

vii) Pulsed or cv

In comparing the different x-ray sources, we shall consider the material

polymethyl methacrylate (PMMA) which is a popular, high-resolution resist

suitable for submicron work. To fully expose PMMA one requires 1 J/cm2 of
0

12 A radiation. More generally, the range of useful photon energies is
0

0.5 - 1.5 keV (20-8 A). Photon energy influences resist absorption which,

along with the intensity, determines the exposure time. In common with

ordinary photography, faster resists than PHKA are found to exhibit poorer

resolution. We now enumerate the properties of the three common sources of

x-ray radiation.

A. Electron-Impact

X-ray tubes were the first to be used for x-ray lithography. The

radiation is uncollimated and is in the form of lines (bound-to-bound

transitions) and a continuum (free-to-free transitions in the nuclear

Coulombic field). X-ray tubes are inefficient, with typically less than 1%

of the electron beam energy being converted into (total) x-ray radiation.

4



B. High-Temperature Plasmas

X-ray radiation from plasmas at 106_ 107 K is in the form of a

line spectrum (bound-to-bound transitions), continua with a high-energy

cut-off (free-to-bound transitions), and a continuum (free-to-free,

bremsstrahlung). Heating of the plasma is via a discharge (as in a

z-pinch) or a high-pover laser,3 and the radiation is spread over a large

solid angle (2n to 4n). The process is necessarily pulsed with a lifetime

of 10-100 ns for discharge heating and 1-10 ns for laser heating.

Efficiencies are in the range of 1-10%.

Some of the problems associated with high-temperature plasma

lithography are the following:

i) Contamination of mask and/or resist by debris from the plasma

ii) Low repetition rate

iii) Thermal response of mask and/or resist to very intense, pulsed

heating

iv) Significant shot-to-shot variability of plasma sources.

C. Synchrotron Radiation

Synchrotron radiation is generated by electrons in synchrotron

accelerators and storage rings. It is basically magnetic bremsstrahlung

due to the curved motions of the particles in the bending (dipole) magnets.

Although the radiation process is efficient, usage of the emitted radiation

is quite inefficient due to the large fraction that is lost onto the vacuum

chamber walls. Since the radiation is highly collimated (S 1 mrad for a

1 GeV electron beam), the mask-wafer separation and wafer flatness are less

critical than with x-rays from a point-source with highly-diverging rays.

The spectrum is continuous so that filters and/or mirrors must be used to

select the desired wavelength band for lithography work.

5



In existing and proposed storage rings electrons are typically

injected at loy energy (- 150 HeV) and then accelerated to about 1 GeV

while the bending magnets are ramped up to about 4-5 T. These are designed

for compactness, with linear dimensions on the order of several meters.

Superconducting magnet designs are also available and somewhat more

compact, although there is the added cost and extra space for the cryogenic

system. Thus far, the most important source of x-ray synchrotron radiation

is that provided by dedicated storage rings to be found in many national

laboratories throughout the world. However, these machines are extremely

expensive and occupy a great deal of space. On the other hand, the

commercial storage rings for x-ray lithography are only now becoming

available.

Since there are inherent difficulties associated with each of the

three x-ray sources we have mentioned, in what follows we propose the use

of an electromagnetic undulator as another means of generating x-rays which

may prove to be suitable for lithographic applications.

6



IV. X-Ray Radiation in an Electromagnetic Undulator

The use of periodic undulators and of vigglers to achieve higher

brightness (energy radiated per unit bandwidth per unit solid angle) and to

modify the spectral character of the radiation by storage rings is by nov

veil-established.4 Due to complexity and construction costs of

electromagnets (conventional or superconducting) recent developments in the

fabrication of high-field, rare-earth cobalt permanent magnets 5'6 have led

to their almost-universal use as insertion devices in storage rings.

Defining the dimensionless magnetic field parameter

le IB0o o
K- 2nmc 2  (1)

where e is the charge and m is the rest-mass of an electron, c is the speed

of light in vacuo, B is the peak magnetic induction and X is the period

of the planar undulator or wiggler, the wavelength X of the radiation

emitted along the beam direction is given by

X 01+K2/2) 
(2)

2Y
2

where y is the relativistic mass factor. Typically, X ranges over 1-10 cm
0

so that for x-ray radiation in the required range (8-20 A) electron

energies upwards of several GeV are required. On the other hand, one might

use lover energy electrons, say 150 HeV, and use extremely short-period

insertion devices. However, to maintain the same magnetic field strength

there has to be a corresponding decrease in the gap spacing between

opposite poles of the magnet. 6 This implies very thin filamentary electron

beams and correspondingly high electron-beam brightness.

7



As an alternative to the permanent magnet designs mentioned in the

preceding, we propose herein to employ a high-pover electromagnetic wave of

moderate wavelength (S 1 mm) to generate x-ray radiation in the required

wavelength range using moderate energy electrons (< 1/4 GeV). It is

expected that with use of moderate energy electrons and one of a variety of

recently-developed, efficient, high-pover sources of coherent radiation, a

compact source of x-ray radiation may be designed for commercial use

vithout an excessive capital outlay.

8
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V. Technical Discussion

As is well-known, the radiation emitted by a charged particle in

instantaneous circular motion is confined to cone of half-angle 1/y about
7

the direction of dominant motion. It is also well-known that for motion

in a periodic magnetic or electromagnetic field the transverse particle

orbit is periodically deflected through an angle

ed - K/y. (3)

We can now distinguish two limiting cases. For K < 1 we see that the

transverse angular deflection of the particle lies within the natural

opening angle of the emitted radiation. In this case, the insertion device

is referred to as an undulator and the emitted radiation is confined to a

very narrow angle about the direction of propagation and is thus of high

brightness. For an insertion device for which K > 1 (referred to as a

wiggler) we see from Eq. (3) that the emitted radiation is spread over an

angle K/y, which may be considerably larger than the natural opening angle

1/y, depending on the magnitude of K. In the limit K >> 1, the wiggler

radiation is similar to that from a bending magnet where particles undergo

substantial deflection on traversing the bending field.

For the electromagnetic pump wave to be considered herein, one can

define an equivalent parameter K as in Eq. (1). It turns out that for our

configuration K << 1, so that the electromagnetic pump behaves like an

undulator. Therefore, unlike wiggler fields and the commercially available

bending-magnet designs, the radiation from the electromagnetic undulator

would be highly collimated and entirely available for resist exposure.

Additionally, for K << 1 the higher harmonics are negligible compared to

the fundamental.

9



To evaluate the radiated power for the case of the electromagnetic

undulator, ye refer to Fig. 1. This is a schematic (not to scale) of a

configuration wherein the electron beam propagates along the z-axis and

interacts vith the electromagnetic pump field stored in the cavity. If L

" is the interaction length, the cavity mirror on the right-hand side

- - includes an orifice of diameter 2L/y to permit extraction of the x-ray

- radiation. The opening in the mirror is connected to a Bragg reflector,

which is simply a long, corrugated metallic tube, to effectively plug the

resonant cavity against microwave power loss. Alternatively, the orifice

may be connected to a tube across which a jet of neutral gas is pumped. If

the gas density is sufficiently high, the microwaves will be reflected due

to cutoff if the microwave electric field exceeds the breakdown field for

ionization of the neutral gas.
9 ,10

From a well-known formula of electrodynamics the instantaneous power

radiated by a single electron in arbitrary, relativistic motion is given

by11

2e2  [ i)2], (4)
P - L - (fi

where 1 = v/c is the particle velocity normalized to the speed of

light, and v/c, where v v L is the acceleration. Making use of
-dt -

the Lorentz force formula, Eq. (4) may be rewritten as

p. 4  2 BE (5)
3m2 c 3  )

where E and B are the electric and the magnetic fields. Since the x-ray

radiation field is small compared to the electromagnetic undulator field,

we may neglect the excited radiation fields in Eq. (5). For the undulator

field we take plane waves of the form

10



A
E w E0sin(k0z + % 0 t)e x, (6)

c(00
B-- -= sin °+ o (7)

where E is the amplitude of the electric field, %o is the radian frequency

A
=- -= and k a (O,0,ko ) is the wave-vector. e is a unit vector along the

z£

direction of propagation of the electron beam, with 9x out of the plane of

A 
o

the paper and ey in the plane of the paper. We note that the electric and

the magnetic field may be obtained from the following vector potential

CA
Asw Ecos(Isr + toot) e (8)

where r is the radius vector. Since the vector potential is not an

explicit function of the x coordinate, the canonical momentum along the

x-axis is conserved, whence

s v /c - (K/Y)cos ir + cwot) (9)

where

jej(cE°/0) (10)

2mc

is the undulator parameter [cf. Eq. (1)J. To evaluate the power according

to the formula in Eq. (5) we make use of the Lorentz equation and after a

simple analysis we obtain, for a single electron,

2At 3c (1 )2 (11)

The distribution in frequency and angle of energy radiated by the

particle is obtained from
1 2

11
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d2  *202 L/2c P ~rt)1 2d e - 4 2  - 2 dt x (4 x §)e , (12)
4n2c -Ll2c

where 9 is the unit vector in the direction of observation, and L is the

length over which the electron interacts with the undulator. It is

important to note that wi in Eq. (12) refers to the radian frequency of the

scattered radiation (in the x-ray region), which is to be distinguished

from the frequency of the electromagnetic undulator, denoted by Wo in Eqs.

(6)-(8). Expressing the unit vector P in terms of the polar (0) and

azimuthal (*) angles,

A Aoq A
- z + (eysin* + e Xcos+)sinO,

the distribution of the scattered radiation fore 1 is given by
-Y

d2cs Z [ ewoLK Y i2 4y 2 O2co s 2 # si n x 2  (
dgsds '  c [ cJ[ - (1+y22)2 J (13a)

where

S[w(1 -s G cose) 1
x a c (1 + 0z)cG + 1] (13b)

From Eqs. (13) we find that for long interaction lengths (Lo /c >> 1) the

scattered radiation has a peak centered at

% (1 ., (13)

"(1- zcoso)

l+y "

12



It must be noted that the forward scattered wavelength predicted by Eq.

(13c) is half of that given by Eq. (2). This is well-known and is due to

the travelling-wave nature of the electromagnetic undulator considered in

this Section.

It is important to note that the frequency distribution given by Eq.

(13) pertains to a single electron. The determination of the actual

frequency distribution, in general, presents a complex problem. The factor

(sinx/x)2 in Eq. (13a) indicates a line width on the order of X0/2L about

the central frequency (13c). For long interaction lengths, however, a

number of other mechanisms limit the line width. Besides the damping due

to the emission of radiation itself, there are several other causes which

broaden a line. These include Doppler broadening, collisional broadening,

and radiative widths induced by the high power microwaves inside the

resonator cavity.

It is useful to express the power emitted as x-ray radiation, Eq.

(11), in terms of the power in the electromagnetic pump rather than the

undulator parameter K. To do so, we assume the fundamental Gaussian

(resonator) mode is proportional to eKp(- r2/o2) where a is the spot-size.

It is simple to show that the undulator power and the undulator parameter K

are related via

P " c 3, (14)

whence the total power (in x-rays) of an electron beam of current Ib

emitted over a length L of interaction is expressible as

64le 13y2I bL
Px-ray 3a2 Ozm 2C5  u' (15)

13
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where use has been made of Eqs. (11) and (14). For applications it is

necessary to refine this formula in two respects. First, in order to take

into account the variation of the spot-size of the undulator field inside

the resonator, ve assume the waist to be at the center of cavity, z=O.

From elementary diffraction theory, we have

2 2 1/2
o(z) - ao(1+z /zR) , (16)

Where ao is the waist and ZR - noo2/Xo is the Rayleigh range corresponding

to microwaves of wavelength Xo. Substituting Eq. (16) into Eq. (15) and

averaging over the interaction length L, one obtains

<P 32neIbP tan- (L/2zR), (17)x-ray 30zm2 C5 X

where Xs is wavelength of the x-rays.

A further refinement pertains to the angular distribution of the x-

rays. From Eq. (13a) the power radiated per unit solid angle (in terms of

the electrons' time) is given by

dPx2ray 12 1 2 2Cos2
d n W (1+y2 2 ) 3  (1+y2 82) J

Integrating over the cone of semi-angle 1/y around the forvard direction,

Eq. (17) is modified to

<Px-ray 25:e 13IbPu tan- 1(L/2z)x-ray= 31zm 2C5Xs 1

14



or, in practical units.

Ib[A]Pu[M] -1 (18)

<Pxray [W= 0.045 X tan (L/2zR)s[Al

where the x-ray radiation power is in watts, the electron beam current is

in Amperes, the undulator stored power is in megawatts, and the x-ray
0

wavelength is in Angstroms.

14
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VI. Design Parameters for Electromagnetic Undulator

As a concrete example of a synchrotron radiation source based on the

electron netic undulator ye present a set of design parameters which would

be useful for x-ray lithography. There are basically two main components

in our proposed device, the electromagnetic pump wave (undulator) and the

electron beam. The goal is to have a powerful source of x-rays to be able

to expose a commercially interesting number of wafers. Bearing this in

mind and noting the scaling of the x-ray-power formula in Eq. (18) we

consider each of these components separately.

For the undulator we have examined several sources of radiation. A

good candidate is a pulsed CO2 laser since gigavatt power levels are

readily available from such a source. One of the problems, though, with

using such high power levels is the difficulty in designing beam-line

optical elements that can operate at high powers.

Our present choice for the undulator is the quasi-optical gyrotron.1
3

Quasi-optical gyrotrons employ an open resonator cavity containing a

gyrating electron beam which propagates perpendicular to the resonator

axis. Among the attractive features of this source are high cv operating

powers and high efficiency. Quasi-optical gyrotrons are routinely and

reliably operated at the Naval Research Laboratory.14 A schematic of the

NRL quasi-optical gyrotron is shown in Fig. 2.

The other major component of the x-ray source is the electron beam.

With the use of a short-wavelength electromagnetic undulator, we require

moderately energetic electron beams at high average current levels. For

electron beam energies of interest (S 1/2 GeV) race-track microtrons may be

appropriate. Typically, microtrons are limited to very low currents

(S 1 mA), and the linacs that are suitable are fairly expensive. Storage

rings appear to be most suitable for our purposes. 15 A closed vacuum

16



chamber threads through the components of the storage ring which include

the bending magnets and the rf cavity. Electron injection can be below the

energy of operation in which case the ring is used to accelerate the

particles to their final energy within several minutes. The lifetime of

the beam may be several hours depending on the average pressure in the

ring.

If we assume the stored (circulating) power in the quasi-optical

cavity is 1/4 GW, using a 1/4 GeV, 1/2 A (average current) storage ring,

from Eq. (18) we find that the power emitted as x-ray radiation is about

3/4 V. From Eq. (13c) we find that if the x-rays are centered at about 12
0

A then the undulator (that is, the microwave radiation in the quasi-optical

resonator) has a wavelength X0 of about 1.2 mm, which should be readily

available with current quasi-optical technology. In making use of Eq. (18)

we have assumed that the intramirror separation L in the quasi-optical

cavity is much larger than the Rayleigh range zR of the microwaves. This

is true provided the waist of the microwaves is on the order of or less

than several centimeters and L is on the order of 1 meter or longer. It is

important to note that for L/zR >> 1, tan- (L/2zR) 4 n/2 and the power

formula in Eq. (18) is then independent of the cavity dimensions, the

microwave spot-size and wavelength, and the electron beam energy. However,

the latter two parameters determine the required x-ray wavelength, which is

constrained by the composition of the resist material.

If we consider using gas breakdown instead of the Bragg reflector to

stop microwave leakage through the mirror orifice, then for this

configuration the electric field of the microwaves passing through the

orifice in the right-hand cavity mirror exceeds the breakdown field of a

typical gas at 20 torr. At this pressure, x-ray absorption is negligible,

but the plasma density exceeds the microwave frequency and may therefore

completely eliminate the loss of microwaves from the cavity.

17



VII. Comparison of X-Ray Sources for Lithography

In order to put the expected performance of the electromagnetic

undulator x-ray source in perspective, we now briefly compare such a device

with a conventional, bending-magnet source, such as a storage ring.

We assume the silicon wafer diameter is 5" and divided into chips of

area AC - 3X3 cm 2 . When such a wafer is covered with a high-quality resist

2
such as PHMA (resist sensitivity a I J/cm ) and placed at about 8.5 m from

the source, we find that with the design parameters of Sec. VI the chip

exposure time TE is 12.3 sec. The throughput T of the lithography process,

in terms of vafers/hr, can then be estimated from
16

T = 3600

TL/U TG AC TS A E

where

Very

Aggressive Aggressive

TL/U w wafer load/unload time, (sec), 20 12

TG - gIobal alignment time, (sec), 6 3

TS - stage acceleration and settle time, (sec), 1/5 1/10

TA - chip alignment time, (sec), 1/2 1/5

V - stage velocity, (cm/sec), 1/2 10

and A. is the area of the wafer.

The columns on the right of the table indicate typical values for an

aggressive and for a very aggressive stepper used in exposing the chips on

a wafer.

18



Using an aggressive stepper, the wafer throughput is found to be 12

vafers/hr. Vith a more sensitive resist such as PBS (polybutene-c-sulfone;

resist sensitivity 100 mJ/cm2) the throughput rises to 26 vafers/hr,

which compares favorably with plasma and with storage ring throughputs. It

is of interest to note that the demands on the quasi-optical gyrotron and

the electron beam can be significantly reduced by using a very aggressive

stepper. For example, a very modest gyrotron (50 MV) and electron beam

(100 mA, 1/4 GeV), used in conjunction with PBS and a very aggressive

stepper, have a throughput of 8 wafers/hr.

19



VIII. Conclusion

In this report we propose a novel application of an electromagnetic

undulator; namely, as an x-ray source for lithography in the fabrication of

high-density integrated circuits. The preliminary conclusion of this work

is that it may very well be possible to design such a compact source of

x-rays with a commercially-attractive throughput. A significant attribute

of this system is that its throughput can be substantially enhanced should

resists sensitive to shorter wavelength x-rays be available. In such a

case it is necessary to adjust appropriately either the microwave

wavelength in the quasi-optical maser or the electron beam energy.

In closing, we mention several problem areas requiring further

investigation:

(i) Heat loading of the resonator mirrors in the quasi-optical

cavity.

ii) Effect of the transverse distribution of the undulator field on

electron motion and the generated x-rays.

iii) Effect of finite electron-beam emittance on x-ray emission.

iv) System design and cost for commercial applications.
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Figure Captions

Fig. 1 Schematic top-view of an electron ring (thick line) interacting with
the electromagnetic-undulator field inside a quasi-optical resonator
cavity bounded by mirrors M. The x-ray radiation is confined to a
cone of half-angle 1/y, y being the electron beam relativistic
factor. L is the interaction length. The function of the Bragg
reflector is to reduce the loss of microwave power through the
orifice in the right-hand mirror. It may be possible to replace the
quasi-optical gyrotron with a CO2 laser.

Fig. 2 Schematic of the quasi-optical gyrotron. The electron beam
propagates along the magnetic field (- 5 T) which is directed
transverse to the axis of the resonator. Extremely high circulating
power levels (- 100 MWs) can be achieved at short wavelengths
(- 1 mm) with this configuration. The opening in the mirror allows
for out-coupled radiation.
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SMALL SIGNAL ANALYSIS OF THE INDUCED
RESONANCE ELECTRON CYCLOTRON MASER

I. Introduction

Generation of intense radiation in the microwave regime utilizing

electron cyclotron interaction has been proposed independently by a

number of researchers in the late 1950's. 1 4  Electrons gyrating In

resonance with the radiation field can experience a bunching in the

relative wave-particle phase through the dependence of the cyclotron

frequency on the relativistic mass. High amplification of the

radiation field, known as masing action, results for Doppler shifted

frequencies slightly above the electron cyclotron frequency. Electron

cyclotron masers, also called gyrotrons,5-30 have demonstrated

efficient high power generation of electromagnetic waves at centimeter

wavelengths.

For many purposes it is of practical interest to develop high

power generation capability at millimeter and submillimeter

wavelengths. Potential areas of application include advanced

accelerators, short wavelength radar, plasma heating in fusion

reactors and spectroscopy. The shortest wavelength for single mode

operation in a closed resonator is tied to the transverse dimension of

the cavity. For radiation wavelengths much shorter than the

transverse dimensions, a multimode excitation will result from the

small frequency separation among nearby modes. The mode selectivity

is greatly improved by the use of an open resonator configuration, the

quasi-optical maser.
19'20

A new configuration has recently been proposed29 ,30 which

utilizes the benefits of the open resonators and at the same time

minimizes the detrimental effects of the injected electron beam energy

spread. The operating frequency in the induced resonance electron

Manuscript approved February 18. 1987
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cyclotron (IREC) quasi-optical maser is upshifted by a factor 2

relative to the relativistic electron cyclotron frequency. It has

been shown that for operation at the optimum index of refraction the

efficiency is relatively insensitive to the beam energy spread and

the sensitivity to the effect of pitch angle spread can be minimized.

The index of refraction is adjustable by varying the angle between the

resonators (see Fig. (1)) and the guide field, and can be chosen to

minimize the effects of finite beam quality. Finally, by spatially

tapering the magnetic field the operating efficiency can be increased.

In this paper we limit ourselves to analyzing the small signal

efficiency characteristics of such a device. We include the effects

of the Gaussian profile for the radiation envelope considering a

uniform magnetic field for simplicity. Nonlinear effects and the role

of the magnetic field tapering are treated elsewhere.
30

The remainder of this paper is organized as follows. In Sec. II

we describe the field configuration and the equations of motion. In

Sec. III we derive the linear energy, power efficiency and start-up

current condition. In Sec. IV numerical results and conclusions are

presented.

II. Field and Particle Dynamics

The configuration for the induced resonance electron cyclotron

(IREC) quasi-optical maser is shown schematically in Fig. 1. The

interaction cavity is formed by two quasi-optical resonators

intersecting at an angle 2a where o is the angle relative to the

external magnetic field B in the z-direction.

2



The beam radius is much smaller than the Gaussian width r (spot

size) for the radiation envelope. In the limit of small Larmor radius

p compared to the perpendicular wavelength k.P << 1 we can approximate

the vector potential in the interaction regime by

AT = AR(z) exp[if(z,t)] 1 (ex + ie ) + cc
2 y

AL(z) exp[i§(z,t)] 1 (e - ie ) + cc. (1)

Since we are interested in the synchronous interaction of the gyrating

electrons with the radiation, we have kept only the forward

propagating wave component O(z,t) -kzz - wt + 4o" The amplitudes AR

and AL for the right- and left-handed polarized wave component,

respectively are given by

ARL(z) = A° Lexp[- z
2/L2 ],

A, = A (cosm ± 1),
R ,L o

L = r /sine, (2)

where A and r are the amplitude and spot size for each individual

resonator beam.

We use the guiding center description for the particle orbits

x = X + p sing, yg = y - p cosC,

Px Pgx + Picosc, Py = Pgy + pisinC, (3)

to obtain the nonlinear relativistic equations of motion. In this

representation (x ,y ) and (pg ,Pgy) denote the transverse coordinates
.g g gx g

3



and momentum of the particle's guiding center, p is the Larmor radius,

P1 is the magnitude of the transverse momentum and C is the momentum

space angle. We assume that x, y, PX' Py, p and pi are slowly

changing, on the spatial scale of a gyroperiod. An additional

condition for ignoring finite k effects is that the guiding center

shift in the x direction be small k1 Ax << 1, valid for c << 1 where k

is k sina. Using the Lorentz force equation together with Maxwell's

equations and retaining only the right-hand polarized wave component

the nonlinear relativistic equations of motion are cast into the form

u = - [(Wy/cu z)-k zla(z)cos* + a'(z)sin*, (4a)

Uz  - (ui/uz )[kza(z)cos* + a'(z)sinl, (4b)

' =- (YA/cuz)+ (1/u1 )[((wy/cuz)-kzja(z)sin, + a'(z)cos*], (4c)

The prime (') in Eqs. (4) signifies the d/dz derivative, u =
/oc= v/ =(I+ 2 21/2.

Sv/c, Y (1 + U 2. u) is the relativistic mass factor,

a(z) IeIAR(Z)/moc2 is the normalized radiation amplitude, 4 = + 4 is

the relative phase between the radiation field and particle,

n = ck /w = cosa is the refractive index associated with the radiation

field, dw = [w(l-n3z) - Qo/yJ is the frequency mismatch term and

o 0 - eIB0/m0c is the nonrelativistic electron cyclotron frequency. Using

Eqs. (4) the rate of change of y is given by

y' = - W(u±/cuz )a(z)cos*. (5)

The frequency mismatch Ao and its dependence on the particle

energy through the relativistic correction y, provide the mechanism

for the masing action (phase bunching).

4



III. Efficiency

One of the central issues concerning maser operation is the

efficiency of the configuration. Efficiency calculations have been

carried out for various configurations in the general categories of

the closed resonator gyrotron 5-18 ,2 1-28 or the open resonator quasi-

optical maser. 19,20 While it is generally recognized that nonlinear

saturation mechanisms are very important for the full power operation,

it is useful to carry out the small signal efficiency calculation in

order to compute the start-up current. Expressions for the small

amplitude efficienLy, obtained in closed form, provide some guidelines

in selecting the optimum operating parameters.

Assuming steady state operation, with the number of particles

crossing the unit area per unit time n0 v being constant, the

efficiency can be defined by

= - = <y ° - 1> 1d3 fo( )J z

In Eq. (6), the bracket < > signifies the average over the initial

distribution in phase space, the subscript ±- stands for the initial

and final values at z = ± respectively and ay/az is a function of the

initial conditions y y(z;piopzo,*o). In the cold beam limit with

the initial distribution function given by f0(pl,pz,q,) = (no/2np1 )

(P.l - Po )  (Pz - pzo) the average reduces to an average over

1% =~ + *.
*0 .C0 +40
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a. Small Signal Efficiency

We proceed to compute the small signal power efficiency by

evaluating the right-hand side of Eq. (6) using Eq. (5). A first

order expansion for the quantities uI = u(0) + U (1) y () +

(1) P* %P (0) + *(I) will suffice for a quadratic expression in the

wave amplitude a. The integrand on the right-hand side of Eq. (6) is

expanded using the linear solutions from Eqs. (4a)-(4c). The

evaluation of the final result is considerably simplified by

performing the phase space average over the angle %0 before the

spatial integration over z. Expanding the products of the

trigonometric terms inside the integral in Eq. (6) into sums and

averaging over *0 leads to

2D 2 codk [(1 l + U.- f dza(z)J dz ,'s(z n)
- zo 2 u 2) u 2  0C

2 

'
-2 -) kz-- I dza(z) dz a(z')cod(z"-z)

zo - o

2 2z z

--zo o -zo -- - -

01uo 0f , o azz) =z dz a(z") s_z (z)

where 6o cu Q -- Y

0z 2

and a° = jej AR/m oc
R o_ _

...- 2.jf ~ d'J'dz daz")(7



We evaluate the remaining integrals in Eq. (14) and express

the final result in terms of the parameters w x wt = (wy/cu zo )L, r

being the transit time through the interaction regime, and the

relative frequency mismatch Aw 0 /w. We find

a 2 {(a° 01 + e' )n~zo-I

"p 2 YO (y o -l) 0

& [ 2ol 2) + (I + 02 )] 0 2 n0z 2  2 (8)

-n --- nOg '-(8

g-- o
2 W e 7'2

with 0 = /uzo, the initial pitch angle.

The efficiency is proportional to exp[- 1/2 2 A'w I2/W2 where

exponent &(Aw 0 /w) is equal to 6OOO , the advance in the relative phase

Alp between the wave and the particle over the interaction regime.

For typical values of & >> 1 and 6w /w << I the expression in braces0

in Eq. (8) is simplified to

2 2 2

{. 1 + e 2 >0~z- 1 + 0 i 0  .2 0 0) (9)
0 ~ o 2 W 0 8ozo sin 2 (9)

where & . (1-n ) is independent of o. In (9) we have omitted the

small terms that originate from the gradient terms aa/az in the

equations of motion. Treating (9) as a quadratic form in Aw/w we find

the regime for positive efficiency, given by

2002 -1 < A 2  n < 2 2)i
2o( - (1 + 2o o <---< (1-n ( 1 e 2ozo)  (10)

7



The upper limit in w / is due to a finite n and results
2

from the negative contribution of the quadratic term (aw/w) that

overtakes the positive contribution of the linear term b/wo for small

angles sin 2  < (2ne 20/0, 2) (a/W).

In order to determine the maximum efficiency within the

positive regime, we parameterize Eq.(8) as a function of x = a/w,

since the exponential is the main factor limiting efficiency. Setting

dr/dx 0, we obtain

c3x
3 -c 2 x - c x+ co =0

with cI = (1 + 3e2 )0 cosm - 1, c3 = 9o2zo cosm and

2
c2 = co = (1/2) 0io o sine. Observing that the terms proportional to

c and c3 can be omitted provided that c 0 = c2 >> c3 - c 1  Ior

2

sine >> 02-- (12)
0 0

we can show that x = 1. In the special case x = 1, we obtain the

maximum efficiency

2 3
a 2-1/ 2  01o (sine)- .  

(13)max Z aoe Y(o1

The overall efficiency increases with decreasing a (increasing index

of refraction) provided that inequality Eq. (12) remains valid. For

very small o Eq. (13) fails and a solution of the cubic Eq. (11) is

necessary.

8



b. Start-up Current

Ve are in position now to calculate the start-up beam current

utilizing the power efficiency coefficient. Amplification of the

electromagnetic field energy will result if

b dt

where c is the total electromagnetic energy stored in both cavities

£ = fURdV = 2V( 2 /2 )(A2/4n), V=rr 2 L de/dt = (w/Q)c, Q is the

quality factor for the cavity and Pb is the electron beam power.

The optimum power efficiency n max is given by Eq. (13). The

cavity 0 is given by

Q = 2n LT. (15)

where LT is the effective resonator length and X the wavelength.

Combining Eqs. (13), (14), (15) and expressing A in terms of a from0 o

Eq. (2) we obtain

1 25 3

P > L)(1-R ) M zoyo(yo - ) 2sin: (16)b r0  ef 4n2 2 216)ro el 4o (l+cos=) 2 '

where Pb = Ib Vb' Ib is the current and Vb is voltage of the electron

beam. For typical parameters Vb = 0.25 x 106eV, X/r° = 10
- , l-Ref=

0.1, Yo = 1.5, Ozo = 0.64, 0io = (3yo)-, and the optimum operation

angle o ~ 450, the start-up current is

I b 4.6 A.

9



IV. Conclusion and Summary

We have performed the small signal analysis for an oscillator

configuration capable of generating radiation in the millimeter and

the submillimeter regime. The threshold for the start-up current was

found to be well within the existing capabilities of today's long

pulse mildly relativistic beams. Our theoretical linear efficiency

results are plotted as solid lines in Figs. 2-4 against the numerical

results (dots) obtained by direct integration of the fully nonlinear

Eqs. (4) for small wave amplitude. Plots of the linear efficiency as

a function of the controlling parameter & tA&/w for constant radiation

amplitude a and constant spot size r0 are shown in Fig. 2, with each

curve corresponding to a different index of refraction n = cosa. The

maximum efficiency for all plots occurs at & 6/w = 1 in agreement

with Eq. (13). Small signal efficiency increases with increasing

n = cosa roughly proportionally to the length of the interaction

regime L = r0/sina. In Fig. 3, the optimum index of refraction 29-30

n = 0 zo/(M-01 ), to minimize the effects of beam energy spread, is

held constant, and the interaction length L is changed by increaF

the width of the radiation envelope r0 . Figure 4 is a comparisor,

the theoretical small signal efficiency with the numerically

calculated nonlinear efficiency as a function of wave amplitude a 00

The agreement is good for a < 3 x 10- 4 . Nonlinear saturation occurs
0-

for a > 1 x 10-3 . Obtaining the scaling of the efficiency in the

nonlinear regime is not possible analytically. Numerical studies of

the high power performance, however, have demonstrated good nonlinear

efficiency.

10
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Higher harmonic generation in the induced resonance electron cyclotron
maser

S. Riyopoulos,ll C. M. Tang, P. Sprangle, and B. Levushbl
Plasma Physics Division, Plasma Theory Branch, Naval Research Laboratory. Washington, D. C
20375-S5000

(Received 13 July 1987; accepted 5 January-1988)

Operation of the induced resonance electron cyclotron (IREC) maser [Appl. Phys. Lett. 49,
1154 (1986); Nucl. Instrum. Methods Phys. A 250, 361 (1986)) at Doppler upshifted
cyclotron harmonics is studied. A set of fast-time averaged nonlinear equations of motion is
derived for the particle motion near an arbitrary harmonic at any index of refraction. The
small signal efficiency is computed analytically and the minimum current to start the cavity
oscillations is obtained. The nonlinear equations of motion are integrated numerically. The
interaction efficiency at the first few harmonics is found to be comparable to the efficiency at
the fundamental. The sensitivity of the efficiency to beam thermal spreads is minimized by
proper selection of the index of refraction.

I. INTRODUCTION fl, = flo/r is the relativistic cyclotron frequency with

Generation of intense radiation in the microwave re- flo = eB, /mc. For n. =, -- the frequency is boosted to
gime through electron cyclotron interaction was proposed 27 times the electron cyclotron frequency with
independently by a number of researchers*" in the late r, = (I -B 1.) -' 2 . Note that both parallel and perpendicu-
1950's. Electrons gyrating in resonance with the radiation lar kinetic energy of the electrons feed the instability in the
field experience a bunching in the relative wave particle case of a tilted resonator. So far, plane wave configurations
phase through the dependence of the cyclotron frequency on in simple geometry [also referred to as the cyclotron auto-
the relativistic mass. High amplification of the radiation resonance maser24 (CARM) I have been analyzed' -27 in
field, known as masing action, results for radiation frequen- conjunction with Doppler upshifting of the radiation fre-
cies slightly above the electron cyclotron frequency. Elec- quency.
tron cyclotron masers, 5-m also called gyrotrons, have dem- The induced resonance electron cyclotron (IREC) ma-
onstrated efficient high power generation capability at the ser, 2 - 3

1 shown in Fig. 1, operates at Doppler upshifted fre-
centimeter wavelengths. Electron cyclotron instabilities also quencies, utilizing at the same time the advantages of the
occur in ionospheric and astroiphysical -plasmas. 1 9

,
20  open resonators. Each resonator forms an angle a with the

A variety of potential appiications, such as advanced direction of the electron beam along the external magnetic
accelerators, heating of fusion plasmas, short wavelength ra- field. The index of refraction n, = cos a is adjustable by
dar, and spectroscopy, call for generation of intense radi- varying the angle between the resonators and can be chosen
ation at even shorter wavelengths in the millimeter and sub- to minimize the effects of finite beam thermal spreads. For
millimeter range. In a closed resonator, the shortest operation at the optimum refraction index the efficiency is
wavelength for single mode operation is tied to the trans- relatively insensitive to the beam energy spread. The sensi-
verse dimension of the cavity. Operation at radiation wave-
lengths shorter than the transverse dimensions will result in
a multimode excitation2 as a result of the small frequency X
separation among cavity eigenmodes. This limitation in the M, M, Output
wavelength is considerably relaxed in the quasioptical ma- ,
ser 2

2.
2 3 operating in an open resonator that offers much im- -J '. Z 71

proved frequency separation. - .. --

Considerable attention has been given lately to the oper- -- \ ( - -

ation at Doppler upshifted frequencies- ' resulting from a Elecitin- -

finite wavenumber k, in the direction of the electron beam Beam >z
propagation. The operation frequency w, defined by the res-
onance condition o - kz - fl, = 0, is given by -, N -,

to~ ~ = l I-n I) , 11 Intfracion Region /
where yis the relativistic factor y = (I -,;) /2,/= v/c, MtE
n, = kc/lw is the parallel index of refraction, and

"Science Applications international Corporation, McLean. Virginia
22102. FIG I. Schematic illustration of the: duced resonance electron cyclotron
University of Maryland. College Park. Maryland 20742. maser.
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tivity to the beam pitch angle spread can also be minimized. A (x', y', z';t)
The interaction length inside the resonator that maximizes A,) expf - i[(k/2)(x "2 + y'2)/q(z')
efficiency is of the order of one-half a bounce distance 4 for y 4

the trapped particles. X (exp[i(kz' - wi) ] + exp[ -i(kz' -- w')}

As the available magnetic field limits the maximum op- + c.c., (2)
eration frequency for given y, operation at higher harmon- where
ics3 ' " 2 becomes very attractive. The magnetic field required
to produce radiation at a given frequency is reduced to a , R(z') = z" I
fraction I/(N + I) for operation at the Nth harmonic. Op- q(z') R(z') rw(z') Z
eration at higher harmonics has been analyzed for the con- /(z') =w O  + \' \ / 

2
(z) =tan - ,

ventiona 13" 4 , and quasioptical"3 ' gyrotron, showing that w = l ) ]z n .

considerable efficiency can be achieved at the first few har-
monics. Previous IREC studies have considered operation at w is the beam waist at the center of the resonator, is the
the fundamental frequency and small Larmor radius, rel- wavelength, and Z 0 = rw /, is the Rayleigh length.
evant to the case of small resonator angle and small pitch The coordinates (x', y', z') . , have the z' axis alignedwith each resonator and are related to (x, y, z) by
angle 9 = u, /u , . In the present work we analyze operation at
any given harmonic N and arbitrary resonator angle includ- (xI') ( cos a + sin a (x) (3)
ing finite Larmor radius effects. The effects of the Gaussian (Z _+ sin a cos a J z(
radiation profile are retained as well. A set of slow time scale The radiation field is assumed at temporarily steady
equations of motion is derived by averaging over the cyclo- state. The Gaussian width w, for the radiation envelope is
tron period time scale. The small signal efficiency is deter- much larger than the radiation wavelength A and the beam
mined analytically. Nonlinear efficiency is determined by spot size b. The Rayleigh length Zi, is typically much longer
numerical integration. It is found that the efficiency for the than the interaction length L -w/sin a in thezdirection. In
first few harmonics is comparable to that for the fundamen- the vicinity of the beam x-y-b, and within the interaction
tal in the same parameter regime. This is feasible because regime zi - L, we have b/L-z/Zo---e 1, b/Z.-c 2 . Coin-
saturation occurs at larger radiation amplitude with higher bining Eqs. ( I)-(3), and dropping terms of order e2, the
harmonics. The effects of energy, pitch angle, and guiding forward propagating component of the total field near the
center spread are also studied. An optimum resonator angle interaction area is expressed as
a exists for a given set of parameters minimizig the effects
of finite beam thermal spreads. Efficiency enhancement can A, (x, y, z;t) = , Ape - , cos k, x cos(k.z - wt)
be achieved by properly tapering the external magnetic (4)
field. 29 inducing an extended wave particle resonance.

The remainder of this paper is organized as follows. In where k1 - (w /c)sin a, k, = (co/c)cos a.

Sec. II we describe the field in the resonator and we obtain In short, Gaussian effects in the transverse direction of

the fast-time averaged equation of motion. In Sec. III, the orderb 2/L 2-o2 ehave been omitted while the electrons expe-

small sigr 1 efficiency and the start-up current required to rience a Gaussian envelope of effective width L = w,/sin a
in the z direction. Only the forward propagating wave phase

trigger the oscillations in the resonator are calculated. In

Sec. IV we discuss briefly the effects caused by the finite is considered in Eq. (4) since the synchronous interaction of

thermal spreads in the electron energy and pitch angle. In an electron with the backward component occurs at down-

of motion us- shifted cyclotron frequency, of small practical interest.
Sec.V w inegrte umercaly te euatonsWe use the guiding center description for the particle

ing velocity distributions with finite energy and pitch angle orbits

spread as well as guiding centr distribution in the transverse

direction. The nonlinear efficiency is computed for the first x = x, + p sin ', y = y, - p cos ', (5)
few harmonics. p. = p, + p, COS , p, = p,, + p, sin .

with (x,, y. ) and (p,,. pu ) denoting the guiding center po-
sition and momentump is the Larmor radius, p, is the mag-

II. FIELD MODELING AND PARTICLE DYNAMICS nitude of the transverse momentum, and " is the gyroangle.

The configuration for the induced resonance electron By averaging the exact Lorentz force equations in the vector
cyclotron (IREC) maser is shown schematically in Fig. 1. potential representation over the fast (cyclotron) timescale,
The interaction cavity is formed by the two quasioptical res- the slow time scale nonlinear relativistic equations of motion
onators intersecting at an angle 2a where a is the angle rela- are cast in the form
tive to the external magnetic field B,, along the z axis. The dx, AaD ya
electron beam also propagates along z. The total vector field d - c (,)
is the superposition of the two resonant fields d udy, ck, u,

A(x', y'.z';t). + A(x', y',z';t) _,(I) - =-_ y -a J (k~p)cos0, cos g, (6b)
dz fl, u,

whereA (x', y', z';t) are eigenmodes of the Fabry-Perot-type
resonator. Here we consider the lowest order Gaussian du, _ (Ya-k,aJ ,(k,p)sin O sing, , (6c)
TEM,., modes linearly polarized along the y axis dz cu, )

925 Phys. Fluids, Vol. 31, No. 4, April 1988 RryopoulO$ et al. 925



du, U. ceed a certain limit. When a is very large, the particles maydu =k, Ua J(k, p)sin zb.. sin gv, (6d) also experience resonant effects from nearby harmonicsdz u

N ± 1. The validity conditions for a single resonant harmon-
d~ = . ..YAW + Nz( - k, a ic are satisfied in the parameter regime under consideration.
dz cu, uL \cu, ] The nonlinear system of differential equations (6)- (8)

J'.,, (kp) cannot be solved analytically in terms of elementary func-
x . cos b, sin g, tions, except in some special cases." 8 We resort to numeri-

k~p cal integration in order to examine the nonlinear behavior

k while the small signal analysis is done by perturbation theo-IVN "' a J. (k p )cos 0 , sin g , (6e) ry.
U,

In Eqs. (6a)-(6e) the prime ( ' ) signifies the Bessel III. SMALL SIGNAL EFFICIENCY

function derivative in respect to the argument, u is the nor- One of the issues concerning intense microwave genera-
malized momentum u = p/mc = yv/c, y is the relativistic tion is the intrinsic efficiency il of the interaction, defined as

+ 2)1/2, ) wfactor r= (l+u + u, t. kz--t+N (Yi -Yo) _ f
+ Nir/2 is the relative phase between the field and the parti- 7= -= (Yo- 10 dpf(p 0  )

cle, g, = ktx, - Nir/2 carries the dependence on the guid- (Yo)- 1
ing center position, a(z) = ao exp( - z2 /L ') is the normal- xff do f dof_ z , (9)
ized radiation amplitude with ao = eAo/mc2 , and the . dz
detuning in frequency A is given by where ( ) signifies the average over the initial distribution in

Aw = o( 1 - n, 6,) - Nflo/y. (7) phase space, and y is a function of the initial conditions
It is the dependence of the detuning Awa on the particle ener- y(z0po ,potqo,go ) with #0, = b, ( - ao ) and go
gy through the relativistic correction y that causes the phase = gv ( - ). We compute the small signal efficiency in or-
bunching and the radiation amplification in the linear re- der to determine the beam current required to overcome
gime. The evolution ofyr is found combining Eqs. (6c)-(6e), losses and start the cavity oscillations. After obtaining the

dr wulinearized solutions of Eqs. (6)-(8), we substitute them
d. = aJ,(kp)sin 01., sin g,. (8) into the integrand on the right-hand side of Eq. (9). The
dz c U, evaluation of the final result is considerably simplified by
In performing the fast-time averaging to obtain Eqs. taking the phase space average over 0, before the spatial

(6)-(8) we have assumed that the particles always remain integration 1 "
-3 Over z. Expanding the products of trigono-

close to resonance with a single harmonic N, i.e., metric terms inside the integrand into sums, averaging over
o( I - n, /3i . - Nfl0/y=O. Therefore the change in energy tbo, and extending the limits of the z integration to + co, we
Ay and consequently the radiation amplitude a, cannot ex- obtain the linear efficiency in terms of the initial conditions

77 r a,o"  [j,,(SO) 1 2 exp w (i'go)
2 to(o- l) - ;

- l)( +NJ,(s,) sJ-, (s0) o + J (30)

(Cs +) "' ~(o) Aw )0. t o 192 2(s" 0)+ o g-) JS n, i0o 2 
( 21 , (10)

(sin 2 g0 ) J'wSo) w

where so=ktpo, go=ktxo-Nr/2, 610o=vuo/c, 6, [(N+ 1)(1-_n,,)_-On,,]
=u,,/C, 0 =V 0 /V*,0 , and () = (l/2rr).fd(kjx,)f is (2 -n 2 )foog

the average over the initial guiding center position.
We have chosen to express 7 in terms of the parameters < fo < o (1 - n) (1 )

Aw;,/Iw and wi an., where r = yoL /cu~, is the transit time 0) n, 0
through the interaction regime. The argument 'Awl/w in The upper limit in Awo/w is caused by the finite n, and re-
the exponential is equal to Awoor, the linear advance in the suits from the negative contribution of the quadratic term
relative phase Adbo over the interaction regime. The sign is (At/a) 2 that overtakes the positive contribution of the lin-
determined by the angular bracket on the right-hand side of ear terms for small angle,
Eq. (10). Treating the bracket as a quadratic form in Awos/o
and keeping the lowest order contribution in k~p, we find sin0 a < (n, 1,o 0 ) (A.io/w)
that the regime for positive efficiency is given approximately For typical operation parameters we have > I and
by As.o.,1 w/ I. In order to estimate the maximum efficiency

926 Phys. Fluids. Vol. 31, No. 4, Apni 1988 Riyofoulos et al. 926



within the positive regime, we parametrize Eq. (10) as a r(Ad 2 / do 2 6,62

function of = Awo and look for the zeros of the cubic 6dJ + )Y60
equation resulting from di7 /d = 0. If the angle a is not too
small, sin 2 a> 1/ where > 1, then the maximum oc- 2(6, - Nf1,,y,,8.)-62 ,3
curs at 4'= 1, yielding

7r,, = (i'/8) (a 2 • (15).)20[l,. a(T8fo 4o(JN(kIpo))lLo/ + (V,vy,,rtao)6O]" 2 (
in the initial detuning results from a beam distribution with

wh (T -1 _ n 'ex -(12) velocity deviations 6,6, and 3,. The choice of resonator

where '4 = 42(1 - n) = (W ycio/cu )2 is independent of angle
a. The small signal efficiency increases with decreasing an-
gle a (increasing index of refraction n, ) provided that sin a
satisfies the inequality above Eq. (12). When sin a is too causes the minimum initial spread in A.. for any beam ther-
small, an exact solution of the cubic equation for is re- mal spreads. The minimum spread from Eqs. (IS5) and ( 16)
quired and Eq. (12) is invalid, can also be expressed in terms of the pitch angle spread 60,

We now calculate the start-up beam current using the and the energy spread Syo Then, the requirement for small
small signal efficiency. Amplification of the electromagnetic phase mixing among various particles over the interaction
radiation is possible if length L, namely, 6(Aw)oL /c,8 4w r, suggests

7P,> -E(13) +8 69 (17)_____dt Q 2 (13) r. 2N,(NO '0 ) (17)

where E- twoL a( is the total energy
stored inside both resonators, Lit is the resonator length, where N, = flL /(2ny,c,-,o) is the approximate number of
dE/dt is the combined refraction, diffraction, and transmis- cyclotron gyrations within the interaction length. The beam
sion losses, and Q is the quality factor for the cavity. Com- thermal spread requirements become more stringent with
bining Eqs. (12) and (13) we obtain increasing harmonic N.

/,V" > 2 Y R o(Yo- )sin aexp(-) m'c' LR In the nonlinear operation regime the electrons get
fl 2 i, -.[ (kp. ) ]2 I.e 2 woQ trapped in the wave potential" -" and execute synchrotron

o .eoscillations in phase space in a similar manner as in the con-
(14) ventional gyrotrons. The phase mixing among various parti-

For small Larmor radius k1po< I the start-up current 1, ii- cles is now determined by the dependence of the trapped
creases very quickly with the harmonic N, particle synchrotron period on the various parameters. The
I, cc22N[ (N- )! 2/(kpo) - (N - ) . It is therefore desir- efficiency deterioration involves more factors than the initial

able to operate at ktp o > I in order to have good coupling to spread in the detuning Awa, which is the dominant source of
the resonator modes and low start-up currents. In this case phase mixing only in the small signal regime a,, 4 1. Analytic
the start-up current scales roughly as the inverse maximum predictions similar to Eq. (16) are hard to make in the non-
of the Bessel function derivative, I, c N 21 3 , increasing mild- linear case. Our numerical results show that when the index
ly with the harmonic N. We can achieve harmonic selection of refraction is optimized according to (16) the nonlinear
by choosing ktp o near a maximum ofJ .,(ktpo ) for the in- efficiency is practically insensitive to the energy spread

tended N th harmonic.
Expression (14) for the start-up current was derived

using coherent resonator modes. These modes have evolved V. NUMERICAL RESULTS

from an initial noise background of spontaneous cyclotron In this section, we investigate various aspects of the non-
radiation. During the spontaneous emission stage preceding linear performance by numerically integrating Eqs. (6a)-
coherency most ofthe emitted radiation is contained within (6e). We consider an electron beam of yo= 2.5 (-0.75
a cone of angle I/yaround the direction of the particle veloc- MeV) with fo = l/y, and ,3 = 0.825 in a guide magnetic
ity v. Since v makes an angle e = tan - '( /v, ) with the field of strength B0 = 40 kG. The appropriate index of re-
magnetic field the condition 0e - al < l/y must be met to fraction to minimize the effect of energy spread is, according
avoid excessive losses during the start-up phase. to Eq. (16), n = 0.982, which corresponds to an angle

a = i11. The frequency is upshifted by a factor
N/( I - nfl, ) = 5.26N times the relativistic cyclotron fre-

IV. THERMAL EFFECTS quency, and corresponds to a wavelength of 0.41 mm for
One of the important features associated with the IREC the third harmonic N = 3 and 0.31 mm for the fourth har-

maser is choosing the index of refraction appropriately to monic N = 4. The radiation spot size w, is 0.50 cm and the
minimize the effects of the electron beam thermal spreads. Rayleigh lengths are 14.3 and 25.8 cm for N = 3 and N = 4.
Spreads in the initial electron momentum will cause a spread respectively. We consider a uniform guiding center distribu-
in the detuning parameters As o among different particles. tion in the interval 0 < k, x. < 2yr.
This in turn will cause an accelerated mixing in phase space Curves of efficiency 77 vs a, for various values of the
opposing the nonlinear phase bunching and reducing in effi- detuning lw,,/w are plotted for N = 3 and N = 4 in Figs. 2
ciency. According to Eq. (7) a standard deviation and 3, respectively. These results correspond to a cold beam
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FIG. 2. Plots of efficiency 77 versus the normalized radiation amplitude a,, at FIG. 4. Dependence ofthe efficiency on beam thermal spreads. Shown is the
the third harmonic N = 3 and for detuning parameters Aawo/o equal to ratio of thermalized to cold beam efficiency 7/17o as a function of curve a

curve a 0 025, curve b 0.050, curve c 0.075. and curve d 0. 100. respectively, pitch angle spread 60/B.n with 6.y,, = 0 and curve b energy spread b5y/yo
A cold beam of uniform guiding center spread is considered. The simulation with 68, 0. The parameters are the sameas in Fig. 2 with Aw 1 w = 0.075.
parameters are y,, = 2.5. a = I I% uh, = 0.5 cm, and 0,, = 0.49.

without thermal spreads. We find the efficiency for the first AiO/GO = 0, shows that the half-width in energy spread is
few harmonics comparable to the efficiency for the funda- Ayo/yo = 13%. Efficiency tends to be more sensitive on the
mental"4 under the same operation parameters. Efficiency spread in the pitch angle than the spread in energies; there-
saturation occurs for larger amplitude ao compared to the fore, we may simulate thermal effects by including only pitch
operation at the fundamental. Figure 4 shows the effects of angle spreads, cutting down on computing time.
finite beam quality on efficiency when the electron beam has Given that the large signal efficiency depends on few
either a spread in the pitch angle or a spread in energy. We parameters, predictions about optimum operation at maxi-
plot the ratio of the thermalized efficiency 77 over the cold mum efficiency are hard to make. One anticipates maximum
beam efficiency 77 for the third harmonic N = 3 at fixed efficiency when the transit time through the interaction re-
amplitude a, = 0.20. Curve a for zero energy spread, gime is about equal to one-half the synchrotron period for a
Ay/yo = 0, shows that the half-width in the pitch angle trapped particle. An optimum interaction length in the z
spread that -reduces efficiency by 50%, is equal to direction L,_.2L = 2wo/sin a corresponds to a given
A~o/o = 2%. Curve b for zero pitch angle spread, synchrotron period w0b, which, in turn, depends on the five

parameters ao, Yo, 9o, Aw., and cos a This is illustrated in
Fig. 5, which shows efficiency as a function of the traveled
distance z for three different Gaussian profiles correspond-

.ing to different radiation spot sizes wo, keeping the other

20 C parameters fixed. In curve a the interaction length is less

than one-half the bounce distance Lb = i'cT,/(O5 and the

16 electrons exit the resonator before reaching the point of low-
/ best energy in their trajectories. In curve b we have a good

matching of L, with L, achieving the highest efficiency. In
1 b curve c L, is larger than Lb and the electrons overshoot the
/ point of minimum energy, gaining energy back from the

wave and reducing efficiency.

oa -From the practical point of view, one would like to opti-
mize the design parameters of the resonator a and L for a

.04 given beam energy yo and pitch angle 60 under the maximum
energy load ao sustained by the cavity. We already picked

.............................. the operation angle cos a so as to minimize the effects the
0 .15 .30 .45 .60 beam energy spread. In Fig. 6 we show the efficiency as a

00 function of the interaction length L, by varying the spot size
to and keeping all other parameters fixed. The upper curve

FIG. 3. Plots ofefficiency n versus the normalized radiation amplitude a,, at shows the nonlinear efficiency for a monoenergetic electron

the ,urith harmonic ,V = 4 for detuning 'arameter aw,,I., equal to curve a

0.025. curve b 0.037. and curve c 0.050, respectively. The other parameters beam of infinitesimal spot size b <w, and a uniform spread
are the same as in Fig. 2. in the initial phase 0< 0 <21r. A uniform guiding center dis-
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X 10-, a weak dependence on the interaction length L failing off2.5 ' slowly after an optimum length of L-4 cm.
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The structure of the sideband spectrum in free electron lasers
S. RiyopouloSal and C. M. Tang
Plasma Phyrics Diuision. Naval Research Laboratory. Washington. D.C 20375.5000

(Received 17 August 1987; accepted 26 February 1988)

The one-dimensional, fast time averaged Hamiltonian is derived in a free electron laser (FEL)
for electrons passing through a constant parameter wiggler and a radiation field. The exact
unperturbed orbits without sidebands are obtained for all particles and arbitrary strength of
the main signal. Integration, in action-angle variables, of the linearized kinetic equation with
perturbing sidebands over the unperturbed orbits yields the sideband growth rate including
both trapped and untrapped particles. The structure and scaling of the unstable spectrum are
different from previous results obtained for electrons localized at the bottom of the
ponderomotive well. It is found that upper and lower sidebands that are symmetric relative to
the FEL frequency have opposite growth rates. There is no differentiation in the magnitude of
the gain between upper and lower sidebands. The stability is determined by the sign of df/
dwb, the relative population of quantized oscillators with energy quantum Awa, where a, is the
synchrotron frequency in resonance with the sideband. The shear dw,/dJ, where J is the action
variable, is stabilizing and distributions with gradients dfw'dJ localized near the separatrix
have the minimum growth rates.

I. INTRODUCTION AND SUMMARY wavelength of the radiation passes over an electron while the

Free electron lasers (FEL's) have recently attracted a electron travels one wavelength of the wiggler.

lot of attention as effective sources ofcoherent radiation gen- In the small signal, exponential growth regime the dec-

crated by relativistic electron beams. This is evidenced by the trons bunch in phase space in the regimes where they de-

ever-growing literature on the subject since the 1950's when celerate giving up energy to the radiation field. Once the

the FEL concept was first introduced." Theoretical studies radiation field exceeds a certain amplitude the electrons be-

have included small signal analysis'-"in both Compton and come trapped in the ponderomotive well, executing "synch-

Raman regimes, nonlinear behavior and efficiency enhance- rotron" oscillations in phase spacearound the resonant ener-

ment, ' -2 ' electrostatic effects," harmonic generation,'" gy y,, where

and finally multidimensional effects. " = [ I + (ek. (B.)/mc) 2]7Y

An increasing volume of experimental results" ' for and (B.) and k., are the rms wiggler strength and the wave-
FEL's operating either as amplifiers or as oscillators demon- number, respectively. This is the saturation stage for unta-
strates the potential of successful operation in a wide range pered wiggler FEL's. Considerable efficiency improvement
of electron beam energies ranging approximately from I to results by properly tapering the wiggler parameters. As the
200 MeV and peak currents going up to kiloamperes. Super- center of the trapped particle bucket y, decelerates the kinet-
radiant FEL operation with the signal starting from the ic energy of the beam is continuously converted into radi-
noise level has also been considered." ation energy.

An oversimplified picture of an FEL is drawn in Fig. I. An important issue for high power FEL operation at
Relativistic electrons traveling through the periodic magnet- finite amplitude of the main signal is the stability of the con-
ic structure (wiggler) oscillate emitting electromagnetic ra- figuration against the growth of parasitic modes. The low
diation according to the laws of classical electrodynamics. It frequency oscillations of the trapped electrons generate cur-
follows that I he frequency w, of the radiation emitted along rent components at frequencies shifted from the electron
the beam direction is twice Doppler upshifted relative to the wiggling frequency wit by some multiple of the synchrotron
electron wiggling frequency w,- k,,.v,, i.e.. frequency wb. Then the radiation associated with these cur-

(o,-2ra , y, = [ I - (vc)" 21 rentswillappearatfrequenciesseparatedfromthecarrierby

fii addition, the radiated power is confined within a very a multiple of the twice Doppler upshifted synchrotron fre-

narrow cone in the direction of the beam. The oscillating output
electrons at different positions in the beam interact coherent- , ,**ow
ly with the radiation field if their velocity u, is approximately .
thc phase velocity

u, -(a, /(k, + k,.) Se

of the ponderomotive wave formed by the beating of the
radiation field with the wiggler field. This implies that one i ,

'Permanent addra: Sciewne Applications Inteitational Corp., McLean. FIG. I. Schematic illustration of a free electron laser with a linearly polar-
Virginia 22102. ized wiuler.
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quency. It has been predicted theoretically '" that these side- (b) More than one group of particles are in resorrance
band frequencies can become unstable. Numerical simula- with a sidchand of a given frequency (u through different
tions, "" as well as experimental ohservations," 3 - have harmonics of their bounce frequency and contrihute ,ignifi-
shown that sidebands may develop to a significant fraction of candy to its growth rate.
the overall power. Degradation in the optical quality of the (c) Upper and lower idcbands located ,y mm.ctrically
FEL signal is one outcome of the sideband excitation. The around the mani signal frequency have oppoitc growth
performance of the mirrors in an oscillator-type operation rates (complementary stability). Therefore ,ome mode is
can be harmed from the modulation of the wave envelope alway,, unstable. There is no stable distribution f,(J) cxcept
caused by the sidebands. Last-but not least-the growth of the trivial one df/dJ = 0.
sidebands above a certain threshold may cause chaotic elec- (d) In general, upper and lower sidebands have com-
tron motion leading to detrapping and loss of amplification parable growth rates. A similar conclusion, applin2 to a
for the radiation field. special type of distribution, appeared reccntl,, in Rcf 47

The above have stimulated a considerable amount of Previous results, finding !( ,er sidebands having an inher-
theoretical work focused on sideband growth. Simple one- ently larger gain than upper %idebands, are rele.ant only to
dimensional configurations that are analytically tractable the limiting case of a singular distributionf,J) with parti-
have been used to model the situation. Two lines of approach cles localized at the bottom of the potential well. This case is
have been considered. The single particle picture regards the unrealistic because even an ideal cold beam initial distribu-
particle trajectories as functions of the initial conditions and tionf,(p) = 6 (p - p,,) corresponds to a wide. smooth distri-
computes the gain by ensemble averaging over initial distri- butionf,(J) in action space.
butions. '"' The alternative approach assumes some adiaba- (e) For any smooth distribution, of finite df/dJ, elec-
tic equilibriurT between the particles and the main signal and trons at the bottom of the ponderomotive weil have a negligi-
examines the stability of the perturbations induced by the ble effect on stability.
sidebands, solving the kinetic equation. " ' Continuous I : (f) The shear dwta/dJ is stabilizing. Distributions with
electron distributions have been formally included in the ki- gradients df,id./ localized near the separatrix are found to
netic equation. have the minimum growth rates because of the high shear

In both treatments so far, analytic results have been ob- there. This type of distribution is relevant to FEL's with
tained only for trapped particles localized near the bottom of tapered wigglers.
the ponderomotive well, and/orstreaming particles far from (g) The gain is proportional to [df,(J)/dw, (J) 1, the
the separatrix."' This implies the following limitations, relative population of quantized oscillators with the energy

(i) The sideband spectrum is restricted to discrete fre- quantum Aw,'in resonance with the sideband frequency mis-
quencies match. This agrees with the quantum mechanical interpreta-

tion.
w, + (k,/k,, )nw, (0). (1) The nonlinear saturation levels for the unstable modes

and the sideband amplitude for transition to stochastic elec-
The frequency mismatch between the main sial bone tron motion can also be derived using canonical formalism
sideband (, is equal ton times the Doppler upshifted bounce and will be addressed in future work.
frequency ,, () at the bottom of the ponderomotive poten- The remainder of the paper is organized as follows. In
tial. Sec. II a simple model field is used to study the particle dy-

(ii) The contribution from the majority of the trapped- namics. Action-angle variables are introduced and the exact
as well as the untrapped particles is ignored, solutions for the unperturbed orbits are found. The per-

(ii) Te efet othesher W,,dJwhee istheacton turbed Hamiltonian is expanded into harmonics of the un-
variable parametrizing the distance from the bottom of the turbed motonin sexpande in helinize u-

perturbed motion. In Sec. 1IH we obtain the linearized solu-
well J = 0 (see Sec. I1), is neglected. tion of the kinetic equation around some equilibrium f,(J).

