
RADC-TR-88-324, Vol IX (of nine)
Interim Report
March 1989

AD-A209 454

NORTHEAST ARTIFICIAL
INTELLIGENCE CONSORTIUM ANNUAL
REPORT 1987 Computer Architectures
for Very Large Knowledge Bases

Syracuse University

P. Bruce Berra, et al

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTICS LECTEJUbN 2 8 1989

ROME AIR DEVELOPMENT CENTER ' D
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

89 6 27 030

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-324, Vol IX (of nine) has been reviewed and is approved
for publication.

", ... f t ,
APPROVED: ."

RAYMOND A. LIUZZI
Project Engineer

APPROV'ED: A' r A
/

RA'£-.OND P. URTZ, JR.
Technical Director
Directorate of Command & Control

'P- 7'P CD..ANDER:

JOH* A. RIT7
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (rOTC) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

- n -
.m--.taini

nm al~ cur
en m ii list.

I

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OM No.0704-018

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
W/A Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.
N/A distributionunli__ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-324, Vol IX (of nine)

68. NAME OF PERFORMING ORGANIZATION Eb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Northeast Artificial I) Rome Air Development Center (COTC)
Intelligence Consortium (NAIC)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
409 Link Hall Griffiss AFB NY 13441-5700
Syracuse University
Syracuse NY 13244-1240

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATIO (i EN
Rome Air Development Center F30602-85-C-0008

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT
NO. NO- 2304 No ACCE ON NO.

62702F 5581 27 13
11. TITLE (Incude Securiy Classf4ation)
NORTHEAST ARTIFICIAL "NTELLIGENCE CONSORTIUM ANNUAL REPORT 1987 Computer Architectures
for Very Large Knowledge Bases

12. PERSONAL AUTHOR(S)
P. Bruce Berra, et al
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Interim FROM Dec 86 TO Dec 87 March 1989 220

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on revere if necessry and identify by block number)

FIELD GROUP SUBGROUP Very Large Knowledge Bases* Artificial Intelligence,'

12 05 Computer Architectures' Real-,Time Processing, Pattern
Matching. Parallel Computing

19. ABSTRACT (Continue on reverse if necesary and identif by block number)
-The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems
Command, Rome Air Development Center, and the Office of LSc±~tiicReTearch. I-ts.purpose is
to conduct pertinent research in artificial intelligence and to perform activities ancillary
to this research. This report describes progress that has been made n--.r-±rLird._y.a.r,. f-
the existence of the AIC on the technical research tasks undertaken, at the member universi-
ties. %The topics covered in general are: versatile expert system fof equipment maintenance,
distributed Al for communications system control, automatic photo interpretation, time-
oriented problem solving, speech understanding systems, knowledge base maintenance, hardware
architectures for very large systems, knowledge-based reasoning and planning, and a knowledge
acquisition, assistance, and explanation system. The specific topic for this volume is the
development of architectures for very large knowledge bases, especially in light of real-
time requests, parallelism, and the advent of optical computing. - .

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[2UNCLASSIFIED/UNLIMITED E3 SAME AS RPT. - DTIC USERS UNCLASSIFIED
22s. NAM OF REIPONI lB E INDIVIDUAL 22. %QEJ- Area Code) I22c. OFFICE SYMBOL
RAYMONS A. IU RADC/COTC

O0 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Table of Contents

9.1 Executive Sum m ary .. 9-1
9.2 Introduction .. 9-2
9.3 Surrogate Files with SCW and CCW ... 9-5

9.3.1 System Model for SCW and CCW .. 9-5
9.3.2 Simulation and Analysis for SCW and CCW Techniques 9-7
9.3.3 Comparison of SCW and CCW Surrogate File Techniques 9-17

9.3.4 Further Work with SCW and CCW ... 9-17

9.4 Demonstration System for SCW and CCW .. 9-20
9.4.1 Demonstration System Design ... 9-20

9.4.2 Retrieving a Fact Using SCW ... 9-21

9.4.3 Future Work on Demonstration System ... 9-23
9.5 Inverted Surrogate Files .. 9-24

9.5.1 System M odel .. 9-24
9.5.2 Simulation and Analysis of Til Techniques 9-29

9.5.3 Maintenance Aspects of TIL Surrogate Files 9-35

9.5.4 The Dynamic Random-Sequential Access Method 9-35
9.5.5 Underlying Algorithms for DRSAM .. 9-42
9.5.6 Inverted Surrogate Files with DRSAM .. 9-45
9.5.7 Parallel Back End Architecture for IDSF .. 9-49

9.5.8 Open Research Problems and Future Work 9-53
9.6 Management of Very Large Rule Bases ... 9-55

9.6.1 Parallel Execution of Logic Programming ... 9-55
9.6.2 Rule Indexing Schemes for Surrogate Files: CCW-i 9-57

9.6.3 Partial Unification on Surrogate Files ... 9-58
9.6.4 Future Work on Managing Very Large Rule Bases 9-60

9.7 Optics in Very Large Knowledge Bases ... 9-62
9.7.1 The Potential of Optical Computing .. 9-62

9.7.2 Optical Data/Knowledge Base Machines ... 9-63
9.7.3 A Hybrid Opto-Electronic Preprocessor .. 9-64

9.7.4 Future Work - Implementation of Relational Operations
Using Optics ... 9-68

9.8 An Architecture for Very Large Knowledge Bases 9-70

9.8.1 The Concept of the Data/Knowledge Base Processor 9-71

9-i

9.8.2 The Very Large Knowledge Base Architecture (VLKBA) 9-72

9.9 Applications and Research Issues .. 9-77

9.10 R eferences ... 9-79

Appendix 9-A Surrogate File Structures for Very Large Data/Knowledge Bases
Appendix 9-B Backend Architecture Based on Transformed Inverted Lists,

A Surrogate File Structure for a Very Large Data/Knowledge
Base

Appendix 9-C An Archtecture for Very Large Rule Bases Based on Surrogate
Files

Appendix 9-D Optical Techniques and Data/Knowledge Base Machines
Appendix 9-E An Initial Design of A Very Large Knowledge Base Architecture

Ace83 Mn Far

NTISC'>
D21 T T

Aiui
\-- ----st

Awf

9- i

Q. Computer Architecture for Very Large Knowledge Bases

g.1. Executive Summary

The focus of our research is on the development of algorithmic, software and
hardware solutions for the management of very large knowledge bases (VLKB) in
a real time environment. We assume a logic programming inferencing mechanism
and a relational model for the management of the knowledge base. The interface
between the inferencing mechanism and the extensional data base becomes one of
partial match retrieval. During 1987 we have conducted research on many aspects
of this problem as indicated in this report.

We completed the analysis and simulation of surrogate file structures. We
considered concatenated code words (CCW), superimposed code words (SCW) and
transformed inverted lists (TIL). Our primary technique will be CCW but we will
also utilize SCW and TIL in some our research. In addition to good overall per-
formance CCW offer some interesting additional attributes. Namely, relational
operations can be performed directly on the surrogate file when it is structured
using CCW. The further development of this has become the doctoral disserta-
tion topic of one of the students on the program. This work has a direct effect on
the set of operations each surrogate file processor will be required to perform and
therefore on its design.

We have begun working on a demonstration system that will be used to
interface with a logic programming language, generate surrogate files and manage
a knowledge base. The system consists of Prolog, specially developed modules
and the INGRES data base management system.

We have extended the TIL concept to the management of very large dynamic
knowledge bases. This has led to the development of a new access method which
we call the dynamic random-sequential access method (DRSAM). This has
become the doctoral dissertation topic of one of the students on the project.

In a very large knowledge base the number of rules may be so large that spe-
cial architectures may be required for the management of the rules. We have
investigated the use of CCW for the management of the rules and have developed
an associative memory approach. The approach is based on guarded horn clauses
and mode declarations in a parallel logic programming context.

Another area that we have been investigating is the potential role of optical
storage, interconnection and processing in the management of VLKB. We have
developed approaches to the processing of digital light signals coming from optical
storage media via optical interconnection. The division between types of processes
is between those that do not require intermediate storage and those that do. The
performance of a robust set of relational operations through optical means has
become the doctoral dissertation topic of one of the graduate students on the pro-
ject.

Finally, all of the above work supports the long range development of a
VLKB architecture. During this year we were able to provide considerably more
detail regarding the specifications for that system.

9-1

9.2. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism
that can be utilized to respond to queries posed by users. The objective of such
systems is to capture the knowledge of experts in particular fields and make it
generally available to nonexpert users. The current state of the art of such sys-
tems is that they focus on narrow domains, have small knowledge bases and are
thus limited in their application.

As these systems grow, increased demands will be placed on the management
of their knowledge bases. The intensional database (IDB) of rules will become
large and present a formidable management task in itself. But, the major
management activity will be in the access, update and control of the extensional
database (EDB) of facts because the EDB is likely to be much larger than the
IDB. The volume of facts. is expected to be in the gigabyte range, and we can
expect to have general EDB's that serve multiple inference mechanisms. In this
report we assume that the IDB is a set of rules expressed as logic programming
clauses and the EDB is a relational database of facts.

In order to set the stage for the problem that we are interested in, consider
the following simple logic programming problem:

1. grandfather(X,Y) 4.- father(X,Z), parent(Z,Y)
2. parent(X,Y) 4-- father(X,Y)
3. parent(X,Y) 4-- mother(X,Y)
4. father(pat, tiffany)

father(don, louise)

5. mother(mary, louise)
mother(lisa, tiffany) -

6. *-- grandfather(X, joan)

The first three clauses form the IDB of rules for this problem, the next two
sets form the EDB of facts and the last statement is the goal. To solve the prob-
lem (satisfy the goal), we must find the names of the grandfathers of joan. For
this we search the father and mother facts on the second argument position,
finding values for the first argument position that can be used later. Thus, we
need to find joan's mother and father before finding her grandfathers. If we ask a
similar but slightly different query

4- grandfather(tom, X)

9-2

we search the first argument of the father and mother facts in attempting to
satisfy it.

Consider the following general goal statement of a logic programming
language

4-- r •XI2 .. •X

In this case, values for some subset of the Xi's will be given in the process of
trying to satisfy its goal. Since the subset of the Xi's is not known in advance
and can range from one to all of the values, this places considerable requirements
on the relational database management system that supports the logic program-
ming language. In fact, in order to insure minimum retrieval time from the rela-
tional database all of the Xi's must be indexed. With general indexing the index
data could be as large as the actual EDB. In order to considerably reduce the
amount of index data yet provide the same capability, we have considered surro-
gate files. Obviously if not all of the Xi's can take part in goal satisfaction then
the indexing strategy will change, however in this report we will assume the most
general case in which all of the Xi's are active.

Retrieving the desired rules and facts in this context is an extension of the
multiple-key attribute partial match retrieval problem because any subset of
argument positions can be specified in a query and matching between terms con-
sisting of variables and functions as well as constants should be tested as a
preunification step.

In the context of very large knowledge bases the question arises as to how to
obtain the desired rules and facts in the minimum amount of time. Three reason-
able choices of indexing schemes to speed up the retrieval are superimposed code
words (SCW), concatenated code words (CCW) and transformed inverted lists
(TEL)* surrogate file techniques. Surrogate files are constructed by transformed
binary codes where the transform is performed by well chosen hashing functions
on the original terms. In (BER87a], SCW, CCW and TIL surrogate files were dis-
cussed in terms of the structures, updating procedures, performance of relational
operations on the surrogate files, and possible architectures to support them. The
term "surrogate file" dates back to early work in information retrieval and other
terms, such as "signature file" and "descriptor file" have been used to describe
similar structures. [FAL84]

An important advantage of surrogate file techniques is that they can be easily
extended for the indexing of the rules expressed as Prolog clauses, where the
matching between constants, variables, and structured terms is required to test
the unifiability. [RAM86], and [WAD871 have extended the SCW structure for
the indexing of Prolog clauses and [SH87] has extended the CCW structure to
index the rules and facts in unified manner.

