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9. Computer Architecture for Very Large Knowledge Bases

9.1. Executive Summary

The focus of our research is on the development of algorithmic, software and
hardware solutions for the management of very large knowledge bases (VLKB) in
a real time environment. We assume a logic programming inferencing mechanism
and a relational model for the management of the knowledge base. The interface
between the inferencing mechanism and the extensional data base becomes one of
partial match retrieval. During 1987 we have conducted research on many aspects
of this probiem as indicated in this report.

We completed the analysis and simulation of surrogate file structures. We
considered concatenated code words (CCW), superimposed code words (SCW) and
transformed inverted lists (TIL). Our primary technique will be CCW but we will
also utilizz SCW and TIL in some our research. In addition to good overall per-
formance CCW offer some interesting additional attributes. Namely, relational
operations can be performed directly on the surrogate file when it is structured
using CCW., The further development of this has become the doctoral disserta-
tion topic of one of the students on the program. This werk has a direct effect on
the set of operations each surrogate file processor will be required to perform and
therefore on its design.

We have begun working on a demonstration system that will be used to
interface with a logic programming language, generate surrogate files and manage
a knowledge base. The system consists of Prolog, specially developed modules
and the INGRES data base management system.

We have extended the TIL concept to the management of very large dynamic
knowledge bases. This has led to the development of a new access method which
we call the dynamic random-sequential access method (DRSAM). This has
become the doctoral dissertation topic of one of the students on the project.

In a very large knowledge base the number of rules may be so large that spe-
cial architectures may be required for the management of the rules. We have
investigated the use of CCW for the management of the rules and have developed
an associative memory approach. The approach is based on guarded horn clauses
and mode declarations in a parallel logic programming context.

Another area that we have been investigating is the potential role of optical
storage, interconnection and processing in the management of VLKB. We have
developed approaches to the processing of digital light signals coming from optical
storage media via optical interconnection. The division between types of processes
is between those that do not require intermediate storage and those that do. The
performance of a robust set of relational operations through optical means has
become the doctoral dissertation topic of one of the graduate students on the pro-
ject. '

Finally, all of the above work supports the long range development of a
VLKB architecture. During this year we were able to provide considerably more
detail regarding the specifications for that system.




9.2. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism
that can be utilized to respond to queries posed by users. The objective of such
systems is to capture the knowledge of experts in particular fields and make it
generally available to nonexpert users. The current state of the art of such sys-
tems is that they focus on narrow domains, have small knowledge bases and are
thus limited in their application.

As these systems grow, increased demands will be placed on the management
of their knowledge bases. The intensional database (IDB) of rules will become
large and present a formidable management task in itself. But, the major
management activity will be in the access, update and control of the extensional
database (EDB) of facts because the EDB is likely to be much larger than the
IDB. The volume of facts is expected to be in the gigabyte range, and we can
expect to have general EDB’s that serve multiple inference mechanisms. In this
report we assume that the IDB is a set of rules expressed as logic programming
clauses and the EDB is a relational database of facts.

In order to set the stage for the problem that we are interested in, consider
the following simple logic programming problem:

grandfather(X,Y) «— father(X,Z), parent(Z,Y)
parentiX,Y; +— father(X,Y)

parent(X,Y) «— mother(X,Y)

father(pat, tiffany) «

father(don, louise) «—

b ol o

5. mother(mary, louise) «—
mother(lisa, tiffany) «—

8. <« grandfather(X, joan)

The first three clauses form the IDB of rules for this problem, the next two
sets form the EDB of facts and the last statement is the goal. To solve the prob-
lem (satisfy the goal), we must find the names of the grandfathers of joan. For
this we search the father and mother facts on the second argument position,
finding values for the first argument position that can be used later. Thus, we
need to find joan's mother and father before finding her grandfathers. If we ask a
similar but slightly different query

+— grandfather(tom, X)
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we search the first argument of the father and mother facts in attempting to
satisfy it.

Consider the following general goal statement of a logic programming
language

= (XX - Xy)

In this case, values for some subset of the X;'s will be given in the process of
trying to satisfy its goal. Since the subset of the X's is not known in advance
and can range from one to all of the values, this places considerable requirements
on the relational database management system that supports the logic program-
ming language. In fact, in order to insure minimum retrieval time from the rela-
tional database all of the X;'s must be indexed. With general indexing the index
data could be as large as the actual EDB. In order to considerably reduce the
amount of index data yet provide the same capability, we have considered surro-
gate files. Obviously if not all of the X;’s can take part in goal satisfaction then
the indexing strategy will change, however in this report we will assume the most
general case in which all of the X|’s are active.

Retrieving the desired rules and facts in this context is an extension of the
multiple-key attribute partial match retrieval problem because any subset of
argument Dositions can be specified in a query and matching between terms con-
sisting of variables and functions as well as constants should be tested as a
preunification step.

In the context of very large knowledge bases the question arises as to how to
obtain the desired rules and facts in the minimum amount of time. Three reason-
able choices of indexing schemes to speed up the retrieval are superimposed code
words (SCW), concatenated code words (CCW) and transformed inverted lists
(TIL)* surrogate file techniques. Surrogate files are constructed by transformed
binary codes where the transform is performed by well chosen hashing functions
on the original terms. In [BER87a], SCW, CCW and TIL surrogate files were dis-
cussed in terms of the structures, updating procedures, performance of relational
operations on the surrogate files, and possible architectures to support them. The
term “surrogate file" dates back to early work in information retrieval and other
terms, such as "signature file" and "descriptor file" have been used to describe
similar structures. [FAL84|

An important advantage of surrogate file techniques is that they can be easily
extended for the indexing of the rules expressed as Prolog clauses, where the
matching between constants, variables, and structured terms is required to test
the unifiability. [RAMS6]|, and [WADS87] have extended the SCW structure for
the indexing of Prolog clauses and [SHI87] has extended the CCW structure to
index the rules and facts in unified manner.

In section 9.3 of this report we consider SCW and CCW for the management
of a very large EDB. In section 9.4 we introduce a software system being
developed to demostrate the performance of the SCW and CCW surrogate file

* SCW, CCW and TIL will be singular or plural depending upon the context.




techniques. In section 9.5 we consider two forms of TIL for the management of a
very large EDB. In section 9.8 we consider the management of the IDB using
CCW and present an initial associative memory architecture. In section 9.7 we
consider performing relational operations on optical data. In section 9.8 we
present an initial design of a very large knowledge base architecture (VLKBA) and
discuss some of its components. Finally, we conclude with some comments on the
VLKBA and some of its potential uses.
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9.3. Surrogate Files with SCW and CCW

In this section we present SCW and CCW surrogate file techniques for exten-
sional database indexing. Notations that are frequently used in this report are
shown in Table 9.3.1.

Notations Meanings
A, Number of arguments in a fact
R Average number of arguments specified in a query
Gﬁ Average number of good drops per query
FD Average number of false drops per query
Sdb Size of the extensional database in bytes
Number of facts in the extensional database

S Size of surrogate file in bits
B Size of a block in bytes
BR Binary representation

BCW Binary code word
QT Query response time
Ty Surrogate file processing time
Tqp Extensional database processing time
Ti Intersection time
of Value distribution factor, that is, the average number

of facts which have the same value in the i-th argument

Cg Average of value distribution factor (Average redundancy)

Table 9.3.1. Summary of Notations Frequently Used

9.3.1. System Model for SCW and CCW
9.3.1.1. Superimposed Code Word

Let & tuple D contain A; argument values, D={d,,d;, - - - ,ds }. Each argu-
ment value (d; , 1<i<A,) can be mapped into a binary representation (BR) by a
well chosen hashing function. The BR can be converted to a binary code word
(BCW) with pre-defined length and pre-defined weight, by using a pseudo random
number generator. The weight of a BCW is the number of 1's in the BCW. The

rocess of generating a BCW from an argument value is well described in
ROB79]. The SCW of a tuple is generated by ORing A, BCW’s obtained from
A, argument values. A unique identifier is then attached to the SCW and the
tuple. This unique identifier serves as a link between the two and is used as a
pointer to the EDB or can be converted to an actual pointer to the EDB by
dynamic hashing schemes such as linear hashing [LARS2].

Suppose we have a fact type called borders which is given as follows:

borders (Country_1, Country_2, Body_of_Water).

9-5




For a particular instance

borders (korea, china, yellow sea)

we would firs. hash the individual values to obtain BR'’s, then the BR’s would be
converted ‘ato BCW's and the SCW would be formed as follows:

H(korea = 100...01 — 000...100
H(china = 010...00 — 001...000
H(yellow sea) = 110...00 — 100...010

101...110] 00...01

with the BCW's logically ORed together. The unique identifier is attached as
shown and the vertical line shows the boundary.

The retrieval process with the SCW surrogate file technique is as follows:

1) Given a query, obtain a query code word (QCW) by ORing BCW's
corresponding to argument values specified in the query.

2)  Obtain a list of unique identifiers to all tuples whose SCW’s satisfy
QCW=QCW .AND. SCW
that is, obtain a list of all SCW’s that have 1's in the same position as the
QCW by sequentially ANDing the QCW with all entries in the SCW file.

3) Retrieve all the tuples pointed to by the unique identifiers obtained in step 2
and discard the tuples not satisfying the query. These are called "false
drops”". The facts satisfying the query are called “"good drops”. The false
drops are caused by the non-ideal property of hashing functions and the log-
ical ORing of BCW’s which make tuples with different argument values
have the same SCW.

4)  Return the good drops to the user.

9.3.1.2. Concatenated Code Word

The CCW of a tuple is generated by simply concatenating the binary
representations (BR's) of all argument values and attaching the unique identifier

of the tuple. With the same example used for SCW, the CCW would be formed
as

100...01] 010...00} 110...00} 00...01.

The retrieval process with the CCW surrogate file is as follows:




1)  Given a query, obtain a query code word (QCW) by concatenating BR's
corresponding to argument values specified in the query. The portion of the
query code word for argument values which is not specified in the query is
filled with don’t care symbols.

2)  Obtaia a list of unique identifiers to all tuples whose CCW'’s satisfies
QCW=CCW
by sequentially comparing the QCW with all CCW’s in the CCW file. Note
in this case the matching is performed on both 1's and O’s.

3) Retrieve all tuples pointed to by the unique identifiers obtained in step 2
and compare the corresponding argument values of the tuples with the
query values to discard the false drops caused by the non-ideal property of
hashing functions.

4)  Return the good drops to the user.

9.3.2. Simulation and Analysis for SCW and CCW Techniques

Simulations are performed with the equations developed in [CHUS87| for the
size of surrogate files and the query response time using SCW and CCW tech-
niques assuming that the surrogate files are consecutively stored in a disk, the
EDB are randomly stored in a number of disks and the storage utilization of the
surrogate file and the EDB is 1. We also assumed that sufficient buffers are avail-
able for overlapped operations of block searching and tlock accessing.

9.3.2.1. Surrogate File Size

For the simulation of the surrogate file size, it is assumed that the EDB
remains at the same size regardless of variation of the number of arguments in a
tuple ( A;) and 15 bytes are used for each argument value. Therefore, N, the
number of tuples in the EDB, can be calculated as follows:

N = Sqp

15XA,
where Sy, represents the actual EDB size in bytes not including the unique
identifiers for each tuple of the EDB. We also assumed that each argument of a
tuple in the EDB has the same redundancy value, Cg, which is the average of the

value distribution factors (C,’s) denoting the average number of tuples which have
the same value in the i-th argument positions.

IS
1€EA,

Cg =

T

The results for the size simulation are shown in Figures 9.3.1 through 9.3.2.
In Figure 9.3.1 we plot the size of the SCW surrogate file (S,.,) as a function of
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the number of arguments in a tuple (A;). The size of the surrogate file is expressed
as a percentage of the EDB. The EDB sizes are 10°% 107 , and 10? bytes while the
average number of arguments specified in a query (Rq) takes on the values one
and two. Note that S, increases with the size of the EDB (Sy,) but decreases
with R.

In SCW case, if we allow more false drops then the length of the SCW
becomes shorter which results in a smaller S, .. However, more false drops leads
to more EDB accesses.

In designing the SCW surrogate file one must set the expected number of
arguments in a query. In terms of size, the worst case of course is when R is 1
and as the value for Ry is set at progressively higher values S, becomes very
small. However, if we assume large R, in designing the SCW file, we have to allow
more false drops than the expected number of false drops, FD, whenever the
number of arguments specified in a query is smaller than R, [ROBT 9]

In Figure 9.3.2 we plot the size of the CCW surrogate file(S..,) as a function
of the average redundancy(C;) in the data. Note that with greater redundancy
S.cw becomes smaller bec .use % smaller number of bits can be used for each binary
representation. Also note that Sy, and A; have significant effects on S_.

With regard to the size of surrogate files, we can say that the CCW file tech-
nique is better than the SCW technique, even though S,., may be smaller than
Sccw When Ry is large, because we assumed that the average number of arguments
specified in a query is usually not more than 2. However, in both cases the surro-
gate file is generally less than 20% of the size of the EDB.

When the size of the EDB is less than 107 bytes, the surrogate file size is less
than 2 Mbytes, so the whole surrogate file can be stored in a fast memory to
speed up the retrieval process.
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9.3.2.2. Query Response Time

For the query response time, we assumed that the hashing function is ideal,
so there are no false drops with the CCW surrogate file technique and the SCW
surrogate file technique has only the false drops caused by the logical OR opera-
tion on the BCW’s. A partial-match query is assumed and the BCW of the surro-
gate file is compared with the QCW by using sequential byte by byte comparison.
The query response time results for the SCW and CCW techniques are shown in
Figures 9.3.3 through 9.3.6. Table 9.3.2 shows the values of parameters used in
this simulation. The parameters relating to the disk are obtained from the
characteristics of the DEC RAS81 disk [DIG82].

Parameter Value
Average seek time 28 msec
Minimum seek time 6 msec
Rotational delay 8.3 msec
Data transfer rate 2K bytes/msec
Data sector size 512 bytes
Sectors/track 52
Tracks/cylinder 7
Time for byte comparison 3 usec
Block size 2K bytes

Table 9.3.2. The Values of Parameters Used in the Simulation

In Figures 9.3.3 through 9.3.4 and 9.3.5 through 9.3.8, we plot the query
response times with SCW and CCW surrogate file techniques (QTy,, and QT .v)
and corresponding subprocessing times; surrogate file processing time (Tsp) and
EDB processing time (T4,) for Sy, of 10° and 10° bytes, respectively. When Sy, is
10° bgytes, most of the query response time is spent for EDB access. But when Sy,
is 10° bytes, the query response time becomes very large and most of the query
response time is spent for surrogate file accessing and searching because of the
increased surrogate file size and sequential searching of the surrogate file. The
number of arguments in a tuple (A;) has little effect on either QT or QT
since we assumed that the Sy, remains constant under the variations in A,.

When Sy, is 10° bytes, R, is not a factor which affects QT,.,, but QT
increases as FD increases. However, when Sy, is 10° bytes, the result is reversed,
that is, R, affects the QT,, considerably while FD does not. There are two rea-
sons supporting this result:

1)  S,., decreases as R, increases. However, when S, is small, S, is also small
for any R, so tha% the time for accessing and searching the SCW file is
almost constant. Therefore, the time for accessing the EDB, which depends
on FD, becomes a major factor in QT .

2)  When S, is large, S, becomes large so that most of QT,, is spent for
accessing and searching the SCW file. Therefore, S is a main factor
deciding QT,.,. Since S, largely depends on R, the change in R, is
directly reflected in QT,,.

9-11
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QT,. and QT are largely affected by C, when Sy, is 10° bytes and R, is
small. However, as R, becomes large, the effect of Cg on QT 2nd QT
decreases. This fact is well explained by the role of R, and C, in determining the
number of good drops:

1) If Ry is small and C; is large, then there are so many good drops that a
large amount of time is required for accessing the EDB.

2) If Ry becomes large, the number of good drops decrease considerably, and so
does the EDB access time, which is the major component of the query
response time when Sy, is 10° bytes.

From Figures 9.3.4 and 9.3.6, we can see that when Sy, is 107 bytes, as Cq
"increases, QT,., remains constant while QT,., decreases. ’]?his occurs because a
fewer number of bits is required to uniquely identify each attribute value in the
CCW case. But when C; is larger than a certain value, the query response time .
starts increasing because of the increased EDB access time. Also, we can see from
Figures 9.3.4 and 9.3.6 that most of the query response time is used for the surro-
gate file accessing and searching when the EDB is large. Therefore, if we use
multiple processors and/or associative memory to speed up the surrogate file pro-
cessing, we can reduce the query response time considerably. Since the surrogate
files are quite regular and compact, they can be mapped into the associative
memory. Thus, we can obtain a speed up by the content addressing capability
and the parallelism of the associative memory [AHUS0|[BER87|. In addition, we
can also obtain a speed up proportional to the number of processors because there
is little need for communication among the processors.

Since searching and disk access can be overlapped, if we increase the block
size, then the number of disk accesses can be reduced and we can save time as
long as the block searching time is less than the block access time. In the case of
a multiple disk system, the surrogate file and the EDB are distributed over a
number of disks and we can reduce the disk access time by seeking several disks
concurrently.

Comparing the retrieval performance of the SCW and CCW techniques, we
can see that QT ., is smaller than QT,., when R, is small, because S, is smaller
than S,., when Ry is small.
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9.3.3. Comparison of SCW and CCW Surrogate File Techniques

As shown by the simulation, the size and query response time of the CCW is
smaller than those of the SCW when the average number of arguments specified
in a query is small.

It is very easy to update SCW or CCW surrogate files. When a new tuple is
added to the EDB, the corresponding code word is simply appended to the exist-
ing SCW or CCW surrogate files. No other operations are required. To delete a
tuple, we must find and delete the entry in the surrogate file as well as in the
EDB. When one changes the value of a field, SCW requires that a new code word
be generated and the old one deleted. For CCW the change need only be made to
the portion of the code word in question.

One obvious advantage of CCW over the SCW is that many relational opera-
tions can be easily performed on the CCW surrogate file rather than on the rela-
tions themselves [BER87]. This offers considerable potential savings in time to
carry out those relational operations.

In SCW, the order of argument positions in either query or fact can't be
differentiated because a SCW is generated by the logical OR operations on the
BCW’s. This property of SCW can be a disadvantage when used for rule index-
ing in the context of logic programming.

SCW surrogate file searching time can be reduced by using the bit-sliced
organization to store the SCW files [LEE86). But in that case, we must read and
write back many blocks of SCW surrogate file to update one SCW, which is not
tolerable when the EDB is dynamic.

In the SCW surrogate file technique, to reduce the the inherent false drops
caused by the logical OR operations on the BCW’s, one may assign different code
weights to the BCW’s of argument values depending on the occurrence frequency
and query frequency of the argument values. But to do this, the code weights of
frequently occurring argument values must be maintained in a table to be looked
up whenever generating a binary code word [FAL85][ROB79].

9.3.4. Further Work with SCW and CCW

The main drawback of the SCW and CCW surrogate file technique is that
the whole surrogate file must be read to the main memory and searched. To
reduce the searching time, one can produce a block code word for each block of
the surrogate file and use the block code words as an index for the surrogate file.
A given QCW is compared with the block code words first and only those blocks
of the surrogate file whose corresponding block code words match the QCW are
retrieved and searched. But the speed up is achieved at the expense of the extra
storage space and maintenance cost for the block code words. The performance of
the block code words will depend on the following factors:

1) type of hashing functions used for code generation,
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2) algorithm for generating the block code words,

3) Dblocking factor: number of code words blocked together to form a block code
word,

4) how frequently the database will change.

[PFAS80] introduced the block descriptor generated by logical Oring the disjoint
codes of each tuple and ([SACS83| considered two level superimposed coding
scheme.

It has been shown that surrogate file processing time is dominant when the
EDB is very large. Thus, if we adopt multiple processors and/or associative
memory, we can reduce the surrogate file processing time considerably. A general
structure of a back end system which contains multiple processors for the manage-
ment of a very large extensional database of facts is shown in Figure 9.3.7. We
assume that there are gigabytes of data stored on the EDB disks and there are
gigabytes of CCW surrogate files stored on the SF disks. Suppose that the user is
interested in retrieving fact data given some subset of values from a particular
relation. The query code word would be constructed in the Request Processor
using the proper hashing function and considering the positions of the values
within the relation. The QCW would then be broadcast to all of the Surrogate
File Processors (SFP’s) to be used as a search argument. One could think of the
SFP as a processor with associative memory with the QCW as the search argu-
ment. The SFP compares the QCW with each CCW and strips off the unique
identifiers of matching CCW’s. As soon as any unique identifiers are found by the
SFP’s they can be sent to the collector and passed on to the Extensional Data
Base Manager (EDBM) for processing. The EDBM will retrieve the facts, compare
them with the query to insure that a false drop has not occurred, put them in
blocks, and send the blocks to the logic programming engine.

Furthermore, the SFP’s can be extended to support complex relational alge-
bra operations such as join. Consider a join using the hash join algorithm
[BRA84|,[KIT83]. Since the CCW surrogate files already consist of hash values,
we only need to partition the portion of code words that represent the join vari-
able and the associated unique identifiers into the SFP’s. Then, the SFP’s can per-
form the join operation independently. The associative memory in each SFP can
be used for parallel execution of nested-loop join algorithm which outperforms the
sort-merge join algorithm in a muitiprocessor system [BIT83|. Based on matching
within each SFP (which can be done in parallel), pairs of unique identifiers can be
sent to the EDBM for final verification. Since the size of the CCW surrogate file
is around 20% of the EDB, we can save a lot of time when we perform the rela-
tional operations on the CCW surrogate file rather than the EDB itself.

Since the CCW surrogate file technique can be implemented easily with mul-
tiple processors and associative memory to speed up the retrieval process and
relational operations in a very large knowledge base system, our future research is
towards the development of a special architectures supporting those CCW surro-
gate file techniques.

9-18




SF?
1

AS S S N\ 1

SF?

Figure 9.3.7

USER
-l REQUEST REQUEST
_
PROCESSOR
REQUESTED
uid EXTENSIONAL FACTS
ollcc:on'—"'J D:i?u gg:

LS.

Back End System for Fact Management

9-19




9.4 Demonstration System for SCW and CCW

In this section the design of a demonstration system implementing the surro-
gate file concept for CCW and SCW is presented. The system is being developed
on a VAX 8800, which serves as a frontend to a Connection Machine.

9.4.1 Demonstration System Design

The demonstration systems design is presented in Figure 9.4.1. The design
can be viewed as a collection of subsystems tied together by the relational data-
base management system INGRES.

9.4.1.1 INGRES

INGRES provides us with file management capabilities, which we would oth-
erwise have had to write ourselves. There is the realization that by going through
INGRES for our searches, there is a certain amount of incurred overhead, and
thus the full advantage of the surrogate file cannot be realized on the demonstra-
tion system.

9.4.1.2 Logic Programming

A query enters the system from a logic programming environment. Once the
query is received, it is passed to INGRES through an interface. In our system the
interface is a Prolog one, being developed at Syracuse University. The interface
transforms the Prolog query into a query (argument) that INGRES can manipu-
late. INGRES then passes the query to the Query Code Word Generator.

9.4.1.3 Query Code Word and Surrogate File Generators

In order to retrieve a fact, based upon one or more arguments, each argument
is passed to the QCW Generator. The argument is hashed and a QCW is gen-
erated. What type of hashing is done depends on whether a CCW or SCW surro-
gate file will be used.

The Surrogate File generator forms the CCW and SCW surrogate files. As a
new fact is entered through INGRES, it is passed to the surrogate file generator,
where it is hashed according to whether a CCW or a SCW is being generated.
Also, a unique identifier (UID) is generated. Both are passed to INGRES, which
then passes them to the surrogate file.

9.4.1.4 Surrogate File and Knowledge Base

The respective CCW and SCW surrogate files are kept in the surrogate file
area. During a retrieval operation the surrogate file is searched by INGRES, using
the QCW as a primary key. For each match, INGRES will extract the UID. Once
the UID is extracted from the surrogate file, it will be used to search the EDB.
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9.4.2 Retrieving a Fact Using SCW

In Figure 9.4.2 we use SCW to visually explain how a fact will be retrieved
from a SCW surrogate file in the demonstration system.
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Figure 9.4.2 Partial Match Retrieval Using Superimposed Code Words (SCW)
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9.4.3 Future Work on Demonstration System

The demonstration system will be developed using INGRES. The program-
ming will be done in EQUEL. EQUEL supports both QUEL, the INGRES data-
base programming language, and C in which the applications program will be
written.