(iv) Predictions of asymmetric growth rates, with the The gain is computed including all contributing trapped and
lower sidebands Id , < , growing much faster than the upper untrapped electrons. In Sec. IV the interpretation and gen-
sidebands ,', > W,, are not always supported by experimen- eral implications of the derived formula are presented. A

connection is made with quantum mechanics. In Sec. V we
Here canonical formalism is introduced by expressing consider some special cases of simple distribution functions.

the unperturbed particle orbits in terms of action-anglc van- The limit of particles localized at the bottom of the pondero-
ables." The unperturbed orbits are the fast time averaged motive well is taken. In Sec. VI we examine the structure of
"synchrotron" oscillations of the electrons in the potential the unstable spectrum for certain types of distributions f,
well formed by the combined action of the wiggler and the and we draw conclusions about minimizing the instability.
radiation signal. The perturbed kinetic equation is solved in
action space, starting from an equilibrium extending over all
trapped and untrapped electrons. The following statements
can he made. II. PARTICLE DYNAMICS

(a) The sideband spectrum becomes continuous. re- A one-dimensional model for the instability will be stud-
placing ( (0) by w, (J) in Eq. (I). The modes located at the ied with relativistic electrons streaming along the z direction
peaks of the unstable spectrum grow faster, emerging as the through a linearly polarized wiggler of constant amplitude
discrete spectrum observed in simulations. and wavelength. The components of the radiation field are
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plane electromagnetic waves with constant amplitude. Elec- equal to zero by a proper shift of the origin. implying
trostatic effects are ignored assuming a low current, tenuous p = 0, P, - (e/c)A,. 5)
beam. The combined vector p)tential is taken to be There are two time scales involved in the problem. The

A,(z,t) = A,,, cos k,,z + A, cos(k,z - at) transit time of an electron through a wiggler period -
+4c( ) v, - l/k,,c is much shorter than the synchrotron os-

+.A, cos(kz -o ,t) (2) cillation period in phase space r, - I/oj, We will deal with

composed by the wiggler field A,,,, the main signal .A*, and a phenomena taking place on the slow time scale by averaging

sideband A,. Dispersive effects are generally very small, of the irrelevant fast time scale out. This is done using the ca-

order (to/to,) 2 1, where (,4 =4nn,e2/m,. is the beam nonical transformation
plasma frequency, and all electromagnetic waves propagate .

with the speed oflight c. Thus corrections in the real part of P, p- Z = Z - (6)
the frequency w, (k, ) =ck, are negligible while the imagi- - oz

nary part of w,'is computed from the wave-purticle energy where the small parameters are

balance equation without solving a dispersion relation, a, a, a,
Weassume that thechangein themain signal strength is

slow compared to the characteristic time of interest, the Y Y r

synchrotron period rh for the trapped electrons, letting A, be Then the generating function S is chosen to cancel the fast

a constant. Then an unperturbed electron distribution f oscillation terms of order 0(4') 4 1 in the expansion under

(without the sidebands) exists in equilibrium with the main I the square root of Eq. (4).

signal. df, idt = 0. The above scenario is relevant to FEL
operation characterized by high power and slow main signal 2P, S

growth. The sidebands are assumed suppressed during per-
iods of fast, exponential growth for the main FELsignal. The Defining the fast time average by (F) - (l/-,,,)f, dtF, it

exact equations of motion for an electron are follows from Eqs. (6) and (7) that P, and 2 are the averaged

d p, _ H d = .H particle momentum and position,

dt 3z dt dI', (3) (P') =ii, (z) =. (8)

dt' = t P = 0. By solving the equations of motion (3) to first order in 7 one
di dt can see that the geherating function dS/z given from Eq.

with H(z,P,;t) the relativistic Hamiltonian (7) coincides with (he wiggling motion of the electron in the

H(zP,;t) = {c 2 Pd1 + c[P, - (e/c)A, 2 external magnetic field.
Introducing the transformation (6) into the exact Ham-

+ c2P + m 2-&} ' t" (4) iltonian (4) one obtains the time averaged Hamiltonian in

The components P,,P,, of the canonical momentum dimensionless variables with time t normalized to - and

P = p + (e/.c)A are constants of the motion and can be set length z to k,

H(+ ;t =(M + + ( - l )[J _ - J,(4 )cos[k, + (2n,--)k .12- (it}

+ a.,a ( - l)'[J, , )() )]cos{[k, + (2n- I)k.]I-ow,t}) + 0(2), (9)

where addition to the generation of higher harmonics ofk, for giv-

e (k,/8k,,, )(a,,/P z ), M" I - , + a,), en y_, we also have additional resonances for given k, at
energies y,.,. (n = 1,2,...) that are fractionsof y,,accord-

a, = [eA,/mc2 . ing to y,.,. = l/(2n - I)/ 2. These energies, how-

Although k, = w, = I in the normalized variables, we write ever, are well outside the usual beam thermal spread. Also,

them down explicitly to avoid some confusion. The transfor- the heighL of the ssparatrix for the usual field strengths is too

mation (6) brought out higher harmonics inside the Hamil- small to cause resonance overlapping, allowing the choice of

tonian (9), generated by the fast oscillation of the axial mo- a single resonant term inside (9).
mentum P, =_P, - (a./4y,,)cos(2kz), where P, is In this paper we consider operation at the fundamental
constant when a, = a, = 0. Hence FEL operation at odd k, keeping only the n = I term in the resonant Hamiltonian
harmonics of the fundamental tH, given by

k-, = 2(2n -- I )rk,,, (10)

is possible in a linear wiggler, provided that the argument of H, ( M - +,,)

the Bessel functions is not too small, i.e.. C> 2n - 1. or, upon

substituting (9) and (10). a"./4, I independently of n. In - Aa,,.a, cos[ (k, + k,, )2 - a,1 ]} '/" (I1)
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with A - J,,() J,(4). Noic thai for A 2. A 2'/ .-

,M1 =- I f U,' & .u. the above average lamiitonian for the sn ,I
linear wiggler is identical with the exact I lamiltoinan for a 2in -- \ 1 I

circularly podari/cd (helical)I wiglcr where all the fijelds s 11 0}U

have the firm I A

A, = A, (ehsq, 5 sini). 0, - ,. o), 1, (12) where K, arid Eare the completelipticintcgral ofthe first
and second kind; sn is the Jacobi elliptic sine function;and i stands for w, r. or x (o,. (- ). Thc fillowing analysixs

applies to both linear and helical wigglers with the proper A = (F - G)/2G (20)

choice of A,M. In helical wigglers there is no fast oscillation is the trapping parameter (A I for trapped particles): and
in the parallel momentum; thus P, - P. and higher harmon- the constants A, F, and G are given in terms of the initial
ics are not excited. conditions

We in.iroducc a final traisfoiliation lrc~iliig time and , I l k, k--I.
etergy as a second pair l'cnlJntgaic siriahlcs. ohlatning F=

'- (k, k , K - -- Al -

I(P,t',tP,.) = [ 2 +k,. k. , Ar,,., ,os G Au, [,,k, Ij - ljI , 2!

- Aaa, cos( ' - t) j1 . K II(PVn) 11,(J).

-- P. t-P,/(k, +k,.) = 0. (13) From (17) and (I) we determine the bounce (synchro-

where trnin) frequency

P, =./(k,,. 4 k,). V,- (k.,. i,). - (,, ,,()r2E, (A), A < 1.
- - (14) (0) 1E) = (22)

P, P, - (k, - k,,. / I (O)rA/E,(I/A), A /-> I,
'where

Here. E - y() is the total c:,ergy and

6, = -,.~ o/ ti- (),)/2),, (15) ,),,(O) a_.)2 k+,) 2
-I. ( a , a.k..k,)

is the Doppler shifted frequency mismatch between the main 23k)
2K 2 Y

signal and the sideband.

In the absence of sidebands. T1 possesses a second invar- is the bounce frequency at the bottom of the well. The three

iant P, = 7P, (0) = C, following from dll lifi = 0. and is re- constants K. J. and A 2 are mutually related through Eqs.

duccd to the reillivi.slie pendulum Hamiltonian ( 19)-(21 ) and any of them can label a trajectory uniquely.
The trajectories 11(J) = K. the action J(K). A, (1J). and the

II,,(P.O) ..- l - (K, -k,,. )2P2 
- Au,,,g, ens]"- -(, bounce frequency o), (J) are shown in Figs. 2(a)-2(d).

(16)

where from now on we will drop the overhar. Here // is

exactly integrahlc with the trajectories in phase space given (at Ibi

by t

I#,,( P. ) - K. 502 t2

whcic ti, -,,' tant K P, k)/(A-, K,,) is the reduced . 499.

cergy determined hy the initial conditions P,,04,. hc equa- 496 06

lions of motion take the simplest possible form if they are
expressed in terms ol the action-angle variable.%- ,4' -1 0. , 8 .,o

4, f' KKo
_+'~rKdi..0 2 P(ti,';K)dtb'. (17) a

J ,- : P' V K ) d ,. 0 = -'? 1 . 1 7 )( d
2m( 3 C) 910d

putting II, in the form I/,, - 11,,(J) arid

di d
C ; i'"

=.0 -H, = o,(J). (I11h) : 'I, I'
di aJ , . . ,. T., , .T

Performing the integrals in Eqs. (17) we obtain J,0 in C" o6 ,, 6 0" 06 s 6

terms of PO:
FIG. 2. Time averaged motion without the ,idchands. ta) Piti in phase

i JJ, (A ) (I A - ' ) I, A I, ,%pace of the unperturbe'd inrhils 1I,,(P,.0) - K. The intersec ions with the
J .a) hiirioila lin cl' - comil mark the iniial cnnditinn sor each orhl (h) rhe

2J4 A I I/A). A 1a."in" J pinited againi the reduced energy K - K,,. (c The trapping pa-

ramicir A ' piiitud against J, A I at J.,, 
= 

I. 11 I(d) The normalhed

X,1 G. X , Au,,.uA. s.~.hIuice rrequeicy ..,, iid the firsi iwo harmonies as (uictio .. the act .on

J, I q u, u,19b) J Ihe intcrseciiiis wiih ihe lrio/inial line 6'- (, - .,, )k /k, deltr-
' T -7, T ,,r mine the xaii Il J. tlih resonant (rhtii ror a given e,
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The perturbed Hamiltonian can now be expanded the analogy with the finite Larmor radius effects: the'vanish.
around 1I,(J) according to ing action J-0 plays the role of vanishingp, -0.

The equations for the perturbed motion derived from
i(J0). = H,,(J) + [h' (J)cos(nO + 6, t) Hamiltonian (24) are

+ . csno 611 (24 J = i n[h.'(J)smn(n6+6,t)+hi* (J)cos(nO-6,t)1. (24) d n. ( onn96z

Lt 0
with

+ h- (i)sin(n9-S,t) ],wth (J) = {Aa. a,/[H,,(J) + P,]}Q.' (J). (25) d

The coefficients Q," are the Fourier coefficients from the 6t = .. (. + dJ Cos(no - 6)
decompo%ition of cos[ it(J9) 1, with V, given by Eq. (19) dV

into the harmonics of the synchrotron angle 0. They are dh -
+ -Cs(o- (5 )(27)computed by integration in the complex plane around the d

singularities. uu.izing the double periodicity properties of Defining the phase 0, of the secondary ponderomotive po-
the Jacobi elliptic functions to obtain tential induced by the sideband as

''2Q" 0. (+_ nrr _q. (V, = nO +5,t,
E -(()') -(q)

new resonances emerge at

q~x(ffE;(A) ), 2:<1,q~~ = x ± ( n w ( ) 6 , = 0 .
(A (26) dt

Q.,= - (r/_) _I q,- This occurs for the orbits J = J. such that the nth harmonic
El (J) (I-,q" Iof the unperturbed bounce frequency ca, (J.) matches the

( irE, (A) downshifted frequency difference between the sideband and
q E,( I/A) , the main signal

forn $0and +nwh(J.) = (k./k.)(wj,- w,), n-.,2 (28)

E, (A) I A ? In Fig. 2(d) various groups of particles are shown in reso-
= E, (A) 2 ' nance with a sideband of a given frequency a,,, each group

E.(/A) interacting through a different harmonic n. It will be shown
-I ))' A2 < 1, that the particles in the neighborhood of these synchronous

(unperturbed) orbits J = J, alone determine the linear
where E; (A2) =E,(] - A 2). growth for the sideband.

This expansion is similar in spirit with the more familiar
case of expanding the phase of the plane wave acting on a III. GAIN COMPUTATION FROM THE KINETIC
magnetized electron into a sum of cyclotron harmonics. EQUATION
where the harmonic coefficients are given by Bessel func- We consider the evolution of the electron distribution
lions. Plots of the first harmonic coefficients Q. are shown in
Fig. 3. Here, Q. (M) vanishes for J- Y, i.e.. for free-stream- functionf(J.9.t) under the Hamitonian flow
ing particles, as well as forJ-0. i.e.. for trapped particles at df= ff + df -, H -K -H f]'=0. (29)
the bottom of the ponderomotive well. One can again draw dt dt i t W .30 3 0 9

We start from a state of adiabatic equilibrium between the
. o" main signal and the electrons, described by the distribution

,. ,function f, remaining invariant along the unperturbed tra-

"- ' ,jectories

H, d , = 0. (30)
": o"A- dt

Heref, satisfies the normalization condition
0 04 06 '2 4 01 04 0 412 I

do dif,(J) = I.

i [We will determine the stability of such an equilibrium
,, against perturbationsf, aroundf, caused by the small ampli-

.i /! tude sideband term H, in the Hamiltonian (24),

,i I J,+ [H, fI + [H,f.,I = 0. (31)

'0 .1d
0 04 0 2 6 004 0 ,2 is Note that Eq. (30) is satisfied by any 0-independent

o J distribution f,- = ,(J), because H,//08 = 0, and does not
FIG. 3. Plo.% nfihe fiii four Fourier cnrefficients Q,' (J) determinef, uniquely. One can do a little better using the
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concept of phase mixing to show that the final asymptotic can he derived analytically given the initialf,, thatfevoved
equilibrium state f, toward which any initial distribution from. Iff,, is otfthe formf,, (P.di li2.-r)O( Pz - P,.). ap-

relaxes un(. -. hc flow II,,, must he of the form f,I ll,,(J) . propriate forcold beam injection, the finalf,, (J) is found to
Using 'i ;'act and conservation of the number of particlcsf, be

fro (J) 4(K + P,,). tow ( J)
((a,.a,A)2 - ( AP + (k, + k.)2Pg - (K + P,,)"]}''2  2r3

with K = l,(J). This formula yields an inverted distribution profile [see Fig. 6(a) .Although diffusion in action space.
caused by higher dimensionality and nonciinstant a,(t). will smooth the edges of such a distribution under more realistic
conditions, hollow distribution profiles ,hould be included among the choices off.(J) to he checked for siahility

We now consider a slow change in the sideband amplitude a, (1) allowing a small imaginary part in u Lng Eqs. ( 18 1.

(27), and casting Eq. (31) in the form

9f-lI + ea, (J) df = Ol, d,,

dt dO d dJ

we obtain the perturbed distribution

f. = - I , ( I() _d '' + c.c. ,(33)
2, nWo(J) + (6, + i) dJ

where 6, in the denominator picks a small imaginary contribution e = Im(6,) = (kjk,)lm (w,). Expressing the electric

field E, in terms of the vector potential a., E, = - (I/c) (da,/dt), we obtain the growth rate g, [m(w,) from the time
averaged energy balance equation

I = 2g,a = 41rc j,(Z.t) I( ea, e " +c.c.) +c.c. (34)

dt , 2

where ( ) means the fast time average over r,, defined in Sec. 11.
The transverse currentj, is expressed in terms of the perturbed distribution f,

n pI (P A +P'.f,),
bfd-PY

where P is the normalized P., Eq. (14). Since the equilibrium f[J(P,tb) I is a periodic function of ?P, the current j, can be
written as

j, = j,) + 0,(#),
where (4,} is the '-averaged component

-, f dj,

2

while], contains the periodic dependence in th. According to the Floquet theory, applying to wave propagation in media with
periodic properties, upper and lower sidebands are coupled"' through],,. One can show, however, using scaling arguments,

that the strength of this coupling is of order = (ow,/,)/(A&2/o, ). where At " = 0(k , ) - W2 (k ) and k , = k,

± 2ytac. For typical FEL parameters in the Compton regime iw,/o 2, >4,,/w,) (w~/ac,) 2 and ', 1. The averaged
current density (j, } suffices for the lowest order approximation, admitting monochromatic sideband modes. The coupling to
additional wavenumbers. entering to the next order in ', will be neglected in this paper."

Utilizing the property f dP d = ff dJdO we obtain

fi, d'i, Ff dcO I Ip, J). + ±P, (J)I (35)
JJ y (J,O)

with

p,, = c,,osk.z + a, cos(k,z - ,t) p, =a, cosk,z -,t),

according to Eq. (2). Substituting Eqs. (33) and (35) into (34) and retaining terms to order a' yields

2g,,: - 41r do) J [(F, e +c.c.) +(F e .... c.c
2 !dJ - -f'' )

X a + cc.) + a,(e" + c.c.) ,(a,w,e"' - cc.)

+ (a, e + c.c.)F,,I(a,(oe '" - c.)) + c.c., (36)
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where dw J,, E,() (A
F: - h," (J)df,,/dJ df- -L  (37 xW60

F.'F,-. (37)
y, [n (i) M+ (6, ic] y, for trapped particles, we obtain the approximate growth ratefor the most unstable mode

The last term in (36), the contribution from the unper-

turbed distrhutionf,, time average% to zero. We combine the g a,,, 3,r(41)
products of the remaining terms into sums and express the y,a, 128 W,
phases in the resulting exponentials in terms of We have used a Gaussian distribution f,(J) of width D in
lb = (k., + k, )z - (o,t. Only terms proportional to obtaining expression (41), defining v as the ratio J,ID. Us-exp{ ± i[ (nO-t- 6,' - ( '- 6,t) ] } survive the rast time infigeprson(),diig asteaio1/DUs

ing the parameters of the Columbia FEL experiment" A.,
averaging, reducing the integral in Eq. (36) into = 1.45 cm. B,, = 0.75 kG, /, = 2.5 x 10 cm, 1, = 102 A.

u, a F'diC" dO y ,r = 2.5.< 10 ' cm. P. = IIO' W/cm2. and assuming
d D=J,/2(v= 2), we find from (4t)the spatial growth rate

el 1) -1))g,/c,3..-0.12 cm ', in agreement with the experimental
X(h (J)Q . (J) - c.c. growth rate =0.10cm-'.k eah(i) + (6./n) -, (6

e , IV. DISCUSSION OF THE RESULT
+ h, (J)Q (J) ( (6) it,- c.c.) . The summation over n in Eq. (40) contains the contri-

(38) bution from all the groups of resonant trajectories among
both trapped and untrapped particles. The action J,,, defined

In obtaining (38) the phase t,(0) was expanded again into implicitly by Eq. (28), labels the resonant orbit having the
harmonics of the synchrotron angle 0 utilizing the familiar nth harmonic of its bounce frequency in resonance with the
Fourier coefficients Q.* (J). Integration over 0 further re- sideband, For a given harmonic n there are in general two
duces expression (38) into solutions. J. and J ", ofEq. (28) corresponding to one group

r dj a',a (df, of trapped and one group of untrapped particles [see Fig.
8. ,,J y.[H,,(i) + P. \Jk 1(d)1.In most cases of interest the majority of the electrons are

X !Q + 2 C.C. (39) trapped inside the separatrix and the effect of the untrapped
(wn + 6,/n + if &h - 6,/n - if particles on stability is small. Then according to Eq. (40),

For e small, the main contribution in the above integral and using the symmetry in the coefficients IQ: (J)
comes from the poles in the denominators. Changing vari- = ! Q,, (J) I for trapped particles, Eq. (26), upper and low-
ables to dJ = dwo (dwoh/dJ) -", extending the limits to infin- er sidebands of symmetric frequencies around the main sig-
ity, and applying the approximation nal la,' - o,I = 1o, - , I have opposite growth rates

e/ I(x + y)2 + -21 -rrr(x + y) (complementary stability),

for small growth rates, we obtain the final result in normal- +- (6W)2 (42)
ized units, 

g,\','
(1), A rrto4 C, Thus some sidebands are always unstable and there exists no

9, = , + o)'y, globally stable distribution f,(J) except the trivial one df/ow, 4w2,y, dJ = 0. The sign of the growth rate for a given frequency w,

,Q ( J 2 dto (4df is determined by the signs of the slope (df,dJ)j. and the
× H,,(J,) +P, (. d di. shear (dw.1dJ)i, neartheresonantorbits J. Thereisno

difference in the magnitude of the growth rates between up-
Above. g and g correspond to the growth rates for the per and lower sidebands, both being equally fast to develop
upper (wo, > o,) and lower (w, < w, ) sidebands, respective- provided they are destabilized.
ly. Onlyoneoftheterms,h,, orh ,,, in theintegral (38) can We clarify that, in general, the opposite signs do not
be resonant and :ontributing for a given w,, depending on imply that all upper sidebands have the same kind ofstabil-
whether 6, is positive or negative, respectively. This causes ity, opposite to the stability of all lower sidebands. Depend-
the growth rates for the upper sidebands to have opposite ing uponf,, the stability may change sign between two upper
signs from the lower sidebands in Eq. (40). The physical (or lower) frequencies because the slopes df,/dJ. change as
explanation will be given later, the location of the resonant orbits ., shift with wi,.

Before proceeding to discussing the various aspects of For a monotonic distribution f,, we observe that trapped
(40) we provide an approximate simplified expression in and untrapped particles of the same synchrotron period
estimating growth rates. Assuming that (i) the most unsta- (0,, (J,,) = (0

b (J, ) yield opposite contributions to a given
ble mode comes from the vicinity of the maximum gradient mode because dw/dJ changes sign across the separatrix. If
in (df,/dJ) located near A ,, = 0.5, (ii) the main contribu- trapped particles are stabilizing, untrapped aredestabiliz ig
tion comes from a single harmonic n, and iii) using the and vice versa. High shear is stabilizing, tending to reduce
derivatives of the elliptic functions" in Eqs. (19) and (22) themagnitudeofthegrowthg,.Thisisexpectedasthenum-
to compute ber of resonant orbits is inversely proportional to Idcob/dJI.
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As the shear is generally higher for untrapped particles it is the number of sidcband photons n is'given by the Salance

the trapped ones that usually dominate the instability. Shear between the induced emission ind absorption
tends to infinity near the separatrix; thus the modes in reso- dn
nancewithorbitsneartheseparatrix, correspondingtosmall --- = [l,,n,,(n, + I )f,(E,) - ll(n + I )n,(E,)]

1j, - ca,1 (k,/k ,)nwh(0), have the smallest growth dt

rates. Modes coming from resonances with particles local- /6(E, - E, ± n), (45)
ized near the bottom of the ponderomotive well J, =0 cor- wheref,(E) is the number of oscillators at a given energy

responding to frequencies 1w, - o),! =- (k,/k,,)ob (0), also level E; n., and n, are the photon densities for the wiggler
have small growth rates as the coefficients Q. (J) tend to and the sideband, respectively; IfI, > 0 is the tranition prob-
zero there. In particular, given any smooth distribution ability per unit time; and the factor + I represents the con-
,(J), electrons exactly at the bottom the well have a null tribution from ,pontaneous emission. The minus ,ign inside

contribution to the instability. It takes a singular disiribu- the 6 function corresponds to upper sideband emission. re-
tion of infinite gradient atJ = 0 to create an instability at the quiring that the oscillator fall into a lower energy state
bottom. E, - E, = hw,. Given that the transition probabilities be-

Although Eq. (40) was based on purely classical argu- tween the two inverse processes are the same,

ments it nevertheless admits the correct quantum mechani- 11= 11,, = If, and using E, - E2 = - nAw,, d/
cal interpretation. By rewriting dE= - Idh/E (df,/d, ), we obtain, for n ,n,) I,

~ dE (Awb)(46)\dJ W d\ dJ, /E d d(Claw)

in the right-hand side of (40). the growth simply depends on An electron at the higher energy state is an emitter for

the energy distribution of quanta f,,(hw,,) among the quan- the upper sideband while an electron at the lower state is an
tized trapped particle oscillators. In the ponderomotive emitter for the lower sideband. Also, df/dE has opposite

frame the elementary physical prxess is a second order, sign to d/dab for trapped electrons since a0 decreases with

two-photon transition, where an incident wiggler "photon" increasing energy. Hence distributions with a higher elec-
W, is inelastically scattered into a sideband photon w,' with tron population at higher energy levels corresponding to

the parallel absorption or emission of n oscillation quanta W, df,/dwh <0 are unstable to upper sidebands, while those
by the trapped electron (Raman scattering). Conservation with higher populated lower levels df/dwa > 0 are unstable
of energy in the ponderomotive frame moving at v,, to lower sidebands. This explains the opposite signs in Eq.
= wI(k, + k,), where wa" = w. requires (40) and the complementary stability among higher and

ft(w, - s: ) ± ni.4 . (44) lower frequencies.

Substituting w; r. (I , = r.( I - and The emission probability II from trapped electrons,
having zero streaming velocity in the ponderomotive frame,

ab = yrWb for the Doppler shifted frequencies. we recover is equal for symmetric Stokes and anti-Stokes lines. On the
the resonance condition in the laboratory frame, Eq. (28). other hand, the untrapped electrons, having a nonzero

Consider the process in Fig. 4(a), where one wiggler streaming velocity in the ponderomotive frame. seeaslightly
'photon" is absorbed with the emission ofa sideband photon different wiggler frequency w.A -w, = (a_ They scatter
plus the absorption of n oscillation quanta ho,-ro" symmetrically around wZ, resulting in unequal scattering

+ nA,. The inverse process is taking place at the same time probabilities for Stokes and anti-Stokes lines that are sym-
where the emitted sideband photon is reabsorbed and a main metric relative to ;. This is reflected in the Fourier coeffi-

signal photon is emitted, haw + n4a, - h4aw. The growth in cients in Eq. (26) where IQ. (J)f#IQ. W1 for un-

trapped particles while IQ, (J)1 = lQ, (1)1 for trapped

(a) particles.

Et E, In both (40) and (46) the growth rate depends explicit-

-- " -rly on the wiggler strength a!, - n,, alone and not on the car-

b nu;w rier a,. To the lowest order the sideband emission is the in-
elastic backscattering of a wiggler photon, Fig. 4(a),

El , E, competing with the elastic backscattering (negligible elec-
tron recoil) that generates the FEL carriersignal. The decay

(b) of a carrier photon into a sideband photon plus oscillation
E, Ez quanta. Fig. 4(b), will enter (40) as a higher order correc-

E T ,tion, if perturbations of order a,a, - e2 a,a, are kept in the

, . I Hamiltonian (16). Consequently the development of side-
bands does not necessarily deplete the carrier signal- instead

E, E, it ofiers additional modes to channel the electron beam ener-

gy into. The source of energy for all the radiation modes is
FIG. 4. Schenatic ,illustration of the two elmentary prtccx%.e. slmulated the electron deceleration. The fractional change in momen-
sadcband emision and reabsArpition, thai delermmne the )verall sidehalnd

gain. (a) Inclastic back~saticring ofa wfgglcr irtual phtjimmn. the dominiat turn due to electron recoil for a single-photon emission is of
prm.s. (b) iay ofa carrier photon. a higher irdcr L,,rrc timn. order Ap/p w,,/ymc, too small to modify the resonance

1715 Phys. Fluids, Vot. 31. No. 6. June 1988 S Riyopouios and C M. Tang 1715



condition (Eq. (28) 1. It takes a large number of emitted Q2' (J,,)1 2/J,- ( 1/2J. )6,,. (52)
photons in the given frequency regime (optical wavelengths According to (51 ) and (52), the first lower sideband of
or longer) to slow an electron down, justifying the use of the frequency w, =w, - (k,/k,)ch (0) is the only unstable
classic equations to describe the process. mode in the case of a singular electron distribution localized

In terms of the overall energy extraction from the elec- at the center of the bucket. Particles localized at the bottom
tron beam, the excitation of sidebands may have varying of the ponderomotive well are at the ground state of the
effects. Efficiency enhancement (at the expense of optical oscillator and cannot fall into a lower state required for the
quality) may result in untapered wiggler FEL's since the emission of an upper sideband. Similar conclusions have
beam energy keeps being converted into radiation in the side- been drawn in Ref. 35, where the re!ative growth rate of the
band frequencies even after the saturation of the carrier sig- sideband to the carrier g, /g, has been obtained. In case of a
nal. In tapered wiggler FEL's, where the free energy comes constant parameter wiggler, the sideband growth rate can-
from the deceleration of the trapped electron bucket, excita- not be determined from gig, because the growth of the car-
tion of high amplitude sidebands will eventually cause cha- rir g, goes to zero when all particles are assumed at the
otic electron motion and detrapping. Depending on how fast center of the bucket, and the expression " for g,1g, diverges.
electrons leak outside the bucket, this may cause a reduction
in efficiency and eventually a loss of amplification for all the te aes of siglr lolize ribu tion tnite gradients yield higher growth rates, proportional to
radiation modes. ow,/c, rather than (w/o,)2 as in Eq. (40). However, such

distributions are of little practical interest since even the case

V. LIMITING CASES of an ideal cold beam distribution 6S(p. - Po) is described in

The general expression (40) for the growth rate can be action space by a smooth f,(J) of finite width A. (see Fig.

further simplified for certain types of distributions J,(J). 2(a) ].

First we consider the case of a 6-function distribution
f,(J) = 6(J - J)/21r, the so-called hydrodynamic limit.
Integrating the right-hand side of Eq. (39) by parts we find VI. NUMERICAL EXAMPLES AND CONCLUSIONS
(g ) 2 = - (nk,/k, )[ A, F (k/nk,) rG J, (47) The normalized growth rate g,/w, is plotted against the

where the primes (') denote the derivative d/dJ and percentage mismatch (w, - w,)/o, for both upper and low-

A. =nc1,,.(,)_T ( , ea,) (k,,/k,), (48) er sidebands in Figs. 5(a)-5(d). The contribution up to the

, I A IQ. (J) 12third harmonic n<4 in Eq. (40) is included in these plots.
r = . r ,a G = A (49) The parameters chosen correspond to a wiggler wavelength

(a, 4 y,a' H.,(J) + P, A,,, = 6 cm, a. = 2, main signal strength a, = 5x 10',

Since the electrons are localized at J = Ji, there is only one beam energy of 37 MeV (r = 72), and current I= I kA
resonant harmonic n determined by A, = 0 in Eq. (48).
The growths between symmetric sidebands of equal
JA I = A .1 are no longer opposite. In the limit A, -Owe I ) X0 3.•

observe thai. only the upper or the lower sidebands can be .

unstable for a given 6 function, depending on the sign of , I ,.

G:,,,(J). The maximum growth occurs for A, =Oand is . . o /
given by ,

g = In(k,/k,)G,,11/, (50) 0 ,

scaling proportionally to0N . 0 02 -02 -02 0 01 0

Next we compute the growth rate for a uniformly filled aw/w, sw/wr

type of distribution f,(J) = (I/2rJ,,) [ I - S(J- J)], * . . ... (C) (d)

where S(J - J,) is the step function dS/WJ=6&(J- Jo). 2 2 I
Performing the integration (39) and substituting into (36) , .\1,
we find that the growth g, is peaked near the resonant fre- oi ! 3 "
quencies w, satisfying relation (49). At most, one harmonic " . I
n can be in resonance with w, for given J,, with a growth rate -21 -

g . (J,,) -0o2 ... ..... ... . .0 o 2 -02 -a 0 1 02

ok W A W/Wr ¢9/Wr

for A I 4e. Thus, to the lowest order in A , only lower FIG. 5. Growth rate for a Gauvmian disibution f,(J)
frequency sidebands g- can be unstable for a uniformly = Ce:xpf - (J - J,)/2D:l centered halfway inside the trapped particle
filled-type distribution. In particular, we may take the limit iland J,, = J,12m:id of width D equal t J, The normalized growth rate

J, = 0 to obtain the growth rate for a distribution localized g,/lr, is plited veusu &olA, For(ai thefundamentalconmrihutionn = in
Eq. ( 16), (b) including the firs harmonic n = 2, (el two harmonics, andexactly at the bottom of the ponderomotive well. Expressing (d) three harmoniis. The most unsiablc modes do not c irresmvd to har.

J,, and Q. (J,,) in terms of A,, from Eqs. (26) and (19) and monics of the b unce frequency at the botiom ca,,(O) indcated by the ar-
then taking the imit A, -0, we obtain rows.
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I I i , ,,

xtO' 2' 1a) 3 .0 6

So // FIG. 6. Plo of df,(J)/ld,,,(J) 6-
/ = (df/dJ)(dw,1dJ) ' Le, , func 3-
S / , tmonofJ forthedtstributonf ofFig. . . -

.I 5 . T h e % o p e g u t : t o i c r u n c r t h e ' - _
paratrix J. becauvc of the ihninit e

S. .hear dw/ddJ.
01 04 0 8 2 3

(beam density 6.25 X 10 ' cm "). The normalized equilibri- 1t:6 X I. an fr n ji..ried (j.o'-.,,i j dj~,ith, , -,

um distribution is a G aussian f,(J) . J .J /'I a) I l d JJ- /d,,,,.J) ,h1  Ihc .,rn , /J

= (2r 3D2 )- 1/2 expi - (J - J,,)2 /2D 21 centered halfway grwth ,

inside the island, J, = J,/2, and of width D equal to half the
separatrix action D = J,/2. We plot the contribution of only
the fundamental, n = I in Eq. (40), in Fig. 5(a), adding the d = 2, 10 ',are given by the intcrsections with the hort-
second harmonic n = 2 in (b), the third harmonic in (c), zontal line. The sharp gradients that are localized at the two
and the fourth harmonicin (d). New unstable bands emerge edges J.... = J(P,1b,, = 0) and J .... = J(P,,-, = oj of the
with each harmonic while the gain for already unstable distribution are likely to be smoothed by diffusion across the
bands is modified. For example, we observe two upper and trajectories in the ease where three-dimensional effects are
two lower trnstable bands in (b) but only one upper and included. We choose a more diffuse density profile as an
three lower bands in (d). We find the contributions from .example of a hollow distribution, given by the inverted
higher than the third harmonics n > 4 generally negligible. Gaussian f,(J) = C{ I - lexpi - - J) 2 /D 2 '1}. with
The upper frequency w, > w, and the lower frequency w, A, = J,/2, D = J,/2, and C the normalizing constant. We
< w, parts of the unstable spectrum come from the regimes plot df /drow in Fig. 8(a) and the growth in Fig. 8(b).
of negative and positive slope dfIdw,, respectively, shown Since sidebands cannot be eliminated completely it re-
in Fig. 6. The lower sideband growth is peaking at frequen- mains debatable whether a distribution function can be tai-
cies corresponding to nwb (J._), the value of J maximizing lored experimentally minimizing their growth rate. From
df/dw (J). The peaks for the upper sideband growth, how- the previousdiscussion a flat distribution inside the trapped
ever, do not occur at J = 0, which minimizes dfldw, (J), regime with \harp gradients localized at thescparatrix seems
but at J halfway inside the negative slope regime. This is the appropriate choice. Instabilities will then localize near
because Q. (J) and, consequently,g, are zeroatJ = 0, show- the separatrix and the gain will be suppressed by the strong
ing the-negligible contribution from electrons at the bottom shear. To check this we plot the growth rate, from Eq. (40)
of the well. The analogous effect in plasma physics is the for two types of distributions fj,(J): (i) two Gausians
elimination of the thermal effects when PL goes to zero. In f,(J) = (2r'D 2 ) "1 exp( - J 2/2D 2) centered at the hot-
any case the most unstable modes are far from the frequen- tom ofthe island and of characteristic lengths D equal to half
cies 1w, - w , = (k,/k,)nw, (0) pointed out by the arrows the island width D = J,/2 in Fig. 9(a) and one island width
in Fig. 6(d). D = J, in Fig. 9(b),and (ii) twosteplike distributions of the

In Fig. 7 we plot the equilibrium distribution without form,(J) (rr'aD) I expf - (JIuD)" I with N = 16.
sidebands,f, (J) given in Eq. (32), associated with a cold Selecting a = (N/N - I) /' places the sharp gradient at
beam initial distribution f,,(PO) =(27r) '5(P- P,,). J= DandweplotthecaseeD=J,/2inFig. (c) and D=J,
Here, f-. (J) -f(H(J) is constant along the trajectories in Fig. 9(d).
H,(J) = K(P,,,,) such as those shown in Fig. 2(a). The Comparing Fig. 9 (a) to Fig. 9(b) and Fig. 9 (c) to Fig.
initial conditions P = P,, with Po = (I + d)P,_ 9(d) it is sen that the growth rates between similar types of

distributions tend to decrease the closer the maximum gradi-
ent df,,dJ is placed near the s.paratrix. In hoth cases there is

(a) b) more than one order of magnitude reduction in the gain by10 -r O
"

30' shifting the maximum gradient position from D = J,/2 to

5 -0 = J,. Because, was chosen monotonic in all the above
1 . plots and because it was limited to trapped particle%. df;/d~t,,
°'0 o ' preserve. its sign and only lower modes are unstable. The

spectral width of the unstable regimes is reduced with a par-

-101 allel increase in the maximum gain as one goes from the
' 4 03 0 - Gaussian type to the steplike type of distributions. Also, the

distance of the sideband frequencies form the main signal
J W decreases by shifting the gradient position D closer to the

FIG. 7. (a l'hccquitihurjuni ,,J) thai cvivcu Iroma ,,rgmjt old t'arn separatrix. Distributions with sharp gradients at the separa-

ditribulion/, (P) (l/2n7)MlP - I,). ,shown by the hrizoital line I trix such as those in Figs. 9(b) and 9(d) are perhaps more

lig. 2(A) (hi Normalitt grwilt rate vru% Ircquimy lIir/.,(J) relevant to the case of variable wiggler FEL. where the
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(al ,(b) signal that cause% the tranlsition from coherent Nideband

a emission ( instability) to incoherent emission (noise) vsan
4,6- intiguing qu~inthat has ytto b nwrd
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CHAOTIC ELECTRON MOTION CAUSED BY SIDEBANDS IN
FREE ELECTRON LASERS

1. INTRODUCTION

Multifrequency effects in Free Electron Lasers (FELs) become

increasingly important as progress is made towards high power operation.

Growth of parasitic frequencies (sidebands -5) has been predicted

theoretically and has been observed in experiments6'7 as well as in

simulations8 -11 with either constant or tapered wigglers . The

efficiency for the carrier signal is reduced and the optical quality is

degraded as power is channeled into frequencies apart from the intended

operation frequency. Another potential hazard that has attracted little

attention so far is the onset of chaotic electron motion caused by the

presence of even a single frequency sideband. This may lead to extensive

particle detrapping and premature loss of the amplification for all the

radiation modes independent of frequency.

Two of the main issues concerning FEL operation are: (a) whether

unstable parasitic frequencies exist that can grow to significant

amplitude and (b) what is the effect of potentially unstable modes on

the trapped electron trajectories. Considerable attention has been

devoted to the linear stability issue. The gain for small sideband

signal has been computed analytically -5 invoking either ensemble

averaging over single particle trajectories or solutions of the

perturbed kinetic equation for the distribution function. Initial

results, obtained for particles localized near the bottom of the

ponderomotive well, and, in particular, more recent.results including

all trapped and untrapped particles 2 with arbitrary distributions, have

demonstrated that every nontrivial distribution df0/dJ 0 0 is unstable

to sideband growth.

Manuscrnip aproved August 29, 1988
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Given that sidebands cannot be eliminated, the growth of the

unstable modes to a finite amplitude may have serious effects on the

unperturbed trajectories. It has been known that stochastic behavior
12

13,14is an intrinsic property of perturbed Hamiltonian systems

Accordingly, the electron motion in a FEL will become chaotic when the

sideband amplitude exceeds a certain threshold. This, in turn, will

result in significant electron detrapping. Since it is the deceleration

of the trapped electron bucket that provides the energy for the

radiation in case of tapered wigglers, detrapping will cause loss of

amplification for the FEL signal.

In the present work we investigate the nonlinear effects caused

by sidebands. The threshold for stochasticity, above which unbound

chaotic motion occurs, is determined. Once the stochastic transition

takes place, the action J, a constant of motion in the unperturbed

system, changes in a random manner. The ensemble average <X 2> of any

physical quantity X is described by a diffusion equation. Diffusion of

the action invariant provides a measure of the leakage rate across the

separatrix. If D is the effective diffusion coefficient in action space

then the diffusion length Ld = Is2/D, where Js is the action at the

separatrix, signifies the length over which approximately half of the

deeply trapped particles get detrapped. We show that a single frequency

sideband at a modest fraction of the carrier amplitude suffices to

spread irregular motion over a significant fraction of the trapped

particle domain. However, given that the interaction time of an electron 4

in a FEL is short, we are mainly concerned on how fast this diffusion

occurs. The diffusion rate increases and the diffusion length Ld

decreases with increasing sideband amplitude(s). Thus, a critical 4

sideband level ac can be defined above which the diffusion length Ld

2



becomes shorter than the wiggler length Lw . Obviously the power level

for the sidebands in a FEL cannot exceed ac, otherwise, extensive

diffusion and premature detrapping will occur. On the other hand, enough

electrons can remain trapped during the interaction period even though

their motion has turned stochastic, because we find that usually the

critical amplitude a is much larger than the threshold forc

stochasticity a .

A clear-cut relation between the diffusion rate under constant

total sideband power and the type of the excited sideband spectrum is

discovered. More specifically we observe three regimes in the simulation

parameters defining the sideband spectrum, corresponding to a narrow, a

wide discrete and a wide continuous spectrum. The transition from one

spectral type to another is accompanied by an abrupt change in the

diffusion rates. In all cases we find the diffusion coefficient

proportional to the ratio of the total power in the sidebands to the FEL

carrier powcr. The coefficients of this proportionality depend on the

spectral type. A general conclusion is that the diffusion rate under

constant sideband power ratio decreases with increasing number of

spectral components. The diffusion rate for a single sideband frequency

exceeds that of a broad continuous spectrum by orders of magnitude while

a broad discrete spectrum causes intermediate diffusion rates.

For practical purposes we measure the diffusion length in terms

of the number of wiggler periods. Nd - I.d /Xw. while <&1)> is normaliced

to the ael Ion J at the (unpettuthed) separatv'ix. We comptite the

normalized d iff1usotit coeff it I) analyticnlly to: the cases of broad

discriete aiid ('ot i ntiotis spec t td. It tht, Ilat (t" Case tihe qtuas ilinear

dlfitislon ('(I l Icitt in action space D (J) is obtained in closed form.

This expressloi lot D (J) is quite general, valid for any choice of



unperturbed Hamiltonian Ho(J ). The analysis also shows that the

normalized diffusion coefficient does not depend on the beam energy r"

The numerical results agree well with the theory.

We evaluate the loss of trapped particles for typical short

wavelength FEL parameters. We find that a single frequency sideband with

a sideband to carrier power ratio of < 1 can cause half of the particles

to detrap over 100 wiggler periods; we have observed total loss of

trapped particles for power ratios of = 1. In cases of wide but discrete

sideband spectrum the diffusion length becomes comparable to the wiggler

length only at large power ratios (Q 1). The case of a wide continuous

spectrum seems to cause insignificant electron detrapping for the same

parameters as above; the typical diffusion length is of the order of

1000 wiggler periods for sideband to carrier power ratios of 1.

In our investigation we have assumed all electromagnetic fields

as given. The changes in the particle trajectories are decoupled from

the evolution of the fields. At the expense of self-consistency we are

able to analyze the situation theoretically and determine the scaling of

the diffusion rates on the various FEL parameters. Deterioration in the

extraction efficiency has been observed in self-consistent numerical

simulations of high power FEL oscillatorsI0 with high level sideband

excitation. The gain per pass in a tapered wiggler is progressively

limited as the sideband power goes up and the rate of electron

detrapping is accelerated. In an untapered wiggler, on the other hand,

particle detrapping is not so important for the main signal efficiency.

The total extraction efficiency may actually increase with the sidebands

since there are more modes to channel the electron beam energy into.

4



The remainder of this paper is organized as follows. In Sec. II

we construct our analytic model for the study of the stochastic

diffusion and discuss the various approximations. To elucidate the

analysis we start with a single sideband mode and give a sketchy

description of how this can lead to electron detrapping. In Sec. III we

examine the structure of the phase space for a monochromatic sideband in

detail, using canonical formalism. The threshold for the stochastic

transition and the extent of the chaotic regime in phase space are

obtained in Sec. IV. In Sec. V the diffusion rate caused by a single

sideband mode is examined in connection with the various FEL parameters.

In Sec. VI the study is extended to broad (multifrequency) sideband

spectra. A distinction is drawn between continuous and discrete spectra.

Subsection VI.a covers the case of a broad discrete spectrum and the

related diffusion coefficient. Subsection VI.b deals with a broad

continuous spectrum and the corresponding quasilinear diffusion

coefficient. In Sec. VII the theoretical models are compared with

numerical results. The differences in the induced diffusion rates among

the three different types of spectra are emphasized. The reduction in

the extraction efficiency in a tapered wiggler FEL is computed as a

function of the diffusion coefficient. Results and conclusions are

summarized in Sec. VIII.



II. GENERAL CONSIDERATIONS

We consider relativistic electrons streaming along the z-

direction through the static magnetic wiggler and the radiation fields

of the carrier and the sideband. We take all fields to be circularly

polarized and of constant amplitude. To simplify the analysis and make

the underlying ideas clearer we start out with monochromatic waves for

the carrier and the sideband. The total vector potential is then,

A (z,t) =
(1)

[(ex-iey)Avei  -(exie)Are r t) _(ex+ie) s] s+ cc

where the subscripts w, r, and s stand for wiggler, carrier and sideband

respectively. We assume that all waves propagate with the speed of light

c, ignoring the small correction of order wp2 /Wr2 from the dielectric

contribution of the beam. Electrostatic contributions to the fields are

neglected for operation in the Compton regime. The phase of the wiggler

is given by *w(z) = fz kw(Z,)dz', where the wave number kw(z) may change

slowly in z on a scale length much longer than the wiggler wavelength Xw

2n/k w . The main signal wave number kr is doubly Doppler upshifted from

the wiggler wavenumber kw,

kr= 2yz2kw , (2)

with the upshlfting factor yz = (1 - 1r2 )-1/2 and 0r = Wr /c(kr+kw ).

We have ignored variations in the x- and y-directions. Increased

number of dimensions is known to facilitate the transition to chaotic

6



motion. Therefore, the threshold for stochasticity for variations in the

z-direction only will be useful in providing a neccessary condition to

avoid fast large-scale diffusion. Slow diffusion due to higher

dimensionality will in fact persist for the real system below this

threshold. As far as particle detrapping is concerned, three dimensional

effects are comparatively insignificant, provided that the dependence on

x and y is adiabatic. This requires that the frequency of the betatron

oscillation, caused by the transverse field gradients 15 , be small

compared to the electron synchrotron frequency in the ponderomotive

bucket.

We have also assumed that the radiation amplitudes remain

constant. In case of fast growth rate of the carrier amplitude the

particle trajectories are not analytically tractable, even in the

absence of sidebands. It is generally expected that the fraction of

trapped particles decreases with decreasing carrier amplitude. Therefore

the spreading of the radiation beam due to diffraction 16'17 can also

cause detrapping by reducing the carrier amplitude a This detrapping

mechanism is independent of the diffusive detrapping caused by sidebands

that is examined here.

.orma1lziLng t e time t to Wr , the length z to k, the mass to

me and the vector potentials according to ai=IeIAi/mec 2 the

d rnensionless Iir;:t,.n:r. describing the electron motion in the fields

cf Eq. (1) i-,

H [ 2 + pz 2 _ 2A a warcos(w+ krz - wr t) - 2A aw a scOw+ ks z - wst)]1/2

(3)

U 2  I + M(a w
2 + a r 2 + 2)

7



with M = 1 and A = 1. Eq. (3) also describes the fast-time averaged

Hamiltonian for a linearly polarized wiggler by setting M = 1/2,

A = [Jo(Q) - 31(<)]/2 and C = aw2/(4 + 2aw2 ).
The terms proportional to awa r and awas are the ponderomotive

potentials due to the combined action of the wiggler with the main

signal and the sideband respectively. The resonant velocities for each

ponderomotive potential are given by 81 = ki/(ki + kw) corresponding to

resonant energies,

Yi= 2 2) r, s. (4)

In the vicinity of Yi the motion of the electrons is determined

by the corresponding resonant term inside (3). We may drop the

nonresonant term for small radiation amplitudes and linearize (3) for

small excursions Sy around yi. From the resulting pendulum equation we

find that trapped electrons will undergo oscillations of frequency 1%

around yi, forming islands of width Syi in phase space, where (b and Syi

are given by,

Ob - V12 (wail 2 ) 1 Syi = Yi /a2r (5)

We call these islands, due to the direct wave-particle resonances,

primary islands.

Roughly speaking, irregular motion breaks out as a result of

14
nearby island overlapping . The amplitudes at, as must increase to the

point where,

6Y r + 6Ys I I r  Ysl' (6)
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for an overlapping between the two primary islands to take place. The

difference in resonant energies Ay = yr - YS is given by Ay = yzyr2 60

where AO = los - Orl = (i/2yz2) jkr-ks/k r ' Given that typically ks-k r

2yz b we find,

1/2
Ay ~ Yr(awar) (7)

It then follows from (5) to (7) that overlapping and transition to

chaotic behavior can take place at as - ar. This crude estimate

demonstrates the potential of chaotic behavior for large amplitude

sidebands. The above threshold becomes even smaller in case of a

multifrequency sideband spectrum.

We will be interested in evaluating the fraction of the phase

space that becomes chaotic as a function of the sideband amplitude. This

requires the use of a more refined overlapping criterion. Electrons

trapped inside the primary island of the main signal still experience

perturbations in their motion caused by the sideband. The perturbation

is especially felt by these electrons that have the synchrotron

frequency u matching the difference between the frequencies of the main

signal and the sideband. This condition defines new secondary resonances

between the electrons and the sideband. It is the overlapping among the

nearby secondary islands, formed inside the primary island, that

determines more accurately the break out and extent of the stochastic

behavior.

9



III. PORTRAIT OF THE PHASE SPACE

The electrons are injected into a FEL with energies near the

resonant energy yr for the main signal wr" Expression (3) can be

linearized for small excursions Sr/yr << 1 for electrons not too far

from the separatrix. Introducing = Y - y r and * = (kw + kr - rt as

a new pair of canonical variables and approximating the time

t(z) = z/cOr we obtain,

k w -2 awar awaS
H(y,*;z) = y + - (cos* + * sin*r) + -- Cos(* - 6Z).

Yr Yr
(8)

In (8) the phase flow is parametrized by the traveled length z Inside

the wiggler rather than the time t. It was also assumed that the wiggler

parameters change slowly compared to the wiggler wavelength 2n/k . The

term sin *r parametrizes the rate of change for the resonant energy

caused by the change in the wiggler wavelength,

d r r sinW r  (9)

where * r = n corresponds to an untapered wiggler. The term & s in the

sideband phase is the Doppler downshifted difference between the signal

and the sideband wave numbers,

k
=kM(k 5 - k ) (10)

r
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In the absence of sidebands, a = 0, the Hamiltonian H is
s 0

integrable. The unperturbed trajectories in the ponderomotive well are

given by Ho (r,q') = K where K is the reduced energy in the ponderomotive

frame. These orbits take the simplest possible form expressed in terms

of the action-angle variables (J, 8), defined as,

J = -djf dy y(K,* ) , (11)

where K = He(J) and the path of integration is over the unperturbed

orbits. For trapped particles in closed trajectories, the action J is

related to the area in phase space enclosed by the orbit. For untrapped

particles in open trajectories, the path of integration in Eq. (11)

depends on the wiggler type. In case of an untapered wiggler, the orbits

are periodic and the limits of %p integration are from 0 to 2n. In case

of a tapered wiggler the path of integration is the segment of the

trajectory that begins and ends at 1P = *s, enclosing the separatrix.

Thus, J remains finite, avoiding an infinite jump in action across the

separatrix that would result by considering the full orbit length for

18unbound orbits . J is always periodic in 4, J( ,w1 ) = J(0,w 2 ) for 1=

*2 + 2n, even when H is not (case of tapered wiggler).

Hamiltonian (8) is now transformed under the canonical

transformation defined by Eq. (11) into,

a a
H(J,G;z) = H (J) + - E Qn(J) cos(nG + 6 Z) + Q(J) cos(nh - 6sZ).0 r n=0 n s

(12)

On +(J) are the Fourier coefficients obtained by the decomposition of the

perturbing sideband phase *(J,6) - 6sz into harmonics of the angle 8,

11



where *(J, e) is obtained by inverting Eq. (11). In case of constant

parameter wiggler J, e and On (J) are expressed in closed forms given in

Appendix A.

H (J) is independent of e so the unperturbed orbits in (J, e)

space are straight lines,

J = const., e = eo + K b(J)z

The synchrotron wave number Kb(J) is connected to the bounce length Lb

and the synchrotron frequency in the laboratory frame wb(J) with the

relation,

dH0(J) 2n Wb(J)
Kb(J)- - - (13)

dJ Lb(J) caz

Since c = I in the normalized units and az = 1 in the cases of interest,

we may use b(J) in place of Kb(J) as well.

Expression (12) for the transformed Hamiltonian reveals the new

resonances emerging when a sideband is turned on. Defining the phase of

the nth sideband induced harmonic 9(n) = nO ± sz, the stationary phase

condition reads,

± nKb(J) - ss = 0, or ±nOzo(J) - s = 0. (14)

Thus, particles, originally in unperturbed orbits J = Jn, resonate with

the sideband when the nth harmonic of their synchrotron period wb(Jn)

matches the downshifted frequency difference between the sideband and

the carrier signal.

12



For a given n and sufficiently small as we may keep only the

resonant term e(n) to examine the motion in the vicinity of J n This is

formally achieved by the canonical transformation,

e=ne- 6z I I ,s n

(15)1 1 ,
z = Z, Iz  -- K +

Ss

coming from the generating function F(O,z,I,Iz) = (nO - z)I - zI. The

resulting Hamiltonian is,

awa
Hn(I,Iz,9,Z) = Ho(nl ) + 6s(lZ - I) + - n(nI) cos8 + O(a )(ro

(16)

The fixed points (Jn' en) are found from,

d9 aHn aHo
d- T = - I s = 0, (17a)

dl aHn awa
R--Z n a V-aYr Q (nI) sine = 0. (17b)

Using relations (15) for the transformed variables we recover from (17a)

the resonant condition (14) while (17b) indicates en = kn / n, k =

0,1,...,n-1.

In short, a single frequency sideband causes chains of secondary

islands to appear inside the original primary island. Each chain

corresponds to a given harmonic n and is centered around the stable

fixed points J n . The structure of the phase space is shown in Figs.

1 and 2. They are surfaces of section, created by numerically

13



integrating the original equations of motion from Hamiltonian Eq. (8)

and then recording the intersection point of each trajectory with the

plane z = 2n/ s . The y vs. * plots are on the left side in Figs. 1 and

2. The plots on the right side show the same surfaces of section in

action-angle variables, produced by the transformations (11). The bounce

frequency around a given secondary island is found by linearly expanding

the resonant Hamiltonian (16) in I = I - In' From the resulting

pendulum equation and from relations (15) one finds that the secondary

synchrotron period Fn near the center is given by,

[(o)a a 1/2
dj Yf n - ---sO(J ) , (18a)

n = J Yr n

n

while the half-width of the island &J is
n

[2 awas  On (Jn) 1/2
n Y (db/dJ)j

n

Representation (12) for the Hamiltonian (8) is formally independent on

the details of the transformations (11). Consequently, the same

stability analysis applies for constant as well as variable parameter

wigglers.
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IV. THRESHOLD FOR ERRATIC MOTION

When the sideband amplitude exceeds a certain amplitude a

regarded as the stochasticity threshold, the presence of even one

sideband frequency suffices to transform the regular coherent motion,

such as in Fig. 1, to the irregular unbounded motion shown in Fig. 2.

The mechanism for this radical change in behavior can be briefly

described as follows. The trajectories emanating from the unstable fixed

points (X-points) of a secondary island do not actually join smoothly

around that island. They intersect infinite times with each other
1 2'1 3

due to the effect of the other harmonics n' 0 n that were ignored during

the local approximation Eq. (16). A thin layer of fuzzy motion thus

surrounds each island chain of given n. As the amplitude a increases,5

the width of each island increases according to (18b) and so does the

thickness of the stochastic layer around that island. At a given point

the stochastic layers around the two neighboring island chains n and n+1

14
overlap , allowing particles to hop from one island to another. This

signifies the beginning of unbounded, random motion in J characterized

as stochastic diffusion.

Various methods of different accuracy have been developed for

estimating the stochasticity threshold1 2'1 4 An approximate criterion

that works well in most cases is,

Si+ &J >2 (19)
n n+l 3 n

where &Jn, &Jln+ 1 are the separatrix half-widths and &Jn = Jn+l - Jn is

the distance between the separatrix centers for the n and n+l harmonics

respectively. For small widths 8J and distances Wi compared to J we may

expand
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O)b(inl) - nb(J) ( , (20)
n

and use (18b) with Jn to obtain the amplitude a (n) for

overlapping

L2] (ob(Jn) 7r

( (n) d/d) (2awnJn ))• (21)

n

The outermost islands centered at Jn = is, correspond to larger shear

dcb(J)/dJ, smaller %(J) and higher harmonics n, for given W s - Or"

According to (21) the threshold as(n) is lower near the separatrix and

the outermost secondary islands will be the first to overlap. The

overlapping is progressively extending to smaller Jn and lower n as as

increases. The macroscopic stochastic layer first appears near the

original separatrix of the primary island and spreads to the interior of

the trapped particle bucket. We take .the amplitude when the two

innermost harmonics overlap as the threshold for "global" stochastic

transition, as  a s(n ). The lowest possible harmonic n1 for given

frequency w is defined by the resonant condition (14). For J small we

have both 6, and &J of order J and the approximations that led to (21)

are not valid. In this case, the exact expressions for J and wb(J) must

be applied inside the criterion (19).

We may obtain the dependence of a s(n) on the various parameters

using Eqs. (A4) and (A7), setting d/dJ = (dX/dJ) d/dX and utilizing the

properties of the elliptic integrals to compute the derivatives in Eq.

(21). We find that,
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as(n) 1 2
a F 2(n )  

(22)
r n

where

(E (,\) \n2 (n 2  1) 1/2F(An) - __(A) l An2; 2Qn) (2n (Xn)

The threshold for extensive stochasticity as 3 as(nl) is independent of

y and aw. The trapping parameter Xn is determined uniquely from J n

according to Xn = H0 (Jn )yr/awar + 1/2 (see Appendix A). Thus, the

sideband frequency w s, related to wb(Jn) through the resonant condition

(14), is the only parameter that es/ar depends on. The scaling in (22)

is still valid in case of large secondary island width with a

modification in the numerical factor F.

In Fig. 3a we plot in solid line the threshold as for extensive

stochasticity, when the two innermost secondary island chains overlap,

as a function of the frequency difference &f - wr The dotted line shows

the threshold for overlapping between the next two secondary island

chains. Some deeply trapped orbits, near the center of the original

primary island, still persist when as is close to s . The extent of the

area unaffected by the irregular motion when as = cz is given

approximately by J < J c where J = J - J .n In Fig. 3b we plot the

portion Jc/Js of the remaining "good" trajectories when the sideband

amplitude equals xs as a function of &s - or" It isseen that the

threshold o is larger and the extent of the stochastic regime is

maximized as well for frequency mismatch near a harmonic of the

synchrotron frequency wb(O) at the bottom of the ponderomotive well.
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The threshold as for overlapping is considerably lower but the extent of

the stochastic regime also diminishes for frequencies far from a

harmonic of the central synchrotron frequency.