In section 9.3 of this report we consider SCW and CCW for the management
of a very large EDB. In section 9.4 we introduce a software system being
developed to demostrate the performance of the SCW and CCW surrogate file

SCW, CCW and TIL will be singular or plural depending upon the context.

9-3

techniques. In section 9.5 we consider two forms of TIL for the management of a
very large EDB. In section 9.6 we consider the management of the IDB using
CCW and present an initial associative memory architecture. In section 9.7 we
consider performing relational operations on optical data. In section 9.8 we
present an initial design of a very large knowledge base architecture (VLKBA) and
discuss some of its components. Finally, we conclude with some comments on the
VLKBA and some of its potential uses.

9-4

9.3. Surrogate Files with SCW and CCW

In this section we present SCW and CCV surrogate file techniques for exten-
sional database indexing. Notations that are frequently used in this report are
shown in Table 9.3.1.

Notations Meanings

Ar Number of arguments in a fact
R Average number of arguments specified in a query
E8 Average number of good drops per query
FD Average number of false drops per query
Sdb Size of the extensional database in bytes
N Number of facts in the extensional database
S Size of surrogate file in bits
B Size of a block in bytes

BR Binary representation
BCW Binary code word

QT Query response time
TV Surrogate file processing time
Tdp Extensional database processing time
Tit Intersection time
Ci Value distribution factor, that is, the average number

of facts which have the same value in the i-th argument
C9 Average of value distribution factor (Average redundancy)

Table 9.3.1. Summary of Notations Frequently Used

9.3.1. System Model for SCW and CCW

9.3.1.1. Superimposed Code Word

Let a tuple D contain A r argument values, D={dl,d, - • ,dA}. Each argu-
ment value (di, 1<<Ar) can be mapped into a binary representation (BR) by a
well chosen hashing function. The BR can be converted to a binary code word
(BCW) with pre-defined length and pre-defined weight, by using a pseudo random
number generator. The weight of a BCW is the number of 1's in the BCW. The
process of generating a BCW from an argument value is well described in
ROB79]. The SCW of a tuple is generated by ORing Ar BCW's obtained from
Ar argument values. A unique identifier is then attached to the SCW and the
tuple. This unique identifier serves as a link between the two and is used as a
pointer to the EDB or can be converted to an actual pointer to the EDB by
dynamic hashing schemes such as linear hashing [LAR82I.

Suppose we have a fact type called borders which is given as follows:

borders (Country-1, Country.2, Body-ofWater).

9-5

For a particular instance

borders (korea, china, yellow sea)

we would firz's hash the individual values to obtain BR's, then the BR's would be
converted "ito BCW's and the SCW would be formed as follows:

H(korea) = 100...01 - 000...100
H(china) = 010...00 - 001...000
H(yellow sea) 110 ...00 -0 100...010

101...110100...01

with the BCW's logically ORed together. The unique identifier is attached as
shown and the vertical line shows the boundary.

The retrieval process with the SCW surrogate file technique is as follows:

1) Given a query, obtain a query code word (QCW) by ORing BCW's
corresponding to argument values specified in the query.

2) Obtain a list of unique identifiers to all tuples whose SCW's satisfy
QcW=QCW .AND. SCW

that is, obtain a list of all SCW's that have l's in the same position as the
QCW by sequentially ANDing the QCW with all entries in the SCW file.

3) Retrieve all the tuples pointed to by the unique identifiers obtained in step 2
and discard the tuples not satisfying the query. These are called "false
drops". The facts satisfying the query are called "good drops". The false
drops are caused by the non-ideal property of hashing functions and the log-
teal ORing of BCW's which make tuples with different argument values
have the same SCW.

4) Return the good drops to the user.

g.3.1.2. Concatenated Code Word

The CCW of a tuple is generated by simply concatenating the binary
representations (BR's) of all argument values and attaching the unique identifier
of the tuple. With the same example used for SCW, the CCW would be formed
as

100...011010...00110...00 00...01.

The retrieval process with the CCW surrogate file is as follows:

9-6

1) Given a query, obtain a query code word (QCW) by concatenating BR's
corresponding to argument values specified in the query. The portion of the
query code word for argument values which is not specified in the query is
filled with don't care symbols.

2) Obtaia a list of unique identifiers to all tuples whose CCW's satisfies
QCW=CCW

by sequentially comparing the QCW with all CCW's in the CCW file. Note
in this case the matching is performed on both l's and O's.

3) Retrieve all tuples pointed to by the unique identifiers obtained in step 2
and compare the corresponding argument values of the tuples with the
query values to discard the false drops caused by the non-ideal property of
hashing functions.

4) Return the good drops to the user.

9.3.2. Simulation and Analysis for SCW and CCW Techniques

Simulations are performed with the equations developed in [CHU87] for the
size of surrogate files and the query response time using SCW and CCW tech-
niques assuming that the surrogate files are consecutively stored in a disk, the
EDB are randomly stored in a number of disks and the storage utilization of the
surrogate file and the EDB is 1. We also assumed that sufficient buffers are avail-
able for overlapped operations of block searching and block accessing.

9.3.2.1. Surrogate File Size

For the simulation of the surrogate file size, it is assumed that the EDB
remains at the same size regardless of variation of the number of arguments in a
tuple (AT) and 15 bytes are used for each argument value. Therefore, N, the
number of tuples in the EDB, can be calculated as follows:

where Sdb represents the actual EDB size in bytes not including the unique
identifiers for each tuple of the EDB. We also assumed that each argument of a
tuple in the EDB has the same redundancy value, Cg, which is the average of the
value distribution factors (C1 's) denoting the average number of tuples which have
the same value in the i-th argument positions.

Ec,
iEA,

Cg
Ar

The results for the size simulation are shown in Figures 9.3.1 through 9.3.2.
In Figure 9.3.1 we plot the size of the SCW surrogate file (Sscw) as a function of

9-7

the number of arguments in a tuple (Ar). The size of the surrogate file is expressed
as a percentage of the EDB. The EDB sizes are 105, 107 , and 109 bytes while the
average number of arguments specified in a query (Rq) takes on the values one
and two. Note that SSW increases with the size of the EDB (Sdb) but decreases
with Rq.

In SCW case, if we allow more false drops then the length of the SCW
becomes shorter which results in a smaller SSCW. However, more false drops leads
to more EDB accesses.

In designing the SCW surrogate file one must set the expected number of
arguments in a query. In terms of size, the worst case of course is when Rq is 1
and as the value for Rq is set at progressively higher values SSCW becomes very
small. However, if we assume large Rq in designing the SCW file, we have to allow
more false drops than the expected number of false drops, FD, whenever the
number of arguments specified in a query is smaller than Rq [ROB79].

In Figure 9.3.2 we plot the size of the CCW surrogate file(Sccw) as a function
of the average redundancy(Cg) in the data. Note that with greater redundancy
SCCW becomes smaller bec .ase a smaller number of bits can be used for each binary
representation. Also note that Sdb and Ar have significant effects on SCCW.

With regard to the size of surrogate files, we can say that the CCW file tech-
nique is better than the SCW technique, even though SSCW may be smaller than
SCCW when Rq is large, because we assumed that the average number of arguments
specified in a query is usually not more than 2. However, in both cases the surro-
gate file is generally less than 20% of the size of the EDB.

When the size of the EDB is less than 107 bytes, the surrogate file size is less
than 2 Mbytes, so the whole surrogate file can be stored in a fast memory to
speed up the retrieval process.

9-8

4

0%

01

0 Sumbr of kcjurflfts in a Tuple (Ar

Fig'~ g3.lEff ect of EOB Size and t~he Average %Iumber of gu-meflts

'Figurec9.3e1 in a Query on the SCW Surrote Fle Size

9-9

0

I" 5 5II

0 1 90

9-101

9.3.2.2. Query Response Time

For the query response time, we assumed that the hashing function is ideal,
so there are no false drops with the CCW surrogate file technique and the SCW
surrogate file technique has only the false drops caused by the logical OR opera-
tion on the BCW's. A partial-match query is assumed and the BCW of the surro-
gate file is compared with the QCW by using sequential byte by byte comparison.
The query response time results for the SCW and CCW techniques are shown in
Figures 9.3.3 through 9.3.6. Table 9.3.2 shows the values of parameters used in
this simulation. The parameters relating to the disk are obtained from the
characteristics of the DEC RA81 disk [DIG821.

Parameter Value
Average seek time 28 msec
Minimum seek time 6 msec
Rotational delay 8.3 msec
Data transfer rate 2K bytes/msec
Data sector size 512 bytes
Sectors/track 52
Traceks/cylinder 7
Time for byte comparison 3 psec
Block size 2K bytes

Table 9.3.2. The Values of Parameters Used in the Simulation

In Figures 9.3.3 through 9.3.4 and 9.3.5 through 9.3.6, we plot the query
response times with SCW and CCW surrogate file techniques (QT ,, and QTc,)
and corresponding subprocessing times; surrogate file processing time (Tsp) and
EDB processing time (Tdp) for Sdb of 106 and 10' bytes, respectively. When Sdb is
l0s bytes, most of the query response time is spent for EDB access. But when Sdb
is 101 bytes, the query response time becomes very large and most of the query
response time is spent for surrogate file accessing and searching because of the
increased surrogate file size and sequential searching of the surrogate file. The
number of arguments in a tuple (Ar) has little effect on either QT,. or QTC.
since we assumed that the Sdb remains constant under the variations in Ar.

When Sdb is 105 bytes, Rq is not a factor which affects QTSC, but QT,.
increases as FD increases. However, when Sdb is 10 9 bytes, the result is reversed,
that is, Rq affects the QT,. considerably while FD does not. There are two rea-
sons supporting this result:
1) S.,, decreases as R increases. However, when Sdb is small, S.', is also small

for any Rq so thalt the time for accessing and searching the SCW file is
almost constant. Therefore, the time for accessing the EDB, which depends
on FD, becomes a major factor in QT..

2) When Sdb is large, Sw becomes large so that most of QTSCW is spent for
accessing and searching the SCW file. Therefore, S,, is a main factor
deciding QT.,. Since S.. largely depends on Rq, the change in Rq is
directly reflected in QTSM.

9-11

QTSCW and QTCCW are largely affected by C when Sdb is 105 bytes and Rq is
small. However, as Rq becomes large, the e&ect of C9 on QTSCW and QT 0CC
decreases. This fact is well explained by the role of Rq and C. in determining the
number of good drops:
1) If Rq is small and C. is large, then there are so many good drops that a

large amount of time is required for accessing the EDB.
2) If Rq becomes large, the number of good drops decrease considerably, and so

does the EDB access time, which is the major component of the query
response time when Sdb is 105 bytes.

From Figures 9.3.4 and 9.3.6, we can see that when Sdb is 109 bytes, as C.
increases, QT5CW remains constant while QTCCW decreases. This occurs because a
fewer number of bits is required to uniquely identify each attribute value in the
CCW case. But when C is larger than a certain value, the query response time
starts increasing because of the increased EDB access time. Also, we can see from
Figures 9.3.4 and 9.3.6 that most of the query response time is used for the surro-
gate file accessing and searching when the EDB is large. Therefore, if we use
multiple processors and/or associative memory to speed up the surrogate file pro-
cessing, we can reduce the query response time considerably. Since the surrogate
files are quite regular and compact, they can be mapped into the associative
memory. Thus, we can obtain a speed up by the content addressing capability
and the parallelism of the associative memory [AHU80][BER871. In addition, we
can also obtain a speed up proportional to the number of processors because there
is little need for communication among the processors.

Since searching and disk access can be overlapped, if we increase the block
size, then the number of disk accesses can be reduced and we can save time as
long as the block searching time is less than the block access time. In the case of
a multiple disk system, the surrogate file and the EDB are distributed over a
number of disks and we can reduce the disk access time by seeking several disks
concurrently.