The first task will be to build an IDB and EDB. Having built them, the
CCW and SCW surrogate files will be built. The next step will be to incorporate
the Prolog interface into the demonstration system. As the work progresses, the
plan is to in the future develop a parallel version of the surrogate file on the Con-
nection Machine.
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9.5. Inverted Surrogate Files

In this section we present transformed inverted lists, an inverted surrogate
file structure for partial match retrieval applications. We show that TIL file struc-
tures are suitable for partial match queries on static files but with degraded per-
formance and costly maintenance operations when dealing with volatile files. Then
we extend the concept of inverted surrogate files to include dynamic files and
orthogonal queries with the introduction of the Dynamic Random-Sequential
Access Method (DRSAM) and Inverted Dynamic Surrogate Files (IDSF). Finally,
we describe and analyze a parallel back end architecture for inverted surrogate
files and discuss open research problems and future work.

9.5.1. Systern Model

Single or multilevel indexing is a common technique used in data base
management systems (DBMS) for fast data access. In partial match retrieval,
creating index files for more than one field in a record is necessary. The extreme
case arises when every entry in a record is indexed independently and is referred
to as inverted lists organization [DAT86]. The problem behind using inverted lists
is that the size of the indices can become enormous, equal to or even larger than
the data base size.

Transformed inverted lists (TIL) are similar to inverted lists with the main
difference that indices are built based on the binary representation (BR) of the
hashed output of a given field in a record of the data base relation. Two TIL
types, TIL1 and TIL2, are considered in this section. A simple relation is illus-
trated in Figure 9.5.1. The fields are referred to as arguments and the BR values
for argument position 2 are listed.

The application environment of the TIL technique would be the management
of the EDB within a logic programming context. We assume that many different
relations (fact types) with varying degrees and cardinalities exist in the very large
extensional data base that we are considering. Furthermore, we assume that the
tuples are stored in such a way that one first accesses the relation followed by an
access to a particular tuple via its unique identifier (Uid). The unique identifier
could be derived from the “primary key" of the relation or a serially generated
number attached to each fact. Thus, the storage structure for the actual facts
themselves would be very simple and a method such as extendible hashing
EFAG?Q] or linear hashing [LAR82] could be used to guarantee retrieval of a given
act in at most two disk accesses. This presupposes that all secondary key
retrievals will take place on the surrogate file or through post processing of the
retrieved tuples if there are many different types of users of the same data base.

9.5.1.1. TIL1 Description

TIL1 consists of a two level indexed inverted list. Figure 9.5.2 illustrates the
TIL1 organization for argument position 2 of the relation of Figure 9.5.1. The
blank entries in the primary index file are usually included for updating purposes.
The secondary index file for a given argument in a tuple is an ordered list of the
BRs of the hashing function output of that argument with the attached unique
identifier (Uid?. The first entry in each block of this file is duplicated in the pri-
mary index file with an attached pointer to the corresponding secondary index
block address. Furthermore, index files are partitioned in blocks of B bytes each.
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It is observed that the entries in the primary index file are ordered as well.

When a given BR is to be retrieved (say BR=br3), the primary index file is
sequentially accessed using the BR as the search argument and the pointer to the
secondary block address corresponding to that BR retrieved (pt2 in our example).
Then the secondary file is accessed in a direct mode and the required block(s)
retrieved and searched sequentially for the occurrence(s) of the requested BR. The
output is a list of Uids (uid3 and uidll for our example) corresponding to the
value of the request.

9.5.1.2. TIL2 Description

TIL2 is a three level indexed inverted list organization and is illustrated in
Figure 9.5.3 for the same example relation. The difference between TIL2 and TIL1
lies in that the TIL1 secondary index file is now split into two files: the TIL2
secondary index file and the tertiary index file. Each entry in the tertiary index file
consists of a Uid, so that the number of entries in this file is equal to the number
of records in the data base relation. Each entry in the TIL2 secondary index file
consists of three fields: the BR of the hashed function output of an argument
value (say BR=br8), a list length entry "L" that provides the number of records
in the data base that have the same entry value in a given argument position (2
for br8) and a pointer to the address of the first Uid in the tertiary file that has
BR=br?(. This pointer consists of the block address and a displacement value in
the block.

The retrieval process for TIL2 is similar to TIL1, but requires the access of an
additional index level.

9.5.1.3. Partial Match on Multiple Argument Positions

When more than one argument position match is requested in a query, the
different outputs from the inverted lists searches need to be intersected. The out-
come of the intersection is a set of Uids that complies with the query require-
ments. Finally this set of Uids is used to directly access the main data base for the
retrieval of the matched records. The gain in retrieval time when using
transformed inverted lists is mainly due to the small size of the surrogate files and
the fast access resulting from the indexing scheme. Only conjunctive partial match
queries are considered, but the reader should be aware that disjunctive queries
have the same level of complexity, with the lists intersection operation replaced by
a multiple sets union operation.

It is noted that the inversion level of the surrogate files is determined by the
application being considered. Since our underlying application involve logic pro-
gramming and relational data bases, we assumed fully inverted surrogate files
throughout and derived the minimum storage and the query response time equa-
tions in {(HACS88]. Our analysis is based on a2 compact representation of the data
and does not take into account overflow chains. It is meant to pinpoint perfor-
mance bottlenecks, to be resolved in the design of a special purpose back end sys-
tem.

The derived equations were based on the following general assumptions on
the hardware and system models:

9-27




BRi | PTi,
brl ptl
br3 pt2
br5 pt3
br7 pt4

Primary Index File

BRi | L | PTi, Uid

brl 3 ptsS —y | uidl

br2 1 pté uid4

- - - uid6
br3 2 pt7 #\W
/ bra | 2 | pt8 \ wida
P U B \ uidil
_____;_brS%_ﬂTﬁ uidd
bré | 2 | ptl0 \ uid12

A . \ uid7
br7 1 ptll h-ualﬁsal'

- - - \ uid9

- - - uid10

Secondary Index File Terciary

Index

File

Figure 9.5.3 TIL2 for Ar, in Figure 9.5.1

9-28




1. A given BR is equally likely to be specified in a query.

2. The primary and secondary indices are stored in contiguous secondary
storage blocks and ordered with respect to the BR values so that a block can
be searched in log time.

3. Buffer sizes are sufficient to hold the retrieved blocks and partial overlap-
ping of the primary index blocks retrieval and search is achieved.

4. Main processor comparison is byte oriented.

5. We assume a stable file as defined in [LAR81] and do not account, in our
deterministic analysis, for the overhead incurred by searching overflow
records. According to Larson’s stochastic model, the expected number of
additional disk accesses required to search an indexed-sequential file is around
0.3 accesses.

6. The hashing functions do not lead to collisions. However, in practice, colli-
sions could be deleted by post checking of the retrieved records from the EDB
prior to further processing. This could be performed on the fly but is not
included in the present analysis. Although not required for the analysis, if
order preserving hashing functions are provided, 1GA.R86], TIL files could
handle range queries as well.

We only present the results of our simulation pertaining to TIL1 and refer
the reader to [HAC88| for additional details.

9.5.2. Simulation and Analysis of TIL Techniques

The notation definitions and parameters for the TIL technique are the same
as those for SCW and CCW and are found in Table 9.3.1 and 9.3.2 respectively.

In Figure 9.5.4, the TIL1 surrogate file to data base size ratio is plotted
versus the logarithm of the average redundancy factor, for different Sy, and A,
values. In general the surrogate file size of TIL1 spans from a low of 9.2%, for
logaCy=9, A;=10 and Sy, = 10°, to 41.8% for log,C,=0, A,=2 and Sy, = 10°. It
is noted that the plots in Figure 9.5.4 mainly reflect the variation of the secondary
index file size as the primary index file size can be shown to be negligible. In
[HACS88], the storage requirements for TIL2 are reported to range from 8 to 20%
of the size of the data base.

Figures 9.5.5 to 9.5.8 illustrate the TIL1 query response time (QT ;) and its
corresponding subprocessing times (Tg,, Tj; and Typ) for different data base sizes
and number of arguments in a query. Figures 9.5.% and 9.5.6 relate to medium
sized files (Sy, = 10’ bytes) while Figures 9.5.7 and 9.5.8 are typical of very large
files (Sq, = 10° bytes). It is observed that QTyy, is highly dependent on the sur-
rogate file processing time (Typ) for low values of Cg (up to 512) and then becomes
highly dependent on the intersection time (T;,). The drop in data base access time
(Tg4p), observed between the plots of Figures 9.5.5 and 9.5.7 or 9.5.6 and 9.5.8, is

due to the dependency of the number of good drops (GD) on the ratio _Fg' For a

fixed Cg, this ratio decreases with increasing data base sizes.

No plots are included for the case where R, = 1. In this situation, the query
response time for TIL1 is dependent on the number of good drops which is Ce.
Furthermore, TIL2 query response time variations are the same as for TIL1. The
only diiference is that TIL2 requires one additional disk access per query
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argument, that is balanced by a smaller disk transfer time for large values of the
redundancy factor Cg. The disk transfer time is smaller due to a smaller surrogate
file size.

We conclude that the TIL techniques are efficient as to the storage/query
response time combination. Even for relatively large redundancy factors, the query
response time is within a few seconds while the storage overhead of the surrogate
files lies in the 10 to 20 % range of the data base size. It is noted that conven-
tional inverted lists, with full indexing, may require an overhead well in excess of
100 % of the data base size.

9.5.3. Maintenance Aspects of TIL Surrogate Files

One of the difficulties in using the TIL techniques is their maintenance
requirements. Those become a serious drawback, especially in a highly volatile
data base environment. The above analysis pertains to a static surrogate file. If,
for example, 30% expansion of the main data base is forseen, the overall increase
of the surrogate files sizes can be greater than 30%, due to the additional increase
required for the different record pointers and unique identifiers.

Some important maintenance aspects are the add, delete and update opera-
tions. When adding a new record to the data base, all the index files have to be
accessed and reordered; which is a time consuming operation. The use of overflow
blocks would decrease the time requirements for the insert operation with a nega-
tive impact on query response time. Block inserts could be followed but this tech-
nique is not applicable to real time data bases. In any case, periodical time con-
suming reordering is necessary. Deleting records could be performed by marking
techniques and delaying reordering and packing operations to off line maintenance
periods. Finally, updates require the access and rearrangement of the affected
attribute’s indices.

It can be stated, in general, that the overall management system require-
ments for TIL surrogate files is complex and those techniques are not recom-
mended in volatile data base environments.

Provided order preserving hashing functions, orthogonal queries are possible
with inverted surrogate files. With the additional requirement to manage very
large dynamic data/knowledge bases, we are led to the topic of our current
research which we present in the next Section.

9.5.4. The Dynamic Random-Sequential Access Method

The scope of our work is to extend the concept of inverted surrogate files to
cover the more interesting and general case of dynamic data/knowledge bases. A
new dynamic file structure is proposed, as the core structure for inverted surrogate
files. Furthermore, we propose the analysis and simulation of this structure and
the development of a back end architecture based on inverted dynamic surrogate
files for the management of a Very Large Data/Knowledge Base (VLDKB).

Two major dynamic hashing schemes are exhaustively analyzed in the litera-
ture, namely extendible hashing (EH) by Fagin EAG‘?Q and linear hashing (LH)
by Litwin [LIT80]. While the basic schemes of EH and LH were proposed for pri-
mary key direct access applications, those were modified, extended and adapted
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for a wider range of file design problems, including PMR. Most applications
related to PMR follow the multi-attribute single file design approach. The
Dynamic Random-Sequential Access Method (DRSAM) is proposed to be used as
the core structure for a single attribute multi-file design. It is inspired from LH
with the additional feature that the ordered sequential characteristic of inverted
files and TIL is preserved for optimum sequential processing (range queries) as well
as random access.

This scheme has the same near optimal characteristics of LH as to random
access, insertion, deletion and update operations and the additional important
feature of fast sequential access similar to ISAM, VSAM [MAR77] and B-trees
(BAY71] with an O(1) response time for sequential access. The analysis is kept to
a “primary key" file, and within some constraints to be discussed, the reader can
easily check that DRSAM is applicable to secondary keys as well. Furthermore,
the analysis assumes a contiguous storage allocation scheme. The case of a distri-
buted secondary storage allocation environment shall be covered in future work.

9.5.4.1. A Review of Linear Hashing

The reader is referred to the paper by Litwin [LIT80] for additional details on
LH. Linear hashing is a directoryless dynamic hashing method and relies on a one
sided linear expansion of the file following a sequential bucket split pattern.

The basic idea is best explained by an example: assume that we start with a
file of 4 buckets (#0 to #3), each with the capacity to store 3 records and the
hashing function that determines the address of a key given by ho(Key) = Key
mod 4 (hg is called the home hash function). Initially the file is loaded with 10
records as shown in Figure 9.5.9. We note that buckets #1 and #2 are full. We
assume that the file expands whenever a collision occurs (referred to as uncon-
trolled splitting): a collision takes place when a new record’s key, to be inserted,
hashes to a bucket that is already full.

The expansion of the file is performed by extending it through the addition
of one bucket at a time. This bucket receives some records moved from an existing
bucket that undergoes a split (i.e expands). The next bucket to split is determined
by a pointer %alled split pointer) that moves sequentially, after each split, from
bucket #0 to bucket #3. The file gradually grows from 4 to 8 buckets (#0 to #7)
and the process of doubling the size of the file is referred to as an expansion cycle.
At the beginning of an expansion cycle, the split pointer points to bucket #0
(marked by "*" in Figure 9.5.9). The split is resolved by rehashing the splitting
bucket’s records with h;(Key) = Key mod 8 (h; is referred to as the split hash
function).

| #0 (%) 1 #2 # |
0 | 101 10 3
60 | 201 70 7
205 130

Fligure 9.5.9.

Let us insert Key=134: hy(134)=2 and a collision occurs. Key 134 is inserted
in an overflow area for bucket #2 and bucket #0 splits: the records in bucket #0
are rehashed with h;, moving Key=60 to the new bucket #4. Then the split
pointer is advanced to point to bucket #1 and we get the file status of Figure
9.5.10.
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0 101 10 3 60
201 70 7
205 130
Overflow Area
L 1 | 134 § i 1 | [ |
Figure 9.5.10.

When the file doubles in size the new home hash function is set to h; = Key
mod 8. A new expansion cycle can begin with the split hash function as h, = Key
mod 16. The split pointer is reset to bucket #0 and the new cycle will expand the
file from 8 to 16 buckets.

In gene.al, to implement linear hashing, starting from a file of "N" buckets,
we need a sequence of hashing functions (hg, h,..., h;, hj4;,...) with the following
properties:

0<ho(Key)<N—1

h; (K
i(Key) for all Key and i>0

hj4 (Key) = §or
hi(Key) + Nx2!

The simple remainder hashing function is one which has the above property.
To achieve an even load, the two cases for h;,; should occur with equal probabili-
ties. To keep track of the state of the file, two variables are needed: "L" counts the
number of times the file size has doubled and "p" as the split pointer to the next
page to split. The address computation algorithm is as follows:

address(Key) = h; (Key);
if (address(Key) < p) then address(Key) - hy ., (Key);

Expanding the file by one page requires the local reorganization of two pages: the
one being split and the new page appended to the end of the file. The technique
outlined above gives a mechanism to expand the file by one page. The criterion to
trigger an expansion was based upon the occurence of a collision. This mechanism
is referred to as "uncontrolled splitting”. Litwin suggests "the rule of constant
storage”, whereby the designer would set a threshold for the storage utilization:
whenever this threshold is exceeded the file is expanded by one page. This method
is also referred to as "controled splitting".

As an indication of the performance that can be achieved with LH, Larson
[LARS82] reports the following: a page size of 20 records, storing overflow records
on overflow pages with a capacity of 8 records per overflow page, and a threshold
of 0.85 on the storage utilization result in an average successful record retrieval in
1.26 disk accesses, and an average record insertion cost of 3.49 accesses (including
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disk accesses for file expansion).

It is noted that the split sequence follows a sequential pattern from the first
to the N-th bucket. This means that the split does not necessarily take place on
the bucket that undergoes a collision, which is typical of directoriless dynamic
hashing methods. A collision resolution method (CRM) is proposed to resolve the
split by assigning overflow chains. If the data is uniformly distributed the perfor-
mance of the file structure is not degraded by the overflow chains.

As shall be seen, DRSAM relies on a different split sequence that achieves
clustering for fast sequential access as well as an expected random access perfor-
mance equal to LH.

9.5.4.2. File Design Objectives

The objective is the design of a file structure with the following characteris-
tics:

1. Fast random access: the structure should be such that, given a search key,
the access cost to the required record is optimal, i.e one disk access (or very
near to the optimal value of one).

2. Fast sequential access: the structure should be such that, given a range for
a search key, the access cost required is also one disk access followed by suc-
cessive block reads, provided a contiguous storage allocation scheme, or
optimal for distributed allocation schemes.

3. Dynamic: the structure should be easily expandable with low maintenance
overhead.

Characteristics 1 and 3 are studied in the context of LH. Characteristic 2 is
achieved if the buckets that qualify for the range query are located in contiguous
blocks in a sequential allocation environment, so that one disk access is performed
followed by consecutive bucket reads, or the number of disk accesses is minimized
in a distributed allocation environment. This is typical of the fairly static ISAM
and VSAM files in general. Also, B-trees provide fairly linear results for sequential
access and log time for random access. DRSAM is based on an order preserving
hashing function with a one sided expansion scheme similar in concept to LH but
follows a different split pattern, designed to preserve the natural order of the key
values in consecutive blocks. Its random access cost is the same near optimal one
as LH and its sequential access cost is expected to be O(1). This method presents a
promising alternative to the static ISAM, VSAM and B-trees file structures.

9.5.4.3. Order Preserving Hashing

The hashing scheme is as follows: the file is at level "i" would mean that it
consists of 2' (contiguous) buckets. The address of a "Key" would be found by
transforming "Key" with OPH;(Key), where OPH; is a dynamic sequential allocat-
ing and order preserving hashing function:

add;(Key) = OPH,(Key)
at level "i+1", we write:
add;4(Key) = OPH;,(Key)
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A simple dynamic order preserving function is provided for OPH() as :
OPH;(Key) = Prefix(Key,i)

with Prefix(Key,i) as the leftmost "i" bits of "Key". We chose this function as
being easy to follow, though not generally considered as a good randomizing func-
tion. Other randomizing functions could be devised and the reader is referred to
Garg's work [GARS86| for order preserving hashing and Carter et al. [CAR79].

Assuming the contiguous allocation scheme, the reader can easily check that
we indeed have an order preserving hashing function. This function is simple and
provides a fast mean to compute the address of a key. Furthermore, if a key range
is provided, the blocks to be retrieved lie in "contiguous" blocks whose addresses
are linearly found by hashing the extremes of the range (assuming that all blocks
covering the range of the query are on the same level).

It can be easily checked that the above sequence of hashing functions does
not lie in the class of linear hashing split functions advocated by Litwin. There-
fore we propose a different split pattern ( which we refer to as the "one sided loga-
rithmic folding™). The split algorithm is described in Section 9.5.5 while the fol-
lowing section contains an example to provide an insight to the expansion pattern
of this file structure. It is observed that, like LH, the expansion should be on one
dimension as operating systems cannot easily cope with files that expand in two
directions.

9.5.4.4. An Example of the Expansion Pattern of DRSAM

In the following pictorial representation, we assume block sizes of b=3
records and the home hash function is addy(Key) = OPH,(Key), i.e N = 4 buckets
or the current level "i" is 2. Then the split hash function is
add;(Key) = OPHj(Key) and we are looking at the three leftmost bits. Assuming
that a key is encoded in 8 bits, the ranges for level 2 are as follows:

bucket #0: 0 to 63.

bucket #1: 64 to 127.

bucket #2: 128 to 191.

bucket #3: 192 to 255.

For an expansion cycle from level 2 to level 3, each range splits in consecutive
buckets. For example, bucket #0 splits onto buckets #0 and #1 and the respec-
tive range is then: 0-31 and 32-83, and so on. In general, bucket #x splits onto
buckets #2x and #{2x+1).

In Figure 9.5.11, the state of the file is shown with 9 insertions. We observe
that bucket #0 is full. We begin with the split pointer at N/2= bucket #2
(marked by a "*").

#0 #1 | #2(+) | #3 |
0 70 130 200

10 72 162 235

80

Figure 9.5.11.
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Figure 9.5.12 shows the file state after the insertion of Key=12. This value
hashes to bucket #0 and a split occurs with an overflow chain attached to bucket
#0. Bucket #2 splits onto buckets #4 and #5. Note that bucket #2 is not used
for the moment. We shall refer to it as the “hole”. This hole expands and shrinks
during the expansion cycle. During an expansion cycle, the maximum number of
buckets that would be unused at a given time can be shown to be iog,N = i. This
is one of the drawbacks of this technique and represents the price we have to pay
to preserve the desired sequential access characteristic of the file. We shall further
talk about the “hole"” characteristics in the following section. The split pointer is
advanced to bucket #3.

#0 #1 #2 | #3 () 4 M #5
0 70 - 200 130 162
10 72 - 235
12 -
Overflow Area
L 80 1 ] | | [ ] ] ]

Figure 9.5.12.

Let us see what happens with the successive insertions of 120, 131, 121, 122
and then 62: first 120 goes in bucket #I1, then 131 in bucket #5 (as bucket 2 has
already split and is at level 3 now). Figure 9.5.13. shows the status of the file at

this stage.

#0 —F#L #2 *
0 70 - 200 130 162
10 72 - 235 131
12 120 -
Overflow Area
60 [ 1 | I | [ l i

Figure 9.5.13.

Then comes 121, a collision occurs and bucket #3 splits onto buckets #6 and #7.
The bucket split pointer "folds back™ to bucket #1 as the consecutive buckets #2
and #3 are now empty and can be used to expand bucket #1. Figure 9.5.14 shows
the state of the file after inserting Key=121.

9-40




|__#0 #1(*) | #2 #3 #4 | #5 #6 #7
0 70 - - 130 182 200 235
10 72 - - 131
12 120 - -
Overflow Area
L 60 121 I |

With 122 inserted, bucket #1 splits on buckets #2 and #3 and the split pointer
folds back to bucket #0 as shown in Figure 9.5.15.

Figure 9.5.14.

OO Y |
0 - 70 120 162 200 235
10 - 72 121 131
12 = 122
Overflow Area
(so0 1| 1 1 i 1 [ |l 3

Figure 9.5.15.

Finally, inserting Key=62 induces a collision and bucket #0 splits onto buckets
#0 and #I1. At the end of the process, the file has undergone a full expansion
cycle and is at level 3. The split pointer is advanced to bucket #4 and a new
expansion cycle can begin. The status of the file is shown in Figure 9.5.16.

B T &5 T & L | &
0 60 70 120 130 162 200 L\ 235
10 62 72 121 131 '
12 122

Figure 9.5.16.

The reader can easily determine that the resulting load factor is low (0.625).
The load factor is expected to be similar to LH, and with an uncontrolled split
mechanism Litwin reports a load factor that is lower than the one of EH (around
0.60). Controlled splitting techniques could be applied as well as Larson’s partial
expansion method [LARSO| to improve on the load factor keeping the near
optimal direct access performance. It is observed that Larson’s partial expansion
method is not applicable as is, but should be modified to capture the sequential
order of the file.
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The splitting sequence is not easily seen from the example but the algorithm
in the next section provides an elegant and simple solution to the computation of
the address of the next bucket to split.

9.5.5. Underlying algorithms for DRSAM

In this section we describe the underlying algorithms that control DRSAM.
Those algorithms are described following a pseudo_C notation and are based on
the uncontrolled splitting mechanism.

1. Address Computatioi. Algor.ihm

For an insertion or a search operation, the bucket address of a record is
determined in a similar way as for linear hashing and is given as follows:

buck_add(Key)
I = i; /* set level to be the home level "i" *
* "m" is the home bucket address of Key */
m = add(Key);
/* Check the level of the computed address using the procedure
* Level(m) described in Section 4.3. Level(m) determines if we
* need to rehash with OPH,,; to compute the address of Key */
1 = Level(m);
if (1 ==1+1)

I{}n = add,(Key);

return(m);

The bucket address computation is quite simple, provided that the level of
the record can be determined with a fast routine. For LH, the level is determined
with one comparison step while, as shall be seen, our method is slightly more com-
plicated but still computable in a straightforward manner. This is a required com-
putation overhead to keep the sequential access characteristics of the file.

2. Algorithm for the Next Bucket to Split

As previously stated, a bucket "x" always splits onto buckets "2x" and
"2x+1". The split pattern is as follows: we begin by splitting bucket N/2 onto N
and N+1, then N/2 +1 onto N+2 and N+3, followed by a fold back to N/4 onto
N/2 and N/2 +1, then back to N/2 +2 onto N+4 and N+5 ... The strategy is to
know when to “fold back” and use the emptied space efficiently: as a general rule,
a "fold back" takes place when two consecutive buckets are emptied through pre-
vious splits. While this pattern may seem complicated, the algorithm we provide
is very simple and straightforward.