A typical phase portrait for a sideband amplitude as slightly

above c is shown in Fig. 2b. Two ditferent kinds of regions coexist: a

stochastic regime where diffusive behavior prevails, interrupted here

and there by islands of regular motion, remnants of the original regular

motion. The stochastic regimes are interconnected allowing unbounded

particle transport. The rate of diffusion as well as the decorrelation

times are not uniform in phase space but depend on both J and e.

When as is increased well above cs the chaotic motion engulfs

almost 100Z of the phase space (Fig. 2c). The decorrelation time is

short everywhere in phase space. In this parameter regime the behavior

of the system can be described by a diffusion coefficient D(J) depending

on the action J only and insensitive to the frequency of the driving

sideband. Total stochastization of the island interior occurs roughly

when the sideband amplitude grows to the point where the stable fixed

point - = 0, R = + %Pr at the center of the original island becomes

unstable.
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V. NARROW FREQUENCY BAND DIFFUSION

We will examine first the diffusion caused by the presence of one

single frequency, large amplitude sideband. This is a relevant

approximation in case of a narrow sideband spectrum. The term narrow

implies a spectral width Dw s much smaller than the frequency separation

ws - wr, typically of the order 2yz2 wb
. We examine the evolution of a

monoenergetic distribution f(J;z=O) = 6(J - J ) by numerically

integrating the equations of motion. We plot <AJ 2>, <J> and 2 <&]2>/Z

against the distance z in Figs. 4a, 4b, and 4c respectively. The

electrons are initially uniformly distributed in e with constant action

J = 0.7 J . Different curves in the same frame correspond to different

sideband amplitudes a at a given frequency w .

For a constant diffusion coefficient D, independent of J, the

average <J> and the mean square deviation <J 2> = <j 2> - <J>2 would

evolve as <&J 2> = (1/2) D z, <3> = J . The dashed curves in Figs. 4a -

4c correspond to a sideband amplitude as below the stochasticity

threshold a . The deviation <&J2> asymtotes to a constant after an
S2

initial increase while the ratio <&J 2>/z tends to zero for large z. In

this case stochasticity is localized. Different stochastic regimes are

still separated by "good" integrable orbits (KAM surfaces) located in

between. Electrons diffuse until they are stopped at the boundaries of

the stochastic regimes that "compartmentalize" the phase space. The

solid curves in Figs. 4a - 4c correspond to sideband amplitude above the

global stochasticity threshold s. This means that the last good orbit

has been destroyed allowing different stochastic regimes to

interconnect. <&J2> now increases monotonically and the ratio <&J2>/z

remains finite for large z. The fact that the diffusion rate is not
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constant, and that the average <J> changes away from the initial value

o 0,shows that D depends strongly on J.

In principle, one could determine a local D(J) by advancing test

distributions 6(J-J 0 ) of various J over short distances z. Then the

Fokker-Planck equation for any initial distribution f0(J) could be

solved numerically using D(J). Here, instead, we elect to measure

directly the effective diffusion rate associated with a given type of

initial distribution. We do so by integrating numerically the equations

of motion, Hamiltonian (8), for a number of particles (typically 400)

assuming constant amplitude for the electromagnetic fields. A uniform

initial distribution in phase space with trapped particles inside the

(unperturbed) separatrix is chosen, f0 (J) = [1 - S(J - J s)]/J s where S

is the step function. This situation is relevant with the operation of

tapered wiggler FELs where the trapped particles in the ponderomotive

bucket are decelerating, falling quickly behind the untrapped particles

and thus creating large distribution gradients near the separatrix.

The two questions of practical interest are (a) what percentage

of the particles will eventually get detrapped and (b) how fast do they

leak outside the separatrix. For our uniform initial distribution the

maximum fraction of particles becoming detrapped equals the fraction of

the inside of the separatrix area that becomes chaotic. In Fig. 5a we

plot the fraction fd of the particles that cross the original separatrix

J as a function of the traveled wiggler length for values of q = a /ass r

below the threshold for extended stochasticity. In all cases an initial

stage of quick diffusion is followed by a long period where the average

number of untrapped particles remains practically constant. The results

are consistent with the existence of a boundary in phase space (KAM

surface) separating two regimes: the one of unbounded, chaotic motion
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from the one filled with regular, coherent orbits of particles that

remain trapped. Only electrons in the area between the last integrable

surface and the old unperturbed separatrix will diffuse until that area

is depleted. A fraction 1 - fd of the original primary island area will

remain trapped for an arbitrarily long time, as long as as remains below

the threshold a associated with the particular sideband frequency. This

fraction is shrinking as a increases and the bucket "peels off". The

situation when a exceeds o is shown in Fig. 5b. The fraction of

untrapped particles fd reaches 1 in all cases, meaning complete absence

of particle confinement in the bucket. All particles can eventually

escape with a rate that increases with increasing as.

Numerical results showing the fraction of detrapped particles fd

after 100 wiggler periods as a function of a s/a r are plotted in Fig. 6

for various sideband frequencies 1Ws - Wrl. The length over which

approximately half of the initially trapped particles get detrapped will

be discussed in the next section, in comparison with the diffusion rates

from other types of sideband spectra.
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VI. BROAD FREQUENCY BAND DIFFUSION

So far stochastic electron detrapping caused by a single

frequency sideband has been examined. It was argued that when the

excited sideband spectrum is narrow enough, i.e., P << 2yz2 v the

situation can be reasonably approximated by a single frequency sideband.

Here, we consider the situation when a broad spectrum of frequencies

have been excited, Dws > 
2yz2 wr . We will make a distinction between a

continuous and a discrete spectrum. In case of a discrete spectrum the

distance between two nearby sideband frequencies is much larger than the

width of an individual spectral line. In the opposite case, when various

peaks in the spectrum merge together, we will talk about a continuous

spectrum. We may model numerically both cases by introducing a

modulation in the sideband phase of Hamiltonian Eq. (11),

kw 2  awar  awas
H(y,*;z) = - y + -(cosJ + * sin*r) + -- Cos(* + A sin vz - 6 Z)

(23)

that is transformed in action-angle variables as

H(J,8;z) = H (J) + H1(J,;z),

H1(JO;z) = (24)

awas

E Jm(A) E oQ(J) cos[ne + 8s(m)zJ + Q(J) cos[ne - 8s(m)z ].nr n
m=-W n=O

The frequency mismatch values 6s (m) and the corresponding sideband

frequencies ws (m) are given by,
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8s (m) = 80 + m V, s ( m) = s + 2 m yz2 , (25)

where s 0 r + 2y z2 Since the Bessel function coefficients become

vanishingly small, Jm(A) << 1 for A > m, the width of the spectrum is

given by D&s  AvorD =2y 2Av.

In order to examine the connection between diffusion rates and

the types of the sideband spectra, we divide the latter into three

general categories: narrow, broad discrete and broad continuous. The

passage from one regime to the other is not gradual but characterized by

abrupt changes in the diffusion coefficients. Thus, from the diffusion

point of view, the distinction among the spectral types is not arbitrary

but based on certain relations between the parameters A and v. In all

three regimes of the parameter space the rate of diffusion is

proportional to the ratio of the total sideband power to the carrier

power. The scaling of the coefficients of this proportionality on the

various FEL parameters, however, differs from one regime to the other.

Both cases of the broad spectrum are characterized by a width DWs

in the excited frequencies that is larger than the upshifted synchrotron

frequency cb9

D s > 2 y 2 ' ,equivalent to v > , (26)

with A >> 1. The further distinction between discrete or continuous

spectrum is related to the separation between nearby frequencies. We

find that when b/A1 / 2 > V > cb/A the diffusion rate agrees well with

the quasilinear diffusion coefficient. A different coefficient is

derived for the case when v > wb/A1 / 2 > b/A, in agreement with the

numerical simulations. Consequen]ty the separation (b/A1/2 between
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nearby modes marks the transition from a discrete to a continuous type

of behavior. Departure from the quasilinear diffusion coefficient has

also been observed numerically in previous literature 19 when the

frequency separation between nearby modes was not "small enough". Here a

condition for the discrete-to-continuous transition has beeen obtained.

For any spectral type, the sideband amplitude must be above the

stochastisity threshold in order to trigger electron diffusion. Using

the same method of nearby resonance overlapping as in Sec. III, ;& i the

Hamiltonian Eq. (25) we find that the threshold in case of a

multifrequency spectrum is given by,

V (27)
s - Jm(A) s

where s is the threshold for the single sideband frequency. Thus s

decreases with decreasing frequency separation v. Condition (27)

guarantees the stochastization of the particle orbits. The frequency

separation among sidebands must be limited by the additional condition V

1/2< wb/A , as stated in the previous paragraph, if one wishes to

simulate quasilinear diffusion with a discrete spectrum.

A. Broad Discrete Spectrum.

We now evaluate the diffusion coefficient for a broad, discrete

spectrum. The equation of motion for J can be written as,

dJ aH 1  3Hl1d t a 'a z) IV ,m) V )1/di - - - -- = A '4 S sin + A sinjz - 6 IV(m)- V(J)I1/

dz ae atp de r
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using Eq. (A2) for d/de. Due to the presence of many frequencies in the

spectrum J(z) executes a complicated oscillatory motion with the average

< J > changing very little most of the time. J however receives a large

kick &M near resonances, where the phase f = * + A sin vz - 6 z of the

multifrequency perturbation H1 varies slowly. The resonant condition is,

- k - + A v sin vz -6 =0, (28)
dz Yr

at some z = zi. Given that k J/ Tr wb, collective effects due to many

frequencies are important for the resonance in Eq. (28) when A v > wb"

On this basis inequality (27) signifies the transition from a narrow to

a broad spectrum. Let us consider the case A v >> %. Then the

resonances occur at z. = iniv, i integer, and the interval between1

successive resonances is Az = n/v. Expanding the phase 9(z) in the

equation of motion for J around the resonance zi ,

O(z) = 0i + 1 [(b2(sinWi + sin r)+ A v2cos Vzi] (z - zi) 2 , (29)

and extending the limits of integration to z = ±= we obtain,

a aa 1/ii.2  cos (" + I) V(*.) _ V(*i)11/2
Dr ( (singj + sin*r) + A ( )2)1/2

where *mx(J) is the turning point for an unperturbed trajectory of given

J. When A 2 " Ob2 both bz and &J depend on the features v and A of the

sideband spectrum and not on the bounce frequency wb. We classify the

cases with frequency separation v > wb/A1 / 2 as broad discrete spectra.

They obey a distinct scaling in the diffusion coefficient that will be
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derived below. We find the cases with v < wo/A1/ 2 to agree numerically

with the quasilinear diffusion that will be studied in the next

subsection.

The resonant phases t. between two successive jumps of &J becomei

quickly decorrelated when as grows above the stochastisity threshold.

Because the relation between ti and *i involves the distance zi, ti and

*i will also become decorrelated, <costi  cos*i.> = 0. Assuming complete

decorrelation between two successive jumps we obtain,

2 <&J2> 2 a 
2a 2

____ w r m
D Dz - 2 A < IV( ) -(i)l (31)

where the angular brackets <...> signify the average over *I for

constant J. For practical purposes it is more convenient to rescale the

diffusion coefficient so that the distance z = z/Xw is measured in terms

of wiggler wavelengths and the action J = J/J signifies the location

relative to the separatrix. In these units, using Eq. (A4) for J ands

setting v Ib /(0) = r we obtain,

D 3 2 C 1/2 2D 2n Dw ,g awa as
D k 2 8Ar w (32)

V k w J s 2 8Ar(ar2

The term g is a scaling factor, the ratio of the separatrix area for an

untapered wiggler to that of a tapered wiggler, g = Js ('Ir= R)/J(Wr) , and
1

depends only on * r " The term C - 1, coming from the averaging over i

in Eq. (31), is computed in Appendix B. The typical diffusion length Ld,

the traveled distance inside the wiggler over which the average trapped

particle crosses the separatrix, is estimated from the diffusion Eq.

26
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(22) by taking <&2> = 2 Ld - J 2/D Thus, the diffusion length in

wiggler periods Nd = Ld /X w is the inverse of Dw'

1
Nd D (3)

-W

B. Broad Continuous Spectrum

Next we consider the case of a sideband wave package,

aik sz - iw(k s)t5(1t dksasrks  e (34)

of finite spectral width Dks  centered around kso. Our purpose is to

obtain the diffusion coefficient for a continuous spectrum using the

methods of the quasilinear theory. Upon using exression (34) for the

fields, the Hamiltonian representation in action-angle variables assumes

the form,

a
H(Je;z) = H (J) + _- dksas(k s ) cos Ine + (k )z] (35)

0 Yr n=- n f k sa5 k5

where 6(k s ) is given by,

k vk)- V(k)

6(ks = so + (k s - so) + s  r kso (36)
r c

and 6so = (kw/kr )(kso - kr) in the spirit of Eq. (10). The last

parenthesis in the right-hand side of (36) is of order (wp/wrd2

resulting from the dispersive effects in the sideband spectrum. The
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finite kw provides phase slippage among the ponderomotive phases of

various wavenumbers ks , a necessary condition for the validity of the

quasilinear theory, even when the dispersive effects of the last term in

(36) are negligible, i.e., y z2(Wp/r)2 << Dks/k s .

The resonant condition between a sidebdnd wavelength k and as

given harmonic n now reads +nob(Jn) = 6(ks). For each harmonic n there

exists a wide band of resonant orbits centered around Jno and of width

DJ defined by,
n

DJn = (dQ b/dJ)Jno-1 (kw/k r) Dks, no(Jno) = 6 so. (37)

One condition for the applicability of the quasilinear theory is

that the phase mixing due to Dks  occurs much faster than the bounce

period around a secondary island in phase space. In this way, electrons,

that otherwise would execute periodic orbits around some fixed point,

lose coherence sufficiently fast to allow random motion of the Fokker-

Planck type. Taking the decorrelation length for the phase 1d -

2n/D6(k s ) and applying Eq. (18a) for the bounce period around the nth

harmonic we obtain

1/2

Dks >> n rQ ± 1 Aa a ]1 2- - n .wr (38)
2 /-2J + aw 2

Inequality (38) guarantees the diffusive behavior within the band DJn

around J no given by (37). Large scale diffusion, permitting transport of

deeply trapped particles across the separatrix Js of the original

primary island, requires that different stochastic bands touch each

other, DJn + DJn+1  &Jn, or, using a similar approach as in Eqs. (19)

and (20),
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1/2

Dk s 1 non( )~ 1/ Aaw
D > - (39)

k 8n 7 2 ) aI + "3

The right-hand sides of Eqs. (38) and (39) are of the same order as the

upshifted synchrotron period for the main bucket. Thus both conditions

are satisfied when,

Dks 2 Kb(O)-[->>2 v z (40)
s k

r

Note that (40) is the same as the condition (26) that defines the wide

spectrum, obtained in the previous subsection using different arguments.

Then the evolution of the initial distribution f0 (J) is globally

described by a diffusion equation,

af a af
z j Dq(J ) a (41)

Applying the standard procedures of the quasilinear theory 20'21 (see

appendix C) and taking the limit of small growth rate for the sidebands,

Im(ks)/k S << 1, we obtain,

2

k k r am j+)2 ~ 4(
D (J) r n2 In(J) j dksWs(kS) (ks- k n),

4 w yr n=O

(42)
k

k = k + -wE n K (J)
n r kw b

According to the condition (40) for the validity of the quasilinear
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theory, the wave package has a wide spectrum Dks - N(kr/kw)wb(O) with N

large. The wave components as(kn) fall off slowly for n < N while the

Fourier coefficients Qn (J) decay rapidly with n. Then we may factor out

the average spectral power density Ws = (1/Dks )f dkS V s(k ) a s2/Dks in

Eq. (34) getting,

k k a 2Dq() -r r w n
D(J) k 2 Ws nQ±(J). (43)

4 w Y n=0

The infinite sum in the right-hand side of (43) is computed in Appendix

C. The summation technique does not require the knowledge of the

individual coefficients Qn (J) and the result depends only on the

quantities J and wb(J) for the unperturbed Hamiltonian Ho(J). We then

obtain the diffusion coefficient in closed form,

ka2 2 k

Dq(J) = r w Z s w (44)qY r %b J  
1

We note in passing that the method used to obtain expression (44) for

D q(J) is quite general and valid for any integrable dynamical system

H (J) that is subject to an external perturbation. In particular, it

should be applicable to a variety of RF heating methods in fusion

plasmas, commonly involving a strong, narrow-band pump wave embedded in

a wide, parametrically excited, fluctuation spectrum.

Using the expressions (A3) and (A7) for the action J and the

synchrotron frequency 0 (J) we find that the diffusion coefficient goes

to zero at the centre of the primary island J = 0, has a logarithmic

singularity at the separatrix J = Js and falls off away from it. In
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normalized units, with the wiggler wavelength Xw as the unit length and

the action Js at the separatrix as the unit action, we have,

D D(J)

D (J) _ 2D (45)-q kw~ 2

Choosing the value J Js/2 inside D q(J) we obtain an estimate for the

effective diffusion coefficient associated with the uniformly filled

distribution,

2
n gaa a

D -w - vr s (46)
-q 4 A (1+a w

2  Dk a 2

where g is the same scaling factor as in Eq. (32).

Note that both expressions (32) and (46), corresponding to the

two different spectral types, are independent of y " Thus, for the same

wiggler parameters and total sideband power, the detrapping distance in

wiggler periods is independent of the electron beam en rgy. The

dependence of the effective diffusion rate on the wiggler tapering

enters through the form factor g(*r) = Js(fl)/J(r). As the rate of

tapering increases and *r shifts further from n, g inreases I and

accelerates the effective diffusion rate. This happens because the

trapped area in phase space, parametrized by Js, is shrinking as the

tapering progresses, while the sideband induced excursions remain the

same, depending mainly on the sideband strength and spectrum. This
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shortens the average detrapping time for a particle. The diffusion by

broad discrete spectrum, Eq. (32) scales as g2, while the quasilinear

diffusion, Eq. (46), scales as g. Thus the former is affected more by

tapering than the latter.
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VII. NUMERICAL RESULTS

The numerically computed diffusion coefficient D and the

diffusion length in wiggler periods Nd = 1/D are plotted against the
2 2

sideband to carrier power ratio P = Za (n )/ar W W in Figs. 7 and
n s n r s r

8 respectively for the three different types of spectra. We have

integrated numerically the equations of motion for 400 particles of a

uniform initial distribution inside the bucket. The field intensities

remained constant at a = 5x10- 5 , aw = 2 and yr = 25. All the numerical

results in this paper correspond to a tapered wiggler with *r = 7n/6. A

clear separation in the diffusion rates is observed among the various

spectral types. The narrow frequency results (triangles) were obtained

using the Hamiltonian (8) with a single sideband frequency w s/Wr =

1.016. The results for a broad discrete spectrum (circles) were obtained

using (23) with A = 20, ws/wr = 1.016 and v = 0.5 8 s . The continuous

spectrum (squares) was modeled by A = 100, v = 0.05 6s . The solid lines,

corresponding to the theoretical results of Eqs. (32) and (46), are in

good agreement with the numerics. Theoretical predictions for the single

frequency case were not made. We stress, houever, the difference between

single frequency results and quasilinear theory in this case. The
22

agreement that has been observed in some otl-er cases is not generic

but particular to certain systems.

Figure 9 illustrates the difference of the electron response to

different sideband spectra. The plots on the left side are typical

orbits J(z) for selected particles along the wiggler. The trajectories

in all plots are generated by the same initial conditions for the

electrons and the same FEL parameters aw, ar and k w, as well as the same

mean square sideband power <a s2>. The spectral parameters A and v,
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however, are different so that each of the figures (a) to (c)

corresponds to one of the three spectral types defined earlier. The

dashed line marks the position of the unperturbed separatrix J s The

corresponding distribution functions f(J,z) at the bezinning, z 0,

halfway inside, z = 50Xw , and at the end, z = lOOX w of the wiggler are

plotted in the right-hand side of Figs. 9a-9c respectively.

In Fig. 10 we plot the diffusion coefficient for a uniformly

filled bucket as a function of the energy yr' fixing the wiggler

parameters. It is clear that the diffusion rate (measured again in

number of wiggler periods) is independent of the beam energy, provided

the synchrotron frequency %b stays in the same parameter regime.

Once the diffusion coefficients are known, some estimate can be

made of the related reduction in efficiency over the wiggler length. The

number of trapped particles at any point z is given by

nb = dJ f(J,z). Using the diffusion Eq. (41) with D(J=O) = 0

one obtains the rate of change in the number of trapped particles,

dnb af(JsZ)
dz = n b(z ) D(J S )  a-_'(47)

az

The leakage rate for trapped particles changes along z as the slope of

the distribution f(J,z) changes. To estimate the average leakage rate we

assume that f(J,z) remains Gaussian in J with an average width equal to

the separatrix action Js" We estimate from (47) the e-folding length

Ld b- (dnb/dz) for the number nb of trapped particles,

Ld = D(Js) Js -2 (48)
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Assuming that nb(z) = nb(O) exp(-z/Ld), the number of detrapped

particles between z and z + Az is n(z) = nb(O)Ld exp(-z/Ld) 6z. These

particles gave up an amount of energy AE(z) = [yr(O) - Tr(z)] An(z) as

radiation. Integrating AE(z) over the wiggler length for a linearly

tapered wiggler y r(z) = Yr (0) - z~y/Lw , we find the total energy

extracted from the particles that were detrapped at some point inside

the wiggler. Adding the contribution [yr(O) - Yr (Lw)] nb(Lw) from the

particles that remained trapped throughout the wiggler length, we come

up with,

h°w ( 1 - exp (- Ld 2 ,(49)
0Lw Ld

where no = Y/Yr (0) is the efficiency without induced diffusion. The

loss of amplification will, in general, be distributed among all the

radiation modes and (49) reflects the total power loss in all

frequencies. The extraction efficiency n for a linearly tapered wiggler

is plotted in Fig. 11 versus the sideband to carrier power ratio P,

obtaining the corresponding value for Ld/Lw from the results in Fig. 8.

35



VIII. CONCLUSION

The diffusion in phase space caused by sideband excitation

during FEL operation was studied. It was shown that the characteristic

rates for this process depend on the structure of the sideband spectrum,

falling into one of the following general categories: narrow, wide

discrete or wide continuous spectrum. In all cases, the diffusion

coefficient was found proportional to the ratio of the total power in

the sidebands to the power in the main FEL signal D = C W /W r. The

coefficient C, however, is connected to the spectral type under

consideration. From Eqs. (32) and (46) we see that, apart from numerical
1

factors of order unity, C scales as (a a ) with I = 1/2 for a discrete

and 1 = 1 for a continuous spectrum. Therefore, given the typical FEL

values of aw< 10 and ar< 10- 3 an order of magnitude reduction in

diffusion occurs in the transition from a discrete to a continuous

sideband spectrum. It was also observed numerically that the highest

diffusion rate occurs when all the sideband power is in a single

frequency. In this case, however, a portion of the particles will remain

trapped for arbitrary long wigglers if the sideband amplitude is below

the threshold for extensive stochasticity. The stochasticity threshold

is progressively reduced as the sideband power is distributed into an

increasing number of frequencies. Yet the rate of diffusion also slows

down with increasing spectral width and decreasing mode separation.

Thus, the minimum reduction in the FEL energy extraction efficiency will

occur for continuous sideband spectra. Although control of the sideband

structure does not seem plausible, experiments show that a wide spectrum

is naturally excited during FEL operation. This would allow enough power

build-up before serious deterioration in efficiency, due to detrapping,
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to occur. The diffusion length, measured in wiggler periods, is

independent of the beam energy y under the same wiggler parameters, for

all the spectral types. Our results have been obtained for radiation

fields of constant amplitude. Inclusion of the time evolution for both

the carrier and the sidebands will modify the detrapping rates by

changing both the diffusion rate as well as the size of the separatrix.

This subject is left for future investigation.
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APPENDIX A: TRANSFORMATIONS IN ACTION-ANGLE VARIABLES

The relations between y, *, and the action-angle variables J, e

are given in closed forms in case of an untapered wiggler. Starting from

the general expression (11) and using (8) we have,

1 MI d Yr~ ~ - V(q) J ,(Al)

n mnk

y ~)YrH 0 awar-1/2

A w J0 d ( wO _ kw. V0q1) J,(A2)
where

Using H - (a wa s /r V(Wr ) we obtain the action at the separatrix,

(wa ) 1/2 1 d 1/2
s - ~~V(*~) V(r
Yr 

n Im

In case of an untapered wiggler * r 0 Eqs. (A1)-(A2) yield,

2J sX E2 (l) 
X2>1(3

J=8 (aak 1/2  (4
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si sn(i (A5)

sn (IEI) ,, > 1,

where E1 and E2 are the complete elliptic integrals of the first and second

kind, sn is the Jacobi elliptic sine function, and

2 YrHo 1
+ -, (A6)

2a a 2vr

is the trapping parameter ( X2 < 1 for trapped particles). Using Kb(J)

= (J/3H 0 )- and (Al) we determine the bounce (synchrotron) frequency

Kb(O) 2E(X) ' X2 <

Kk X (A7Kb(J) = 1Kb(O) El/X) ,> (A7

where

1 awa kwkr1/2

bO Yr

is the bounce frequency at the bottom of the well. J and X2 are mutually

related through (A3) - (A6) and they uniquely label the trajectories.

The Fourier coefficients of the expansion (12) can also be

expressed in closed form. They are computed by integration in the

complex plane around the singularities, utilizing the double periodicity

properties of the Jacobi elliptic functions to obtain,

n

n n 2 q q = exp (X) < 1,

n E2(X) 1qq in

(A9)
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2 2 X 2i n Xn2 1 q = exp.(1 ' / 2 >1
E2 ( / ± E (i/X )

for n 0 and,

E2 (X)-1 2 2[ 2 1 E2 (1/X) 1

' 2

where E'(X ) a EI( - X 2).
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APPENDIX B : PHASE AVERAGING OVER CONSTANT J

The phase average < IV(*mx) - V(*i )I > over constant J is given,

for *r = 0, by,

< ...... > - dei I COS*mx(J) - cosgi(J,e i ) I
2n 0

41
4 mx

= - J d* I cos*rex(J) - cos* i I (B1)
2 0

Substituting dO n/d4 from (A2) and using cos *mx = YrH(J)/awar one

obtains,

yKb *mx yrH aa .1/2
< ..... > d*i - -- cos ;iJ

n a wa r Ji)

= E2" -( 1- X2 ) , (B2)~E (X2))

where X2 was defined in (A6).
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APPENDIX C : COMPUTATION OF THE QUASILINEAR DIFFUSION COEFFICIENT

We consider the evolution of the electron distribution in the

presence of a sideband wave package,

aik z - iw(k s)t
a(t)=11 dkas(ks) e s(C1)

5 2n f s ss

of width Dk . The interaction Hamiltonian in action-angle variables,

derived in Sec. IV.(b) is,

a w

H(J,e;z) - Ho(J) +__rn On(J) dksas(k s) cos [nO ± 6(k )Z.

(C2)

The evolution of the distribution function f(J,e;z), under the

Hamiltonian flow,

de aH dJ aH
dz - ' z , (C3)

is given by,

8f de af dJ 8fa 7+ dz e + dz J- o . (C4)

We separate the distribution f(J,e;z) into a slowly varying part fo(J;z)

= < f > and a fluctuating part Sf(J,O;z) = f - < f >. The averaging

operator is defined by,

< f > 0 L r f
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It is implied in the above definition that the characteristic length for

f0 (J;z) is longer than the synchrotron length L 2 rt/Kb. We then obtain

from (C4),

_f dO 8f dJ af dJ o a [ d f < f3z + dz TO + dz -j z <J - J j (C

Lf L < dJ f>
-Z o 3J dz (C6)

Using Eqs. (C2) and (C3) inside Eq. (C5) and ignoring the last bracketed

term in the right-hand side we obtain,

a n On- (J) as(k [nz 6(k)+
f - - dk 0 ei + cc.

2y r n=iJs n Kb(J) ± 6(ks) aJ (C7)

Substituting (C7) in (C6) we have,

1 o (2rt) 2  dqs dA aw 2

(2n) j _wo 0  0f 4

x L i E i m Om+(J) as(qs) e -

_ 0 n ±(J)as(ks) afo i[ne + 8(ks)]E e - cc ,
=0 n Kb(J) ± 6(k) -J

where again 6(k s) = (kw/k r)[(ks-kr )+icj, E = Im(ks). Integration of the

right-hand side of (C8) over 6 yields,

de .. ,i
2  10 n- 12 as*(qs) a s(k s) e

+ 6(q) - 6(k s)Iz

d6{ =nOE~( e I-ccI
2n n=O n Kb(J) ± 6(ks )

(09)
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Spatial integration yields

k
±- [(qs- ks) + 2 i c]z

dz a*(q S) a (k S ) e-kr 2rE V(q z) 6(q k
L 0 sS S

(CLO)

where Wk(z) = a 2(k ,z)/L is the spectral energy density. Substitution

of the results (C9) and (CIO) back in (C8) yields,

af a af

T= T D(I) T

where

kD a 2 kr c n2Wk (z) Ion
-±12  )

Dq(J) - r -v -2 dk s  krs2 2 C1

4 n=r2 kw  r n Kb(J) ± (ks- k ) +

In the limit of small growth rate e/ks << 1, (Cll) is reduced to Eq.

(42), Sec. IV,

Ic a2

k r kr aw IQ -* 12 ok V (z) 6(k-k) , (C12)q 4k -2 EIn k S- n-D(J -4kwy i-r =0 -~ s

where kn = k r + 2yz2kw*
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APPENDIX D: SUMMATION OF FOURIER COEFFICIENTS

We present a general technique of computing sums of the form,

on [ 2Qn(j)1  (j) 12 (Dl)
n=O

The quantities n±(J) are the Fourier coefficients from the

decomposition of the phase exp[i*(J,e)] of the perturbation into

harmonics of the angle variable e for the unperturbed system. The

knowledge of the individual 0 n±(J) is not required in the computation.

The technique should be applicable to a wide class of integrable

systems experiencing a periodic perturbation with only minor

modifications. In our case n ±(J) are defined by,

W

Cos [*(J,e) + 6sz] = Q Q (J) cos(nO + 65 Z) + 0-(J) cos(nO - 6 z).
n=O s

(D2)

Closed forms for Q ±(J), obtained in Ref. 2 for the case of an

untapered wiggler, appear in Appendix A.

For untrapped particles we have,

02m = 02m ' 02m+l = ± 0 2m+l"

Setting s = 0 in (D2) and differentiating in 0, we obtain,

a cos 'J'o
-- Cos - sin*= - E (2m) 2Q2m sin 

2m, (D3a)
m=1

49



sin 1 - cos q (2m+1) 2 02m+1 cos!(2m+1)8J.2 .2m1(D3b)

Squaring the right-hand sides of (D3a), (D3b), adding them and

integrating over 9 we obtain,

1 n [lon~I2  In- 2] = 2 ' n2 1n 2=I (d %)2 (cos2  + sin 2 *) dO

0( N)

Applying the same procedure to untrapped particles we obtain,

a+
0s = sin % =-E n(Q + 0 sin nO, (D5a)m=l

-esin 5 cos d - En(0 n - ) cos n8 , (D5b)
m=O

and, after squaring, adding (D5a) and (D5b) and integrating over e

n2 ( IQ n + 2  Ion - 2) =E ( IQn+ +  n- IQn+ - Qn-I2 )
n=0 O n=O 2n

t(D6)I (d_*_ 2 (Cos2 %P + sin2 *) de- 2 2

Thus in both cases,

n= 2 1j+2 + 1n2) =L (dE In+ In1 n q0 d9 (D7)n=O 0o

Using the definition Eq. (11) for 0(+), and Eq. (8) for the unperturbed

Hamiltonlan (as = 0 ) in the right-hand side of (D7) we have,
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1J 2 (d.)2 d el2 J'~mn d %

0-*mn ( 
(D8)

2k 1 Yr H°(J) awar  )1/2
Y x .cos*J + * sinqjir]

Yr'bo) t *mn kw k w

The last integral in (D8) is by the definition (11) the action J for

the unperturbed Hamiltonian, yielding the final result,

Sn 2 ( 2 + 12) 2kw
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TRANSFORMATIONS OF GAUSSIAN LIGHT BEAMS
CAUSED BY REFLECTION IN FEL RESONATORS

1. INTRODUCTION

Free Electron Lasers (FELs) operating as oscillators 1- 7 require the

trapping of light pulses between systems of mirrors (resonators). 8 '9 These

pulses are repeatedly amplified via synchronous interaction with electron

pulses passing through the wiggler. The radiation produced by the

stimulated emission is confined within a narrow cone along the beam axis.

Therefore, the vector potential can be represented as a superposition of

Gaussian modes. Those are the free space eigenmodes A mn(r) = e mnA mn(r)eikz

where e is the polarization vector, of the paraxial equation,
I0

2aAV2A - 2ik T = 0. (1)

Equation (1) is the kI << k = w/c limit of the exact wave equation. The

simplest oscillator configuration is that of an open resonator with two

opposed identical mirrors. The vacuum eigenmodes for this arrangement are

also expressed in terms of the paraxial eigenmodes. Their detailed

structure can be described in terms of either Gaussian-Hermite functions in

rectangular coordinates, or Laguerre functions in polar coordinates. In

both representations all the eigenmodes with given wave number k are

characterized by two independent parameters: the waist w = (2b/k)1 / 2 and

the curvature of the wave front 1/R = z/(z 2 -+ b2 ), where z is the distance

from the waist position and b is the Rayleigh length (Fig. 1).

The electron beam is an optically active medium that alters the

characteristic parameters of the radiation after each passage. During the

build-up period the modal content and the structure of the light pulses

inside the oscillator will change. A numerical method has been developed

recently optimizing the representation for the amplified radiation. In the

source dependent expansion l11 12 the waist size and the curvature of the

elected modal basis is tailored according to the driving source term. That

Manuscript approved August 8. 1988.



minimizes the number of modes required to describe the light beam. In

general, the curvature and waist size of these modes does not match the

curvature and waist of the vacuum eigenmcdes for the resonator. Therefore,

the transfer matrix for a given mirror must be known for arbitrary incoming

modes. This need stems from computational as well as physical reasons.

The knowledge of the cavity reflection matrix R, together with the gain

matrix G through the wiggler, is necessary in determining the potential for

steady state operation.

The study of the reflection matrix must include the effects of

deflecting the light beam, in addition to finite mirror size and curvature

mismatches. During high power operation, grazing mirror incidence may be

necessary to avoid exceeding the dielectric breakdown limit for the

reflecting surface. Also, in case of a high per-pass gain with optical

guiding, the spot size for the reflected radiation could be much larger

than the incoming. In two mirror resonators, the reflected radiation could

then damage the wiggler. Therefore, ring resonators, including three or

more mirrors, must be employed for the deflection and recirculation of the

light pulses.

We are interested in cases when the reflected radiation remains

focused along some direction z0 making an angle * with the incoming z..

Then the reflected vector potential will also be expandable in free space

eigenmodes Apq (r0 ) of the paraxial equation in the new direction. The

mirror surface generating focused reflection in the desired direction can

not be arbitrary but must be appropriately defined. The angle of

deflection 0 will enter the equation defining the mirror surface. The

other surface parameter, namely the curvature I/Rm , is a free parameter.

It determines the curvature I/R for the outgoing modes given the curvat-,e0

1/R. of the incoming modes. In case of reflection by an arbitrary surface,
1

2



the scattered radiation cannot, in general, be covered by the paraxial

modes that do not form a complete set in three dimensions.

A single incident mode A mn(ri) will, in general, be partially

reflected into different modes Apq (r0 ) where (m,n)*(p,q). This is caused

by the deflection of the light beam, the finite size of the mirror and the

curvature mismatches. Reflection into other modes will affect the

interaction between the electron beam and the radiation in a number of

ways. First, the rms radius of the light beam will change, affecting the

matching beam condition. Second, the light pulse will spread axially

because of dispersion among different modes, since the phase velocity

depends on the modal number (m,n). Third, different phase shifts among the

various modes during reflection may render these modes out of phase after a

number of bouncings off the resonator. For the above reasons the fraction

of radiation scattered into other modes will contribute to the losses in

FEL oscillators.

The method for obtaining the reflection matrix is outlined in Sec. II.

The definition of the appropriate mirror surface is given in Sec. III. In

Sec. IV the integral expressions for the matrix elements are derived. An

analytic expansion in powers of a small parameter (of the order of the

diffraction angle) is given in the same section. Some limiting cases are

examined in Sec. V. In Sec. VI the reflection of the fundamantal mode

(0,0) is studied in detail. Section VII deals with cross-coupling effects

among the vector components of the radiation.

3



II. OUTLINE OF THE METHOD

The free space eigenmodes A mn(r) of the paraxial wave equation have

the general form

i k x2 2 12)

A (r) U (r;W) iz + k(x 2 + is mn(z)
mn mn 2 1/2 e 2R(z) e (2)

The first exponential in (2) contains the rapidly varying phase on the

wavelength scale X = 2n/k. The wavefronts are spherical with radius of

curvature R(z) given by 1/R(z) = z/(z 2 + b2). The spot size of the

radiation envelope is W(z) = w(l + z2/b2) 1/2, where w = (2b/k)1 /2 is the

waist, and the distance z is measured from the position of the waist. The

amplitude squared of the mode drops by 1/2 over a distance equal to the

Rayleigh length b (also known as confocal parameter). Most of the

radiation is confined within a cone parametrized by the diffraction angle

1/2
ed = W/z = (X/b I) . The structure of the amplitude profile umn(r;W)

depends on the elected coordinate system. Umn (r;W) contains the slow

spatial variation equivalent to a small wave number perpendicular to the z-

direction. Higher modes correspond to an increasing effective kic,

producing the slow phase shift expressed by the term exp [ismn (z)]. For a

given k, the mode is completely defined by the two independent parameters R

and w (or any combination of two out of the four quantities R, w, z and b).

The geometry of the reflection is illustrated in Fig. 2. The

subscripts i and o denote the coordinate system used for expressing

incoming and outgoing modes. ri is defined with the zi axis along the

direction of incidence and r has the z axis along the direction of

reflection. The origins are displaced from the mirror center by 1i and 1°

respectively, where I. is the distance of the minimum waist w. for the
1 1
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incoming radiation and 10 is the distance of the minimum waist w for the

reflected mode. A third coordinate system rs with the origin at the mirror

center and zm aligned with the mirror axis will be useful in the

computations. Underlined quantities rip Ko and r stand for the mirror

surface coordinates in each reference frame. The transformations among the

various frames are defined by

x. = x So± - z sin± x = x Cos + z sin
1 2 s 2' o s 2 s 2'

Yi = Ys, (3a) Yo = Ys' (3b)

z = z cos + x s +l zo = z cos _x sin +i 2 5 si 2~ s 2 s 2 0

We consider incoming radiation of given curvature and of arbitrary

amplitude profile A i(ri), consisting of various modes (m,n) with the same

Ri(z). If both incident and reflected radiation are expanded into

eigenmodes,

iti(ri) i Umn (ri) iSmn
Ai(r) =e 1 c mn 2 e , (4a)

mm z 1/2

b.1

i 0 (r 0 ) 0  Up (r 0 ) 8pqA(0 e q2e Pq(4b)
A°ro  =e cPq z 0 1/2'

b
[o]

0

where

r 2 2
k2 + (4c)

S= z 2Ri(z) I

5



the relation among the incident and reflected expansion coefficients c inn'

c0  is formulated byPq

c 0= R c , (5a)

or

o = mn i
cpq E R c in' (5b)

pq pq n
m,n

where Rmn are the elements of the reflection matrix R.
pq

We examine the case when the mirror dimensions p are much larger than

the wavelength X, X << p (otherwise diffraction rather than reflection

would prevail). We also assume that the angle subtended by the mirror

= p/Rm, where Rm parametrizes the radius of curvature, is small, of the

order of the diffraction angle ed, C - ed c . The v-th component of the

reflected vector potential at distance 1r0 - r0 >> X from the mirror

surface S is then given by

S ikr_- ro1
A o (r ) ik dsr As  (ro) (n • 6r). (6)

S

In Eq. (6) n.Sr is the obliqueness factor where Sr = (r 0 -r 0 )/Ir_-or and n

is the normal unit vector to the reflecting surface. The surface element

ds is given by ds = [z0-f(xoyo)Jdx0 dy0 dz0 where z° = f(xoy o ) is the

surface equation. Equation (6) is the convolution of a source term As(r )

at the mirror surface with the propagator exp(iklr_-r 0o)/Iro-ro, i.e., a

superposition of spherical waves originating at S. The source term As(r0)

isi
is specified from the incoming vector potential A (r 1 ) through the boundary

conditions and the coordinate transformations (3). We will assume a

perfectly conducting s' cface, where the incident and reflected fields are

related by

6



As = -A' + 2 (n • A') n, (7a)

and n is the normal unit vector to the reflecting surface. The second term

in (7a) introduces a coupling among different vector components, caused by

the mirror curvature. This cross-coupling is small and disappears in the

plane mirror limit,

AS = - Ai (7b)(v) - (v), Tb

where Ai and As are expressed in the incoming and outgoing coordinate

systems respectively. Because of the linear superposition principle, Eq.

(6), the cross-coupling contribution can be added separately, and will be

deferred until Sec. VII. In the next three sections we will treat the

reflected vector components as independent scalars, according to (7b), that

corresponds to a phase shift by n during reflection. Most of the

computations will be performed on the mirror surface. To simplify the

notation from now on, we drop the bar ( ) under the mirror coordinates r.

Subscripted quantities such as ri, ro, rs will signify the mirror

coordinates in each reference frame. Unsubscripted coordinates will denote

the observation point in the reflected radiation frame of reference.

WE seek cases when the reflected radiation propagates along z,

contained within a cross section of dimensions x,y << z-z0 . The expansion

Ir-rol = (z-zo ) (1 + [(X-xo)2 + (y-yo) 2]/2(z-z ) 2 replaces the ill

propagator inside (6) with the paraxial propagator in that direction,

A0(r) = ds A(r0) (n • 6r) Uk(r,ro), (8a)

S

7



where

-ik(z-z ) (X-X)2+ (y-yo) 2

Uk (r, ro) - ik e -ik 2(z-z) . (8b)
0

Expression (8) is the approximation of the exact solution (6) to order

[(x-x0) + (yyo) ]/2(zz) C 2. It is valid provided the surface S

produces focused reflection along the desired direction. Otherwise the

paraxial limit will fail to encompass all the radiation contained in the

original expression (6). The geometry of the mirror that is compatible

with the above approximation will be obtained during the computation of the

reflection matrix.

It is known that the profile of a given eigenmode Amn (Xoyo ,z0 ) at z0

is generated by the propagator Uk(r,ro) acting on the mode Amn(x,y,O) at z

= 0. The inverse propagator U_k(r,ro) therefore reproduces A mn(x,y,O) from

A mn(x oyo ,z ),

x2 y 2f ( x ,y ,z ) _i k [ z 0+ 2 + Y 0 2

dx0dy0 0 02R(Zo) ]Uk(r,r ) U mn(X,y,O). (9)

S + bo2] n
0

This suggests multiplying and dividing the integrand inside (8a) by

expiti(r 0  j + z 0 2/b0 
2 11/2J , recasting (8a) in the form,

(r) i1 (r ° ) -o(o

Afd(r) = s e S(r ) e 0 U_k(r,r 0), (10)

where the source term S(r ) is,

S(r) = A i(r()i (n ar) [1 + (11)

8
o4



and the phase term A(r = i[ri(ro)] + fo(ro) is given by,

x 2 (r) + yi2 (r )  x 2 + Y 2]

Mr) k [zi(r o ) + z° + 2Ri(ro) 2R°(r j. (12)

The phase L(ro ) depends on the angle 0 through the coordinate

transformations Eqs. (3).

The term exp[iA(r )] is varying rapidly, on the scale of the

wavelength X. Therefore, its convolution with the slowly varying source

term over an arbitrary surface will be vanishingly small. In general, this

corresponds to radiation scattering where only a small fraction of the

incoming radiation is reflected along the considered direction *. The

integral (10) will be finite only when it is possible to satisfy the

condition (r0 ) = constant over some surface S. If, in addition, S is much

larger than X, expression (10) will be finite only within a narrow angle 6+

around *. This guarantees that the reflected radiation remains focused

along that direction. Therefore, a condition that the exact reflected

radiation (6) be fully covered by the paraxial limit (10) is that

A(r 0 constant, (13)

along the surface S. Accordingly, the optical path is the same along the

rays connecting an incoming wave front with its mirror image (reflected)

wave front.

Requirement (13) defines the appropriate mirror surface z0=f0(xoy0 ; )

for reflection in the elected direction. Assuming that f0 is found, we may

express z0 in terms of x0 , YO and use the constancy of A(r0 ) over S,

reducing (10) into

A°(r) = II dxody0 O(XoyO ) e -i't 0 U_k(r,r). (14)

S

9



(XoY o ) a SixoyoZ0 (Xyo )] is fully expanded in terms of Umn (xoyo ) that

form a complete set in two dimensions,

SR u mn(xYo ;W ). (15)
m,n

The expansion coefficients Rmn for Gaussian incoming radiation of

arbitrary profile a(x0,yo) are given by

R n= jjdxodyo a(xopy ) u mn(x 0,y0 ;W 0 )/ Jdx 0dy ou mn (x 0,y0 ;W 0). (16)

The radiation spot size W at the location of the mirror center is a free
o

parameter, yet to be specified. Each choice of W0 generates an equivalent

representation for a(XoYo).

Upon substituting expansion (15) inside the integral (14) and using

the property (9) for the inverse propagator Uk, the reflected vector

potential assumes the final form

o°x ,) mn
(xyO) = E R u mn(X,Y;Wo), (17)

m,n

where Vo (z) = w (1 + z2/b 2)1/2 w = (2bo/k)I/2 . Expression (17) is a

complete decomposition of the reflected radiation into paraxial eigenmodes

for incident radiation of arbitrary profile. Therefore, condition (13)

that defines the mirror surface is sufficient for the full reflection of

paraxial (Gaussian) incoming light beams into paraxial beams only. The

fraction of the electromagnetic flux incident on the mirror is conserved

after reflection. If, on the other hand, (13) is seriously violated, the

paraxial modes are inadequate to include all reflected radiation, and the

incident flux is not conserved by expressions similar to (17).

10



III. MIRROR SURFACE.

To obtain the equation for S we express all quantities inside (12) in

the mirror coordinate frame applying the transformations (3a) and (3b).

Using the scaling xs/Rm - Ys/Rm sc 1, zs/Rm - s2 we obtain from (13)

zs  1 [ cos 2  y 2 ], (18a)

m 2

where

I 1 1
R -2R + 2R. (18b)

m 0 1

Equation (18a) is the analytic expression for a paraboloid surface.

Rm parametrizes the mirror curvature, being positive or negative for a

convex or concave mirror respectively. The surface is reflection symmetric

with (zx)5 and (zy)5 as the symmetry planes; there is no rotational

symmetry around z . Surface (18a) can also be approximated, to second

order in (xs/RM) 2, (ys/RM)2 by hyperboloids or ellipsoids defined by

2 )2cos 2-x 2 2 2Cos2 2' (19a)
Zs Rcs .- s 2 - 2 2 2

+ cs l2 x2Cos 2 1 = R m~s I (19b)(Zs m 2 s 2 Y = m os 2"

All the surfaces become spherical in the limit of perpendicular incidence

= 0, and plane mirrors when Rm -. Using the definition of the curvature

for the paraxial modes, Eq. (2), and the fact that R >> b in cases of

interest, we obtain from (18b)

1 2 1
R - R R.'O m 1

Relation (20) defines the curvature of the reflected modes from the

incoming mode curvature and the curvature of the mirror.

11



Equations (18)-(20) imply that

A(rs) a 6jri(rs),r 0 (rs) 1 = const. + O[ kp , (21)

where p parametrizes the mirror size. A more complicated surface equation

(higher than quadratic in x, y, z) is required to improve the constancy to

a higher order. In the next section the reflection matrix will be computed

by expansion in powers of W 0 /R p/R m Since kp >> 1, the approximation

(r s ) =constant is satisfactory for a first order expansion as long as

p/Rm  1/kp. In case that p/R > 1/kp, A(x sy s ) is a slowly varying

function over S. Large mirrors require the inclusion of the phase slippage

term exp [iA(xsys)] next to the source term a(xspys) in Eq. (16).

The unit vector n normal to the mirror surface is given by

±f x. 1 Ys - z~ '
s2 F x + ~ -Y + +m cos m R cos

where f (xs Y5,s z s) is given by Eq. (18a).

12



IV. COMPUTATION OF THE REFLECTION MATRIX

According to the definition (5b), the Rmn element of the reflection
pq

matrix R is obtained from the source term pq(x oyo) inside (14) generated

by a single incident eigenmode Apq [ri(ro)]. The integration is performed

in the mirror-aligned coordinates, taking advantage of the existing

symmetries. The coordinates ri and r0 , defining the incoming and outgoing

wave functions, become explicit functions of xs, YS through the

transformations (3). The surface equation (14a) is used to express z in

terms of (xsys). The mirror boundary

x 2Cos2  + Ys2 = P2 (22)

is defined by the intersection of the infinite surface (18a) with the plane

z = const = 2p2cos 2( /2)/R . After the above manipulations, the

reflection matrix elements take the form

,-Z2(X s  1/2

1 z 02(x ys
2

Umn [ Umn (xsys )u pq(x ,ys ) b0  iL(xsy s )
Rpq xsdYs 12 1/2 z e

S 1 + 2 i+ 1 b.

L i

i6q(xY) - ns (x yx xs sin
x e pq Los (i - sin R2 J,2(23)

2 m 2 R J

where

U m(xsys) aUmn[xo(xsYs)' ] Upq (x5sy) a Upq[xi(x 5 ,YS), YS].

(24)

13



22r
Expression (23) is correct to order p2/Rm 2o

It will be seen that R, as given by (23), depends on four parameters

R n R(*, a, i; E). (25)

is the reflection angle shown in Fig. 2. a is the ratio of the incoming

to the outgoing spot size at the mirror, a = Wi(li)/Wo(lo). 4 = P/W°

parametrizes the mirror size compared to the radiation spot size. E =

Wo/Rm scales as the diffraction angle ed = W0/10 multiplied by the

curvature mismatch Ro/R m between the mirror and the radiation wavefronts.

The spot size W enters as a free parameter because only the curvature /R0 0

for the reflected modes is specified by the mirror geometry. Since many

combinations of W and 10 apply to a given curvature according to paragraph

Eq. (2), an additional selection rule for W is needed. Note that W0 does

not have to match W.. This is obvious in cases when the mirror size p is

smaller that W.. Each value of Wo defines a complete set of modes for the

reflected radiation and an equivalent representation for R.

Parameters *, a, and p can be arbitrary. In most cases of interest,

however, & is small, & << 1, of the same order as the diffraction angle ed.

The analytic computation of the matrix elements is carried out by expanding

the integral (23) in powers of &,

R = R(O) + & R(1) + & R(2). (26)

Each representation of R is tied to the choice of the basis functions

umn (r). The eigenmodes umn (r) are specified according to the coordinate

geometry. In the next subsections we derive R in Gaussian-Hermite and

Gaussian-Laguerre representations. For simplicity, it is assumed that

A(x sy s) in Eq. (23) is constant, i.e., kp (p/R m) << 1.
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(a). Gaussian-Hermite representation

In rectangular coordinates (x,y,z) the functions umn (X,Z;W) are

given by

2 2_ x+y

Umn (X,y;W) = amnm H ) ) e (27a)

where H m , Hn are the Hermite polynomials and amn is a normalization factor,

setting the total electromagnetic flux carried by the mode equal to unity,

a 2 n 2m+n min) - (27b)
mn -

The corresponding slow phase factor & mn(z) in Eq. (2) is

mmn

6n(Z) =(m + n + 1) n (-). (27c)

Substituting inside (23), expanding in & and performing the Integrations,

Eqs. (23)-(26) yield

I mn

R mn (0)Cmn e Wpq Imn (28a)
pq pq pq

i mn

Rmn() = Cmn e pq tan ± + P N , (28b)
pq pq

where C mn is a normalization factor
pq

W -1/2
cmn 0 o 2m+n+p+nq m-nWp. . (28c)pq lW. I m(~ ~ .

and the phase mn is expressed by
pq

pqmn = (p+q+l)tan- ) - (m+n+l)tan- 1 ( + k(li+lo). (28d)

pq 1 0

15



Xs Ys 2 +1Y 2

Im n  =dX [dY Hp(aX)Hq(Y)Hm(X)Hn(Y)e 2  (29a)

Jq n 2a
-X -Y

s s

X s Ys 2 2 2
Mmn =dX FdY HP (X) H(Y)Hm(X)Hn(Y)e 2

-X -Y
s s

(29b)

LO23 2 2Hp(OX) H (X)" i/  2
X + (X + Y _2 (-t L (X2 + Y2

2 i p (a) HMM

X s Ys S t2 +IX2

yn 2
N np q  JdX dY- (X) Hq(Y)Hm(X)Hn(Y)e 2 (X 2)pq jj= Hp( q . (29c)

-X -Y
s s

In the rescaled variables X = cosf/2 vi'x s/W , Y i2y 1s/Wo , the surface

2 2 2 2
boundary is given by Xs  + Ys /W0  The lowest terms can be computed

directly. The matrix elements are computed, to first order in E, in

Appendix A for large size mirror and a = 1.

(b). Gaussian-Laguerre representation

In cylindrical coordinates (r,e,z) where tane x/y, r = (x+y /2

UP(r,O;W) take the form

[cospe l - p 2  1 2r
2

uIP(r,e;W) = ap  2 Le 2 W 2  (30a)
m sinpO) m W

where +p(-p) signifies cosine (sine) poloidal dependence, ap is given bym

1/2 1/2

a -~K (~2 M. 1/ (30b)
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and the LP are the Laguerre polynomials. The corresponding slow phasem

SP(z) in Eq. (2) is,

SP(z) = (2m + p + 1) tan -1 (). (30c)

The transformations among polar coordinates representing the various

reference frames are

z 1/2
r r [I - sin 2e sin 2  

- 2 sine sin I cos I

r °  rs [I - sin 2e sin 2  + 2 zs sin OsSin± cos , (31a)

z sin
tan e = cos tan rs  2

i2 s r5 CosO

z sin
tan = cos I tan e + s 2 (31b)2 s r cos e

s S.

The mirror surface (18a) is expressed in polar coordinates as

r 2  sin2e Cos 2 1 + cos2e
ss

zs 2R mCos 2(31c)
co2

Applying similar computational procedure as in the previous subsection we

obtain

X
pq = Cpq e~p Vq Ap()+ p( pq X +i Pq

mn mn mn 2 m '

7a)

17



- 1q [ m! n! cc2 1/2 (32b)n 2n i+P)I (n+q) ] I

and the phase 4pq is expressed bymn

pq -1sx r e 1
(2m+p+l) tan -  - (2n+q+l) tan -1( k(li-l) (32c)

1 0

The integrals Dpq , EPq' UPq, vPq and Pq are given by

m n n in

2n cos p[eK(OS)] cos q[ao(es)]DPq(X) =J de 2 (33a)

m 1 - sin 2 sin 20m

pq( 2n sin 0 cos P[i(O s)] cos q[e0(9s)]
E( f d% '(1 -sin 2s 2e ) 3/2 (33b)

a ( -sin 2 sin

E q 2+1

U pq(X) = t 2()2 Lx 2 X) f~ L q (X) ex (33c)

Pq 1 L(+rL2(CX) nq)

mn 2 L (2XX) L (X) ( 3c'
nn

(cc2 X) 2 2 Lp( Ot2 X) L q(X) e 2 (33d)

. q+1 (2+1

W Pq(X) = (2X)2 X 2 LP(c 2X) L q(X) e 2 (33e)mn- m n

In obtaining (33a) - (33e), X was defined by X 11-sin2 (/2)sin 2er 2/2W0 2

2 2thus, according to (22) and (30), the boundary X5  is X p = 2p/ . The

lowest order terms for the first few elements are given in Appendix B for

arbitrary deflection angle 4 and a = 1.
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V. LIMITING CASES

When the mirror radius tends to infinity (/R m- 0), or in cases ofm

vertical incidence on the mirror (* = 0), the higher order corrections in

the reflection matrix R disappear,

R = R(O) (34)

in both representations. The nondiagonal elements in R stem from the

finite mirror size only. If, in addition, the mirror size is very

large, v >> 1, it is appropriate to take Wo = Wi as best representation

for the reflected radiation. The x = 1 limit yields

Rmn =mn (35)
pq pq

Thus, in case of large curved mirror and vertical incidence, or large

plane mirror and arbitrary incidence, the reflection matrix is the

identity matrix.

The case o = 1 is of special interest for arbitrary angle of

deflection * and mirror curvature 1/R, as it will be explained in the

next section. For finite mirror size p > Wo, ( u > 1), there exists

zeroth order non-diagonal terms inside R(O). Since R(O) is independent

of the angle of deflection *, the finite mirror size yields the dominant

contribution to the reflection into modes different than the incoming.

The effects of the deflection of the light beam enter to first order in

E, R(1), or higher. In the Hermite representation the elements Rmn (0)
pq

couple mode combinations with m + p = even, n + q = even. The elements

with either m + p or n + q odd vanish because of the even/odd symmetry

of the Hermite functions.

As the mirror size becomes very large and the limits of integration

in (23) are extended, the orthogonality among the various modes s S)

becomes effective. The off-diagonal terms in R(0) become comparable to

19



the first order corrections roughly when 1/u2  - d . At the limit

4 all the nondiagonal elements of R are reduced to order E or higher,

R = Rmn(l) + 0(&2)p m * p, n 0 q, (36a)
pq pq

and the only matrix elements of zeroth order in & are the diagonal

Rmn = Rmn (0) +(2) (36b)

mn mn

in both Hermite and Laguerre represenations. The lowest correction in the

diagonal elements is of second order &2, while the first order contribution

disappears. This is consistent with flux conservation during reflection in

case of large mirror.

In obtaining Eqs. (28) and (32) it was assumed that A(xsy s ) is

constant over S. According to (21) the variation of A is parametrized by

& = (kWi 2/R m ) &. When (kWi2 /R M) > 1, becomes of order & and the

effects of the slow phase slippage must be retained in (23). This effect,

known as spherical aberration, causes additional corrections R*(1), of

order E

R = R(O) + & R(1) + & R (1) + .....

Spherical aberration does not disappear at the ]! t of large mirror

size, as opposed to the effects discussed so far. In fact, when * > f,

it places a lower limit on the off-diagonal terms in the reflection

matrix,

Rmn > &* Rmn(1) *

pq - pq

Perfect reflection, requiring 0 = , is possible only for plane mirror (R

4 ) of large size.

The superposition principle can be used to describe reflection from

more complex mirror surfaces. In case of a mirror with a hole the surface

integral (14) over S is expressed as fS = JSl - fS2 where SI is defined by

the mirror exterior boundary and S2 is the surface of the hole. The total

20



reflection matrix R is given by R = R(SI) - R(S2) the difference in the

reflection matrices associated with mirrors S1 and S2 respectively. The

transmission matrix T through a screen with an aperture of area S is given

by T = - R, R being the reflection matrix for a mirror matching the

aperture S. The transmission matrix for radiation diffracted behind a

finite size mirror is given by T'= 1 - e R where 1 is the identity

matrix.
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VI. REFLECTION OF THE LOWEST ORDER MODE

The computation of all the truncated integrals for finite mirror

surface is nontrivial. Most applications, however, involve the (0,0)

lowest order mode as the dominant mode in both incoming and reflected

radiation. The strategy here is to compute the element R0 0 of the00

reflection matrix first. Then the waist for the reflected modes W can be
0

selected so that it maximizes R0 0. The optimum representation condition00

aR00
a = 0, (37)

puts the maximum amount of the reflected radiation in the lowest order mode

(a different mode and matrix element may be chosen, if desired). It is

pointed out that (37) does not improve the properties of the reflected

radiation. It enables one to choose the best representation in terms of

minimizing the coefficients of the undesired modes for the scattered

radiation. Once W is fixed by (37) then the exact location and size of0

the waist(s) for the reflected modes is determined by solving the system of

equations

Ro 1 2+b 2? (38a)

o o

Wo=wo [I1+ b 2J] (33b)

The element R is identical in both representations since the lowest
00

order mode u0 0 is the same in rectangular and cylindrical coordinates.