Comparing the retrieval performance of the SCW and CCW techniques, we
can see that QTCCW is smaller than QTsc, when Rq is small, because Sccw is smaller
than S3c w when Rq is small.

9-12

1,500-
1,400- QTscw
1, :}

1,200-
1,100-

1,000-
900-

E Tdp
7 00-.

10 Tsp
CI I I I II I

0 1 2 3 4 5 6 7 8 9
Logarithm of the Average Redundancy (Iog2C,)

Figure 9.3.3 Componepts of the SCW Query Response ime
(Sdb=lOabytes, Ar--6, Rq=2, FD=9)

9-13

240

220- QTccw Tsp

200-

180-

160-

,-12

120.
E=100..

80-

60-
40-

20- TdpO 0
0,/

0 1 2 3 4 6 7 8 9 10 11 12
Logarithm of the Average Redundancy (logC,)

Figure 9.3.4 Components of the SCW Query Response Time
(Sdb=lObytes, Ar=6, Rq=2, FD=9)

9-14

1940 QTccw
11,0

E

50

1 0:1 iTsp

0 1 2 3 4 5 6 7 8 9
Logaritm of the Average Redundancy (log2C,)

Figure 9.3.5 Components of the CCW Query Response Time
(Sdbzl Obytes, k=z6, Rq=2)

9-15

300

Td80-
260-I I I I

2012 4 6 8 111
Loaih2f2h0vrgeRdnacy(o 2 ,

Figur 9.3.6 CopnnsoTteCWQey epneTm

89-1

9.3.3. Comparison of SOW and CCW Surrogate File Techniques

As shown by the simulation, the size and query response time of the CCW is
smaller than those of the SCW when the average number of arguments specified
in a query is small.

It is very easy to update SCW or CCW surrogate files. When a new tuple is
added to the EDB, the corresponding code word is simply appended to the exist-
ing SCW or CCW surrogate files. No other operations are required. To delete a
tuple, we must find and delete the entry in the surrogate file as well as in the
EDB. When one changes the value of a field, SCW requires that a new code word
be generated and the old one deleted. For CCW the change need only be made to
the portion of the code word in question.

One obvious advantage of CCW over the SCW is that many relational opera-
tions can be easily performed on the CCW surrogate file rather than on the rela-
tions themselves IBER87I. This offers considerable potential savings in time to
carry out those relational operations.

In SCW, the order of argument positions in either query or fact can't be
differentiated because a SCW is generated by the logical OR operations on the
BCW's. This property of SCW can be a disadvantage when used for rule index-
ing in the context of logic programming.

SCW surrogate file searching time can be reduced by using the bit-sliced
organization to store the SCW files [LEE86I. But in that case, we must read and
write back many blocks of SCW surrogate file to update one SCW, which is not
tolerable when the EDB is dynamic.

In the SCW surrogate file technique, to reduce the the inherent false drops
caused by the logical OR operations on the BCW's, one may assign different code
weights to the BCW's of argument values depending on the occurrence frequency
and query frequency of the argument values. But to do this, the code weights of
frequently occurring argument values must be maintained in a table to be looked
up whenever generating a binary code word [FAL85](ROB791.

9.3.4. Further Work with SCW and CCW

The main drawback of the SCW and CCW surrogate file technique is that
the whole surrogate file must be read to the main memory and searched. To
reduce the searching time, one can produce a block code word for each block of
the surrogate file and use the block code words as an index for the surrogate file.
A given QCW is compared with the block code words first and only those blocks
of the surrogate file whose corresponding block code words match the QCW are
retrieved and searched. But the speed up is achieved at the expense of the extra
storage space and maintenance cost for the block code words. The performance of
the block code words will depend on the following factors:

1) type of hashing functions used for code generation,

9-17

2) algorithm for generating the block code words,

3) blocking factor: number of code words blocked together to form a block code
word,

4) how frequently the database will change.

[PFA80] introduced the block descriptor generated by logical Oring the disjoint
codes of each tuple and [SAC83I considered two level superimposed coding
scheme.

It has been shown that surrogate file processing time is dominant when the
EDB is very large. Thus, if we adopt multiple processors and/or associative
memory, we can reduce the surrogate file processing time considerably. A general
structure of a back end system which contains multiple processors for the manage-
ment of a very large extensional database of facts is shown in Figure 9.3.7. We
assume that there are gigabytes of data stored on the EDB disks and there are
gigabytes of CCW surrogate files stored on the SF disks. Suppose that the user is
interested in retrieving fact data given some subset of values from a particular
relation. The query code word would be constructed in the Request Processor
using the proper hashing function and considering the positions of the values
within the relation. The QCW would then be broadcast to all of the Surrogate
File Processors (SFP's) to be used as a search argument. One could think of the
SFP as a processor with associative memory with the QCW as the search argu-
ment. The SFP compares the QCW with each CCW and strips off the unique
identifiers of matching CCW's. As soon as any unique identifiers are found by the
SFP's they can be sent to the collector and passed on to the Extensional Data
Base Manager (EDBM) for processing. The EDBM will retrieve the facts, compare
them with the query to insure that a false drop has not occurred, put them in
blocks, and send the blocks to the logic programming engine.

Furthermore, the SFP's can be extended to support complex relational alge-
bra operations such as join. Consider a join using the hash join algorithm
[BRA84J,[KIT831. Since the CCW surrogate files already consist of hash values,
we only need to partition the portion of code words that represent the join vari-
able and the associated unique identifiers into the SFP's. Then, the SFP's can per-
form the join operation independently. The associative memory in each SFP can
be used for parallel execution of nested-loop join algorithm which outperforms the
sort-merge join algorithm in a multiprocessor system [BIT83. Based on matching
within each SFP (which can be done in parallel), pairs of unique identifiers can be
sent to the EDBM for final verification. Since the size of the CCW surrogate file
is around 20% of the EDB, we can save a lot of time when we perform the rela-
tional operations on the CCW surrogate file rather than the EDB itself.

Since the CCW surrogate file technique can be implemented easily with mul-
tiple processors and associative memory to speed up the retrieval process and
relational operations in a very large knowledge base system, our future research is
towards the development of a special architectures supporting those CCW surro-
gate file techniques.

9-18

REQUEST RQUES.

PROCESSOR

REQUESTrED
UidEXTENSIONAL FACTS

Figure 9.3.7 Back Ez~d System for ract Kaznaqement

9-19

9.4 Demonstration System for SCW and CCW

In this section the design of a demonstration system implementing the surro-
gate file concept for CCW and SCW is presented. The system is being developed
on a VAX 8800, which serves as a frontend to a Connection Machine.

9.4.1 Demonstration System Design

The demonstration systems design is presented in Figure 9.4.1. The design
can be viewed as a collection of subsystems tied together by the relational data-
base management system INGRES.

9.4.1.1 INGRES

INGRES provides us with file management capabilities, which we would oth-
erwise have had to write ourselves. There is the realization that by going through
INGRES for our searches, there is a certain amount of incurred overhead, and
thus the full advantage of the surrogate file cannot be realized on the demonstra-
tion system.

9.4.1.2 Logic Programming

A query enters the system from a logic programming environment. Once the
query is received, it is passed to INGRES through an interface. In our system the
interface is a Prolog one, being developed at Syracuse University. The interface
transforms the Prolog query into a query (argument) that INGRES can manipu-
late. INGRES then passes the query to the Query Code Word Generator.

9.4.1.3 Query Code Word and Surrogate File Generators

In order to retrieve a fact, based upon one or more arguments, each argument
is passed to the QCW Generator. The argument is hashed and a QCW is gen-
erated. What type of hashing is done depends on whether a CCW or SCW surro-
gate file will be used.

The Surrogate File generator forms the CCW and SCW surrogate files. As a
new fact is entered through INGRES, it is passed to the surrogate file generator,
where it is hashed according to whether a CCW or a SCW is being generated.
Also, a unique identifier (UID) is generated. Both are passed to INGRES, which
then passes them to the surrogate file.

9.4.1.4 Surrogate File and Knowledge Base

The respective CCW and SCW surrogate files are kept in the surrogate file
area. During a retrieval operation the surrogate .file is searched by INGRES, using
the QCW as a primary key. For each match, INGRES will extract the UID. Once
the UID is extracted from the surrogate file, it will be used to search the EDB.

9-20

Query Query Code Word

(QCW)

Generator

t ~Interfae llGnIa

Relational Database Concatenated Su p'frimposed
Management System Code Word Code Word

(INGRES) (CCW) (SCW)
Generator Generator

Intensional Extensional Surrogate File
Database Database (F

(IDB) (EDB)

Figure 9.4.1 Demonstration System for Surrogate File

9-21

9.4.2 Retrieving a Fact Using SCW

In Figure 9.4.2 we use SCW to visually explain how a fact will be retrieved
from a SCW surrogate file in the demonstration system.

Desired
Key Values
for Matching

Generate
Query Code
Word

Compare SCW
QCW wFthile
SCW's File

Compare
.. ____._ -Input Key

Values With
Key Values

Extract uid's Extract Stored
and Use as Desired In Facts

Index Facts

Exesoa Discard Qualified
Database Unqualified Facts

Facts

User

Figure 9.4.2 Partial Match Retrieval Using Superimposed Code Words (SCW)

9-22

9.4.3 Future Work on Demonstration System

The demonstration system will be developed using INGRES. The program-
ming will be done in EQUEL. EQUEL supports both QUEL, the INGRES data-
base programming language, and C in which the applications program will be
written.

The first task will be to build an 1DB and EDB. Having built them, the
CCW and SCW surrogate files will be built. The next step will be to incorporate
the Prolog interface into the demonstration system. As the work progresses, the
plan is to in the future develop a parallel version of the surrogate file on the Con-
nection Machine.

9-23

9.5. Inverted Surrogate Files

In this section we present transformed inverted lists, an inverted surrogate
file structure for partial match retrieval applications. We show that TIL file struc-
tures are suitable for partial match queries on static files but with degraded per-
formance and costly maintenance operations when dealing with volatile files. Then
we extend the concept of inverted surrogate files to include dynamic files and
orthogonal queries with the introduction of the Dynamic Random-Sequential
Access Method (DRSAM) and Inverted Dynamic Surrogate Files (IDSF). Finally,
we describe and analyze a parallel back end architecture for inverted surrogate
files and discuss open research problems and future work.

9.5.1. System Model

Single or multilevel indexing is a common technique used in data base
management systems (DBMS) for fast data access. In partial match retrieval,
creating index files for more than one field in a record is necessary. The extreme
case arises when every entry in a record is indexed independently and is referred
to as inverted lists organization [DAT86]. The problem behind using inverted lists
is that the size of the indices can become enormous, equal to or even larger than
the data base size.

Transformed inverted lists (TIL) are similar to inverted lists with the main
difference that indices are built based on the binary representation (BR) of the
hashed output of a given field in a record of the data base relation. Two TIL
types, TILl and TIL2, are considered in this section. A simple relation is illus-
trated in Figure 9.5.1. The fields are referred to as arguments and the BR values
for argument position 2 are listed.

The application environment of the TIL technique would be the management
of the EDB within a logic programming context. We assume that many different
relations (fact types) with varying degrees and cardinalities exist in the very large
extensional data base that we are considering. Furthermore, we assume that the
tuples are stored in such a way that one first accesses the relation followed by an
access to a particular tuple via its unique identifier (Uid). The unique identifier
could be derived from the "primary key" of the relation or a serially generated
number attached to each fact. Thus, the storage structure for the actual facts
themselves would be very simple and a method such as extendible hashing
[FAG79] or linear hashing [LAR82] could be used to guarantee retrieval of a given
act in at most two disk accesses. This presupposes that all secondary key

retrievals will take place on the surrogate file or through post processing of the
retrieved tuples if there are many different types of users of the same data base.