“N" is the number of buckets in the file for level "i": N = 2. "Pt" is the
pointer to the next bucket to split in the upper range N/2 to N-1 and Splitpt is
the pointer address of the bucket that will undergo a split.
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Initially: Pt==N/2 + 1; Count=0 and Splitpt=N/2;
void split()
* step 1 */
‘Perform split by reading bucket pointed to by Splitpt and rewritin ' the
2 resulting groups on the consecutive buckets given by OPH,,(Key)";
/* step 2: this step tests for a "fold back condition" and assigns
* the next split bucket address */
if (Splitpt is odd)
Splitpt = (Splitpt -1)/2;
else
Splitpt=Pt; Pt=Pt+1;
* step 3: test for a completed expansion cycle */

if (Splitpt == N)i=1 +1;
return;

It is noted that the expansion is natural, and at the end of an expansion cycle,
"Splitpt" points to "N". We only need to set the home level to "i+1". This is done
with step 3.

The split sequence for the expansion of a file of 16 buckets to a file of 32

buckets (level 4 to 5) is shown in Figure 9.5.17.
6 7

uamm_#iﬂ 0 1 2 3 4
| Split # 118 15 7 14 3 10 13

? jon

_Bmkg;_#_Hs 10 11 12 13 14 15
(Split £ Il 1 2 4 5 8 19 11 12

Figure 9.5.17.

As compared to LH, the split sequence for a contiguous file is two splits fol-
lowed by one fold back split, then two splits followed with two fold back splits
and so on. It is noted that fold back splits are made to reuse the emptied buckets
by previous splits. Empty buckets appear in the file structure at the beginning of
an expansion and disappear at the end of the expansion cycle. It is easy to show
that, during an expansion cycle, this "hole" can consist of atmost "i" unused buck-
ets”. The reason for the "hole” is that the splits use two "new" physical buckets
instead of one bucket as for LH and subsequent splits tend to increase its width
(in scattered but traceable locations). One would think that this is going to affect
the load factor of the file. For large files, the "hole” would not be of importance as
to its effect on the load factor. .

For a full expansion from 16 to 32 buckets, the sequence for the number of
empty buckets that compose the hole is: 1,2,1,2,3,2,1,2,3,2,3,4,3,2,1,0 buckets.
This would take place if we assume that we do not use the emptied slots until a
collision occurs or, for controlled splitting, until a certain load factor is achieved.
The effect of the hole needs further investigation.

9-43




|r-.IllI-lllI.IlIlI-I-I-III-IIIIIIIIIIIIIIII-I-----r*

While for small files the hole leads to a poor load factor, its effect becomes
negligible as the file grows in size. As a first qualitative evaluation, the maximum

offset between the load factor of LH and DRSAM is equal to —ll- this relative

value becomes negligible if we are dealing with very large files and would not con-
siderably affect the storage overhead or the response performance of DRSAM.

1% 00

We still hawfs to devise how to recognize which bucket is at level "i" and
which is at level “i+1", during an expansion cycle. This is necessary to compute
the exact bucket address for an insertion, deletion or search operation.

3. Determining the Level of a Key

Determining the level of a key is, to a certain extent, the inverse of the
bucket split address algorithm. We have to determine, within the range of the
key, if the pointed to bucket has undergone a split. Fortunately, this is done in an
elegant way as well with the procedure Level(m), where "m" is OPH;(Key) and is
the home bucket address of "Key" for level "i". Let us first put down some
mathematical formulae needed to clarify this procedure:

Define § = — 2 )
2(|—l—lbg§n])

with m s 0. The special case m = 0 is

accounted for on its own in the algorithm. Let v = S ><ﬁ and v, = @ XN,

then we can write: m € [~ , 7, [ with the interval being the "range of m". The
number of splits that occurred in the range of "m" is denoted NS and can be
easily shown to be:

[Pt — N/2)x B 1-1 if Splitpt€[y,Pt|
NS, =
[Pt - N/2)x 8 | otherwise

Let m' = m —~, + 1, then the Level(m) procedure is straightforward as given in
the following pseudo_C code:
Level(m)

* step 1: set level to the home level "i" */
evel = i;
/ * step 2: check for the special case of bucket 0 */
if m == 0 then return(level); /* bucket O is always at the home level */
/* step 3: */ ,
Compute : 3, ), NS, and rz ;
* step 4: determine actual level */
if (m <NS_)

/* bucket "m" has underzone a split and one should rehash
level = i+1;

return(level);
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4. Insert Routine

The insert routine follows the same concept of the address computation pro-
cedure. First, we need to compute the bucket address for the insertion and then
append the record to the bucket if space is available. If the addressed bucket is
full, for an uncontrolled split mechanism, the routine calls the split procedure and
the overflow resolution procedure. The overflow resolution procedure, which is not
discussed in this report, would be similar to the CRM method of LH or other
overflow bucket allocation scheme.

Insert(Key)

1. buck_sdd(Key); /* Compute bucket addrese of "Key" */
2. "Read bucket';
3. if "empty space available"
then "insert record";
else "call split routine and overflow resolution procedure”;
4. return;

The deletion algorithm is similar but would require a merge routine instead
of a split routine and is not discussed here.

9.5.6. Inverted Surrogate Files with DRSAM

In this section, we extend the DRSAM technique to Inverted Surrogate files
and propose the “Inverted Dynamic Surrogate File" (IDSF) that is meant to
replace the static inverted lists and TILs as applied to surrogate files.

The distribution of the value of an attribute over its domain is assumed to
be "quasi-uniform”, with the additional constraint that the peak value of the
value distribution factor C; < b, where b is the number of entries in a "block".
This restriction implies that DRSAM files seem to be especially suited for the case
when all equal BR values fit into one block and its associated overflow area. This
restriction shall be relaxed in the future by providing proper control schemes. It is
noted that this assumption is made for any dynamic hashing technique such as
linear hashing (LH), extendible hashing (EH) or others. Furthermore, in the case
of inverted surrogate lists, this restriction is not overwhelming and would be
easily relaxed as the surrogate file records are small in size so that "b" is expected
to be relatively large (more than 300 per bucket).

9.5.6.1. System Model

Using proper hashing functions on the attributes of a tuple in a relational
table (referring to relational data bases), we can build a surrogate file representa-
tion of that table. Figure 9.5.18 shows an example of a surrogate file for a
knowledge base relation, with the entries of column Ar, representing the values for
the i-th attribute binary representation (BR,) in a tuple. For each tuple in the
main file and in its surrogate image, we have attached a unique identifier (Uid).
This unique identifier could be one that is provided serially or is actually the B
of the "primary key" in the relation. In our discussion we assume that the Uids
are serially generated and Figure 9.5.18 is representative of a 4 arguments rela-
tion.




—»

Uid Arl ATQ Al'3 Al'4

uidl | . brl 1 e
| uid2 br2=010011010

uid3 br3

uid4 brl

uids br4=010101011

uidf brl

uid?7 br5=010101110

1uid8 brf
_uid9 bré

uid10 brZ.

Figure 9.5.18 A Surrogate Image of a Knowledge Base Relation

A fully inverted dynamic surrogate file (IDSF) would consist of "i” DRSAM
files. The DRSAM file records for attribute "i" are composed of the BR of the
hashed values (instantiations) for that attribute, with the corresponding Uid. The
reader shoul be aware that, in an actual implementations, only
Postfix(BR,(#BR-1)) bits are needed to be attached with the unique identifier,
with Postfix(K,n) ‘as the right "n" bits of "K" and "I" the home level of the
DRSAM file under consideration. This would mean that the inverted files would
more efficiently use the space as the file grows. A typical DRSAM surrogate file
block with its associated records is shown in Figures 9.5.19.a and b.

The file is assumed at level 1=3. If the block structure of Figure 9.5.19.b is
followed, we would be dealing with variable length records depending on the level
"i" of the addressed block. This would certainly increase the complexity of the
managing software and its associated hardware to deal with such blocking
schemes. The pros and cons of such a blocking structure will be investigated as it
leads to an efficient use of the storage space for the inverted surrogate lists and
implies a lower collision probability as the file expands.

BR Uid
010011010 | uid2
010101011 | uid5
010101110 | uid?

Figure 9.5.19.a. Block structure with fixed length records.

Postfix(BR.(#BR-1)) | Uid

011010 uid2
101011 uid5
101110 uid7

Figure 9.5.19.b. Block structure with variable length records.
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9.5.6.2. An Estimate of the Storage Overhead

In this section, we provide an estimate of the storage overhead for inverted
surrogate files based on DRSAM. Consider two relation file sizes of 10 Mbytes and
1 Gbytes and assume that each file has six arguments (A, = 6) of 15 characters
each. With B = 2 Kbytes, C; = 1, Uids encoded with a 4 bytes word and a file
load factor of 0.8, we compute the approximate values of Table 9.5.1.

Meaning Sqb = 107 bytes Sdp = 10° bytes

Minimum number of bits for a BR:

17 24
[loggN ]
Number of records in the relation (N) 11x10* 11X10°
Inverted surrogate list size 8% 8-10%
to relation size ratio (%S;)
DRSAM file level (1) 9 16
BR-] (bits) 8 8
Compression ratio of variable 0.81 0.71

- to fixed length record formats

Table 9.5.1

It is noted that the results are conservative estimates and a more accurate
analysis will be provided in the future. The value of BR-l = 8 bits checks with
the intuitive feeling that variable length records, as advocated in Figure 9.5.19.b,
are efficient as to the storage use of DRSAM files for inverted surrogate file appli-
cation. The ratio of the variable length to fixed length records is 0.81 and 0.71 for
the 10 Mbytes and 1 Gbyte files respectively. This presents a substantial saving of
17 to 30 % on the inverted surrogate list size with fixed record formats. A value
of 8% of Sy, per inverted list, is a good estimate for a preliminary evaluation of
an inverted surrogate list size. In contrast to conventional inverted lists, this prel-
iminary estimate shows that inverted surrogate files do not require an overhead
that is in excess of the data base size.

The analysis of TIL files assumes static files (or stable files) that are initially
loaded and stored in compact form. For inverted lists built with DRSAM, the
storage overhead is larger and is caused by the additional space required to
manage volatile files. This overhead is still less than 50 % of the original data
base.

9-47




—

9.5.8.3. Query Response Time

In this section we provide a preliminary insight to the equations that govern
the query response time for inverted surrogate files. Like TIL files, the query
response time (QT) for IDSF is divided into three processes:

1) Surrogate file processing and Uid retrieval (T,p).
2) Uid intersection time (T,).

3) Data base access time (T4,) to read the identified record(s) satisfying
the query.

The query response time is written as: QT = T, + T;, + Ty,

1. Surrogate File Processing Time

Tqp is determined by the number of disk accesses required to retrieve the
matching Uids. With ACQ) as the average disk access cost for the surrogate
inverted list of argument 'i", "Q" the query specification with R, arguments and
Ovl(i) the average overflow chain length for the DRSAM file of argument “i", the
average surrogate file processing time can be written as:

Tep = SAC()
1€Q
AC(i) = (1 + OVI(i))XT,

where T4 is the retrieval time of a secondary storage block. We did not account
for the search time of the retrieved blocks as it can be overlapped with the
retrieval process and is neglected. Furthermore, for a DRSAM file with a load fac-

tor of 0.8, AC(i) is expected to be around 1.2 disk accesses (if we assume similar
characteristics as for LH).

2. Intersection Time

With no loss of generality, we assume conjunctive queries as the union opera-
tion {or disjunctive queries has the same level of complexity as the intersection
operation. Two cases are considered:

R, = 1: no intersection is required.

Rg > 1: when more than one argument value is specified in a query, the lists
of retrieved Uids must be intersected. Denoting by NC(Rq), the number of com-
parisons required to perform the intersection operation, T\ the average word

comparison time and WL the word length, the total intersection time is written
as:




An estimate of the number of comparison steps, NC(Rq), for the intersection
operation is derived in [HAC88, Appendix 2.

8. Data Base Access Time

With GD as the number of good responses to a query and the probability

(= 1 ) of a given response to be in a specific block, the data base access time is,
Sdb

B
following Cardenas’ equation [CAR75] and assuming direct access to the main
data base:

T Tx[si}xa—u 1%
® B Sdb

Following [HAC88, Appendix 2], the number of good responses is estimated as:

GD NH(C‘)
ier, N

It is observed that the data base access equation is based on successive selec-
tions with replacement. Yao [YAO77| discusses selection without replacement and
points out the cases where Cardenas’ equation gives rise to a significant error. For
our purposes, Cardenas’ approach is satisfactory as the number of good responses
is expected to be small for very large knowledge bases.

9.5.7. Parallel Back End Architecture for IDSF

In this section, we describe and analyze the benefits of a parallel back end
architecture for the management of knowledge based systems with inverted surro-
gate files.

9.5.7.1. Back End System

Shown in Figure 9.5.20 is a back end system for the management of a very
large extensional data base of facts. This system will also manage many inten-
tional data bases (sets of inference rules), but those are not shown on the diagram.
We assume that there are many gigabytes of fact data stored on the EDB disks.
Likewise, there are several gigabytes of surrogate file data stored on the SF disks
(SFD). Since the relational model is assumed, the facts are stored by relation and
then by tuple unique identifier within relations. We will access the EDB only by
relation name and then by tuple identifier, so a dynamic hashing method that
minimizes disk accesses can be used, one of them being specifically DRSAM as
presented.
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Figure 9.5.20 BACK END ARCHITECTURE FOR FACT MANAGEMENT.
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As an example, assume that a user’s request requires access to only two lists.
The relevant block(s) from the first list would be retrieved from the SFD and
input to its associated surrogate file processor (SFP) where on the fly comparisons
are made for matches by the comparator (CMP). Note that the SFP consists of a
comparator (CMP) and cache (CACHE) with their associated control microproces-
sor §MP) The unique identifiers would be stripped off and sent to the Intersector
Hardware block (INT HW) through the multiplexer (MUX). The list of Uids is
piped in the pipeline sorter (SORTER) and then fed to the cross-lists comparator
(XCMP).

Meanwhile, the second list is processed in a similar way and sent to the
XCMP module. Then, the two resulting lists of possible responses are intersected
by the XCMP block. The output of Uids (if any) is sent to the collector (COL-
LECTOR) that acts as a buffer and the block of good responses (HITS) is passed
on to the Extensional Data Base Manager (EDBM) for processing. The EDBM will
retrieve the facts, compare them with the search criteria to insure that a collision
has not occurred, put them in blocks, and sends them to the logic programming
engine.

In the case where more than two lists are to be intersected, the outcome of
the two lists intersection is fed back from the COLLECTOR to the XCMP block
for a new cross comparison operation with the third list coming from the
SFD/SFP pairs. This process is continued until all the arguments in the query are
properly processed. When a single argument query is considered, the MUX passes
the incoming list from the SFD/SFP pair to the COLLECTOR that relays it to
the EDB manager. The complete system can be viewed as a three level pipeline
controlled by the Requests Scheduler/Optimizer.

9.5.7.2. Analysis of the Proposed Architecture

In this section, we analyze the motivations and the benefits of the described
architecture. One recurrent criticism against the use of inverted file structures is
that their performance degrades as the number of arguments in a query increases.
A good algorithm would tend to perform in the opposite way, as one hopes to do
work proportional to the expected number of tuples in an answer. This criticism is
assessed based on the sequential processing of the surrogate inverted lists, but is
mitigated if parallel processing algorithms running on multi-processor architec-
tures are designed for transformed inverted lists. We will have to look at the
equations for the different components of the query response time (QT), namely

Tsp’ Tit and po.

1. Surrogate Files Processing Speedup

We observe that T, is proportional to the number of arguments in a query
(R,) and is related to the disk access cost for the retrieval of the inverted lists
ing'xca. The IDSF structure is well suited for parallel processing through the dis-
tribution of the inverted lists to multiple storage and associated processor units
(SFP). For the case of a single user® queries on a relation with degree "d", an
O(d) speedup for the surrogate files processing time can be achieved with a max-
imum of "d" SFD/SFP pairs. For a multi-user system, the speedup which can be

* A “user” is referred to as the application programmer. A single user refers to a single
application environment versus a multi-user i.e multiple applications environment.
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achieved is a function of the number of SFD/SFP pairs and the application being
considered. The surrogate file will actually consist of many sets of inverted
subfiles, one set for each relation. Those sets will be distributed over the SF disks
in order to insure maximum parallelism in disk accessing.

The distribution algorithm follows an optimization criterion related to the
application on hand. We note that the assignment problem is NP_Complete and
heuristic algorithms, specifically designed for the proposed architecture, are being
presently developed for the proper distribution of the surrogate inverted lists. The
outcome of the optimization algorithm would be a storage mapping of the surro-
gate inverted lists that is used by the Requests Scheduler/Optimizer for query
optimization.

For a distributed storage allocation system, the equation for the surrogate file
processing time should be modified to account for the access of the lookup tables
that are bound to exist. The use of cache memory (CACHE) in each SFP unit is
to store the lookup tables that are small in size.

2. Intersection Operation Speedup

The analysis for the intersection operation cost [HACS8] shows that T,
heavily depends on C;: while acceptable for small data bases, T;, becomes a com-
putation bottleneck for medium and large data/knowledge bases with high aver-
age redundancy factors (C;). With a VLDKB, the analysis reflects an essential
need for special intersection hardware (referred to as the Intersector) to cope with
the computation intensive intersection operation. In Figure 9.5.20, the Intersector
is part of the INT HW block and mainly consists of the pipeline sorter (SORTER)
and cross-list comparator (XCMP) units. The sorter is essential and shall be
optimized to handle large lists of Uids as they present the computation bottleneck
of the intersection operation. The XCMP block is used to cross compare the
?orted 1;511;:‘ I;)f Uids from the output of the SORTER with an incoming list of Uids
rom a .

With L., as the minimum length of the lists involved in the intersection
operation, an O(Ly;,) computation steps could be achieved with the Intersector.
Compared with an O(Lp,XlogoLpyin) computation steps of the best sequential
algorithm, the speedup achieved with the hardware Intersector would be
O%IOS'ZLmin)'

For high query rates, the operation of the INT HW block and the SFD/SFPs
are overlapped, thus increasing the throughput of the system. The number of
Intersector blocks is not bound to one, as shown in Figure 9.5.20, and is a func-
tion of the throughput constraint of the design. Maximizing the level of pipelining
between the SFD/SFP pairs and the INT HW block(s) is an additional require-
ment on the optimization algorithm. It is worth noting that a different intersec-
tion hardware could be derived based on a parallel cartesian product algorithm.
We believe that such hardware would be more elaborate than the sorter/cross
comparator combination.

8. Comments on the Data Base Access Time

Data base access time (T ;) depends on the locality of the good responses and
would be determined by the clustering scheme for the tuples in the existing EDB.
In the analysis, T4, is derived following Cardenas’ assumptions [CAR75] of uni-
form distribution for the records over the EDB secondary storage blocks. In a
multi-user environment, clustering can achieve optimal Tj, values for one user
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while degrading the response time for another. EDB clustering is an open design
problem that lies in the class of NP_Complete problems.

9.5.8. Open Research Problems and Future work

One unusual phenomenon common to all dynamic schemes and therefore
expected with DRSAM and IDSF is the following: if a collision occurs, it may hap-
pen that splitting one level only would move all the data into one block instead of
dividing it onto the 2 buckets. Let us assume that the hashing depth is x bits,
then the splitting function resolves it by dividing the information in two sets that
differ through the (x+1)th bit. It could be the case that all the data in the bucket
does not differ through this bit but through a higher level bit, then the split
results into an empty bucket and a full bucket with the possibility that an
overflow record is attached to it. This means that if the attribute values distribu-
tion is highly non uniform, LH, EH and also DRSAM may result into a file struc-
ture with long overflow chains and low load factor. Controlled splitting is used to
set the load factor as required.

Different control mechanisms could be added to alleviate this behavior. One
of them would be to have multiple levels existing concurrently during the expan-
sion cycle of the file. While the present techniques are based on a two level
scheme, we believe that such multi-level schemes could be adapted, especially
within a fully distributed environment. In this case, a table lookup is provided
and with a small additional storage overhead, more than one expansion level
could exist at a given time. The idea is to partition the file into quanta that are
ex;l)anded independently as required, following closely the distribution of the key
values. : :

Another promising approach was studied by Larson [LAR79] in a different
context. He analyzed the use of "repeated hashing" as a technique to handle
overflows and concluded that the usefulness of this technique is doubtful. We
believe that the pessimistic results reported by Larson are due to the fact that
deletions, in his analysis, are handled by marking the deleted records. This would
mean that repeated hashing would behave in a similar way as usual overflow con-
trol techniques. In the case of dynamic hashing, repeated hashing could become an
interesting and simple method to extend dynamic hashing methods to handle
overflows as well. Dynamic hashing schemes, like DRSAM, handle deletions and
insertions by natural “"contraction” and "expansion". The problem of having a file
with marked "unuseful data" is avoided and repeated hashing would be a natural
extension to DRSAM files.

Ramamohanarao et al [RAM84] analyzed this"idea. as applied for linea. hash-
ing and derived a general scheme referred to as "recursive linear hashing". This
method seems promising and is presently being investigated for DRSAM.

DRSAM (and IDSF) present a promising alternative to ISAM, VSAM (and
TIL) with overflow buckets. Those structures are expected to show a near perfect
retrieval cost for random access while they preserve (within some restrictions) the
ordered characteristic of TIL. The major asset of IDSF with respect to TIL being
their efficiency and ease of maintenance when applied to volatile files. Furthemore,
knowledge about the distribution function would help the data base designer fine
tune the IDSF structure to the application on hand. The load factor of IDSF is
expected to be comparable to the one of LH and other extensions techniques to LH
(like partial expansion [LAR80] and multidimensional designs [OUK83]) could be
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applied as well to IDSF. Partial expansions and controlled splitting techniques
should result in a high load factor (around 0.9) with little degradation in perfor-
mance.

DRSAM (or IDSF) is a promising dynamic file management technique. We
mainly discussed its application in the context of operating systems that handle
contiguous file allocation schemes. In forthcoming work, we will analyze it within
the general distributed allocation scheme and in this case, as for LH, a lookup
table is necessary. The concept of quantified allocation will be studied and applied
and we will show that with minimal additional storage overhead, the file structure
can be made to expand randomly and would adapt to almost any distribution
function for the values of an argument over its domain. This would tend to
minimize the overflow chains and thus decrease the oscillation in response time
detected for LH. Split control and partial expansions will be studied as well and
overflow handling will be analyzed with the usual overflow chaining, the repeated
hashing or other suitable overflow handling mechanism.

Based on IDSF structures, we introduced a parallel architecture for a Very
Large Data/Knowledge Base. We intend to carry a detailed analysis and develop-
ment of this architecture. Wherever needed, analytical as well as computer simu-
lated models will be derived.
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9.6 Management of Very Large Rule Bases

Presented in this section are techniques for managing a very large rule base
to support diverse requirements of parallel logic programming systems based on
surrogate files and associative processors. Future work on general rule indexing
schemes are described in section 9.6.4.

9.6.1 Parallel Execution of Logic Programming

Conery [CONB87] has classifed the inherent parallelism in logic programming
systems into three major categories: AND-Parallelism, OR-Parallelism and Low-
level Parallelism. Our major concern here is a special case of OR-parallelism called
search parallelism which has been defined as a paralle] distributed search to find
every clause with a head that unifies with the selected goal. Since a search per-
formed by integrated knowledge base machines should be based on unification
rather than equality, it is well known that an effirient implementation of
unification is the central issue in logic based systems. Several processors dedicated
to the unification operation have been proposed in recent years to accelerate this
most time-consuming operation in logic programming evaluation [WOQOOS85]
[SHOS86] [STOS88).

Informally, the main purpose of unification is to make two or more terms
identical by proper and the most general substitutions for logical variables in the
terms. A term is defined as follows {LLO84|:

(1) A variable is a term denoted by a capital letter such as X,Y,Z,...
(2) A constant is a term denoted by a lower case letter such as a,b,..
(3) If fis an n-ary function and t,,..., t, are terms, then f(t,,..,t,) is a term.

Ever since Robinson introduced the basic algorithm of the unification opera-
tion for the resolution principle [ROB65], more efficient algorithms have been pro-
posed and the complexity of the unification operation has been analyzed by many
researchers [DWO84| [VIT86]. Among them, two algorithms [PAT78] [MARS82] are
claimed to be linear. These algorithms are based on a complex data structure
called Directed Acyclic Graph (DAG). Also, Morita proposed a linear representa-
tion of a term suited to stream processing of unification [MORS86]. The DAG and
linear representations of a term are shown in Figure 9.6.1 (a) and (b) respectively.