Performing the integration (29a) yields R0 0 to first order in
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R 00-= 2  1 - e- )12] + 0(&2) (39)

Note that the first order term vanishes and the lowest correction is of

2
second order in 62. The exact dependence on the mirror size p is

parametrized by P.= P/Wo, while a = W'/W 0  parametrizes the ratio of the

incoming and scattered radiation spot sizes at the mirror. The optimization

condition aR00 (0)/8m = 0 yields, = 1 + exp[-(l+a 2 )u2][2u 2 4 +(2u 2+l)a 2-1.
00

In case that the mirror cross section is much larger than the spot size of

the incoming mode, p >> 1, a - 1 and the reflected spot size at the mirror

matches the incoming, W = W..0 1

Large mirror size is desired to maximize the total reflection

coefficient. For incoming radiation of unity electromagnetic flux

P = i2 = E Ici pq 2 = 1, the total reflection coefficient P =P

equals the reflected flux Pot

poIo2 I~i 2 ZI mnci 12. (40)
Po = c°o12 = I R • ci I' = E E IRpqn c 1P2q(0

mn pq pq pq

In Fig. 3 we plot R for the lowest order incoming mode as a function of

W' = cos(*/2) p/W0 = cos(*/2) p. u' parametrizes the size of the mirror

projection into the plane perpendicular to the incoming radiation

direction. The incoming radiation has a wavelength X = lp (10-4 cm),

waist w. = 2xlO-1cm at distance I. = 1.8xlO2cm from the mirror and
1 1

radius of curvature (at the mirror) R. = 8.95xlO 3cm. The mirror has a
1

radius of curvature R = 8.95x10 3cm, yielding reflected modes of R =

8.95x10 3 (again 10 and w0 depend on the choice of W0 
). In Fig. 4 we

plot the magnitude of the reflection coefficients IRp0 1 of the lowest
pq

order mode (0,0) into the firstr 25 modes (p,q) with p q 5, as a

function of u'. The deflection angle is 900 and the ratio of the spot
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sizes is 1. Increasing mirror size maximizes the diagonal element and

minimizes scattering into other modes. The spherical aberration was

retained inside (23) in evaluating the matrix elements. Its effect is

small, sin,3 for the above parameters = 0.28&, and a good agreement

is observed with the constant A theoretical limit. In particular, the

dominant off-diagonal terms couple the (0,0) incoming mode to the (1,0),

(3,0) and (3,2) reflected modes only, according to the selection rules,

Eqs. A(10). Comparing Figs. 3 and 4 with the next plots shows that the

relative mirror size to the radiation spot size is the most important

parameter to determine the reflection into other than the incoming

modes.

In Fig. 5 we fix the mirror size u' = 2 and the angle * =900 and
00vary the spot size ratio a. The best representation, maximizing R 0

and minimizing R0 0 is obtained at a = 1. However, for small mirror v' =
pq

0.66, the maximum for R00  occurs at c 0.70 (see Fig. 6). Radiation

reflected off mirrors smaller than the incoming spot size is best

described by outgoing modes of reduced spot size W < W.. Also note0 1

from Fig. 6b that for small mirror size the total power reflected into

the first 25 modes never exceeds 80% of the incoming flux; even with

many more modes N remains less than 1. In Fig. 7 the reflection

coefficients R00 are plotted as functions of the angle of deflection *
pq

for fixed a = 1, V' = 2. It is seen that, for sufficiently large

reflecting surface and good choice of the spot size W0 , the reflection

matrix is not very sensitive to 0 and the off-diagonal terms remain

small.

The main conclusions so far are summarized as follows. When the

mirror size is > 2.5 times the incoming spot size, the fraction of the

incident power scatterd into different modes is of order &2 for
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kW2 i/Rm < 1, or ( *)2 for kW2 i/Rm > 1. This holds for a wide range of

deflection angles +. It will be shown in the next section that cross-

polarization effects are of the same order. In most applications both

*
and are less than 10-2 To this end, scattering losses will be

smaller than the losses caused by the finite reflectivity (i.e.,

absorption) by the mirror, for most dielectrics.
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VII. CROSS-POLARIZATION EFFECTS

The curvature of the mirror surface produces a cross-coupling between

the transverse components of the incoming and reflected radiation.

Inserting expressions (21) for the normal unit vector to the mirror inside

the boundary conditions Eq. (7a), the full source term

A (A , A ys A zS) for an incoming wave Ai = (A xi, A y, 0) is given by

As -A + 2 Ys Ay1

x x 2 R ym

~s i
s IA Ys i

A =-A Y + 2 tan 2 - Ax
m

AzS 2 cost A i + 2 Ys (41)
z 2 R x Rm m

In the above relations, the components of Ai and As are given in coordinate

systems aligned with the incoming and outgoing radiation, respectively.

According to (41) the reflection of a plane polarized wave generates

components polarized in every direction, including A . These crossZ

polarization effects enter to order & and result in a small rotation of the

polarization angle.

The radiation steming from the A component will propagate

perpendicularly to the direction of interest 2 and escapes the resonator

as pure reflection loss. The relation between the incoming and reflected

transvecse components, including cross-polarization effects, is now giveii

by

c :lIc:;] (42)

The matrix R has been computed in the previous section. Substitution
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of the additional cross-terms in Eq. (41) inside the propagator integral

(6) yields

ms ms mn

(xy)pq = (yx)pq pq

where

Sz2(X ,y ) 1/2
- + 2

0 mn Iidxsdys 2tanY s Umn (xsYs )Upq (x stYs) bo0
pq is 2 R m [ /2 1/2 zi2 (

0 "

i8q (xS - imnnX s [cost 1(1- Ssin ~s 2  2)]

(43)

In Gaussian-Hermite representation, we obtain

mn
0 mnI) = V2, Cmn e pq tan I Gm n , (44a)
pq pq 2 pq

with

xs Ys _2.i(X2+y2

Gmn = fdX fdY Hp(aX) Hq(Y) Y Hm(X) Hn(Y) e 2 . (44b)pqn
-x -Y

s s

In Gaussian-Laguerre representation, we have

x

Qpm(1) =/2 sin f dX GPq(X) BPq(X), (45a)

where -2 q+1_ c 2 +I X

GPq(X) = ( 2X)2 X 2 Lp(O 2 X) L( X) e (45b)
Sm n - -2
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and

= dO - (45c)

o 1 - sin 2  sin 2 e

In both representations, cross polarization effects enter to order I. In

case of vertical incidence ( = 0) with arbitrary curvature 1/Rm, or plane

mirror (& - 1/Rm = 0) and arbitrary incidence *, 0 goes to zero.

Transverse vector components are reflected independently of each other in

these two limits. Some of the elements of 0 (in both representations) are

given in Appendix C for large (p >> Wi) mirror.
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Appendix A. Computation of the Hermitian Matrix Elements.

The integrals (29) will be evaluated here in case the mirror size p is

much larger than the incoming mode spot size Wi, p cos #/2 >> W. Then the

limits of the surface integrals can be extended to infinity, and the spot

size for the outgoing modes W° matches that of the incoming at the mirror,

i.e., o = 1. We use the notation

X2

*n = e Hn(X), (Al)

the recurrence relation

H (X) = 2n H n_(X), (A2)

and the orthonormality properties

f dX *n(X)*m(X) = 2n!'jr 8m,n' (A3)

J dX *n(X) X *m(X) a <X>m,n = -F (2n-lnISm,n-l + 2n(n+l)16m,n+l),

(A4)

f dX ,n(X) X2 *m(X) a <X2>m,n

= In {2n-2nm,n_2 + 2 n-1 (in+l)nl
8m,n + 2n(n+2)6m,n+2}, (A5)

to obtain

I np q = n 2 m+nm,
. 6pm6 q,n, (A6)

M mn .- 3 <X> I 2 nnt 6,,pq pM qn
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-L.[2k<X 
2>p, - 2m <X 2>m ~ p] ( 2 n n!)8q

i [2k 2 mm m 2m1 (M-1)!& <Y2> 04 L nS- mm p,m-iJ 2~

m n 1 b.iR mb R ml < > (V n n l &
pq rtmnJR. + (pq )r nR)q,n (8

Inserting expressions (A3)-(A5) into Eqs. (A6)-(A8) we obtain

Rmn () 6 (A9)
pq p,m q,n'

R mn (1) =(AlO)
pq

tan-t {{2(J1/2 + I2(VJ 3/2 - 1 + nl l/

2 If- ( 12)" ( mt43-) +- L. (Pji) /2l

L.1 ((m+l)(ln+2)(mn+3)) 1/2  + 1. m~m-W m-3 1/2q

- y 8 [(i) 2 6~~ - ~ + VT k/ 5 8 fl1)ml_ 3l/2 qf

1 [M 12(TO 1/2 6(n1 n2 1/2

- (9+2 p,m+1 .2 p,m-lj 4) q,n-2

bRb R 1/2 1/2
2[(m+n+l) I4m + (p+q+1)~2~ [(-1 +~- J Jl

ii R cf) Sp~- +p,m+1 ql
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R is diagonal to zeroth order. The lowest order correction couples m with

m±1, m±3 in the X-direction and n with n, n±2 in the Y-direction. The

reflection matrix is not symmetric, Rmn * R pq  Also, it is not invariantpq mn

to interchanging X and Y. This means that the modes Umn (x,y) and u nm(Xy)

with m * n are reflected differently.
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Appendix B. Computation of the First Matrix Elements in Laguerre

Representation.

Representation using Gaussian-Laguerre modes may be advantageous in

numerical simulations because fewer Laguerre modes than Hermite modes are

required to represent close-to-axisymmetric radiation profiles with the

same accuracy. However, the computation of Eqs. (33a) to (33e) is not so

straightforward. The integrations (33a) and (33b) for jpq and K p  over the

polar angle es involve trigonometric functions of complicated arguments

)i ()s) and 0 (9s), given implicitly by Eq. (31b). There is no simple

recurrence formula for this calculation. The first few elements are

computed here by expansions in powers of r s/Rm < < - 6. Substituting from

inid (3) rnomaizngr 2 2W2 .2 2(31b) inside (33) and renormalizing r 2/2W 0 = X/(1-sin */2sin 0), one

obtains, to first order in ,

2n
00 1D (o 1-sin s2 2 (BO)

0 22

D O(X) = -I (x)= - X tanI de cos 9 (BI)

O (l-sin 2  sin28)

2it

D11 M = 2 d9 cos2

o 1-sin 2 1 sin 20)2n

-1-1 2 2n 2i

D (X) = cos 2  f de sin2 (B3)

o (1-sin 2 sin2e)2

2n (l-cos2 ± tan 2e)cos 2eD- 10(X) -D 0D -1(X) = _ _ _ X tan Ide
2/ oa (l-sin 2  sin 2 e)2

(B4)
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D- 1(X) = D1-1 (X) = 0. (5)

We only need Epq to zeroth order in E, obtaining

21 cos I sin2 
E-1(X)--E 01() jdO C, 2 (B6)

and

Epq = 0 + 0(&) for (p,q) # (-1,0), (0-1). (B7)

The integrals (B1) - (B7) are evaluated using the formula

n / 2  sin ix Cos Vx = 1 1 1 "+ +2 2)fJ1 dx 2 2J B("+', = f lF(p, P±- , k (B8)

0 (1-k sinl x)p2' 2 2 2'2

where B(p,q) = r(p)r(q)/r(p+q), r is the factorial function and F is the

hypergeometric function. The radial integrations for U, V and V are

performed directly, using the expressions LP(x) for the Laguerre functions

and the identities

e x -1/2dx-=ri,

0

Je-X xn/dx = • ..

0

0

Again, we extend the limits of integration to infinity assuming p cos(+/2)

>> Wi and a = 1. The zeroth order contribution is given by

R 00(0) =1,

Roo(0) =1, 33



RU -() Cos 3F(2,2 ,sin ),

R 11(0) = cos I F(2,'1,2,sin' IJ

00 2 2 2)

R 11. (0 = o I FI,,2sn

The first order corrections in & are given by

I1 01 n i/2R0( = -Roo(1) = 8 sin 2 F(2,1,2, sin2 2),

R01(1) 01 ~ ~ i±i = -R1o() = L) 16 2'000822

01(10

R10() = -R0 1(1) = ( 1) 31/2 in F(2,1,2, sn 2  ),
R10(1 01 () 16 s2 2, si 2

Rl1 (1) =-Rl1(1) = - L9 sin 2 F2,1,2, sin 2)' (Bll)

and

R- 1 i ±[i 1/2 1 F(2,,2, sin 2 1) - Cos 2  F(24.,2 ()=sn1 1 sin2

00 1 2 8 2 2 2~ 2 2)
1_ os 2 1 F(1,,sn2145+i1/
2 S2 2'2 2)[3.5 + i2-1/2J'

R-1(1) = sin 1/ {9 ~n F(2,1,2, sin 2 ±> Cos2 1 F,12 sin 2

+1 os 2± F(1,1,2, sin2 1 [2 - i - 2
-2 2 ~2'2' 2) 1
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10 (1) sin 1/2 3
S i 2(2 2 sin Cos I F(2 92, sin 2JJ

- 2 3 2 5 + i2-  (B2)
Co I F(1,12, si2 1)3. ::B122J

The (-) sign and the lowest row inside the last square bracket in (B12)

correspond to exchanging indices,

Rpq  ,-* Rq p
.

mn nm

Note also that the elements RI- 1n R- In coupling sine and cosine modes, arem n' msn

of order &2 or higher for every m, n,

R- 1 0(-2). (B13)m3n
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Appendix C. Computation of the Cross-Polarization Matrix Elements

We compute here some of the first order cross-polarization matrix

elements in case of large mirror size p >> W. and o + 1. In the Gaussian-1

Hermite representation we find from (44b), using the notation of Appendix

A,

Gmn = 2mm! ln<Y>

pq q,n p,m

= R 2m {2 n-n' Sq,n-l + 2n (n+l) Sq,n+l} 6pm, (Cl)

yielding

Qmn (1) = sin I(Vn- 6 qnn1) }pm (C2)Qpq 2 q,n-I q,n+l I p~m.

In Gaussian-Laguerre representation we only have to compute BPq(X),

Eq. (45c), to zeroth order in &. Applying the methods of Appendix B, we

find

Bpq = 0(&), if p,q # (1,0), (0,1),

de cos2e

B 10=B 0 Ocs2 3/2 (03)

( - sin 2 1 sin 20)

Noting that G (X) is the same as WPq(X) , Eq. (33e), and inserting (C3) and
mn

(33e) inside (45a), we obtain

Q10 (1) = 01 (1) = 0,
10 01

010 (1) 0 01 (1) sin IF, , 2, sin 2

00 00 2 2 '2' 2,9

Q10(1) Q 0 1 (1) - sin F(, 1, 2, sin 2  ,
01 =10 2 2'2 22,sn 2)

010 01 (1 3 1 .2(1) (1 / . sin F1 j, y, 2, sin 2  (C4)
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Appendix D. Small Aperture Limit

We have seen in Sec. V that in case of mirror surface S1 with an

aperture of area S2 the reflection matrix is given by

R(S;W 0) = R(S1;Wo ) - R(S2 ;Wo ) (DI)

In case that S2 << S1 the spot size W0 optimizing the representation

for the scattered radiation will be determined predominantly by the surface

SI . Thus, the formula (23) with V given from

8R (SI; a)3 = - 0, 
(D2)

can be used for the modal decomposition of the scattered radiation.

According to Eqs. (28a) and (29a) for the Hermite representation, n-d Eqs.

(32a) and (33c) for the Laguerre representation, the lowest order

contribution from a small aperture P2 
<< Wo scales as R(S2 ;Wo) - &2

In some cases, however, it is important to know the total radiation

diffracted through a small hole, rather than the modal decomposition. In

case of small apperture p2,

02<< k-1 or X >> p/lo, (D3)

where 1 - z is the distance of the observation point from the mirror, the

paraxial approximation, Eq. (8b) is taken one step further, setting

k X 2 2  k [(x2+y2) - 2xx - 2yyo]. (M)
0
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Substituting (D4) inside (8a) we obtain the "far field" limit of the

diffracted radiation

S(X,Y,Z=Q) = PL jdax0J'dy A (x oy)(.-r

exp - + - 2xx - 2yy (D5)

also known as Fraunhoffer diffraction. The condition (D3) can only be

valid for appertures much smaller than the spot size Vo at the mirror, P2

<< W0 , since for P2 ~ W° (D3) is violated, k P2  ~ kW°2 _ k o2 (1+lo 
2/b o2)

b(1+lo2/b 2) > 1o Neglecting terms of order kxm2/10 - kP22/lo << 1

means that terms of order xs/l m, xs /1 << 1/kx s, where kxs > 1, must also

be neglected. The source term can be written as A i[xiyiJ A i[xsYsj.

Rescaling variables to

K= ,coskx K = (D6)
00

we obtain

2 2
i(pqo0 + k x*y) iK xx s+iK yys

A (x,y,O) = e 2cos -a- Xs yA(x sYs)

(D7)

According to (D7) the outgoing radiation is the Fourier transform of the

incoming radiation in respect to Kx, K Defining the "polar" coordinates

K= (Kx2+Ky2)l/2 ) tan- 1 (Kx/Ky), we obtain, for Ai(x sys)

= i, i pq upq (xsYs), the scattered radiation

pq 2nl o

p,q o
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II

2 22 2

2
Cos I. jdxsjdys HP [1 -Cos ~~ / -

i(m-n)e in 2D
, Jn(KXs) Jm(Ky) e i e (D8)

m=_O) n=-w

The zeroth order contribution in xs/W i << 1 yields

22
A0  c ka eik (0+x+

A(x,y,O) = 0e210oo2n1
0

W. 2

X o 'd'sdy JO(Kxs J(Kys)e (9

The waist size w f for the Fraunhoffer modes is given by the zeros of the

Bessel functions

K(wf kw f -p - 2nt. (DlO)
0

Therefore, the diffraction angle Of is

Wf x D1of 1 0 (Dli

The requirement 0 f«< 1 for the validity of the paraxial approximation puts

a lower limit in the aperture size p2

p2 >> X. (D12)
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In case the aperture size is of the order of the wavelength X the

scattered wavefunctions are spherical rather than Gaussian. Because the

overall effect of a scatterer with size P2 - X is very small, the familiar

from quantum mechanics Born approximation, involving perturbation theory,

is applicable in that case.
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Figure 3 Plot of the total reflection coefficient for the lowest order

mode as a function of the mirror size ' for * = 900. The

radiation has wavelength X = 10-4 cm, waist wi 2xlO-1cm at

distance 1. = 1.8xlO2cm from the mirror and radius of curvature R.1

= R = 8.95xl0 3cm.
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Figure 4 Reflection matrix elements for the lowest order mode (0,0) into

the first 25 modes (p,q) against the relative mirror size u'. The

magnitude IR 00 is plotted for angle of deflection * = 900, (x = 1
pq

(Wi = W ).
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REFLECTION MATRIX FOR OPTICAL RESONATORS
IN FEL OSCILLATORS

I. INTRODUCTION
1-7

Free Electron Lasers (FEL) operating as oscillators require the

trapping of light pulses between systems of mirrors (resonators).1 0

These pulses are repeatedly amplified via synchronous interaction with

electron pulses passing through the wiggler. The simplest oscillator

configuration is that of an open resonator with two opposed identical

mirrors. The radiation vector potential for this arrangement is expressed

in terms of the free space eigenmodes A mn(r) = Amn (r)emn of the paraxial

wave equation I , where emn is the polarization vector and

k~x2 2 12)

u (r;W) i z + (x + is (Z)
Amn(r) - mn 2 1/ 2 e 2R(z) mn

+ z22

The exponent 1(r) = k[z + (x2 +y 2)/2R(z)] in (1) contains the rapidly

varying phase on the wavelength scale X = 2r/k. The constant phase

wavefronts are spherical of curvature l/R(z) = z/(z 2  b2). The spot size

of the radiation envelope is W(z) = w (1 + z2/b2 ),/2 where w = (2b/k) I/2

is the waist, and the distance z is measured from the position of the

waist. The amplitude squared of the mode drops by 1/2 over a distance

equal to the Rayleigh length b (also known as confocal parameter). Most of

the radiation is confined within a cone parametrized by the diffraction

angle ed = W/z = (/bn)/2 The amplitude profile umn (r;W) contains the

transverse spatial variation, equivalent to a small ki , perpendicular to

the z-direction. Higher modes correspond to a larger effective ki ,

responsible for the phase shift exp [ismn(Z)]. For a given k the mode is

completely defined by the two independent parameters R and w (or any

combination of two out of the four quantities R, w, z and b).

The functions u mn(r;W) depend on the elected coordinate system. In

Manuscript approved June 14, 1988.



rectangular coordinates (x,y,z) they are given by

2 2
1( x xn +y2 2

un(X,y;W) = amnHm  ("2) e , (2)

where Hm, Hn are the Hermite polynomials, a = (2/W2 )1/2 (n 2m+n m' n!)
-1/2

is the normalization factor, setting the total electromagnetic flux carried

by the mode equal to unity, and 6mn(Z) = (m + n + 1) tan- (z/b) is the slow

phase. In cylindrical coordinates (r,9,z), where tane = x/y, r =

(x 2+y2 ) /2 , u(r,e;V) take the form

12
u±p(r ' e;w) = ap  cse (/2r p LP2 - 2 2

m onp) m( . 2) 2 2(3)

where +p (-p) signifies cosine (sine) poloidal dependence, Lp are the
m

Laguerre polynomials, ap = (1/2nW2 )1/ 2 [m!/(m + p)!] -1 / 2 and &P(z) = (2m +

p + 1) tan- (z/b).

The electron beam is an optically active medium that alters the

characteristic parameters of the radiation after each passage. During the

build-up period the modal content and -the structure of the light pulses

inside the oscillator will change. A numerical method has been developed

recently optimizing the representation for the amplified radiation. In the

source dependent expansion 12 ,13 the waist size and the curvature of the

elected modal basis is tailored according to the driving source term. That

minimizes the number of modes required to describe the light beam. In

general, the curvature and waist size of these modes does not match the

curvature and waist of the vacuum eigenmodes for the resonator. Therefore

the transfer matrix for a given mirror must be known for arbitrary incoming

modes. This need stems from computational as well as physical reasons.

The knowledge of the cavity reflection matrix R, together with the gain

2



matrix G through the wiggler, is necessary in determining the potential for

steady state operation.

During high power operation, grazing mirror incidence may be necessary

to avoid exceeding the dielectric breakdown limit for the reflection

surface. Also, in case of a high per-pass gain with optical guiding, the

waist for the reflected radiation would be much larger than the incoming.

In two-mirror resonators the reflected radiation could hit the wiggler.

Therefore, ring resonators, including three or more mirrors, must be

employed for the deflection and recirculation of the light pulses. The

study of the reflection matrix must be extended to include the effects of

deflecting the light beam, in addition to finite mirror size and curvature

mismatches.

The amplitude profile of the incoming radiation will be modified by

reflection. A single incident mode Amn (ri) will, in general, be partially

reflected into different modes A pq(ro) where (m,n) * (p,q). This is caused

by the deflection of the light beam, the finite size of the mirror and the

curvature mismatches. Reflection into other modes will affect the

interaction between the electron beam and the radiation in a number of

ways. First the rms radius of the light beam will change, affecting the

matching beam condition. Second, the light pulse will spread axially

because of dispersion among different modes, since the phase velocity

depends on the modal number (m,n). Third, different phase advances during

reflection among the various modes may render these modes out of phase

after a number of bouncings off the resonator. For the above reasons the

fraction of radiation scattered into other modes will contribute to the

losses in FEL oscillators.

3



II. OUTLINE OF THE METHOD

The geometry of the reflection is illustrated in Fig. 1. The

subscripts i and o denote the coordinate system used for expressing

incoming and outgoing modes. ri  is defined with the zi axis along the

direction of incidence and r0  has the z axis along the direction of

reflection. The origins are displaced from the mirror center by 1i and 10

respectively, where 1. is the distance of the minimum waist wi for the

incoming radiation and 1 is the distance of the minimum waist w0 for the

reflected mode. A third coordinate system r5 with the origin at the mirror

center and z5  aligned with the mirror axis will be useful in the

computations. Underlined quantities ri, ro and r stand for the mirror

surface coordinates in each reference frame. The transformations among the

various frames are defined by

x i = x5 cos I- z sin I x = x cos + z sin ,
i s 2 ' o s 2 s 2'

Yi = Ys, (4a) Yo = Ys? (4b)

z i = z cos - + x sin + lit z = z cos 2- x sin + 1
i s 2 s 2 i s 2 0o

We are !nterested in cases when the reflected radiation remains

focused along some direction z0  making an angle * with the incoming zi.

Then the reflected vector potential will also be expandable in free space

eigenmodes Apq (r0 ) of the paraxial equation in the new direction. The

mirror surface generating focused reflection in the desired direction can

not be arbitrary but must be appropriately defined. The angle of

deflection * will enter the equation defining the mirror surface. The other
surface parameter, namely the curvature 1/RmP is a free parameter. It

determines the curvature I/R for the outgoing modes given the curvature0

1/Ri of the incoming modes. In case of reflection by an arbitrary mirror

4ni



surface, the scattered radiation cannot, in general, be covered by the

paraxial modes that do not form a complete set in three dimensions.

We consider incoming radiation of given curvature and of arbitrary

amplitude profile Ai(ri), consisting of various modes (m,n) with the same

Ri(z). If both incident and reflected radiation are expanded into

eigenmodes,

AiCr.) = c A(.
= mn Amn (r1
m,n

(5)

A°0(r) = E copq Apq (ro)Ptq

i
the relation among the incident and reflected expansion coefficients c in'

c0  is formulated bypq

o , i (6a)c=Rc , (a

or

co =E Rmn ci  (6b)pq pq mn
m,n

where Rmn are the elements of the reflection matrix R.
pq

We examine the case when the mirror dimensions p are much larger than

the wavelength X, X << p (otherwise diffraction rather than reflection

would prevail). We also assume that the angle C subtended by the mirror

C = P/R M, where Km parametrizes the radius of curvature, is small, of the

order of the diffraction angle ed, C - ed c c. The j-th component of the

reflected vector potential at distance r - ro >> X from the mirror

surface S is then given by

0 ik eikir° - E01 -

A (V)(r)- -n ds JJ r- r As (r 0) (n £ r). (7)

S 5ro



In Eq. (7) 6-6r is the obliqueness factor where 6r = (ro-r )/ir0-r01 and n

is the normal unit vector to the reflecting surface. The surface element

ds is given by ds = S[z 0-f(xoyo)Jdx0dy0 dz0  where zO = f(x oy O ) is the

surface equation. Equation (7) is the convolution of a source term A S(r )

at the mirror surface with the propagator exp(iklr_-r 0)/jr0-r0 , i.e., a
S€

superposition of spherical waves originating at S. The source term AS (r)
ii

is specified from the incoming vector potential A i(ri) through the boundary

conditions and the coordinate transformations (4). We will assume a

perfectly conducting surface, where the incident and reflected fields are

related by

As = -Ai + 2 (n - A ) n (8a)

and n is the normal unit vector to the reflecting surface. When the solid

angle subtended by the mirror is small, the last term in (8a) is very small

and the boundary condition becomes,

A5 (V) A - (A ) (8b)

Relation (8b) corresponds to a phase shift by t during reflection. It is

independent of the wave polarization, thus the subscript (v) is dropped.

Cross polarization effects, due to the last term in (8a) are discussed in

Ref. 10. Most of the computations will be performed on the mirror surface.

To simplify the notation from now on, we drop the bar (-) under the mirror

coordinates r. Subscripted quantities such as ri , r0 , rs will signify the

mirror surface in each reference frame. Unsubscripted coordinates will

denote the observation point in the reflected radiation frame of reference.

We seek cases when the reflected radiation propagates focused along

Zo, contained within a cross section of dimensions x,y << z-zo. The

6



expansion Ir-r01 = (z-zo) 0 1 + [(X-X0 )2 + (y-yo) 21/2(z-z) 2 replaces the

full propagator inside (7) with the paraxial propagator Uk in that

direction,

2+ (yy2
-ik(z-z 0 ) -ik (x-x) 2 (Y-Y)

ik e e 2(z-zo) (9)
Uk (r, r0) = z-z

It is known that the profile of a given eigenmode A mn(x 0,yoz 0 ) at z°

is generated by the propagator Uk(r,ro) acting on the mode Amn (x,y,O) at

z=O. The inverse propagator Uk(r,r ) therefore reproduces A mn(x,y,O) from

Amn(xoYoZo). This suggests multiplying and dividing the integrand inside

(7) by exp [it(r0 )] / [I + z0
2/b0

2 11/2, recasting (7) in the form,

0 rr iA(r0) i$ (re)

A°(r) JJds e S(r0 ) e U-k(r,ro) , (10)

where the source term S(r0 ) is,

~z 0
2(ro) 1/2

S(r) = A [r.(r )] (n .ar) 1 + o2] (11)
0 i 0

and the phase 6(r0 ) is given, in outgoing coordinates r0 , by

+ +xi
2 (r) + y 2(ro) 2+ 2 ]

zk(r( + ]. . (12)
(o )  z2Ri(r 0 ) 2R0 (re) 1

The expression for 6(r ) depends on the angle * through the transformations

between the incoming and the outgoing coordinates, Eqs. (4). Expression

(10) is the approximation of the exact solution (7) to order

7



2 yyo2 )2 2
((x-x ) + (y-y]) /2(z-z ) ~ c . It is valid provided that the surface S

produces focused reflection along the desired direction. Otherwise, the

paraxial limit will fail to encompass all the radiation contained in the

original expression (7).

The term exp[iA(r )] is varying rapidly, on the scale of the0€

wavelength X. Therefore, its convolution with the slowly varying source

term over an arbitrary surface will be vanishingly small. In general, this

corresponds to radiation scattering where only a small fraction of the

incoming radiation is reflected along the considered direction *. The

integral (10) will be finite only when it is possible to satisfy the

condition A(ro ) = constant over some surface S. If, in addition, S is much

larger than X, expression (10) will be finite only within a narrow angle St

around . This guarantees that the reflected radiation remains focused

along that direction. Therefore, a condition that the exact reflected

radiation (7) be fully covered by the paraxial limit (10) is that

A(r = const., (13)

along the surface S. Accordingly, the optical path is the same along the

various rays connecting an incoming wavefront with its mirror image

(reflected) wavefront.

Requirement (13) defines the appropriate mirror surface z =f (x ,yo;)

for reflection in the elected direction. Expressing all quantities inside

(13) in the mirror coordinate frame, applying the transformations (4) and

using the scaling xs/Rm - ys/Rm c << 1, zs /Rm - c2 we obtain from (13)

1 [ cos 2  + y ,2 ] (14a)Zs 2R cos 41IX

M 2

where

- 8



1 1 1(14b)
R -R + 2R.

m 0 1

Equation (14a) is the analytic expression for a paraboloid surface.

Rm parametrizes the mirror curvature, being positive or negative for a

convex or concave mirror respectively. The surface is reflection symmetric

with (zx) s  and (zy) s  as the symmetry planes; there is no rotational

symmetry around z . Surface (14a) can also be approximated, to second

order in (Xs/Rm)2, (ys /RM)2 by hyperboloids or ellipsoids defined by

z -R cs f 2 22 2csI
s ms - - Ys = R cos 2  (15a)

+ R cos + xCos + ys = Rm cos2 1 (15b)
(zs 2) 2 sm 2

All the surfaces become spherical in the limit of perpendicular incidence €

= 0, and plane mirrors when Rm W. Relation (14b) defines the curvature

of the reflected modes from the incoming mode curvature and the curvature

of the mirror.

Switching Eq. (12) into the mirror-aligned coordinates rs through Eqs.

(4), and using the surface constraints (14), it follows that

(r ) = const. + 0[ ko )2I,

where p parametrizes the mirror size. A more complicated surface equation

(higher than quadratic in x, y, z) is required to improve the constancy to

a higher order. Since kp >> 1, the approximation 6(rs) = const. is

satisfactory for a first order expansion of the reflection matrix in powers

of p/Rm , as long as p/Rm  < (kp)- 1 . In case p/Rm  > (kp)- 1, the slow

variation of (x sy s ) over S must be included. That introduces an

additional contribution in the reflection matrix, known as spherical

aberation.

9



III. COMPUTATION OF THE REFLECTION MATRIX

The reflected radiation is expressed by

r d -i4'°(x°'y°)

A0 (r) = jdxdY 0(xoyo ) e 0 0 ) Uk(r,ro) , (16)
s

where a(x0 ,yO ) a S[x oYoz(Xoyo)]. Expanding the source a(xoyo) in

terms of Umn(XoYo),

a(XoYo) E Rmn Umn (xoyo;W0 ). (17)
m,n

and exploiting the property of the inverse propagator Uk, the reflected

vector potential A (r) at z = 0 becomes

A0(xyO) E R n Umn (X,Y;Wo), (18)
m,n

where W(z) = (1 + z/b 02)/2, w = (2b0 /k)1/2 Expression (18) is a

complete decomposition of the reflected radiation into paraxial eigenmodes

for incident radiation of arbitrary profile.

According to the definition (6b), the Rmn element of the reflection
pq

matrix R is obtained from the source term apq (xoyo) inside (16) generated

by a single incident eigenmode A pq[ri(r )]. The integration is performed

in the mirror-aligned coordinates, taking advantage of the existing

symmetries. The coordinates ri and r0 , defining the incoming and outgoing

wave functions, become explicit functions of xSP YS through the

transformations (4). The surface equation (14a) is used to express zs in

terms of (x sys). The mirror boundary

10



xs +2 (19)

is defined by the intersection of the infinite surface (14a) with the plane

z = const = 2 p cos ( /2)/ R m After the above manipulations the

reflection matrix elements take the form

2 1/2

1+z 02(x ty )-
2

SS 1+ 1 b/2

0 
1

(20)

x &pq (xs 'ys) - mn(xy) Xs 2 x s[cos ± - s sin 2 )
F r R

where

mn(X sYs mnLXo(XstYs )  Y] Upq (Xs t UpqE i(Xs'Ys)' Ys"

Expression (20) is correct to order p2/R 2m

Each representation of R is tied to the choice of the basis functions

umn(r). In any case R, as given by (20), depends on four parameters1 0

R a R (x, U;j ) (21)

is the reflection angle shown in Fig. 1. o is the ratio of the incoming

to the outgoing spot size at the mirror, = Wi(li)/W 0 (l0). u = p/W0

parametrizes the mirror size compared to the radiation spot size. E =

V /Rm scales as the diffraction angle ed W /1 0 multiplied by the

curvature mismatch R /R between the mirror and the radiation wavefronts.
o m

The spot size W° enters as a free parameter because only the curvature 1/R0

for the reflected modes is specified by the mirror geometry. Since many

-II



combinations of W and 10 apply to a given curvature according to paragraph

Eq. (1), an additional selection rule for W is needed. Note that W does

not have to match W.. This is obvious in cases when the mirror size p is1

smaller that W.. Each value of W defines a complete set of modes for the

reflected radiation and an equivalent representation for R.

Parameters , , and u can be arbitrary. In most cases of interest,

however, & is small, & << 1, of the same order as the diffraction angle ed.

The analytic computation of the matrix elements is carried out by expanding

the integral (20) in powers of &,

<2
R = R(0) + & R(1) + & R(2). (22)

The first order expansion is performed in Ref. 10. In this paper we

review some of the general properties of R and focus on the reflection

of the lowest mode uo0 .

IV. LIMITING CASES

When the mirror radius tends to infinity (1/Rm - 0), or in cases

of vertical incidence on the mirror' ( = 0), the higher order

corrections in the reflection matrix R disappear,

R = R(0) (23)

in both representations. The nondiagonal elements in R stem from the

finite mirror size only. If, in addition, the mirror size is very

large, v >> 1, it is appropriate to take Vo = W as best representation

for the reflected radiation. The a = 1 limit yields

Rmn = mn (24)
pq pq

Thus, in case of large curved mirror and vertical incidence, or large

plane mirror and arbitrary incidence, the reflection matrix is the
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identity matrix.

The case x = 1 is of special interest for arbitrary angle of

deflection + and mirror curvature l/R, as it will be explained in the

next section. For finite mirror size p W0 , ( u > 1), there exists

zeroth order nondiagonal terms inside R(O). Since R(O) is independent

of the angle of deflection *, the mirror size yields the dominant

contribution to the reflection into modes different than the incoming.

The effects of the deflection of the light beam enter to first order in

(, (1), or higher.

As the mirror size becomes very large and the limits of integration

are extended to infinity the orthogonality among the various modes umn

becomes effective. The off-diagonal terms in R(O) become comparable to

the first order terms R(l) roughly when 1/u2  - & - od. At the limit u

all the nondiagonal elements of R are reduced to order & or higher,

Rmn R mn (1) + 0(&), m * p, n * q, (25a)
pq pq

and the only matrix elements of zeroth order in & are the diagonal

Rnmn = Rnmn (0) + 0(&2)" (25b)
mn mn

in both Hermite and Laguerre represenations. The lowest correction in

the diagonal elements is of second order & , while the first order

contribution disappears. This is consistent with flux conservation

during reflection in case of a large mirror.

The superposition principle can be used to describe reflection

from more complex mirror surfaces. In case of a mirror with a hole the

surface integral (7) over S is expressed as fS =  SI - fS2 where S1 is

defined by the mirror surface including the hole surface, and S2 is the

surface of the hole only. The total reflection matrix R is given by R =

- 13



R(SI) - R(S2 ), the difference in the reflection matrices associated with

mirrors S and S2 respectively. The transmission matrix T through a

screen with an aperture of area S is given by T = - R, R being the

reflection matrix for a mirror matching the aperture S. The

transmission matrix for radiation diffracted behind a finite size mirror
int

is given by T' = 1 - e R where 1 is the identity matrix.

V. REFLECTION OF THE LOWEST ORDER MODE

The computation of all the truncated integrals for finite mirror

surface is nontrivial. Most applications however involve the (0,0)

lowest order mode as the dominant mode in both incoming and reflected

radiation. The strategy here is to compute the element R00 of the
00

reflection matrix first. Then the waist for the reflected modes W can

00
be selected so that it maximizes R 0 . The optimum representation

condition

aR00
S0, (26)

puts the maximum amount of the reflected radiation in the lowest mode (a

different mode and matrix element may be chosen, if desired). It is

pointed out that (26) does not improve the properties of the reflected

radiation. It enables one to choose the best representation in terms of

minimizing the coefficients of the undesired modes for the scattered

radiation. Once 0 is fixed by (26) then the exact location and size of0

the waist(s) for the reflected modes is determined by solving the system of

equations

W = w 1 0 21 1/2 1 10
0 o b 2J o 1 2+b 2 (27)
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The element is identical in both representations since the lowest
00

order mode u0 0  is the same in rectangular and cylindrical coordinates.

Performing the integration (20) yields R 0to first order in E00

00 2a _(1+2)2" 2
1 - e'+ 2 p 0( 2 ). (28)00 1+ 2L1

Note that the first order term vanishes and the lowest correction is of

2second order in E2. The exact dependence on the mirror size p is

parametrized by u p/Wo, while % = Wi/W 0  parametrizes the ratio of the

incoming and scattered radiation spot sizes at the mirror. The optimization

00 2 2 2 4 2 2condition aR0 0 (0)/at = 0 yields, a = 1 + exp[-(l+2 )112  [4 +(211 +1) -11.

In case the mirror cross section is much larger than the spot size of the

incoming mode, V >> 1, 4 1 and the reflected spot size at the mirror

matches the incoming, W = W..0 1

Large mirror size is desired to maximize the total reflection

coefficient. The reflection coefficient R is given by rR = Po/Pi where the
2 i 12incoming flux is Pi = Ici } = Z Ic pq and the outgoing flux is given bypq

o2 i2 =i 12. (29)

= Ic I =jmn pq c pq

In Fig. 2 we plot "R for the lowest order incoming mode as a function of

u = cos(0/2) p/W° = cos(0/2) p. p' parametrizes the size of the mirror

surface projection into the plane perpendicular to the incoming

radiation direction. The incoming radiation has a wavelength X = 1P

(10- 4cm), waist w. = 10- 2cm at distance 1. 2.5x10 3cm from the mirror1 1

and radius of curvature (at the mirror) R. = 2.5x10 3cm. The mirror has1

a radius of curvature Rm = 2.5xlO3m, yielding reflected modes of R =

15



2.5xl0 3 (again 1 and w0 depend on the choice of W0). In Fig. 3 we plot

the reflection coefficients Roo of the lowest order mode (0,0) into the
pq

first 25 modes (p,q) with p < q < 5, as a function of u'. The

deflection angle is 900 and the ratio of the spot sizes is 1.

Increasing mirror size maximizes the diagonal element and minimizes

scattering into other modes.

In Fig. 4 we fix the mirror size u' = 2 and the angle * = 900 and

00vary the spot size ratio =. The best representation, maximizing R0

and minimizing R0 0 is obtained at a = 1. However, for small mirror u' =
pq

0.66, the maximum for RO0 occurs at = 0.70 (see Fig. 5). Radiation
00

reflected off mirrors smaller than the incoming spot size is best

described by outgoing modes of reduced spot size W < W. Also note

from Fig. 5b that for small mirror size the total power reflected into

the first 25 modes never exceeds 80% of the incoming flux; even with

many more modes "R remains less than 1. In Fig. 6 the reflection

coefficients R00 are plotted as functions of the angle of deflection
pq

for fixed o = 1, u' = 2. It is seen that, for sufficiently large

reflecting surface and good choice of the spot size W0 , the reflection

matrix is nct very sensitive to *. Comparison of Figs. 2 and 3 with the

rest of the plots shows that the relative mirror size to the radiation

spot size is the most important parameter to determine the reflection

into other than the incoming modes.
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(0,0) into the first 25 modes p < q < 5. The magnitude IR00 1 is

plotted against the relative mirror size u'. The angle of

deflection * = 90' and x = 1 (Wi = Vo).
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CAVITY EIGENMODES FOR THE NIST/NRL FREE ELECTRON LASER

S. Riyopoulosa) and C. M. Tang

Naval Research Laboratory
Plasma Physics Division

Washington DC 20375

The cavity transfer matrix for the round trip of a light pulse in

the optical resonator of the National Institute of Standards and

Technology (NIST)/Naval Research Laboratory (NRL) Free Electron Laser

(FEL) oscillator is derived. The cavity eigenmodes and the corresponding

eigenvalues are obtained, using an expansion in Gaussian-Laguerre vacuum

modes, by numerical diagonalization. The fractional power loss per

eigenmode, caused by the finite sizes of the cavity mirrors and apertures

are determined. It is found that the losses are very small over the

entire wavelength regime of operation.

a)Science Applications Intl. Corp., McLean, VA 22102



I. INTRODUCTION

The NIST(formerly NBS)/NRL FEL oscillator powered by a CV 185 MeV

racetrack microtron is currently under construction 1-3 A simplified

model of the resonator cavity, consisting of the wiggler vacuum chamber

and the two mirrors, is shown schematically in Fig. 1. Since stimulated

emission takes place predominantly along the electron beam path, the

vector potential of the radiation AR is expressed in terms of the free

space eigennodes AR(r) = Amp (r) exp(-iot) ep + cc of the paraxial wave

equation4 , where emp is the polarization vetor,

u (r;W) ik(z + (X  2 . iy) (z)AR ) )el (1)z '

Amp(r) 2 1 1/2 e

+ b 2

k = /c is the wavenumber and w is the frequency. In Eq. (1) the exponent

k[z + (x2+y2 )/2R(z)] contains the phase variation on the wavelength scale X

= 2n/k, with spherical wavefronts of curvature 1/R(z) = z/(z 2 + b2 ). The

slow phase variation is given by Cmp(z) = (2m + p + 1) tan- (z/b). The

spot size of the radiation envelope is V(z) - v (1 + z2/b2 )1 / 2 , where the

distance z is measured from the position of the waist v (2b/k)1 /2 . The

amplitude squared of the mode drops by 1/2 over a distance equal to the

Rayleigh length b (also known as confocal parameter). Most of the

radiation is confined within a cone parametrized by the diffraction angle

1



1/2

ed - Viz = (X/bn) 1 . For given wavelength X, any two of the four

parameters R, W, b, z determine a mode uniquely.

The amplitude profile u mp(r;W) contains the transverse spatial

variation, equivalent to a small k,, perpendicular to the z-direction. In

cylindrical coordinates (r,e,z), where tane = x/y, r = (x2 +y2 ) /2

u mp(r,O;V) takes the form

cos / - 2r 2

Um (r,O;V) - a r pQ e 22 (2)
mp mp inpe)

where + (-) signifies cosine (sine) poloidal dependence, LP(&) are the

associated Laguerre polynomials and the normalizing factor amp =

(1/(l+&pO)nv2 l2 [mf/(m +p)]-1/2.

In the presence of conducting walls the vacuum expansion (1) still

provides the best representation, because (a) the chamber inner radius is

much larger than the radiation spot size and (b) the transit time through

the cavity and the length of the light pulse itself are too short to allow

multiple reflections on the walls, required to set up cavity eigenmodes.

It can also be argued that the small fraction of the radiation reflected

from the wall, acting as a perfect conductor for grazing incidence, is lost

out of the resonator. The main effect of the chamber therefore comes from

the two edge apertures, where the radiation spot size is maximum. The

resonator is then modeled by a sequence of four optical elements, i.e. two

apertures and two mirrors.

The radiation profile is altered after each encounter with an optical

element. A pure incident mode A mp(r) will, in general, be partially

2



transformed into different modes. This is caused by the finite size of the

apertures, and, in addition, by spherical aberration and surface

imperfections in case of the mirrors. Consider the radiation incoming to a

given optical element as consisting of various modes (m,p) of the same

curvature Ri(z). Both incident and reflected radiation are expanded into

eigenmodes, respectively as follows,

i i

Ai(ri) = L c A (ri)
m,p MP MP

(3)

nq A (r)
n,q nq nq 0

The relation among the incident and reflected expansion coefficients cmpi

and c p is written asPq

c0= R c , (4a)

or

cn =E Rmp c i (4b)
nq nq mp

mp

where Rmp are the elements of the reflection matrix R.nq
The radiation profile at the end of the round trip inside the

resonator will relate to the original profile through the resonator

transfer matrix H,

N - T2 112 T2 T , R, T ,  (5)
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vhere Ti and R are the transmission matricies through the chamber

apertures and the reflection matrices from the mirrors 1 and 2

respectively. The cavity eigenmodes C with eigenvalues vj are given by

N C = MV C *(6)

Since N is generally nondiagonal, the eigenmodes are mixtures of vacuum

modes (1).

The electron beam is an active medium that changes the radiation

profile during amplification in each passage. If G is the amplification

matrix, then a steady state exists finally if the matirx equation

G N Cs = gs Cs (7)

has solutions with Igs - 1. A steady state need not be an eigenmode of

the empty resonator; this could happen only in the case of equal

amplification ga for each eigenmode, i.e., G = ga I where I is the identity

matrix. In an FEL, a different gain is associated with each free space

eigenmode. However, in cases when the off-diagonal elements of both G and

N become vanishingly small, both the resonator modes and the final steady

states approach the pure vacuum modes (1).

In this paper we first study the vacuum performance of the optical

cavity. The detailed cavity mode stucture in terms of vacuum modes and the

associated eigenvalues are obtained by numerical diagonalization of the

cavity matrix M. The fractional power loss r per cavity mode per trip is

found from the magnitude of the eigenvalue

4



| | v I,.I i

Ylj - 1- I~j 12. (8)

The profiles for the cavity modes are also obtained utilizing the expansion

coefficients of C into the vacuum modes. We also examine the eigenmode

structure of the combined gain-transfer matrix G K in cases of small gain.

5



II. TRANSFER MATRIX FOR A SINGLE OPTICAL ELEMENT

The reflection of Gaussian light beams from mirrors was studied in

some detail in Ref. 5 for arbitrary angle of radiation incidence. In the

limit of normal incidence considered here, the reflection matrix elements

are given by the surface integrals

2 1/2

S +b02 bi12

(9)

C~q(Z s ) - ip(Z s )
x e

The mirror surface S is spherical, expressed in the coordinate system

(r s ' Szs,) ith origin located at the mirror center, by

(z s - )2+ r s2 = R m 2, (0

where R m is the mirror radius of curvature. Equation (10) is used to

express z s on the surface S in terms of rs. The mirror boundary is givenby
2 2rs ) r , (11)
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where p is the radius of the mirror cross-section.

The phase factor A(r s,e s), related to the optical path along the

various rays connecting the incoming wavefront with its mirror image

(reflected), must be approximately constant. Therefore, the curvature of

the outgoing vavefront is related to the incoming and the mirror curvatures

through

1 2 1
- - . (12)
Ro  Rm  Ri

The Rayleigh length b and the waist location 1 of the outgoing modes are

yet to be determined.

It has been argued5'6  that the amount of radiation scattered into

other than the incoming modes, as well as that escaping behind the mirror,

depends on three factors:

(a) Finite mirror size effects, of the order of

exp (- ) (13)
i

where p is the mirror cross-section radius and Vi the incoming radiation

spot size.

(b) Spherical aberration effets, of the order of

R 2

m 7

.. ......... . . . . -=== ,=,=mu lml inimI II Ii



coming from the phase term A(rs ,es) inside (9). Spherical aberration

exists even when the mirror curvature matches the radiation curvature. It

is caused by the fact that rays ending on a given spherical vavefront are

not exactly perpendicular to it, since they originated from a finite size

waist and not from a point at the center of curvature.

(c) Surface imperfections, for example, when the reflecting surface is

not perfectly sperical.

Spherical aberration effects are usually less important. They will

be addressed in future work, together with the potentially more important

consequences caused by mirror deformations (buckling) due to heating.

Ignoring (b) and (c) amounts to setting A(rs s8) = 0 in (9). After

substituting expression (2) for the eigenmodes ump, (9) becomes,

2a0 R _ 2.+

= 6 C, dt (2 2 C LP't) e 2 (15)
nq pq nq f' n in'

where C = . [mlnl/(m+p)!(n+q)l] 1/2 and = 2r 21 2 . Since the surface S
nq

has rotational symmetry about the z axis, it couples modes with the same

poloidal 0 dependence, p = q. The radial integration is carried out in

Appendix A.

In general, the matrix R involves two indepedent parameters, the

ratio of the mirror radius p to the radiation spot size squared,

= (P/wi) 2, and the ratio of the incoming to outgoing spot sizes

= (Wi/ 0 ). Only the curvature of the reflected mode is set by the

8
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mirror, while the outgoing spot size is still a free parameter. This can

be exploited by choosing the value V that maximizes the coefficient for

the fundamental mode in the reflected radiation, i.e.,

aR00
00  0 (16)

act

Once V is selected, the exact location and size of the waist(s) for the

reflected modes is determined by solving the system of equations

2 10
wo =212+(17)

bo02  R 0 2 +bo2

The transmission matrix T through an aperture is given by

T = ein R , (18)

where R is the reflection matrix for a plane mirror (Rm = ) of the same

cross section p, while the curvature tranformation is

1 1
- = -. (19)
Ro  Ri

Aberration and surface imperfections do not affect transmission through

apertures.

9



III. CAVITY EIGENMODES

We seek a class of cavity eigenmodes with the waist located in the

middle of the vacuum chamber. Since the mode spot must remain unchanged

Wi = W0 during each transmission or reflection we elect m = 1 inside the

trasfer matrix (5) for every optical element. The curvature R is not

changed during transmission through an aperture. The mirror curvature,

however, must match the incoming and outgoing radiation curvature, Ri = R°

= Rm in (12). Therefore, for eigenmodes to exist, the equations

L1 2

R1 - L 1 2  R2 = L2 2  (20)
L 1 +b 2 L2 2

must admit a positive solution for b. This is possible when

L L
R 1-- ( Ri- 2 0 L= 1 L 2  (1

Equation (21) is the optical stability condition for the cavity. Even

with (21) satisfied the cavity modes will still decay slowly in time

because of the finite size of the mirrors. According to (20), the

Rayleigh length b for various wavelengths remains fixed for a given mirror

configuration, while the waist w varies as w = (bX/n)1/2. The cross

section of the electron beam is adjustable to give a good filling factor

for the particular wavelength. The cross section of the chamber is oval

1/2and is approximated with a circular one of effective radius p - (p1 02)

10



where p1 and P2 are the major and minor aperture radii.

Because of the imposed axisymmetry we look for cavity eigenmodes

involving combinations of axisymmetric vacuum modes p = q 0 0. The

coefficients cj (n ) of the modes unO inside the j-th cavity mode C

Cj [c(0) , j(1) • j(n)
C= c .... ,C , ... I (22)

and the corresponding eigenvalues Vj are found by numerical

diagonalization of the transfer matrix N, utilizing expressions (A3) with

= 1 for each individual optical element inside (5). Eventually, the

cavity matrix N depends on the spot to aperture size ratios for the four

optical elements,

NbzU(X), p2 (\), p3 (X), u4 (X)] , (23)

where in turn VIJ depends on the wavelength through

= ( X )1/2 (24)

nb (1 L 2 /b 2)

Two general conclusions are made. First, it is found that, for

radiation spot sizes smaller than about one third the apertures sizes, the

dominant contribution in each cavity eigenmode comes from a single

coefficient cj (n). Cavity eigenmodes, in this case, approach pure vacuum

modes, as expected from the smallness of the off-diagonal matrix elements

in N. Second, if the eigenvalues are arranged according to magnitude,

11



Ivo > jvj > ... ljl > lvj+ 11 .. , the largest eigenvalue corresponds to

the eigenmode closest to the fundamental vacuum mode u00, i.e., the

eigenmode with lco 00) = 1. The next largest eigenvalue corresponds to

the eigenmode closest to the first radial vacuum mode, i.e., with Ic1(1)I

= 1, and so on. This is expected as the rms spot size for the n-th radial

mode u no(r;W) increases with n as (n+l) /2W.

The NIST/NRL oscillator has been designed for eigenmodes of

Rayleigh length equal to half the vacuum chamber length. Two different

arrangements, one with full and one with half length wiggler will be used

for the wavelength regimes of 0.2Um to 2um and 2um to lOlm respectively.

The design parameters are b = Lv/2 = 107.5cm, L1 = 521cm, L2 - 386cm, R1 W

543cm, R2 = 417cm, P1 = p2 = 2.54cm for the half wiggler and b - L/ 2 =

198cm, L1 - 431cm, L2 = 477cm, R1 = 521cm, R2 = 559cm for the full

wiggler.

The fractional power loss =f 1 - Iv 12 for the first 5 cavity

eigenmodes of the half wiggler arrangement is plotted in Fig. 2 as a

function of the wavelength X. Through the planned regime of operation the

loss for the fundmental cavity mode never exceeds iX. The loss factor for

the next two modes is also very small, so that the mode selection is going

to be determined by the differences in the radiation gain for each mode.

In Fig. 3(a) we plot the expansion coefficients cn (0) of the fundamental

cavity mode C0 into the vacuum modes unO. Is shows that the cavity mode

profile is very close to a pure u0 0  vacuum mode, with other modes

contributing less than IX. The expansion coefficients for the second and

third cavity modes are shown in Figs. 3(b) and 3(c) respectively. If the

12



complete expansion coefficients are written as

c (n) . exp (iXjn) I

then the complex amplitude for the j-th eigenmode Cj is given by

iij(r)
Aj(r) = JA (r)l e

where

JA (r)I = Ar.2 + Ai 12 1l/2 V# ()-tan' ( Arj / Aij

Arj ' E Uno(r) Icj(n)I cos Xjn P Aij = E unO(r) 1cj(n)I sin xJn"
n nj

The resulting amplitude profiles for the first three modes at z - 0 are

shown in Fig. 4 for X = 2um and X = 10m. In Fig. 5(a) we show the power

fraction Ii for the first four cavity modes of Rayleigh length b - Lw/6.

The vacuum expansion coefficients c0 (n) for the fundamental cavity mode

are shown in Fig. 5(b) against the wavelength X. The transverse amplitude

profiles for the first three modes at X = 2.2pm and X = lO1im , in Fig.

5(c), show considerable departure from vacuum modes.

The cavity eigenmodes for the full wiggler arrangement are

extremely close to vacuum modes and the fractional power losses for the

first five of them are below 10-3 over the frequency regime from 0.Sam to

21m. This is caused by the combination of a longer Rayleigh length with a

spot size that gets smaller with shorter wavelength.

13



In case of small gain we can include the effect of the electron

beam on the cavity eigenmodes by introducing the amplitude gain matrix G.

In the linear regime the cross-coupling among various transverse modes is

unimportant and G is diagonal, given by

Gmn = g(X) fn 6mn (25a)

where

n22

2 2 21 (22 2
g(X) = 0.5 F1  2 N (25b)

"R I A Yo

is the amplitude gain for the fundamental vacuum mode. In Eqs. (25) N is

the number of wiggler periods, y0 is the initial relativistic factor, vR -

n 2 is the radiation cross section at the waist, IA -17x10 3 A, I is the

current in amperes, K = eIBX w/2rtmc2  is the wiggler parameter, B is the

rms magnetic field of the wiggler, Xw is the wiggler wavelength, related

2 2
to the radiation wavelength X by X, = 2 f X/(I+K ), F1= J0 (b)-Jl(b) with b

K 2 /2(1+K 2 ) and fn is the normalized (to the fundamental) filling factor

fn = fdr r J(r) Uno(r) / Jdr r j(r) u0 0 (r) , (27)

with the parabolic current profile given by J(r) - Jo (1 - r2/b 2) for r

Pb' J(r) = 0 for r > Pb' ob being the beam radius. The round trip gain

14



for the J-th beam-cavity eigenmode is given by

g- 1+ g(X) I V . (28)

where v j is the eigenvalue for the eigenmode Cj of the combined gain-

transfer matrix

M = G M. (29)g

The fractional power loss n = 1 - ljvj2 for the first five eigenmodes is

shown in Fig. 6(a) as a function of the wavelength, while the expansion

coefficients of the fundamental eigenmode in terms of vacuum modes are

shown in Fij. 6(b). The losses for the higher eigenmodes j > 0 are now

considerably higher than the fundamental mode (compare Figs. 2 and 6P),

thusly, mode selection among transverse modes occurs through amplification

of the radiation because of the differences in the filling factor fn"
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APPENDIX A. Computation of the Reflection Matrix Element

The associated Laguerre polynomials are given by

Lm(&) = m (-1)
k  +k (Al)

k=O kl(m-k) (p+k)

Substituting (Al) inside (15) and integrating by factors, using

fdt & e& = e_& E ml e-k ] (A2)
n(m-k)!

one obtains

12 a1 m n 2k2 k+lRP:(P,,M>= 6 [m!n!(m+p)!(n+q),!ilnq pq 2.p+1
(q+a k-o 1= (o t-+,

(-)kl(k+l+p)! 2 e( 24)tU k+l+p k+l+p-i (kl-2 l!E (2um)k~+ -

ktll(m-k)t(n-1)!(p+k)t(p+l)l i=O (k+l+p-l;)

(A3)
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FIGURE CAPTIONS

Figure 1. Schematic illustration of the NIST/NRL optical cavity.

Figure 2. Fractional per round trip power loss versus wavelength for the

first five resonator eigenmodes in vacuum. The Rayleigh length

b is half the wiggler length. The cavity parameters for the

half wiggler arrangement are L1 = 521cm, L2 = 386cm, R 1

543cm, R2 = 417cm and p1 = 02 = 2.54cm.

Figure 3. Expansion coefficients into vacuum modes for (a) the

fundamental (b) the first and (c) the second cavity eignmodes

versus wavelength.

Figure 4. The transverse amplitude profiles JA(r)I for the first three

axisymmetric cavity modes for wavelenth (a) X = 2.2um and (b) X

= 10.0u.

Figure 5. Fundamental cavity mode structure for Rayleigh length b = L /6

and corresponding mirror curvatures R1 = 523cm and R2 = 389cm.

(a) fractional round trip losses for the first four eigenmodes

and (b) expansion coefficients of the fundamental cavity mode

in vacuum modes versus wavelength. (c)-(d) transverse profiles

for the first three cavity modes at wavelengths 2.2pm and lOm.

Figure 6. Sahe as in Fig. 2, including the effects of the beam filling

factor for small gain.

Figure 7. Structure of the combined beam-cavity eigenmodes. Same notation

as in Fig. 3.

Figure 8. Profiles of the first three beam-cavity eigenmodes. Same

notation as in Fig. 4.
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BEAM CONDITIONING USING RESISTIVE WIRES

R.F. Fernsler, Naval Research Laboratory, Washington, DC, USA

P.R. Boris, SAIC, McLean, VA, USA

ABSTRACT

A resistive wire strung between two end plates of an evacuated

metallic chamber is a simple yet effective means for centering

and conditioning a relativistic electron beam. This paper

presents a circuit equation for computing the charge and current

induced on the wire by the beam. Use of the circuit equation is

illustrated by coupling it to a beam envelope equation to

determine the response of a centered, axisymmetric beam to the wire

charge and current.

INTRODUCTION

Resistive wires have been shown experimentally to be capable of

centering and conditioning a relativistic electron beam. Previous

analyses 2 - of wire conditioning assumed a static wire charge and no wire

current. This assumption is valid, however, only in the beam body and only

for selected values of the wire resistance and length. To avoid these

restrictions and to model the beam front where conditioning is often most

important, a dynamical model for the wire current and charge is required.

Such a model is described herein and should provide a more accurate

description of beam behavior.

WIRE CIRCUIT EQUATION

Consider a wire of distributed resistance Rw and length zw centered

within an evacuated metallic chamber of radius b. For simplicity, assume

that the wire is small and hollow with a radius aw << b. An electron beam

entering the chamber induces on the wire a distributed charge Xw and

current Iw that determine the pinch and centering forces felt by the beam.