9.5.1.1. TILl Description

TILl consists of a two level indexed inverted list. Figure 9.5.2 illustrates the
Til organization for argument position 2 of the relation of Figure 9.5.1. The
blank entries in the primary index file are usually included for updating purposes.
The secondary index file for a given argument in a tuple is an ordered list of the
BRs of the hashing function output of that argument with the attached unique
identifier (Uid). The first entry in each block of this file is duplicated in the pri-
mary index file with an attached pointer to the corresponding secondary index
block address. Furthermore, index files are partitioned in blocks of B bytes each.

9-24

Uid Ar, Ar2 Ar3 Ar4
=f- - -== - ICuidl bri

uid2 - br2 - -

uid3 br3

uid4 bri

uid5 br4

idO bri

uid7 br5

-id - -

uidg br6

uidIO br7

uidl I br3

uidl 2 br4l

Figure 9.5.1 A Simple Knowledge Base Relation

9-25

BRI U!d

E-iV Uidl

BRI PTIbri uid4

bri uid6

br2 pt2br2 uid2

br3 uid3

br4 p3br3 Uidli

brbr4t uids

br4 WdON

- ____br5 uid7

Primary Index File br6~ uid8

brS uidg

br7 UidlO

Secondary Index File

Figure 9.5.2 TILL for Ar2 in Figure 9.5.1

9-26

It is observed that the entries in the primary index file are ordered as well.
When a given BR is to be retrieved (say BR=br3), the primary index file is

sequentially accessed using the BR as the search argument and the pointer to the
secondary block address corresponding to that BR retrieved (pt2 in our example).
Then the secondary file is accessed in a direct mode and the required block(s)
retrieved and searched sequentially for the occurrence(s) of the requested BR. The
output is a list of Uids (uid3 and uidll for our example) corresponding to the
value of the request.

9.5.1.2. TIL2 Description

TIL2 is a three level indexed inverted list organization and is illustrated in
Figure 9.5.3 for the same example relation. The difference between TIL2 and TILl
lies in that the TILl secondary index file is now split into two files: the TIL2
secondary index file and the tertiary index file. Each entry in the tertiary index file
consists of a Uid, so that the number of entries in this file is equal to the number
of records in the data base relation. Each entry in the TIL2 secondary index file
consists of three fields: the BR of the hashed function output of an argument
value (say BR=br6), a list length entry '" that provides the number of records
in the data base that have the same entry value in a given argument position (2
for br6) and a pointer to the address of the first Uid in the tertiary file that has
BR=brO. This pointer consists of the block address and a displacement value in
the block.

The retrieval process for TIL2 is similar to TILl, but requires the access of an
additional index level.

9.5.1.3. Partial Match on Multiple Argument Positions

When more than one argument position match is requested in a query, the
different outputs from the inverted lists searches need to be intersected. The out-
come of the intersection is a set of Ulds that complies with the query require-
ments. Finally this set of Uids is used to directly access the main data base for the
retrieval of the matched records. The gain in retrieval time when using
transformed inverted lists is mainly due to the small size of the surrogate files and
the fast access resulting from the indexing scheme. Only conjunctive partial match
queries are considered, but the reader should be aware that disjunctive queries
have the same level of complexity, with the lists intersection operation replaced by
a multiple sets union operation.

It is noted that the inversion level of the surrogate files is determined by the
application being considered. Since our underlying application involve logic pro-
gramming and relational data bases, we assumed fully inverted surrogate files
throughout and derived the minimum storage and the query response time equa-
tions in [HAC881. Our analysis is based on a compact representation of the data
and does not take into account overflow chains. It is meant to pinpoint perfor-
mance bottlenecks, to be resolved in the design of a special purpose back end sys-
tem.

The derived equations were based on the following general assumptions on
the hardware and system models:

9-27

BRi L PTI2 Uid

bl 3 pt5 ~ud

br2 pt6 id

BRI PTI2 1 7 W -i

- uid6
=m

__ r3 2 p7id

br3 pt2 br3 2 pt7 uid2

uidilI
b5 pt3 br5 I1 pt9 ud

br7 pt4 b 6- 2 ptiO uidl2

- - -u id 7

Primary Index File b7 I p1

- --uidg

- --uidlo

Secondary Index File Tertiary
Indpx
File

Figure 9.5.3 TIL2 for Ar2 in Figure 9.5.1

9-28

1. A given BR is equally likely to be specified in a query.
2. The primary and secondary indices are stored in contiguous secondary
storage blocks and ordered with respect to the BR values so that a block can
be searched in log time.
3. Buffer sizes are sufficient to hold the retrieved blocks and partial overlap-
ping of the primary index blocks retrieval and search is achieved.
4. Main processor comparison is byte oriented.
5. We assume a stable file as defined in (LAR81] and do not account, in our
deterministic analysis, for the overhead incurred by searching overflow
records. According to Larson's stochastic model, the expected number of
additional disk accesses required to search an indexed-sequential file is around
0.3 accesses.
6. The hashing functions do not lead to collisions. However, in practice, colli-
sions could be deleted by post checking of the retrieved records from the EDB
prior to further processing. This could be performed on the fly but is not
included in the present analysis. Although not required for the analysis, if
order preserving hashing functions are provided, [GAR86], TIL files could
handle range queries as well.

We only present the results of our simulation pertaining to TILl and refer
the reader to [HAC88] for additional details.

9.5.2. Simulation and Analysis of TIL Techniques

The notation definitions and parameters for the TEL technique are the same
as those for SCW and CCW and are found in Table 9.3.1 and 9.3.2 respectively.

In Figure 9.5.4, the TILl surrogate file to data base size ratio is plotted
versus the logarithm of the average redundancy factor, for different Sdb and Ar
values. In general the surrogate file size of TILl spans from a low of 9.2%, for

=og2Og--9, Ar.10 and Sdb - 10s , to 41.8% for log 2C =0, Ar=2 and Sdb = 10 9 . It
is noted that the plots in Figure 9.5.4 mainly reflect tlie variation of the secondary
index file size as the primary index file size can be shown to be negligible. In
[HAC88], the storage requirements for TIL2 are reported to range from 8 to 20%
of the size of the data base.

Figures 9.5.5 to 9.5.8 illustrate the TILl query response time (QTTIL1) and its
corresponding subprocessing times (Tp, Tit and Td) for different data base sizes
and number of arguments in a query. Figures 9.5.% and 9.5.6 relate to medium
sized files (Sdb - 107 bytes) while Figures 9.5.7 and 9.5.8 are typical of very large
files (Sdb - 109 bytes). It is observed that QTTILI is highly dependent on the sur-
rogate file processing time (T8 p) for low values of Cg (up to 512) and then becomes
highly dependent on the intersection time (Tit). The drop in data base access time
(Tdp), observed between the plots of Figures 9.5.5 and 9.5.7 or 9.5.6 and 9.5.8, isCg
due to the dependency of the number of good drops (GD) on the ratio -L--. For a

fixed Cg, this ratio decreases with increasing data base sizes.

No plots are included for the case where Rq = 1. In this situation, the query
response time for TILl is dependent on the number of good drops which is C9.
Further-nore, TIL2 query response time variations are the same as for Till. The
only dilTerence is that TL2 requires one additional disk access per query

9-29

50-

45-

40- Sdb

S35-2
2
10

S,2o2

25 2
10

2
10- 10
5-

0 1 2 3 4 5 6 7 8 9
Logarithm of the Average Redundancy (log 2C,)

Figure 9.5.4 Effect of the Database Size and the Number of Arguments in a
Tuple on the TILl Surrogate File Size.

9-30

1,500-
1,400. QhIil

1,300-
1,200-
1,100-
1,00-

~900-

5 800-
"i700-E

600- it

500-
400-
300-
200- Tsp
100-

0 1 2 3 4 5 6 7 8 9 10 11
Logarithm of the Average Redundancy (IogC,)

Figure 9.5.5 Components of the Mll Query Response lime
(Sdb=l0bytes, Ar=-6, Rq=2).

9-31

1,500-
1,400- Qltill
1,300-
1,200-
1,100-
1,000-
S900-

M 800- it
w 700-E 600

500-400- /Tsp

300-

200-

0 ,Tdp

0 1 2o3n45 6 7 8 9 10 11
Logarithm of the Average Redundancy (Iog2C,)

Figure 9.5.6 Components of the TLl Query Response Time
(Sdb=10bytes, Ar=-6, Rq=4).

9-32

1,500-
1, -

1,300-
1,200-
1,100-
1,00- QTtil

5 800-
700-

,300- Tsp200-

10- ldp5-

0 1 2 3 4 5 6 7 8 9 10 11
Logarithm of the Average Redundancy (logC,)

Figure 9.5.7 Components of the lILl Query Response Time
(Sdb=l'bytes, Ar=6, Rq=2).

9-33

1,500-
1,400-
1,30-T
1,20
1,100

1,000-
_.900-

Boot80- Tt

F=700.
"600-

500-s

41

300-

200-
100- n Tdp

0 T
o 1 2 3 4•5 6h 7 8 9 10 11

Logarithm of the Average Redundancy (IogC,1)

Figure 9.5.8 Components of the TILl Query Response Time
(Sdb=l0 bytes, Ar=-6, Rq=4).

9-34

argument, that is balanced by a smaller disk transfer time for large values of the
redundancy factor C. The disk transfer time is smaller due to a smaller surrogate
file size.

We conclude that the TIL techniques are efficient as to the storage/query
response time combination. Even for relatively large redundancy factors, the query
response time is within a few seconds while the storage overhead of the surrogate
files lies in the 10 to 20 % range of the data base size. It is noted that conven-
tional inverted lists, with full indexing, may require an overhead well in excess of
100 % of the data base size.

9.5.3. Maintenance Aspects of TIL Surrogate Files

One of the difficulties in using the TIL techniques is their maintenance
requirements. Those become a serious drawback, especially in a highly volatile
data base environment. The above analysis pertains to a static surrogate file. If,
for example, 30% expansion of the main data base is forseen, the overall increase
of the surrogate files sizes can be greater than 30%, due to the additional increase
required for the different record pointers and unique identifiers.

Some important maintenance aspects are the add, delete and update opera-
tions. When adding a new record to the data base, all the index files have to be
accessed and reordered; which is a time consuming operation. The use of overflow
blocks would decrease the time requirements for the insert operation with a nega-
tive impact on query response time. Block inserts could be followed but this tech-
nique is not applicable to real time data bases. In any case, periodical time con-
suming reordering is necessary. Deleting records could be performed by marking
techniques and delaying reordering and packing operations to off line maintenance
periods. Finally, updates require the access and rearrangement of the affected
attribute's indices.

It can be stated, in general, that the overall management system require-
ments for TIL surrogate files is complex and those techniques are not recom-
mended in volatile data base environments.

Provided order preserving hashing functions, orthogonal queries are possible
with inverted surrogate files. With the additional requirement to manage very
large dynamic data/knowledge bases, we are led to the topic of our current
research which we present in the next Section.

9.5.4. The Dynamic Random-Sequential Access Method

The scope of our work is to extend the concept of inverted surrogate files to
cover the more interesting and general case of dynamic data/knowledge bases. A
new dynamic file structure is proposed, as the core structure for inverted surrogate
files. Furthermore, we propose the analysis and simulation of this structure and
the development of a back end architecture based on inverted dynamic surrogate
files for the management of a Very Large Data/Knowledge Base (VLDKB).

Two major dynamic hashing schemes are exhaustively analyzed in the litera-
ture, namely extendible hashing (EH) by Fagin [FAG7!9] and linear hashing (LH)
by Litwin [LIT80. While the basic schemes of EH and LH were proposed for pri-
mary key direct access applications, those were modified, extended and adapted

9-35

for a wider range of file design problems, including PMR. Most applications
related to PMR follow the multi-attribute single file design approach. The
Dynamic Random-Sequential Access Method (DRSAM) is proposed to be used as
the core structure for a single attribute multi-file design. It is inspired from LH
with the additional feature that the ordered sequential characteristic of inverted
files and TIL is preserved for optimum sequential processing (range queries) as well
as random access.