Our major concern in implementing unification for very large rule bases is
finding all potential candidate clauses within a small amount of time so that we
can deal with real time applications. Since the full unification on such data will
require a heavy processing load, our goal may not be achieved without restricting
unification. Furthermore, the results of [DW084} indicate that, since unification is
inherently sequential, even parallel evaluation of a unification algorithm may not
offer a considerable speed-up over a sequential one.

The major processing load stems from ‘’occur checks’ to prevent the
unification from entering an infinite loop. That is, when testing if a variable X
unifies with a structured term t, a check should be done whether X occurs in t
i.e. {X/f(X)} ). We can eliminate these requirements by adopting mode declara-
tions to construct a 'standard form’ of clauses as in PARLOG [CLA86| where the
structured arguments appearing in clause heads can be transferred to the bodies of
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clauses.

(a) DAG
(£2X(g3)(X0)(b0)(c0)h2)(a0)XO0)
(b) Charcter String

Figure 9.6.1 The Representation of a Term ( f( g(X,b,c), h(a,X) )

A PARLOG program that possesses a single solution consists of a sequence of
guarded Horn clauses. A guarded [lorn clause of PARLOG has the form

A:-G,,G,,..,.G,:B,,B,,..,B,.
m,n >0

If m=0 then the commit operator can be omitted. A candidate clause of
PARLOG is one which succeeds in all input matching with the call (subquery) and
whose guard literals ( G,,Ga,..,Gp, ) are proven to be true. PARLOG exploits
"mode” declarations for the clauses in the single solution relation to avoid the
requirement of full unification, and to control process synchronization [CLA86|. A
mode declaration for a predicate can constrain the unification between a goal and
a clause (head) in a program. Mode declaration is of the form

mode R(m,,mg,....,my)
where R is a predicate name and each m, is either '?' or '"’.

An argument annotated with a '?’ in the mode declaration for a predicate can
only be used for input matching against the corresponding argument of a call.
That is, the unification between a call and the head of the clause is successful only
if the corresponding argument in the call is instantiated ( i.e. not a variable ).
Otherwise the evaluation suspends. On the other hand, an argument annotated
with a ’"' must be used for output matching against a variable of the correspond-
ing position of a call. In other words, the corresponding argument of a call should
be an uninstantiated variable on unification. If the argument is not an uninstan-
tiated variable, the unification fails.

The mode declaration is used to determine the "standard form" of clauses at
the first stage of compilation. In the standard form, all complex terms appearing
in the heads of clauses can be represented as pure variables, and all input and
output matching between a call and the heads of clauses are translated to explicit
unification primitives instead of general unification.
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Consider, for example, 2 simpie PARLOG program

mode member(?,?).
member( H,[H| T} ).
member( H,{X| T] ) :- "H=X : member(H,T).

1.t

where ":' is the commit operator and "H=X is a guard.

This program can be mapped into the standard form
member(H,Y) :- [X] T)]< =Y ,H=X:.
member(H,Y) :- [X| T)|<=Y, "H=X: member(H,T).

The term [X| T] that was in the second argument position of the second
clause head appears as [X| T} < =Y because it has the mode '?'. Here '<="is the
one way unification primitive that can only bind variables in its left argument([X]|
T]). This implies that this term can only be used for input matching against the
given argument Y of the call. The repeated use of the term H in the head of the
first clause is detected as an implicit test because both terms have the mode '?'.
Thus the term [H| T] is changed to [Xl T] ( here X is an arbitrary variable ) and
an explicit test unification primitive '=' is added in the guard. In order to change
a non-variable term with the mode '*' to the standard form, the assignment
unification primitive ':=' should be used in the body. The unification primitives
of PARLOG are described in [CLA86|. Maluszynski and Komorowski [MALS5]
have also discussed the use of mode to constrain full unification.

Consequently, the structured arguments ( e.g. (II| T] ) in the clause head can
be transferred to the guard or body of a clause as shown in the above examples.

9.6.2 Rule Indexing Schemes for Surrogate Files: CCW-1

In previous sections, we have shown the use of surrogate files for partial
match retrieval on large sets of facts with varyving degrees and cardinalities. In
retrieving facts, we assume that the facts are stored in such a way that one first
accesses the relation and then a particular tuple using a unique identifier. Thus,
we do not need to transform the predicate name (e.g. parent) for the facts. We
obtain the unique identifier from processing the surrogate file, and the name of the
relation from the given query. Thus, the storage structure for the facts themselves
would be very simple and the desired facts can be retrieved in at most two disk
accesses. Most relational operations such as selection and join, which are required
for the bottom-up query processing in logic-oriented database systems, can be
performed on the surrogate file rather than on the actual database. This makes

relational operations much faster and increases the system's performance when a
large volume of ground facts exist.

In a CCW representation of a clause head, we don’t consider structured
terms. The clause head contains pure variables and constants as arguments by
the transformation technique adopting the mode declaration. General rule index-
ing schemes are considered in section 9.6.4.

Variables should be distinguished {rom constants. This can be done by set-
ting the tag bit (most significant bit) of the CCW to ' 1 '. Unlike facts, there are
only a small number of rules that define a predicate, i.e. rules with the same head.
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Thus, we need to transform the predicate name as well as arguments.
Suppose we have rules for 'ancestor’,

ancestor(X,Y):- parent(X,Z),ancestor(Z,Y).
ancestor(X,Y):- parent(X,Y).

We hash the predicate name and arguments by the same hashing function
used in CCW for facts. The number of arguments is also concatenated to the
hashed value of predicate name.

H(ancelstor 2) H(}l{) H(Y)
011100010 100100111 100101001.

The CCW representations for the two rules would be the same except for the
uid’s to be attached to them.

011100010 | 100100111 | 100101001 |uid_1
011100010 | 100100111 | 100101001 |uid_2

Thus, a surrogate file can be used to find the corresponding bodies of clauses
with which a goal can unify via uid’s.

This method guarantees retrieval of all desired terms ( clause heads or facts )
although, due to possible collisions resulting from the hashing method some
undesired terms may be retrieved. A longer word length for the CCW can minim-

ize such collisions, and post retrieval comparisons can be used to eliminate
unwanted terms.

In the next section, we describe how one might perform partial unification on

a surrogate file by prcposing a special associative memory for bidirectional don’t
care matches.

9.6.3 Partial Unification on Surrogate Files

In this section, we present the basic idea of unification on a surrogate file
using an associative processor. We have shown in section 9.6.1 how to transfer the
complex structured arguments in the head of a clause to its body. For simplicity,
we assume that the query contains only pure variables and constants. Thus. the

query code word (QCW) can be encoded by the same technique as described in
section 9.6.2. :

First, for all constants in a QCW, the corresponding arguments of the CCW
must be either the same constant or a variable in order for the terins to be
unifiable (Input matching condition).

In the input matching step, we regard all variables as "don’t care match"
indicators. Unlike usual "don't care” matches, however, we need bidirectional
don’t care matches because the data residing in associative memory, as well as the
QCW, may also contain variables. Since general associative memories do not
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provide this capability, a special associative memory is required. We designed an
enhanced associative memory for bidirectional don’t care matches, as shown in
Figure 9.6.2. Since by assumption only variables and constants appear in 2 QCW,
input matching among a QCW and a number of CCW's, each representing a head
of a clause, can be performed in O(1) time¥ (i.e. constant time).

By input matching, most unqualified terms can be pruned. After input
matching, we assumc that the qualified terms (heads) are read one by one for
further processing. Thus post processing will be required for only a relatively
small number of terms, namely the qualified terms.

QCW  01110...0010 010111111 100101100

— msb
[ [ancestor 2] [ Jtimothy ] [T A ] tnin

Match
Reg.
. ancestor 2 X Y uid_1
w X Y nu ulzz
—\-).— J
CCW  01110....0010 100100111 100101000 ' uid_2
01110...0010 100100111 100101000 uid 1

Figure 9.6.2 An Associative Memory for CCW-1

Obviously, the above condition is not sufficient. Consider, for example, two
terms of the form q(a,X,b) and q(Y,a,Y). Though they satisfy the condition, they
are not unifiable. We need post processing for the shared variables that appear in
arguments of qualified CCW’s. If the same variable appears in arguments of a
CCW, they should be bound to the same constant or variable (Input matching
consistency).

X To process a QCW with a longer word length than that of the associative memory’s,
the QCW should be split into parts and the unification performed on the parts in se-
quence. Since the unification for the QCW has to be performed in parts, the variable bind-
ings along with the content of match registers resulting form that unification should be
stored for the next unification. For simplicity, we assume that the word size of a (,."\V i<
always shorter than that of the associative memory.
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The prime objective of unification is to find proper bindings for variables.
After input matching and consistency checking are perfrrmed, the variables of
qualified terms (CCW's) are substituted by the constants obtained from input
matching. The reverse operation is required to bind variables in QCW. If these
terms are unifiable, then the similar condition as the input matching condition
will be satisfied. That is, for all constants in a qualified CCW, the correspondiug
arguments of QCW should be either the same constants or variables (Output
matching condition).

Finally, a consistency check for the variables in the QCW needs to be per-
formed. That is, if the same variables appear in the arguments of the QCW, they
should be bound to the same constant or variable (Output matching consistency).
The unification method always works with the function-free terms. An algorithm
for parallel evaluation of logic programs and some considerations on its hardware
realization have been discussed in [SHI87].

9.6.4 Future Work on Managing Very Large Rule Bases

The rule indexing method described in section 9.6.2, CCW-1, provides an
efficient mechanism in searching possible candidate clauses as well as in detecting
binding conflicts among shared variables in early stage of execution. However,
since this scheme is based on guarded Horn clauses and mode declarations, its
application is somewhat limited to the parallel logic programming paradigm.

We are currently developing enhanced rule indexing methods to provide more
general and efficient accessing mechanism to VLKDBs consisting of First Order
Logic clauses. Those schemes currently investigated are featuring type-checking
augmentation of CCW-1 (CCW-2), a CCW scheme for general terms (CCW-3),
and a CCW scheme for general clauses (CCW-4).

CCW-2 has a similar structure to CCW-1, which can be constructed by con-
catenating transformed code words obtained from the arguments along with the
hashed value of a predicate name. Each code word for an argument is divided into
two fields; tag field and value field. Unlike CCW-1, however, the tag field can
represent any argument types including lists and structured terms as well as vari-
ables and constants. The value field contains the transformed represcntation of
the corresponding argument according to the contents of its tag ficld. For exam-
ple, if a tag indicates the argument type of structured term, then the value field
contains the hashed value of primary functor, while if a tag is for a variable argu-
ment, the value filed represents variable identification number. This scheme can be
viewed as an augmentation of CCW-1 with the indexing scheme used in Warren’s
Abstract Prolog Instruction Set [WARS83|. However, in [WARS3], ouly the first
argument is indexed. Table 9.6.1 shows an initial design oi CCW-2 scheme. In
contrast to CCW-1, CCW-2 can be used for current Prolog systems and does not
require mode declarations. It is expected that false drop can be considerably
reduced when compared to previously proposed schemes such as [W]S84| [RAMSG}
[COL86| [SHI87] [WADS87] without sacrificing the compactness and uniformity o
CCW,
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Argument Type | Tag Field Contents of Value Field

Constant 00x Hashed Value of the constant
Function Olx Hashed Value of the Primary Functor/Arity
List 100 Hashed Value of the CAR constant
101 Variable ID for the CAR variable
Variable 11x Variable ID

Table 9.6.1 Code Word Description in CCW-2

Extending the rule indexing schemes to arbitrary complex terms is one of the
most attractive research topic for the next year regarding rule indexing schemes
since we can perform almost exact unification on surrogate files and it is more
efficient than performing unification on actual terms. General term indexing can
be achieved by using a term descriptor (TD) in the position of a structured term
or list. In addition, this indexing scheme can be used as a basis for processing
more complex EDBs having structured terms as arguments.

Indexing clauses to perform resolution procedures on surrogate files (CCW-4)
will be also investigated. A code for CCW-4 can be obtained by generating CCW-
3 codes for all predicates in a clause together with a clause descriptor containing
pointers for the body literals. However, this scheme may cause false drop propa-
gation problems during the resolution procedures. That is, after a goal is resolved
to a number of subgoals, it would be difficult to detect false drops.

As rule indexing schemes become more general, specialized architectures such
as associative memories are less practical. Instead, general purpose parallel proces-
sors seem to be adequate for surrogate file processing, especially when a significant
portion of the surrogate file can reside in main memory. An initial study revels
that massively parallel computer systems with large main memory and simple
general purpose processing element could have good performance in processing sur-
rogate files due to the uniform structure of surrogate files, The Connection
Machine with 32K processors is currently being used to study ‘various aspects of
surrogate files and will also be used for testing various rule indexing schemes.
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9.7. Optics in Very Large Knowledge Bases

Optical computing (especially in its analog form) has been widely used in
applications like optical image processing, pattern recognition and signal process-
ing due to its highly parallel nature. Another area that can benefit significantly
from the advances in optical technology is that of the Very Large Knowledge
Bases (VLKB). Optics can play a key role in the future VLKB providing larger
storage capacity, higher transfer rates and parallel data manipulation. This sec-
tion discusses some of the possible improvements in the VLKB performance if opt-
ical computing is involved.

9.7.1. The Potential of Optical Computing

The application of optical computing to specific areas should take into
account the idiosyncrasies of the problems in the specialized architectures
employed in those areas. Some problems may be simplified when a narrower view
is taken. In knowledge and data base applications for instance, selection, projec-
tion and join are common processing chores. Search of fixed format data (e.g.
indices or pointers) could make effective use of optical content-addressable
memory which can be implemented by multiplexing a large number of holograms
in a thick recording material like lithium niobate (GAY85].

The need for large capacity and high bandwidth secondary storage will prob-
ably be satisfied by using optical disks. Optical preprocessing of the retrieved
data, without intermediate electrical conversion, will help deal with the extreme
data rates. Currently, access times of optical disks are larger than those of mag-
netic disks. The reason is that the focusing optics are bulkier than the 'flying’
miniature heads of magnetic disks. Data rates are comparable, with potential for
improvement since optical disk technology is relatively new.

However, in contrast with magnetic media, there are two promising possibili-
ties for increased optical disk performance by at least two orders of magnitude
both in terms of access time and sustained data rates. First, the read/write beam
could be deflected from track to track very rapidly (on the order of 100
microseconds) by entirely optical means. Second, due to the non-interference of
light beams and the relatively large head to medium spacing one could imagine
multiple beams being used for reading data with a single head carriage assembly
[CARS84). Alternatively, an unfocused beam could simultaneously read data from
more than one point of a transmissive disk surface [MOS87]. This, coupled with
the possibility of multiple heads will allow for enormous data rates. If we assume
achievement of access times of 100 microseconds and data rates of 300

MBytes/sec, this represents almost two orders of magnitude improvement over
current magnetic disks.

Input/Output systems will have to be designed with these rates in mind.
Current electronics would be hard pressed to handle them. However, if data could
be preprocessed “on the fly" in its optical form, then the ultimate data rate to the
electronics would be much lower on the average and the data much "richer" in
information. Intelligent use of optical pattern matching could provide us with a
set of primitive operations that could help efficiently implement higher order func-
tionality like, for instance, a subset of relational algebra operators.
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For applications which demand fast searching of many megabytes of data all
this is very promising. But with current electronics technology if every subsystem
of a machine needs to cater to such high rates then its cost will be much higher
than necessary.

9.7.2. Optical Data/Knowledge Base Machines

Assuming a Data/Knowledge Base Machine (D/KBM) with multiple storage
units, multiple processors and the appropriate interconnection network, (Fig.
9.7.1), operating as a back-end machine to a host, we may consider four different
implementations involving optical devices.

| | seconDarY INTER- PROCESSING |
| k—=Y coNNECTION K—=) ("} HosT
' STORAGE NETWORK : UNITS |
- o __

Figure 9.7.1 A back-end Knowledge Base Machine.

a). Optical-Electronic-Electrontc, where secondary storage consists of optical
disks while the interconnection network and the processors are electronic. This
approach suffers from low optical disk transfer rates but may benefit from the
availability of the technology. In any case, the only improvement will be t..e capa-
city increase.

b). Electronic-Optical-Electronic, where secondary memory consists of con-
ventional magnetic disks, data processing is electronic, while the interconnection
network will be optical. This approach will theoretically improve the overall sus-
tained I/O rate and allow all kinds of interconnections between disks and proces-
sors without conflicts. However, it still retains the bulky magnetic disk units and
all the problems associated with them.

¢). Optical-Optical-Electronic. Here we have again optical disks for the mass
storage. Data in the form of light beams is extracted from the disks, passed
through all-optical interconnection network and only when it reaches the elec-
tronic processing units is converted to electrical signals. This design takes full
advantage of the huge capacity of otical storage and avoids the electron-to-photon
conversion, necessary with magnetic disks. The performance of this system will be
dramatically improved when multi-beam read/write operations (to be discussed
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later) become available. However, the anticipated hundreds of MBytes/sec I/O
bandwidth from a single disk may drive the electronic processors into saturation,
moving the bottleneck to the other end of the machine. For this reason, the fourth
approach appears to be the best solution.

d). All-Optical D/KBM. Data is stored, retrieved, transferred and processed
completely optically and only when it is sent to the front-end computer, may be
converted to electrical signals. The feasibility of such a system is still under
dispute because of the currently inferior (compared to the electronic) performance
of optical processing techniques. However, a number of key factors, though still
experimental ideas, are in favor of this approach and their implementation will
signal the "green light" for all-optical information processing.

9.7.3. A Hybrid Opto-Electronic Preprocessor

In this section we discuss the design of a hybrid opto-electronic preprocessor
that can help reduce the data rate to the electronics by executing a limited set of
functions on the optical data [BER87b].

Figures 9.7.2 and 9.7.3 sketch our hybrid.

Fiber/ Free space
|

] ! o

Optical
Preprocessor

U

Electronic host

Optical disk

Figure 9.7.2 Optical communication and processing of high data
rate disk output.
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Figure 9.7.3 Block diagram of a hybrid opto-electronic preprocessor.

The optical comparator receives the error-corrected optical bit stream, w-bits
wide, from the disk. The bit stream is compared on the fly against an optically-
encoded reference pattern. This pattern can contain "don't cares”. When the
current frame matches the reference pattern, the "interesting" portion of the

current frame is latched in a large electronic buffer (two-port cache) which holds it
until the host is ready to process it.

The buffer can be implemented as a ring to avoid any internal copying of
data. If the buffer ever becomes full, the controller stops the procedure. In this
way data rates in the order of 300 MBytes/sec can be accepted and filtered data
can be output on demand at a much lower rate.

The w bits of every symbol are encoded in a dual-rail manner by also includ-
ing the complement of each bit. Two symbols A and B are equal if AB+AB=0
in a bit wise operation. The AND operation is done optically by sequentially pro-
pagating a ray of light through two or more points and the OR by imaging two
or more rays on the same point [GUI8S]|.
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Figure 9.7.4 depicts the flow of data through the process. It consists of the
following steps:

Input stream

Butfer

Reference
pattern

Result

| Y

from optical disk
v —p v —>

Figure 9.7.4 Processing sequence. Input data from the optical disk is filtered
and the results are placed in a large, fast electronic buffer.

1). A w-bits wide stream of data from the optical disk is compared continu-
ously against a reference pattern. The reference pattern may include "don’t cares”
which are represented as a pair of zeroes in accordance with the dual-rail encod-
ing. The maximum length that can be matched is n symbols.

2). A match occurs if the OR results are all zero for a length of k symbols,

where k is the length of the reference pattern, one of the setup parameters of the
buffering operation.

3). A mask specifies which parts of the input stream are of interest and the
spatially separated parts are "packed” in order to became contiguous.
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4). The packed result is transformed to electric signals and stored in the fast
electronic cache before the next match occurs.

One way that the matching operation can be implemented is shown in Figure
9.7.5.

One symbol

VA VAV AV AVA\D

VAUV AL VD

4

Detector Array

Figure 9.7.5 Three-dimensional arrangement of the optical symbol matcher
(after Guilfloyle [GUILSGP. (a) Each bit of every symbol is
represented by two complementary light values that are AND-ed
with the corresponding bits of the reference pattern. (b) The
reference pattern is circulated up to a length of k symbols.
A match is detected when the first k detectors register a zero.

9-67




The input data stream and the reference pattern stream enter multi-channel
acoustooptic cells from two opposing sides. Light beams are imaged in such a way
that the complemented bits of the input stream symbols are AND-ed wilh the
uncomplemented bits of the reference pattern stream symbols (and vice versa), bit
per bit, symbol per symbol. Each detector accepts light from the 2w positions of
every symbol (OR operation). When the output is zero on the first k of the detec-
tors then a match has been detected. The operation depends on the circulation of
a pattern of length k<<n symbols in the optical device that is driven by the refer-
ence pattern.

When a match is detected the interesting portion of the input pattern
(according to the mask) is packed and kept in the buffer. Packing entails applying
a position-dependent amount of delay to predefined regions of the input pattern
while it propagates. Hence, it should not be very difficult to implement. Finally,
the contents of the buffer can be accessed and updated by means of a few, simple
electronic counters.

In terms of relational algebra operators the preprocessor we have outlined can
be employed to perform projection and exact-match selection. In terms of logic-
based knowledge bases it can perform filtering of ground clauses. Selection on a
conjunction of exact-match criteria is simply accomplished by incorporating all of
them in the reference pattern. Disjunction-based selection could be done by using
concatenated search patterns if the total length is less than n (and matching on a
subslet of the detectors), or by connecting more than one optical matcher in a
pipeline.

Operations that access data repeatedly (like joins) and/or randomly gike
sorting) cannot be implemented with a memory-less setup like the one described.
Nevertheless, the global connectivity of optics can undoubtedly be exploited with
other designs.

9.7.4. Future Work - Implementation of Relational Operations Using
Optics

Future research in the area of optics will be focused on investigating various
schemes for the efficient implementation of relational operations using optical dev-
ices such as spatial light modulator arrays, etalons and holographic memories.

The capabilities and limitations of the interconnect technology utilized in
realizing a computational or signal processing unit play an important role in
determining the speed and flexibility of the operations that can be achieved by
that unit. Optical signals can flow through three-dimensional space to achieve the
required interconnect pattern between elements of a two-dimensional data array
before executing the desired operation between them. To examine more closely
these advantages, three categories of operations must be considered.

The first category is that requiring single element operations like selection
and comparison. In such computations, each element in a one- or two-dimensional
array is processed independently from the rest of the array elements. The inter-
connectivity required by these operations is the loading and unloading of data to
a processor array. Clearly, optical interconnections have the advantage of being
able to input an entire data array in parallel using the third dimension of data

9-68




propagation. On the other hand, in our electronic associative processor, data can
be input and output only along the edges of a two-dimensional array, one row-
column at a time. Optics have a lot to offer in D/KB systems where single-element
operations are common.

Another category of operations is that of sorting, which is especially impor-
tant in D/KB systems. Computations of this type require global interconnections
between all the elements of the input array, that is, every element of the output
array is dependent of all the entries in the input array. The structure of the sort-
ing problem suggests an efficient algorithm in which computations grow as
O(N*logN). In order to achieve these computational savings, complex interconnect
configurations are necessary among the input elements of the array. Additionally,
these interconnections have to be changed during the different stages of the com-
putation. The requirement for dynamic interconnections can be exploited by
employing the perfect shuffle function configuration. The perfect shuffle can be
applied repeatedly at each stage of the computation to produce the currently
desired interconnect pattern, presumably at the expense of extra time required to
complete the interconnections. Optics offer the perfect shuffle function efficiently,
hence its use in hardware sorting units would lead to improvements in system
throughput.

The third category includes space and time variant operations like equi- and
theta-join. The input relations can form two one-dimensional arrays and each ele-
ment of the tirst array must be compared to all the elements of the second array.
The interconnectivity pattern for these operations varies in space and time. Furth-
ermore, the various interconnections are data dependent, making it impossible to
predict in advance the appropriate interconnection patterns required at the
different stages of the computation. The throughput of a parallel machine imple-
menting this type of operations is critically affected by the availability of a
dynamic and global interconnect network. Many processors could be idle for a
significant number of cycles waiting for data to be properly routed to them. The
overhead associated with the supervision of a controller in such a multiprocessor
environment lacking space and time variant interconnection network may severely

degrade all the advantages of parallel processing. Optics again offer great intercon-
nection flexibility.