To avoid solving Maxwell's equations in full, we derive in this section a

simplified circuit equation for computing Xw and Iw



The wire circuit equation is comprised of three parts. The first

follows directly from charge conservation and relates the distributed wire

charge to the wire current:

a XaI
t (1)

The second part uses Ohm's law to relate I to the average axial electric

field in the wire:

IV = EZV/Rw* (2)

The third part uses Maxwell's equations plus suitable approximations to

express the wire field Ezv in terms of Xw and Iv

To compute Ezw, we write Maxwell's equations in the form

2Ez = 4n L( ) + 1 L 41t b + Jw ) + E L (3)

z Ob + Ow a t L-c b V' C t

where Ez is the axial electric field, Pb and p. are the charge densities of

the beam and wire, respectively, and Jb and Jw are the axial current

densities of the beam and wire, respectively. The beam current density is

related to the charge density through Jb = Pb c where Oc is the axial beam

velocity. For ultrarelativistic beams, 0 - 1 and may be taken as constant.

One can then set

ca -Pb C t" Jb 5 + cat b

where a i ct-z measures distance behind the beam head, y a I/(1-02) is

the usual relativistic factor, and the subscript on partial derivatives

indicates that the variable is to be held constant. For y2 >> 1, Eqs. (3)

and (4) reduce to

72E- 4ar ap w -2a nT-+C - c Q Td C _

+ ) ( ] Ez  (5)

where V1
2 is the Laplacian operator in the transverse plane.



A simple expression for the wire field Ezw can be obtained from Eq. (5)

by dropping the last term in brackets. Such neglect is well justified,

except within a few beam radii of the end plates, provided:

b/rb < 1 (6)

and
a. << b < z (7)

where Cb characterizes axial variations (rise length, etc.) of the beam.

After dropping the last term, the wire field is obtained by integrating Eq.

(5) using the boundary condition that Ez = 0 at r = b:

2n

Ez, • .-f de Ez(r=aw,e,z,t)

0

b r 2n
d , f r/  1 2Ez-j-- jdrr jdG8j-

aw  0 0 Z

SL- L (8)
w z w' - v at ~ c ati C (b C).

Here Ib(C,t) is the total beam current, C V and L. are the distributed wire

capacitance and inductance, respectively, defined by

Cw 
1  c2 Lw  = 2 ln(b/aW), (9)

and Cb is the distributed beam capacitance defined by
b

rb = 2 (r,, - (10)

a
w

where ib(r,C,t) is the fraction of beam current within radius r.

Equations (2) and (8) can be combined to eliminate EzV

[L~~]w 0C~X -r I

where • - Lw/Rw is the inductive decay time. Equations (1) and (9)-(11)

together with suitable boundary conditions comprise a closed set for

X (z,t) and Iw(Zt) in terms of the beam current Ib( ,t) and its radial

distribution ib(r,C,t). Recall that the circuit equations do not apply

within a short transition zone at the end plates where steep gradients in

Ez (but not E z) exist.

z zv N



BOUNDARY CONDITIONS

The conducting end plates at z = 0, zw short-circuit the transverse

space-charge field of the beam and convert it into a large but localized

axial field Ez , as required by conservation of field energy. The axial

field drives current that quickly charges the wire so as to reduce and

smooth E • This electrostatic charging of the wire near the end platesz2

occurs in a time T = aw2 R w/4 that is typically short compared with T° and

all other time scales of interest. Away from the end plates, the evolution

of Xw and Iv is controlled by TO and the evolution of the beam.

Because the wire charges rapidly near the end plates, one can set XV

equal to its quasi-static equilibrium value. This value may be inferred by

setting Iw equal to its steady-state value, zero, and integrating Eq. (11)

from z = 0 to z = zw using the transformation dz = c dt for fixed C. One

then concludes that

Cw Ibw wCb c 
(12)

at z = 0, zw. Previous analyses1 -4 used this steady-state value for all z

and t to determine beam behavior. Here we impose the steady-state value

only at the end plates and allow the wire current to relax in stages as the

electromagnetic discontinuities and reflections generated by condition (12)

cause IW + 0 while leaving Xw finite.

BEAM DYNAMICS

Within the accuracy of the model, the transverse force on the beam

electrons is given by

2e [cX (zt) - Iw(zt)] H(r-a ) k (13)
rc w , w

where H is the Heaviside step function and t is the unit radial vector.

The wire return current Iw repels the beam and causes it to expand while

the wire charge X w attracts the beam and causes it to pinch. Beam

conditioning requires Xw > Iw /c and ultimately occurs provided the pulse

duration is long:

T > z /c, -r. (14)p w o



The beam has time to respond to the wire force provided the beam

betatron vavelength is small:

X PM 2nab U"
/2 < z (15)

where ab is the beam radius,

U - 2(c\ w - Iv)/IA (16)

is the dimensionless wire pinch potential, and IA = Ymc 3/e is the Alfven

current. The wire pinch potential, which was derived using force equation

(13) assuming aw << ab, is used in the Lee-Cooper envelope equation5 to

determine the self-similar expansion of an axisymmetric beam centered about

the wire.

The beam expends energy ohmically in establishing the wire charge Xw

Within the confines of the model, the energy loss is given by

d c 2 1 C 2 C(17)

where the factor C b/Cw < 1 accounts for the gradual radial fall-off of Ez

outside the wire. One can show that the energy loss is negligible only if

b/IA  << 2 C b2/Cw < 1. (18)

An important property of the wire force is that it is strongly

anharmonic. The resulting spread in betatron frequencies leads to rapid

phase-mix damping 3 which dissipates both sausage-like and hose-like

oscillations of the beam. An off-center or mismatched beam will thus

eventually stabilize about the wire but with increased beam emittance and

radius. Less advantageous is that the anharmonic character of the wire

force can cause the beam to develop broad wings. Neglecting cut-off at the

chamber wall, the equilibrium beam current density is given by

(rCIt( b x (a /r) 2x(1a

bo~ r  )  2 1-x 1

where

x a e(cX w - Iv)/cTI  (19b)

and T1 is the transverse beam temperature. Note that pinched equilibria



exist only if the beam is cool, TI < e(cXw - w)/c < eIb/c. Whether broad

beam wings cause propagation problems outside the wire cell depends on the

application. A particle code rather than an envelope model is required to

address this issue.

CONCLUSION

A dynamical circuit equation for the current and charge induced on a

resistive wire by a passing relativistic electron beam has been constructed

from Maxwell's equations. The circuit equation is simple to implement and

provides an accurate means for computing the transverse force on beam

electrons inside the wire cell. The model allows arbitrary spatial

distribution for the beam current and can be used, when coupled to a

particle code, to predict both conditioning and centering of the beam. To

test the model, we have coupled it to an envelope code to predict the

evolution of beam radius and emittance. The behavior of the beam inside

the cell is controlled by varying the wire resistance and length.

This work was supported by the Defense Advanced Research Projects

Agency under ARPA Order No. 4395, Amendment No. 69, and monitored by the

Naval Surface Warfare Center.
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RESISTIVE VIRE CONDITIONING

R. F. Fernsler and S. P. Slinker

Naval Research Laboratory

P. R. Boris

SAIC

1. Introduction

An evacuated resistive-wire cell is a convenient, passive device for

conditioning and centering a relativistic electron beam. 1 In a previous

paper2 we derived a circuit equation for modeling the dynamical response of

the wire, and illustrated use of the circuit equation through a beam

envelope model. Here we extend the computational analysis by coupling the

wire circuit equation to a particle pusher.

2. Particle Equations

Two equations are used to push the beam electrons.3 The first is the

transverse force equation:

F 2e z,t) = X zt) - Iw(Z't)l H(r-a)(c (1)

where H is the Heaviside step function and f is the unit radial vector.

The wire return current I w repels the beam and causes it to expand, while

the wire charge Xw attracts the beam and causes it to pinch and center.

The second equation describes axial energy loss and is given by

d elwRw l in(b/aw)/ln(b/r), r > aw  (2)
dt mc 1, r<aw

where R is the distributed wire resistance, a is the wire radius, andw w

b >> a is the wall radius. The circuit equations used to determine Xv andw
Iare given in Ref. 2.

3. Envelope Model Versus Particle Pusher

The above equations were solved using the following beam parameters at

injection: energy y0 = 10; peak current Ibo = 10 kA; current rise time Tr =

5 ns, hyperbolic rise; half-current radius a1/2 = 1 cm, Bennett profile;



matching current fraction Fm M 0.2; and offset 7 - 0. The wire-cell

parameters were: wire radius aw M 0.05 cm; wall radius b - 14.8 cm;

resistance Rw a1 2/cm; and length zw - 100 cm.

Figures 1 and 2 compare the predictions of the envelope model with

those of the particle simulation at z ,. Although fair aggreement is found

for the beam half-radius, the envelope predictions for normalized emittance

en differ considerably from the particle predictions. The discrepancy can

be reduced by renormalizing the particle emittance to the half-radius al1 2

rather than the rms radius arms; this is done in Fig. 2b which shows

qualitative agreement with the envelope results in Fig. lb.

The discrepancy has, however, a more fundamental basis. The emittance

evolves because the beam profile changes shape. In general, the injected

beam profile differs considerably from the equilibrium profile 2 about the

wire. In the particle simulations, the beam profile and en change more in

the tightly pinched beam body than in the weakly pinched head; see Fig. 2c.

In the envelope model, however, the growth rate for cn 2 is set proportional
to the radial expansion velocity.4 The envelope model therefore predicts

the largest growth in en near the expanding beam head. This difference

demonstrates the limitations of envelope models in describing emittance

growth, particularly when the pinch potential is highly anharmonic. Note

that en should drop after the beam leaves the wire cell and enters a

propagation cell with a harmonic pinch potential.

A resistive wire cell can also serve as as efficient emittance filter.

Hot beam electrons reside at large radii in the anharmonic wire potential

and can be removed by reducing the wall radius b or by placing a collimator

near the wire-cell exit. In the run discussed, cn could in principle be

reduced by a factor of 4 by discarding only 30 percent of the beam.

4. Beam Centering

The particle pusher, like the circuit equation but unlike the envelope

model, is valid for arbitrary spatial distribution and can accomodate

off-axis beams. To demonstrate the centering capability of a wire cell,

the run described above was repeated except that the beam was injected off

axis atx - 0.5 cm. Figure (2d) shows that the wire cell reduced the

deflection by - 5 in the beam body. Note that the body actually overshot

the wire after propagating a distance zw  2 X Increasing either z. (to

allow for more phase-mix damping) or Rw (to damp Iv and thereby increase

the pinch force) should reduce the deflection more.



5. Time Step

Beam electrons in the Immediate vicinity of the wire experience a pinch

force that changes strongly over a wire radius aw . Moreover, these

electrons can attain high radial velocities, arc. To model these particles

accurately, the time step should satisfy AC < a.w/0r. By contrast, harmonic

pinch forces require a less severe requirement: 6C < al/2/0. The use of a

small wire radius can thus dramatically increase code cost.

To illustrate the problem, consider the above simulation in which few

particles attain transverse speeds above 0r = 0.2. For a, = 0.05 cm, a

time step of 6C _ 0.25 cm should suffice. The use of 6C = 0.5 cm produced

modest changes, while longer time steps produced pronounced changes and

unphysical results. There are several possible techniques for overcoming

this problem including an implicit particle integration scheme, or using

small time steps only for those particles needing it. Note that the

envelope model avoids this problem by using radially averaged quantities.

6. Conclusion

We have successfully coupled a particle pusher to the resistive-wire

circuit equations. The new code shows distinct and important differences,

particularly with regard to beam emittance, from an earlier code based on

an envelope model. Future code improvements include: incorporation in the

circuit solver of direct feedback from the beam while in the wire cell

(presently dropped to avoid numerical instability); allowance for finite-y

effects in the circuit solver; and developing means for bypassing the time-

step limitation.
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SARLAC HOSE AND TRACKING SIMULATIONS: THE MOVIE
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Washington, DC 20375

Science Applications International Corp.
McLean, VA
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Livermore, CA 94550

I. INTRODUCTION

SARLAC is a 3-D particle simulation code which can treat large

deviations from axisymmetry.1,2 We have recently modified the code to

produce animations which can be run on an Atari ST micro-computer and

output to a VCR tape. This paper describes the animation procedure and

*ives some examples of single frame output from simulations of planned

experiments on ATA and Super-IBEX. These simulations are described in more3
detail in the companion paper.

SARLAC uses the frozen approximation and uses x, y, z, and C - ct - z
as the independent variables for pushing beam particles. In the standard

version, beam particles are assumed to be ultrarelativistic and remain at a

fixed distance C from the beam head. Each frame of the animations is a

color contour plot of the line-integrated beam density Db(x,C) - Inb(x,y)dy

at a fixed position z in the lab frame. (The density Db is actually

calculated by accumulating particles into bins based on their instantaneous

x-coordinate). This gives a representation of the beam as viewed from the

side and can clearly show hose distortions and beam expansion. The frames

provide essentially the same information as the particle plots which have

been used with SARLAC for some time.2 An example of a single frame from an

ATA animation is shown in Fig. 1.

II. ANIMATION PROCEDURE

Overview: The simulations are run on a CRAY which also generates a

file containing the particle density data. A translator program ships the

data to a VAX which then generates animation files. An Atari ST does the



final processing and creates the finished animation. The Atari can play

back the animation at any desired speed and output the screen images to a

VCR tape. The entire procedure is shown schematically in Fig. 2.

CRAY processing: The CRAY creates a partitioned file containing the

raw Db(x,&) data at each z-step. The beam is divided into 30 equally

spaced C-slices for this diagnostic although the actual simulation axial

-1 mesh is usually finer. The CRAY then sends the raw data file to the Vax.

Vax processing: SARLAC calculates beam dynamics by pushing a single

C-slice from z - 0 to z = z max , so the data must first be reordered to

produce animation frames at constant z. The reordered beam density data

for each z-step or animation frame is contained in a 30 x 60 array. The

Vax movie generation program finds the maximum value of Db at each frame

and then rescales the density based on the average maximum <Dmax> . (This

"* prevents the color levels from being biased by a spike in the data.) The

rescaled data consists of color contour levels from 0 (black) to 15

(white), and values of Db above <D > are assigned the highest level (15).b max
The color palate runs from dull reds and oranges at the low levels to

bright blues and violets at the highest levels, so the intensities are

similar to what would be used for a "gray" scale plot (eg., Fig. 1).

A Vax animation library developed by Mitchell converts the data,

along with titles and labels, to a 320 x 200 pixel array which corresponds

to the resolution of the Atari ST screen. A pixelator program transforms

the data from real numbers to bytes and allows the size of the 30 x 60 data

array to be scaled by an integer multiple in each direction. For the case

shown in Fig. 1, the data array was transformed to a 2/0 x 120 array which

covers 2/3 of the screen. The program then generates two animation files:

a picture file containing the first frame of the animation, and a delta

file containing only the changes for each subsequent frame. We chose to

use contour plots rather than particle plots in part because the frame-to-

frame changes for a contour plot are relatively small, making the delta

file small enough so that even large simulations with 150 frames or more

can reside in the 4 Mb memory of an upgraded Atari ST.

Atari ST processing: The animation files are moved from the Vax to
*the Atari using a standard file transfer program such as Kermit. A

commercially available animation program, Cyber Paint, 5 uses the animation

files to generate images on the Atari screen and allows individual frames

to be modified. Normally, we choose simulation parameters so that an entire

run can reside in the Atari's memory and can be played back at any desired

speed. Several simulations can be concatenated together by running



Animate4, a text command file containing a list of animations to be run

from a hard disc.6 This provides a continuous process for viewing the

animations and allows smooth video recordings to be made without repeatedly

stopping and restarting the VCR. The Atari must be equipped with an rf

modulator or video output to make such recordings.

III. EXAMPLES

ATA in a density channel: Fig. 1 is a black-and-white frame from a

SARLAC simulation of a 6 kA, 10 MeV, 0.5 cm ATA beam propagating in a 0.3
atm density channel whose nominal edge at 1.5 cm is drawn on the frame.

The frame is at z - 498 cm, and its length corresponds to 750 cm (25 nsec)

of pulse. Although much of the beam head has been eroded or scattered

away, an intense portion in the beam tail remains in the channel. The

corresponding frame from a similar case with no channel (not shown) is much

more diffuse owing to the increase in scattering at the 1 atm gas density

Super-IBEX simulations: Fig. 3 is a similar plot from a simulation of

a 30 kA, 5 MeV, 2 cm Super-IBEX beam propagating in full density air. At z

w 498 cm, low frequency hose growth has displaced the entire pulse several

cm below the axis, but there is no disruption. Frames from a more poorly-

conditioned Super-IBEX simulation show violent disruption, as expected from
previous experience on IBEX. Plans call for Super-IBEX to be fired into a

preformed density channel. A frame from a simulation of the Fig. 3 beam

propagating in such a channel is shown in Fig. 4. The beam is more

intense, and hose displacements are substantially smaller.

Other simulation: A total of 9 animations have been assembled on a

single VCR tape. These in include other ATA and Super-IBEX hose
simulations as well as Super-IBEX tracking simulations.
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NRL Modified Betatron

Summary of Experimental Results

* The beneficial effect of Be on the expansion of
the ring's minor radius has been demonstrated.

I

e The drift (boun'e) motion of the ring has been
unambiguously€confirmed with three different
diagnostics.

* The pronounced effect of image forces on the
ring equilibrium has been verified.

* Self trapping of the multi-kiloampere beam with
efficiency in excess of 80% has been observed.

e Electron rings with circulating current 2-3 kA
that remain in the system for P4 Wm (200 rev-
olutions) have been formed. Longer confining
times are observed at 1 kA.

W0

* Experiments are in progres to improve the con-
finement time and to accelerate the ring.
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Induced Fields on the Ring Centroid
Correct to order (2C)2 and (f9-)

Er=-(2 lei Nt/a) [-i+. i-+ (r+baa P(ro + X) b + s(ro + x)a
I

Ex -(2 1e NIa)(Z/a)

E. = -(2 I1 tNfle/c) XX + ZZ In
a2  2(ro +X) rb

2a ' ]

a2 2

B, = -(2 tel NV,~/ oa)(Zla)

+ 8(vo +X)s]

Where N is the number of electrons per unit length.
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of the Modified Betatron
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North-Holland. Amsterdam

IMPROVING THE CURRENT CARRYING CAPABILITY OF THE MODIFIED BETATRON *

C.A. KAPETANAKOS, D. DIALETIS ** and S.J. MARSH **"

Plasma PhYsics Division. Naval Research Laboratoy,, Washington, DC 20375-5000, USA

Stability analysis of the macroscopic beam orbits indicates that the current-carrying capability of the modified betatron is
substantially improved by adding torsatron windings that carry modest current. An analytic expression has been derived that gives
the maximum beam current in a modified betatron as a function of the current in the torsatron windings and other relevant
parameters.

1. Introduction

High energy physics experiments require electron beams with energy in the TeV range at relative low
average current. In contrast most industrial and defense related applications demand high average beam
current in the energy range from a few MeV to approximately 1 GeV. In addition, while the compactness
of the accelerator is critical in most commercial and defense applications, it plays only a secondary role in
the high energy physics experiments.

The development of the modified betatron accelerator at NRL is motivated by its compact size and its
potential to generate high current beams of several hundred MeV energy. Extensive theoretical studies
[2-91 over the last few years have shown that the modified betatron accelerator has current carrying
capability substantially higher than the conventional betatron. The improved current carrying capability of
the modified betatron is due to the toroidal magnetic field that controls the minor radius of the circulating
electron ring.

The current carrying capability of the modified betatron can be further improved by adding a strong
focusing field. This additional field can be conveniently generated by a set of I = 2 torsatron windings, i.e.,
two twisted wires that carry current in the same direction as shown in fig. 1.

In addition to improve the current carrying capability of the device, the strong focusing [10,111 reduces
the orbit displacement that results fromn he energy mismatch. Such a mismatch occurs whenever the
energy of the electron beam is not precisely,atched to the vertical or betatron magnetic field. Under such
conditions the center of the beam gyration in the plane transverse to the minor axis is shifted radially and
thus the beam has an enhanced probability to strike the wall of the surrounding vacuum chamber.

By reducing the orbit sensitivity to the energy mismatch, the strong focusing makes the electron ring
more tolerable to field errors and thus the stringent constraints on the bus-work and the accelerator
support structure are relaxed [11]. Finally, for the same reason, the beam displacement associated with the
diffusion of the self magnetic field is reduced and thus the need for compensating windings is eliminated.

2. The model

The beam dynamics in a modified betatron with torsatron windings has been recently studied [111 in
detail. Assuming that the toroidal velocity v9 remains constant and using the lowest nonlinear terms in the
expressions for the torsatron fields and keeping only linear terms in the betatron, toroidal and self fields,
we derived the guiding center equations for the reference electron that is located at the centroid of an

• Supported by ONR.
* Science Applications Int. Corp. McLean. VA 22102, USA.

"""Sachs/Freeman Associates. Bowie. MD 20715, USA.
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intense electron ring by time averaging out its fast motion. These "slow" equations. together with the
energy rate equation, were integrated approximately analytically to obtain two constants of the motion
that describe the ring motion in the vertical plane. Recently, the calculation was repeated without
assuming vc, is constant and using nonlinear expressions for the betatron and toroidal fields. The first.
more general constant of the motion. now becomes

mc 1 I y 2( lnb n al x 2 Z) r )S2, 0ro[, _ *
_L__n- +__ -n ro n ro 2
c 2-n r) 2n r ~2r ro /

+ L()2 (fC)2 [ 11 ?(2aR) _ (2aR (1)

where

R' = X 2 + Z2 , r = r0 + X. ow -= 2ac,

Di = 2" - a - oy"'Wo = -oo - /Py Or°,

D2 = Sf2t - 20 + eN , o = S0eo + .8*"°,,o.
In these equations (PO) is the average (over the fast motion) canonical angular momentum, #e = vy/c, Y is
the relativistic factor, v is the Budker parameter, rb is the minor radius of the ring, a is the minor radius
of the torus, X and Z are the radial and vertical displacements of the guiding center of the bear centroid
from the minor axis, B:xEt = 2aBopoK2(2apo), Po is the minor radius of the torsatron windings. K,, and I,
are the modified Bessel functions, a = 27r/L, L is the period of the torsatron windings, B. = rl/cL, I is
the current in the torsatron windings, 2:o = I e B20/(mc), B:o is the betatron field on the minor axis. n is
the external field index,

S2 = I eIB.x/mc= -I( eI Bq /mc)(ro/r)
and Be - BO is the total toroidal magnetic field on the minor axis.

As expected, the exact canonical momentum is not a constant of the motion. However, the average over
the fast motion canonical momentum of the reference electron is approximately conserved.

An additional constant of the motion can be obtained by integrating the energy rate equation that
describes the variation of y as the ring moves along its orbit. Assuming that Yo = y, where Ye = (1 -f 9 )2- 1/2,

and omitting a small term that is proportional to ,/y 2, we obtain

2[i~~~1 1  +~ X Z 2  r2 X 1 v ! a ~K+ 2

y 2[ 1 In a +2 I+ -V I +In a+n I +
2 .a o a 2 (rj+X y2- I I

+In ln (r o + X) 1(2)
rb ro

where y, is a constant that is determined from the injection conditions.
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Eqs. (1) and (2) describe the slow orbits of the beam centroid in the plane transverse to the minor axis.
It has been shown [11] that the approximate constants of the motion predict accurately the guiding center
motion of the beam centroid.

Near the minor axis, i.e., when 2aR << 1 and X/r << 1. eq. (1) can be linearized and the reulting
expression, when the small term that contains 13 and the fly(9 ,,o term are omitted, is

2 -o() 4cD10  y2a 2#Oo+ mcr r)

, 3)
[2c -c1 Z-I-II

fl 4D 0  yja3 0 -g') r/ 1 nhwr 2 y,1qo r. 2a ro

8 Pe(3
mcro

where D10 = -/37 0yoo.,,.o, and

P6P _ (Pe) P+ <)O ) P) < +-V In a
mcro mcro mcro mcro '000 rb

The linearized constant of the motion of eq. (3) is identical to that derived previously [11] under the
assumption that v is constant and for linear betatron and toroidal fields.

Omitting the very small term (rb/a )2, (eq. (3)) can be written
K°=q,(X)2+q2 (Z) 28PO (X), (4)

ro io rr2*0o r0

where
q, n + n, - n* + 2( P,)/mr 'S2:0,
q2 =n+n-n * ,

K= - 28P/rnr02.0 ,

, = (2,, )Iroa/22.0 ( - eo +900o0o

is the torsatron field index.
n*=2vrc/(ya'aZ3ol2:o) and f2,, < 0

is the combined toroidal field at r,.
According to eq. (4), the macroscopic beam orbits are stable provided qlq 2 > 0. Fig. 2 shows the

product qq, as a function of n* for n, = 0 (modified betatron) and n, * 0, i.e., a modified betatron with
torsatron windings. Since n* - 1,/y 3 the parameter n* decreases rapidly during acceleration. Therefore,
in order to avoid crossing the instability gap when y,) increases, it is necessary to select the beam
parameters during injection so that n* is located in the left stable region (operating region) of the figure.
It is apparent that when n, >> 1. the operating region can be very wide and thus the maximum ring current
that can be stably confined can b,- considerably higher than when n, = 0.

When q, = q2 the orbits are always stable. This occurs when n = n, = + (P6 )/mrof2:0 . For n > no
the maximum current is determined from the condition q, = 0 and is given by

1) 246.93 e[-rl I A]

t,[kA] [4W0 , t2tkAj -/ 0o + b.j(1 -. n (5) '
17.045 2 f42 +InaI- 2 + I I( In a

VII ACCELERATOR TECHNOLOGY



808 CA Kapetanakos et aL Current -carrying capability of modified betatron

12r

(Mod,fied 6.tt,onl 4
6 , 2.5-
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Ip''., qe -- o - 2 20.

Si1 5.- -

Torsa~ron Current I (NA)

Fig. 2. Stability diagram for the electron ring centroid. Shown Fig. 3. Maximum beam current Ii, (upper limit of the operat-
is the product q~q,. vs n * for n, = 0 (modified betatron) and ing region) as a function of the current I in the torsatron

n, I (modified betatron with strong focusing). The orbits are windings for n = 0.6 and four values of yo. The rest of the
closed (stable) when qlqz > 0. parameters are listed in table 1.

1b= 3 77kABo 74 20 tbz
5 6 6 kA, Bzo-87 20 b=801 kA, Bzom03.44

IS .. ~ 16 It6

C -7 7'

EE '
0i 0

1' -16 1
84 92 100 08 '16 64 92 100 '06 116 684 92 100 103 116

r. ±X(cm) to + X(cm) r,+X (cm)

Fig. 4. Macroscopic beam orbits in the transver~e plane for Y,) = 3 and (a) Ib, = .77 kA. j~ h)It = 5.66 kA and (c) It 8.01 kA. The
rest of the parameters are listed in table 1. In (a) and (c) the orbits are closed near the minor axis.

where b. = 2acI89 0y/(l.76 x 107). el = 2apoK,(2apo) and Gaussian units are used except for the current.
For n < no, the maximum current is determined by a similar expression, which can be found from eq. (5)
by replacing 1 - n by n and omitting the In a/rb term that appears inside the square bracket in the
denominator of eq. (5).

Fig. 3 shows the maximum beam current 1. as a function of the current in the torsatron windings for
n = 0.6 and four values of yo. The rest of the parameters are listed in table 1. As shown in fig. 3. for y, = 3
the maximum beam current increases from 2.5 to 12 kA by increasing the torsatron current from 0 to
60 kA.

Table I
Values of the various parameters used in eq. (5) to make the plots in fig. 3. The same values are also used in eqs. (1) and (2) to make
the plots that are shown in fig. 4.

Major radius of the torus r0 - 100 cm
Minor radius of the torus a - 16 cm
Beam minor radius rt, -I cm
External field index n - 0.6
External toroidal field B,,,-= 3 kG

c= -0.1283
Radius of torsatron windings P)= 18 cm

a =0.1 cm'-



CA. Kapetanakos et a. / Current-carrying capability of modified betatron 809

For I = 20 kA the maximum current in the operating region is 3.9 kA. When 3.9 < Ib < 7.08 kA the
beam is unstable but becomes again stable when Ib ? 7.08 kA. Fig. 4 shows the beam orbits in the
transverse plane for yo = 3 and Ib - 3.77, 5.66 and 8.01 kA. As expected, the orbits near the minor axis are
closed for 3.77 and 8.01 kA and open for 5.66 kA.
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BEAM "SELF-TRAPPING" IN THE NRL MODIFIED BETATRON ACCELERATOR*

F. Mako, J. Golden, D. Dialetis**, L. Floyd, N. King,***
and C. A. Kapetanakos

Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375 USA

ABSTRACT

The electron beam in the NRL Modified Betatron is observed to

"self-trap" within a narrow range of parameters. It appears that the

cause of the "self-trapping" is the localized magnetic field generated by

the residual diode stalk current. In this paper, the experimental

observations on the "self-trapping" of the beam are briefly summarized,

and a model is presented that accurately predicts the experimental

results.

INTRODUCTION

The modified betatron (Sprangle, 1978; Kapetanakos, 1978),

(Rostoker, 1980), (Kapetanakos, 1983; Sprangle, 1983; Chernin, 1983;.

Marsh, 1983; Haber, 1983) is a toroidal induction accelerator that has

the potential to generate high current beams. Its field configuration

includes a strong toroidal magnetic field in addition to the time varying

betatron magnetic field which is responsible for the acceleration. The

toroidal magnetic field substantially improves the stability of the

circulating electron ring. Preliminary results obtained, so far, from

the NRL modified betatron have demonstrated some important aspects of the

concept (Mako, 1985; Golden, 1985; Floyd, 1985; McDonald, 1985; Smith,

1985; Kapetanakos, 1985), (Golden, 1986; Mako, 1986; Floyd, 1986;

McDonald, 1986; Smith, 1986; Marsh, 1986; Dialetis, 1986; Kapetanakos,

1986), including: (1) the beneficial effect of the toroidal magnetic

* work supported by ONR.

** SAIC, McLean, VA, USA
*** Sachs-Freeman Associates, Landover, MD, USA
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field on the expansion of the ring's minor radius, (2) the pronounced

effect of image forces on the ring equilibrium, (3) the drift (bounce)

motion of the ring in the poloidal direction and (4) "self trapping" of

the multi-kiloampere beam with efficiency as high as 80%. In this paper,

we briefly summarize the experimental observation of "self trapping" of

the beam and also present a model that explains its origins.

EXPERIMENTAL SET-UP AND OBSERVATION

A schematic plan view of the NRL Modified Betatron (Golden, 1983) is

shown in Fig. 1. The support structure is an equilateral triangle.

Twelve rectangular toroidal field (TF) coils are equally spaced azi-

muthally about the major axis (perpendicular to the page). Eighteen

circular vertical (i.e., betatron) field (VF) coils are located within

the TF coils and generate the betatron field that accelerates the

electrons. A toroidal vacuum chamber (major radius r° . 1 m, minor

radius a - 15.3 cm) is contained within the coil system. The electron

beam is generated in a diode located inside the vacuum chamber. Typi-

cally a 0.8 MeV, 1.5-4 kA electron beam is injected tangential to the

toroidal field, on the midplane, at a radius of 109 cm.

As theoretically predicted (Kapetanakos, 1982; Sprangle, 1982;

Marsh, 1982), when the betatron field (Bz) is a particular value Bzm

48 G) the beam returns to the injection position after one revolution

around the major axis. For lower values of Bz , the beam drifts polol-

dally on a nearly circular trajectory and returns to the injector after a

poloidal period (typically 200-500 nsec).

The poloidal trajectory is observed by open shutter photography of

the light produced when the beam passes through a thin polycarbonate film

that spans the minor cross section of the vacuum chamber. The film

target is 2 pm thick and is coated with 2-3 um of carbon to reduce

electrostatic charging.

"Self trapping" is observed for a narrow range of Bzo (- 29 G). In

this case, as the beam approaches the injector, it is deflected away from

the diode and subsequently performs additional oscillations (see Fig.

2a). At higher betatron magnetic fields the deflection is insufficient,

and the beam strikes the injector. At lower B zo, the beam drifts into

the wall during the first poloidal bounce.

The "self trapping" results from the localized magnetic field

associated with the injection diode. Both electric and magnetic fields

are associated with the diode because of the applied potential and the

current flowing in the cathode stalk (see Fig. 3). However, during the

main injection pulse, the fringing electric forces and the magnetic
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Fig. 1. Schematic plan view of the NRL modified betatron.

a . -- b

SX(cmm

Fig. 2. Experimentally observed (a) and theoretically predicted (b)
poloidal motion of the beam.

forces from the 15 cm long azimuthal segment of the cathode stalk nearly

cancel. A second pulse (dashed portion of the traces in Fig. 3) follows

the main applied voltage pulse by 200 nsec and has an - 150 kV peak and a

150 nsec duration. During the afterpulse, the diode impedance is reduced

by plasma closure and a 1-4 kA current flows in the stalk. In this case,

the magnetic forces are larger than the electric forces and the net

component produces a radial inward drift of the beam. This explanation

is supported by the observation that when a diverter sparkgap that is in

parallel with the diode fires at the end of the flat portion of the main
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Fig. 3. Potential applied to the injection diode (upper, 850 kV
peak, 50 nsec/div), and diode current (lower, 6kA peak,
50 nsec/div). When a diverter switch in parallel with
the diode fires at the end of the main pulse, the second
pulse (dashed curves) is greatly reduced.

pulse, the second pulse is greatly reduced (solid traces, Fig. 3) and

only a small deformation of the drift trajectory is observed. Further

evidence is that the radial shift depends on tle length of the cathode

stalk. A 2-3 cm cathode stalk produces only a 3light distortion of the

poloidal orbit. A 30 cm long cathode stalk produces a gross distortion

of the poloidal orbit.

THE THEORETICAL MODEL

A simple understanding of the conditions under which the beam can be

trapped in the modified betatron in the presence of the diode stalk can

be provided by the slow equation (Kapetanakos, 1986; Dialetis, 1986;

Marsh, 1986) of the centroid of the beam. For the sake of simplicity,

cylindrical geometry is used, i.e., the toroidal corrections of the

fields induced by the beam are neglected as well as those of the diode

stalk. Also, the beam energy is assumed to have a small variation as the

beam moves so that, for all practical purposes, it remains constant.

finally, the diode stalk is assumed to be of infinite length. Under

these assumptions, the slow equations of motion can be integrated and an

expression for the orbits of the beam centroid can be obtained, namely,

09 r n x n [z

[ -- c JJ [2Lox

[v2 1ll x~2  2 1

- L~J V~a 2 )1 - 2 (Vds-120n ds n +Y a 4n mc

- zn - 1 + 2 K. (1)
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Rationalized MKS units are used. Here, (x,z) is the position of the beam

centroid, v Budker's parameter, 0 the beam velocity normalized to the

velocity of light c, and y is the relativistic factor of the beam. Also,

r and a are the major and minor radii of the toroidal chamber while n

and B are the field index and the betatron magnetic field on the minorzo

axis (Qzo I 1eIBzo/m, where e and m are the electron charge and mass).

Finally, 6 is the distance of the diode stalk from the minor axis, Vds

and Ids are the stalk voltage and stalk current. The integration

constant K is determined by the initial position of the beam. The

various terms in Eq. (1) can be easily identified. Thus, the first and

second terms are due to the betatron field and the centrifugal force,

while the third term originates from the induced charge and currently by

the beam on the chamber walls. The fourth term comes from the fields of

the diode stalk and its image due to the conducting walls. When all four

terms are comparable to each other, then the possibility arises for the

beam to be trapped as Fig. (2b) demonstrates.

Excellent agreement is seen in the comparison of theory and

experiment shown in Fig. 2. The experimental parameters have been used

in the theoretical model to predict the poloidal orbits. In this case,

y = 1.64, r° = 100 cm, Ids = 1 kA, A = 9 cm, a - 16 cm, n = 0.5, the beam

current is 1 kA, and the toroidal field is 2 kGauss. Because the model

does not include toroidal effects, the model is evaluated with B =zo
22.16 G which is equivalent to 29 G in the experiment.
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A NOVEL TRAPPING SCHEME IN THE

MODIFIED BETATRON ACCELERATOR*

J. GOLDEN, F. MAKO, L. FLOYD, T. SMITH,
D. DIALETISt, S. J. MARSH**, and C. A. KAPETANAKOS

Plasma Physics Division

Naval Research Laboratory, Washington DC

Summary 'Self trapping' results from the localized magnetic field as-

The previously reported 'self-trapping' of an electron ring sociated with current flowing in the cathode stalk during a
in the modified betatron results from current flowing in the second pulse that follows ; 200nsec after the main injection
diode during a secondary pulse that follows the main pulse. 12  pulse.2 This afterpulse occurs because the diode is not matched
A similar shift is produced by a current carrying conductor that to the pulse forming line of the injector. Because plasma closure
is oriented along the toroidal magnetic field Be. Because 'self- has reduced the diode impedance at the afterpulse, a 1-4 kA cur-
trapping' is not very versatile, a new trapping scheme is being rent may flow although the applied potential is only : 150kV.
developed. In this scheme, an induction electric field is applied Thus, the magnetic forces are larger than the electric forces and
to a gap in the torus. Preliminary experimental results show the net component produces a radial inward shift of the beam.
that the equilibrium radius of the ring req can be shifted by This explanation is supported by experiments with a cur-
several centimeters. rent carrying conductor,i.e. a kicker coil, that is oriented along

Introduction Be. When a short cathode stalk is used and the kicker is not
successful experiments with multikiloampere energized, the afterpulse does not significantly affect the beam.

Following the sHowever, when the kicker is energized, the shift is similar to
electron beams injected into the NRL modified betatron,3 the that produced by a long cathode stalk with afterpulse. The
research effort has focused on efficient trapping and confine- observed poloidal drift trajectories agree well with calculated
merit of the ring as a prelude to acceleration. In these studies, orbits.2

a 0.5-1.0 MeV, 1-4 kA beam is injected along the 1-3 kG applied
toroidal magnetic field Be from a diode located inside the 1.026 The use of a kicker coil for trapping avoids the disadvan-
m major radius torus. The observations have confirmed the im- tage of 'self trapping', namely that the conditions for trapping

portance of Be in controlling the minor radius of the beam and cannot be adjusted independently from the injection conditions.
are in agreement with the theoretical predictions concerning However. such a coil is unattractive. It must be driven with a

high current equilibria in the modifed betatron. 4'5  sufficiently long pulse so that the radius of the poloidal drift
trajectory can be reduced by acceleration, and the coil repre

The dynamics of high current equilibria in the modified be- sents another obstacle that the beam must avoid. Therefore, a
tatron are dominated by the forces due to the self-field images new trapping scheme is being developed. In this scheme, an in-
of the beam. At the matching value of the betatron magnetic duction electric field is applied to a gap in the torus. During the
field B,, the forces due to the images, the Lorentz force eve x B, poloidal bounce following injection, the beam is accelerated by
(where e is the charge on the electron and ve is the toroidal ve- this applied field and req is shifted. A preliminary experiment
locity) and the centrifugal force are in balance, and the beam to test this scheme has been performed.
does not drift poloidally. After one revolution around the major
axis, the beam returns to the injector and strikes the back of the Theory
cathode. However, in the high current regime, if the betatron Trapping by rapidly accelerating the beam with an induc-
field is less than the matching value, the equilibrium position tive electric field applied to a gap in the torus is non-invasive.
req shifts radially inward, and the beam drifts poloidally about The scheme makes use of the dependence of rq on -y. Linear
the equilibrium position. The poloidal displacement can easily theory predicts that a change in the in the ring energy 6-, will
be adjusted to be sufficient so that the beam does not strike produce a shift in the ring equilibrium position 6r given by
the injector after one turn. For a wide range of parameters,
the poloidal drift trajectory is closed, and the beam returns to 6r 6/-o-- = 2 2 '(1)
the injector after a poloidal oscillation (bounce) period. This r. 1 - n - n, 1r/a

drift motion has been observed and confirmed with several dif-
ferent diagnostic techniques and is in very good agreement with
theory. To achieve trapping, the equilibrium position must be where 6r = req - r0, B,, is the betatron field at the minor
shifted radially inward during the poloidal bounce period so axis, n, is the self-field index, rb is the beam minor radius, and
that the beam does not strike the injector.6  r,,(a) is the chamber major (minor) radius. This expression

is valid near the minor axis. However, away from the minor
Within a narrow range of parameters, 'self-trapping' is ob- axis, non-linear expressions for the external fields and self-field

served with f 80% efficiency. 'Self-trapped' rings with circu- images must be used. The non-linear equations yield the curves
lating current of 2-3 kA remain for 2 4usec (=z 200 revolutions plotted in Fig. 1. These show the energy parameter at the diode
around the major axis). Confinement for 10/ sec is observed at 'fD versus req when B,. = 30G. The various curves correspond
1 kA. to different currents and are labelled in units of I/i where I

is the beam current in kA. It is seen that when I g 1k4 and
req t 105cm, a change in I by 0.1 will produce a shift of - 7
centimeters.

CH2387-9/87/0000-0936 S1.00 4 IEEE 936



2.5 ..... Experiment

B , 30 G The NRL modified betatron has been described in detailZopreviously." For the present experiments, the principal param-

eters are listed in Table 1. The betatron field is 'crowbarred'
2.25 2. 3.0 prior to injection and decays with an 'L/R' time constant of sev-

eral rmsec so that B. is quasi-static during the times of interest.
0.- _ 0 Circulating current is measured by Rogowski coils located at2.0 0 0. two azimuthal positions. The transverse motion of the beam

IV is monitored by three diagnostics: magnetic probes monitor-
1. ing the poloidal self field of the beam, x-rays emitted when the

beam hits a TA target, and open-shutter photography of the

1.5 beam interacting with a thin polycarbonate film target that

1.75 spans the minor cross section of the torus. The film target is 2

2.0 microns thick and is coated with carbon to reduce electrostatic

2.5 charging.

0Table 1. Experimental Parameters

90 100 110 116 Injection energy 0.5-1.0 MeV

req cm Injection current 0.4-3.0 kA
Major radius 1.026 meter

Fig. 1. ID versus rcq for various values of /10 where I is Minor radius 15.3 cm

in kA. Injection radius 1.10 m
Toroidal field 3 kG

The normalize . energy of the ring -y is less than ID because Betatron field 20 - 80 G

energy must be provided to establish the self-fields of the ring. vacuum field index 0.35-0.55

The change in I that occurs during injection of the beam is 7 pressure 4 x 10 - 6 Torr

To accelerate the electron ring, the flux linked by the ring
_ ( - [( 2)a orbit must increase. This can be accomplished by driving a

(1) -o I 2v - ( current around the torus or by changing the flux in a pulse
le forming line (PFL) that is coaxial with the toroidal chamber.

where v is Budker's parameter = 1/170 (I in kA), (-y) is the Such a PFL is under development and is shown in Fig. 2. In

average gamma of the ring, and A is the displacement of the the mean time, a preliminary test of the trapping scheme has

ring centroid from the minor axis. been performed using a planar Blumlein PFL that has been
Wet p connected to the chamber. This PFL has an impedance of 5fl/

When the accelerating potential is applied to the gap section, a capacitance of 36 nF/section, can be charged up to
increases, but there is also a significant increase in velocity and 18 kV, and produces a pulse of 0.25 issec duration. A typical
current because 6 is less thai unity. Thus, the self field flux waveform is shown in Fig. 3.
01 increases and -roduces a diamagnetic back-emf at the gap.
The rate of cha. f -y that is associated with the change of Beam trapping by increasing Y
accelerating flux c/dt and the change in the self field flux
dt$/dt, for a fixed position in the transverse plane, is given by

2 d-1 = c#8A =ecO dllsec d$
dt t 2r 0. dt dt

edLTorus

where L s gorolin(8ro/rb) - 1.75] is the beam inductance, and
the change in 0' is proportional to a change in velocity 60 - Major Axis
LI(61/) = LI(6-1I,(-,2 - 1)].

Integrating and assuming 6 - < < -y and V., = Vgsin(it/r)
where r = trapping pulse duration, one obtains

2 r 2 L , +A l -' ,
_ = oeV -- (4)

where . I WhnBlumleln. 
coaxial pulsellne

where r. = 2wro/e. When "11D o 2.1, I g 1.5kA, a=15.3 cm,
and rb f 1cm, 1 a 1.6 and 2LL/(;Ar.y) m 0.3, i.e., &Y is Top View
reduced by m 25% by the beam diamagnetism. It is seen that Fig. 2. Schematic of a pulse forming line that is coaxial
a penalty results for 'low' energy injection, with the torus.
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cf gap volts/19100

0 .s- The displacement of the beam is sensitive to the timing and
amplitude of the applied gap potential. Thereforp, this scheme
offers a way to trap the beam that is independent of the injector/.0 and is non-invasive. Following refinement of the apparatus by

0.0- installing a coaxial Blumlein PFL, experiments to improve the

confinement time and accelerate the beam will commence.

V* This work is supported by ONR.
-0. - t SAIC, McLean VA.

* Sachs-Freeman Associates, Landover MD.
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Fig. 5. The poloidal trajectory of the beam. Circle outlines
the cross section of the torus; the major axis is to the
right. Left: without gap voltage, right: with 14 kV gap
voltage.
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ABSTRACT

Beam Extraction from the Modified Betatron.

D. DIALETIS, S. J. MARSH, C. A. KAPETANAKOS, Naval

Researh Laboratory-- A multi-turn beam extraction
scheme has been devised that can lead to the unwinding
of an electron ring into a straight beam of
considerably longer duration than the period of ring's
revolution around the major axis of the torus. At the

end of the acceleration, the ring centroid Is shifted
into a region of zero field index by mismatching the
beam. Due to the absence of vertical confinement in
this region, the ring centroid moves vertically while
the beam envelope expands in the same direction.
After the electron ring has shifted far from the mid-
plane, it enters into a localized ferromagnetic con-
tainer that has an azimuthal length several times
longer than its opening. In the region surrounded by

the ferromagnetic material, the magnetic fields are
zero and, therefore, the ring unwinds into a straight
beam. Analytical and numerical results based on the
scheme described above will be presented.
Supported by ONR
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COMPUTER SWIIULATION

Ring Envelope During Extraction
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COMPUTER SIMULATION (MOBE - PIC)

RUN PARAMETERS

Initial beam energy yo 1 100 [99.98J

Major radius r (cm) = 100

Initfal beam minor radius rb (cm) = 4.2 mm

Initial beam center position r. (cm) = 100

Betatron magn. field at r , z = o, B (G) = 1500 + 204.5 = 1704.5

Toroidal magn. field at r, z = o, Boe (KG) -4kG

Initial emittance E (rad - cm) = 280 mradcm - normalized emittance

External field index n = 0.5 4 1 (tanh variation)

Wall diffusion time TD (nsec) =

Time step (nsec) = 200 ps

No. of particles = 128

Trapping field BTrap = 204.5 G
z

Time constant T = 4 isec

x = 12 cm

d = 4 cm
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Modified Betatron
Ring Extraction Agitator Coil

Electron Ring
Undisturbed Orbit

Major Axis

A

Electron Ring
at I -3 resonance

/,\
Extractor Extracted Beam

Top View
Fig. 1. Schematic of the proposed extraction scheme.
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Agitator

Required Features

* Its field should be localized in order not to disturb the ring
equilibrium orbit

" It should be magnetically transparent to external fields
but opaque to its own field

• In the static mode, the radial gradient of the magnetic dis-
turbance should be extremely high (small knee), to avoid
the excitation of the fast mode before the ring reaches the
main disturbance

" In the pulsed mode, its inductance should be very small,
in order for the current rise time to be a small fraction of
the period around the major axis.



To RS. 
B

Agitator Coil
Fig. 2.-, Agitator coil that generates the localized disturbance.

It is powered by a-coaxial transmission line--
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TABLE

List of various parameters for the runs # 266 and 270

RUN# 266 270

Agitator's mode Static Static
Relativistic factor -y 40 400

Major radius r, (cm) 100 100
Vertical field at ro (G) 649.9 6501
Toroidal field at ro (G) -1971 -19310

Field index n 0.5 0.5
Resonance integer 1 3 3

Amplitude of mismatching field (G) 60 600
Time constant of mismatching field (Qsec) 10 10

Agitator's toroidal position 1.26-w 1.26-
Agitator's toroidal width 2A9 (rad) 0.066 0.066

Agitator's inner radius (cm) 120 120
Agitator's outer radius (cm) 124 124

Agitator's opening (cm) 2 2.0
Agitator's linear current density (kA/cm) 0.375 3.75

Agitator's field ABa (G) -450 -4500
Extractor's opening toroidal position 0 0

Extractor's minimum inner radius (cm) 120.5 120.5
Extractor's minimum outer radius (cm) 124.5 124.5

Extractor's field AB' (G) -590 -5900



Single Turn Extraction

134

130

126

122

0 0.4 0.8 1.2 1.6 2.0

0.3

(b)

0.2

0.1

0

6154 6160 6166 6172 6178

Time (ns)
Fig. 4. Radial excursions of a typical electron (1) and its corresponding normalized

transverse velocity (b) for the run 267.
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Ring Orbits for y = 40

1261 (a)

0 0.4 0.8 1.2 1.6 2.0

-80

- 40 1-

E

80-

120 _

-120 -80 -40 0 40 80 120

y (cm)

Fig. 5. Radial excursions of a typical electron (a) and top view of its trajectory in
the x,y plane for the run 266.
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Ring Orbitsfor "Y'= 400

.,. 120

116
0 0.4 0.8 1.2 1.6 2.0

/r

-120

-80

-40

E
0

IX

40

80

120

-120 -80 -40 0 40 80 120

y (cm)
Fig. 7. Radial excursion of a typical electron (a) and top view of its trajectory in the

x,y plane for the run 270.
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TABLE I

List of various parameters for the runs # 379-381

RUN { 379 380 381

Agitator's mode Pulsed Pulsed Pulsed
Relativistic factor "7 39.9 39.9 39.9
Major radius ro (cm) 100 100 100
Vertical field at r, (G) 681 681 681
Toroidal field at ro (G) -1,920 -1970 -1,925
Field index n 0.5 0.5 0.5
Resonance integer e 3 off 3
Agitator's toroidal position(rad) 0.493 , 0.493 7r 0.493 7r

Agitator's toroidal width 2A0 (rad) 0.026 0.026 0.026
Agitator's inner radius (cm) 110.5 110.5 110.5
Agitator's outer radius (cm) 113.5 113.5 113.5

Agitator's opening (cm) 2.0 2.0 2.0
Agitator's linear current density (kA/cm) 0.1 0.1 0.4
Agitator's field AB' (G) -78 -78 -350
Extractor's opening toroidal position 0 0 0
Extractor's minimum inner radius (cm) 113.0 113.0 113.0
Extractor's minimum outer radius (cm) 116.0 116.0 116.0



Ring Orbit in the r, & Plane
Y=40

Pulsed Mode

1201

11l6 12 100 A/cm

112.4

E111.8 1 100OA/cm

111.2 (off -resonance)
110.6

128 (c)

124

1I20 7I1=400A/cm

11I6

112

0 0.4 0.8 1.2 1.6 2.0
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Beam Extraction Scheme from the Modified Betatron Accelerator

C. A. Kapetanakos, S. J. Marsh,(' ) and D. Dialetis~b)
Plasma Physics Division, Naval Research Laboratory. Washington. D.C. 20375

(Received 10 March 1988)

A technique is proposed for extraction of the electron ring from thq modified betatron accelerator.
Basically, this technique consists of exciting the resonance that naturally exists for some specific values
of the ratio of the vertical to toroidal magnetic field.

PACS numbers: 52.75.Di. 29.20.Fj, 41.80.Ee

The modified betatron accelerator 1.2 is one among the with respect to the ring bounce (poloidal) period. Fur-
several compact, high-current accelerator concepts cur- thermore, computer simulations with the U.S. Naval
rently under development in various laboratories. In this Research Laboratory MODE particle-in-cell computer
device a strong toroidal magnetic field B, has been added code have shown that during the radial displacement,
to the conventional betatron 3 magnetic field configura- that lasts several microseconds, the minor cross section
tion. Although B# substantially improves the stability of of the ring preserves its integrity and the ring emittance
the conventional betatron, the beam injection and cap- remains constant.
ture and the zlectron ring extraction after the completion As the major radius of the ring centroid increases
of acceleration are substantially more involved as a re- slowly with time, the gyrating electrons reach the local-
suit of the toroidal field. ized magnetic disturbance generated by the agitator coil.

In this Letter, we report on an extraction scheme that At this radial position the ratio of the vertical magnetic
is easily realizable and has the potential to lead to very field B, to the torodial magnetic field Bo has been select-
high extraction efficiency. Briefly, the proposed extrac- ed to satisfy the condition
tion scheme is based on the transformation of the circu-
lating electron ring into a stationary helix, in the toroidal B/Be - 21/(212 1), (1)
direction, by excitation of the resonance that naturally where 1-1,2,3....
exists for some specific values of the ratio of the vertical Ere ! - that ....
to toroidal magnetic field. Transformation of the ring Equation (1) implies that the frequency of the fast
into a helix is achieved with a localized vertical magnetic mode' is I times the frequency of gyration around the

field disturbance that is generated by an agitator coil. major axis. When B,) B., Eq. (1) is reduced to

As the minor radius of the helix increases with each pas- #- IflZ, where a. -eBdlm and a,: "eBIm.

sage through the gap of the agitator coil, the electrons The purpose of the magnetic disturbance is to excite

eventually reach the extractor, which has the property the resonance. '7 As an electron enters the lower mag-

that all the magnetic field components transverse to its netic field region of the disturbance, its velocity vector,
axis are equal to zero. Thus, the electron ring upwinds which initially is directed in the toroidal direction, ro-
into a straight beam. tates slightly in the radial direction, i.e., the electron ob-

Although the proposed scheme is related to the stan- tains a radial velocity component. It can be shown from

dard techniques4. 5 used for extraction of the beam from the equations of motion that this radial velocity is given

existing circular accelerators, several of its key features by

are different because of the presence of the toroidal mag- __ - 2(A c4/,)raA1, (2)
netic field.

Extraction scheme.- After the completion of accel- where Anfl is the cyclotron frequency that corresponds
eration, i.e., when the desired electron beam energy has to the field of the disturbance generated by the agitator
been achieved, the electron ring centroid is displaced ra- coil, y is the relativistic factor, r. is the radial distance of
dially by the intentional mismatch of the magnetic flux the agitator coil, and A8 is the toroidal half width of the

and the betatron magnetic field. In the results that will magnetic disturbance.

be shown in the next section, this mismatch has been As a result of the acquired radial velocity, the elec-
achieved by superimposition of a low-amplitude vertical trons start to gyrate in the torodial magnetic field with a

magnetic field that varies exponentially with time on the radius

betatron field. It has been shown theoretically and p2(/l)(Alff/l:)r., (3)
verified by extensive numerical results that during the ra-
dial displacement of the ring centroid the amplitude of where N is the number of passes through the distur-
the slow mode I remains very small, i.e., a few millime- bance. If condition (1) is not satisfied, p grows as N 1/2

ters, provided that the mismatching field varies slowly instead of proportionally to N.

Work of the U. S. Government

86 Not subject to U. S. copyright
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Since y is very large, self-fields can be ignored. How- In practice, this extractor can be realized by our bend-
ever, because of the gradient of B. the slow modeI ing the two plates to form a torus. In order for the field
(bounce motion) is still excited and the orbits of elec- to be uniform over a finite vertical distance, the cross
trons in the transverse (r,z) plane precess very slowly. section of each plate, after bending, should be D shaped.
Therefore, for times short in comparison with the bounce In the results of the next section, the orbit of the extract-
period, i.e., for a few revolutions around the major axis, ed beam is terminated after it propagates tens of centi-
all the electrons of the ring perform coherent motion and meters inside the extractor. The reason is that &Bf is in-
a stationary helix, in the toroidal direction, is formed. A dependent of y while the betatron field decreases with y.
top view of the helix is shown in Fig. 1, for I-3. Thus, ancellation of the fields is not achieved over the

Ideally, the radial gradient of the magnetic distur- entire length of the extractor. In practice exact cancella-
bance should be extremely high, because otherwise the tion of the two fields can be obtained by an increase in
fast mode' is excited before the ring reaches the distur- the separation of the two plates as y increases.
bance. In the computer runs of the next section, a dis- In the previous discussions, we have assumed that the
turbance with a satisfactorily sharp radial gradient is ob- magnetic disturbance generated by the agitator coil is
tained by the single-turn agitator coil shown in Fig. 2. static. An alternative mode of operation is to expand the
The radial gradient of the disturbance is further im- ring until it reaches the gap of the agitator coil and then
proved with two single-turn loops that are located at the to pulse the coil rapidly. Since the inductance of the agi-
edges of the gap. In the computer runs, the magnetic tator is typically only a few nanohenries, short rise times,
field of the disturbance has been obtained from exact of the order of a few nanoseconds, can be achieved with
analytical expressions that are too long to be given here. modest voltages. In the pulsed mode of operation the

With successive passes through the disturbance of the fraction of the ring that will be lost is approximately
agitator the radial excursion of the orbit increases until equal to the ratio of coil rise time to period of gyration
the gyrating electrons reach the extractor, which is locat- around the major is.

ed at 6-0 and at a slightly greater radial distance than Finally, it should be noticed that an ion channel s

the agitator coil. The results of the next section were ob- formed by a laser beam along the axis of the extractor
tained with a simple extractor consisting ot two parallel may improve the extraction process and eliminate the
plates with current flowing in opposite directions. These need for an additional coil to cancel the component of Be
two plates have infinite extent in* the z and semi-infinite that is transverse to the axis of the extractor or the need
extent in the y directions. The linear current density of to cancel completely the B, inside the extractor.
the plates is adjusted to make the total B, between the Results.- We have studied the proposed extraction
plates at 0-0 equal to zero. The side of the extractor at scheme in both the static and pulsed modes for a range
8-0 is completely enclosed. As a result the fringing of parameters that are compatible with the U.S. Naval
fields are absent. The electrons enter the extractor Research Laboratory modified betatron accelerator. In
through a thin conducting foil. At the entrance of the this Letter, we present results from three runs: one in
extractor the vertical displacement of the electrons and the pulsed mode for y -40 and two in the static mode for
their radial velocity are almost zero. However, they have y-40 and 400. The various parameters of these three
a small vertical velocity, runs are listed in Table I. Since y 1, self-fields and im-

MgW AxisTO P.S.

1.5

Eoroe E d 9. Agitator Coll

Top view FIG. 2. Agitator coil that generates the localized distur-

FIG. I. Schematic of the proposed extraction scheme. bance. It is powered by a coaxial transmission line.
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TABLE 1. List of various parameters for the runs shown in Figs. 3 to 5.
Paamt - Run No. 267 266 268

Agitator's mode Pulsed Static Static

Relativistic factor ' 40 40 40

Major radius ro (cm) 100 100 100

Vertical field at ro (G) 649.9 649.9 6501

Toroidal field at ro (G) -1921 -1971 -19700

Field index n .0.5 0.5 0.5

) Resonance integer 1 3 3 3

Amplitude of mismatching field (G) ... 60 600

Time constant of mismatching field (psec) ... 10 10

Agitator
Toroidal position 1.3x 1.26x 1.261

Toroidal width 2A9 (rad) 0.05 0.066 0.066

inner radius (cm) 120 120 120

Outer radius (cm) 122 124 124

Opening (cm) 1.0 2 2

Linear current density (kAlcm) 0.25 0.375 3.750
Field AB (G) -300 -450 -4500

Extractor
Opening toroidal position 0 0 0

Minimum inner radius (cm) 121.5 120.5 120.5

Minimum outer radius (cm) 125.5 124.5 124.5

Field AX (G) -590.0 -590 -5900

age fields have been ignored and therefore the ring shows the radial excursions of the electron and Fig. 5(b)
current is not a relevant parameter. Also at this high y is a top view of the orbit. The coherence of the radial

the beam minor diameter is expected to be only a few excursions is remarkable. We have found that this
millimeters. coherence is preserved even when Eq. (1) is not satisfied

In run 267, the pulsed agitator was turned on after the
ring's major radius became 121 cm. Figure 3(a) shows 134

the radial excursion of a typical electron that was located 34

at 0-0 at the turning on of the agitator. After a single E i3o (a)
pass through the agitator the electron obtains enough ra-
dial excursion to enter the extractor and is extracted. 2,
Figure 3(b) shows that the electron at the disturbance 1"
obtains a transverse velocity approximately 2.8 x 10 - 2c. 122
Equation (2) predicts a Av, - 2.7 x 1 -2c. In addition, 0 0.4 oba 1.2 1.6 2.0
the numerical results show that the electron gyrates /7r
around B. with a I-cm radius, which is also the radius
predicted by Eq. (3). 0.3

In run 266, the electron started at r- 110 cm and was b)
moved radially by the mismatching field. The elapsed
time from the minor axis to the agitator is -4.5 psec, 0.2
that corresponds to an average radial velocity of
"-2.2x 106 cm/sec. The amplitude of the slow mode is
less than 2 mm. Figure 4(a) shows the radial excursions 0.1
of a typical electron in the r,a plane and Fig. 4(b) shows
a top view of its orbit. The electrons reach the extractor
with a vertical displacement from the midplane that is 0 6 . ....

only a few millimeters. For the reason given in the pre- 6)4 6160 61" sIT2 si7e

vious section, the run was termifiated after the electron Time (ns)

propagated - 30 cm inside the extractor. FIG. 3. (a) Radial excursions of a typical electron and (b)
In run 268, y was increased to 400 with a correspond- its corresponding normalized transverse velocity for the run

ing increase in the value of magnetic fields. Figure 5(a) 267.
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126(a 1
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0 0.4 0A 12 1. 2.0 D 0.4 0.8 1.2 1.6 2.0
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E -
00
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y (cm) y (cm)

FIG. 4. (a) Radial excursions of a typical electron and (b) FIG. 5 (a) Radial excursion or a typical electron and (b) top
top view of its trajectory in the x,y plane for run 266. view of its trajectory in the x,y plane for run 268.

exactly, i.e., when the value of field Bo is off by tens of the U.S. Office of Naval Research.
gauss. Finally, by operation at I I or 2 instead of at
I- 3, the value of Bo can be substantially reduced.