This scheme has the same near optimal characteristics of LH as to random
access, insertion, deletion and update operations and the additional important
feature of fast sequential access similar to ISAM, VSAM [MAR77] and B-trees
[BAY71 with an 0(1) response time for sequential access. The analysis is kept to
a "primary key" file, and within some constraints to be discussed, the reader can
easily check that DRSAM is applicable to secondary keys as well. Furthermore,
the analysis assumes a contiguous storage allocation scheme. The case of a distri-
buted secondary storage allocation environment shall be covered in future work.

9.5.4.1. A Review of Linear Hashing

The reader is referred to the paper by Litwin [LIT80] for additional details on
LH. Linear hashing is a directoryless dynamic hashing method and relies on a one
sided linear expansion of the file following a sequential bucket split pattern.

The basic idea is best explained by an example: assume that we start with a
file of 4 buckets (#0 to #3), each with the capacity to store 3 records and the
hashing function that determines the address of a key given by h0(Key) = Key
mod 4 (h0 is called the home hash function). Initially the file is loaded with 10
records as shown in Figure 9.5.9. We note that buckets #1 and #2 are full. We
assume that the file expands whenever a collision occurs (referred to as uncon-
trolled splitting): a collision takes place when a new record's key, to be inserted,
hashes to a bucket that is already full.

The expansion of the file is performed by extending it through the addition
of one bucket at a time. This bucket receives some records moved from an existing
bucket that undergoes a split (i.e expands). The next bucket to split is determined
by a pointer (called split pointer) that moves sequentially, after each split, from
bucket #0 to bucket #-3. The file gradually grows from 4 to 8 buckets (+0 to #7)
and the process of doubling the size of the file is referred to as an expansion cycle.
At the beginning of an expansion cycle, the split pointer points to bucket #0
(marked by "*" in Figure 9.5.9). The split is resolved by rehashing the splitting
bucket's records with h1 (Key) = Key mod 8 (h, is referred to as the split hash
function).

0 101 10 3
60 201 70 7

205 130

Figure 9.5.9.

Let us insert Key-134: h0(134)=2 and a collision occurs. Key 134 is inserted
in an overflow area for bucket #2 and bucket #0 splits: the records in bucket #0
are rehashed with hl, moving Key=60 to the new bucket #4. Then the split
pointer is advanced to point to bucket #1 and we get the file status of Figure
9.5.10.

9-36

,, (*)

0 101 10 3 60
201 70 7
205 130

Overflow Area

[134 11 1

Figure 9.5.10.

When the file doubles in size the new home hash function is set to h, - Key
mod 8. A new expansion cycle can begin with the split hash function as h2 - Key
mod 16. The split pointer is reset to bucket #0 and the new cycle will expand the
file from 8 to 16 buckets.

In gene. al, to implement linear hashing, starting from a file of "N' buckets,
we need a sequence of hashing functions (h0 , hl..., hi, hj+j,...) with the following
properties:

0 h0(Key)5N-1
fhi(Key) for all Key and i>0

hi+(Key) - or
hi(Key) + NX2'

The simple remainder hashing function is one which has the above property.
To achieve an even load, the two cases for hi+ 1 should occur with equal probabili-
ties. To keep track of the state of the file, two variables are needed: 'L" counts the
number of times the file size has doubled and "p" as the split pointer to the next
page to split. The address computation algorithm is as follows:

address(Key) = hL (Key);
if (address(Key) < p) then address(Key) - hL+ 1 (Key);

Expanding the file by one page requires the local reorganization of two pages: the
one being split and the new page appended to the end of the file. The technique
outlined above gives a mechanism to expand the file by one page. The criterion to
trigger an expansion was based upon the occurence of a collision. This mechanism
is referred to as "uncontrolled splitting". Litwin suggests "the rule of constant
storage", whereby the designer would set a threshold for the storage utilization:
whenever this threshold is exceeded the file is expanded by one page. This method
is also referred to as "controled splitting".

As an indication of the performance that can be achieved with LH, Larson
[LAR82L reports the following: a page size of 20 records, storing overflow records
on overflow pages with a capacity of 6 records per overflow page, and a threshold
of 0.85 on the storage utilization result in an average successful record retrieval in
1.26 disk accesses, and an average record insertion cost of 3.49 accesses (including

9-37

disk accesses for file expansion).
It is noted that the split sequence follows a sequential pattern from the first

to the N-th bucket. This means that the split does not necessarily take place on
the bucket that undergoes a collision, which is typical of directoriless dynamic
hashing methods. A collision resolution method (CRM) is proposed to resolve the
split by assigning overflow chains. If the data is uniformly distributed the perfor-
mance of the file structure is not degraded by the overflow chains.

As shall be seen, DRSAM relies on a different split sequence that achieves
clustering for fast sequential access as well as an expected random access perfor-
mance equal to LH.

9.5.4.2. File Design Objectives

The objective is the design of a file structure with the following characteris-
tics:

1. Fast random access: the structure should be such that, given a search key,
the access cost to the required record is optimal, i.e one disk access (or very
near to the optimal value of one).
2. Fast sequential access: the structure should be such that, given a range for
a search key, the access cost required is also one disk access followed by suc-
cessive block reads, provided a contiguous storage allocation scheme, or
optimal for distributed allocation schemes.
3. Dynamic: the structure should be easily expandable with low maintenance
overhead.

Characteristics 1 and 3 are studied in the context of LH. Characteristic 2 is
achieved if the buckets that qualify for the range query are located in contiguous
blocks in a sequential allocation environment, so that one disk access is performed
followed by consecutive bucket reads, or the number of disk accesses is minimized
in a distributed allocation environment. This is typical of the fairly static ISAM
and VSAM files in general. Also, B-trees provide fairly linear results for sequential
access and log time for random access. DRSAM is based on an order preserving
hashing function with a one sided expansion scheme similar in concept to LH but
follows a different split pattern, designed to preserve the natural order of the key
values in consecutive blocks. Its random access cost is the same near optimal one
as LH and its sequential access cost is expected to be 0(1). This method presents a
promising alternative to the static ISAM, VSAM and B-trees file structures.

9.5.4.3. Order Preserving Hashing

The hashing scheme is as follows: the file is at level '" would mean that it
consists of 2' (contiguous) buckets. The address of a "Key" would be found by
transforming 'Key" with OPHi(Key), where OPH i is a dynamic sequential allocat-
ing and order preserving hashing function:

add1(Key) - OPH,(Key)

at level '1+1", we write:
addi+,(Key) = 0PH+ 1(Key)

9-38

A simple dynamic order preserving function is provided for OPH() as:

OPHi(Key) - Prefix(Key,i)

with Prefix(Key,i) as the leftmost "I" bits of "Key". We chose this function as
being easy to follow, though not generally considered as a good randomizing func-
tion. Other randomizing functions could be devised and the reader is referred to
Garg's work [GAR861 for order preserving hashing and Carter et al. [CAR79].

Assuming the contiguous allocation scheme, the reader can easily check that
we indeed have an order preserving hashing function. This function is simple and
provides a fast mean to compute the address of a key. Furthermore, if a key range
is provided, the blocks to be retrieved lie in "contiguous" blocks whose addresses
are linearly found by hashing the extremes of the range (assuming that all blocks
covering the range of the query are on the same level).

It can be easily checked that the above sequence of hashing functions does
not lie in the class of linear hashing split functions advocated by Litwin. There-
fore we propose a different split pattern (which we refer to as the "one sided loga-
rithmic folding'). The split algorithm is described in Section 9.5.5 while the fol-
lowing section contains an example to provide an insight to the expansion pattern
of this file structure. It is observed that, like LH, the expansion should be on one
dimension as operating systems cannot easily cope with files that expand in two
directions.

9.5.4.4. An Example of the Expansion Pattern of DRSAM

In the following pictorial representation, we assume block sizes of b=3
records and the home hash function is add 2(Key) - OPH2(Key), i.e N - 4 buckets
or the current level '" is 2. Then the split hash function is
add3 (Key) - OPH3(Key) and we are looking at the three leftmost bits. Assuming
that a key is encoded in 8 bits, the ranges for level 2 are as follows:

bucket #0: 0 to 83.
bucket #1: 64 to 127.
bucket #2: 128 to 191.
bucket #3: 192 to 255.
For an expansion cycle from level 2 to level 3, each range splits in consecutive

buckets. For example, bucket #0 splits onto buckets #0 and #1 and the respec-
tive range is then: 0-31 and 32-63, and so on. In general, bucket #x splits onto
buckets #2x and #(2x+1).

In Figure 9.5.11, the state of the file is shown with 9 insertions. We observe
that bucket 10 is full. We begin with the split pointer at N/2= bucket #2
(marked by a)

io0 #1 *2 * -

0 70 130 200
10 72 162 235
60

Figure 9.5.11.

9-39

Figure 9.5.12 shows the file state after the insertion of Key=12. This value
hashes to bucket +0 and a split occurs with an overflow chain attached to bucket
#0. Bucket #2 splits onto buckets #4 and #5. Note that bucket 2 is not used
for the moment. We shall refer to it as the "hole". This hole expands and shrinks
during the expansion cycle. During an expansion cycle, the maximum number of
buckets that would be unused at a given time can be shown to be iog2N - i. This
is one of the drawbacks of this technique and represents the price we have to pay
to preserve the desired sequential access characteristic of the file. We shall further
talk about the "hole" characteristics in the following section. The split pointer is
advanced to bucket #-3.

0 70 200 130 162
10 72 235
12

Overflow Area

Figure 9.5.12.

Let us see what happens with the successive insertions of 120, 131, 121, 122
and then 62: first 120 goes in bucket #1, then 131 in bucket #5 (as bucket 2 has
already split and is at level 3 now). Figure 9.5.13. shows the status of the file at
this stage.

0 70 - 200 130 162
10 72 - 235 131
12 120 -

Overflow Area

Figure 9.5.13.

Then comes 121, a collision occurs and bucket #3 splits onto buckets #6 and #7.
The bucket split pointer "folds back" to bucket #1 as the consecutive buckets #2
and #3 are now empty and can be used to expand bucket #1. Figure 9.5.14 shows
the state of the file after inserting Key=121.

9-40

0 76 - - 130 162 200 235
10 72 - - 131
12 120 - -

Overflow Area

180;O 121 I 1111 _

Figure 9.5.14.

With 122 inserted, bucket #1 splits on buckets #2 and #3 and the split pointer
folds back to bucket #0 as shown in Figure 9.5.15.

0 70 120 130 162 200 235
10 72 121 131
12 -11212

Overflow Area

Figure 9.5.15.

Finally, inserting Key=62 induces a collision and bucket +0 splits onto buckets
#0 and #1. At the end of the process, the file has undergone a full expansion
cycle and is at level 3. The split pointer is advanced to bucket #4 and a new
expansion cycle can begin. The status of the file is shown in Figure 9.5.16.

AO #1 5W2 *3 &A (*) a5 A6 A

0 60 70 120 130 162 200 235
10 62 72 121 131
12 122

Figure 9.5.16.

The reader can easily determine that the resulting load factor is low (0.625).
The load factor is expected to be similar to LH, and with an uncontrolled split
mechanism Litwin reports a load factor that is lower than the one of EH (around
0.60). Controlled splitting techniques could be applied as well as Larson's partial
expansion method tLARSOI to improve on the load factor keeping the near
optimal direct access performance. It is observed that Larson's partial expansion
method is not applicable as is, but should be modified to capture the sequential
order of the file.

9-41

The splitting sequence is not easily seen from the example but the algorithm
in the next section provides an elegant and simple solution to the computation of
the address of the next bucket to split.

9.5.5. Underlying algorithms for DRSAM

In this section we describe the underlying algorithms that control DRSAM.
Those algorithms are described following a pseudoC notation and are based on
the uncontrolled splitting mechanism.