At a higher level, the use of electronic content addressable memory has been
considered for improving the performance of database operations. Most of these
efforts have not met with much success primarily because of the small size and the
high cost of these devices and the slow data loading time. On the other hand, opt-
ical content addressable memories have the potential for holding megabytes of
data at an appreciably lower cost. Since they are hologram-based their major
disadvantage is that they are read-only. However, for very large data/knowledge
bases indexing structures can be devised which are rather insensitive to updates
provided that the update rate remains moderate. Thus, holographic content
addressable memories could serve in the future for processing indices to very large
databases. We are currently investigating this issue in a separate research effort.
Finally, as the field develops, holographic memories may even be adopted as a pri-
mary storage medium.
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9.8. An Architecture for Very Large Knowledge Bases

Existing Knowledge Bases (KB) have only a limited, reiatively small size. In
the near future, however, KB with data and rules on the order of 10!! - 10! Bytes
and an inference engine that can process hundreds of thousands of rules will be
needed so that the next appropriate step is towards architectures for Very Large
Knowledge Bases (VLKB). Obviously conventional techniques are not sufficient
for the effective manipulation of such a vast amount of information and new
powerful methods are required which will involve extensive parallel processing.

Currently, KBs are designed for specific problems such as bacterial infections
or nuclear reactor control. As a result their application is limited. In contrast to
these homogeneous, narrowly oriented systems, the future, general purpose VLKB
will contain different types of information such as: multiple rule sets, many con-
ventional and unconventional data bases, purely numerical data, formatted and
unformatted text. This diversion calls for different. types of processors too. For
example, associative processors, data filters, relational operators, text processors,
surrogate file processors etc. The incorporation of all these processing units in the
same system along with the efficient integration of Logic and a Data Base
Management System will be essential to any future design.

We are investigating various solutions for the management of very large data
and knowledge bases in the support of multiple inferencing mechanisms for logic
programming. The entire system must operate as a back-end machine removing
from the host computer all the time-consuming operations for retrieving and
manipulating data. As was previously pointed out, the evaluation of goals can
require the accessing of the extensional database (EDB) of facts in very general
ways and one must often resort to indexing on all fields of the facts. Cast in rela-
tional database terminology each relation must be indexed and each attribute of
each relation must also be indexed.

The use of surrogate files helps to improve retrieval performance because less
processing is required due to their smaller size. However, in some cases additional
performance can be obtained by distributing the surrogate file entries as uniformly
as possible over many disks to allow for parallel processing. We are developing a
special Surrogate File Processor (SFP), that will utilize the query code word
(QCW) as a search argument to obtain the list of unique identifiers that qualify.

A proposed architecture [BER87a] for this system involves several SFPs
operating on the disks that contain the surrogate file. The unique identifiers are
sent to an extensional data base manager which in turn retrieves the correspond-
ing tuples from the disks containing the EDB. :
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9.8.1. The Concept of the Data/Knowledge Base Processor

Shown in Figure 9.8.1 is the block diagram of the system where the surrogate
file and both the IDB and EDB are stored in the same group of disks which is
controlled by a single Data Collector (DC). Processing is performed by the
Data/Knowledge Base Processor (D/KBP) which is directly connected to the host
computer.

LU
|

DC |<—»| D/KBP HOST

] g nmn
7

Figure 9.8.1 A Data/Knowledge Base Back-End System.

The D/KBP, the heart and the brains of the system, will be a specially
designed piece of hardware that processes raw data coming from the disks per-
forming various relational operations, data filtering, sorting, searching etc. It will
encapsulate all the processing power necessary to manipulate the knowledge base
including specialized hardware such as the SFP, sorting pipes, other relational
operators and a general purpose processor. Its local memory will be large enough
to accommodate the appropriate software for the inferencing mechanism and the
data base management system as well as the qualified tuples that need further
processing.

When the host issues a request for a transaction to the D/KBP, the data
involved are located on the disks with the help of the SFP, retrieved and placed
to the local memory by the general purpose processor. Then a combination of
software and hardware techniques are employed in the D/KBP for the efficient
data processing so that only useful information is returned to the host.

However, even this configuration is inadequate to handle hundreds of GBytes
of data and unable to provide an acceptable I/O transfer rate. We envision a
Very Large Knowledge Base Architecture (VLKBA) that will have about 500
GBytes of magnetic and 1500 GBytes of optical disk storage in its full
configuration. The VLKBA is the topic of the next paragraph.
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9.8.2. The Very Large Knowledge Base Architecture (VLKBA)

Shown in Figure 9.8.2 is an overall diagram of the initial design of a Very
Large Knowledge Base Architecture. The VLKBA consists of a large number of
secondary storage units (magnetic and optical disks, magnetic tapes) arranged in
groups. Each group is controlled by a single data collector which receives data
from multiple disks simultaneously and passes them to a Data/Knowledge Base
Processor. All the D/KBP’s have access to a large semiconductor memory which
acts as a disk cache memory between the disks and the host machine.

Control < \
Processor

@4—» C [+®D/KBHe>
-—>

} -L
§ ~> g g = I
= N
111 - , Common T
Optical HE"’(D/KBP‘—P Memory | g __p| E HOST
Jukebox{«- _ R
= | 512MB _ F
= L E 2 = lc
E
P
DC D/KBPj<4—
MD: Magnetic Disk DC: Data Collector
OD: Optical Disk D/KBP: Data/Knowledge Base Processor

Figure 9.8.2 The Very Large Knowledge Base Architecture.

The D/KBPs communicate with each other and with the front-end computer
through the common memory. The communication between the common memory
and the host is established with an interface that allows for maximum bandwidth
and arbitrary channel connection. The entire system is controlled by the Control
Processor which accepts requests from the host and translates them to the
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appropriate commands for the VLKBA.

The primary goal of the design is to achieve maximum performance using a
high degree of parallelism. Each part of the VLKBA is described separately in the
following sections.

9.8.2.1. Memory Storage Units

In order to achieve such a huge capacity we can only consider the largest
currently available mass storage media, that is, magnetic disks with movable
heads and large optical disks. Some of the most important characteristics of these
devices are shown in Table 9.8.1.

MAGNETIC DISKS OPTICAL DISKS
(Moving Heads) (Large Diameter, Write-Once)

Capacity (GBytes) 1-5 5-10
Transfer Rate

Burst (MB/sec) 3 0.7-10
Transfer Rate

Sustained (MB/sec) up to 3 0.2-1.0
Average Access

Time (ms) 15 - 30 150 - 1000
Average Latency

Time (ms) 8-10 20 - 60

Table 9.8.1. Secondary Memory Characteristics.

With the current capacity of the largest magnetic disks being on the order of
5 GBytes we need 100 such units to reach the desired 500 GBytes of magnetic
storage.

In the optical disk area there is a greater variety. Optical disks provide
significantly larger capacity but they have lower transfer rates. We are currently
examining the possibilities for multiple-beam read from a single disk which could
increase the I/O bandwidth dramatically. Another major disadvantage of the opt-
ical technology is the inability to change the information once it has been recorded
on the optical surface but it seems that this problem will be overcome in the next
few years.

The largest part (more than 1000 GBytes) of the optical storage will be pro-
vided by an optical "jukebox JAMMSS, ALT86); a device that accommodates
from 64 to 128 14-inch optical disks arranged in an on-line library configuration
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and accessed via an automated handling mechanism similar in concept to the
well-known music jukebox. For the remaining 500 GBytes we are planning to use
Write-Once Large (14") Optical Disks with a capacity of 10 GBytes/platter.

A group of disks may be interleaved to speed up data transfers in a manner
analogous to the speedup achieved by main memory interleaving. Conventional
disks may be used for interleaving by spreading data across disks and by treating
multiple disks as if they were 2 single one. In the synchronized disk interleaving
mode [KIMS85,86], every page of the memory is distributed orthogonally over a
group of M disks controlled by a common control unit. Every request for a specific
page (or a block of more than one page) is broadcasted simultaneously to all M
disks that execute the same transaction in parallel. The average service time (ST)
for a request is given by:

ST = T, + &
2 M

where T, is the average access time (average seek plus average latency time) and
T,, is the time to transfer (read or write) a block of data. Path delays due to
rotational positioning sensing misses, which are significant in disk systems with
skew distribution, are completely eliminated. Obviously, the performance of the
design is improved when larger blocks of data are transferred. Synchronized disk
interleaving provides simplified control because the interleaved disks can be mani-
pulated as a single unit. Since the load is evenly balanced over all the devices,
queuing delays due to multiple requests for a specific disk are avoided, thus allow-
ing for maximum degree of parallelism and considerably lower service time. The

reliability of the system can be also improved with minimum redundancy. A typi-
cal number for M is 10.

Each D/KBP will have access to 10 synchronized magnetic disks with an
overall capacity of 50 GBytes. Every group of disks will be controlled by a
separate Data Collector. The Data Collector will receive data from all the disks
simultaneously thus obtaining a data transfer rate of about 30 MBytes/sec to
each Data/Knowledge Base Processor. Thus, we will have 10 such groups and the
total transfer rate can be as high as 300 MBytes/sec. Not shown in Figure 9.8.2 is
the disk controller. We envision that each disk will have its own control processor
and this processor will share the controller function with the Data Collector.

The average sustained transfer rate from the jukebox is a little below 50
MBytes/sec. Similarly, the low transfer rate from each of the other optical disk
drives allows 18 such units to be serviced by a single data collector. Therefore, the
output rate from the optical devices will be about 100 MB/sec raising the overall
total for the Disks-To-D/KBPs bandwidth up to 400 MB/sec. However, as previ-
ously stated, we believe that the data rate from optical disks has the potential to
be increased considerably through multi-beam reading. This speculation must
await the results of further research.

Provision will be made for at least one magnetic tape unit for back-up pur-
poses.
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9.8.2.2. The Data/Knowledge Base Processors

The D/KBP accepts data from the data collector and either processes it or
passes it through to the common memory. With regard to internal optimization
the D/KBP must be able to generate and control index information for the data it
manages, it must be able to optimally place the data on disk for minimization of
access and update time and it must be able to maintain the data in terms of secu-
rity, integrity, backup and recovery. Our work with the surrogate files, discussed
in previous sections, will have a significant impact on the design of the D/KBP.

A more detailed block diagram of the D/KBP is shown in Figure 9.8.3.

From Control Processor

v

D/KBP PROCESSOR

General Purpose |

L__ Processor _—l
To Data { ‘ To

Collector Surroga Disk-Cache
P % . Text p
K Prol';lel:sor Fr';latz gﬁg Procf;sor &
R N
8 MBytes Local Memory

Figure 9.8.3 The Data/Knowledge Base Processor.

It will contain 8 MBytes of local memory and several specialized processors.
The use of the Surrogate File Processor has already been illustrated. The General
"Purpose Processor will undertake a part of the internal control of the D/KBP and
any other job that cannot be performed by the other processors (i.e. numerical
computations). In addition the D/KBP contains a filter processor which performs
the more common operations such as sort, merge, select, project and join as well
as a special text processor.

The D/KBP performs two classes of operations on the data it controls.
There are processes that respond to external commands from the control processor
as shown in Figure 9.8.2 and internal processes that it must undertake to operate
in a near optimal way. We believe that much of the inferencing capabilities of
current Al systems will become part of the database system to form an intelligent
database or expert database system or perhaps the term knowledge base system
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will take on that meaning in the future. We believe that new functions will be
added to the database system to give it new functionality. For instance in work
by Yokota and Itoh [YOKS86| they discuss a relational knowledge base system that
has the added functionality of unification-join and unification-restriction. The
D/KBP will be designed to include appropriate addition capabilities.

There will be one D/KBP for each group of magnetic disks, three for the
entire jukebox (because there are three different channels) and one for every
group of optical disks bringing their total number to 186.

Returning to Figure 9.8.2 the nonprocessed or processed data are placed in
the common memory. These data will be removed via the control processor for
some applications but mostly via the interface to the host. The bandwidth
between the D/KBP and the common memory and between the common memory
and the interface will be on the order of 100’s of MBytes/sec so as not to be a
bottleneck.

9.8.2.3. The Common Memory

The use of a fast electronic buffer, as a disk cache, between the disks and the
host offers many advantages; among them, higher bandwidth and synchronous
communication. The size of this memory, which may be common to all the
D/KBPs, lies in the order of 10® Bytes. It must accommodate multiple ports con-
nected in parallel that read and ~rite data simultaneously.

An initial design of such a system consists of a) the memory partitioned in
M, banks, where M, is equal to the number of ports connected to it, and b) the
appropriate interconnection network. Each page of the memory is orthogonally
distributed over all the banks so that, a word with address (p,d) ~where p is the
page number and d the displacement in this page-- is located in the memory bank
M(d mod My] and its address in this bank is (p*S, + d) / My, with Sp the size of
a page in words. Every port i scans continuously the memory banks according to
the sequence: i, i+1, ..., My-1, O, 1, ..., i,... Such a distribution physically allows
simultaneous access from all ports, even to the same page, without causing any
conflicts among them nor any suspension. The access port speed should be equal
to that of the host's main memory, or at least half as fast.

This multiport, multiple-access disk cache can significantly enhance the per-
formance of the 1/O system. Even if the overall Disk-to-D/KBP bandwidth is less
than 400 MBytes/sec, the transfer rate from the interface to the front-end com-
puter can be considerably higher especially when the disk-cache hit ratio
approaches 1.

The interface should allow multiple (on the order of 100) ports from the host
computer to be connected to the Common Memory. It will be a perfect shuffle
interconnection network. The appropriate connections will be established accord-
ing to signals from the Control Processor. Generally, more than one host might
have access to the knowledge base simultaneously.
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9.9. Applications and Research Issues

As pointed out earlier we are concerned with the management of very large
data and knowledge bases in a multiple inferencing environment. However, the
VLKBA will serve as a resource for many other interesting avenues of research.
Among these are questions concerning the management of very large multimedia
databases, the development of new embedded architectures, the comparative
analysis of database indexing structures, the optimal reorganization of the data-
base in response to usage and some of the more mundane questions concerned
with concurrency control, back up, recovery and distribution. In addition, many
problems have to be solved in order to achieve the desired cooperation between
optical and magnetic equipment.

A promising field for future research is the all-optical data/knowledge base
machine. The rapid advance of optical technology, especially in the optical inter-
connection networks, may soon lead to entirely new architectures for DBMS. Con-
sider, for example, multiple laser beams reading on optical disks at data rates two
orders of magnitudes faster than the current ones. This constant stream of data
could be guided through optical fibers to an optical computer where many opera-
tions could be performed on the data prior to converting it to electronic pulses.
Such a system would eliminate the need for data collectors, some of the large sem-
iconductor memory and many of the processing units.

An additional use for VLKBA is the evaluation of experimental machines.
When a machine is evaluated on the basis of performance (time per job,
throughput, etc.) one must be able to keep the machine supplied with data. In
fact, the data rate to the machine under test must be greater than the ability of
the machine to handle it in order to obtain a realistic measure of performance.
This requirement applies across the entire range of applications from processing
intensive applications such as image processing to input/output intensive applica-
tions such as data base management. To obtain a realistic measure of a machine's
performance, both processing and input/output time must be taken into con-
sideration. Thus, if all of the data will not fit into the machine's main memory,
the time to input new data must be taken into account in the performance meas-
ure. The time to complete the job then is the sum of the load and process time
provided that they cannot be overlapped. In order to ensure a realistic test, the
VLKBA must have sufficient capacity and bandwidth to supply the data for a
large problem at stress rates to the machine under test.

For problems that are processing intensive, the VLKBA must be able to sup-
ply data to the machine being evaluated at the highest rate it can handle. Alter-
natively, suppose that the machine under test is input/output bound for problems
of interest. Then, preprocessing can be performed in the VLKBA in order to enrich
the data being sent to the machine under test. Thus, in addition to testing the
machine, the VLKBA can identify some of the requirements of the secondary
storage system to support the machine being evaluated.

The testing of machines places some severe constraints on the VLKBA. It
must be able to sustain output data rates in the hundreds of MBytes per second
range and have a data capacity in the hundreds of GBytes. It must have the facil-
ity to provide raw data to a machine under test at stress data rates and must also
be able to perform considerable processing activities in order to enrich the data
being sent to the machine under test. It must be able to interface with a wide
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variety of machines. It must have some level of reconfigurability so that the above
functions can be performed, and it must be partitionable so that it can interact
with more than one machine simultaneously.
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ABSTRACT

Surrogate files are very useful as an index for very large knowledge bases to
support multiple logic programming inference mechanisms because of their small

size and simple maintenance requirement. In this paper, we analyse the superim-

posed code word (SCW) and concatenated code word (CCW) surrogate file tech-
niques in terms of stora..ge space and time to answer queries in various cases. One
of the most important results of our analysis is that the size and the query
response time of the CCW is smaller than those of the SCW when the average
number of arguments specified in a query is small. It is also shown that most of
the query response time is used for the surrogate file processing when the exten-
sional database is very large. Therefore, if we use a special architecture to speed
up the surrogate file processing, the total query response time can be reduced con-

siderably.

9-A-2




1. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism
that can be utilized to respecud to queries posed by users. The objective of such
systems is to capture the knowledge of experts in particular fields and make it
generally available to nonexpert users. The current state of the art of such sys-
tems is that they focus on narrow domains, have small knowledge bases and are

thus limited in their application.

As these systems grow, increased demands will be placed on the management
of their knowledge bases. The intensional database (IDB) of rules will become
large and present a formidable management task in itself. But, the major
management activity will be in the access, update and control of the extensional
database (EDB) of facts because the EDB is likely to be much larger than the
IDB. The volume of facts is expected to be in the gigabyte range, and we can
expect to have general EDB’s that serve muitiple inference mechanisms. In this
paper we assume that the IDB is a set of rules expressed as logic programming

clauses and the EDB is a relational database of facts.

In order to set the stage for the problem that we are interested in, consider

the following simple logic programming problem:

1. grandfather(X,Y) « fatner(X,Z), parent(Z.Y)
parent(X.Y) « father(X.,Y)
parent(X.Y) «— mother(X,Y)

Rl

4. father(pat, tiffany) o

father(don, louise)
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5. mother(mary, louise) +-

mother(lisa, tiffany) <+

8. «— grandfather(X, joan)

The first three clauses form the IDB of rules for this problem, the next two
sets form the EDB of facts and the last statement is the goal. To solve the prob-
lem (satisfy the goal), we must find the names of the grandfathers of joan. For
this we search the father and mother facts on the second argument position,
finding values for the first argument position that can be used later. Thus, we
need to find joan's mother and father before finding her grandfathers. If we ask a

similar but slightly different query

«— grandfather(tom, X)

we search the first argument of the father and mother facts in attempting to

satisfy it.

Consider the following general goal statement of a logic programming

language

- (X, Xy ot X))
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In this case, values for some subset of the X;'s will be given in the process of
trying to satisfy its goal. Since the subset of the X/’s is not known in advance
and can range from one to all of the values, this places considerable requirements
on the relational database management system that supports the logic program-
ming language. In fact, in order to insure minimum retrieval time from the rela-
tional database all of the Xi's must be indexed. With general indexing the index
data could be as large as the actual EDB. In order to considerably reduce the
amount of index data yet provide the same capability, we have considered surro-
gate files. Obviously if not all of the X's can take part in goal satisfaction then
the indexing strategy will change, however in this paper we will assume the most

general case in which all of the X\'s are active.

Retrieving the desired rules and facts in this context is an extension of the
multiple-key attribute partial match retrieval problem because any subset of
argument positions can be specified in a query and matching between terms con-
sisting of variables and functions as well as constants should be tested as a

preunification step.

In the cor;text of very large knowledge bases the c¢''estion arises as to how to
obtain the desired rules and facts in the minimum amount of time. Two reason-
able choices of indexing schemes to speed up the retrieval are superimposeci code
word (SCW) and concatenated code word (CCW) surrogate file techniques dis-
cussed by D. Shin et al. [21] and P.B. Berra et al. [2|. Surrogate files are con-
structed by transformed binary codes where the transform is performed by well
chosen hashing functions on the original terms. I[n [2], SCW, CCW and
transformed inverted list (TIL) surrogate files were discussed in terms of the struc-
tures, updating procedures, performance of relational operations on the surrogate

files, and possible architectures to support them. The term “surrogate file" dates
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back to early work ia information retrieval and other terms, such as “signature

file" and "descriptor file” have been used to describe similar structures. {7, 8, 22|

Compared with other full indexing schemes such as inverted lists [4], SCW
and CCW surrogate file techniques yield much smaller amounts of index data;
about 20% of the size of the EDB [2] while the inverted lists may be as large as
the EDB. This size advantage can yield increased retrieval performance especially
when the number of search arguments is greater than one. Inverted lists show
advantage in retrieval when a single argument is given since only one list need be
processed. Surrogate file technique based on SCW or CCW can be easily imple-
mented with parallel computer architectures because their structures are quite reg-

ular and compact. |1, 2, 14]

In terms of maintenance the surrogate file shows considerable advantages.
When a new tuple is added to a relation the SCW or CCW is generated and
added to the surrogate file. In the case of inverted lists each list must must be
processed. Similar operations must be performed for deleting tuples from a rela-
tion. When changes to an existing tuple are made, the surrogate file entry must

be changed and the proper inverted lists must be changed.

An important advantage of SCW and CCW surrogate file techniques is that
they can be easily extended for the indexing of the rules expressed as Prolog
clauses, where the matching between constants, variables, and structured terms is
required to test the unifiability. M. J. Wise et al.[25], K. Ramamohanarao et al.
(17], and M. Wada et al. [24] extended the SCW structure for the indexing of Pro-
log clauses and D. Shin et al. {21} extended the CCW structure to index the rules

and facts in unified manner.
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In this paper, we analyse SCW and CCW surrogate file techniques on the
basis of storage space required for the surrogate file and time to retrieve the
desired facts from the EDB. We limit our discussion to the EDB because most of
the query response time is spent for fact retrieval and relational operations on the
EDB, and the proposed structures of SCW and CCW for rule indexing are quite

different, so it is difficult to make meaningful comparison at this time.

In the next section we introduce the structures and retrieval procedure of the
SCW and CCW surrogate file techniques. We then develop the equations for the
surrogate file size and the query response time. The analyses based on the simula-
tion results are discussed next and finally we close with some thought on the per-
formance improvement with SCW and CCW surrogate file techniques using a spe-

cial architecture.

2. System Model for SCW and CCW Techniques

2.1. Superimposed Code Word (SCW)

Let a fact D contain A, argument values, D={d,d,. - - - .d4 }. Each argu-

ment value (d,, 1<I<A,) can be mapped into a binary representation by a well
chosen hashing function. The binary representation can be converted to another
binary representation with pre-defined length and pre-defined weight, called a
binary code word (BCW), by using a pseudo random number generator. The
weight of a binary representation is the number of 1's in the binary representa-
tion. The process of generating 2 BCW from an argument value is well described
in (18] by C. S. Roberts. The SCW of a fact is generated by ORing A, BCW's
obtained from A, argument values. A unique identifier is then attached to the

SCW and the fact. This unique identifier serves as a link between the two and is
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used as a pointer to the EDB or can be converted to a actual pointer to the EDB

by dynamic hashing schemes such as linear hashing. [11, 12, 13]

Suppose we have a fact type called borders which is given as follows:

borders (Country_1, Country_2, Body_of_Water).

For a particular instance

borders (korea, china. yellow sea).

We would first hash the individual values,

H(korea) H(china) H(yellow sea)

! ! l
100...01 010...00 110...00

then the SCW would be formed as follows:

H(korea) — 100...01

H(china) — 010...00

H(yellow sea) @ — 110...00
110...01 p0...01

with the binary representations logically ORed together. The unique identifier is

attached as shown and the vertical line shows the boundary.

The retrieval process with the SCW surrogate file technique is as follows:
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1) Given a query, obtain a query code word (QCW) by ORing BCW's

corresponding to argument values specified in the query.

2)  Obtain a list of unique identifiers to all facts whose SCW’s satisfy
QCW=QCW .AND. SCW
that is, obtain a list of all SCW’s that have 1's in the same position as the

QCW by sequentially ANDing the QCW with all entries in the SCW file.

3) Retrieve all the facts pointed to by the uﬁique identifiers obtained in step 2
and discard the facts not satisfying the query. These are called "false
drops”. The facts satisfying the query are called “good drops”. The false
drops are caused by the non-ideal property of hashing functions and the log-
ical ORing of BCW’s which make facts with different argument values have

the same SCW.

4) Return the good drops to the user.

2.2. Concatenated Code Word (CCW)

The CCW of a fact is generated by simply concatenating the binary represen-
tations (BR’s) of all argument values and attaching the unique identifier of the

fact. With the same example used for SCW, the CCW would be formed as

100...01 P10...00}110...000...01.

The retrieval process with the CCW surrogate file is as follows:

1) Given a query, obtain a query code word (QCW) by concatenating BR's

corresponding to argument values specified in the query. The portion of the
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query code word for argument values which is not specified in the query is

filled with don’t care symbols.

Obtain a list of unique identifiers to all facts whose CCW's satisfies
QCW=CCW
by sequentially comparing the QCW with all CCW's in the CCW file. Note

in this case the matching is performed on both 1's and O's.