Several successive runs with r-400 electrons that are
located at different positions on the minor cross section (a)Permanent address: Sachs/Freeman Associates, Inc.,
of a 3-mm-diam ring show that all these electrons arrive Landover, MD 20785.
at the entrance of the extractor with less than I nsec (b)Permanent address. Science-Applications, Inc., McLean,
time difference. In addition, the results show that al- VA 22102.
though the vertical width of the ring has been slightly re- 1C. A. Kapetanakos. P. Sprangle, D. P. Chernin, S. J.
duced, its corresponding radial width has been increased Marsh, and I. Haber, Phys. Fluids 26, 1634 (1983).
by approximately a factor of 3. Thi spread of the beam 2H. Ishizuka, G. Lindley, B. Mandelbaum, A. Fisher, and
is probably associated with the slightly different value of N. Rostoker, Phys. Rev. Lett. 53, 266 (1984).
AD, experienced by the different electrons as a result of 3D. W. Kerst, Nature (London) 157, 90 (1940).
the finite gradient of the agitator. 4L C. Tang, in Physics of High Energy Particle Accelera-

In conclusion, we have developed a new extraction tors, edited by R. A. Carrigan, F. R. Huson, and M. Month,

scheme that is practical and has the potential, since all AlP Conference Proceedings No. 87 (American Institute of
Physics, New York. 1982), p. 62. "

the electrons of the ring perform coherent motion, to SE. J. N. Wilson, in CERN Report No. 77-13, 1987 (unpub-
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STUDIES OF A MULTI-KILOAMPERE
ELECTRON RING CONFINED IN A MODIFIED BETATRON ACCELERATOR*

J. Golden, L. K. Lena, A. V. Denizb, J. Mathewc, T. J. Smith,
P. Loschialpo, J. H. Chang, D. Dialetisb,

S. J. Marsh", and C. A. Kapetanakos

Plasma Physics Division /
Naval Research Laboratory, Washington DC, U.S.A.

ABSTRACT

This paper briefly summarizes recent experimental results on the dynamics of
a multi-kiloampere electron ring, confined in a modified betatron magnetic field
configuration and discusses the cause of its premature loss from the confining fields.
In addition, it outlines a ring extraction scheme that is easily realizable and has
the potential to lead to high extraction efficiency.

INTRODUCTION

The objective of the NRL modified betatron project is to study the critical physics
issues associated with high current, toroidal accelerators. 1- 6 The most important of these
issues are injection and capture, space charge and wall effects, ring equilibrium and stability,
acceleration and finally extraction.

As previously reported,1' 2 the circulating current of the electron ring is in the range
0.4-3kA and the electron energy between 0.5-1.0 MeV. Ring lifetimes as long as 10 Asec,
corresponding to approximately 500 revolutions around the major axis have been obtained.
The experiments have confirmed the major theoretical predictions. 7,8

ELECTRON RING DYNAMICS

Linear analytical and computational studies of transverse dynamics over the last several
years have shown that the centroid of an electron ring confined in a modified betatron
magnetic field configuration has two characteristic frequencies, one fast and one slow. 7 The
fast frequency becomes approximately equal to the toroidal cyclotron frequency when the
ratio of the toroidal B9 to the vertical betatron magnetic field B. is much greater than unity.
The slow or bounce frequency WB is due to the image fields and the gradient of BZ.

When the electron ring Ib current is high, the image forces dominate, and the ring
bounce motion in the transverse plane is diamagnetic. The orbitally stable electron ring
current range associated with the diamagnetic motion of the beam is named the high current
regime. In contrast, when the gradient of B, dominates, the ring motion is paramagnetic
and the ring current range that exceeds the maximum current that can be stably confined in
a conventional betatron9 is named the low current regime. In both the high and low current
regimes the ring orbits, in the transverse plane, are closed. However, when the field index n
is different than 0.5 the two regimes are separated by a region, the centroid instability gap,
in which the orbits are open.

Figure 1 shows the orbital stability diagram of an electron ring confined in a modified
" betatron magnetic field configuration. The parameter in the horizontal axis

N. =n.r 2/a = (2v /_YI#2 )(r./a) 2, (1)
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is proportional to the circulating ring current, since the Budker parameter V = Ib(kA)/1736 .
In Eq. (1) * is the self field index, 0, - ve/c, ve is the electron toroidal velocity, . is the
relativistic factor and rb and a are the minor radii of the ring and the torus.

2

n 1 2 II, 2 n.-L n.-1
2 2

I \ / /% 1 ndlvidq 14o, l ,¢oUnstable

Fig. 1. Orbitol Istabilit iga o neeto igi oiidbtto

ConfigurMAion.

h etat Low Current s no vr u Hh urrent durnntroi Unsto

intabilty gap is nb to the i"dra Instbilit, a en c m ta h

in. the fiit reitvt of th vauu chaber

Lb _A) _9 ) s( r , ) =b

Fig. 1. Orbital stability diagram for an electron ring in a modified betatron
configuration.

In the region (rba)2(Be2B a w N.> (r 6 /a) 2 , the ring centroid is stable, but
the individual electrons are unstable,1° therefore, the circulating ring current is expected

to continuously decrease until N bcomes less than (rb/a)2 (Bo 2B, )2. In addition, the
high current regime is not very useful because during acceleration -fa increases and the
ring centroid has to cross the instability gap. Furthermore, the region to the right of the

instability gap is unstable to the drag instability, a potent collective mode that has its origin
in the finite resistivity of the vacuum chamber.

We have studied experimentally the region to the right of the centroid instability gap,
i.e., when N > - n, for cr < 0.5. The experimental results have confirmed the basic
predictions of the theory. Specifically, when Ne > (rb/a)(Be /2B, )2 f- 2.5, or when Ib > 2.5

kA the ring current decreases continuously with time, as shown in Fig. 2a. Underneath the
current trace there is an open shutter photograph of the light that is emitted as the ring
passes through a thin polycarbonate film, which is graphite coated on the upstream side
to avoid electrostatic charging. In the high current regime, i.e., when 0.6 < No _< 2.5, we
do not, in general, observe current loss. The ring is lost suddenly either by striking the
injector, after the completion of a bounce period (when the capture field is not energized),
or by striking the wall before the completion of a bounce period. Typical results are shown
in Fig. 2b and 2c. Parametric studies of the ring confinement time as a function of ring

current and B8 indicate that the ring loss is most likely due to drag instability.
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e 1W? no. 3703 no. 3733 no. 2958

3 kA peak 1.2 kA peak 0.75 kA peak 0.3 kA peak

. O ,ns. c i I 200 ,nsee - 200 nsec -4 1.0,,uec

Polodda Ring Orbits

(aJ (b) 1t) (d)

Fig. 2. Circulating current and ring orbits in the transverse plane for different values
of N,: (a) N. > the individual particle stability limit, (b) and (c) in the high current
regime and (d) at the instability gap. The circle indicates the minor cross section of
the torus, and the mark x indicates the injection position.

The drag instability results from the poloidal phase shift between the electric and
magnetic field images that is caused by the finite resistivity of the vacuum chamber wall
surrounding the ring. The phase shift between the two images produces a poloidal field
component which drives the ring toward the wall in the high current regime and toward the
minor axis in the low current regime. Linearized theory6 shows that, when

(b - a) > (b -a) >1, (2)

the growth rate of the drag instability r is given by

27r _ 2 y 17 60r b X ()
W B a (1 X)2'

where 6 = c pI(2lr~wB ), p is the wall resistivity, q/= pl(b - a), a is the inner radius and
b the outer radius of the chamber, f£po =1 e I Beo/mc, z = lb/lbc,,t and Ibc,,t is the ring
current that corresponds to the instability gap, and the subscript o denotes values on the
minor axis.

For the results shown in Fig. 2b and 2c, r -, 3 x lO 6 ec - , which implies that the
radius of the ring's poloidal orbit will double, and therefore the ring will strike the wall, in
about 200 nsec. In addition, the experimental results show that when x - 1, the growth
rate becomes very large, in agreement with Eq. (3).

When the capture field 2 is turned on during the first bounce period, we often observe
the ring to drift toward the minor axis and Ib decays slowly with time, as shown in Fig. 2d.
Finally, after confinement time of a few Mssec the ring suddenly strikes the wall. The open



shutter photograph underneath the current trace clearly shows that wB changes sign and
its motion become paramagnetic. In these shots the ring loss is attributed to the crossing
of the instability gap.

Recently, by reducing the injected beam current and increasing the energy of the in-
jected electrons to approximately one MeV, the operating point was shifted to the low
current regime. In this regime, avoidance of the injector after a period around the major
axis is achieved with a pulsed radial magnetic field B,. This field is generated by two sets of
conductors that are located symmetrically about the midplane and carry current in opposite
directions as shown in Fig. 3a. Radial shifts approximately 6 cm are observed, when the
current in the kicking coil is approximately 350A. Typical results are shown in Fig. 3b.
Additional results on the low current regime will be reported in a future communication.

kicker on kicker off

major axis

radial kicker
coil

torus

(a) (b)

Fig. 3. Beam trapping in the low current regime: (a) fast pulsed coil inside the vacuum
chamber and (b) ring orbits in the transverse plane with and without B,.

RING EXTRACTION FROM THE MODIFIED BETATRON

Frequently in the past, the usefulness of the modified betatron has been challenged on
the grounds that the extraction of the electron ring from the device after the completion
of acceleration will be very difficult, if not impossible. Recently, 13 we have developed an
extraction technique that is easily realizable and has the potential to lead to very high
efficiency.

Briefly, the proposed extraction scheme is based on the transformation of the circulating
electron ring into a stationary helix, in the toroidal direction, by exciting the resonance that
naturally exists for some specific values of the ratio of the vertical to toroidal magnetic field.
Transformation of the ring into a helix is achieved with a localized vertical magnetic field
disturbance that is generated by an agitator coil. As the minor radius of the helix increases
with each passage through the gap of the agitator coil, the electrons evntually reach the

extractor, which has the property that all the magnetic field components transverse to its
axis are equal to zero. Thus, the electron ring unwinds into a straight beam.

A key feature of our extraction scheme is that for time short in comparison with the
bounce period, i.e., for several revolutions around the major axis, all the electrons of the
ring perform coherent motion and a stationary helix, in the toroidal direction, is formed. A
top view of the helix is shown in Fig. 4 for t = 3, where t satisfies the relation

B./Be = 2t/(2e2 - 1). (4)
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Modified Betatron Agitator Coi
Ring Extraction

Electron Ring
Undisturbed Orbit Fig. 4. Schematic of the

Major Axis extraction scheme.

Electron Ring
at 2 - 3 resonance

Extractor Extracted Beam

Top View

We have studied the resonance extraction scheme in both the static and pulsed mode
for a range of parameters that are compatible with the NRL modified betatron. Typical
results are shown in Fig. 5, for the parameters listed in Table I.

A typical electron started at r = 110 cm and was moved radially by a mismatching
field. Figure 5a shows the radial excursions of a typical electron in the r, a plane and
Fig. 5b shows a top view of the orbit. The electrons reach the extractor with a vertical
displacement from the midplane that is only a few mm. The run was terminated after
the electron beam propagated - 30 cm along the extractor. The coherence of the radial

excursions is remarkable. We have found that this coherence is preserved even when Eq.
(4) is not satisfied exactly, i.e., when the value of Be is off by tens of Gauss. Finally, by
operating at t -1 or 2 instead of at t -3, the value of B6 can be substantially reduced.

-120 b

-80

124 (a) -40

E
! 0

120 40

1 46 soI 16 _,

0 0.4 0.8 1.2 1.6 2.0 120

81 7 -120 -80 -40 0 40 80 120
y (cm)

Fig. 5. Radial excursions of a typical electron vs. toroidal angle (a) and top view of
its trajectory in the x,y plane (b).
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TABLE I
List of various parameters for the run shown in Fig. 5

Agitator Parameters:
Agitator's mode Static Toroidal width 2AO (rad) 0.066
Relativistic factor y 400 Inner radius (cm) 120
Major radius r0 (cm) 100 Outer radius (cm) 124
Vertical field at r, (G) 6501 Gap opening (cm) 2.0
Toroidal field at ro (G) -19310 Linear current density (kA/cm) 3.75
Field index n 0.5 Field AB, (G) -4500
Resonance integer t 3 Extractor Parameters:
Mismatching field Bm (G) 600 Entrance toroidal position 0
Time constant of Bm (gsec) 10 Minimum inner radius (cm) 120.5
Agitator's toroidal position 1.267r Minimum outer radius (cm) 124.5

Field ABe (G) -5900
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1. Introduction

Recent z-pinch experiments 1 ,2 employing frozen deuterium fibers have provided a

number of very challenging questions regarding the interpretation and understanding

of the results. These questions pertain to the experimentally observed stability char-

acteristics and the total neutron yield. According to classical ideal MHD theory,3- 5 a

linear z-pinch plasma carrying a longitudinal current, I, is linearly unstable to m = 0,

finite k. perturbations (m refers to the azimuthal wavenumber and k, refers the lon-

gitudinal wavenumbers; i.e., exp i(mO + kzz)) with a growth rate equal to a fraction

of an Alf'ven transit time and proportional to the total plasma current, I. Early ex-

periments with z-pinch devices - 7 have confirmed the ideal MHD predictions over a

wide range of experimental parameters. Indeed, the classical z-pinch plasma has been

shown to be one of natures most unstable configurations. In the case of a dense z-pinch

where the plasma radius is of the order of 100 microns, the instabilities can theoreti-

cally disrupt the plasma in an extremely short time. For the parameters of the NRL

dense z-pinch (DZP), this growth time translates to a theoretical plasma disruption

time via the m = 0 instability of several nanoseconds. The Naval Research Laboratory

(NRL) DZP experimental results' are, however, that the plasma column remains stable

for a time which is approximately 1-2 orders of magnitude longer than the theoretical

disruption time. Further, the experimental results show that this stable behavior is

observed as long as the time rate of change of total pinch current remains positive def-

inite (dI/dt>0) and, becomes lost to an m = 0 perturbation when dI/dt :t 0. Several

(5-10) m = 0 neck regions are discernable photographically after the instability sets in.

Neutrons are observed immediately after initiation of the m = 0 instability with peak

neutron yield occurring close to the time when dI/dt = 0. The neutrons continue to

be produced after peak production for a time at least one order of magnitude longer

than the theoretical disruption time. The rise time for peak neutron yield in the DZP

experiment is consistent with the theoretical disruption time. The total time integrated

neutron yield has been shown to scale with the total plasma current as I with a 10.

The NRL DZP has achieved 109 neutrons with a plasma current of 600 kiloamperes;
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a doubling of the current would result in , 1013 neutrons assuming the scaling holds.

Such neutron yields lead to the consideration of relatively simple high neutron flux

materials test facility designs8 as well as to fusion energy reactors.9,10

Thus, the forementioned puzzles of why the DZP plasma appears to be so stable,

and what mechanism is responsible for the neutron production and scaling law, require

answers prior to future practical application of the DZP devices. The purpose of this

research paper is to offer a mechanism and analysis which purports to explain the

observed neutron scaling. We will show that the m = 0 instability is accompanied by

strong electric fields and may promote high energy directed deuteron beams (discussed

often in previous works) which upon interaction with cold target deuterons yield the

required neutrons and scaling. Our analysis allows a prediction of expected scaling for

neutron yield in future DZP experiments.

Although the main emphasis of the present work concerns neutron yield scaling,

some remarks concerning the plasma column stability will also be presented.

The plan of the paper is as follows. First we give a historical perspective of
the z-pinch and relate known details of stability and neutron production to the NRL

experiment. Next, the details of the observed m = 0 column collapse are abstracted

for our purposes. The neutron production rate via the beam-plasma interaction is then

analyzed and the scaling with total current is extracted from the neutron production

rate integral. Finally we conclude with a summary and recommendations for further

work.
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2. Historical Perspective

In this section we consider some aspects of z-pinch folklore which relate to the NRL

DZP experiment. A z-pinch is a plasma configuration containing only a longitudinal

current with an accompanying azimuthal magnetic field. Z-pinch plasmas have been

well studied in the past 6 and have been proposed and studied9' 1 ° for potential applica-

tion to net energy producing fusion power reactors. The main reason for abandoning

the quest for fusion via pure z-pinches is the inherent instability of the plasma configura-

tion. With the exception of the recent DZP plasmas, practically all other experimental

z-pinches exhibit instability characteristics which can be predicted and explained by

MHD theory. In most cases ideal MHD theory is valid. Depending on the details of the

mathematical-physical model used to analyze the stability11 (e.g., thin skin or surface

current model, constant or distributed current density model) the ideal MHD growth

rate, 3y,, for the m = 0, finite k. mode can be written as -y0 = Iaf(k,)/V,'N, where a is

the effective plasma radius for the plasma line density Np and f(k,) is a monotonically

increasing function of k. and is weakly dependent on the plasma current distribution.

The NRL DZP forms its plasma from an initially frozen solid deuterium fiber ; 100 mi-

crons in diameter suspended in vacuum between two electrodes 5 cm apart. As stated

earlier, the NRL DZP experimental parameters translate -y"i into several nanoseconds.

The NRL results indicate stability against the m = 0 mode for a period of time roughly

50-100 times longer than -y-1 until such time when dI/dt vanishes. The data further

show that, simultaneously with the vanishing of dI/dt, m = 0 sausage modes appear

resulting in column collapse at the m = 0 neck regions and an intense burst of neutrons

which are known to originate from a deuteron-deuteron reaction.

Attempts to explain the column stability over the observed stable time period have

included: a) reliance on profile effects to either reduce the growth rate or eliminate the

instability altogether, 3 b) resistive and viscous effects 12 to decrease the growth rates,

c) finiteness of the ablation time required to vaporize the solid deuterium core. 13 The

actual cause of the prolonged plasma stability more than likely involves a combination

of these effects. Indeed one can construct a plausible scenario as follows: at time zero
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when the deuterium fiber is initially subjected to the imposed voltage, a current path is

formed on the exterior surface of the column. Joule heating and radiation constructively

work to vaporize the fiber and convert the frozen deuterium into plasma. During the

vaporization phase, the bulk of the current flows along the outer surface in a thin

channel. This vaporization phase has been numerically simulated13 for conditions close

to the NRL experiment, with the result that the conversion of the fiber to plasma

requires a time which is consistent with the length of the observed stable phase. Thus,

the plasma column, upon completion of the vaporization phase, would exist in a state

with an outer concentric current channel at low temperature. Depending on how narrow

the current channel is, and invoking non-ideal effects including the full Braginskii stress

tensor, resistivity, Hall effect and axial plasma flow, the growth rate for the m = 0

mode can be shown1 2 to be significantly reduced from that of ideal MHD. The column,

however, will diffuse naturally into a relaxed state with a distributed current channel.

The relaxation of arbitrary initial states of a z-pinch plasma to a unique self-similar

state has been studied in some detail recently.14 Unless certain conditions are met

leading to radiative collapse (related to the Pease current 5 condition) the relaxed

state should be accessible from a wide range of initial distributions, including thin

annular surface current distributions. The relaxed state is considerably more unstable

to the m = 0 mode. In addition to the natural diffusion processes, it is possible that the

consequences of dI/dt vanishing enhance the redistribution of the current channel. Thus

the plasma column now exists with a broad current distribution; if the ion temperature

is sufficiently high, the m = 0 instability can turn on. The growth rate, as mentioned,

will be characteristically large.

The disruption time defined above can be estimated using ideal MHD once the

current density distribution is known. Again, for the NRL DZP experimental parame-

ters, the disruption time can be showu to be on the order of several nanoseconds. There

is some uncertainty in the experimentally obtained value of k, prohibiting us from ob-

taining a sharp comparison between the theoretically and experimentally determined

growth rate.

4



It is interesting to note that many of the stability characteristics of the NRL DZP

experiment are similar to those observed in earlier exploding wire experiments.1 6-'8

Exploding wires pass through a vaporizing phase before becoming plasmas and in many

cases m = 0 instabilities have been observed when dI/dt vanishes. Furthermore, there

are observations of neutron production coincident with du/dt vanishing in exploding

wire experiments 19 with deuterated polyethelene fibers. There has been, so far, no

serious attempt to understand the similarities of the various z-pinch results; this is left

for future work.

Neutrons have been observed in z-pinches in various plasma media as well as in

plasma focus devices; 21 the collapsed collimated phase of a plasma focus has been con-

sidered by many experimenters to be a z-pinch and the interpretation of focus results

has relied heavily on basic z-pinch phenomena. 21 For example, an extensive investiga-

tion of the neutron production in a focus device has concentrated on simulating the

plasma in the collapsed state with one and two-dimensional MHD models, including

viscosity, resistivity and heat conductivity; the calculated time evolution of density

and temperature profiles were used in a separate calculation of neutron yield assum-

ing deuterium plasma and thermonuclear production. 22 The calculated total neutron

yields are roughly one order of magnitude less than experimentally observed and were

predicted to scale with total current as 1'.

More recently a point model system analysis of the DZP as an intense neutron

source' has shown that, under the assumption of stable plasma profiles, a D-T ther-

monuclear z-pinch will produce 1014 neutrons with the yield scaling as P" . Thus the

scaling of z-pinch neutron yield with total current I , 7 _t < _ 9, has been known for

some time.

Finally, we mention a recent work 23 which also discusses z-pinch neutron yield

current scaling and interprets the NRL DZP results as a consequence of beam-target

interaction caused by an m = 0 instability.
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3. The m = 0 Instability and Deuteron Acceleration

In this section we present a discussion of the m = 0 instability leading to the

generation of axial electric fields. We then assume that deuterons are accelerated by

these fields and give estimates of the possible energy range of the high energy deuterons.

The accelerated deuterons are further assumed to form a beam which interacts with

cold or target deuterons producing neutrons; this process is discussed later.

The electric fields required for the beam deuteron acceleration are created during

the z-pinch c( :mn collapse as the m = 0 instability proceeds. The geometry associated

with this process is shown in Figure 1. In the figure r. is the undisturbed plasma radius

in which the total plasma current, I, flows. The current density distribution is assumed

to be uniform over the column; this assumption is not necessary but allows the following

computations to be carried out simply. The magnetic field is in the positive 0 direction.

The column becomes unstable to the m = 0 sausage mode with the distortion of the

surface occurring at a finite number of axial positions separated by wavelength A.

Experiments show that the number of unstable wavelengths may be between 5 and 10.

The surface distortion proceeds with some velocity v,. as sketched in the figure. The

region in front of the collapsing surface distortion experiences an increase in Be with

time thus producing an electric field in the z-direction. An idealization of this region

useful for the following computations is shown in Figure 2. In the following we restrict

our attention to the indented zone of length e and obtain an order of magnitude estimate

of the electric field in 0 < r < r0 . Assuming uniform current density distribution in

the region r < r, we can approximate the solution for Be in 0 < r < ro as shown in

Figure 3. In the figure, r , i = 0, 1.. .n represent the sequence of m = 0 neck radii during

unstable collapse. Also shown is the increase in magnetic field as r, decreases and the

region r > r. shows no change in Be with time. The instantaneous Be profiles can be

given immediately as:



A l r< ri (1)

Be={

PI , r>r1  (2)27r r

We compute the time rate of change of Be in the region r < r, as

O9B 9 _/1 01r a /1

lr 2 (3)

I27r ( ri)

For the region r > r, the field profile follows the form given by (2). In the above we

have assumed that I is constant in time consistent with the experimental observations

that dI/dt = 0 during the unstable phase.

We assume the time evolution of the unstable perturbation to be given by the

following expression:

r, = ro (1-6 e'lot ), (4)

where 6 < 1 is a small number, and yo is the m = 0 growth rate. A measure of 6 can

be found from the required time, t = tc, for the column to collapse to zero radius,

6= e-y" t (5)

Using (4) in (3) gives

OB. _ osrr (r 3 e, r <r. (6)
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The electric field consistent with B9 given by (6) is found from

a
V x E= - B, (7)

and, from the geometry shown in Figure (2) yields

aEz _ jIolr jrotob6 f t

r3 ) et (8)

which has the following solution:

E = _~or
2 (,'o 

(9)E< L \ (r-f) . °  (9)

where the symbol E < indicates E, for r < rl.

The spatial distribution of E, in the region ri < r < r., can be obtained similarly.

Neglecting fringing effects due to the finiteness of the region E > can be taken to be

constant and upon matching with E > at r - r, gives:

E> - (,7 .6  (10)z27r x r,

or using (4) gives

E>" = /J0I7o65 C ' ii
27r 1 - b e.t(

and using (5) gives

E> = _°Po e1(t2)
21r 1 - e.(I-"(12)

Equations (9) and (12) give the electric field strengths for the regions r < r, and

ri < r < ro respectively. The maximum value of E, according to the above is obtained

at r = rl. If we assume yotc ~ 1, which is close to the experimental situation, then (12)
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can be plotted as a function of time as seen in Figure 4 where f(r) = e(r- 1)/(1 -e(-1)),

and r = t/to.

The magnitude of electric field strength reached during pinch collapse can be es-

timated from the experimental data:

1o = 5 x 105Amperes,

I
^t -I , rc = 3ns,

i-c

E. = x 10' f(,-), (13)
3

where I E, I is in volts per meter. An I E. I of 108 requires f(r) = 3 and this occurs at

r = 0.7. The model for the time evolution of r, (t) is based on the assumption that the

linear phase of the m = 0 instability persists; this assumption may not be valid for late

times into the instability. Our result for the time evolution of the electric field can be

compared with that of a s;-nilar analysis which computes the change of inductance using

the non-linear plasma column compression via an m = 0 mode.24 This comparison is

shown in Figure 4 where we observe that the late time evolutions of the electric fields

are nearly identical (in the figure the circles denote the f(r) values from equation 12

and the squares are from an analysis based on the change of inductance).

Ignoring for the moment any ion larmor orbit effects due to the magnetic field, the

maximum energy a deuterium ion can attain, £d, before collision, is given by Ed = IEZ It.

For example, if f is of the order of the fiber diameter (200 pm), then E - 20KeV for

r = 0.7 and ,- 130KeV when r = 0.95. The exact nature of the ion acceleration is

complicated and dependant on the details of the plasma region considered. Experi-

mental data obtained in the NRL DZP show evidence of deuteron energies up to 72

KeV.

We conclude this section with the following observation. If the accelerated ions

constitute a deuteron beam then the beam velocity distribution will be centered around

some mean beam velocity, Vd, which we assume can be given by:

9



Vd = [2e £d/md] / 2 (14)

where e and mrn are the electron charge and deuteron mass respectively. We have

previously shown that Ed is proportional to -'i and that yois also proportional to I

resulting in the following relation for Vd:

Vd 3(t)I, (15)

where 3(t) is time varying function. The validity of the physics implied by Eq. 15,

as already stated, depends on many complicating factors, including collision frequency

and magnetic field strength, to name two. We assume its validity for the analysis in

the following section.
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4. Beam Target Neutrons

We have argued above that a beam of deuteron ions has been accelerated by the

electric field to a mean velocity Vd. Let us further assume that this beam is formed

with a beam-like distribution function, centered around the mean beam velocity and

containing a thermal spread equal to the background level which we will take to be

the Bennett temperature, T,. This is a reasonable assumption since we have implicitly

assumed that the plasma column reaches an equilibrium prior to onset of instability.

For the beam distribution function let us choose the following Maxwellian fd(V) about

V= Vd:

-(V - Vd) 2

fd(V) = A exp{ d" (16)

In the last section we developed an expression for Vd as a function of the total

current 1, Vd = PI. From the Bennet pinch relation25 we also know that T. can be

written as T, 01 1J2, where 01 depends only on the background or equilibrium line

density; this background line density is the source of target deuterons. Using this

information we can rewrite Eq. 16 as:

fd(x) =A exp{-(X-) 2 ", (17)

where x = V/Vd = V/(13) and j = K01/0 2.

We can now write the expression for the neutron reaction integral, R, as:

R =/J/d IV dVB dVd fB1 fd IVludd(IVl), (18)

where dVB refers to the velocity integration for the background target (cold) deuterons,

fB is the background deuteron distribution function, IVI is the relative velocity between

the target deuterons and the beam deuterons, and add is the deuteron-deuteron collision

cross-section expressed as a function of the relative velocity IVI. We take the target
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deuterons to be cold, e.g. they have zero or small velocity. The relative velocity is

therefore V allowing R to be written as:

R = NB fdvdfd(Vd)Vdadd(Vd) , (19)

where NB is the background line density. Upon integration, Eq. 19 gives the usual

form for the reaction rate R = NBNd < aJV >, useful in computing the total neutron

yield assuming certain quantities, discussed shortly, are known. Instead, we analyze the

integral in Eq. 19 in a manner which makes the scaling of the neutron production rate

more transparent. First, we note the cross section add(Vd) is a monotone increasing

function of Vd up to some value VMAX where add reaches a maximum. add (Vd) is

given by:26

O'dd(V) = 482 [(1.177 - 3.08 x 10-4e)2 + 1]- , (20)

& [exp (47.88 - 1]

where E - V2. 6 in Eq. 20 is in KeV and odd is in barns. If the temperature T in

Eq. 16 is low enough, then the distribution function fd will be localized in £ and will

appear as a sharp spike when compared with add. This is shown schematically in Fig. 5.

Since the background target plasma temperature is no larger than 100 ev in the

NRL DZP experiment, the distribution function fd will appear very sharply peaked

and localized about Vd. If we then assume that add can be represented by a simple

polynomial function about Vd, the integral in Eq. 19 can be written in the following

form:

R= jA exp[ (x1) 2 Y]x2+3dX)12v+4 (21)

where A is a constant and v, is defined by the polynomial approximation of add(Vd) -

6' - (V2)v over an interval in S sufficiently broad to contain the dominant part of fd

and narrow enough such that the approximation for add valid. Denoting the term in

parentheses in Eq. 21 by f(13, v), we have
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R = Af(41 , v)12 "+4  (22)

Using the approximation for add we find that for Vd between 20 and 60 KeV, v satisfieO

3.8 > v > 2.3. Substituting this into Eq. 22 we discover

R I ~ ,(23)

where 11.6 > a > 8.6.

The result given by Eq. 23 depends directly on the assumption of an accelerated

beam of deuterons. It remains to be seen if this beam in fact does form. The experi-

ments with the NRL DZP have shown that high energy deuterons are present but there

is no indication where they are formed or how many ions are accelerated. We discuss

later a companion work aimed at simulating the beam formation process in the DZP.

It is straightforward to use the result obtained for the reaction rate R to estimate

the total integrated neutron yield. There are a number of assumptions required which,

if properly made, allow one to obtain precisely the yields observed in the experiment.

For example, the number density for the background and beam particles can be chosen

independently. It is also necessary to know the interaction cross-sectional area as well

as the number of interaction zones. Although we can make reasonable estimates for

these quantities, at present we do not have a method for self-consistently obtaining

them. We address this issue in our conclusions. Furthermore, we also need to know the

slowing down trajectory of the beam deuterons during collisions with targets and with

background electrons. The slowing down time for the beam can be estimated using

classical formulas but the characteristically large magnetic fields must play an impor-

tant role in this process. Indeed, simulations have already shown that the magnetic

fields significantly distort the ion orbits into a more vortex-like pattern. 27 This effect

would lead to an enhancement in neutron production since it would tend to keep the

high energy beam particles in the target zone for longer times. In short, plausible esti-

mates of the required quantities show that 109 2.5 MeV total neutrons are well within

the range of parameter variations relevant to the experiment in question.
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It was mentioned that our analysis allows a prediction of the neutron yield scaling

with total current in future DZP experiments. For example, for a frozen deuterium-

tritium fiber, a similar exercise utilizing the Udt cross-section instead of the O'dd cross-

section reveals the scaling; but the neutron yield estimate so obtained requires even

more assumptions than the present case. The difficulty here arises in knowing whether

deuterons or tritons or both are accelerated and how many of each. If one assumes

they are accelerated equally, for example, a scaling of I , 12 > a > 9 is obtained which

would yield approximately 1012 14 MeV neutrons under the conditions of the NRL

experiment.

Finally, we remark that it is difficult to predict the range of total plasma currents

for which the predicted scaling should hold. The reason is that the deuteron energy

may not reach its full potential because of magnetic field effects and collisions. Ignoring

these, and assuming a value of deuteron mean energy for a given fiber and total current,

the scaling for beam energy with current shows that doubling the current will result in

a beam energy well past the peak in the collision cross-section. For example, assuming

20 KeV for I = 500 KAmps means that doubling I yields 80 KeV, past the cross-section

peak. Thus, the total neutrons and scaling should decrease noticeably. It is necessary

to understand the deuteron dynamics in order to clarify this question of scaling range.

Particle simulation codes are a viable tool for obtaining the required deuteron dynamics.
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5. Discussion and Conclusions

The main result of the present work is contained in Eq. 23. The total neutron yield

for the DZP, assuming frozen deuterium fibers as the plasma source, should scale as F

where 11.6 > a >_ 8.6. This result is consistent with the experimental observations. The

physics behind the result requires a deuteron beam to be produced during the unstable

phase of the z-pinch discharge, producing neutrons from a beam-target interaction.

Although no analysis has been offered to substantiate the existence of the accelerated

deuterium beam, the experimental data contains evidence of deuteron energies up to at

least 72 KeV. The beam acceleration and beam-target interaction have been invoked

in previous studies of z-pinch dynamics without sufficient emphasis being placed on

examining the conditions leading to beam production. For this reason we have initiated

a computer study whose goal is to analyze and simulate the beam formation in a

deuterium z-pinch plasma. Results from this study will be reported later.

The ramification of the beam-target analysis presented here is that the basic

plasma configuration is unstable. This status leads, for the device, towards a pos-

sible application for intense neutron sources for material breeding such as tritium or

neutron irradiation test facilities. Another possibility of the combined experimental-

theoretical study of DZP devices is that a route toward stable operation of the pinch

may be found and, if this is the case, this would renew interest in DZP devices for

fusion energy applications.
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LASER-PLASMA EXPERIMENTS AND LASER DEVELOPMENT AT THE NAVAL RESEARCH
LABORATORY

Abstract

Using our Pharos III Nd:glass laser facility, we have found that the induced spatial
incoherence technique reduces the stimulated convective Raman instability by orders of
magnitude as compared to an ordinary laser beam -- even with the use of infrared laser
light and a low-Z target. The threshold for the instability is also in relatively good
agreement with analytic theory, in contrast with other experiments with an ordinary laser
that have had thresholds an order of magnitude lower that theory. We have also begun
building a new KrF laser, called Nike (named after the goddess of victory) to test the
hydrodynamic stability of accelerating thin targets. This laser has been designed to include
the echelon-free ISI optical smoothing technique.

1. NIKE KrF LASER FACILITY

The direct-drive approach to laser fusion places two requirements on the laser driver:
the use of induced spatial incoherence (ISI) for optical smoothing of the laser beam [1,2,31,
and the use of an ultraviolet laser wavelength for high efficiency and for control both plasma
and fluid instabilities. KrF lasers can satisfy these requirements, with a 1/4 pm
wavelength and with the broad bandwidth necessary for ISI. The Naval Research Laboratory
has also begun building a new KrF laser, called Nike (named after the goddess of victory), to
complete the laser-target physics data base that is required before one could commit to an
ignition-sized facility. This laser has been designed to include the echelon-free ISI optical
smoothing technique that should produce very uniform illumination on a target [4].

The overall milestone for the Nike facility will be to accelerate a thin, dense foil
(approximately a millimeter in diameter) to fusion-like velocities with a flatness of +1%,
as a demonstration that thin targets can be symmetrically and stably imploded. The
successful acceleration of flat targets is at least as difficult, and as scientifically useful, as
the acceleration of hydrodynamically-equivalent small pellets, with the advantage that foils
have much better diagnostic access. Operation of Nike for laser-target experiments is
planned for 1992-3, depending on the rate of funding and on possible surprises in laser
technology. Our existing Nd:glass laser will not be used for laser fusion research after
1990.

In addition to the overall milestone, Nike will be used in four physics and technology
areas: (1) to demonstrate the practicality of high-power KrF lasers; (2) to demonstrate
that the optical technique of echelon-free ISI can produce uniform illumination; (3) to
measure the growth rate of the Rayleigh-Taylor instability and show that it is low enough
for thin-shell pellet implosions; (4) to measure the effective thresholds of the plasma
instabilities and show that these thresholds are high enough to avoid preheat in thin pellet
shellS. ,

The Nike laser has been designed for 4 kJ on target, with initial operation at 2 kJ using
half of the laser beams. The pulse length will be compressed from 240 nsec to 5 nsec using
optical multiplexing. NIke will also have what is so far a unique feature: the use of echelon-
free ISI for optical smoothing. Use of this optical technique requires that the laser be
designed with a broad bandwidth and with low chromatic aberration and low off-axis
aberration. Except for optical imperfections and amplifier distortion, the beams have been
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designed to be twice diffraction-limit, an order-of-magnitude improvement over other
multiplexed systems. The improvement is based upon the use of mirrors instead of lenses to
relay the laser beams. So far, Nike is the only KrF laser to be designed with the capability
for broad bandwidth, low aberration, and ISI. Figure la shows the overall dimensions of the
Nike facility, with 24 of the 48 beam lines.

The echelon-free ISI concept is shown in Fig. 1b, in simplified form. The oscillator has a
broad bandwidth and many spatial modes -- the opposite of the usual approach to laser
design. The laser beam is then focused and apertured to produce the intensity profile that is
desired on the target. This intensity profile has the characteristics of ISI: temporal
incoherence and a short transverse spatial coherence. The aperture is at the focus of a
second lens; the beam then propagates through an amplifier system (and a multiplexing
system that is not shown here), and focused onto the target. The intensity profile at the
target will then be the same as the profile at the aperture, provided that the KrF amplifier
system does not introduce excessive linear and nonlinear distortion. When an object is
placed at the focus of a lens, the light at the opposite focal point is essentially a fourier
transform. Therefore the information on the shape of the intensity profile at the aperture is
contained in small beamlets (similar to the usual ISI) that propagate through the amplifier
system. As long as the aberration in the amplifier system has a transverse scale that is
large compared to the beamlets, the information in the beamlets is preserved. The focusing
lens inverts the fourier transform, reproducing at the target plane the intensity profile
created at the aperture. Detailed computational studies have shown that this technique can
work -- but only with a laser such as KrF that has small nonlinear distortion [4).

2. Suppression of stimulated Raman Scatter using ISI Optics

We are now using our existing Nd:glass laser facility to investigate the effect of ISI upon
plasma instabilities, and for further measurements of the growth rate of the Rayleigh-
Taylor fluid instability. Here we would like to report some of our studies of the effect of ISI
upon stimulated Raman backscatter (SRS), using a low-Z target with one-micron laser
light. We have found that ISI reduces the Raman backscatter by orders of magnitude, and
that the onset of the instability follows the predictions of a convective gain model. Our
results are in contrast with earlier experiments using an ordinary laser beam where the
SRS instability occured at much lower laser intensity than predicted by the convective gain
model.

Until this experiment, the threshold for the stimulated Raman instability had also been in
conflict with the designs for high-gain direct-drive pellet (5-91. It has been shown that
SRS efficiently generates fast electrons that can produce fuel preheat. It has also been
shown that if one uses both a short laser wavelength and a high-Z target, then there is a
major reduction in SRS [9]. But with the low-Z targets that are used in direct-drive,
experimental thresholds have typically been 1/10 of the predictions of a convective-gain
theoretical model with a monotonic density profile. This has been troublesome since high-
gain, direct-drive laser fusion targets have been designed to be near the theoretical
threshold (thin pellet shells) or above the theoretical threshold (thick pellet shells).

Several mechanisms have been proposed to explain the low SRS threshold, including: (a)
hot spots in the incident laser beam can filament and the resulting higher laser intensity can
then drive SRS; (b) temporal modulations in the laser profile can produce flat regions in
the density profile which enhance SRS; (c) there could be density cavities or mode coupling
that cause the instability to become absolute [101; (d) the observed scatter may be
Thompson scattering rather than the Raman mode [11]. Until now, the only practical means
to control the SRS Instability used a combination of short laser wavelength and a high-Z
target to provide collisional damping.
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Our experiments used two beams of the NRL Pharos III laser, one with and one without ISI
echelons, focused onto thick CH targets. The beams could be operated with either a broad
bandwidth (2 psec coherence) or a narrow bandwidth (2 nsec coherence). The ordinary
(non-ISI) beam had a top-hat intensity profile with hot spots a factor of 2-3 above the
average. The focal-spot diameter of the ordinary beam was chosen so that the average
intensity across the top matched the average FWHM of the ISI beam.

Figure 2a shows the peak Raman backscatter in the 1350-1750 nm range for three
cases, using germanium detectors with a 0.6 nsec time resolution. The SRS emission with
an ordinary beam, and with narrowband ISI, are orders of magnitude higher than that
obtained with broadband ISI. Variations of the bandwidth of the ordinary beam (not shown
here) had little effect on the Raman emission. The SRS with ISI was suppressed for a
coherence time as long as 10 psec. The time duration of the broadband ISI emission was
much longer than the laser pulse, and consisted of just thermal radiation from the hot
target. The signals from the other two cases had p Ise widths shorter than the incident laser
pulse, consistent with an instability.

Any explanation of these results must consider the following: the bandwidth had little
effect on the SRS from the ordinary beam, and the broader-bandwidth ISI experiment still
had &y < c if one uses the laser intensity of the instantaneous peaks of the ISI beam. We
conclude that the suppression with broadband ISI must involve some type of hydrodynamic
phenomena that occurs on a relatively long time scale, such as filamentation or density
profile modification. Our 2D and 3D computer simulations indicate that, under our
experimental conditions, the ordinary beam and the narrowband ISI beam are susceptible to
strong ponderomotive filamentation, while the broadband ISI beam is resistant to
filamentation [121. The suppression of Raman by Brillouin that has been observed in other
experiments [131 could not occur here, because SBS is also strongly suppressed by ISI
(141.

3. Comparison of SRS Theory and Experiment

In another set of experiments, shown in fig. 2b, we were able to obtain SRS signals with
broadband ISI by focusing the beam onto a preplasma that preceded the ISI beam by 2 nsec.
Presumably the preplasma increased the SRS because of the longer scalelength. The
theoretical expression [151 for convective Raman growth is given by IR t In eGLI, where In
is the noise level, G . 1.6x10-13 cm/W for a 1 mm laser near n=0.1 nc, and L is the
plasma size. If one uses the time-averaged ISI intensity in this formula, the prediction is
still less than the experiment. But the ISI beam is not constant in time, and the
instantaneous peaks will have a growth rate. Therefore we modified the standard convective
theory by assuming that these hot spots will drive the SRS. The instantaneous electric field
at the target satisfies a gaussian probability distribution, corresponding to an intensity
distribution P(l) a 1/1o exp(-l/Io). Integrating over P(l), one obtains the expression:

is

IR a In e G LI P(I)dl + af I P(I) dl
0f Is

Here Is is the incident intensity that saturates the Raman scatter, and a is a saturation
coefficient that satisfies In exp(GLIs) - cls . Provided that ai is not too small, Eq. 1 is a
function that Is relatively flat for small 10, with a rapid increase for 10 > (GL) 1 . We chose
the value of a, (10-5 nm-1 ), to match the experimental slope of the SRS above threshold.
The threshold value (the break in the curve) is insensitive to the choice of ai. The optimum
value of L - 0.08 cm is larger than the experimental value of 0.06 cm that was obtained by
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direct interferometry measurements. This remaining slight disagreement between theory
and experiment may reflect several factors: Io and L are only known to +15%, and there
may be a slight remaining filamentation with broadband ISI.

In summary, our experiments show that ISI has a strong stabilizing influence on the
convective SRS instability as compared to an ordinary beam or narrowband ISI ( the latter
simulating the random phase screen with high F# optics), and the backscatter intensity is
in relatively good agreement with an analytic theory that includes the probabilistic
intensity distribution of ISI and a saturation term. These results suggest that direct-drive
high-gain laser fusion pellets may not have problems with fast electron preheat from SRS -

- if one uses a thin pellet shell. In more recent experiments with ISI using green light
(527 nm), there was some evidence of additional suppression of SRS by a broader
bandwidth. This effect could allow usage of the somewhat thicker pellet shells (with less
pellet gain) that are preferred by some groups.
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FIGURE CAPTIONS
FIG. 1: (a) Floor plan for the Nike KrF laser now being built at NRL. There are two e-

beam pumped amplifiers, 20x20x80 cm 3 , and 50x50x200 cm 3 . The optical
multiplexing will use primarily mirrors instead of lenses. The targets will be flat
foils. (b) With the echelon-free ISI concept, the desired intensity profile is imaged
onto the target through the laser chain, using partially-coherent light. Good
fidelity Is obtained if nonlinear effects and chromatic aberration are minimized.

FIG. 2: (a) The peak Raman emission in the band 1350-1750 nm. The intensities are the
average across the FWHM of the ISI focal profile, and the average across the "flat
top" region of the ordinary beam. (b) Energy per nm in the Raman band near
1600 nm with broadband ISI, with and without a preplasma. Data is plotted as a
function of the time-averaged intensity at the peak of the focal distribution; this is
1.4 times larger than the intensities in (a). Theoretical curves use the equation in
the text, with a correction for the emission from the preplasma.
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ABSTRACT

Using a fast-gated (120 psec-5 nsec) microchannel-plate optical camera (Gated Optical
Imager), framing photographs have been taken of the rapidly streaming, laser plasma (-5 x 107

cm/sec) passing through a vacuum or a background gas, with and without a magnetic field.
Observations of Large-Larmor-Radius Interchange Instabilities are presented.

1. INTRODUCTION

When a pulsed laser beam strikes a solid target an energetic plasma is produced, and ions
and electrons stream away from the target with velocities often greater than l07 cm/sec. If these
plasmas expand into an ambient plasma or into a magnetic field, various instabilities can develop
that can cause spatial nonuniformities to develop in the plasma.1 .2 These instabilities include
Rayleigh-Taylor instability or interchange instability, counterstreaming plasma instability, and
several other instabilities. There is considerable interest in observing these instabilities using fast
cameras, such as streak cameras and framing cameras which give time-resolution of better than a
nanosecond and spatial resolution ranging down to a few microns. A framing camera has the
additional advantage of giving a two dimensional view of the plasma structure.

In this article, we will describe experiments done with a Gated Optical Imager, which is a
microchannel plate intensified, gated single-frame camera with a 18-mm diameter cathode and an
exposure time ranging from .120 psec to 5 nanoseconds. We will show examples of the laser
produced plasma both withand without a magnetic field and in a vacuum as well as in presence
of a background gas. The development of a strong plasma-magnetic-field interchange Rayleigh-
Taylor instability in the limit of large ion Larmor radius will be described.

2. EXPERIMENT

2.1 Camera

The camera used in these experiments, as shown in Fig. 1, is a Grant Applied Physics, Inc.,
Gated Optical Imager 3 (GO[) which gives a single frame with a minimum exposure time of 120
psec FWHM over a full 18-mm diameter cathode aperture. The super-fast, gating speeds are
obtained with a solid-state electronic pulser which has a jitter of less than 50 psec and a trigger
delay of - 14 nsec. The exposure time can easily be varied by the interchange of plug-in
modules. The camera has three modes of operation: 1) D.C. on, 2) slow-gated (300 usec), and
3) fast-gated (120 psec to 5 nsec). The resolution is typically 10 lp/mm. A fiber optics output
allows convenient coupling to photographic film or to a CCD readout. A Polaroid camera back
is part of the camera, and Polaroid Type 667 film was used in this experiment. Either fiber
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optics or a quartz window can be used on the input side, depending on use in the ultraviolet. An
S25 photocathode responding out to 850 nm, allows calibration with a laser diode. A further
description of the operation of the camera is given in Ref. 3.

2.2 Plasma Source and Chamber

The hot plasma is produced by focusing one beam of the NRL Pharos III Nd-laser (1.05 um
wavelength) onto small aluminum foil targets (1 mm in diameter and 2 pm thick, as shown in
Fig. 2. The focal spot diameter is -250 um in diameter. These targets are located in a chamber
either evacuated to pressures of -4 x 10-4 Torr, or filled with a low pressure, background gas (a
few Torr or less of H2). Typically, the laser pulse has an irradiance of 1013 W/cm 2, 30 Joules of
energy, and a 3-nsec (FWHM) time duration.

A magnetic field, produced with a pair of Helmholtz coils and ranging from I to 10 kG, is
applied prior to the laser pulse. The field is aligned perpendicular to the laser axis and parallel
to the optic axis of the GOT camera. The direction of the magnetic field is towards the GOI
camera. To allow photographs to be taken of low light level filaments on the periphery of the
plasma, the very high emitted intensity region near the target was blocked with a small mask
located about 1 cm from the target, between the target and the GOI camera. Since a wide range
of intensities were observed, attenuating optical filters were placed in front of the GOI. Using a
f/5, 10- inch focal length lens, the plasma image was optically reduced by a factor of 6.7 at the
GOI photocathode. Previous spectroscopic studies showed that there are many aluminum ions
(All) to AIIV) that emit radiation in the bandwidth accepted by the GOI, so there is ample light
to observe the plasma shape and motion.

3. PHOTOGRAPHS OF THE INSTABILITY

3.1 Variations of Magnetic Field

Using this camera, the photographs of the effect of the magnetic field on the laser-plasma
are shown in Fig. 3. To get this sequence of photographs, the phenomena must be assumed to
be reproducible; which in a separate experiment, proved to be the case. The conditions for this
sequence were: background pressure was -3 x 10-4 Torr, laser energy was -27 J for a 2.8-nsec
pulse, the time of observation was 115 nsec after the laser struck the target, and the camera
exposure time was 2 nsec.

Figure 3(a) shows the nature of the ion emission with no magnetic field. The vertical line
on the left side is the target stalk and the 2 bright lines at the center are magnetic field probes
that are hit by the ions. Also, the bright ring and the bright blobs near the top of the
photograph are diagnostic probes that are behind the plasma and reflect light into the cameras.
The outermost extent of the light on the right side of the photograph shows the distance the ions
have traveled in 115 nsec. Figure 3(b) shows the same conditions except that a magnetic field of
1 kG is present. Now a series of short spikes (flutes) have developed around the edge of the
plasma. The spikes have extended to approximately the same distance as the zero-field plasma,
but the main front does not go out as far. There has been a definite interaction of the plasma
with the magnetic field. Then in Fig. 3(c), one can see the effect of a much larger magnetic
field, namely, 9 kG. Here small spikes have now become larger spikes which are not only fatter
but also longer. The overall light intensity of the plasma is higher than the case for lower
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magnetic fields. The main front of the plasma is not as far from the target for the 9-kG case-
however, the tip of the flutes are still almost the same distance from the target as for the 1-kG
case.

3.2 Temporal variation

By holding the magnetic field constant at 10 kG, a variation of the time at which the
photograph was taken shows how these flutes develop in time. Figure 4 shows the plasma at 3
times: (a) 44 nsec, (b) 115 nsec, and (c) 205 nsec. At 44 nsec, the flutes are not present.
(Again, the ring-shaped image and the blobs at the top of the photograph are reflections from
diagnostic probes in the chamber and should be ignored.) However, at 115 nsec the flutes are
well developed, and further are curved due to the presence of the magnetic field. (A reversal of
the direction of the magnetic field caused the flutes to curve in the opposite direction.) At 205
nsec the flutes are much more diffuse and appear to be dissipating, probably in part due to the
plasma cooling and the conductivity decreasing. The expansion of the plasma has stopped by
this time.

3.3 Pressure variation

In the next series, hydrogen gas was added to the chamber prior to the shot. The H,
pressure was varied while the magnetic field was held constant at 1 kG and the time was held
constant to 150 nsec. In Fig. 5, three different hydrogen pressures are shown: (a) 9 mTorr, (b)
100 mTorr, and (c) 2 Torr. In Fig. 5(a) the 9 mTorr of hydrogen background gas shows the
same general characteristics as the case for a vacuum (2 x 104 Torr of air), namely, the short
spikes on the edge of the plasma; however, the distance the plasma has propagated is greater.
This could be due to the velocity of the ions being greater in hydrogen than air, even with the
higher pressure of H2 . As the hydrogen pressure is increased to 100 mTorr, a leaky blast wave
begins to form as shown in Fig. 5(b). Then with a further increase of pressure to 2 Torr H2, a
well-formed blast wave develops as shown in Fig. 5(c). The blast-wave behavior appears to be
insensitive to the presence of the applied magnetic fields. Details of the possible effects of the
magnetic field on the shock structure are currently being investigated.

4. INTERPRETATION AND CONCLUSION

In the presence of an external magnetic field, the bulk plasma decelerates as it excludes
magnetic field energy. Without instabilities, the plasma would stop near the magnetic
confinement radius, where the excluded field energy equals the original plasma energy. It is
shown with the photographs presented here that an instability sets in and the plasma breaks up
into free-streaming flute tips. A comparison of these results with a modified MHD theory of
A.B. Hassam and J.D. Huba, which will not be discussed here, but is presented in Ref. (4).
showed that many features seen in the experiment are similar to those predicted by the theory;
also, these features are similar to the structures seen in a barium-release space experiment with
the Active Magnetospheric Particle Tracer Explorer satellite. 5

With a background gas the laser produced plasma interacts with the preionized gas and
shock waves or blast waves are formed. This luminous front will steepen and grow much
brighter as the blast wave moves out from the target. In the higher pressure regime, P- 1-5 Torr,
the structure instability is mostly damped out as more and more collisions occur.
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In conclusion, the Grant Applied Physics Gated Optical Imager camera was able to view
these rapidly changing plasmas, which are often only weakly luminous, with sufficient time- and
space-resolution and also with sufficient amplification to give adequate images that allow a
detailed comparison with theory.
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Figure 1. Photograph of Gated Optical Imager, showing the back of the
camera with the film pack removed.

LASER TOP VIEW

f/f5 10 in.
LENS

S---" GATED
OPTICAL
IMAGER

ATTENUATING
MAGNETIC FILTER

MASK FIELD COILS
TARGET (MAGNIFICATION: 1/6.7)

Figure 2. Experimental arrangement.



i i8 981 28

1,- 8 cm-1

(a) (b)

diagnostic
probes

target .

laser

probes

(c) (d)

Figure 3. Photographs of the laser plasma taken 115 nsec after the laser
strikes the target in a vacuum of -2 x 10-4 Torr showing the variation of the
magnetic field (a) 0 kG, (b) 1 kG, and (c) 9 kG. A sketch showing the
experimental arrangement is shown in (d). The exposure time is 2 nsec.
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Figure 4. Photographs of a plasma in a vacuum in the presence of a magnetic
field of 10 kG showing various times after the laser strikes the target; (a) 44
nsec, (b) 115 nsec, and (c) 205 nsec. The exposure time 2 nsec.

.lip

(a) (b) (c)

Figure 5. Photographs of a plasma in a magnetic field of I kG at 150 nsec
after the laser struck the target showing the variation of the background gas
pressure (a) 9 x 10-3 Torr H2, (b) 100 x 10-3 Tor H2 , and (c) 2 Torr H2. The
exposure time is 2 nsec.
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Large-Larmor-Radius Interchange Instability
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We observe linear and nonlinear features of a strong plasma-magnetic-field interchange Rayleigh-
Taylor instability in the limit of large ion Larmor radius. The instability undergoes rapid linear growth
culminating in free-streaming flute tips.

PACS numbers: 52.35.Gz, 52.35.Py, 52.50.Lp, 52.55.Lf

Plasma expanding into a magnetic field can undergo magnetic induction probes to obtain magnetic field dy-
Rayleigh-Taylor or interchange instability as the heavy namics, small Langmuir and capacitive probes to mea-
fluid (plasma) is decelerated by the light fluid (magnetic sure density gradients and fluctuations, open-shutter
field). 1.2 Direct observations of this instability have been photography and witness plates to see persistent struc-
made in the limit of small ion Larmor radius (compared ture, and fiber-optic spectroscopy to estimate density
to density gradients and wavelengths), 3 where conven- profiles during the plasma/magnetic field interaction.
tional MHD theory applies. When the ion Larmor ra- The velocity distribution of the expanding plasma,
dius becomes finite the instability is predicted to stabi- measured for B -0 with an ion time-of-flight detector,
lize. 4 However, when the ion Larmor radius becomes peaks at V0 -5.4x 10 7 cm/s with a FWHM spread of
large compared to other characteristic plasma dimen- ± 1.8x 107 cm/s. The total plasma mass is about
sions, i.e., when the ions are effectively unmagnetized but mo-0.2 jug (half of which is directed into the front
the electrons are effectively magnetized, a related insta- ±450 expansion cone), the initial electron temperature
bility is predicted with an even higher growth rate than is about 500 eV, and the initial alunkinum ionization
that of the original MHD instability. 5 The recent bari- state is approximately 10. 9 Thus, the ion Larmor radii
um-release space experiment with the Active Magneto- are large, over 1.4 cm for 1.0 T and over 14 cm for
spheric Particle Tracer Explorer satellite, which showed B -0.1 T (on the assumption that Z is 10 or less). The
substantial structure, was in such a regime. 6 A previous electrons, on the other hand, are effectively magnetized
laser-plasma experiment in a regime of moderate-sized with Larmor radii below 1 mm. Most of the experiments
ion Larmor radius also measured instability growth . were performed under good vacuum ( < 0.1 mTorr) so

In this paper, we observe a robust interchangelike in- that the magnetic field rather than residual collisions
stability in the limit of very large ion Larmor radius. dominates the plasma expansion. The plasma expansion
The instability exhibits a rapid linear phase with subse- speed is very sub-Alfvinic, being more than I order of
quent nonlinear free-streaming flutes and examples of magnitude slower than the maximum possible Alfvin ye-
density clumping, flute-tip bifurcation, and interesting locity in the residual background air.
late-time spirallike structures. In the absence of a magnetic field, the plasma expands

Our experiment is comprised of an energetic laser-
produced plasma expanding radially outward into a uni-
form magnetic field B formed by a pair of Helmholtz L : 1 LENS
coils,s as depicted in Fig. I. Steady-state (on the time
scale of the experiment) vacuum B fields from 0 to I T
are used. Plasma bursts are created by our focusing a PRO1E
beam of the Pharos IfI neodymium laser onto small Al BEAM
(2 um thick, I mm diam) disk targets. Unless noted
otherwise, the nominal laser pulse has an irradiance of
about 1013 W/cm 2, 30 J of energy, and 3-ns duration
(FWHM). The principal diagnostic used to measure the
plasma and instability development is a Grant Applied GATED
Physics fast-gated microchannel-plate optical camera fo- M IAE
cused onto the target midplane antiparallel (usually) to TARGET'MASK
the magnetic field lines. Shutter speeds of I or 2 ns are
used. In addition to the gated camera, we also used ion FIG. I. Experimental arrangement for instability experi-
timeof-flight detecto-s to measure the plasma ion veloci- ments. A schematic of the equipment is shown; ion deteetors
ty distribution, several small (230 pm diam, two turn) are denoted by rectangles and magnetic probes by circles.