1. Address Computatio;, Algorithm
For an insertion or a search operation, the bucket address of a record is

determined in a similar way as for linear hashing and is given as follows:

buck-add(Key){
1 = i; /* set level to be the home level "I" */

* "m" is the home bucket address of Key */
m = addl(Key);
/* Check the level of the computed address using the procedure
* Level(m) described in Section 4.3. Level(m) determines if we
* need to rehash with OPHj+j to compute the address of Key */

1 = Level(m);
if (1 == i+1){.

m -- addl(Key);

return(m);}

The bucket address computation is quite simple, provided that the level of
the record can be determined with a fast routine. For LH, the level is determined
with one comparison step while, as shall be seen, our method is slightly more com-
plicated but still computable in a straightforward manner. This is a required com-
putation overhead to keep the sequential access characteristics of the file.

2. Algorithm for the Next Bucket to Split

As previously stated, a bucket "x" always splits onto buckets "2x" and
"2x+l". The split pattern is as follows: we begin by splitting bucket N/2 onto N
and N+1, then N/2 +1 onto N+2 and N+3, followed by a fold back to N/4 onto
N/2 and N/2 +1, then back to N/2 +2 onto N+4 and N+5 ... The strategy is to
know when to "fold back" and use the emptied space efficiently: as a general rule,
a "fold back" takes place when two consecutive buckets are emptied through pre-
vious splits. While this pattern may seem complicated, the algorithm we provide
is very simple and straightforward.

"N" is the number of buckets in the file for level "": N = 2'. "Pt" is the
pointer to the next bucket to split in the upper range N/2 to N-1 and Splitpt is
the pointer address of the bucket that will undergo a split.

9-42

Initially: Pt=N/2 + 1; Count=O and Splitpt=-N/2;

void splitO

L step 1 */
'Perform split by reading bucket pointed to by Splitpt and rewriting the

2 resulting groups on the consecutive buckets given by OPHi+(Key)';

/* step 2: this step tests for a "fold back condition" and assigns
* the next split bucket address */

if (Splitpt is odd)

Splitpt = (Splitpt -1)/2;

else

Splitpt=Pt; Pt=Pt+l;

* step 3: test for a completed expansion cycle */
if (Splitpt == N) i = 1 +1;
return;}
It is noted that the expansion is natural, and at the end of an expansion cycle,
"Splitpt" points to 'WT. We only need to set the home level to 11-+1 '. This is done
with step 3.

The split sequence for the expansion of a file of 16 buckets to a file of 32

buckets (level 4 to 5) is shown in Figure 9.5.17.

lBucket. IA O 0 1 2 13 14 15 6 1757

Bu~cke Al8 Q lop I1 12 13 IT4 TIt5[Split A ! 1 1.2 1 1 1 5 8 1 9 1 11 1 1)

Figure 9.5.17.

As compared to LH, the split sequence for a contiguous file is two splits fol-
lowed by one fold back split, then two splits followed with two fold back splits
and so on. It is noted that fold back splits are made to reuse the emptied buckets
by previous splits. Empty buckets appear in the file structure at the beginning of
an expansion and disappear at the end of the expansion cycle. It is easy to show
that, during an expansion cycle, this "hole" can consist of atmost 61" unused buck-
ets". The reason for the 'hole" is that the splits use two "new" physical buckets
instead of one bucket as for LH and subsequent splits tend to increase its width
(in scattered but traceable locations). One would think that this is going to affect
the load factor of the file. For large files, the "hole" would not be of importance as
to its effect on the load factor.

For a full expansion from 16 to 32 buckets, the sequence for the number of
empty buckets that compose the hole is: 1,2,1,2,3,2,1,2,3,2,3,4,3,2,1,0 buckets.
This would take place if we assume that we do not use the emptied slots until a
collision occurs or, for controlled splitting, until a certain load factor is achieved.
The effect of the hole needs further investigation.

9-43

While for small files the hole leads to a poor load factor, its effect becomes
negligible as the file grows in size. As a first qualitative evaluation, the maximum
offset between the load factor of LH and DRSAM is equal to -L2. this relative

2'
value becomes negligible if we are dealing with very large files and would not con-
siderably affect the storage overhead or the response performance of DRSAM.

We still have to devise how to recognize which bucket is at level '" and
which is at level 'i+1", during an expansion cycle. This is necessary to compute
the exact bucket address for an insertion, deletion or search operation.

S. Determining the Level of a Key

Determining the level of a key is, to a certain extent, the inverse of the
bucket split address algorithm. We have to determine, within the range of the
key, if the pointed to bucket has undergone a split. Fortunately, this is done in an
elegant way as well with the procedure Level(mj, where "m" is OPHj(Key) and is
the home bucket address of "Key" for level i". Let us first put down some
mathematical formulae needed to clarify this procedure:

Define /3= 1 , with m :0 0. The special case m =0 is

accounted for on its own in the algorithm. Let -1 - /3 X- and "yh = 3 X N,
2

then we can write: m E ["y7, -/h [with the interval being the "range of m". The
number of splits that occurred in the range of "m" is denoted NSm and can be
easily shown to be:

[(Pt - N/2)X3 1 - 1 if SplitptE[Y,Pt[

NSmn{[r(Pt - N/2)X3 I otherwise

Let m' - m - -tj + 1, then the Level(m) procedure is straightforward as given in
the following pseudoC code:
Level(m)

* step 1: set level to the home level "i" I/
evel = i;
/* step 2: check for the special case of bucket 0 */
if m == 0 then return(level); /* bucket 0 is always at the home level */
/* step 3: */
Compute : 0, "y7, NSm and m';
/* step 4: determine actual level */
if (m' < NSm)

/* bucket "m" has undergone a split and one should rehash
* with OPH,+1 */

level = i+1;}
return(level);}

9-44

4. Insert Routine
The insert routine follows the same concept of the address computation pro-

cedure. First, we need to compute the bucket address for the insertion and then
append the record to the bucket if space is available. If the addressed bucket is
full, for an uncontrolled split mechanism, the routine calls the split procedure and
the overflow resolution procedure. The overflow resolution procedure, which is not
discussed in this report, would be similar to the CRM method of LH or other
overflow bucket allocation scheme.

Insert(Key){
1. buck-add(Key);/* Compute bucket address of "Key"
2. "Read bucket";
3. if "empty space available"

then "Insert record";
else "call split routine and overflow resolution procedure";

4. return;}
The deletion algorithm is similar but would require a merge routine instead

of a split routine and is not discussed here.

9.5.6. Inverted Surrogate Files with DRSAM

In this section, we extend the DRSAM technique to Inverted Surrogate files
and propose the "Inverted Dynamic Surrogate File" (IDSF) that is meant to
replace the static inverted lists and TILs as applied to surrogate files.

The distribution of the value of an attribute over its domain is assumed to
be "quasi-uniform", with the additional constraint that the peak value of the
value distribution factor Ci < b, where b is the number of entries in a "block".
This restriction implies that DRSAM files seem to be especially suited for the case
when all equal BR values fit into one block and its associated overflow area. This
restriction shall be relaxed in the future by providing proper control schemes. It is
noted that this assumption is made for any dynamic hashing technique such as
linear hashing (LH), extendible hashing (EH) or others. Furthermore, in the case
of inverted surrogate lists, this restriction is not overwhelming and would be
easily relaxed as the surrogate file records are small in size so that "b" is expected
to be relatively large (more than 300 per bucket).

g.5.6.1. System Model

Using proper hashing functions on the attributes of a tuple in a relational
table (referring to relational data bases), we can build a surrogate file representa-
tion of that table. Figure 9.5.18 shows an example of a surrogate file for a
knowledge base relation, with the entries of column Ari representing the values for
the i-th attribute binary representation (BRi) in a tuple. For each tuple in the
main file and in its surrogate image, we have attached a unique identifier (Uid).
This unique identifier could be one that is provided serially or is actually the BR
of the "primary key" in the relation. In our discussion we assume that the Ulds
are serially generated and Figure 9.5.18 is representative of a 4 arguments rela-
tion.

9-45

Uld Ar Ar 2 Ar 3 Ar4

uidl brl
uid2 br2=01001 1010
uid3 br3
uid4 brl
uid5 br4=01010ll11
., utdfi brl
uld7 brS --010101110

uid8 br6
uldg br6
uldl0br7

Figure 9.5.18 A Surrogate Image of a Knowledge Base Relation

A fully inverted dynamic surrogate file (IDSF) would consist of "I" DRSAM
files. The DRSAM file records for attribute 'i are composed of the BR of the
hashed values (instantiations) for that attribute, with the corresponding Uid. The
reader should be aware that, in an actual implementations, only
Postfix(BR,(#BR-l)) bits are needed to be attached with the unique identifier,
with Postfix(Kf,n) as the right "n" bits of 'W' and 'V" the home level of the
DRSAM file under consideration. This would mean that the inverted files would
more efficiently use the space as the file grows. A typical DRSAM surrogate file
block with its associated records is shown in Figures 9.5.19.a and b.

The file is assumed at level 1=3. If the block structure of Figure 9.5.19.b is
followed, we would be dealing with variable length records depending on the level
' of the addressed block. This would certainly increase the complexity of the
managing software and its associated hardware to deal with such blocking
schemes. The pros and cons of such a blocking structure will be investigated as it
leads to an efficient use of the storage space for the inverted surrogate lists and
implies a lower collision probability as the file expands.

BR Uld
010011010 uid2
010101011 uid5
010101110 uid7

Figure 9.5.19.a. Block structure with fixed length records.

Post fix(BR. (*BR- [Uid[

011010 uid2
101011 uid5
101110 uidT7

Figure 9.5.19.b. Block structure with variable length records.

9-46

9.5.6.2. An Estimate of the Storage Overhead

In this section, we provide an estimate of the storage overhead for inverted
surrogate files based on DRSAM. Consider two relation file sizes of 10 Mbytes and
1 Gbytes and assume that each file has six arguments (Ar = 6) of 15 characters
each. With B = 2 Kbytes, Ci - 1, Ulds encoded with a 4 bytes word and a file
load factor of 0.8, we compute the approximate values of Table 9.5.1.

Meaning Sdb = 10T bytes Sdb - 109 bytes

Minimum number of bits for a BR:r 17 24
l1092NI

Number of records in the relation (N) lIX104 11X10 6

Inverted surrogate list size 8% 8-10%

to relation size ratio (%Si)

DRSAM file level (1) 9 16

BR-i (bits) 8 8

Compression ratio of variable 0.81 0.71
to fixed length record formats

Table 9.5.1

It is noted that the results are conservative estimates and a more accurate
analysis will be provided in the future. The value of BR-I = 8 bits checks with
the intuitive feeling that variable length records, as advocated in Figure 9.5.19.b,
are efficient as to the storage use of DRSAM files for inverted surrogate file appli-
cation. The ratio of the variable length to fixed length records is 0.81 and 0.71 for
the 10 Mbytes and 1 Gbyte files respectively. This presents a substantial saving of
17 to 30 % on the inverted surrogate list size with fixed record formats. A value
of 8% of Sdb, per inverted list, is a good estimate for a preliminary evaluation of
an inverted surrogate list size. In contrast to conventional inverted lists, this prel-
iminary estimate shows that inverted surrogate files do not require an overhead
that is in excess of the data base size.

The analysis of TIL files assumes static files (or stable files) that are initially
loaded and stored in compact form. For inverted lists built with DRSAM, the
storage overhead is larger and is caused by the additional space required to
manage volatile files. This overhead is still less than 50 % of the original data
base.

9-47

9.5.8.3. Query Response Time

In this section we provide a preliminary insight to the equations that govern
the query response time for inverted surrogate files. Like TIL files, the query
response time (QT) for IDSF is divided into three processes:

1) Surrogate file processing and Uid retrieval (T3p).
2) Uid intersection time (Tit).
3) Data base access time (Tdp) to read the identified record(s) satisfying
the query.