Retrieve all facts pointed to by the unique identifiers obtained in step 2 and
compare the corresponding argument values of the facts with the query
values to discard the false drops caused by the non-ideal property of hashing

functions.

Return the good drops to the user.

3. Storage Requirement and Retrieval Performance of SCW and CCW

Techniques

Storage requirements can be expressed by the size of surrogate files and

retrieval performance can be measured by the query response time for a given

query. Notations that are frequently used in this paper are shown in Table 3.1.
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Notations Meanings
A, Number of arguments in a fact
R, Average number of arguments specified in a query
GD Average number of good drops per query
FD Average number of false drops per query
Sdp Size of the extensional database in bytes
NR Number of facts in the extensional database
NSB Number of blocks in surrogate files
NDB Average number of extensional database blocks retrieved
S Size of surrogate file in bits
B Size of a block in bytes
BR Binary representation
BCW Binary code word
bhew Bit length of a binary code word
QT Query Response time
Te Surrogate file processing time
T4p Extensional database processing time
Tha A block access time
C, Value distribution factor, that is, the average number
of facts which have the same value in the i-th argument
Cyg Average of value distribution factor (Average redundancy)

Table 3.1. Summary of Notations Frequently Used
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3.1. Size of SCW and CCW Surrogate Files

The equations for the size of the SCW and CCW files are obtained in this
section under the assumption, that, if the input values are different from each
other, the selected hashing function maps those values into different output

values, that is, there are no collisions by the hashing function.

With the above assumption, C. S. Roberts [18] presented the optimal bit
length of a BCW in a2 SCW in terms of the number of arguments in a fact (A,),
the average number of arguments specified in a query (Rq), the number of facts in
the EDB (NR), and the average number of false drops (FD). The equation for the
bit length of a BCW (by,,) is given as

bbcw =

[Ar (In(NR)~In(FD)} l . (3.1)

|Rq (in(2)]?

The SCW also contains its unique identifier which must be greater than or equal

to log,N, thus the minimal bit length of a SCW (b,.) is

bsew = (byewt §052mb . (3.2)

Hence, the minimal size of the SCW file (S,.,) is as follows:

Seew = bycw X NR. (3.3)

For a CCW file, the minimal size can be derived from the fact that the bit

length of the hashing function output for an argument in a fact must be at least

[oggién;l where C,, called the value distribution factor, is the average number of
t

facts whose i-th arguments have the same value. From this fact, we can derive

the minimal sizes of the CCW file (S,,).
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A CCW contains the binary representation of each argument value and its

unique identifier. Hence, the minimal size of the CCW file is

A NR
Sccw - (Z Ogo ——

+ [ogQNRb X NR. (3.4)
-1 Ci

In this paper, we assumed that the hashing function is ideal and simulated
the minimal storage requirement for surrogate files. However, in actual cases, the
hashing function is not _ideal and there will be around 30% of collisions if the
number of the distinet hashing function output is equal to the number of distinct
input argument values.[15] As we increase the length. of the binary representa-
tion of an argument value, the probability of collisions will decrease: for example,
if we assign two more bits to the binary representations in CCW surrogate file,
the probability of the collision will be less than 109% and the net increase in surro-

gate file size will be around 1.5% of the EDB size.

3.2. Query Response Time Using SCW and CCW Surrogate Files

The query response time depends largely on the size of surrogate files and the
method of obtaining pointers from the surrogate filess. For the size of surrogate
files, the equations derived in the previous section are used. Also, it is assumed

that a sequential uniprocessor is available for surrogate file processing.

In general, the retrieval process using surrogate files can be divided into

several sub-processes as follows:

1.  Access to the surrogate files to read the code words from those files.

2.  Comparing the QCW of a query with code words and obtaining a list
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of pointers (unique id’s) to the EDB.

3. Access to the EDB to read the facts pointed to by the pointers

obtained in 2.

4, Comparing the query with the facts retrieved from the EDB. This

step is to discard the false drops.

3.2.1. Surrogate File Processing Time

Let B be the size of a block in bytes, then there are

NSB =

[Sscw (or Seew) ] (3.5)

| 8XB

S; code words except the

blocks in surrogate files and each block contains l

final block. Initially, the first block of the surrogate file is accessed in

Tya = Average seek time + Rotational delay (3.6)
B
Transfer rate

and the first block will be searched in

Tg = the number of bytes in a QCW (3.7)
NR

X time for byte comparison / 2 X NSB

(GD+FD)

+<sB

X (uid collection time)

where GD denotes the average number of good drops and FD denotes the average

number of false drops per query.
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If we assume that the blocks in the surrogate ﬁl? reside consecutively in a

disk, then the time for accessing the remaining (NSB — 1) blocks is

B
Transfer rate

+ Rotational delay X (# of tracks for SF — 1)

Te =

X (NSB — 1) (3.8)

+ Minimum seek time X (% f cylinders for SF — 1) .

If sufficient number of buffers are provided, the reading of the last (NSB —1 )
blocks can be overlapped with the searching of the first (NSB — 1) blocks. There-
fore, the maximum of these two times, i.e, max (T,; , T X (NSB — 1)) will con-
tribute to the surrogate file processing time. For the last block of the surrogate
file, the searching time is not overiapped with the block access time. Thus, the

total surrogate file processing time is

Tep = Toa + max (Tyy , Tog X (NSB — 1)) + Ty - (3.9)

Here we ignore the buffer switching time and the process wake-up time, i.e, the

overhead time caused by buffering.

3.2.2. Extensional Database Processing Time

The average number of accesses to the EDB per query is the summation of
the average number of good drops and the average number of false drops. If the
facts to be retrieved are assumed to be randomly distributed over the EDB, the

average number of EDB blocks to be retrieved is

S
NDB = F X (1={1=—p—ieeyJGD+FD) (3.10)
B Sab |
e
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where Sy, denotes the size of the EDB in bytes. If we assume that attributes are

independent within a relation, GD can be approximated by using C, and NR.

(

C
MR [1(—=) if GD>1
j 1€Rq *

GD = (3.11)

otherwise

\

Once a EDB block is retrieved, then the facts with matched unique id's will
be compared with the query to discard the false drops. The time for this com-

parison is

_ (GD +FD)
NDB

X time for byte comparison / 2 .

T4e X the number of bytes in a fact (3.12)

EDB block accessing and comparison can also be overlapped. So if we assume that

the EDB blocks are randomly accessed, the total EDB processing time is

Tap = Toa + max (Tp, , Tge) X (NDB — 1) + Ty . (3.13)

However, since the EDB blocks are randomly accessed, the block access time is
much more than the block comparison time. Therefore, the total EDB processing

time can be simplified as

po = Tba X NDB . . (3.14)

3.2.3. Query Response Time

The query response time for a given query is the summation of all the surro-

gate file processing time and the EDB processing time.
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QTscw (or Qchw) - Tsp + po (3-15)

4. Simulation and Analysis for SCW and CCW Techniques

Simulations are performed with the equations for the size of surrogate files
and the query response time using SCW and CCW techniques assuming that the
surrogate files are consecutively stored in a disk, the EDB are randomly stored in
a number of disks and the block load factor of the surrogate file and the EDB is
1. If the EDB is dynamic, then the block load factor will be lowered and conse-
quently the number of blocks to be accessed will increase somehow. But once a

block is accessed, the time for processing a block will decrease.

4.1, Surrogate File Size

For the simulation of the surrogate file size , it is assumed that the EDB
remains at the same size regardless of variation of A, and 15 bytes are used for
each argument value. Therefore, NR, the number of facts in the EDB, can be cal-

culated as follows:

S
- |—2db
- |25

where Sy, represents the actual EDB size not including the unique identifiers for
each fact of the EDB. We also assumed that each argument of a fact in the EDB

has the same redundancy value, Cs' which is the average of the C's:

2 C,

I€A,

Cs =
>t

The results for the size simulation are shown in Figures 4.1 through 4.3. In

Figure 4.1 we plot the size of the SCW surrogate file (S,.) as a function of the
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number of arguments (A;) in a fact. The size of the surrogate file is expressed as
a percentage of the EDB. The EDB sizes are 10%, 107 , and 10° bytes while the
average number of arguments in a query (R,) takes on the values one and two.
Note that Sy, increases with the size of the EDB (Sy,) but decreases with R,

The reasons for this behavior are readily apparent from equations 3.1 to 3.3.

In SCW case, if we allow more false drops then the lergth of the SCW
becomes shorter which results in a smaller S,,. However, more false drops leads

to more EDB accesses.

In designing the SCW surrogate file one must set the expected number of
arguments in a query. In terms of size, the worst case of course is when Rg is 1
and as the value for Ry is set at progressively higher values Sy, becomes very
small. However, if we assume large R, in designing the SCW file, we have to allow
m<.>re false drops than the expected number of false drops, FD, whenever the

number of arguments specified in a query is smaller than Rq. (18]

In Figure 4.2 we plot the size of the CCW surrogate file(S..,) as a function of
the average redundancy(C) in the data. Note that with greater redundancy S,
becomes smaller because a smaller number of bits can be used for each binary

code word. Also note that Sy, and A; have significant effects on S

Finally, in Figure 4.3 we compare S,., and S, for various conditions. With
regard to the size of surrogate files, we can say that the CCW file technique is
better than the SCW technique, even though S,., .aay be smaller than S, when
R4 is large, because we assumed that the average number of arguments specified
in a query is usually not more than 2. However, in both cases the surrogate file is

generally less than 20% of the size of the EDB.
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When the size of the EDB is less than 107 bytes, the surrogate file size is
less than 2 Mbytes, so the whole surrogate file can be stored in a fast memory to

speed up the retrieval process.

4.2. Query Response Time

For the query'raponse time, we assumed that the hashing function is ideal,
so there are no false drops with the CCW surrogate file technique and the SCW
surrogate file technique has only the false drops caused by the logical OR opera-
tion on the BCW’s. A partial-match query is assumed and the BCW of the surro-
gate file is compared with the QCW by using sequential byte by byte comparison.
The query response time results for the SCW and CCW techniques are obtained
frqm the equations developed in the previous section and are shown in F igur&s'4.4
through '4.12. Table 4.1 shows the values of parameters used in this simulation.

The parameters relating to the disk are obtained from the characteristics of the

DEC RAS! disk. (8]

In Figures 4.4 through 4.6 and 4.7 through 4.9, we plot the query response
times, QT4 and QT..,, and corresponding subprocessing times for Sy, of 10°,
107 , and 10° bytes, respectively. When Sq4p is 10° bytes, most of the query
response time is spent for EDB access. But when Sy is 10° bytes, the query
response time becomes very large and most of the query response time is spent
for surrogate file accessing and searching because of the increased surrogate file
size and sequential searching of the surrogate file. The number of arguments in a
fact (A;) has little affect on either QT,., or QT since we assumed that the Sy,

remains constant under the variations in A,.
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Parameter Value
Average seek time 28 msec
Minimum seek time 8 msec
Rotational delay 8.3 msec
Data transfer rate 2K bytes/msec
Data sector size 512 bytes
Sectors/track 52
Tracks/cylinder 7
Time for byte comparison 3 usec
Unique id collection time 10 usec
Block size 2K bytes
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Figure 4.4 Components of the SCW Query Response Time ( S dp= 10 bytes)
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Figure 4.7 Components of the CCW Query Response Time ( S y,= 10 bytes )
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Figure 4.8 Components of the CCW Query Response Time ( S db™ 10 Dbytes)
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When Sy is 10° bytes, R, is not a factor which affects QT,,,, but QT w

q
increases as FD increases. However, when Sy, is 10° bytes, the result is reversed,
that is, Ry affects the QT,, considerably while FD does not. There are two rea-

sons supporting this result:

1) Syw decreases as R increases. However, when Sy, is small, Sy is also small
for any R, so that the time for accessing and searching the SCW file is
almost constant. Therefore, the time for accessing the EDB, which depends

on FD, becomes a major factor in QT-

2)  When Sy, is large, S, becomes large so that most of QT,., is spent for
accessing and searching the SCW file. Therefore, S, is 2 main factor
deciding QTw. Since S, largely depends on R,, the change in Ry is

directly reflected in QT,,.

QT,w and QT are largely affected by C; when Sy is 10° bytes and Ry is
small. However, as R, becomes large, the effect of C; on QT,, and QT

decreases. This fact is well explained by the role of Ry and Cg in determining the

number of good drops:

1) If Ry is small and Cg is large, then there are so many good drops that a

large amount of time is required for accessing the EDB.

W
~—

If Ry becomes large, the number of good drops decrease considerably, and so
does the EDB access time, which is the major component of the query

response time when Sy, is 10° bytes.

From Figures 4.6 and 4.9, we can see that when S, is 10° bytes, as Cg
increases, QT, ., remains constant while QT ., decreases. This occurs because a
fewer number of bits is required to uniquely identify each attribute value in the

CCW case. But when C; is larger than a certain value, the query response time
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starts increasing because of the increased EDB access time. Also, we can see from
Figures 4.6 and 4.9 that most of the query response time is used for the surrogate
file accessing and searching when the EDB is large. Therefore, if we use multiple
processors and/or associative memory to speed up the surrogate file processing, we
can reduce the query response time considerably. Since the surrogate files are
quite regular and compact. they can be mapped into the associative memory.
Thus, we can obtain a speed up by the content addressing capability and the
parallelism of the associative memory.{1, 2] In addition. we can also obtain a
speed up proportional to the number of processors because there is little need for

communication among the processors.

Since searching and disk access can be overlapped, if we increase the block
size, then the number of disk accesses can be reduced and we can save time as
long as the block searching time is less than the block access time. In the case of
a multiple disk system, the surrogate file and the EDB are distributed over a
number of disks and we can reduce the disk access time by seeking several disks

concurrently.

To compare the retrieval performance of the SCW and CCW techniques, we
plot QT,., and QT in Figures 4.10 through 4.12 for various parameter values.
From those figures we can see that QT is smaller than QT,., when R is small.

because S, is smaller than S, when R is small.
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Figure 4.10 SCW and CCW Query Response Time Comparison ( S gp™ 10 Dbytes)
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Figure 4.11 SCW and CCW Query Response Time Comparison ( Sy, = 10 bytes )
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5. Comparison of SCW and CCW Surrogate File Techniques

The size and query response time of the CCW is smaller than those of the

SCW when the average number of arguments specified in a query is small.

It is very easy to update SCW or CCW surrogate files. When a new fact is
added to the EDB, the corresponding code word is simply appended to the exist-
ing SCW or CCW surrogate files. No other operations are required. To delete a
fact, we must find and delete the entry in the surrogate file as well as in the EDB.
When one changes the value of a field, SCW requires that a new code word be
generated and the old one deleted. For CCW the change need only be made to

the portion of the code word in question.

One obvious advantage of CCW over the SCW is that many relational opera-
tions can be easily performed on the CCW surrogate file rather than on the rela-
tions themselves.[2] This offers considerable potential savings in time to carry out

those relational operations.

In SCW, the order of argument positions in either query or fact can’t be
differentiated because a SCW is generated by the logical OR operations on the
BCW’s. This property of SCW can be a disadvantage when used for rule index-

ing in the context of logic programming.

SCW surrogate file searching time can be reduced by using the bit-sliced
organization to store the SCW files.[14] But in that case, we must read and write
back many blocks of SCW surrogate file to update one SCW, which is not toler-

able when the EDB is dynamic.

In the SCW surrogate file technique, to reduce the the inherent false drops

caused by the logical OR operations on the BCW's, one may assign different code
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weights to the BCW's of argument values depending on the occurrence frequency
and query frequency of the argument values. But to do this, the code weights of
frequently occurring argument values must be maintained in a table to be looked

up whenever generating a binary code word. [9, 18]

6. Further Research Consideration

The main drawback of the SCW and CCW surrogate file technique is that
the whole surrogate file must be read to the main memory and searched. To
reduce the searching time, one can produce a block code word for each block of
the surrogate file and use the block code words as an index for the surrogate file.
A given QCW is compared with the block code words first and only those blocks
of the surrogate file whose corresponding block code words match the QCW are
retrieved and searched. But the speed up is achieved at the expense of the extra
storage space and maintenance cost for the block code words. The performance of

the block code words will depend on the following factors:

1) Type of hashing functions used for code generation

()
| —

Algorithm for generating the block code words.

3) Blocking factor: number of code words blocked together to form a block code

word.
4) How frequently the database will change.

J. L. Pfaltz introduced the block descriptor generated by logical Oring the disjoint
codes of each record {16] and R. Sacks-Davis and K. Ramamohanarao developed .

two level superimposed coding scheme.[19, 20]
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[t has been shown that surrogate file processing time is dominant when the
EDB is very large. Thus, if we adopt multiple processors and/or associative
memory, we can reduce the surrogate file processing time considerably. A general
structure of a back end system which contains multiple processors for the manage-
ment of a very large extensional database of facts is shown in Figure 8.1. We
assume that there are gigabytes of data stored on the EDB disks and there are
gigabytes of CCW surrogate files stored on the SF disks. Suppose that the user is
interested in retrieving fact data given some subset of values from a particular
relation. The query code word would be constructed in the Request Processor
using the proper hashing function and considering the positions of the values
within the relation. The QCW would then be broadcast to all of the Surrogate
File Processors (SFP’s) to be used as a search argument. One could think of the
SFP as a processor with associative memory with the QCW as the search argu-
ment. The SFP compares the QCW with each CCW and strip off the unique
identifiers of matching CCW’s. As soon as any unique identifiers are found by the
SFP’s they can be sent to the collector and passed on to the Extensional Data
Base Manager (EDBM) for processing. The EDBM will retrieve the facts, compare
them with the query to insure that a false drop has not occurred, put them in

blocks, and send the blocks to the logic programming engine.

Furthermore, the SFP's can be extended to support complex relational alge-
bra operations such as join. Consider a join using the hash join algorithm. (3, 10,
23] Since the surrogate files already consist of hash values, we only need to parti-
tion the portion of code words that represent the join variable and the associated
unique identifiers into buckets according to the ranges of code words. Then,
based on matching within each bucket (which can be done in parallel), pairs of

unique identifiers can be sent to the EDBM for final verification.
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7. Conclusion

CCW and SCW surrogate file techniques are analysed in terms of storage
requirements and retrieval performance. The size and query response time of the
CCW is smaller than those of the SCW when the average number of arguments
specified in a query is small. Since the size of the CCW and SCW files are gen-
erally less than 20% of the EDB and the maintenance of those files is very simple,
they are suitzble for the applications requiring very large dynamic EDB. Addi-
tionally, many relational operations can be performed on the CCW surrogate files

rather than on the relations.

CCW and SCW surrogate file techniques can be implemented easily with
multiple processors and/or associative memory to speed up the retrieval process
in very large knowledge base system. Our future research is towards the develop-

ment of special architectures supporting those surrogate file techniques.
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Back End Architecture based on Transformed Inverted Lists,
A Surrogate File Structure for a Very Large Data/Knowledge Base
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ABSTRACT

Knowledge based systems have gained prominence in
the rapidly growing field of Artificial [ntelligence (Al). The
curcent state of the art of such systems focuses on narrow
domains of knowledge bases with limited applications. in the
future, those systems must deal with more general applica-
tions and existing Very Large Databases present a source of
information to be used for these Al applications. Surrogate
file techniques. which rely on a compressed image of the
database. present a promising approach to the formidable
management task of such Very Large Data/Knowledge bases.
[n this paper we present a detailed analysis of Traansformed
Inverted Lists (TIL), an inverted surrogate file structure. and
describe a parallel back end architecture, based on TIL, for
the magagement of 2 Very Large Data, Knowledge Base.

Index Terms: Very Large DatasKnowledge Base. Surrogate
File. Inverted Lists, Indexed Files. Database \Machines.

1. Introduction

[Knowledge based svstems have gained prominence in
the rapidly growing field of Artificial lntelligence (Al). The
current state of the art of such systems focuses on narrow
demains with limited applications Existing Very Large Data-
bases preseat a rich source of information to he used for Al
applications and aew demands for the management of such
Data. Knowledge bases are foreseen to be essential for the
new generation of knowledge based systems. Berra et al
BERS7; relate the prohlem to the general partial match
retrieval problem and various techniques have been studied
for partial match retrieval using surrogate files.

The term surrogate file (SF) dates back to early work in
information retrieval and other equivalent terms such as sig-
nature and descriptor files are also used for such struc-
tures M Typical work related to surrogate files processing s
found with the Superimposed Coding method of Roberts
[ROB79]. Ahuja et al [AHUS0| and '.ee {LEES6| proposed
associative architectures for the fast processing of superim-
posed code words. Furthermore, Colomb et al [COL88} and
Wise et sl [\WIS84| relate the techaique as aa indexing
scheme for a logic programming eavircnment. Lloyd et al
ILLOSO and 82| have taken an interresting approach in
which they select bit values in the facts and interlace them
to form s code word.

11 Refer o Faloustos IFALSS! for a review nl vanous methads for sccem-
ing textus! data using surrogate fles
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The approach presented in this paper relies on an
inverted list indexing scheme that is performed on the surro-
gate files instead of the usual database inversion applied in
conventional informatioa retrieval svstems. In :BERS?'. Con-
catenated Coding and Transformed Inverted Lists (TIL) were
introduced as efficient surrogate file techniques for the
management of Very Large Knowliedge bases. Our scope. in
this paper. is to present a deterministic analysis of the TIL
technique and introduce a parallel back end system for the
management of Very Large Knowledge bases.

We begin by introducing the system model in Section 2.
thea derive the minimum storage and query response time
equations in Sections 3 and 4. [n Section 3. simulation results
are presented followed by a discussion of the maintenance
aspects of the TIL technique in Section 6. Section 7 intro-
duces a parallel architecture {or the processing of the TIL
surrogate files. Finally, a summary of our resuits with some
concluding remarks are given in Section 8.

2. System Model for Transformed Inverted Lists

Single or mulitilevel indexing is 8 common techmque
used in database management systems (DBMS) for fast data
a~cess. [n partial match retrieval, creating index files for
more than one field in a record is necessary The extreme
case arises when every entry in a record is indexed indepen-
dently and is referred to as inverted lists organization
IDATS6. Chap. 21|. The problem behind using inverted lists
is that the size of the indices can become enormous. equal to
or even farger than the database size.

Transformed Inverted Lists (TIL) are similar to inverted
lists with the main difference that indices are built based on
the binary representation (BR) of the hashed output of a
given field in a record of the database relation Two TIL
types. TIL1 and TIL2, are considered in this paper A simple
reiation is illustrated in Figure 2.(. The fields are referred to
as arguments and the BR values for argument position 2 are
listed.

The application environment of the TIL technique
would be the management of a large Knowledge Base of
facts, referred to as the extensional database (EDB), withio a
logic programming context. We assume thut many different
relations (fact types) with varying degrees and cardinalities
exist in the very large extensional database that we are con-
sidering. Furthermore. we assume that the tuples are stored
in such a way that one first accesses the refation followed by
an access to a particular tuple via its unique identifier (Uid)
The unique identifier could be derived from the “primary
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Key” of the relation or a serially generated numober attached
ro each fact We will obtain the o .me of the elution and 0
subset of values along with their positions in the relation
frcm the logic programming process when it reqyuests data
Thus. the storage sccucture for the actual lacts themselves
would be very simple anad a mechod such as extendible hash-
ing {Fagin FAGT9!) could be used to guarantee retrieval ol a
given {act in at most two disk accesses ‘This presupposes
that all secondary key retrievals will take place on the surro-
gate file or through post processing of the retrieved tuples if
there are manv different types of users of the same database.

2.1. TIL1 Description

TIL1 consists of a two level indexed inverted hist Figure
22 (lluscrates the TIL1 organization for argument position 2
of the relation of Figure 2.1. The blank entries in the pri
mary index lile are usually included lor updating purposes.
The secondary index file for a given argument 1n a tuple 1s
an ordered list of the BRs of the hashing function cutput of
that argument with the attached unique dentifier tLUid} The
first entry 1n each block of this file s duplicated 1 the pri-
mary ndex file with an attached pointer to the correspond-
ing secondary index block address. Furthermore. index files
are partitioned 1n blocks of B bytes each {t s observed that
the entries 1n the primary index file are ordered as well

\Whea a given BR 13 to be retrieved (say BR==brd). the
primacy index file 1s sequeatially accessed using the BR as
the search argument and the pownter to the secondary block
address correspoading to that BR retrieved {pt2 in our exam-
ple) Then the secondary file is accessed in a direct mode and
the required block(s) retrieved and searched sequentially for
the occurrence(s) of the requested BR. The output s a list of
Uids (uid3 and widll for our examplej corresponding to the
value of the request.