C 1987 The American Physical Society 2299
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FIG. 2. Development of the instability. Locations of the instability spike tips (open circles) and main plasma boundaries (closed
circles) with time for (a) the low-field (0.1 T) case and (b) the high-field (1.0 T) case. Shots denoted by triangles are plasma boun-
daries with zero applied magnetic field (free-streaming plasma). (c) Spike-to-bubble amplitudes vs time for 1.0 T (circles) and for
0.1 T (squares). E, -25-30 J, V0-5.4x 107 cm/s, and P <0.1 mTorr for all cases.

radially outward from the focal region with a velocity or spikes project out from the main plasma body into the
and spread consistent with the time-of-flight ion distribu- magnetic field. The initial development of the instability
tion. In such expansions, most of the energy ends up in can be seen in the low-field (0.1 T) case shown in Fig.
directed ion motion, with a relatively low plasma temper- 3(a). During the first 50 ns (R < Rb/5) the plasma ex-
ature (a few electronvolts), s When an external field is pands with speeds near Vo and no sign of instability i,
applied, the bulk plasma decelerates as it excludes mag-
netic field energy. Ideally, a symmetrical plasma expan-
sion would stop near the "magnetic confinement" radius, (b,
Rb, where the excluded field energy equals the original
plasma energy. For the typical 30-J shot in our experi-
ment, Rb is 3.3 cm for B-1 T and 15 cm for B-0.1 T.
The plasma has a deceleration of about 5x 1014 cm/s 2 at
R-3 cm for B-I T [Fig. 2(b)]. The deceleration is
less apparent in the 0.1-T experiments since we observe
it for R < Rb. At intermediate magnetic field values the I
observed magnetic confinement distance follows the ex-
pected 82/3 dependency within the data error bars
(±t 20%). The plasma continues to cross the magnetic
field beyond Rb, but at reduced speed, which is a conse- BE
quence, perhaps, of our lack of a totally symmetric ex-
pansion.(c(d

The density scale lengths of the plasma fronts in a
magnetic field at about 3 cm from the target fall in the
range L, -10 t 3 mm. These estimates were obtained
from the emission profiles of the time-resolved optical '-
images, the rise times of the Langmuir and potential
probe signals, and the rise time of spatially and tem-
porally resolved Al +2 line (361.2 nm) emission

The array of magnetic field probes located at 1, 2, 3, B E Vde B de
4, and 5 cm from the target show a very small (few per-
cent at most) magnetic compression ahead of the plasma 1 Cm
front followed by a greater than 30% diminished field FIG. 3. Examples of the instability development. (a) 0.1 -T
within the plasma front. This field behavior is general- case observed at time 115 ns. (b) Example of density clumps
ly consistent with sub-Alfvinic plasma expansion with, in the early time phase development with 8 1.0 T at time 59
perhaps, a higher than classical resistivity, e.g., Lb -c/ ns. (c) Example of curved spike structure with 1.0-T field

(opi. (field points out of paper) at 115 ns. (d) Same as (c) except
Before the plasma reaches Rb, structure develops in field points into paper and t -100 ns; note reversalof curvature

the plasma leading (outer) edge. Distinct plasma flutes sense. E 25-30 J and P < 0.1 mTorr for these shots.
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discernible; suddenly, near R -3 cm, radial plasma pro- ing to see if this increasing-mode-number-type behavior
jections appear with amplitudes comparable to their persists when more spherically symmetric expansions are
wavelengths (5-10 mm). It is clear from Fig. 2 that examined.
these plasma tips then continue to execute free streaming The dominant instability wavelength, . =8 + mm.
outward into the magnetic field. Since R<<Rb, the bulk may be determined by the bulk plasma-density scale
plasma is also still expanding almost uniformly. Curi- length, L, -10 ± 3 mm, or possibly by the magnetic
ously, despite a much stronger deceleration in the I-T diffusion length into the plasma. The collisionless skin
case (g,,B 2), the instability also begins to develop at (C/o)p) depth is only a fraction of a millimeter, but pos-
about the same distance and time as in the lower-field sible anomalous resistivity associated with this or anoth-
case. This onset behavior is consistent with the instabili- er instability could push the diffusion length into the cen-
ty criterion t0 g/L, > fl;/4 which is independent of the timeter (c/wp,) range.
magnetic field; n, is the ion cyclotron frequency. The For some shots, the magnetic field was rotated 900 so
instability wavelengths also do not appear to be a strong that the instability development could be viewed perpen-
function of the magnetic field strength in contrast to Ref. dicular to the field lines. The plasma projections, which
7. The flute amplitude grows rapidly after onset with a have the appearance of slim spikes in the end-on view,
linear growth rate of about 108 s -1 as seen in Fig. 2(c). 7  actually run smoothly along the field lines like flutes.
Unfortunately, the accuracy of the growth rate measure- The free-streaming flutes exhibit some interesting
ment (a factor of 2) is limited by the shot-to-shot repro- features at later times. One common characteristic in
ducibility of the onset time. For comparison, the conven- the high-field experiments is the curvature and spurlike
tional (small ion Larmor radius) MHD Rayleigh-Taylor appearance of the instability fingers seen in Figs. 3(c)
growth rate [y(g/L,)'12 for kL. > 11 for our parame- and 3(d). The curvature is in the electron cyclotron or
ters (B -I T) is about 2x 107 s - 1 , whereas the large- electron ExB drift sense and reverses with magnetic
Larmor-radius instability theory 5 predicts a 6 times fas- field direction. It is not yet known whether the curvature
ter growth rate for the observed wavelengths, which is arises from the spike tips moving upward or the bubble
consistent with our experimental result. At times the downward. But the distinct structure seen on the witness
plasma structure initially appears as density clumps in plates precludes large-scale azimuthal motion. Two pos-
the leading edge of the expansion plasma. This clump- sibilities are that curved flutes are caused either by
inglike behavior, shown in Fig. 3(b), is a predicted ExB-induced azimuthal electron velocity shear," or as
characteristic of this instability. 5' 10 Subsequent to the a response of large-Larmor-radius plasma to Alfvenic
rapid linear phase of the instability the flute tips perform magnetic stresses: The theory of Hassam and Huba 5

free streaming with speeds near V0. predicts that a localized spike expanding into a magnetic
The wavelengths of the predominant flute modes field curves in the electron gyrodirection, consistent with

(measured at the base of the flutes) are typically in the experiment.
6- to 10-mm range and are insensitive to most parameter A number of other parameter variations were per-
changes. As time goes on, the instability wavelength formed during the course of this investigation. The
tends to remain in this range even though the plasma background pressure was increased up to 2 Torr of H2 to
continues to expand radially. Some indication of how test the effects of increasing collisionality and decreasing
this can occur was obtained by our placing witness plates Alfv~n speed on the instability. For the 0. 1-T case
(black Polaroid film) perpendi,,,lar to the magnetic field viewed at 150 ns, free-streaming structure persisted up
a few centimeters to one side of the target. These to 100-mTorr H2 pressure at which point signatures of
recorded time-integrated patterns of the plasma running collisional effects were seen.8

down the field lines. Long spikes are seen in the expo- In another series of shots, a 7.6-cm-diam, 3-mm-thick
sures with curvature toward the midplane and additional copper disk was placed 4 to 5 cm to one side of the tar-
projections formed towards the sides of the pattern with get, perpendicular to the field lines, to short out the dy-
increasing distance from the source. The fact that the namic motion of the magnetic field lines. The gross
patterns on the witness plate are not washed out indicat- feature of the instability persisted independent of wheth-
ed that the plasma structure, once formed, does not un- er the copper plate was grounded, ungrounded, insulated,
dergo much azimuthal motion. Several examples of or bare.
spike-tip bifurcation are also seen. The combination of Finally, several shots were taken with much larger in-
these two effects tends to maintain constant wavelength cident laser energy (400 J) but comparable irradiance at
and increase the instability mode number, m -2rR/X, a variety of magnetic fields and pressures. The major
with distance. Sydora et al. 11 suggest that the azimuthal effect of higher laser energy is to increase the plasma
mode number of the most unstable mode would increase mass proportionally and, hence, to increase the magnetic
with decreasing charge separation between the unmag- confinement radius by Rb cxE l1.
netized ions and the plasma electrons; perhaps this is Another interesting observation in these experiments
what is occurring in the experiment. It will be interest- was the presence of a strong high-frequency (> 250
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STRUCTURING PROCESSES IN EXPANDING
LASER-PRODUCED PLASMAS

INTRODUCTION

A plasma expanding into a magnetic field and/or another
plasma can undergo several processes which will cause
spatial nonuniformities and large-scale structure to
develop. Structure forming instabilities include various
forms of the Rayleigh-Taylor instability or interchange
instability, Kelvin-Helmholtz instability, universal
instabilities, and streaming instabilities. In addition,
geometric and plasma production factors can affect expansion
uniformity.

In this article, we describe experiments in which plasma
nonuniformities arise when laser-produced plasmas expand
into other ambient plasmas and/or magnetic field regions.
Several types of density structure appear, depending upon
the operational regime.' Dramatic large-scale flutes grow
when the laser-plasma expands into a vacuum magnetic field

or a low-density magnetized plasma. The mechanism has been
identified as a type of Rayleigh-Taylor or interchange
instability occurring in a relatively unexplored regime
where the ion Larmor radii are large. 2 .3 Plasma jetting

across magnetic fields has been studied. This is caused by
polarization drifts arising when gross asymmetry is
present. 4 .5 When the laser-produced plasma expands into a
high pressure background-plasma or gas, collisional blast-
waves are formed. Several structure-forming mechanisms
occur here also. Aneurisms, t 06 which are protrusions from
the otherwise smooth blast-fronts, often appear; several
mechanisms are responsible for these unusual projections,
among them effects associated with the incoming laser-beam
deposition 6 and material jetting normal to the target.7

Finally, it has recently been shown that ablatively
accelerated foils undergo Rayleigh-Taylor (R-T) instability
during laser irradiation.S These R-T unstable accelerated
thin-foils continue to develop gross turbulence as they
expand into a vacuum or background gas. The measured
turbulence has been Fourier analyzed to yield power spectra
at successive times in the expansion phase. 9

Manuscrip approved December 22. 1987.



In the remainder of this article, we will describe these
structuring processes in more detail. These phenomena are,
for the most part, not unique to laser-produced plasmas and
should be applicable to a broad range of disciplines. Our
results are related to problems in space physics, magnetic
confinement/fusion, laser-guided particle beams, ICF reactor
design, and basic plasma physics.

EXPERIMENTAL ARRANGEMENT

The experiment consists of an energetic laser-produced
plasma expanding into a vacuum and/or a photoionized gas as
depicted in Fig. 1. Details of the basic experimental
arrangement and earlier results have been published
elsewhere.' The energetic laser-produced plasma is formed
by placing a small target, typically a 1 mm or less diameter
and 2 jim thick aluminum disk, at the focus of one or two
beams of the PHAROS III Nd-glass laser. Laser pulse
durations of 3 to 5 ns, energies up to 400 J/beam,
irradiances of 1012 to 1014 W/cm 2, and spot diameters between
0.25 and 1 mm are used in the present studies. Laser-
produced ablation plasmas having initial temperatures of 500
to 1000 eV are formed; these expand radially away from the
focal region and reach asymptotic speeds of 5 to 8 x 107
cm/s within a millimeter to two. If a background gas is
introduced, it is partially photoionized by the X-ray and UV
emissions of the laser-plasma interaction. A magnetic field
up to 11 kG is often impressed on the entire system by means
of a pulsed set of 25 cm diameter Helmholtz coils; the
magnetic field is effectively steady-state during the
relevant part of the experiment.

A large array of instruments are used to measure the
plasma properties and dynamics. Diagnostics include ion
time-of-flight detectors, magnetic-field induction probes,
diamagnetic loops, multi-time dark-field optical
shadowgraphy, interferometry, Langmuir and capacitance
probes, x-ray detector arrays, fiber-optic/OMA spectroscopy
systems, and more. Most of these diagnostics are described
in detail in Ref. 1. There are two notable additions. A
fast-gated (120 ps < 6t < 5 ns) Grant Applied Physics
microchannel plate S-25 optical camera (dubbed a GOI, gated
optical imager) is used to obtain high-resolution time-
resolved images of low-density plasma interactions. This
instrument is used to image the plasma structure in low
density situations, such as those encountered in the next
section. The other new diagnostic is a resonant laser
probe, which is also useful in low density plasmas. The
resonant probe beam comes from a dye laser, pumped with a 5-
ns duration frequency-doubled Nd-laser, which is tuned to
either the wing or center of a plasma ion-resonance line.
Index of refraction enhancements of 1000 over the usual
electron contribution are possible using this technique.
one form of plasma jets, to be discussed later, was found
using this technique.

LARGE LARMOR RADIUS INTERCHANGE INSTABILITY

Plasma expanding into a magnetic field can undergo
Rayleigh-Taylor or interchange instability as the heavy
fluid (plasma) is decelerated by the light fluid (magnetic
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field).10 ,0 1 This instability has been observed in
experiments where MHD theory is valid, namely, where the ion
Larmor radius is small with respect to density gradients and
instability wavelengths. 12-14 When the ion Larmor radius
becomes larger, i.e., comparable to density gradient scale-
lengths, the instability is predicted to stablize,15

although no experimental verification of this has yet been
made. Recently, however, it has been predicted that when
the ion Larmor radii are very large (i.e., the ions are
effectively unmagnetized, but the electrons remain
magnetized) the instability not only reappears, but exhibits
a much faster growth and different character than the
ordinary MHD Rayleigh-Taylor version.,"'6 The recent AMPTE
Barium release space experiment, which also showed
structuring, was in such a regime."

We observe a robust interchange-like instability in the
very large ion Larmov zadius limit. The instability
exhibits a rapid linear phase with subsequent nonlinear
freestreaming flutes and examples of density clumping,
flute-tip bifurcation, and interesting late-time spiral-like
structures.

Our experiment 3 is comprised of an energetic laser-
produced plasma expanding radially outward into the uniform
magnetic field, as depicted in Fig. 1. Vacuum B-fields from
zero to one Tesla are used. Plasma bursts are created by
focusing one or two beams of the PHAROS III Nd-laser onto
small Al (2 pm thick, 1 mm diameter) disk targets. Unless
noted otherwise, the nominal laser pulse has an irradiance
of about 1013 W/cm2 , 30 J of energy, and 3 ns duration
(FWHM). The principle diagnostic used to measure the plasma
and instability development is the previously described GOI
microchannel plate camera focused onto the target mid-plane
antiparallel (usually) to the magnetic field lines. Shutter
speeds of 1 or 2 ns are used. In addition to the gated
camera, we also used: ion time-of-flight detectors to
measure the plasma ion velocity distribution; several small
(230 pm dia., two-turn) magnetic induction probes to obtain
magnetic field dynamics; small Langmuir and capacitive
probes to measure density gradients and fluctuations; open-
shutter photography and witness plates to see persistent
structure; and fiber-optic spectroscopy used to estimate
density profiles during the plasma/magnetic field
interaction.

The velocity distribution of the expanding plasma,
measured with zero magnetic field, peaks at V, - 5.4 x 107
cm/s with a FWHM spread of + 1.8 x 107 cm/s. The total
plasma mass is about m. = 0.2 pgm (half of which is directed
into the front ± 450 expansion cone), the initial electron
temperature is about 500 eV, and the aluminium ionization
state is approximately 10. Thus, the ion Larmor radii are
large, over 1.6 cm for 1.0 Tesla and over 16 cm for B-0.1
Tesla (assuming Z is ten or less). The electrons, on the
other hand are effectively magnetized with Larmor radii
below one millimeter. Most of the experiments were
performed with ambient pressures below 0.1 mTorr so that the
magnetic field dominates the plasma expansion. The plasma
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Figure 1. Arrangement for laser-plasma structure
experiments.

expansion speeu is very subAlfvenic, being more than one
ord .-of-magnitude slower than the maximum possible Alfven
velocity in the residual background air.

In an external magnetic field, the expanding plasma
decelerates as it excludes magnetic field energy. Ideally,
a symmetric plasma expansion would stop near the "magnetic
confinement" radius, Rb, where the excluded field energy
equals the original plasma energy. For the typical 30 J
shot in our experiment, Rb is 3.3 cm for B-i Tesla and 15 cm
for 1=0.1 Tesla. The plasma decelerates with g = -5 x 101 4

cm/s 2 at R-3 cm for B-i Tesla, as seen in Fig. 2b. The
deceleration is less apparent in the 0.1 Tesla experiments,
Fig. 2a, since we observe it for R < Rb. At intermediate
magnetic field values the observed magnetic confinement
distance follows the expected 12/3 dependency within the
data error bars (±20%).18,19 The plasma continues to diffuse
across the magnetic field beyond Rb, but at reduced speed, a
consequence, perhaps, of our lack of a totally symmetric
expansion.

The density scale-lengths of the plasma fronts in a
magnetic field at about 3 cm from the target fall in the
range L, = 10±3 millimeters. These estimates were obtained
from the emission profiles of the time-resolved optical
images, the risetimes of the Langmuir and potential probe
signals, and the risetime of spatially and temporally
resolved A1 2 line (361.2 nm) emission.

20 ,21
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Figure 2. Development of the plasma expansion and
instability. Locations of the instability spike
tips (o) and main plasma boundaries (e) with time
for the low (0.1 Tesla) field case (a) and the
high (1.0 Tesla) field case (b). Shots denoted
by a A are plasma boundaries with zero applied
magnetic field (freestreaming plasma). E, =
25-30 J, V. = 5.4 x 107 cm/s, and P<0.1 mT for
all cases.

An array of magnetic field probes located at 1, 2, 3, 4,
and 5 cm from the target show a very small (few percent at
most) magnetic compression ahead of the plasma front
followed by a greater than 30% diminished field within the
plasma front. This field behavior is generally consistent
with subAlfvenic plasma expansion with, perhaps, a higher
than classical resistivity leading to a magnetic diffusion
length, Lb W c/WPi.

Before the plasma reaches Rb, structure develops in the
plasma leading (outer) edge. Distinct plasma flutes project
out from the main plasma body into the magnetic field, as
shown in Fig. 3. The initial development of the instability
can be seen in the low (0.1 Tesla) case shown in Fig. 2a.
During the first 50 ns (R < Rb/5), the plasma expands with
speeds near Vo and no sign of instability is discernible;
suddenly, near R = 3 cm, radial plasma projections appear
with amplitudes comparable to their wavelengths 5+1 mm. It
is clear from the distance versus time plot, that these
plasma tips then continue to freestream outward into the
magnetic field. Since R << Rb the bulk plasma is also still
expanding close to its intial speed. Curiously, despite a
much stronger deceleration in the 1 Tesla case (g - B2), the
instability also begins to develop at about the same
distance and time as in the lower field case (see Fig. 4).
This onset behavior is consistent with the instability
criterion" g/Ln>Q9/4, which is independent of the magnetic
field; Qi is the ion cyclotron frequency. The instability
wavelengths turn out to be also independent of the magnetic
field strength. The flute amplitude grows rapidly after
onset with a linear growth rate above 101 s- ,
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Figure 3. Examples of the instability development. (a) 0.1
Tesla case observed at time 115 ns. (b) Example
of density clumps in the early-time phase
development with B = 1.0 Tesla at time 59 ns.
(C) Example of curved spike structure with with
1.0 Tesla field (field points out of paper) at
115 ns. (d) Same as (c) except field points into
paper and t = 100 ns; note reversal of curvature
sense. E, = 25-30 J and P< 0.1 mT for these
shots.

as seen in Fig. 4. Unfortunately, the accuracy of the
growth rate measurement (factor of two) is limited by the
shot-to-shot reproducibility of the onset time. For
comparison, the conventional (small ion Larmor radius) MHD
Rayleigh-Taylor growth rate (y - (g/L,)" / 2 for kL, >1) for
our parameters (B - 1 T) is only about 2 x 107 s-1, whereas
the large Larmor radius instability theory2 predicts a six
times faster growth rate for the observed wavelengths,
consistent with our experimental result. At times, the
plasma structure initially appears as density clumps in the
leading edge of the expansion plasma. This clumping-like
behavior, shown in Fig. 3b, is a predicted characteristic of
this instability. 2. 6 Subseqtient to the rapid linear phase
of the instability the flute tips freestream with speeds
near V0 .

The wavelengths of the predominant flute modes (measured
at the base of the flutes) are typically about 5 mm and are
also insensitve to most parameter changes. As time goes, on
the instability wavelength tends to remain constant even
though the plasma continues to expand radially. Thus, the
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Figure 4. Onset and growth of instability flutes. Flute-
tip-to-bubble amplitudes versus time for the 1.0
Tesla ( o ) and 0.1 Tesla ( 0 ) data of Fig. 2.
Note that the onset time for both field values
occurs near 50 ns and the linear growth e-fold
time for the B=1 T data is about 10-8s.

effective mode-number increases with radius. Some
indication of how this can occur was obtained by placing
witness plates (black Polaroid film) perpendicular to the
magnetic field a few centimeters to one side of the target.
These recorded time-integrated patterns of the plasma
running down the field lines. Long spikes are seen in the
exposures with curvature toward the midplane and additional
projections formed towards the sides of the pattern with
increasing distance from the source. The fact that the
patterns on the witness plate are not washed out indicates
that the plasma structure, once formed, does not undergo
much azimuthal motion. Several examples of flute-tip
bifurcation are also seen in the time-resolved GOI
images, 16,19 such as shown in Fig. 5. The combination of
these two effects tends to maintain constant wavelength and
increase the instability mode number, m - 2n R/X, with
distance.

The dominant instability wavelength may be determined by
the bulk plasma density scalelength, Ln - 10+3 mm, or
possibly by the magnetic diffusion length into the plasma
front, Lb - 10 mm. The collisionless skin (c/%p.) depth is
only a fraction of a millimeter, but possible anomalous
resistivity associated with this or another instability
could push the diffusion length into the centimeter (c/w,,)
range.
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Figure 5. Example of LLR-instablity flutes undergoing
bifurcation observed at t=100 ns, B-i T, with the
GOI.

For some shots, the magnetic field was rotated 900 so
that the instability development could be viewed
perpendicular to the field lines. The plasma projections,
which have the appearance of slim spikes in the end-on view,
actually run smoothly along the field lines, confirming the
flute-like geometry of the instability.

The freestreaming flutes exhibit some interesting
features at later times. One common characteristic in the
high field experiments is the curvature and spur-like
appearance of the instability fingers seen in Figs. 3 and 5.
The flute curvature is in the electron cyclotron or electron
E x B drift sense and reverses with magnetic field
direction. It is not yet known whether the curvature arises
from the spike tips moving upward or the bubble downward.
Two possibilities are that curved flutes are caused either
by E x B or V B x B induced electron velocity shear. 18 19

A number of other parameter variations were performed
during the course of this investigation. The background
pressure was increased up to 2 Torr of H2 to test the
effects of increasing collisionality and decreasing Alfven
speed on the instability. For the 0.1 Tesla case, viewed at
150 ns, freestreaming structure persisted up to 100 mTorr H2
pressure at which point signatures of collisional effects
were seen.'
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In another series of shots, a 7.6 cm diameter, 3 mm
thick copper disk was placed 4 to 5 cm to one side of the
target, perpendicular to the field lines, to short out the
dynamic motion of the magnetic field lines. The gross
features of the instability persisted independent of whether
the copper plate was grounded, ungrounded, insulated or
bare.

Finally, several shots were taken with much larger
incident laser energy (400 J) but comparable irradiance at a
variety of magnetic fields and pressures. The major effect
of higher laser energy is to proportionally increase the
plasma mass and, hence, increase the magnetic confinement
radius by Rb c El /3.

Another interesting observation in these experiments was
the presence of a strong high-frequency (>250 MHz) signal
seen in the plasma front by electrical and magnetic probes
whenever the Rayleigh-Taylor instability occurred. This
noise is in the ion-plasma or lower-hybrid frequency range.
The relationship of this noise to the magnetic instability
is not yet clear, but may be due to the growth of very short
wavelength Rayleigh-Taylor modes, which cannot be seen in
the framing pictures, or to the generation of
microinstabilities in the plasma shell.'4,21' 22

CROSS-FIELD JETTING

If a blob of plasma is projected across a magnetic field
with velocity V, then charge can accumulate on its
boundaries due to polarization forces within the plasma.
The polarization arises from the V x B forces on the
electron and ion distributions as shown in Fig. 6. The
charge separation in turn sets up a polarization electric
field E which then allows the bulk of the plabma mass to E x
B drift across the magnetic field near the original speed V.
There are, of course, necessary conditions for this to
occur; for one, the charges at the boundary need to be
replenished, as they are reeled off and left behind the main
plasma by the fringe polarization electric fields. Also,
since energy is dissipated by the internal currents, the
plasma jet will eventually stop. A good discussion of these
criteria is given in Borovsky. 23 The plasma jet tends to
form a sharp wedge when viewed end-on to the magnetic field,
due to electric field gradients and curvature. A wedge-
shaped plasma jet was previously noted by Jellison and
Parson. 5 On the other hand, the plasma should fan out in
the plane containing the magnetic field lines.

Fig. 6 also shows an excellent example of a Barium
plasma jet viewed in absorption with our resonant probe
diagnostic. This shadowgram was taken with the dye laser
tuned to near the center of the 450 mm Bali ion line at a
time of about 750 ns. 4 The jet is moving across the 10 kG
field at its initial speed of 106 cm/s. The expected
characteristic wedge-shape phenomena view and along B is
very prominant, However, the view across the magnetic field
is surprising indeed! The plasma is fanned out as expected,
but remarkable fishbone-like structure is observed along the
field lines. 4 A more detailed account can be found in Ref.
4.
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Plasma jets have been formed several other ways in our
experiment by creating asymmetric expansions. Fig. 7 shows
two examples of such jets. The left side of Fig. 7 shows
two jets resulting from plasma expansions of the type
described in the last section. To induce jets, rather than
the large Larmor radius instability, we put a cylindrical
shield with a radius of about 1 cm about the target with
slots cut in it to only allow two thin plasma sheets to pass
through. In the example on the right side of Fig. 7, high-

Example of Ba-plasma jeftg
V=ExB

B lB

Figure 6. Cross-field jetting model and a laboratory
example. The change separation and E x B drift
models are illustrated to the left. On the
right, an example of Ba-plasma jetting in a 1-T
field is seen. The characteristic wedge shape
(top) and "fish bone" instability (bottom) are
seen.

t0
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Figure 7. Two examples of laboratory jetting induced by
geometric asymmetry. (left) A 30 J/beam two-beam
expansion with a cylinderical shield [t-90 ns].
(right) A 100 J/beam two-beam shot into a
cylinderical glass target [t-1 ps].

density, low-temperature jets are formed in an entirely
different way. 24 Two oppositely-directed laser beams were
focused into the ends of a glass cylindrical target (1 mm
diameter, 2 mm long and with 50 pm wall thickness) causing
dense plasma plumes to squirt out the cylinder ends across
the applied magnetic field (10 kG in this case). Note that
the observation time here is 1 us after the laser pulse.
Highly directed jets are seen crossing the field in both
directions followed by masses of slower (V = 3 x 106 cm/s)
plasma. 24 Curiously, the slower plasma blobs seem to be
fluting in a similar manner to the large Larmor radius
instability as they move across the field.

A more detailed discussion of the important subject of
cross-field jetting and these experiments will appear
elsewhere. Jetting phenomena are important wherever plasma
masses are projected across magnetic field regions such as
in several astrophysical situations.25

STRUCTURE ASSOCIATED WITH COLLISIONAL PLASMAS

When a background gas is introduced around the laser-
produced plisma, interactions between the expanding plasma
and the stationary background plasma and gas are possible.
At low gas pressure (below 100 mTorr), these interactions
are collisionless beam/beam type instabilities.' Above
about l-Torr pressure, the interactions are collisionally
dominated. A transition occurs between these two regimes.
Fig. 8 shows a typical high-pressure dark-field shadowgram.
Thin steep blast-waves are the dominant feature.' Several
additional phenomena are also evident, such as aneurisms,
large-scale turbulence regions behind the target, and a
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turbulent region inside the blast front. We have recently
established the mechanism causing on-axis aneurisms to be
laser channel heating,' and this will be discussed below.
The nature of the gross turbulence appearing behind the
target will be discussed in the following section.

Aneurisms

Aneurism-like protrusions have been seen in several
different laser-plasma experiments."2 6 They frequently
appear along the incident beam axis and near the target
surface normal, although they are also seen at other angles
as well.' A number of mechanisms have been suggested to.
explain these aneurisms including laser beam channel heating
of the ambient gas, 27 jetting material from the target, 28

Rayleigh-Taylor instability of the blast front,' and
magnetic field/thermal ablation process of the blast-wave
interior. 29 We have recently discovered that several of
these processes do occur, causing similar appearing, but
different type, aneurisms.

Aneurisms aligned with the incident laser beam, such as
shown in Figs. 8 and 9, are usually caused by laser heating
of a channel in the ambient gas. 6 This phenomena would be
of importance in proposed ICF reactors 30 in which a buffer
gas is used to protect the first-wall against prompt x-ray
and debris heating. Laser or particle beams would also
create heated channels in the gas which could cause material
in the aneurisms to be aimed at the last focusing optic, an
undesirable effect.

The channel and resulting aneurism is formed as
follows. 6 The UV and X rays from the laser-plasma
interaction at the solid target photoionize the nearby gas.
Fractional ionizations of a few percent are typical 1 cm
from the target for 100 J incident energies and 5 Torr
nitrogen gas pressures; the radial dependence of the
ionization goes as approximately i/r2 . A very small
fraction (0.4%) of the incident beam is absorbed in this low
density plasma via inverse bremsstrahlung. The plasma in
the laser channel quickly heats up to about 100 eV out to
beyond 1 cm; this hot plasma expands radially in a
cylindrical blast-wave causing a reduced density channel
along the laser-beam axis. Later, the material swept up
into the spherical blast-wave from the expanding target
material is slowed less in the low density channel than off-
axis and causes the aneurism protrusion.

We have established this mechanism experimentally by
tilting the target 30% to separate the laser axis from the
target normal and noting that aneurisms usually form along
the laser-beam axis for higher energy (E, > 10 J) shots at
multi-Torr pressures. Additionally, we have found that
target thickness and diameter, different laser focal-spot
diameters, hot-spots, or ultra-smooth ISI focal spots3' do
not affect these on-axis aneurisms. We have observed the
cylindrical shock formed by the superheated channel soon
after the incident laser pulse is over; from its motion we
infer that about 1% of t"'e incident laser beam energy is
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Figure 8. Blast-wave associated structure seen in dual-time
shock-front shadowgrams (55 and 160 ns) of a 5 T
N2 ambient pressure shot. (36 J on a stalk
mounted Al target).

Laser
Beam

Figure 9. Example of pronounced on-axis beam-heated
aneurism (5 T N2, 109 J, t-71, 146 ns) (left) and
cylinderical blast-wave (5 T N2, 245 J) (right)
formed by expansion of the beam-heated plasma at
early time (14 ns).
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invested in the channel formation, in agreement with theory
and 2D computer simulations.6 Quantitative agreement has
been obtained between most aspects of the experiment and the
corresponding theory/computer simulation; the reader is
directed to Ref. 6 for more details.

Fig. 10 shows other examples of aneurisms where
mechanisms other than beam channel heating must be
operating. Aneurisms formed at lower incident energy near
the normal to the target surface, as in Fig. 10a, appear to
be caused primarly by target material jetting. Slow masses
of target material, perhaps ejected after the incident laser
pulse is over or from the region surrounding the focal
region, catch up to the decelerating blast-front and punch
out an aneurism. Evidence for jetting comes from framing
camera pictures of the blast-wave system, taken with
interference filters at specific Al II and Al III emission
lines. These pictures show directed jets of Al target
material inside the blast-front pushing out an off-axis
aneurism.

Occasionally, turbulent appearing aneurisms are
observed, such as shown in Fig. 10b. A cause of these
aneurisms could be Rayleigh-Taylor instability of the blast-
front.' Ordinarily, blast-waves are thought to be stable
against hydrodynamic instability. But, if the blast-wave
density profile is modified by radiation cooling or thermal
conduction effects, adverse density gradients (oppositely
directed density gradient and deceleration vectors could
result. Classic Rayleigh-Taylor growth rates of about 10 ns
((kg)1 /2] are sufficient to explain the observed structure.'

Aneurisms also appear at angles other than the target
normal and incident beam directions, such as shown in Fig.
10c. These aneurisms may be caused by ejection phenomena

,Laser
LBearn

(a) (b) (c)

Figure 10. Examples of aneurisms not formed by the on-axis
beam-heating mechanism. (a) Example of an
aneurism probably directed about the target
normal (300 from the laser axis) which is
probably formed by plasma jetting. (35 J, 5 T,
N2 t-59 ns) (b) Turbulent appearing aneurism,
perhaps caused by blast-wave Rayleigh-Taylor
instability. (20 J, B-600 G, 7=1.5 Torr (90% N2 +
10% H 2 # t-52, 169 ns) (c) Odd-angle aneurism,
perhaps caused by mechanism postulated by
Giuliani, ref. 29. [38 J, B-0, 5 Torr, (90% N2 +

10% H2 ), t-52, 16 ns].
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or, alternatively, by the thermal conduction model of
Giuliani. 29 This model depends upon there being a hot
plasma inside the blast-front. Imbedded in the blast-front
are azimuthal magnetic fields, of order 1 kG, which
originate either in the initial laser-plasma interaction 32

or are created in the expanding shock Vn xVT gradients. 33

The magnetic fields inhibit the heat conduction to the
blast-front except near the axial null of the azimuthal
fields. The enchanced ablation in this region will both
thin and accelerate this portion of the blast-wave to form
an aneurism. Quantitatively, this process is consistent
with all known experimental parameters, 29 but no direct
verification has yet been made of its validity.

Dense Target Disassembly

The turbulence formed by the target material expanding
away from the laser beam direction is especially striking as
seen in Fig. 8. This material is dense target foil material
which has been accelerated in reaction to the ablation
plasma created on the laser side of the target.34 -3 6 It has
been demonstrated that ablatively accelerated foils, such as
used in these experiments, undergo Rayleigh-Taylor (RT)
instability by the target acceleration g (of order 10"5
cm/s 2) during the laser pulse duration.8 Growth rates of
about 60% Of the classical [(kg)"/ 2J rate have been measured
in detail by Grun et al. 37 An interesting question is
whether the turbulence which is seen long after the laser
pulse has ended is dominated by the RT created during the
laser pulse? To answer this question, we create a dominant
RT mode by using a grooved target and compare the resulting
structure to flat targets as successively later times after
the laser pulse.

Fig. 11 shows a compilation of such a sequence. The top
row shows shadowgrams at various times when a 100 um grooved
target was accelerated. The bottom row is the same as the
top row except that the target is a smooth flat foil of the
same thickness. The 100 pm perturbed targets undergo RT
growth during the laser pulse. Although, some residual
remnants of the original 100 gm perturbation may be present
after 80 ns, it is clear that the dominant structure is of
much higher mode number and is largely independent of
whether the target had an initial perturbation or not.
Turbulent regions of the shadowgrams have been digitized and
Fourier analyzed showing that they have similar spectral
propertins. 9 It has been suggested by Stamper that the
dense target may undergo a Benard-type hydrodynamic
instability causing the short-wavelength turbulence. The
Benard instability would occur between a hot surface (laser
side of the target is several hundred eV in temperature) and
a cold surface (rear of target is known to be only a few eV)
when an adverse acceleration direction is present. However,
definitive demonstration of the cause of this turbulence,
its long term time dependence, and the possible interaction
with the background plasma/gas still needs to be determined.
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Figure 11. Sequences of turbulence formed as an accelerated
perturbed target (top) and smooth target (bottom)
expand behind the original target location.

CONCLUSIONS

It is clear that a wide variety of density structure is
generated when a plasma expands into a magnetic field,
another plasma, or both. The evolution of the structure,
whether generated by instability, geometry, or by the laser
beam itself impacts a wide variety of disciplines. The
robust instability that occurs when a large ion Larmor
radius plasma expands into a magnetic field has
applicability to space physics situations, magnetic fusion
confinement devices, as well as basic nonlinear plasma
theory. We described a numbe- of unusual phenomena that
occur that should challenge the ingenuity of theorists.
Aneurisms, which appear simple, are actually caused by
several mechanisms. One mechanism studied in detail is
laser-beam channel heating. This phenomena could be
important in ICF reactors that use an ambient gas to rcduce
the first-wall impulse loading, as well as for laser beam
guided particle beam schemes. The turbulence formed as
dense highly-accelerated targets disassemble and expand is
particularly striking. The dominant turbulent structure
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appears to be independent of the Rayleigh-Taylor instability
that has been observed during the laser-ablation
acceleration process. Fourier analysis of the resulting
turbulence, perhaps initiated by the Benard instability,
shows a statistically well-developed large-amplitude
turbulent plasma. This plasma may then become very useful
as a test-bed to study fully developed turbulence theory.

This work was supported by the Defense Nuclear Agency.
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ABSTRACT Schematics of the origins of these different

Laser-produced plasmas have many plasma components are shown in Figure I.
properties similar, or can be scaled, to those Ablation plasma is generated directly in

encountered in space and astro-physical the laser-solid target interaction. Laser energy is

plasmas, and in magnetospheric chemical absorbed in the plasma on the front of the target

releases. We describe several such experiments near the critical density (plasma frequency

performed with the PHAROS III Nd-laser facility equals the laser frequency,10 2 1 e/cc for 1.06 im
at NRL. Nd-laser light). This high initial energy density

plasma (-109 J/cc) subsequently streams away
INTRODUCTION from the focal region with velocities ranging

Laser-produced plasmas provide unique from 106 to over I0s cm/s. depending upon
laboratory test beds to investigate many space or irradiation conditions.1. 21 These ablation plasmas
astrophysical relevant processes. Parameters of become wind-like. 3 ) in which most energy
laser-produced plasmas span the ranges of: very resides in a relatively cold (few-eV). but
high-energy densities (109 J/cc) to strongly energetic (multi-keV) ion component after
coupled plasmas (kinetic energy < potential expanding a few millimeters from the focal spot.

energy), very low plasma-3 (<<1) to high A Ablation plasma has characteristics very much

(>100). temperatures of 1 eV to >1 keV, and like the solar wind 4 ) (streaming velocities of

directed velocities exceeding 108 cm/s. These several hundred km/s and temperatures of a few

conditions can be generally achieved with good eV) excepting that it has much higher density

control, reproducibility, and diagnosibility. and is much smaller in size. The ablation

Because of the great versatility of laser- plasma energy-density and velocity can also be

produced plasmas... many ionospheric, magneto- raised to values approaching supernova

spheric, space and astrophysical related conditions (1000 td 10.000 km/s).
problems can be studied. In this paper we
discuss experiments which are related to space Gas fill (P< 10 TOr .
.physics phenomena which hopefully will bring . .(T, Shome solid (I'0"$s)

some insight to these processes. In this article
we briefly discuss: sub-Alfvenic plasma .

expansions across magnetic fields (such as the Laser Beam ... Highlyaccelered
large Larmor radius instability), blast-waves. Wo%/cm . ... r-".ar. l

cross-field plasma jetting and plasmoid v~ookw,
formation. M:HD turbulence, and strong coupled
plasma production. Ambient Plasma Ablation Plsa

sttlonary T of order I keV

T ofcideri I V Pof order '0MbillPLASMA PROPERTIES T .. o. I billio Jl.r.
Lasers can generate several types of V aduslabio (10 W ovCr 1000 kiV)

plasmas useful for space or astrophysical studies;
these plasma components include: Figure 1. Schematics of laser-target-plasma

interactions. Regions of formation of ablation,

o Ablation plasma ambient, accelerated, and shocked plasma

o Ambient plasma components are indicated.
o Highly-accelerated target foils

o Shocked target plasma a) Science Applications Int Corp., McLean, VA.

o Strong coupled plasma. b) SW Texas State University, San Marcos, TX USA.



Ambient plasma can be formed space plasma in the laboratory; scaling must besimultaneously with the energetic ablation specific to the phenomenon under investigation.
component by bleeding gas into the chamber at For collisional or collisionless dominated plasma
pressures up to 10 Torr; the gas becomes effects, scaling laws are obtained by casung thephotoionized by laser-target interaction appropriate governing equations (eg.. MHD,radiation in the vicinity of the target5 ) or. over a Vlasov equations) in dimensionless form; theselarger volume, by means of a preionizer device, dimensionless variables define the scalingA magnetic field can be applied using a set of relation. However, it is usually difficult to satisfycoils (22 cm dia. Helmholtz pair in our case) so all of the scaling laws simultaneously and anthat magnetized plasma up to 10 kG can be educated mixture is often more appropriate.
obtained. Ambient plasma is typically cold The dominant parameters for the phenomenon(about 1 eV) with no net velocity. The fast are picked for accurate scaling and the less
ablation plasma streams into the ambient media crucial variables allowed to deviate. Otherand causes interactions that emulate many space rationals for scaling include: unusual plasmaand astrophysical processes. In this way. regimes (strong coupled, degenerate....);interesting phenomena occurring when the magnetic pressure or Larmor scaling: plasmasolar wind impinges on the magnetospheric and thermal, directed or total P: turbulenceionospheric plasmas and with obstacles such as parameters; radiation loss or time scales; choicecomets, moons and planets can be emulated in of fixed parameters (velocities, instabilitythe laboratory. Similarly. interstreaming plasma growth periods...); sound or Alfvenic Machconditions, such as blast-waves.6) can also be numbers and others.
generated which have supernova shock-like
behavior. LARGE LARMOR RADIUS INSTABILrrYThe laser-target ablation plasma puts The large Larmor radius (LLR instability istremendous pressure (tens of Megabars) on the an good example of a space phenomena that canremaining target material as it streams away be scaled to the laboratory. This instability wasacting much like a rocket exhaust. These high first seen in the March 1985 AMPTE bariumpressures can accelerate the remaining nearly release experiment" in the tail of the magneto-solid-density target-foil to speeds over 100 sphere (about 10 earth radii away).1 0) Markedkm/s.7 ) Targets can undergo accelerations of striations appeared before the barium plasma1016 cm/s 2 or more at high density and are expanded to its maximum radius (radius atsusceptible to hydrodynamic instabilities, such which the excluded magnetic field equaled theas Rayleigh-Taylor. 8 ) This dense plasma/target plasma kinetic energy) even though the bariumcomponent has been very useful in generating ion Larmor radius was very large (about equal toand studying M-D turbulence, which is similar the magnetic confinement diameter). Huba andin appearance to that found in supernova Hassam developed a M-D-like theoryll) for sub-remnants. Alfvenlc expansions in the large Larmor radiusShock waves set up in the target interior (LLR) limit. The LLR instability is the analog toby the high-pressure laser/plasma impulse can the conventional MHD Rayleigh-Taylorcreate a slower plasma component which (interchange) instability but has a much fasterexpands towards the laser like the ablation
plasma, but more slowly (V-106 cm/s). This growth rate, ie.,
plasma component can be eliminated by using
thin targets or accentuated by using special ThR kLqTMir, (1)
target shapes, such as cylinders. This type ofplasma has be especially useful in our study of where the MID growth rate is YMHD = [g/Ln] 1/ 2 •
moderate- 0 plasma jets. Plasma jets are plasma k is the instability wave number, and Ln is theblobs which can travel many gyro-radii across density gradient length in the expanding plasmamagnetic fields; "they may be involved in leading edge. Dominant unstable wavelengthsastrophysical Jetting, solar disrupted plasma are slightly less than Ln yielding LLR instability
transport, and bipolar stars.

An especially low energy density plasma
(strong-coupled) can also be made using lasers.
Strong coupled plasmas have the property that
the particle kinetic energy is less than the .interparticle potentials. The basic method we
use to produce strong coupled plasmas is
described in reference 9. Strong coupled
plasmas exist in solar interiors, white dwarfs,
and Jupiter.

Figure 2. Two examples of the LLR instability seen inSCALING FROM SPACE TO LABORATORY the NRL experiment. Left side shows instability nearThere are obvious differences In length. the end ot its linear stage (10 kG, 376 J, 99 ns). Thetime, and density scales between space and right side shows some facinating bifurcation-likelaboratory plasmas. First. it should be rgt sideming irao(10ikeemphasized that there is no known universal structure appearing in the nonlinear stage (10 kG, 30scaling law that will reproduce all details of a ], 0 ns).



growth rates factors 6 or more than "YMHD. A found in the Crab Nebula (1054 AD). result from
laser-plasma experiment was launched to verify similar shocks blowing through (Vsn- 1000
the existence and properties of this new km/s) the outer layers of the collapsing star.
instability using the ablation plasma expanding Note the small scale-length turbulence formed
into across a magnetic field (up to 10 kG).12 ' behind these shocks (hazy region Just inside the
Figure 2 shows two examples of the unstable bubbles) and the gross large scale-length
plasma structure: the left photo is an example turbulence formed behind the target. The
of structure near the end of the linear phase 'aneurism' features results from a cylindrical
showing the well-developed flute structure, and shock caused by laser beam warming of a
the right photo is an example of the very unusual channel1 5 ) or by jetting target material.
structure seen a later, nonlinear stage. The
nonlinear structure does not really saturate, but TURBULENCE
rather it continues to expand outward at In this Section the nature of the large
approximately the original plasma velocity even scale turbulence that appears behind the target
though It is well beyond the magnetic stopping (eg.. Fig. 3) is explored. Turbulence (or
distance. In addition, the flutes take on an turbulent appearing structure) is seen in a wide
erratic structure and even appear to bifurcate. variety of space and astrophysical situations
It seems like each flute tip is acting like an ranging from the solar wind behind the bow-
independent plasma jet. Further details of the shock, within supernova remnants, and several
linear growth and nonlinear development of this other astrophysical objects.
experiment can be found in references12 and The turbulent structure is best seen in the
13. laboratory when optical diagnostics sensitive to

small light deflections, such as dark-field
HIGH MACH NUMBER SHOCKS shadowgraphy. are used for detection. Structure

When an ambient plasma is Introduced, is also observed in the natural optical emission
the Mach number of the ablation plasma goes image of the turbulent region, but the shorter
from sub-sonic (or~sub-Alfvenic when B > 0) to wavelength components tend to wash out.
super-sonic. Mach numbers of hundreds are The turbulent plasma is generated when
easily produced. Additionally. when the ambient the highly accelerated target foil (a - 1016
gas pressure is above 0.5 Torr (for Vd = 5 x 107 cm/s 2 ) pushes into the ambient background
cm/s) collisional blast-waves are formed. A good gas/plasma. The accelerated material has high
example of the variety of phenomena that can Mach number (M - 100. Vt - 100 km/s) with
appear under these circumstances is shown in respect to Lhe ambient media. Turbulence is
the dual-time, dark-field shadowgram (backlit not observed when the target foil is accelerated
with laser pulses at the indicated times) shown under high vacuum' conditions, nor when the gas
in Figure 3. Very strong, thin, energy and density is low (collisionless conditions). Even
momentum conserving shocks are seen in the though the accelerated foil is known to undergo
laser side of the target as the ablation plasma Rayleigh-Taylor hydrodynamic instability during
sweeps up the ambient media. 6 These shocks acceleration.8 ) the turbulence seen at late times
behave much like ideal VonNeumann-Sedov (>100 ns) is not correlated with the target
shocks 14 ) but do exhibit many deviations from Rayleigh-Taylor structure. This was
the simple theory. Supernova structure, such as demonstrated by comparing results from

smooth and pregrooved accelerated targets.
Observations. such as seen in Figure 3. can be
densitometered, digitized. corrected for film
response and Fourier analyzed to obtain the
turbulence power spectral density function.
Kolmogorov turbulence [big eddys decaying into
smaller eddys] is characterized by a k- 5 / 3

power-law spectrum between an inner and an
outer scale length. We have done a preliminary
analysis on several cases and can fit either a
power law or an exponential spectral shape to
the data. Eventually. we hope to completely
characterize the nature and cause of this
turbulence and apply the findings to relevant
space situations.

PLASMA CROSS-FIELD JETTING
Plasma jets and blobs have been observed

to propagate large distances aeross magnetic
fields, distances much greater than ion gyro-Figure 3. Features of a laser-plasma ambient media radii, in many space and laboratory situations.

interaction in the collisional regime. Note the sharp This isn't possible for isolated charged particles.
blast-fronts, regions of turbulence, and the aneurism. but units of plasmas can act collectively to
The laser is incident from the left. (36J, 5 Torr N2, Al overcome the externally applied magnetic field
1.5 gm thick target, B - 800 G, t = 55 ns and 155 ns) force. Generally, what happens is the Vo x B0



force on a plasma moving across magnetic field
B0 with speed Vo causes a polarization electric
field E9 to form Inside the plasma. Ep x B0 =
V0 . hence the plasma continues forward at Its
original velocity. Of course, charge is depleted -

at the boundaries and the process eventually will
quit. 

16)
Figure 4 shows examples of cross-field

jetting observed in our experiments. The top
picture shows a high-Il jet produced simply by
aperaturing the ablation plasma with a
cylindrical mask to allow plasma sectors to flow
across the magnetic field. The middle picture
shows a moderate-Il jet produced by firing the
laser into the ends of a small glass cylinder and . ,
allowing an asymmetric plasma to squirt out its I'
ends across the magnetic field. lSee. Manka,
Peyser. and Ripin; these proceedings] Finally. B
the bottom photo shows.a low-0 barium plasma
jet squirting across the B-field.1 7 )

There are several notable features of our Figure 4. Three examples of cross-field plasma
laboratory jets: 1) They occur if the plasma is jetting.
asymmetric. 2) They propagate great distances
across the magnetic field at nearly their initial 5) Ripin. B.H.. et al.."Structuring Processes in
speed. 3) They tend to pinch down at their Expanding Laser-Produced Plasmas." NRL
leading edge, probably due to curvature of the Memo Rept. 6154 (1988).
internal polarization electric field. 4) They 6) Ripin, B.H.. et al.. "Physics of Laser-Produced
often form field-aligned structure on their Interstreaming Plasmas.Laser Interaction
boundaries, presumably results of instability. and Related Plasma Phenomena. Vol 7

(Plenum. NY. 1986). ed. H. Hora and G. Miley.
SUMMARY AND CONCLUSIONS 7) Obenschain. S.E., et al.. "Uniform Ablative

Laser-produced plasmas can be made with Acceleration of Targets by Laser Irradiation
parameters of space and astrophysical interest. at 1014 W/cm 2 ." Phys. Rev. Lett.. 5A. 44
Aspects of the solar wind. magnetosphere, iono- (1983).
sphere. supernova shocks, and some jet-like 8) Grun, J.. et al.. "Rayleigh-Taylor Instability
features can be emulated in the laboratory. The Growth Rates in Targets Accelerated with a
interactions of these plasmas with magnetic Laser Beam Smoothed by Induced Spatial
fields and other plasma components produce Incoherence." Phys. Rev. Lett.. 5, 2672
many phenomena which resemble those (1987).
observed in space. Although it Is naive to believe 9) Mostovych. A.N. and B. H. Ripin. private
that our experiments are miniature simulations communications (1987).
of space phenomena, laboratory investigations 10) Bernhardt. et al.. "Observations and Theory
may aid in their understanding. of the AMTE Barium Releases." J. Geophys.

Res.. 22. 5777 (1987).
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ABSTRACT EXPERIMENT

The arrangement of the experimentPlasma jets have been produced by and diagnostics is shown In Figure 1. Thethe focusing the NRIL PHAROS IIl laser on NRL PHAROS III laser was operated at athe inside of small cylindrical targets. wavelength of 1.053 micron with energy inLarge well defined jets are produced and the range of 30 to 300 joules. pulsepersist over long distances and for lengths of 2 to 4 ns FATM and focal spotsurprisingly long times when strong diameters of approximately 400 microns.
magnetic fields are applied. The jets travel
across several ion Larmor radii and arephotographed in emission by a fast framing timgaVcPYcamera, dark field shadowgraphv and other ,m*"e-moa, t spectroscopydiagnostics. Jet properties and parameters (notdr.mtoeats) LAMare presented and their relation to
astrop hy sical p lasm as is discu ssed . g c , taielt coils

(can be rotated to give L"INTRODUCTION dillerCflt 9.tletd I ion ye deteor

Plasma Jetting across magnetic field fat. traming Mminrslines has been the subject of many Gatdopt=,,Ig,,(GOQ
investigations both theoretical and o0. . ta (=Op4 At BUS)
experimental. The jetting is usually
attributed to the establishing of a Figure 1. Schematic of the experimentpolarization E-fleld which Just arrangement and diagnostics for the jet
compensates for the Larmor force from studies.
the B-field. The bulk plasma then travels
essentially force free across the field lines.
The purpose of the work reported here
was to produce a highly directional plasma
expansion that was symmetrical along an An external magnetic field of up to 10 kGaxis perpendicular to an applied magnetic is applied by current pulsed through twofield and to observe in detail the formation coils in a Helmholtz configuration. Theof jets and their subsequent evolution in pulse is slow enough that the magneticboth space and time. field does not change appreciably during

the time that the plasma is observed.



The laser targets were glass cylinders 2 4 t 500 ns B 10 kG

mm in length with 1 mm outer diameter ,
and 40 micron thick walls. Inner and
outer diameters were uniform to within 1 Laser
micron and the cylinders were mounted on -
very thin stalks. The laser was focused on B 0
the inside of one end of the cylinder at an
angle of about 15 deg to the axis of the
cylinder. The fast ablation plasma fv = 10 7

cm/s) travels across the cylinder in a time t = 1050 ns B 10 kG
which is small compared to the time
required for the disintegration of the
relatively massive cylinder. Plasma
expansion is symmetrical out the ends of
the cylinder with the axial velocity higher
than the transverse velocity.

The principle diagnostic is a fast Gated
Optical Imager (GOI) framing camera t= 1500 ns B = 10 kG
which has framing (exposure) times
selectable from 5 ns to 120 ps and the
time at which the exposure was made
could be delayed up to 10 us after the jets
were produced. The GOI is sensitive to
light of 350 -900 nm wavelength. Pho-
tographs were obtained on both Polaroid
high speed positive film and on the new Figure 2. Time evolution of plasma jets at
high dynamic range KODAK TX3200 10 kG. Long narrow jets are well defined.
negative film. Spatially resolved spectra
were obtained using an optical multi-
channel analyzer and silicon linear arrays
in both the time-integrated and 10 ns-
gated mode. Time-of-flight ion detectors
were also deployed. t= 400 ns B 6 kG

RESULTS
Laser

The time evolution the plasma jets is
illustrated in Figure 2 for an applied B ®
magnetic field of 10 kG. Figure 3 for 6 kG t = 600 ns B = 6 kG
and Figure 4 for 3 kG. The formation of
long narrow jets is clearly evident.
especially in the higher field cases in
which the effect of the magnetic field
constraining the plasma expansion is
otherwise the largest. The long narrow Jets
have a characteristic velocity of 6 x10 6

cm/s only slightly less than the fast
ablation plasma velocity. The jets are
followed by slower plasma with a mean t = 1750 ns B = 6 kG
velocity of 2 x 106 cm/s. It is this slower
plasma which displays such dramatic
structuring at later times. The "bumps and
wiggles" observed on this bulk plasma over
a range of magnetic field strengths appear
similar to instabilities observed on
astrophysical jets which are widely
regarded as streams of collimated plasma
originating in galactic nuclei. 1 Figure 3. Time evolution of plasma jets at

6 kG. Jet formation is comparable to

higher field example.



Jet form3tion and the onset of instabilities
t:600 ns B= 3kG at fields of 1 kG and below was not

observed. This may simply be that we have
not observed sufficiertly late in time to
observe their development. Figure 5

Laser presents the plasma expansion at zero field
B 0 'for comparison. The Jets are not

cylindrical in shape but rather expand
along the magnetic field lines much more

I rapidly than transverse so that the jets are
more fan shape. This is shown in Figure 6.

t 800 ns = 3 kG

t =0500 ns B 6 kG

1=1200tns B=3 kG

Laser

Fiur.t l850 ns B o6 kGt 1800 ns B =3 kG

t =1200 ns B -- 6 kG

3 kG. Jet formatTion is delayed as is onset
of Instabirity compared to higher field
examples.

t =1200 ns B =3 kG

Lae..t =525 ns B 0 kG .,_J

,7- Figure 6. Plasma expansion along the field
lines. The striations parallel to the applied
field are spatially correlated with the

Figure 5. The plasma expansion at early structuring seen side-on due to plasma
time and zero magnetic field applied. instabilities.



The expansion plasma parameters can be t 850ns PLUG 8=10 kG

changed by plugging one end of the tL
cylinder. Both the expansion velocity and
plasma density out the one open cylinder
end are thereby increased with the result
that the structuring observed in the bulk Lase.
plasma is greacly enhanced as shown in
Figure 7.

t =850 ns PLUG B = 6 kG
CONCLUSIONS E

We have demonstrated a new
technique for producing cross-field plasma
Jets which display dramatic structuring
due to a number of possible plasma
instabilities. Two possible plasma
instabilities that may be relevant to the
observed structuring are Kelvin-Helmholtz
driven by velocity shear and Rayleigh- 07 4
Taylor driven by magnetic field decleration
of the plasma. Preliminary calculations
sugggest that the Kelvin-Helmholtz Figure 7. Increase in plasma structuring
instability may have a growth rate on the at two magnetic field strengths obtained
scale observed in the present experiment. by plugging one of the glass cylinder
Similar estimates of Rayleigh-Taylor (right hand side).
growth rates also give values close to the r
experimental observations, however the
framing photographs suggest the instability
has more of the vortex roll-up character of
classical Kelvin-Helmriholtz as opposed to
the spike and bubble morphology of
Rayleigh-Taylor. While E X B drift
explains the overall jetting, a more detailed
picture must bc -eveloped to explain the
onset of instabilities and their
characteristic shapes.
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EQUILIBRIUM OF SOLAR CORONAL ARCADES

I. Introduction

Numerous fundamental issues remain unresolved concerning important

energetic phenomena in the solar corona. For example, the possible

mechanisms of solar flares, coronal mass ejections and various eruptive

processes are not well understood. In these energetic events, energy

release is manifested in the form of heating, radiation and/or mass motion

in the coronal plasma. In addition, the corona evidently undergoes

continual and pervasive (but perhaps less explosive) heating. Various

theories have been proposed to explain these observed phenomena (for an

overview, see, for example, Sturrock 1980). A substantial number of them

assume that magnetic fields are the ultimate source of energy. This

underlying assumption is strengthened by the recent observations (e.g., the

Skylab mission, 1973) showing that the corona is a highly complicated system

with magnetic fields and currents presumed to control the structuring and

dynamics of coronal plasmas. As a result, it is important to understand the

equilibrium and dynamical properties of magnetic structures in the corona.

In studying coronal magnetic fields, two dimensional magnetohydrodynamic

(MHD) equilibrium models have received considerable theoretical attention.

Such models are important both because of their relative simplicity and

because many fundamental issues that arise in 2D may also exist in three

dimensional systems. For example, linear arcades may be relevant to

magnetic structures associated with neutral lines, where the normal

component of the magnetic field is zero. Such structures have been

inferred from observations. An arcade may have a considerable amount of

magnetic shear but typically varies weakly in the direction along the

neutral line. As another example, cylindrically symmetric geometry has been

used to model sunspot fields (Barnes and Sturrock 1972; Yang, Sturrock, and

Antiochos 1986).

One frequently invoked scenario in which the magnetic energy of a

structure in the corona is thought to be built up and stored is the

following; as coronal magnetic field lines anchored in the photosphere are

sheared, the structure evolves through a sequence of quasi-equilibrium

configurations, stressing the field lines and building up magnetic energy.

As the twist of field lines in the corona is increased, equilibrium limits

may be exceeded, resulting in catastrophic loss of equilibrium and sudden
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release of magnetic energy. This scenario is an appealing one because of

the ubiquity of coronal magnetic fields. A similar scenario in which loss

of equilibrium occurs as a result of increasing the pressure, a measure of

the internal energy of the plasma, has also been suggested. The issues

addressed in this paper pertain to sequences of equilibria and loss of

equilibrium. We believe that these issues are relevant in both two- and

three-dimensional structures.

In this paper we specialize to straight arcade equilibria such that a/az

= 0 for all variables. Figure 1 shows a schematic drawing of a linear

arcade field line configuration. Such arcades have been studied in the

context of quasistatic evolution of equilibria (Barnes and Sturrock 1972;

Low 1977,1982; Jockers 1978; Birn, Goldstein, and Schindler 1978; Heyvaerts

et al. 1982; Yang, Sturrock, and Antiochos 1986; Zwingmann 1987; Priest

1988; Klimchuk, Sturrock, and Yang 1988) as well as dynamical evolution (Wu,

Bao, and Tandberg-Hanssen 1987; Mikic, Barnes, and Schnack 1988.) Figure 1

shows schematically the coordinate system and a representative field line.

The field lines are labelled by the flux * = Az(x,y). The footpoints are

displaced in z by an amount d(qi) in the photosphere S. We adopt the usual

ideal MHD line-tying condition in the photosphere. Then, the footpoint

displacement can be specified by plasma motion in the photosphere. Arcade

equilibrium studies have been previously performed with the idea tha-

magnetic energy W = fdV1 2/8M increases as the shear is increased and that

because of this increase, MHD instability or loss of equilibrium is

possible. A standard method for obtaining equilibrium solutions is to solve

the Grad-Shafranov equation. The most natural approach to solving this

equation for a linear arcade is to specify the axial component of the

magnetic field Bz(*) and/or the pressure p(J). [In the following, when we

write p = p(4,), we assume that the relevant length scales in the corona are

smaller than the gravitational scale height in the corona.) Thus, in many

of the earlier papers, loss of equilibrium, or bifurcation, has been studied

in the context of arcade equilibria with Bz specified (for an overview, see,

for example, Birn and Schindler 1981). Another approach is to treat the

equilibrium problem as a time dependent one involving Clebsch variables and

introduce artificial viscosity or drag (Chodura and Schluter 1981; Yang,

Sturrock and Antiochos 1986; Klimchuck, Sturrock and Yang 1988). This
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"magneto-frictional" method allows the system to find a stable equilibrium

for specified footpoint displacement.