The query response time is written as: QT - TSP + Tit + Tdp

1. Surrogate File Processing Time

TV is determined by the number of disk accesses required to retrieve the
matching Uids. With AC(i)as the average disk access cost for the surrogate
inverted list of argument I , "Q" the query specification with Rq arguments and
Ovl(i) the average overflow chain length for the DRSAM file of argument '", the
average surrogate file processing time can be written as:

Tsp- EAC(i)
iEQ

AC(i) - (1 + Ovl(i))XTd

where Td is the retrieval time of a secondary storage block. We did not account
for the search time of the retrieved blocks as it can be overlapped with the
retrieval process and is neglected. Furthermore, for a DRSAM file with a load fac-
tor of 0.8, AC(i) is expected to be around 1.2 disk accesses (if we assume similar
characteristics as for LH).

2. Intersection Time

Ihith no loss of generality, we assume conjunctive queries as the union opera-
tion ror disjunctive queries has the same level of complexity as the intersection
operation. Two cases are considered:

Rq - 1: no intersection is required.
R9 > 1: when more than one argument value is specified in a query, the lists

of retrieved Uids must be intersected. Denoting by NC(Rq), the number of com-
parisons required to perform the intersection operation, Tw the average word
comparison time and WL the word length, the total intersection time is written
as:

[iog2 ~ N C(q

TWX 12 XNC(Rq) if Rq> 1

Tit ,

0 Rq 1

9-48

An estimate of the number of comparison steps, NC(Rq), for the intersection

operation is derived in [HAC88, Appendix 21.

3. Data Base Access Time

With GD as the number of good responses to a query and the probability

SSb)of a given response to be in a specific block, the data base access time is,

fo lowing Cardenas' equation [CAR75 and assuming direct access to the main
data base:

Following [HAC88, Appendix 21, the number of good responses is estimated as:

GD - NI-1 (C-)
iERq

It is observed that the data base access equation is based on successive selec-
tions with replacement. Yao [YA0771 discusses selection without replacement and
points out the cases where Cardenas' equation gives rise to a significant error. For
our purposes, Cardenas' approach is satisfactory as the number of good responses
is expected to be small for very large knowledge bases.

9.5.7. Parallel Back End Architecture for IDSF

In this section, we describe and analyze the benefits of a parallel back end
architecture for the management of knowledge based systems with inverted surro-
gate files.

9.5.7.1. Back End System

Shown in Figure 9.5.20 is a back end system for the management of a very
large extensional data base of facts. This system will also manage many inten-
tional data bases (sets of inference rules), but those are not shown on the diagram.
We assume that there are many gigabytes of fact data stored on the EDB disks.
Likewise, there are several gigabytes of surrogate file data stored on the SF disks
(SFD). Since the relational model is assumed, the facts are stored by relation and
then by tuple unique identifier within relations. We will access the EDB only by
relation name and then by tuple identifier, so a dynamic hashing method that
minimizes disk accesses can be used, one of them being specifically DRSAM as
presented.

9-49

REQUESTS Al ENGINE REQUESTS
SCHEDULER/
OPTIMIZER

=CACHE
SFD

I f 7mp - - - - - -

41
SORTER

XCMP INT HWSF

mux

COLLEC:TOR

-- - - - - - - - -
f REQUESTED

HITS EDD FACTS
MANAGER

EDB

Figure 9.5.20 BACK ENO ARCHITECTURE FOR FACT MANAGEMENT.

9-50

As an example, assume that a user's request requires access to only two lists.
The relevant block(s) from the first list would be retrieved from the SFD and
input to its associated surrogate file processor (SFP) where on the fly comparisons
are made for matches by the comparator (CMP). Note that the SFP consists of a
comparator (CMP) and cache (CACHE) with their associated control microproces-
sor (MP). The unique identifiers would be stripped off and sent to the Intersector
Hardware block (INT HW) through the multiplexer (MUX). The list of Uids is
piped in the pipeline sorter (SORTER) and then fed to the cross-lists comparator
(XCMP).

Meanwhile, the second list is processed in a similar way and sent to the
XCMP module. Then, the two resulting lists of possible responses are intersected
by the XCMP block. The output of Uids (if any) is sent to the collector (COL-
LECTOR) that acts as a buffer and the block of good responses (HITS) is passed
on to the Extensional Data Base Manager (EDBM) for processing. The EDBM will
retrieve the facts, compare them with the search criteria to insure that a collision
has not occurred, put them in blocks, and sends them to the logic programming
engine.

In the case where more than two lists are to be intersected, the outcome of
the two lists intersection is fed back from the COLLECTOR to the XCMP block
for a new cross comparison operation with the third list coming from the
SFD/SFP pairs. This process is continued until all the arguments in the query are
properly processed. When a single argument query is considered, the MUX passes
the incoming list from the SFD/SFP pair to the COLLECTOR that relays it to
the EDB manager. The complete system can be viewed as a three level pipeline
controlled by the Requests Scheduler/Optimizer.

9.5.7.2. Analysis of the Proposed Architecture

In this section, we analyze the motivations and the benefits of the described
architecture. One recurrent criticism against the use of inverted file structures is
that their performance degrades as the number of arguments in a query increases.
A good algorithm would tend to perform in the opposite way, as one hopes to do
work proportional to the expected number of tuples in an answer. This criticism is
assessed based on the sequential processing of the surrogate inverted lists, but is
mitigated if parallel processing algorithms running on multi-processor architec-
tures are designed for transformed inverted lists. We will have to look at the
equations for the different components of the query response time (QT), namely
Tap, Tit and Tdp.

1. Surrogate Files Processing Speedup

We observe that T is proportional to the number of arguments in a query
(R) and is related to the disk access cost for the retrieval of the inverted lists
indices. The IDSF structure is well suited for parallel processing through the dis-
tribution of the inverted lists to multiple storage and associated processor units
(SFp). For the case of a single user queries on a relation with degree "d", an
O(d) speedup for the surrogate files processing time can be achieved with a max-
imum of "d' SFD/SFP pairs. For a multi-user system, the speedup which can be

SA "user" is referred to as the application programmer. A single user refers to a single
application environment versus a multi-user i.e multiple applications environment.

9-51

achieved is a function of the number of SFD/SFP pairs and the application being
considered. The surrogate file will actually consist of many sets of inverted
subfiles, one set for each relation. Those sets will be distributed over the SF disks
in order to insure maximum parallelism in disk accessing.

The distribution algorithm follows an optimization criterion related to the
application on hand. We note that the assignment problem is NPComplete and
heuristic algorithms, specifically designed for the proposed architecture, are being
presently developed for the proper distribution of the surrogate inverted lists. The
outcome of the optimization algorithm would be a storage mapping of the surro-
gate inverted lists that is used by the Requests Scheduler/Optimizer for query
optimization.

For a distributed storage allocation system, the equation for the surrogate file
processing time should be modified to account for the access of the lookup tables
that are bound to exist. The use of cache memory (CACHE) in each SFP unit is
to store the lookup tables that are small in size.

2. Intersection Operation Speedup

The analysis for the intersection operation cost [HAC88] shows that Tit
heavily depends on Ci: while acceptable for small data bases, Tit becomes a com-
putation bottleneck for medium and large data/knowledge bases with high aver-
age redundancy factors (Ci). With a VLDKB, the analysis reflects an essential
need for special intersection hardware (referred to as the Intersector) to cope with
the computation intensive intersection operation. In Figure 9.5.20, the Intersector
is part of the INT HW block and mainly consists of the pipeline sorter (SORTER)
and cross-list comparator (XCMP) units. The sorter is essential and shall be
optimized to handle large lists of Uids as they present the computation bottleneck
of the intersection operation. The XCMP block is used to cross compare the
sorted list of Ulds from the output of the SORTER with an incoming list of Uids
from a SFP.

With Lmin as the minimum length of the lists involved in the intersection
operation, an O(Lmin) computation steps could be achieved with the Intersector.
Compared with an O(LminXlog2Lmjn) computation steps of the best sequential
algorithm, the speedup achieved with the hardware Intersector would be0og92Lmin).

For high query rates, the operation of the INT HW block and the SFD/SFPs
are overlapped, thus increasing the throughput of the system. The number of
Intersector blocks is not bound to one, as shown in Figure 9.5.20, and is a func-
tion of the throughput constraint of the design. Maximizing the level of pipelining
between the SFD/SFP pairs and the INT HW block(s) is an additional require-
ment on the optimization algorithm. It is worth noting that a different intersec-
tion hardware could be derived based on a parallel cartesian product algorithm.
We believe that such hardware would be more elaborate than the sorter/cross
comparator combination.

3. Comments on the Data Base Access Time

Data base access time (Td) depends on the locality of the good responses and
would be determined by the clustering scheme for the tuples in the existing EDB.
In the analysis, Td is derived following Cardenas' assumptions [CAR75] of uni-
form distribution for the records over the EDB secondary storage blocks. In a
multi-user environment, clustering can achieve optimal Tdp values for one user

9-52

while degrading the response time for another. EDB clustering is an open design
problem that lies in the class of NPComplete problems.

9.5.8. Open Research Problems and Future work

One unusual phenomenon common to all dynamic schemes and therefore
expected with DRSAM and IDSF is the following: if a collision occurs, it may hap-
pen that splitting one level only would move all the data into one block instead of
dividing it onto the 2 buckets. Let us assume that the hashing depth is x bits,
then the splitting function resolves it by dividing the information in two sets that
differ through the (x+l)th bit. It could be the case that all the data in the bucket
does not differ through this bit but through a higher level bit, then the split
results into an empty bucket and a full bucket with the possibility that an
overflow record is attached to it. This means that if the attribute values distribu-
tion is highly non uniform, LH, EH and also DRSAM may result into a file struc-
ture with long overflow chains and low load factor. Controlled splitting is used to
set the load factor as required.

Different control mechanisms could be added to alleviate this behavior. One
of them would be to have multiple levels existing concurrently during the expan-
sion cycle of the file. While the present techniques are based on a two level
scheme, we believe that such multi-level schemes could be adapted, especially
within a fully distributed environment. In this case, a table lookup is provided
and with a small additional storage overhead, more than one expansion level
could exist at a given time. The idea is to partition the file into quanta that are
expanded independently as required, following closely the distribution of the key
values.

Another promising approach was studied by Larson [LAR79J in a different
context. He analyzed the use of "repeated hashing" as a technique to handle
overflows and concluded that the usefulness of this technique is doubtful. We
believe that the pessimistic results reported by Larson are due to the fact that
deletions, in his analysis, are handled by marking the deleted records. This would
mean that repeated hashing would behave in a similar way as usual overflow con-
trol techniques. In the case of dynamic hashing, repeated hashing could become an
interesting and simple method to extend dynamic hashing methods to handle
overflows as well. Dynamic hashing schemes, like DRSAM, handle deletions and
insertions by natural "contraction" and "expansion". The problem of having a file
with marked "unuseful data" is avoided and repeated hashing would be a natural
extension to DRSAM files.

Ramamohanarao et al [RAM84] analyzed this idea as applied for linea, hash-
ing and derived a general scheme referred to as "recursive linear hashing". This
method seems promising and is presently being investigated for DRSAM.

DRSAM (and IDSF) present a promising alternative to ISAM, VSAM (and
TIL) with overflow buckets. Those structures are expected to show a near perfect
retrieval cost for random access while they preserve (within some restrictions) the
ordered characteristic of TIL. The major asset of IDSF with respect to TIL being
their efficiency and ease of maintenance when applied to volatile files. Furthemore,
knowledge about the distribution function would help the data base designer fine
tune the IDSF structure to the application on hand. The load factor of IDSF is
expected to be comparable to the one of LH and other extensions techniques to LH
(like partial expansion [LAR8O] and multidimensional designs [OUK83]) could be

9-53

applied as well to IDSF. Partial expansions and controlled splitting techniques
should result in a high load factor (around 0.9) with little degradation in perfor-
mance.