2.2. TIL2 Description

TIL2 is a three level 1adexed inverted list organization
and 18 illustrated «a Figure 2.3 {or the same example relation.
The diffcreace between TIL2 and TIL1 lies in that the TILI
secondary index file 8 now split into two files: the TIL2
~ condary ndex file and the tertiary index file Each entry in
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the tertiaey index file consists of a Uid, so that the numuer
of entries tn this file is equal to the number of records ia the
database relation. Each entry in the TIL2 secondary index
file consists of three fields: the BR of the hashed function
output of an argument value {say BR==br6), a list length
eatry "L” that provides the number of records in the data-
base that have the same entry value 0 a given argument
position {2 foc br6) and a pointer to the address of the first
Uid n the tertiary file that has BR=br6. This ponter con-
sists of the block address and a displacement value in the
block.

The retrieval process for TIL2 is similar to TIL1. but
requires Lhe accens of sa additional index level.

2.3. Partial Matck oa Multiple Argument Positions

When more than one argument position match is
requested in a query, the different outputs from the inverted
lists searches need to be intersected The outcome of the
intersection is a set of Uids that complies with the quety
requirements. Finslly this set of Uids is used to directly
access the main database for the retrieval of the matched
records. The gain 0 retrieval time when using transformed
inverted lists 13 mainly due to the small size of the surrogate




Notauons \leanings

Simulation Values |

B Size of a block {Blocking Factor)

2.16 INbytes j

' T et | Dizk seek ume 23 msec
i T ; Rotational latency 35 msec
i TR i Duwk transfer rate 2 \Mbytes sec
: WL i Processor word length < bits
Te © Average word comparison t;me 3 osen
! A, . Number of arguments 0 1 tuple 210
! R, \verage number of arguments in 2 quers
N Number of tupies (n the database
PG Average number of good drops
S _ Database size 10%-10° bytes
B2 TIL1 or TIL2 Surcogate File size !

© Foeaiwes ¢ Drimary. Secondary or Tertary [ndex File Size : i
; . Binary representation of the hashing function output |
! QT % Query Response Time }
' SFT ' Surrogate File processing time
! IT [ntersection time
! DA Time for retrieving records in the database

-th argument

C

; {ancvy

1
|

C, ; Vaiue distrthution  factor. that
i aumber of records which have the same value in the
i
3

Average of vajue thstnibution factor {Aveérage redun- | 1-4096

13. the average

Tabi= 2! Simmo»v of Notations

tiles and the fast access resulting from the indexing schem~
Caly conjunctive partial match queries are considered. vut
the reader should be aware that disjunctive queries have the
same level of complexity. with the lists intersection operation
replaced by a multiple sets union operation

[t s noted that the iaversion level of the surrogate files
s determined by the Al application being coasidered. Since
our underlving. application nvolve logic programming and
relational databases. we will assume fully inverted surrogate
files throughout. (n Sections 3 and 4. we dertve the munumum
storage and the query response time equations. The anaiyvsis
s based on a compact representation of the data and does
not take into account overflow chawns [t 1s meant to pin.
poimnt performance bottlenecks. to be resolved in the design of
the back end system. Table 2.1 lists the main abbreviations
used in our analysis Due to space limitations. we present the
equations and simulation results {ar TIL1 only and reter the
reader to Hachem et al HACS? (or additional details

3. Minimum Storage Overhead for TIL Surrogate
Files

In this section the minimal sizes of TILL files are
derived assuming no blank entries are avaidable in the index
files Those sizes are based upon the following parameters:

1) The bit length of the hashiag function output for ag
argument 1n a record. denoted BR. must be at least

l loggéc\:— bits where C,, called the value distribution -

factor. 18 the average number of records whose I-th
arguments have the same valye

2} The Unique [dentifier (Lid) for each tuple is encoded
in flog,N | bits. In practical applicatioas. che Uids are

|

sncodea n a fixed number of bytes equal to
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Denoting by Sipgext 289 Sipgexz the minimal sizes of the
,1:mary and secondary index files of TIL1 respectively the
minimal size of TIL1 Surrogate Files s:

Stis = Sinam2+Sindent

3.1. Secondary Index File Size

Each emtry in a secondary index file consists of two
fields: 1) The Binary Represeatation (BR) of the hashing
function output for an argument. 2} The Uid of the tuple in
which it is found. The number of entries 1n the secondary
index file. for each argument. s equal to the number of
tuples N in the database. Therefore, the secondary index size

{in bits} s given by:
]

A, Ae \
Singers = LSt = 3 og: g liOS:-\‘ ])x-\'
o=l ‘-l :

where 3. 1s che secondary (ndex size per argument position
e

3.2. Primary Index File Size

An entry in the primary index file consists of two fields:
A pointer to a given block in the secondary index file. and
the BR of the first argument value in that block. The
number of blocks 1n a secondary index file. denoted Ny s

S
equal to % , where B s the block size in bits- block Each
block address s thus encoded in Foggle bits. and the
number of eatries in the primary index file of a given argu-
ment "i" is equal to the number of blocks of its secondary
index file so that the total size of the primary index file is:
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4. Query Response Time of TIL

The Jerived equations are based on the tollowing gen-
eral assumptions on the hardware and system modeis

1. A given BR 1s equally likely to be specified in a
query

2 The primary and secondary indices are stored 12 con-
tiguoys seconda.y storage blccks and rdered with
respect to the BR values s0 that a2 =k :an ve
searched in log time.

3 Buffer sizes are sufficient to hold the earrov- | hinci.

4. The disk controllerys) include 2 comparator wnch 15
used to perform on the fly comparison so rhac partul
overlapping of the primary tadex biocks retrevas and
search is achieved. This enables uys disregard tne Jusk
rotational latency time for the retrieval of successive
blocks from secondary storage Furthermore. sll blocks
relevant to a given index file are assumed to reside on
the same cyvlinder \n secondary storage. This assump-
uon holds as the index file sizes under consideration s
relatively small

3. Main processor comparnson s word oriented and th
BR
WL

T. being the average word companson time and WL

the word length of the main processor

6 \We assume a stable tile as defined bv Larson LARSU
and do not account. n our determunmistic analysis, for
the overhead incurred by searching overflow records
according to Larsoa's stochastic model. the expected
number of additional disk accesses required to search an
indexed-sequential file is around 0 3 accesses

time required to perform a comparison s T, X

7 The hashing functions do not [ead to collisicns How-
ever. in practice. collisions couid be deieted by post
checking of the retrieved records lrom the EDB prior to
shipping them to the logic programming eavironment.
This could be performed on the fiv but is not included
1a rhe present analysis. Alchough not required for the
anaiysis. f order preserving hashing functions are pro-
vided (Garg GARSS!). TIL files couid handie range
queries as well

The Query Respoase Time (QT1) for TILL 1s divided
into three processes:

1) Surrogate File Processing and Uid Retrieval
(SFT1).

2) Uid Intersection Time (IT)

3) Database Access Time (DA) to read the
dentified record(s) satistving the query.

{t 15 noted that process 2 and 3 above are independent
of the TIL type followed. The Query Response Time lor the
TILL cechnique 1s written

QTt = 3FTt «IT + DA
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The surrogate file processing time !SFT1) 1s subdivided
into four sub-processes’
1 Primary {ndex Retrieval Time
2 Primary [ndex Search Time
3 Secondaty Index Retrieval Time
4 Secondary {ndex Search Time

-

Due to assumption 4 above. primary and secondary index
search times are negiected and we do not¢ report them in this
paper

4.1. Primary Index Retrieval Time

Fast sequential retrieval being followed the average
aumber of blocks. Ny,qp. retrieved for each query argument
position is:

[—s—“‘—‘ﬁ
N Nl | B

‘ =
Navglld > 2

With Rq as the number of arguments in a query. and
sequential access of primary index blocks. the average TILI
primary index retrieval time, T ggexi—cecrievals 18

( [%‘; +1 ) xB
T odextorerery = ,ezn‘(Tmi+T|“+_—2x_'r—R-—)

4.2. Secondary Index Retrieval Time

The TIL1 secondary index retrieval time is based on the
average number of secondary index blocks. N, to be
retrieved for each argument position in a query. The total
secondary index retrieval time. T pqexorecnevas 18 SiVEN bY:

Nivgn XB
Toodexternneons ® 3 { Taeer+Tiae* t-1‘-;(
€R,

)

and with Clay, as the number of entries in 2 secondary index
block. Ny, gp s computed in Appendix { as:

N = —-—C( —-l 1
. - -
Y8 Cuam Cim

4.3. Intersection Time

Two cases are considered:

R, = 1" no ntersec..c~ s required and the number of
good drops (GD) s C;.

R, > 1 when more than one argument valuc
specified 1n a query. the lists of retrieved Lids must be incer-
sected. Denoting by NC(R,). the number of comparisoas
required to perform the intersection operation, the total
intersection time s then written as:




|
WL

NC[R:. i R;.‘ 1

An esumate of the number of comparison steps. NCiR,1. for
the intersection operation is derived in Appendix 2. As noted
previcusly, we assume conjunctive gueries with no ioss of
g-nerality. 3s the union operation for disjuncrive queries has
rhe same level of complexity as the intersection operation

4.4. Database Access Time

With GD as the number of good responses Lo 1 query

and the probabiluy ( } of a given response to be w a

ﬁ

B
specific block. the database access time 1s. following Carde-
nas’ equation CART3| and assuming direct access to the

main database:

S,

B

B 1 GD
DA = (T,.,. + T!u. + ﬁ)x

Following Appendix 2, the number of good responses s

estimated as:

GD = N r[(—)
ER, N

[t s observed that the database access equation is based
on successive selection with replacement. Yao YAOTT
discusses selection without replacement and points out the
cases where Cardenas’ equation gives rise to a significant
error For our purposes. Cardenas approach is satis{actory
as che aumber of good responses is expected to be small {or
verv large knowledge bases.

$. Simulation and Analysis of TIL Techniques

[n the following analysis atid computer evaluation for
the derived TIL equations, the parameters are as follows:

{} Each tuple ia a database relation consists of a
number of arguments. A,, of 15 characters each.

2) ln the derived equatioas. the C, parameter is depen-
deat on the argument position 1 To simplify those
equations. we have used an average value for C,
namely C,.

3) The system variables for the simulation are given 1n
Table 2.1. Disk parameters are based on the DEC RAS1
hard disk system KRI33:
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In Figure 5.1, the TIL1 Surrogate File to Dacabase size
ratio is plotted versus the logarithm of the average redun-
dancy factor, for differeat Sy, and A, values. [a general the
SF size of TILL spans {rom a low of 9.29%, for logsCy=9.
A,=10 and Sg = 10°% to 41.8% for log,Cy=0. A, =2 and
Sgp = 10° It is noted that the plots in Flgure 3.1 maialy
reflect the variation of the secondary index file size as the
primary index file size can be shown to be negligible. [n
HACS?I, the storage requirements for TIL? are reported to
range {rom 8 to 209% of the size of the database.

Figures $.2 to 5.5 illustrate the TILI Query Response
Time (QT1) and its corresponding subprocessing times
(SFTL, IT and DA) for different database sizes and number
of arguments 1n a query. Figures 52 and 5.3 relate to
medium sized files (Sq, = 107 bytes) while Figures 5.4 and 5.5
are typical of very large files (Syp = 10° bytes). It s observed
that QT1 is highly dependent on the SF processing time
(SFT1) for low values of Cq (up to 512) and then becomes
highly dependent on the intersection time (IT) The drop ia
databage access ume (DA). observed between the plots of
Figures 52 and 3.4 or 5.3 and 5.5, is due to the dependency

of the number of good responses (GD) oa the ratio —C\T‘- For

a fixed C,, this ratio decreases with increasing database sizes.

No plots are iacluded for the case where R, =1 [o ths
situation, the query respoase time for TIL1 s dependent on
the number of good responses which is C,. Furthermore,
TIL2? query cesponse t.me variations are che same as for
TIL1. The only difference being that TIL2 requires one addi
tional disk access per query argument, that 18 baisnced by a
smaller disk transfer time for large values of the redundancy
factor C;. The disk transfer time s smaller due to a smaller
surrogace file size.

We coaclude that the TIL techniques are efficient as to

the storage: query response time combination. Even for rela-
tively large redundaacy factors. the query response time
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-whin a few seconds while the storage overhead of the surr -
.ate files lies 1o the 10 to 20 % range of the databuse size. ft
s noted that coaventional inverted lists. with {ull indexing.
may require an overhead well in excess of 100 G of tie
latabase size.
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8. Maintenance Aspects of TIL Surrogate Files

One of the difficulties 1n using the TIL techaiques is
their maintenance requirements. Those become a serious
drawback. especitally \n a highly volatile database eaviron-
ment The above analysis pertains to a static surrogate file
I[f for example. 30 expansion of the main database s (or-
seen. the overall increase of the surrogate files sizes can be
greste. than 30%. due to the additional increase required for
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the different record pointers and uanique identifiers.

Some important maintenance aspects are the add.
delete and update operations. When adding 2 new record to
the database. all the index files have to be accessed and reor-
dered. which 1s a time consuming operation. The use of
overflow blocks wouid decrease the time requirements for the
insert operation with a oegative umpact on query response
ume. Block inserts could be followed but this technique s
not applicable to real time databases. {a any case. periodical
time consuming reordering 1s necessary. Deleting records
tould b~ performed by marking techniques and delaying
reordering and packing operations to off line maintenance
periods. Finally. updates require the access -nd rearrange-
ment of the affected attribute's indices.

It can be stated. in general. tha: the overall manage
ment system requirements for TIL Surrogate Files s complex
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and those techniques are not recommended 1n volatile data-
Jase environments.

7. Back Ead Architecture for Knowledge Base
Management

In this Section. we describe and analvze the benefits of
a parallel back end architecture for the management of
knowledge based systems with TIL surrogate Files

7.1. Back End System

Shown 1a Figure 7.1 s a back end svstem tor the
management of a very large extensional databzse of [acts.
This syscem will also manage many intentionai databases
1sets of inference ruies). but those are not shown on the
dmgram. We assume that there are many gigahytes of (act
data stored on the EDB disks. Likewise. there are several
gigabytes of surrogate file data stored on the SF disks (SFD).
Since we have assumed the relational model we will store the
facts by relation and then by tuple unique idenufier within
relations. As previously mentioned we will access the EDB
sniv by relation name and then by tuple idenufier. so
‘xtendible hashing or some such technique that minimizes
{isk accesses can be used

As aa example. assume that a user’s request requires
access to only two lists. The relevant block(s) from the first
list wouyld be retrieved from the SFD and input to its assocr
ated surrogate file processor (SFP) where on the fly com-
parisons are made (or matches by the comparator (CMP)
Note that the SFP consists of a comparator (CMP) aad
cache (CACHE] with their associated control microprocessor
(MP). The unique identifiers would be stripped off and sent
to the Intersector Hardware block (INT HMW) through the
multiplexer (MUX). The lst of Uids 1s piped 1n the pipeline
sorter (SORTER) and then fed to the cross-lists comparator
(XCMP)
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Meanwhile. the second list s processed in 3 similar way
1nd sent to the XCMP module Then. the two resulting iists
of possible responses are intersected by the XCMP bhlock
The output of Uids (if aav} & sent to che collector COL-
LECTOR] that acts as a buffer and tne block of good
responses {HITS) is passed on to the Exteasional Data Base
Manager (EDBM) for processing. The EDBM wiil retrieve the
facts. compare them with the search criteria to insure that a
collision has got occurred. put them in blocks. aad sends
them to the logic programming engine.

In the case where more than two lists are to be inter-
sected. the outcome of the two lists intersection s fed back
from the COLLECTOR to the XCMP block for a new cross
comparisoa operation with the third list coming from the
SFD/SFP pairs. This process s coattaued uncil atl the argu-
ments a the query are properly processed. When a single
argument query i3 considered, the MUX passes the incoming
list from the SFD/SFP pair to the COLLECTOR that relays
it to the EDB manager. The complete system can be viewed
as a three level pipeline controlled by the Requests
Scheduler  Optimizer.

7.2. Analysis of the Proposed Architecture

In this Sectiona, we analyze the motivatioas and the
benefits of the described architecture. One recurrent criticism
against the use of inverted file structures is that their perfor-
mance degrades as the number of arguments in a query
increases. A good algorithm would tend to perform in the
opposite way. as one hopes to do work proportional to the
expected number of tuples in an answer. This cricicism s
assessed based on the sequential processing of the surrogate
inverced lists, buc s micigated if parallel processing algo-
richms running on multi-processor architectures are designed
for transformed inverted lists. We will have to look at the
-quations for the different subcompoaents of the query
response time for TIL. aamely SFT1, [T aad DA.

t Surrogate Files Processing Speedup

From the equations. derived in Sectioas 4.1 and 4.2. for
the TILL surrogate files processing cime (SFT1) and Figures
5.2 through 3.5, we observe that SFT1 is proportional to the
number of arguments in a query (R;) and is related to the
disk access cost for the retrieval of the inverted lists ndices.
The TIL structure 1s well suited for parallel processing
through the distribution of the iaverted lists to multiple
storage and associated processor units (SFP). For the case of
a single user™' queries on a relation with degree "d”. an O(d)
speedup for the surrogate files processing time can be
achieved with a maximum of "d" SFD/SFP pauws For a
multi-user system. the speedup which can be achieved is a
function of the number of SFD/SFP pairs and the applica-
tion being considered. The surrogate file will actually coasist
of many sets of (nverted subfiles. one set {or each relation.
Those sets will be distributed over the SF disks in order to
insure maximum paralielism in disk accessing.

The distribution algorithm follows an optimizatwon cri-
terion related to the application on hand. We note that the

2 A “user” 13 relerred W as the application programmer A singie user
refers to 3 single application environment versus 3 muiti-user 1 ¢ MUItipie
applications eavironmeat




wsignment problem s NP_Complete and heunstic algo-
sithms. specifically designed Yor the proposed architecture.
are being presently developed for the proper distribution of
the surrogate mverted lists. The outcome of the algorithm
would be a storage mapping of the surrogate inverted lists
that 1: used by the Requests Scheduler Optimizer for query
oprimization.

Disk access cost can be further reduced by the use of
cache memorv in each SFP unit This cache would store the
primary indices which are relauvely small in size. With a
cache hit ratio of 0.9. the average aumber ol disk accesses.
per inverted list. drops to 11 from the vulue of 2 that s
assumed in the equations for SFT1 [n practice. the number
of disk accesses, per wnverted list search. s shghtly higher
due to the overflow chains that are bound to exist and which
were not accounted for in our anaivsis LARSIL

2. [ntersectian Operation Speedup

The equation for the intersection operation cost ([T)
was derived in Section 4.3. From this equation and the
analvsis of Appendix 2. [T can be easily shown to heavily
depead on C,. While negligible for small databases. IT
becomes a computation bottleneck for medium and large
data-knowledge bases with high average reduyndancy factors
{C} (See Figures 3.2 to 3.3). It is noted that the plots
represent computed intersection time for equal attrtbute
wslectivities: for exampie if R, = 2. the same C, s assumed
tor both arguments in the query [f we follow the reasoning
that the probability of bot* arguments in the query having
high redundaacy factors 13 low. then our plots are pessimustic
and realistic values for IT would be noticeably smaller. This
argument can be made for any database size

Nevertheless. for a VLDKB, the plots in Figures 5.2 to
5.3 reflect an essential need for special intersection hardware.
referred tc as the [ntersector {a Figure 7.1, the {ntersector is
part of the INT HW block and consists of the pipeline sorter
ISORTER) and cross-list comparator {XCMP)} units. The
sorter 18 essential, following our discussion in Appendix 2.
and shall be optimized to handle large lists of Uids as they
present the computation bottleneck of che intersection opera-
tion The XCMP block s used to cross compare the sorted
lList of Uids from the output of the SORTER with an incom-
ing list of Uids {rom a SFP

With Lpg a8 the mumnimum length of the lLists iavolved
n the intersection operation. an O{L,,,) computation steps
could be achieved with the [ntersector Compared with an
Ot Lo X!108alom,a) computation steps of the best sequential
algorithm. the speedup achieved with the hardware Intersec-
tor would be O(logalmi)-

For high query rates, the operation of the INT HW
block and the SFD/SFPs are overlapped. thus increasing the
throughput of the system. The aumber of latersector blocks
is not bouad to one. as shown in Figure 7.1, and s a func-
tion of the throughput constraint of the design. Maximizing
the level of pipelining between the SFD.SFP pairs and the
INT HW block(s) is an additional requirement on the optimi-
zation algorithm [t s wocth noting that a different intersec-
tion hardware could be derived based on a parallel cartesian
product algorithm. \Ve believe that such hardware would be
more elaborate than the sorter, cross comparator combina.
fon.
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3 Comments an the Database Access Time

Database access time (DA} depends on the locality of
the good responses and would be determined by the cluster-
ing scheme for the tuples n the eusting EDB In our
analysis, DA s derived following Cardenas’ assumpruions
CARTS: of uniform distribution for the records over the
EDB secondary storage blocks. [na a2 multi-user environment.
clustering can achieve optimal DA values for one user while
degrading the response tume for another EDB clustering s
an open design problem that lies 1a the class of
NP_Complete problems. [ts discussion 15 not within the
scope of this paper

3. Conclusion

[n this paper. we presented the equations to estimate
the storage overhead and query response time for
Translormed Inverted Lists. Surrogate files based on TIL
were found to be efficient as to a space/time criter:ia While
the size of the TIL files is larger than the ones (or other tech-
niques like Superimposed and Concatenated Code Words
BERST7. it lies within an acceptable range of storage over-
head (10 to 30 % of the database size). The superior partial
match response time of the TIL file scructures is an asset for
their use in the context of a Very Large Kaowledge Base.

TIL surrogate files are found to be well suited for paral-
{el processing with mulciple storage/ processor unics. Based on
TIL file structures, we described aad presented a preliminary
analysis of a parallel back end architecture for partial match
queries oo a VLDKB. OQur curreat research is directed
towards the development of the proposed back ead system.
based on cucrrent aad additional results. Many more issues
shall be addressed such as updating, integrity, collisioas and
adapting the inverted surrogate files to volatile
data knowledge bases. Another open resesrch problem we
are studying 13 the development of optimal allocation algo-
richms  {or the surrogate 1averted lists on multipie
storage. processor units.
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Appendix 1: Average Number of Adjaceat Blocks
Containing the Same Argument Value

The average number of coasecutive blocks containing
records with the same 1_th argumeat value i an index file s
derived The foilowing terms are defined:

1) C;. the number of records with the same _th
argument value.

2} Cy. the number of records 1a an index fle block.




3) X number of consecutive blocks as a randem:
vartable. We have to compute E(X). the expecten
value of X.

{t 1s noted that the C, records resicde ~onsecutively 1 an
index file. and the first record can be located at iny k_th
pesition 1n an index block with equal probability Three cases
are considered.

1} C, < Cy The number of blocks to be retrieved s
either 1 or 2 blocks We can write.

C~1 C.~t
(X =2 = . PIX =) = [-—‘—
PIX ) N and P{ ) R

2)C, > C, . with C, = aXCy+r and r#0:

. C, W modCy) - L _
PIX= -C_u. -1)= —T—- and
P(X C i . {CimodC,} ~ 1

TN C,

C
with C,modC, = C, — | — IXC,
G,
3) C, = aXCy.[n this case we write
C, Cy, -1
PIX = o = 1) = —2 and
G, b

. C 1
Pfk‘c—b)-c—b

For all three cases. it 1s easily shcwn that the expected
value of X. ElX). is governed by the following equation:

. C 1
E(\)-E—;—Fb- 1§

Appendix 2: Estimating the Number of Required
Comparisons for the Intersection Operation

Stockmeyer and Wong 3TOT9 give the following
Sounds on the number of comparwsons. {(m.n k). required to
‘ntersect two lists. m and n. of anty k (m < n).

ffm.ak) <{m + nixlogsm +im +a ~ U)Xk =m +1

[fmak) 2 Max(m + ajxlogsm —2.9m.(m = n = {})Xk ~m + 1

{n our case the arity k=1 and anumber of comparisons.
NC(2), to intersect two lists of cardinalities C,<C, 18

NC(2)>Maxi(C, + Cy)Xlog,C, = 2.9C,.C;.
NC(2)<(C, + Ca)Xlog:C, + C.

The upper bound is based on sortin, tae list of smaller
cardinality prior to performing the cross 'sts comparison n
at most CaX JogAC,+1)| comparisons. [t is kaown that
two_way merge SOft 00 a UDIProcessor requires at most
C,XxlogsCy comparson steps. It is easy to derive an algo-
rithm that would perform within the specified bounds
'KNUT3|. Furthermore. i[ we aeed to intersect more than 2
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lists. the number of additional comparisoas depeads on the
expected number of “hits™ from the first two_list intersection

XCa
Denoting this number by GD. GD = L

aumber of records in the database. For R, =3. we need
Cyxlog; [ GD + 1)] additional comparisons So that NC{3)
1§ written as:

. where N is the

. CxCa
NC(3) £ NC(2) + Cyxloge [ —— + 1)

The process caa be extended to include addivional inter-
section steps lor larger values of Rq. [t is noted that Carde
nas ‘CARTS| does not attempt to give an estimate of the
intersection time aod Frederowicz's approach FRES?
differeat than ours.