By solving the Grad-Shafranov equation with prescribed axial field Bz,

bifurcations have been found in the two-dimensional force-free limit

(Jockers 1978). Having found multiple solutions, Jockers then pointed out

that it may be more physically significant to specify the footpoint

displacement rather than Bz and that bifurcations may not exist with respect

to specification of footpoint displacement d(*). The reason is that, in the

idealized limit of perfectly conducting photosphere and corona, the

specified footpoint displacement can be conserved as the system adjusts to

find its equilibrium, while the coronal plasma posseses no physical

mechanism which can hold Bz  (or equivalently the transverse current

perpendicular to z) fixed during this process. It also depends upon the

assumption that inertia dominates magnetic forces in the photosphere (pc2/2
>> 12/8n) and therefore the actual fields obtained in the arcade equilibrium

do not influence the footpoint motion. In a recent comprehensive and

detailed study, Zwingmann (1987) obtained sequences of arcade equilibria by

varying footpoint displacement and pressure. The conclusion of this work is

that no multiple solutions (i.e., bifurcations) exist if footpoint

displacement is prescribed, confirming the suggestion of Jockers (1978), but

that multiple solutions do exist if pressure p(*) is prescribed. Thus, it

was argued that the onset conditions for solar eruptive processes might be

determined by bifucations with respect to increasing the pressure. In this

work, Zwingmann used an iteration method developed by Keller (1977). Priest

(1988) has also suggested that if the pressure is increased beyond a certain

critical point, eruptive motion (e.g., coronal mass ejections) may result

due to loss of equilibrium. Recently, Klimchuck, Sturrock and Yang (1988)

also found that the magnetic energy of a linear dipole field increased

indefinitely with increasing footpoint shear.

Clearly, it is important to distinguish between specifying Bz(W) and

specifying footpoint displacement d(*) because the bifurcation properties

are completely different. An analogous distinction exists between

specifying the pressure p(*) and specifying the entropy s(*), both

quantities being measures of internal energy of the plasma. The entropy can

be defined in terms of the heat contained between flux surfaces (Sec. II).
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In the limit of adiabatic coronal plasma, the entropy is a conserved

quantity. In the corona, we expect perpendicular thermal conduction to be

smaller than parallel conductivity and different flux surfaces are

effectively thermally isolated. If, in addition, the parallel heat flux

between the corona and the photosphere is small enough, then the corona is

thermally isolated along the field lines from the photosphere. If these

conditions are satisfied, then the adiabatic limit may be approximately

valid and the entropy s(*), like the footpoint displacement, is conserved as

the system adjusts to find its equilibrium. Here, it is implicitly assumed

that the Alfven speed or magnetosonic speed is sufficiently fast that

radiation and thermal conduction to the photosphere are negligible on the

time scale of relaxation to equilibrium. We also discuss in Sec. II an

alternative limit of an isothermal model, corresponding to clamping of

temperature by radiative processes or by parallel thermal conduction. This

limit has essentially the same mathematical form as the adiabatic limit, but

with adiabatic index of unity. In contrast, it appears that there is no

such limiting case, arising from a reasonable energy equation for the

coronal plasma, in which the pressure p(*) is conserved as the flux surfaces

adjust themselves to find an equilibrium.

In the present paper, we present a method to solve the Grad-Shafranov

equation for linear arcades with prescribed footpoint displacement d(*) or

entropy s(W). Using this technique, we consider the bifurcation properties

of *-quilibrium arcades. We find that no multiple solutions exist if d(*) is

increased, in agreement with Zwingmann (1987). However, we find that there

are no multiple solutions if the entropy s(*), rather than the pressure, is

specified. In situations where the entropy rather than the pressure is to

be specified, the bifurcations with respect to the pressure are of

mathematical rather than physical significance.

We also consider questions regarding the formation of sheet current in

"open field configurations" which have been postulated as the limit of

infinite footpoint displacement (Barnes and Sturrock 1972; Yang, Sturrock,

and Antiochos 1986; Aly 1984, 1985). This configuration is a potential

field (j = 0) except along the current sheet. The development of sheet

currents ("tangential discontinuities" of the magnetic field) has been an

active area of investigation since it was suggested by Parker (1972, 1983)

as a possible source of coronal heating. See also van Ballegooijen (1985),
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Zweibel and Li (1987), Low and Wolfson (1988) and Antlochos (1988). We find

that as d(*) is increased, the current density Jz does become more peaked

but that the maximum value of Jz increases only slowly, if at all, with

footpoint displacement, and that, relative to the total current Iz , a

decreasing fraction of current is carried by the current peak. We conclude

that the field does not approach the postulated open field configuration.

By the same token, if the entropy s(*) is increased, the current density Jz

becomes increasingly peaked but a decreasing fraction of current is carried

by the peak relative to the total current Iz .

In Sec. II we formulate the MHD equilibrium problem for a straight

arcade with pressure and gravity. We discuss the specification of footpoint

displacement and entropy and relate the former to the familiar Clebsch

representation for fields. In Sec. III, we discuss the computational method

used to obtain the equilibria when footpoint displacement or entropy is

prescribed. We then show results obtained by this method for various

profiles of photospheric flux, footpoint displacement, and entropy. We

compare these results with some simple analytic cases and show estimates

based upon scaling for large footpoint displacement or entropy. The

relevance to the formation of a sheet current as d 4 - or s -= is

discussed. Sec. IV contains discussions of the results and their

significance to coronal observations. The salient results are summarized in

Sec. V.
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II. Linear Arcade Equilibria

a) Basic Equations

The geometry considered in this paper is that of a linear arcade with a

straight neutral line. We choose coordinates as shown in Fig. 1, with 4y

the unit vector normal to the surface S(y = 0) corresponding to the

photosphere and x labelling the non-ignorable direction in S. We adopt the

usual assumption that the corona has infinite electrical conductivity (on

the time scales of interest) and that the photosphere is infinitely

conducting and massive. Then, the field line footpoints are line-tied in

the surface S. In such a geometry where z is the ignorable direction, the

magnetic field can be represented by

= * x ez + Bzez , (la)

where the flux function *(x,y) is the z-component of the vector potential.

The current density J = 3 x B (in normalized units c/4n = 1) is then given

by

=Bz x ez - V2*z (1b)

Including the effects of pressure p and gravity, the equation of motion is

i x I - Vp - mgnfiy = 0, (2)

where n is the ion (or electron) density and m is the ion mass. The

component of eq. (2) in the z-direction gives F. Bz = 0 which implies
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Bz = Bz(*). (3)

The quantity Bz(*) can be related in a simple manner to the transverse

current per unit length in the z direction. Consider a closed path around a

rectangle defined by 'Pl < * < *2, 0 < z < L on the photospheric surface (S).

Ampere's law 4'd = I then yields [Bz(*i) - Bz(*2)] as the transverse

current per unit length in z flowing between the flux surfaces * = *1 and *0
= *2" Writing the pressure, temperature and density as functions of the

nonorthogonal coordinates * and y, we find that the component of eq. (2)

parallel to ii leads to

= p (*,y) (4a)

a- ('Y 2kT(*,y)

where k is Boltzmann constant, T is the electron temperature and m is the

ion mass. This equation can be solved to give

p4,)= p(*,0)exp m_ dy' 4b

For the special case T = T(*), we find

n(*,y) = no(*)exp[- mgy/2kT(*)]. (4c)

Here, p(q,O), n(*,O) are the pressure and density on S. Equation (4a)

simply states that the plasma is in hydrostatic equilibrium along the field

lines. Substituting eqs. (3) and (4b) in the R component of eq. (2) leads

to the Grad-Shafrarov (G-S) equation

= - X(*)Bz(*) - , (5a)

where

dBz
X( ) •

and
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p(*,y) = 2n(;P,y)kT(*,y). (5b)

In the remainder of this work, we adopt the assumption that y is much

smaller than the gravitational scale height in the corona h = 2kT/mg so

that force balance along the field lines is achieved by having pressure

constant along the field lines in the corona, giving p = p(*). We will

also assume that paralle thermal conduction dominates in the corona (but

not in the transition zone, chromosphere, or the photosphere) so that T =

T(*). It follows from eq. (5b) that density is also constant along field

lines, n= no(*). An important special case occurs if the plasma beta 1 =

2p/B2 is small, giving the force free condition p = 0.

The boundary conditions which we specify on eq. (5) are that the flux

*(x,O) is given on the surface S and is assumed to be constant (zero,

without loss of generality) for (x,y) 4 -. This, of course, determines the

component By = -a*(x,O)/ax normal to S. In practice, these conditions are

replaced by those specifying *(x,O) for a finite interval 0 < x < a on S

and by requiring * to be zero on the surfaces x = 0, x = a and y - L. See

Figure 2. We will return to the implications of these boundary conditions

on a box of finite size (in x,y) in Sec. III. Mathematically, the G-S

equation (5) is usually posed as a nonlinear boundary value problem by

specifying the nonlinear functions Bz(*) and p(*). This specification can

lead to multiple solutions (bifurcations). However, it was suggested by

Jockers (1978) that Bz  is not a physically specifiable quantity in the

corona and that bifurcations may not exist if the footpoint displacement is

specified. This point was recently demonstrated by Zwingmann (1987), who

also found bifurcations with respect to specifying the pressure p(*).

b) Specifiability of Physical Ouantities

In this section, we discuss the specifiability of a number of physical

quantities. For this purpose, it is helpful to use an imaginary two-step

process. Consider a system in equilibrium (e.g., i x 1 = 0). Suppose a

physical quantity (e.g., footpoint displacement) is changed holding all

other quantities fixed (first step). Then the system is no longer in

equilibrium and it must relax to a new equilibrium (seLond step). If the
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physical quantity in question is a conserved quantity during the relaxation

process, then it retains the given value after reaching the new

equilibrium. Such a conserved quantity can be specified. If, on the other

hand, the quantity is not a conserved quantity, then it also changes during

the relaxation process so that it cannot be held fixed. In this case, a

specified value need not be attainable.

For example, if the footpoint displacement is increased from that of an

initial equilibrium, then it is a constant of the motion in the subsequent

relaxation motion of the plasma in the limit where the photosphere is

assumed to be infinitely conducting and infinitely massive. It is

mathematically allowable to compute equilibria by specifying Bz(*).

However, if Bz is increased from that of an equilibrium, the coronal plasma

cannot hold it fixed during relaxation to a new equilibrium. It is not a

constant of the motion under ideal MHD motion. That is, a specified value

of Bz need not be attainable from the initial equilibrium. If one is to

study quasi-static response to a slow photospheric motion, slow enough so

that the coronal inertia is negligible, then the footpoint displacement,

rather than Bz, must be specified.

The internal energy of a volume of plasma can be represented by the

pressure p or entropy s (to be defined below). If the entropy of an

initial equilibrium is increased, then it is conserved in the relaxation

process in the limit where the plasma is assumed to be adiabatic on the

relaxation time scale. That is, there exists a limit in which the plasma

can be described by an equation conserving the entropy (eq. (6d]).

However, no conservation law based on a reasonable energy equation has been

identified in which the pressure is conserved and which is suitable for the

coronal environment. A third limit which may be relevant to the corona is

the isothermal limit.

In reality, coronal plasmas need not correspond strictly to any of the

limiting cases, in which case none of the physical quantities discussed

would be specifiable rigorously. Specification of a quantity is

physically meaningful only in a suitable limit in which the quantity is a

conserved constant of the motion. Nevertheless, it may still be useful to

adopt one or more of the limiting assumptions and explore theoretical

issues. In the next section, we discuss the limiting conditions under
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which the above quantities are conserved. Additional physical implications

of specifiability are discussed in Sec. IV.

c) Footpoint Displacement and Entropy

By integrating the z-component of the field line equations dr/ds = a/B

(ds measures arc length along the magnetic field) from footpoint 1 to

footpoint 2, we find

d(*) = Bz(*)V'(*), (6a)

where

V'W ds/B (6b)

Here, V(*) = fdxdy = fds pd*/13i = fdsd'/B, where dsp measures arc length

in the transverse plane. The quantity V(*) is proportional to the area in

the x-y plane enclosed by the flux surface labelled by * and V'(*) = dV/d*,

so that V'(*)d* is the volume per unit length in the z direction between

the flux surfaces labelled * and y + d*. Also, if we define #(*) = fdxoyB z

to be the axial flux bounded by the flux surface labelled by . and the

photosphere, then we find from eq. (6a)

d d)

During the process of increasing d(*) with respect to time, the velocity v.

produces a tangential electric field Ex = VzBy on S, which is responsible

for the change of # in time. Thus, the footpoint displacement is directly

specifiable through the boundary conditions and is a constant of motion in

any process in which the plasma relaxes to equilibrium on a time scale

faster than the time scale for the change in footpoint displacement. We

point out that Clebsch variables have also been used in specifying

footpoint displacement (e.g., Yang, Sturrock, and Antiochos 1986;

Klimchuck, Sturrock, and Yang 1988). See Appendix A.

10



If we assume that the coronal gas is an ideal gas, then the entropy

r'(*)d a (do/d*)d* of this volume is such that

at(*)= Qln(pV'Y)

where the contribution yOln(d*) has been dropped because only the

difference in entropy is significant. Here, y = 5/3 is the adiabatic

index. For convenience, we will refer to the following quantity s(*) as

"entropy" in this paper but the above relationship is understood;

s(W) = p(*)[V,(*)IY . (6c)

Then s(*) = exp[a'(*)/Q].

In our formulation, the entropy s(*) replaces the pressure p(*) as the

specified quantity. It can be shown that the entropy is conserved in MHD

directly without resorting to thermodynamic considerations. Specifically,

the entropy is conserved by adiabatic motions satisfying the adiabatic law

p+ Vp + ypV-v = O. (6d)at~

This is easily seen by noting that pl/Y satisfies the same continuity

equation as the density an/at + V'(ny) = 0. Then, the quantity S * Jpl/YdV

is conserved if there is no transport of plasma across the flux surfaces.

This condition holds if the plasma satisfies ideal MHD so that the flux

surfaces move the the fluid. Here, the integral is over the volume between

any two flux surfaces. If we take a small volume 6V between two closely

spaced flux surfaces at * and + 6*, then 8V is proportional to V'(*)6*.

Therefore, S is equal to p()) 1/'Y'(*)6*. Since 6* is conserved for ideal

MHD motions, the entropy s(*) a SY/6*Y is conserved for an adiabatic

process. Grad, Hu, and Stevens (1975) have developed algorithms to specify
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entropy in toroidal systems. In the arcade geometry treated here, an

additional assumption of negligible heat flux to the photosphere is

required. As in the justification for specifying footpoint displacement,

the entropy is the directly specifiable response to varying the internal

energy of the plasma in the adiabatic limit. Note that pressure is not

conserved in adiabatic processes. In the following discussion, we will

adopt the scenario in which the internal energy of the plasma is specified

by specifying the entropy s(*).

In the isothermal limit, the temperature remains fixed (perhaps by some

radiative proces) during the relaxation to equilibrium. An isothermal

plasma obeys a relationship similar to eq. (6c). If the mass M(*)

contained under each flux surface is conserved (no photospheric sources),

then M'(*) = mn(,)V'(*) may be specified, where

MOP) = mfn (,)dB-d.

Mathematically, it is simple to see (Appendix B) by comparing eqs. (6a)

and (6c) that p(*) can be identified with (1/2)Bz() 2 and s(*) with

(1/2)d(*) 2 , having y = 2 and y = 5/3, respectively, a rather insignificant

difference. For the isothermal case, s(*) is replaced by M'(*) with y = 1.

d) Simple Analytic Equilibria

We now illustrate some basic physical features of equilibrium solutions

of eq. (5) using force-free examples. A particularly simple example can be

given by the form Bz(*) = Xo* where Xo  is a constant. Then, the G-S

equation (eq. [5al) reduces to the Helmholtz equation

V2* + 2 0. (7)

Solutions confined to 0 < x < a with *(O,y) = *(a,y) = 0 but extending to y

- = (0 < y < -) have the form
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(nnx -knY

= sin ( e , (8)

with kn = [(nn/a)2  - )]I/2. This equilibrium is the two-dimensional,

linear arcade analogue of the Lundquist (1951) solution (one-dimensional,

cylindrical geometry) and has been used by Heyvaerts and Priest (1984) in a

model for coronal heating. If the flux on the surface S is taken to be

*(x,O) = sin(nx/a), then only n = 1 occurs. In this case, the imposed Xo

must satisfy kj > 0 or k, < Xc  m f/a. That is, if it were physically

reasonable to specify X0 [Bz(*) = X,, then one might expect to encounter

a violent loss of equilibrium as X0 is increased past X = n/a.

Using eq. (6a), we obtain

x
2 d() 8zx (9a)

1 x

2X
= - x - X ), (9b)

where xo = a/2 is the point where %P is maximum (4 =f *o) on S with By = 0,

and x = x(*) is the inverse of * = *(x,O). Also, x, and x2 are the x

values where the flux surface labelled, by * crosses the photosphere. The

footpoint displacement d is linear in x and the maximum in magnitude of d

occurs at x = 0, x = a and equals

Xa
dmax 2 1/2 (10a)

Since the form of d(*) is unchanged by >1, we can consider dmax to be

specified and X0 to be computed after the fact:

X dmax ]___(10b)__

o (a ) (a d2 )1/2(lb
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Since the maximum of Bz , (Bz)max, equals Xo o , we can consider eq. (9) to

be a computation of d(*) when Bz(;P) is specified and eq. (lOb) to be a

computation of Bz(*) when d(W) is specified. In the latter case, no

equilibrium catastrophe is reached; as dmax 4 W, X. merely increases,

approaching the limiting value Xc = f/a. This model is illustrative,

especially since it also shows the relationship between dmax 4 - and

vertical flux surface expansion, which is equivalent to k, 4 0 (see eq.

[81). However, it has two special properties that do not hold in general;

(i) X0 , or equivalently (Bz)max, monotonically increases with dmax and (ii)

the form of Bz(*) does not change as dmax changes with the form of d(w)

fixed.
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III. Linear Arcade Equilibria

a) Some General Properties

In this section, some general properties of force-free configurations

are discussed. First, we point out that an arcade equilibrium on the half

space -- < x < -, y > 0 with flux * and footpoint displacement d(*)

specified on the x-axis, must have a surrounding region of potential field

with X(W) = dBz/d* = 0 or at least with Bz and dBz/d* approaching zero

sufficiently fast as (x, y) 4 . The footpoint displacement in the our

model is such that d - 0 as x 4 ± , representing an arcade whose footpoint

shear is confined to a finite extent in x in the photosphere. For this

type of arcades, X(*) cannot be constant everywhere or asymptotically

approach a non-zero constant. This can be seen by the following

consideration. Here, we specialize to the case in which *(x,O) is an even

function about x = 0, monotonically decreasing for x > 0. Without loss of

generality, we may demand that *(x,0) 4 0 as x 4 ±-. As a concrete

example, assume Bz(*) = Xo* + Bo , where Bo  is the Bz field at infinity.

Suppose Xo  0 0 so that dBz/d* * 0 for all x. Now, suppose, for

contradiction, that Bo * 0. Then, V'(*) becomes infinite for * 4 0 as (x,

y) 4 -. This implies (eq. [6a]) that, if Bo  # 0, then an infinite

footpoint displacement d(*) must result as x - +- and 4 4 0. Therefore,

the outermost flux surfaces must have Bz = Bo = 0 at x = ± if d(,p) is to

vanish. Thus, we set Bo = 0. Then, eq. (5a) leads to 72* + = 0. If

+(k) is the Fourier transform of %(x,O), the solution takes the form

*(x,y) = [dk(k)cos(kx)e
-v(k)y (11)

- W

where v(k) - (k2 - 2)1/2. Note that

f dx*(x,O)cos(kx) = 2n*(k).

Since i(x,O)cos(kx) is even in x, *(k) is nonzero in general. In

particular, +(k) is nonzero for k < Xo . The solution must then be

oscillatory. This physically unacceptable behavior occurs because of the
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supposition Xo * 0. For a mv e general case with arbitrary Bz(*), the

above argument shows that X(*) = dBz/d* must approach zero as 4 0. If,

say X(*) is assumed to be a constant X0 # 0 in some region y > Yc, then the

above argument applies to the region -- < x < -, Y > Yc, again with the

result that * cannot be well behaved for y 4 -. This is a generalization

to the half-space with line-tying of the well known virial theorem that a

plasma cannot be confined by its own fields. As another example of virial

theorem application, we note that if there is no potential field

surrounding the localized i 0 0 region, then the structure cannot be force-

free and the pressure must be lower in that region than in the surrounding

reg . This has been shown for a .ree-dimensional "toroidal" solar

current loop structure (Xue and Chen 19 .). Note that an earlier example

of a force-free field without a surrounding potential field (Low 1977) is a

configuration in which the footpoint displacement has an infinite extent in

the photosphere and asymptotically approaches a finite maximum at x = ±w.

b) Effects of Finite Computational Domains

As mentioned earlier, the boundary conditions are that *(x,0) is

specified for 0 < x < a on S, and * = 0 on the remaining three surfaces;

the two side walls at x = 0, x = a, and the top wall at y = b. The flux

*(x,O) is chosen to be even about x = a/2 so that the maximum value *o

occurs at x = /2 and * decreases monotonically to zero at x = 0 and x = a.

We consider a current-carrying plasma confined away from the side and top

walls. Let the outermost flux surface of the current-carrying region be *

= *v . This surface intersects the surface S at x = xv and x = a-xv where

xv = X(*v). The flux surfaces outside this region (* < v) are then

potential flux surfaces. Based on the arguments of the preceding section,

we specify d(*) to be zero (thus Bz = 0) on the potential flux surfaces.

For 'v = 0, the current fills the entire box. Then a force-free

configuration is supported by the walls and the form of Bz(4') for specified

d(*) will be seriously modified. For larger *v, a force-free structure is

supported by the surrounding potential flux, which in turn is supported by

the walls. If *v is sufficiently large, then the interface surface * = *v
is sufficiently far from the walls and its shape is determined by the
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actual force balance requirement. In this section, we will discuss the

generic effects of the finiteness of the computational domain on the

solution. Hereafter, we use dimensionless variables with x,y, d( P) scaled

to a (0 < x < 1). The flux function %P is scaled to its maximum *o, Bz is

scaled to ;Po/a, and p is scaled to 49/a 2 .

We expect the general form of d(*) to be linear in x near the neutral

line at x = a/2 [as it is in eq. (9b)] and vanish as the potential region

is approached. Clearly, d(*) must vanish at x = a/2 because the field line

has zero length there. Furthermore, if the magnetic field is regular in

that vicinity, then d is linear in x unless Bz is finite and both

components Bx and By vanish at x = a/2, y = 0. Otherwise, an 0-point rises

above the boundary surface S. This is inconsistent with specifying d(*);

if an O-point forms, then d must have a step function discontinuity.

As a first example, we have computed force-free equilibria with d(x) of

the form

d(x) = do x - tanh (a/2 - XV) (, > x, < (12a)

x < x
= 0 v )  (12b)

and anti-symmetric about x = a/2. The G-S equation is solved iteratively

for specified d(*). The computational method is described in Appendix B.

In Figure 2a, we show the flux surfaces for a representative equilibrium.

We have used W(x,O) = *osin(nx/a) with *o = 1, the height of the

integration box b/a = 2, and *v = 0.195, for which xv = 0.0625. The

maximum footpoint displacement is specified to be dmax = 1.85 and we have

chosen V = 0.1. The coefficient do is adjusted so that the specified value

of dmax is obtained. The short-dashed contour corresponds to * = *v where
jz = 0 and d = 0. All the current is contained inside (, > ;v) the * = pv

surface. Thus, the outer boundary surface of the i 0 0 region is removed

from the computational box by a moderate amount. The long-dashed contour

corresponds to the flux surface W = *w, defined to be the flux surface such

that d(*,) = dmax/2 . (For this example, we have d(*w) = 0.92, xw = 0.08,

and *w = 0.25.) The bulk of the current is actually enclosed by this

surface, farther away from the walls than the *v surface. Figure 2(b)
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shows the footpoint displacement profile. (This figure shows d only for 0

< x < 0.5. The overall sign is reversed from that of eq. 112a] for

convenience.) The above form has the general feature that the anti-

symmetric footpoint displacement is zero for 0 < x < xv with most of the

footpoint displacement shear concentrated in xv < x < xm where xm XV +

W(a/2 - xv ) is where the maximum footpoint displacement dmax = d(Xm)

occurs. In xm x (a - Xm), d(x) is essentially linear so that field

lines on different flux surfaces are parallel and unsheared. For larger

values of W, the footpoint displacement shear is less concentrated.

In Fig. 2(c), we have plotted Bz(*) versus * for 0 < ip < 1. (Recall

that on the surface S, * = 0 for x = 0 and x = 1, and *(x=0.5, y=O) = * =

1.) We see that Bz(*) is linear in * near *o and deviates from linearity

in the region of maximum shear in the footpoint displacement. In Fig.

2(d), we show X(*) = dBz/d* as a function of *. As expected, X(*) has its

maximum variation in the region of maximum shear in d(*).

In Fig. 3, the quantity (Bz)max m Bz(x=0.5,y=O) is plotted as a

function of dmax for a number of model equilibria. Curve 1 is a plot of

eq. (lOb), a linear force-free configuration confined horizontally to 0 K x

K 1 but extending vertically to y = -. For this system, (Bz)max (thus Xo)

is linear in dmax for small dmax and asymptotically approaches f/a as dmax

4 C. For small dmax, V'(*) is, to lowest order, the value for the

potential field (dmax = 0) and (Bz)max is proportional to dmax (see eq.

[6a]). For dmax 4 c, on the other hand, the increase in dmax causes an

expansion of flux surfaces, i.e. an increase in V'(w), with (Bz)max

approaching a constant. Curve 2 of Fig. 3 is for the solution of eq. (7)

for a finite height b, where the boundary condition is q(x, y=b) = 0. The

equilibrium can be described analytically by

*(x,y) = sin (M)sinh kl(b-y)/sinh klb, (13)

where k, = [(n/a) 2 - 211/2 for f/a > Xo . For XO > f/a, eq. (13) is

replaced by

*(x,y) = sin (M)sin kl(b - y)/sin k1 b, (14)

where k= X - (n/a) 2 11/2 . For this equilibrium of finite height, the
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functional form of d(%J) (not merely the amplitude dmax) changes with X. so

that, unlike the infinite height equilibrium given by eq. (8) or eq. (lOb)

(curve 1), specifying Xo or (Bz)max is not essentially equivalent to

specifying dmax. For the infinite height case, eq. (9b), the profile of d

remains linear in x and that of B. linear in %p for all values of Xo, or

equivalently, for all values of dmax. Nevertheless, the curves 1 and 2 are

similar. Curve 2, however, shows that (Bz)max (or Xo) can increase beyond

the limit X. 4 n/a, in contrast with curve 1. For curve 2, the finite

height (b) of the box prevents the flux surfaces from expanding freely as

dmax 4 C. In this case, V'(*) cannot increase without bounds and dmax can

increase only through an increase in (Bz)max (see eq. [6a]). However, for

this equilibrium, the flux function * takes the form of eq. (14) for X >

n/4 and an O-point appears at x = a/2 above the surface S (y > 0) if k1b >

n/2, or Xo > (n/a)(l + a2/4b2 )1 /2 . For b/a = 2, the parameter used in

curves 2 and 3, this gives X = 3.24. We have not attempted to extend dmax

past this point. Curve 3 is the equilibrium for a footpoint displacement

profile given by eq. (12a) with *v = 0.195 and W = 0.1, the equilibrium

shown in Fig. 2a. This equilibrium is numerically computed in the same

finite box as for curve 2. As in curve 2, (Bz)max increases past n/a as

dmax increases, albeit slowly, because of the finite size of the

computational domain. Presumably, (Bz)max continues to increase, at a

faster rate with respect to dmax, as dmax increases further. However, the

non-zero current region (inside the short-dashed flux surface in Fig. 2a)

is detached from the side walls (and the region *v < * < *w has less

current than in Fig. 2a). Thus there is relatively more room to expand

than in the configuration described by curve 2. This flexibility for the

flux surfaces to expand against the potential flux surfaces is responsible

for the smaller values of (Bz)max for large dmax. The difference in the

slopes of curve 3 and curve 1 (or curve 2) is not physically significant,

but is related to the fact that dmax itself has a different meaning for the

two very different profiles of d(*), given by eq. (9b) and eq. (12). Curve

3 shows that the numerically computed equilibrium solutions whose current-

carrying regions are only slightly removed from the walls are similar to

the analytic solutions in which the current-carrying plasmas fills the

finite bcx. The main effect of the walls is to cause (Bz)max to increase

past the asymptotic limit X0 = n/a of eq. (lOb) as dmax 4 m.
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c) Equilibrium Solutions with Horizontal Expansion

The flux surfaces in Fig. 2a have expanded upward to a large degree

with fairly large dmax = 1.85. In order to investigate equilibria with

the walls farther away, allowing more room to expand horizontally as well

as vertically in response to increasing dmax, we consider a more general

class of equilibria with

*(x, 0) = sinV(rtx/a) (15)

with v > 1. For purposes of illustration we again consider solution of eq.

(7), satisfying the boundary condition (19). Then,

(nnYx' sinh~k n(b - y)]
*(x,y) = An sin sinh knb (16)

n = nn=l

where kn = f(nn/a)
2 - 2j 1/2 . If k2 < 0, hyperbolic sine is replaced by

sine. Here, An are the Fourier sine coefficients of eq. (15). In Fig. 4,

(Bz)max, which is equal to Xo (from Bz = Xo* and *o = 1), is shown as a

function of dmax for v = 7. We see that (Bz)max increases past n/a for

dmax _ 2 but with a much smaller slope -than for dmax K 2. Also plotted in

Fig. 4 is the total current in the z-direction, Iz = fdxdyjz =

fdxdyBz(%P)dBz/d*. This component of current is seen to increase

quadratically for small dmax (Iz  ' >) and to continue to increase for

larger dmax. This behavior appears to be general for straight two-

dimensional arcade equilibria, as will be shown with more general examples.

For the equilibrium given by eq. (8) with n = 1, Iz is proportional to

,2/kj = 2/(n 2/a2 - 2)1/2.

In Fig 5(a), we show the flux surfaces for an equilibrium with v = 7,

(x - X) 1a

d(x) = do(x - a/2) tanh 2  ( 2 - xv )  x < x < a/2 (17a)

= 0 x < xv (17b)

(and again antisymmetric about x=a/2) having xv = 0.31 (*v = 0.25), dmax =
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0.36, and W = 0.40. For this example, * = 0.40 which intersects the

surface S at x = 0.34. The change in form between eqs. (12) and (17)

[providing continuous derivative d'(x) at xvJ, and the larger value of W,

serve to make the solutions less sensitive to behavior near * = *v. The

corresponding profiles of d(*), Bz(*), and X(*) are shown in Figs. 5(b)-

5(d). The equilibria shown in Figs. 6 and 7 have larger footpoint

displacements dmax = 0.61 and 1.35, respectively. It is easily seen that

the flux surfaces expand upward and outward as dmax increases.

In the example of eqs. (8), (13) and (16), and in the numerical results

shown in Figs. 3 and 4, (Bz)max continues to increase with dmax

approaching a limiting value or increasing depending upon whether the

upward expansion of flux surfaces, and therefore further increase of V'(w),

is limited by a wall at y = b. For the examples shown in Figs. 5-7, the

flux surfaces are allowed to expand horizontally as well as vertically.

The effect of allowing horizontal spreading of the flux surfaces manifests

itself in the graph on (Bz)max versus dmax in Fig. 8. For equilibria of

the series (B) shown in Figs. 5-7, for which xv = 0.31 and V = 0.40, there

is a peak in (Bz)max at dmax = 0.35. For another related series (A) of

equilibria, having xv = 0.17 (Wv = 9 x 10- 3) and V = 0.45, the peak is

broader and is located near dmax = 0.5. The observed decrease in (Bz)max

is related to horizontal spreading for the following reason: if no

horizontal spreading occurs, as in eqs. (8), (13) and (16), Bz increases

very slowly for large dmax, and in the case of eq. (8), has an asymptote

(Bz)max 4 n/a. As we have discussed, this behavior is due to the fact that

vertical spreading in flux surfaces, i.e. the increase in the V'(*) term in

eq. (6a), can provide the increase in dmax with little change in (Bz)max.

When horizontal spreading is allowed by having the photospheric flux

concentrated as in eq. (15), V'(*) can increase at a rate faster than dmax,

giving a decrease in (Bz)max .  For the case of Fig. 4 described by eqs.

(15) and (16), this effect cannot occur. Mathematically, this is simply

traced to the fact that if Xo = (Bz)max is prescribed in eq. (7), then the

solutions are unique, and therefore only one value of dmax is possible for

each X0. Physically, this appears to arise from the fact that for *v = 0,

the outer surfaces spread out horizontally even for very small dmax, when

(Bz)max is increasing rapidly. Thus, it appears that, in order for (Bz)max

to attain a peak and decrease thereafter, a certain amount of potential
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flux, or at least a profile having X(*) 4 0 as the wall is approached, is

required to separate the current-carrying region and the fixed walls so

that the flux surfaces can spread out against a "soft" wall when the

displacement is large. Nevertheless, for even larger dmax, (Bz)max must

again begin to increase, when the expansion of flux surfaces is arrested by

the walls. This effect may be beginning to occur for dmax > 1 in Fig. 8.

However, this effect is due to the unphysical boundaries. We expect that

(Bz)max will continue to decrease in the absence of such boundaries.

In our iteration scheme to solve the G-S equation for specified dmax

(Appendix B), the outer iteration loop described by eq. (12) converges very

rapidly near the peak in (Bz)max and beyond, because the solutions hE a

relatively weak dependence upon dmax. However, the inner loop given by

(Bi) does not noverge for solution near and past this in (Bz)max. This is

because Bz(*) is specified in the inner loop as an intermediate step and

the peak corresponds to a bifurcation in this case. Although such

bifurcations are not physical as discussed in Secs. I and IIb, they have

mathematical and numerical significance for our iteration scheme. In

general, an iteration as in eq. (BI) is expected to converge for one class

of solutions (with smaller dmax) and diverge for the other class (with

larger dmax). We overcome the divergence problem by renormalizing Bz(*) in

the inner loop iterations [that is, changing (Bz)max with no change in the

profile Bz(*)/(Bz)maxl in order to conserve the total z-current Iz =

fdxdyBzdB /d@p. This is a simple operation because Iz scales as (B2)max.

From Fig. 4, we see that Iz  increases much more rapidly with dmax than

(Bz)max for the solution given by eq. (16). In fact, it is found that Iz

increases for all solutions even when (Bz)max decreases. With this

prescription in which Iz rather than (Bz)max is held fixed during the

iteration process, there is no bifurcation. When this method is employed,

the inner loop iterations are always found to converge.

For dmax = 0.36 (Figs. 5a - 5d), the region of strong shear in

footpoint displacement is 0.31 < x < 0.34, or equivalently 0.26 < * < 0.40.
In this region, Bz(*) (Fig 5(c)] deviates significantly from linearity.

Note that X(*) = dBz/d* is not constant (Fig. 5d), decreasing to zero as *

decreases. This behavior is consistent with the general properties

discuised in Sec. IIIa. Closer to the center, x > 0.34 and * > 0.40, Bz is
fairly linear in *, although X shows a slight peaking at the center. Since

= X(*)R for these equilibria, this indicates a peaking of the current
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density relative to the solutions of the form eqs. (8), (13) and (16). In

Fig. 6, for a larger footpoint displacement with dmax =0.61, this tendency

appears to be somewhat more pronounced. Although not evident in Fig. 6(b),

Figure 6c shows a sharp drop-off in X in the shear region 0.26 < * < 0.40,

a further peaking near the center (* > 0.8) and a plateau in between. For

a still larger footpoint displacement dmax = 1.35 (Fig. 7c), this tendency

is even more pronounced, with X(*) having a rather narrow peak for * > 0.9,

sharp drop-off in the shear region 0.26 < * < 0.40, and a valley around * =

0.7. The current density jz = BzdBz/d* = XBz is quite peaked; its value at

the center x = a/2, y = 0 (* = 1) is 65 (in normalized units), compared to

a considerably lower value of 10 at 4 = 0.7. That is, in a sense,

solutions with increasing dmax exhibit a considerable amount of peaking in

the current density. Nevertheless, we will show below that the peaking in

jz at the center with increasing dmax does not lead to formation of current

sheets. Moreover, the current density perpendicular to the photosphere jy

= XBy = -X84/ax is proportional to sin 6(nx/a)cos(nx/a)X(*). Because By is

small near x = a/2 (* = 1), the peak in X also does not correspond to a

large peaking of jy.

In Fig. 9, ),ax, the maximum value of X(*), is shown as a function of

dmax. This maximum occurs at * = *o for all cases. Recall that \max = No
is identical to (Bz)max for solutions eqs. (8), (13), and (16). For the

equilibria of Fig. 9, however, there are qualitative differences. Note

that Xmax begins to flatten for increasing dmax, at dmax = 0.2 for series B

and at dmax = 0.4 for series A while (Bz)max peaks at x = 0.35 and x =

0.5, respectively. However, in both cases Xmax continues to increase,

unlike (Bz)max. It seems likely that XMax may have a peak with respect to

dmax for larger values of xv and/or W. However, for the present

parameters, the proximity of the wall causes the slow increase in Xmax for

dmax t 0.4. This behavior shows further the lack of any physical meaning

to the "bifurcations" in Fig. 8.

We now consider the peaking in X(*) and j,(*) in more detail. In Fig.

10, we show the maximum current density Jz as a function of dmax. For

solutions of eq. (7) (for example, eqs. [81, [131, and 1161), Jz is

proportional to Xi [jz = X *; see eq.(7)]. We see that for series A and B,

jz and X are seen to have similar behavior; Jz increases rapidly for dmax
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0.35 (series B) and for dmax 0.50 (series A), the same regions for rapid

increase in Figs. 8 and 9. Also, Jz continues to increase, but much more

slowly, for larger values of dmax. The slow increase of Jz for dmax . 0.5

appears to be due to the proximity of the wall. We also expect that

(jz)max might decrease with dmax for larger xv and/or W. At the same time,

the profile of Jz = XBz continues to narrow so that the total jz current in

the peak region decreases. In Fig. 11, we show the total z-current Iz is

shown for series A and B. It is observed to increase quadratically for

dmax 4 0.1 and monotonically for all dmax (as noted above.) However, Iz

does not increase as rapidly for large dmax as in Fig. 4. The important

points to note are (i) that the peak current density jz is always found to

increase at a very slow rate with respect to dmax, giving a decrease in the

total jz current in the peak region. Concurrently, (ii) the total current

Iz increases rapidly with dmax, so that the fraction of the total current

Iz carried by the peak decreases very rapidly with dmax.

We point out that the single-valuedness of the graphs in Figs. 8-11 is

due to the fact that a single solution is found when d(*) is specified. We

take this as empirical evidence that these solutions are unique.

Therefore, any other physical quantity such as the total magnetic energy

will also be single-valued. It has also been found that the total magnetic

energy of a linear dipole field can be well fitted with a logarithmic

dependence on footpoint shear (Klimchuk, Sturrock, and Yang 1988).

As we have discussed in Sec. IIc and Appendix B, finite 1 equilibria

with entropy prescribed can be computed in essentially the same manner. In

Fig. 12 we show results with dmax = 0 (i.e. Bz = 0) as a function of the

maximum entropy Smax . As suggested by the analogy between eqs. (B4) and

(B5), the form of s(*) is chosen to be [d(*)11 /2 , where d(*) is the

footpoint displacement form factor of eq. (17). Fig. 12a, we show the

dependence of Pmax versus Smax for xv = 0.31 and W = 0.40, the same choices

as in curve B in Fig. 8. We have used zero footpoint displacement since

the results of Zwlngmann (1987) show that this is the case with the

strongest degree of bifurcation when pressure is specified. We see that

Pmax is a well-behaved, single-valued function of Smax . For very small

Smax, increasing Smax, i.e., the internal energy content, predominantly

leads to a linear increase in Pmax" This curve has a broad maximum around
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Smax =0.3; increasing Smax in this region leads to expansion of the

structure in such a way that Pmax remains nearly unchanged. For Fmax

0.4, increasing Smax is predominantly accomplished by expansion of the

structure and the pressure in fact decreases. This behavior is similar to

that of (Bz)max versus dmax (see Fig. 8). The flux surfaces are similar

to those shown in Figs. 5a, 6a, 7a. The overall behavior of equilibria

with respect to variation of Smax is generally similar to that with respect

to dmax with no remarkable differences. We note that Fig. 7 of Zwingmann

(1987), which corresponds to a solution on the upper branch of the W

(energy) versus Xp (a measure of pressure) curve, shows apparent formation

of an O-point. Such an equilibrium cannot evolve from configurations

without O-points via ideal MHD motions. Mathematically, such O-points will

not occur when d(*) or s(4,) is prescribed because these quantities are

specified only on the range 0 < q, < *o and the occurence of an 0-point

indicates the existence of surfaces with * > * , the maximum flux value
specified on S. The occurence of O-points when Bz(*) is specified has also

been found by Birn, Goldstein, and Schindler (1978).

In Fig. 12b, we show the total axial current Iz and the peak current

density jz(x=a/2, y=O). As the entropy increases, the current density jz =

dp/d* becomes peaked at the center, as in the case of increasing the

footpoint displacement. However, the total current again increases at a

faster rate with respect to Smax than the current in the peak region (x =

a/2), so that the fraction of the current associated with the peak

decreases relative to Iz as Smax increases. No remarkable differences

appear to exist between specifying dmax and specifying Smax, consistent

with the mathematical similarity apparent in the formulations in eqs. (6a)

and (6c). Note that Pmax and Iz are well-behaved, single-valued functions

of smax . Thus, the total energy, which is the sum of the magnetic energy

and internal energy (-p) integrated over the volume, is single-valued,

exhibiting no bifurcations.
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IV. Discussion

The basic physical mechanism behind the expansion of the flux surfaces

as dmax or Smax is increased is relatively simple. The force-free

equilibrium condition i x 1 = 0 can be written as (jpBz - jzBp) = 0, where

jp is the transverse (x,y) component. For a force free equilibrium, jpB z -

dB2/d* is an upward force if Bz monotonically increases in . In an

imaginary two-step process (Sec. lib), if the footpoint displacement is

increased, at first with no change in the flux surfaces [no change in

*(x,y), Bp or Jz], Bz must increase. However, the plasma will be out of

equilibrium and will expand upward under jpB, until force balance is

achieved again. This expansion will occur with dmax conserved in the limit

of infinitely conducting photosphere, which means that the Bz flux between

any two flux surfaces will be conserved. This expansion process will then

necessarily decrease Bz. In the new equilibrium, Bz may be greater than or

less than that of the initial equilibrium, depending on whether the initial

increase of Bz dominates the subsequent decrease of Bz. There is a simple

circuit analogy to this process. As we have seen in the discussion

following eq. (6), d(*) is proportional to the axial flux between two

nearby flux surfaces. Also, Bz(*) is essentially the total transverse

current between the flux surface labelled by * and that labelled by *v (see

the discussion after eq. [31). By eq. (6a), V'(qJ) (which is a property

only of the geometry of the flux surfaces) can therefore be identified as

the inductance relating transverse current to axial flux. In the first

step of the imaginary two-step process above, when the photospheric motion

takes place (dmax is increased) with the geometry hc!d fixed, we have

LdI/dt = Vo . The voltage Vo  is proportional to the tangential electric

field on the photospheric surface Ex = VzB Y. In the second step, the

geometry and current change, conserving flux d(LI)/dt = 0. For small dmax,

the process is completed primarily by increasing the current with little

change in inductance; for large dmax, the inductance increases by an amount

sufficiently large that the current must decrease.

A similar argument applies to the pressure. In thermal equilibrium,

the thermal input and radiative loss between any two flux surfaces, say, '1

and *2, are balanced. If, for example, the heating rate increases, the

pressure "initially" (i.e., before relaxation to equilibrium) increases.
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Then, in approaching equilibrium, the flux surfaces ;pl and *2 will both

expand under Vp in such a way as to decrease the pressure, by adiabatic

decompression (assuming that MHD time scales are shorter than radiative or

thermal time scales). During this process, if expansion dominates, then

the new equilibrium pressure will be lower than that of the initial

equilibrium. The imaginary two-step process described in Sec. lib and

above is helpful not only for conceptualization but for predicting the

response of the coronal plasma to a source of heat that occurs on a faster

time scale than the nominal heating and radiative loss mechanisms.

The scenario for which entropy rather than pressure should be specified

assumes that the photosphere does not act as a source of material or

energy. This can achieved if thermal conduction along the field lines

between the corona and the photospheric or subphotospheric regions is

negligible on the MHD time scale for relaxation to equilibrium, or

equivalently, if the magnetic field in the arcade is large enough and the

coronal density small enough that the Alfven time scale is much shorter

than the time scale for parallel thermal conduction in the photosphere.

This argument also assumes that radiation is negligible on the Alfven time

scale. On the other hand, if the radiation is dominant, and the plasma is

isothermal, the mathematical formulation is essentially identical to the

adiabatic case (but with adiabatic index y = 1.) In our computation, we

have also assumed that the arcade length scales are short compared with the

coronal gravitational scale height 2kTc/mg, so that p = p(*) in the corona.

This is only for convenience, and is not critical, especially if 0 = 2p/B2

is small. (The photospheric scale height 2kTp/mg, on the other hand, is

assumed to be small. This is important in order to be able to specify

footpoint displacement. This is consistent with Tp being much less than

Tc.) On the other hand, suppose one attempts a justification for

specifying coronal pressure based on the dominance of photospheric

processes by specifying the photospheric pressure p(*,O). Accordingly,

assume that an increased photospheric pressure is imposed with no changes

in the flux surfaces, as in the imagined two-step process discussed above.

At this step in the process, the increased coronal pressure is given by eq.

(4b). Then, the pressure p(*,y) will subsequently decrease as the system

relaxes to equilibrium. There does not seem to be a reasonable

conservation law, one based upon an energy equation for the plasma, in
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which the pressure in the corona p(q,,y) given by eq. (4b) can be specified.

Using this interpretation, we conclude that bifurcations with respect to

prescribing pressure do not correspond to a physical loss of equilibrium.

The effect of expansion of the flux surfaces and the effect upon the

curves in Figs. 8 and 12a can be understood better by the following scaling

argument. First, consider the force free case s(*) = p(*) = 0. For

arcades that are free to expand upward but are constrained in the

horizontal direction (e.g., eqs. [8] and [131; also Fig. 2a), the Grad-

Shafranov equation (5a) implies in the large dmax limit that Bz - */a,

independent of the height h of the flux surfaces. From eq. (6a), we have d

= BzV' so that, for large h, V' - ah/*, d - (tp/a)(ah/tp) and h - d. On the

other hand, if the plasma is free to expand in both directions, its width

will be of the same order as its height h for large h and the G-S equation

gives Bz - 4/h. Using V' - h2/*, we again obtain d - (*/h)(h 2/*) - h.

This in turn implies Bz  - */d for large d. This exact scaling is not

observed in the results of Fig. 8 for two reasons. First, the effect of

the proximity of the wall is probably non-negligible for dmax : 1.0 in Fig.

8. Second, such a scaling argument cannot include the effects of profile

changes, e.g., the peaking in the X profile seen in Fig. 7c. Nevertheless,

this scaling does illustrate the general features of the results observed.

A similar scaling law can be obtained if entropy is specified with d(*)

- Bz(i) = 0. If only vertical expansion is allowed, then p - *2/a2 (from

the G-S equation) and, using s = pV' Y , we obtain s - (*2 /a2 )(ah/*)Y for

large h, or s - hy . For two-dimensional expansion, we obtain p - *2/h2 and

s - (*2/h2 )(h2/*)y - h2(Y -l). We then find the scaling p - s -
1/ (Y- I) -

s-3/2 .  Expressing these results in terms of an equivalent footpoint

displacement 6 a (2s) 1/2 and an equivalent B, a (2p) 1/2 as suggested by

eqs. (14a) and (14b), we find B ~ 6-3/2. Again, these scalings are in

qualitative agreement with the results of Fig. 12a.

The results presented in Figs. 5-11 and Fig. 12b have a bearing on the

development of a so-called "open field configuration". This open field

configuration is defined as the potential solution having the same boundary

condition on the flux *(x,o) but necessarily having a sheet current along *

= *0. It has been stated (Barnes and Sturrock 1972; Yang, Sturrock, and

Antiochos 1986; Aly 1984,1985) that the field approaches such a
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configuration as the footpoint displacement increases. The current is

conjectured to become entirely concentrated into the sheet. As noted in

the discussion of Fig. 7c, the transverse components of the current density

do not become peaked in space as dmax increases. Also the magnitude of the

transverse current density jp scales as Xmax with increasing dmax and thus

increases slowly for large dmax . Furthermore, the total transverse current

is proportional to (Bz)max and is found to decrease as dmax is increased.

The other component of current density jz = BzdBz/dip becomes peaked near ;p

= *o (see the discussion of Fig. 7c). However, the peak of jz at x = a/2

increases slowly for large dmax (Fig. 10). (The slow increase in the peak

value of Jz for dmax > 0.5 is again attributable to the influence of the

walls.) Furthermore, the total jz current in the peak region decreases.

On the other hand, the total z-current Iz  increases at a considerably

faster rate than the peak current density. We conclude that the peak in jz

near %P = *o contributes a rapidly decreasing fraction of the total current

I. as dmax increases, and therefore sheet currents with progressively

narrower current profiles carrying the bulk of the current do not occur.

The increase in Iz appears to be due to the same cause as the increase of

Iz for eq. (8) for which 1 0 X /(n2/a2  - X )I /2 , namely that the

equilibrium continues to expand, with nearly uniform current density

filling the space. We conclude that increasing the footpoint displacement

does indeed cause the flux surfaces to expand but that the resulting

equilibrium approaches a configuration with finite current density (jz) and

increasing total current Iz but no concentration of the current into

sheets.

In the present paper, we have adopted the conventional approach that

the footpoints of magnetic field lines are tied to the infinitely

conducting and massive photosphere and have found no bifurcations (i.e., no

loss of equilibrium) with respect to physically specifiable quantities. In

this scenario, all the flux associated with the arcade is contained in the

corona. If the photosphere is assumed to have finite conductivity and

finite mass, then the fluxes can extend below. In a recent paper, Chen

(1989) studied the behavior of "toroidal" current loops in which the

current was assumed to be closed in or below the photosphere. In this

work, a circuit parameter c a 0p/4T = Lp/LT was found to play a role in

determining the stability behavior of a loop, where 0 p (Lp) is the flux
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(inductance) in the corona enclosed by the loop and OT (LT) is the total

flux (inductance) including the flux structure below the photosphere

associated with the loop. Thus, the quantity c parametrizes the

subphotospheric flux/current structure relative to what is above the

photosphere. In this model, the infinitely conducting and massive

photosphere assumption corresponds to the c = 1 limit. In this limit,

loops are found to be stable. If, on the other hand, the subphotospheric

flux is large enough (c less than some critical value ecr), then a loop can

be unstable to major radial expansion, leading to a wide range of motion

and magnetic energy dissipation. In the present linear arcade model, too,

it is possible that if the fluxes are allowed to extend below the

photosphere, loss of equilibrium or instabilities may occur.
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V. Summary

A study of two-dimensional MHD equilibrium of linear coronal arcades

has been presented. An iterative method has been used to solve the Grad-

Shafranov equation with prescribed footpoint displacement d(*) or entropy

s(*). This method involves, as an intermediate mathematical step, the

prescription of Bz and p(*). A modification of the method has been

developed to compute equilibria through purely mathematical bifurcation

points which can occur when axial field Bz and pressure are prescribed in

the intermediate steps. Sequences of equilibria have been computed with

d(*) or s(*) specified. No multiple solutions exist if d(*) is specified,

consistent with the suggestion of Jockers (1978) and in agreement with the

recent result of Zwingmann (1987). We have also shown that no multiple

solutions exist if the entropy s(*) is specified. The entropy, like the

pressure, is a measure of the internal energy of the plasma. Generally, if

the entropy is specified, then the pressure cannot be specified and vice

versa. In the limit in which the arcade plasma can be assumed to be

adiabatic, then the entropy rather than the pressure is physically

specifiable. In this case, the pressure-based bifurcations do not indicate

the possibility of an eruptive process. We have described physical

conditions under which the entropy may be specified, and discussed the

difficulty in posing a physically meaningful situation in which the

pressure is specifiable. Our results indicate that increasing footpoint

displacement and entropy increases the magnetic energy of an arcade but not

the magnetic free-energy to drive eruptive processes in the corona.

We have also investigated the formation of the so-called open field

configuration and formation of sheet current (e.g., Barnes and Sturrock

1972; Aly 1984,1985; Yang, Sturrock and Antiochos 1986) and found that the

profile of the current density iz indeed becomes more peaked with

increasing footpoint displacement but that the total jz current in the peak

region decreases as the total current Iz  increases, so that a rapidly

decreasing fraction of current is carried by the current peak at the center

(x = a/2). Based on our solutions, especially Figs. 10,11 and 12(b), we

expect no sheet current formation (i.e., concentration of current at x

a/2) to takes place as a result of increasing footpoint displacement.
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Appendix A

As an aside, we note that Clebsch variables have been used by other

authors In specifying footpoint displacements. That is, the total field is

written as

= a x VO,

where a = * and 0 = z - f(x,y). Writing f(x,y) = e(x,y)do(*) and using eq.

(la), we find

3.V9 = Bz(*)/do(*)

B z(,)
d 0 Z~ f ds

with an indefinite integral along the field line. If 9 is required to

increase by unity in integrating from one footpoint to the other, we

obtain, from eq. (6a), that do(*) = d(*). Therefore, specification of

f(x,O) at one footpoint (e.g. where Bn > 0) is equivalent to specifying

d(*).
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Appendix B

The computational method we employ is to start with a trial Bz(*). For

brevity, we begin with the case p = 0. We iterate eq. (5a) by solving

L~k+1 3 V2*k+l = R(*k), (BI)

where R(*) = - Bz(*)dBz/d*. Given *k, a standard Poisson solver is used to

solve eq. (BI) for *k+l" Formally, this can be expressed as *k+l = L-

l[R(*k)] . It is helpful to introduce a relaxation parameter r and iterate

according to *k+l = rL-1 [R(*k)] + (1-r)*k. The convergence properties of

the inner loop iteration k(4) - 4,k+l(y) depend on the bifurcation

properties of eq. (5a) with the trial function Bz(*). In order to carry

out the iteration past the mathematical bifurcation points arising from

specifying Bz as an intermediate step, it is necessary to take the further

step of renormalizing Bz(*) such that the total axial current Iz remains

fixed during successive iterations.

For a given footpoint displacement d(*), we integrate along the field

lines to compute V'(*), defined in eq. (6b). We then compute Bz(*) from

eq. (6a) with a relaxation parameter p such that

Bnew(*) = pd(*)/V'(*) + (1 - p)Bzold(w). (B2)

The method of inner-outer loop iteration is best summarized in a flow chart

as follow. First, we specify the footpoint displacement d(*). We then

1) guess a solution to eq. (Bi) by giving Bz(q,) and *(x,y), and compute the

total axial current Iz;

2) iterate eq. (BI) with a (inner-loop) relaxation parameter r. If dmax is

on the right side of the mathematical bifurcations (e.g., for dmax >

0.35 for the B-series equilibria of Fig. 8), renormalize Bz(*) at each
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iteration so that Iz remains unchanged for the series of "inner loop"

iterations. There is no bifurcation with respect to Iz;

3) compute V'(*) (eq. [6b]) for these solutions to eq. (5);

4) update Bz(*) by eq. (B2) with a second (outer-loop) relaxation pararreter

p, and return to step 2.

For small footpoint displacement, V'(*) is insensitive to changes in

footpoint displacement because * is the potential solution to lowest order.

In this case, the outer loop iteration (B2) (with relaxation parameter p =

1) converges rapidly. For larger footpoint displacement, V'() becomes

quite sensitive, but in practice it is found that the iteration oscillates

if it diverges, and therefore a positive relaxation parameter p (with p

decreasing with dmax) guarantees convergence, provided the iteration

process is properly chosen if mathematical bifurcation with Bz specified

occurs as described above. This is discussed further in Sec. IIc for

specific examples. This method of inner and outer loop iterations

generally converges very rapidly if the correct relaxation parameters are

chosen. However, it often requires an accurate first guess for *(x,y) if

footpoint displacement is large. Therefore, we generally find solutions by

varying parameters from one run to the next, starting with small footpoint

displacement.

A similar scheme is used to include pressure when the entropy s(*) is

prescribed. The analogue to eq. (B1) is R(P) = -dp/d* and p(*) is

renormalized to keep I. fixed during inner loop iterations, as discussed in

Sec. IV. Using eq. (6c), the analog to eq. (B2) is

pnew(*) = ps(*)/V,(*)y + (1 - p,)pold(*). (B3)

Since the right hand side of the G-S equation (5a) is -(d/d*)[p(%P) +

Bz(*) 2/2], the prescriptions for computing Bz(w) and p(%p), and their

effects on the final solutions, are quite similar. This is most easily

seen if we rewrite eqs. (6a) and (6c) as
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1 Bz(0 2  d2 (*)/V'(*)2 (B4)

and

p() = s(*)/V'(*)Y. (B5)

In fact, if it were not for the rather insignificant difference between y =

5/3 and 2, there would be a formal identification (1/2)Bz(*) 2 4-4 p(*) and

(i/2)d(*) 2 ++ s(*). [Similar statements hold for the isothermal plasma, in

which the analogue of eq. (B5) is y = 1 with s(*) replaced by M'(*).]

Because of this similarity, the iteration scheme eq. (B3) has essentially

identical properties as eq. (B2), but with somewhat different optimum

relaxation parameters in the outer loop.
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Fig. 2 - A force-free arcade for d(O) given by Eq. (16) and ( x ,O) =sin(wx /a). A relatively small
amount of potential flux Vv = 0. 195 surrounds the current-carrying plasma. (a) Flux (0l) surfaces. (b)
Footpoint displacement versus x. (c) B, versus 0.. (d) X = dB,,/d ~

41



2.0

*0

0

0 0.1 0.2 0.3 0.4 0.5

x

Fig. 2 (Continued) -- A force-free arcade for d(,) given by Eq. (16) and (x,0) =sin(irx /a). A
relatively small amount of potential flux ,, =f 0. 195 surrounds the current-carrying plasma. (a) Flux

( )surfaces. (b) Footpoint displacement versus x. (c) B, versus . (d) X = dB,/d
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Fig. 2 (Continued) - A force-free arcade for d(O) given by Eq. (16) and ' (x,O) = sin(ix/a). A

relatively small amount of potential flux k, = 0.195 surrounds the current-carrying plasma. (a) Flux

(0) surfaces. (b) Footpoint displacement versus x. (c) B, versus 0. (d) X = dBId
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Fig. 2 (Continued) - A force-free arcade for d('k) given by Eq. (16) and (x,0) =sin(wx /a). A

relatively small am..ount of potential flux 0', =0. 195 surrounds the current-carrying plasma. (a) Flux

(4)surfaces. (b) Footpoint displacement versus x. (c) B, versus 4'. (d) X =dB,/d 4
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Fig. 5 - Numerical equilibrium with boundary condition given by Eq. (19) for v 7 and with foot-
point displacement given by Eq. (21). The current-carrying region is surrounded by a relatively large
amount of flux k, = 0.25 (x, - 0.31), W = 0.40, and d, = 0.36. (a) Flux surfaces. (b) Footpoint
displacement versus x. (c) B, versus . (d) X versus .
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Fig. 5 (Continued) - Numerical equilibrium with boundary condition given by Eq. (19) for = 7
and with footpoint displacement given by Eq. (21). The current-carrying region is surrounded by a
relatively large amount of flux 0, = 0.25 (x,, = 0.31), W = 0.40, and d,.. = 0.36. (a) Flux surfaces.
(b) Footpoint displacement versus x. (c) B, versus 0. (d) X versus .
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Fig. 5 (Continued) - Numerical equilibrium with boundary condition given by Eq. (19) for v = 7

and with footpoint displacement given by Eq. (21). The current-carrying region is surrounded by a

relatively large amount of flux 0. = 0.25 (x, = 0.31), W = 0.40, and d.n. = 0.36. (a) Flux surfaces.
(b) Footpoint displacement versus x. (c) Bz versus . (d) X versus 4'.
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Fig. 5 (Continued) - Numerical equilibrium with boundary condition given by Eq. (19) for P = 7
and with footpoint displacement given by Eq. (21). The current-carrying region is surrounded by a
relatively large amount of flux 4', = 0.25 (x, = 0.31), W = 0.40, and d,. = 0.36. (a) Flux surfaces.
(b) Footpoint displacement versus x. (c) B, versus J. (d) X versus 4'.
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Fig. 6 - Equilibrium with parameters as in Fig. 5 except d., 0.61.
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Fig. 6 (Continued) - Equilibrium with parameters as in Fig. 5 except d, = 0.61.
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Fig. 6 (Continued) - Equilibrium with parameters as in Fig. 5 except d,.= 0.61.
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Fig. 7 -Equilibrium with parameters as in Fig. 5 except d,.~ 1.35.
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Fig. 7 (Continued) - Equilibrium with parameters as in Fig. 5 except d, = 1.35.
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Fig. 7 (Continued) - Equilibrium with parameters as in Fig. 5 except d, = 1.35.
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Fig. 10 - Maximum current density jI versus d,,. for the equilibria of Fig. 8.
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