As to the number of good responses (GD). we wrote. for
Ry=2

q

C,xC,

GD =

values of an argument, the aumber of good drops can be
extrapolated to:

Assuming uaiform distributions for the

c
GD = N[J(=
.ERI.(-\)
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Appendix 9-C

AN ARCHITECTURE FOR VERY LARGE RULE BASES BASED ON
SURROGATE FILES!
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Syracuse University, Syracuse, New York 13244-1240, USA

ABSTRACT

To support a large set of rule bases as well as ground facts, we propose an
efficient retrieval method by transforming heads of clauses and facts into
Concatenated Code Words (CCW) to form a surrogate file. By adopting the ‘'mode’
declarations used in PARLOG, the heads of clauses can be represented by function-
free terms, and then are transformed to CCW to be used as an index to gain access
to the actual database. A simplified unification operation on surrogate files can be
cfficiendy implemented by means of a specialized associative processor due to the
uniform structure of surrogate files.

This work was supported by the Air Force Systems Command, Rome Air
Development Center at Griffiss Air Force Base in New York, and the Air Force
Office of Scientific Research at Bolling AFB in Washington DC under Contract
No. F30602-85-C-0008. This contract supports the Northeast Artificial
Intelligence Consortium (NAIC).
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An Architecture for Very Large Rule Bases Based on Surrogate Files

INTRODUCTION

Future computer systems will be expected to provide highly efficient
management of large shared knowledge bases for knowledge-directed applications
such as expert systems, Previous knowledge base systems such as ILEX (1) and
DELTA (2) have the dual structure consisting of an inference engine and a
knowledge base. These have attempted to combine a relational database system to
manage the knowledge base with a logic programming system to serve as the
inference engine. For efficient management of a large database, the Extensional
Database (EDB) is separated from Intensional Database (IDB). Though this
approach has exhibited a great deal of efficiency for handling a large set of facts
(EDB), it may not be suited to applications supporting large rule bases (IDB)
which heretofore have been assumed to be small enough to reside in the main
memory. It has also been observed that most inefficiencies stem from the interface
between these two very different systems.

On the other hand, in some recently proposed systems, there is no
distinction between the IDB and EDB. That is, both facts and rules are managed and
stored uniformly. A machine that uses the idea of database retrieval based on the
unification operation is the Sabbatel's Prolog database machine (3). It can search
desired data form secondary storages by the "on the fly" execution of unification.
Sabbatel proposed the Prolog's top-down evaluation strategy with AND/OR
parallelism and set-oriented processing to reduce the number of accesses to
secondary storage. Recently, Yokota and Itoh proposed the "Relational Knowledge
Base Model" to provide a machine with a uniform representation of the knowiedge
base (4). Unlike the relational database model that consists of only ground
instances, this model can accommodate variables and complex structured terms. In
this case, the exact match of database operations should be extended to unification
due to the variables and structured terms that can appear in the knowledge base.
However, the processing load required for such an operation on a large knowledge
base stored in secondary storage is expected to be enormous. Furthermore, this
approach can be inefficient because of the 'top-down' query evaluation strategy,
especially when a large set of ground facts are involved.

Presented in this paper are techniques for managing a very large knowledge
base to support diverse requirements for applications of logic programming
systems based on surrogate files (5) and associative processors. We also propose an
integrated knowledge base machine architecture that can effectively suppor very
large sets of rules as well as facts in the context of logic programming
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environment.

This paper consists of 6 sections. In the next section we give some basic
definitions followed by restricted representations of clause heads to be used to form
a surrogate file. In section 3, we present the basic method of constructing a2
surrogate file for rules and facts. Section 4 describes the basic idea for unification
on a surrogate file and an associative processor to realize it. Section 5 presents the
architecture of the proposed knowledge base machine and its parallel processing
model. Finally, in section 6, we present some conclusions and suggestions for
future work.

PRELIMINARIES

Conery (6) has classified the inherent parallelism in logic programming
systems into three major categories: AND-Parallelism, OR-Parallelism and Low-
level Parallelism. Our major concem here is a special case of OR-parallelism called
search parallelism which has been defined as a parallel distributed search to find
every clause with a head that unifies with the selected goal. Since a search
performed by integrated knowledge base machines should be based on unification
rather than equality, it is well known that an efficient implementation of
unification is the central issue in logic based systems. Several processors dedicated
to the unification operation have been proposed in recent years to accelerate this
most time-consuming operation in logic programming evaluation (7)(8) (9).

Informally, the main purpose of unification is to make two or more terms
identical by proper and the most general substitutions for logical variables in the
terms. A term is defined as follows (10):

(1) A variable is a term denoted by a capital letter such as X,Y.Z....
(2) A constant is a term denoted by a lower case letter such as a.b...
(3) If £ is an n-ary function and tj,...t, are terms, then f(ty....ly) is a term.

Ever since Robinson introduced the basic algorithm of the unification
operation for the resolution principle (11), more efficient algorithms have been
proposed and the complexity of the unification operation has been analyzed by
many researchers (12)(13). Among them, two algorithms (14)(15) are claimed to be
linear. These algorithms are based on a complex data structure called Directed
Acyclic Graph (DAG). Also, Morita proposed a linear representation of a term
suited to stream processing of unification (16). The DAG and linear representations
of a term are shown in Fig. 1 (a) and (b) respectively.
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X b ¢ a
(a) DAG
(£2X(g3)XO0)DOXcOXh2)a0XX0)
(b) Charcter String

Fig.1 The Representations of a Ter m( f( g(X.b.c), h(a,X) )

Our major concem in implementing unification for very large rule bases in
secondary storage, is finding all potential candidate clauses within a small amount
of time so that we can deal with real time applications. Since the full unification
on such data will require a heavy processing load, our goal may not be achieved
without restricting unification. Furthermore, the results of (12) indicate that, since
unification is inherently sequential, even parallel evaluation of a unification
algorithm may not offer a considerable speed-up over a sequential one.

The major processing load stems from ‘occur checks' to prevent the
unification from entering an infinite loop. That is, when testing if a variable X
unifies with a structured term t, a check should be done whether X occurs in ¢ (i.e.
{X/E(X)) ). We can eliminate these requirements by adopting mode declarations to
construct a ‘'standard form’ of clauses as in PARLOG (17) where the structured
arguments appearing in clause heads can be transferred to the bodies of clauses.

A PARLOG program that possesses a single solution consists of a sequence
of guarded Homn clauses. A guarded Hom clause of PARLOG has the form

A:-G1,G3..Gm:B1.B....By.

m,n20

If m=0 then the commit oprerator can be omitted. A candidate clause of
PARLOG is one which succeeds in all input matching with the call (subquery) and
whose guard literals ( G1,G3,...Gpy, ) are proven to be true.
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PARLOG exploits "mode” declarations for the clauses in the single solution
relation to avoid the requirement of full unification, and to control process
synchronization (17). A mode declaration for a predicate can constrain the
unification between a goal and a clause (head) in a program. Mode declaration is of
the form

mode R(mj,m),.....my)

where R is a predicate name and each m; is either 2’ or "',

An argument annotated with a 7' in the mode declaration for a predicate can
only be used for input matching against the corresponding argument of a call. That
is, the unification between a call and the head of the clause is successful only if the
corresponding argument in the call is instantiated ( i.e. not a variable ). Otherwise
the evaluation suspends. On the other hand, an argument annotated with a '\ must
be used for output matching against a variable of the corresponding position of a
call. In other words, the corresponding argument of a call should be an
uninstantiated variable on unification. If the argument is not an uninstantiated
variable, the unification fails.

The mode declaration is used to determine the 'standard form' of clauses at
the first stage of compilation. In the standard form, all complex terms appearing
in the heads of clauses can be represented as pure variables, and all input and output
matching between a call and the heads of clauses are translated to explicit
unification primitives instead of general unification.

Consider, for example, a simple PARLOG program

mode member(?,?).

member( H,[HIT] ).

member( H,[XIT] ) :- ~H=X : member(H,T).
where "' is the commit operator and ~H=X is a guard.

This program can be mapped into the standard form

member(H,Y) :- (XITj<=Y H=X:.

member(H,Y) :-[XIT]<=Y,~H=X: member(H.T).

The term [XIT] that was in the second argument position of the second
clause head appears as [XIT)<=Y because it has the mode '?'. Here '<=' is the one
way unification primitive that can only bind variables in its left argument((XiT]).
This implies that this term can only be used for input matching against the given
argument Y of the call. The repeated use of the term H in the head of the first
clause is detected as an implicit test because both terms have the mode '?". Thus the
term (HIT] is changed to [XIT] { here X is an arbitrary variable ) and an explicit test
unification primitive ‘=’ is added in the guard. In order to change a non-variable
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term with the mode 'A' to the standard form, the assignment unification primitive
=' should be used in the body. The unification primitives of PARLOG are
described in (17). Maluszynski and Komorowski (18) have also discussed the use of
mode to constrain full unification.

Consequently, the structured arguments ( e.g. [HIT) ) in the clause head can
be transferred to the guard or body of a clause as shown in the above examples.

SURROGATE FILES

Surrogate files are constructed by hashing transformation of terms. The
principal techniques that we have considered for the construction of the surrogate
file include concatenated code words (CCW), superimposed code words (SCW),
combinations of CCW and SCW, and wansformed inverted list (TIL) (5). But, we
will use only CCW 1o illustrate the ideas.

Suppose we have a fact called parent(timothy,johason). We would first hash
the individual values of each argument,

H(timothy) H(johnson)

| i

010111111 010110000

concatenate them, and then attach a unique identifier to obtain the CCW

010111111 | 010110000 | uid

where the vertical line shows the boundaries.

The same unique identifier would also be added to the actual fact itself so
that a CCW can be used as an entry for each fact via the unique identifier.

This technique has been used for partiai match retrieval on large set of facts
with varying degrees and cardinalities. In retrieving facts, we assume that the facts
are stored in such a way that one first accesses the relation and then a particular
tuple using a unique identifier. Thus, we do not need to transform the predicate
name (e.g. parent) for the facts. We obtain the unique identifier from processing the
surrogate file, and the name of the relation from the given query. Thus, the storage
structure for the facts themselves would be very simple and the desired facts can be
retrieved in at most two disk accesses.

Most relational operations such as selection and join, which are required for
the bottom-up query processing in logic-oriented database systems, can be
performed on the surrogate file rather than on the actual database. This makes
relational operations much faster and increases the system's performance when a
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large volume of ground facts exist.

In a CCW representation of a clause head containing variables, we do not
consider structured terms and assume that the clause head contains pure variables
and constants as arguments based on the transformation technique by adopting the
mode declaration.

Variables should be distinguished from constants. This can be done by
setting the msb (most significant bit) of the CCW 1o ' 1 ". Unlike facts, there are
only a small number of rules that define a predicate, i.e. rules with the same head.
Thus, we need to transform the predicate name as well as arguments.

Suppose we have rules for ‘ancestor’,

ancestor(X, Y):-parent(X.Z) ancestor(Z,Y).

ancestor(X, Y):-parent(X.Y).

We hash the predicate name and arguments by the same hashing function
used in CCW for facts. The number of arguments is also concatenated to the
hashed value of predicate name.

H(ancestor) 2 (No. of Arg.) HX) H(Y)

I | ! !

011100000 0010 100100111 100101001.

The CCW representations for the two rules would be the same except for the
uid's to be attached to them.

0111000000010 | 100100111 | 100101001 | uid_1
0111000000010 | 100100111 | 100101001 ! uid_2

Thus, a surrogate file can be used to find the corresponding bodies of clauses
with which a goal can unify via uid's.

This method guarantees retrieval of all desired terms ( clause heads or facts )
although, due to possible collisions resulting from the hashing method some
undesired terms may be retrieved. A longer word length for the CCW can minimize
such collisions, and post retrieval comparisons can be used to eliminate unwanted
terms.

In the next section, we describe how one might perform unification on a
surrogate file by proposing a special associative memory for bidirectional don't care
matches.
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UNIFICATION ON SURROGATE FILES

In this section, we present the basic idea of unification on a surrogate file
using an associative processor. We have shown in section 2 how to transfer the
complex structured arguments in the head of a clause o its body. For simplicity,
we assume that the query contains only pure variables and constants. Thus, the
Query Code Word (QCW) can be encoded by the same technique as described in
section 3.

First, for all constants in a QCW, the corresponding arguments of the CCW
must be either the same constant or a variable in order for the terms to be unifiable
(Input matching Condition).

In the input matching step, we regard all variables as "don't care match”
indicators. Unlike usual "don't care” matches, however, we need bidirectional don't
care matches because the data residing in associative memory, as well as the QCW,
may also contain variables. Since general associative memories do not provide this
capability, a special associative memory is required. We designed an enhanced
associative memory for bidirectional don't care matches, as shown in Fig. 2. Since
by assumption only variables and constants appear in a QCW, input matching
among a QCW and a number of CCW's, each representing a head of a clause, can
be performed in O(1) time ( i.e. constant time ).

By input matching, most unqualified terms can be pruned. After input
matching, we assume that the qualified terms (heads) are read one by one for further
processing. Thus post processing will be required for only a relatively smalil
number of terms, namely the qualified terms.

Obviously, the above condition is not sufficient. Consider, for example, two
terms of the form g(a.X.b) and q(Y.a,Y). Though they satisfy the condition, they
are not unifiable. We need post processing for the shared variables that appear in
arguments of qualified CCW's. If the same variable appears in arguments of a
CCW, they should be bound to the same constant or variable (Input matching
consistency).
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QW 01110...0010 100100111 100101100

—— msb
|immwmw2 | tumothy it

|
ancestor 2 X Y uid_1
ancestor X Y RRY] uid_2
01110...0010 100100111 100101000 uid_1
01110...0010 100100111 100101000 uid_2

Fig. 2 An Associative Memory for CCW

The prime objective of unification is to find proper bindings for variables.
After input matching and consistency checking are performed, the variables of
qualified terms (CCW's) are substituted by the constants obtained from input
marching. The reverse operation is required to bind variables in QCW. If these
terms are unifiable, then the similar condition as the input matching condition will
be satisfied. That is, for all constants in a qualified CCW, the corresponding
arguments of QCW should be either the same constants or variables (Output
matching condition).

Finally, a consistency check for the variables in the QCW needs to be
performed. That is, if the same variables appear in the arguments of the QCW,
they should be bound to the same constant or variable (Output matching
consistency).

The unification method always works with the function-free terms. In the
next section, the overall architecture and a processing model, as an example of
parallel :valuation of logic programs, are described.

THE KNOWLEDGE BASE MACHINE ARCHITECTURE
The knowledge base machine architecture for surrogate file processing

consists of four major components (Fig. 3):
1) A control processing element
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( Controi Processor(CP) + Main Memory ),

2) A database manager,

3) A high s~ “ed shared memory and

4) Several surrogate file processors (SFPs).

The Control Processor can be a general purpose high performance processor.
The main memory can be viewed as a local memory of the CP. In the logic
programming framework, the CP performs the resolution (variable substitution)
and accesses the actual KB. In our logic programming framework, we assume that
the clause heads and facts are stored across distributed surrogate files under SFPs.
The clause bodies, on the other hand, are contained in the database which is
controlled by the control processor.

¢ | Shared
2 E — Memory
&  [T]collector)

SFP | SFP e - SFP

Fig. 3 Proposed Knowledge Base Machine Architecture

Our system can be viewed as a shared-memory system which is a tightly
coupled multiprocessor that provide all SFPs equal access privileges to the shared
common memory. Because of the tight coupling between processors and
memories, this system can exhibit high performance. As can be seen in Fig. 3,
SFPs do not need to communicate with each other. That is, the unification
operation is local to each SFP, the CP does not access the local memories of the
unification processors, and a SFP is not allowed to0 access the main memory. All
the communications required between the CP and SFPs are performed by accessing
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shared memory. The contents of shared memory, once written by a SFP as a result
of a successful unification, are not changed until a new initial goal is to be
executed. Since the data in the shared memory is always valid, whenever the shared
memory gets new data from a surrogate file processor, the CP can read the data.
The maximum performance is achieved when the CP does not have any idle time.

As shown in Fig. 4, to prevent possible contention problems, we propose
to use high speed shared memory and to give the CP a higher priority in accessing
(read) the memory than the SFPs (write).

Since our architecture incorporates several SFPs for unification, OR-
parallelism can effectively be exploited in top-down evaluation of a query. AND-
parallelism, however, may not give us a considerable speed-up due to the binding
conflicts among shared variables. Consequently, an OR-parallel/AND-sequential
processing model with breadth-first search strategy is currently considered. Due to
its breadth first search nature, the resulting model is in some respects similar to
the LPS algorithm of DADO (19).

//\

@ @
o /
(emary )™

Fig. 4 The Sequence of Data Paths in Run Time

Read

The CP broadcasts the initial goal to each SFP, where the surrogate file is
managed and unification is performed. A processor that succeeds in a unification,
accesses the shared memory to write the variable bindings and uid. The uid can be
used by the CP to identify the corresponding body portion of a qualified head. The
control processor resolves the body literals with the bindings and broadcasts the
subgoals one at a time. The flow chart of this method is presented in Fig. 5.

For example, to evaluate the goal :-? ancestor(timothy,X), the control
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processor broadcasts it to each SFP. Each SFP tests to see if an
ancestor(timothy,A) can be unified with any header it contains by transforming the
goal to a QCW. There will be two matches in our example, the one from
ancestor(X,Y):-parent(X1,Y|) and another from ancestor(X,,Y3):-
parent(X7,Z7), ancestor(Zy,Y?).

CP
]
5[ Get an Initial Goal
{ Yes
Broadcast a Goal >
to each SFP
No
Fetch a uid Fetch Body using uid
from shared Memory Resolve literals
SFP -
nerate . Write <uid, bindings>
QCW Unify to shared memory

Fig. 5 Logic Programming Evaluation based on Surrogate Files

Assume that the uid of the first clause is 'uid_1' and the one corresponding
10 the second clause is 'uid_2". The control processor reads the shared memory to
get the corresponding uids and variable bindings resulting from a successful
unification. In our example, the contents of shared memory that can be accessed by
the CP after broadcasting the initial goal would be either <(Xy/timothy, Y/A},
uid_1> or <(Xyftimothy, Y9/A}, uid_2>. We do not care which clause succeeded
first. A portion of the body corresponding to either uid_1 (i.e. parent(X;,Y))) or
uid_2 (i.e. parent(X9,Z9), ancestor(Z),Y7)) is accessed from actual database via
uid's, and the corresponding body is resolved by the bindings. That is, the variables
which appeared in the body portion are substituted by obtaining them from shared
memory. If the second clause is unified before the first one, the CP creates two
AND processes of parent(timothy,Z,) and ancestor(Z2,A). Then the goal,
parent(timothy,Z»), is broadcast first.
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In our processing model, if the SFP is efficient enough to make the control
processor busy, the time required for unification is negligible. Hence a considerable
amount of speed up can be gained in accessing secondary storages. The overail
architecture is designed to exploit the advantages of both shared and private
memory systems based on the top level algorithm described in Fig. S.

CONCLUSION AND FUTURE WORK

We described surrogate file structures and a processing method that one
might use to evaluate goals in top-down fashion when a large number of rules
exist. When a large volume of facts are involved, the top-down query processing
may be inefficient (20). In this case, a set-oriented, bottom-up query processing is
more desirable than the top-down, tuple based one. Since the surrogate file
technique has been originally designed for ground instances of facts, they can be
effectively used for the bottom-up, set-oriented query processing in the framework
of logic-oriented database systems. In addition, by separating the bodies (the actual
codes for operations) from heads (an entry point for the procedure call), the
surrogate file processing technique could support multiple knowledge
representation schemes as well as conventional procedure- based, compiled
languages. '

We are currently approaching an efficient implementation of 2 knowledge
base system in two ways. The first is to develop special hardware to process
surrogate files; these files can allow efficient access to the knowledge base residing
in secondary storages. The second is to consider optical techniques that can
potentiaily increase data rates by orders of magnitude and thus speed access to the
knowledge bases. This paper presented one of the first approaches.
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Short statement

Optical storage, communication and processing hold the potential for two orders of

magnitude performance improvement in data / knowledge base processing.
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Introduction

The task of collecting, accessing and maintaining data, in all its forms, is the main
concern of database management. Over the years it has been established as one of the most
vital computer applications. With the advances of technology .nd the ever increasing
dependency on computers, these systems have expanded both in number and complexity
and now encompass such diverse application areas as distributed, multimedia and
CAD/CAM déuabasw; as well as knowledge bases for Al systems. Hundreds of
commercial Data Base Management Systems (DBMSs) are available, targeted for machines
ranging from mainframes to personal computers.

Database systems are not without problems however. There are many respects in
which current systems need further development: the amount of data that can be stored is
often insufficient, although well into the range of trillions of bytes for the largest
applications; the response time can be slow, especially for complex transactions like
context-sensitive searches or searches of unstructured data such as in full text retrieval
systems. The interface to the user is not optimal despite powerful query languages, often of
a non-procedural nature. The cost of acquiring and maintaining the hardware-software
components of such systems is high, although the performance to cost ratio is being

improved continuously.

Database machines, i.e. computers with architectures and software optimized for
database management, can help in solving or easing the response/capacity/cost limitations.
Evidently, solutions to all of the problems demand much more than an alternative hardware
approach. Moving functions from software to hardware and performing as many as

possible in parallel, are two directions which lead to performance improvements. Progress
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in electronic technology, especially with VLSI, has lowered the costs of logic and memory
enough to make deviations from the classic general purpose architectures attractive.
Unfortunately, the main obstacle, access time for data in magnetic secondary storage has
remained essentially constant despite the dramatically increased capacity of the devices

themselves.

If one abstracts from the qualities of the proposed or implemented database machines
the following are present or desirable: very large storage capacity; use of specialized
structures for the disk I/O; memory hierarchy with large data cache; utilization of
parallelism and content addressable (associative) memories; special purpose architectures
for performing well defined primitive functions like selection, joining or sorting and,

finally, operating systems of suitable functionality and performance.

Commercially, the field of database machines is not yet mature, with only a handful
of products on the market and various research efforts going on at universities and in
industrial settings. The issues involved in designing any new architecture are complex and
all encompassing, and the traditional ones are so deeply rooted (or well serving) that -

progress is bound to be rather slow.

With the requirements for database management as given above it is natural to look to
optics for possible solutions. This is due primarily to the large storage density achieved in
optical disks and the speed and parallelism inherent in light waves. Optical disks, as
discussed in the next section, have enormous capacites and although they are currendy
characterized by various limitations they have the potential of competing successfully with
magnetic disks.
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The inherent speed and bandwidth of optics has already resulted in major advances
in telecommunications because of optical fiber technology. The advantages of optcs are
beginning to be felt in multiple processor communication and will affect future designs to
the interboard, interchip or even to the intrachip levels. The reason is the ability to carry

information without interference at GigaHertz rates through guided-wave or free-space

propagation.

The development of optical processors is also receiving considerable attention bardy
because of the high speed of some optical switching elements and partly because of the
two-dimensional character of optical processing which suits many problems. All these
developments taken together will have significant implications for the design of data and

knowledge base systems as we shall discuss in subsequent sections of this article.
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Optical storage

Storage is "raw material” for data/knowledge base systems. It is required in great
quantity and at the lowest possible cost. Technology has done very well so far in keeping
up with (and fueling) the demands; the figures stating the decline of cost per stored bit are
always very impressive. In Figure 1 we show rounded values for the most important
characteristics of three types of storage/memory devices so that order-of-magnitude

comparisons can be made.
MOS RAM Magnetic Disk Optical Disk

Capacity 1 Mbyte 1 Gbyte 10 Gbyte
Access time 100ns 20ms 100ms
Cost $100 $10000 $10000

Volatile Yes No No

Erasable Yes. Yes No*
Comparison 5 6

Cost/Mbyte ($) 100 10 1

* not presently
Order of magnitude figures for
Fig. 1 storage /memory elements

The widespread appearance of optical storage can be traced to the introduction of
video laser disks a decade ago. In its simplest form, a beam of light detects the presence (or
absence) of pits on a revolving reflective layer and servomechanisms are employed for
tracking and focusing. The end result is data storage at areal densities an order of
magnitude higher than those of the best magnetic hard disks. These properties are even

more impressive if we consider the fact that imaging is done from a considerable distance
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(order of millimeters) and we can dispense with extreme me