DRSAM (or IDSF) is a promising dynamic file management technique. We
mainly discussed its application in the context of operating systems that handle
contiguous file allocation schemes. In forthcoming work, we will analyze it within
the general distributed allocation scheme and in this case, as for LH, a lookup
table is necessary. The concept of quantified allocation will be studied and applied
and we will show that with minimal additional storage overhead, the file structure
can be made to expand randomly and would adapt to almost any distribution
function for the values of an argument over its domain. This would tend to
minimize the overflow chains and thus decrease the oscillation in response time
detected for LH. Split control and partial expansions will be studied as well and
overflow handling will be analyzed with the usual overflow chaining, the repeated
hashing or other suitable overflow handling mechanism.

Based on IDSF structures, we introduced a parallel architecture for a Very
Large Data/Knowledge Base. We intend to carry a detailed analysis and develop-
ment of this architecture. Wherever needed, analytical as well as computer simu-
lated models will be derived.

9-54

9.6 Management of Very Large Rule Bases

Presented in this section are techniques for managing a very large rule base
to support diverse requirements of parallel logic programming systems based on
surrogate files and associative processors. Future work on general rule indexing
schemes are described in section 9.6.4.

9.8.1 Parallel Execution of Logic Programming

Conery [CON87] has classified the inherent parallelism in logic programming
systems into three major categories: AND-Parallelism, OR-Parallelism and Low-
level Parallelism. Our major concern here is a special case of OR-parallelism called
search parallelism which has been defined as a parallel distributed search to find
every clause with a head that unifies with the selected goal. Since a search per-
formed by integrated knowledge base machines should be based on unification
rather than equality, it is well known that an effiient implementation of
unification is the central issue in logic based systems. Several processors dedicated
to the unification operation have been proposed in recent years to accelerate this
most time-consuming operation in logic programming evaluation [WOO85]
[SHO861 [STO86].

Informally, the main purpose of unification is to make two or more terms
identical by proper and the most general substitutions for logical variables in the
terms. A term is defined as follows [LL084]:
(1) A variable is a term denoted by a capital letter such as X,Y,Z,...
(2) A constant is a term denoted by a lower case letter such as a,b,..
(3) If f is an n-ary function and tl,..., t. are terms, then f(ti,..,tn) is a term.

Ever since Robinson introduced the basic algorithm of the unification opera-
tion for the resolution principle [ROB65], more efficient algorithms have been pro-
posed and the complexity of the unification operation has been analyzed by many
researchers [DWO84] [IT86]. Among them, two algorithms [PAT78 [MAR82] are
claimed to be linear. These algorithms are based on a complex data structure
called Directed Acyclic Graph (DAG). Also, Morita proposed a linear representa-
tion of a term suited to stream processing of unification [MOR8 l. The DAG and
linear representations of a term are shown in Figure 9.6.1 (a) and (b) respectively.

Our major concern in implementing unification for very large rule bases is
finding all potential candidate clauses within a small amount of time so that we
can deal with real time applications. Since the full unification on such data will
require a heavy processing load, our goal may not be achieved without restricting
unification. Furthermore, the results of [DWO841 indicate that, since unification is
inherently sequential, even parallel evaluation of a unification algorithm may not
offer a considerable speed-up over a sequential one.

The major processing load stems from 'occur checks' to prevent the
unification from entering an infinite loop. That is, when testing if a variable X
unifies with a structured term t, a check should be done whether X occurs in t (
i.e. {X/f(X)}). We can eliminate these requirements by adopting mode declara-
tions to construct a 'standard form' of clauses as in PARLOG [CLA86] where the
structured arguments appearing in clause heads can be transferred to the bodies of

9-55

clauses.

f

g hNC

(a) DAG

(f2Xg3)(XO)(bOXcOXh2)(aO)(XO)
(b) Charcter String

Figure 9.6.1 The Representation of n Term (f(g(X,b,c), h(a,X))

A PARLOG program that possesses s single solution consists or a sequence of
guarded Horn clauses. A guarded IoHuii lause of PARLOG has the form

A:-Gi ,G 2 ,..,Gm:Bi,B 2,..,Bn.
m,n > 0
If m=0 then the commit operator can be omitted. A candidate clause of

PARLOG is one which succeeds in all input matching with tile call (subquery) and
whose guard literals (GI,G ,..,Gm) are proven to be true. PARLOG exploits
"mode" declarations for the clauses in the single solution relation to avoid the
requirement of full unification, and to control process synchronization [CLA86I. A
mode declaration for a predicate can constrain the unification between a goal and
a clause (head) in a program. Mode declaration is of the form

mode R(m 1,m2 ,mk)
where R is a predicate name and each mi is either '?' or

An argument annotated with a '?' in the mode declaration for a predicate can
only be used for input matching against the corresponding argument of a call.
That is, the unification between a call and the head of the clause is successful only
if the corresponding argument in the call is instantiated (i.e. not a variable).
Otherwise the evaluation suspends. On the other hand, an argument annotated
with a ' must be used for output matching against a variable of the correspond-
ing position of a call. In other words, the corresponding argument of a call should
be an uninstantiated variable on unification. If the argument is not an uninstan-
tiated variable, the unification fails.

The mode declaration is used to determine the "standard form" of clauses at
the first stage of compilation. In the standard form, all complex terms appearing
in the heads of clauses can be represented as pure variables, and all input and
output matching between a call and the heads of clauses are translated to explicit
unification primitives instead of general unification.

9-56

Consider, for example, a simple PARLOG program

mode member(?,?).
mem ber(H,[HiTJ).

member(H,[X1 T]):- "H=X: member(H,T).
where ':' is the commit operator and "H--X is a guard.

This program can be mapped into the standard form
member(H,Y) :- [XI T] <=Y,H-=X:.
member(H,Y):- [XI TJ<=Y,-=X: member(H,T).

The term [XI T] that was in the second argument position of the second
clause head appears as [Xi TJ<=Y because it has the mode '?'. Here '<-=' is the
one way unification primitive that can only bind variables in its left argument([XI
TI). This implies that this term can only be used for input matching against the
given argument Y of the call. The repeated use of the term H in the head of the
first clause is detected as an implicit test because both terms have the mode '?'.
Thus the term [HI T] is changed to XI,TJ (here X is an arbitrary variable) and
an explicit test unification primitive --is added in the guard. In order to change
a non-variable term with the mode "' to the standard form, the assignment
unification primitive ':=' should be used in the body. The unification primitives
of PARLOG are described in [CLA861. Maluszynski and Komorowski [MAL851
have aiso discussed the use of mode to constrain full unification.

Consequently, the structured arguments (e.g. [i41 TI) in the clause head can
be transferred to the guard or body of a clause as shown in the above examples.

9.6.2 Rule Indexing Schemes for Surrogate Files: CCW-i

In previous sections, we have shown the use of surrogate files for partial
match retrieval on large sets of facts with varying degrees and cardinalities. In
retrieving facts, we assume that the facts are stored in such a way that one first
accesses the relation and then a particular tuple using a unique identifier. Thus,
we do not need to transform the predicate name (e.g. parent) for the facts. We
obtain the unique identifier from processing the surrogate file, and the name of the
relation from the given query. Thus, the storage structure for the facts themselves
would be very simple and the desired facts can be retrieved in at most two disk
accesses. Most relational operations such as selection and join, which are required
for the bottom-up query processing in logic-oriented database systems, can be
performed on the surrogate file rather than on the actual database. This makes
relational operations much faster and increases the system's performance when a
large volume of ground facts exist.

In a CCW representation of a clause head, we don't consider structured
terms. The clause head contains pure variables and constants as arguments by
the transformation technique adopting the mode declaration. General rule index-
ing schemes are considered in section 9.6.4.

Variables should be distinguished from constants. This can be done by set-
ting the tag bit (most significant bit) of the CCW to ' I '. Unlike facts, there are
only a small number of rules that define a predicate, i.e. rules with the same head.

9-57

Thus, we need to transform the predicate name as well as arguments.

Suppose we have rules for 'ancestor',

ancestor(X,Y):- parent(X,Z),ancestor(Z,Y).
ancestor(X,Y):- parent(X,Y).

We hash the predicate name and arguments by the same hashing function
used in CCW for facts. The number of arguments is also concatenated to the
hashed value of predicate name.

H(ancestor 2) H(X) H(Y)
I I I

011100010 100100111 100101001.

The CCW representations for the two rules would be the same except for the
uid's to be attached to them.

011100010 1 100100111 1 100101001 Juid_1
011100010 I 100100111 I 100101001 luid.2

Thus, a surrogate file can be used to find the corresponding bodies of clauses
with which a goal can unify via uid's.

This method guarantees retrieval of all desired terms (clause heads or facts)
although, due to possible collisions resulting from the hashing method some
undesired terms may be retrieved. A longer word length for the CCW can minim-
ize such collisions, and post retrieval comparisons can be used to eliminate
unwanted terms.

In the next section, we describe how one might perform partial unification on
a surrogate file by proposing a special associative memory for bidirectional don't
care matches.

9.6.3 Partial Unification on Surrogate Files

In this section, we present the basic idea of unification on a surrogate file
using an associative processor. We have shown in section 9.6.1 how to transfer the
complex structured arguments in the head of a clause to its body. For simplicity,
we assume that the query contains only pure variables and constants. Th,. the
query code word (QCW) can be encoded by the same technique %s described in
section 9.6.2.

First, for all constants in a QCW, the corresponding arguments of the CCW
must be either the same constant or a variable in order for the tfr,,," to be
unifiable (Input matching condition).

In the input matchinF step, we regard all variables as "don't care match"
indicators. Unlike usual 'don't care" matches, however, we need bidirectional
don't care matches because the data residing in associative memory, as well as the
QCW, may also contain variables. Since general associative memories do not

9-58

provide this capability, a special associative memory is required. We designed an
enhanced associative memory for bidirectional don't care matches, as shown in
Figure 9.6.2. Since by assumption only variables and constants appear in a QCW,
input matching among a QCW and a number of CCW's, each representing a head
of a clause, can be performed in O(1) time* (i.e. constant time).

By input matching, most unqualified terms can be pruned. After input
matching, we assume- that the qualified terms (heads) are read one by one for
further processing. Thus post processing will be required for only a relatively
small number of terms, namely the qualified terms.

QCW 01110 0010 010111111 100101100
m0-- rsb

I ancestor2 timothyv A Ilillllll

Matc -F
Reg. ancestor A V y i

jancestor 2A X l~ uid_2

CCW 01110 0010 100100111 100101000 uid 2

01110 0010 100100111 100101000 uid-1

Figure 9.6.2 An Associative Memory for CCW-1

Obviously, the above condition is not sufficient. Consider, for example, two
terms of the form q(a,X,b) and q(Y,a,Y). Though they satisfy the condition, they
are not unifiable. We need post processing for the shared variables that appear in
arguments of qualified CCW's. If the same variable appears in arguments of a
CCW, they should be bound to the sam, constant or variable (Input matching
consistency).

X To process a QCW with a longer word length than that of the v,.zociative memory's,
the QCW should be split into parts and the unification performed on the parts in se-
quence. Since the unification for the QCW has to be performed in parts, the variable bind-
ings along with the content of match registers resulting form that unification should be
stored for the next unification. For simplicity, we assume that the word size of a (, \V ¢
always shorter than that of the associative memory.

9-59

The prime objective of unification is to find proper bindings for variables.
After input matching and consistency checking are performed, the variables of
qualified terms (CCW's) are substituted by the constants obtained from input
matching. The reverse operation is required to bind variables in QCV. If these
terms are unifiable, then the similar condition as the input matching condition
will be satisfied. That is, for all constants in a qualified CCW, the correspondinig
arguments of QCW should be either the same constants or variables (Output
matching condition).

Finally, a consistency check for the variables in the QCW needs to be per-
formed. That is, if the same variables appear in the arguments of the QCW, they
should be bound to the same constant or variable (Output matching consistency).
The unification method always works with the function-free terms. An algorithm
for parallel evaluation of logic programs and some considerations on its hardware
realization have been discussed in [SH187].

g.6.4 Future Work on Managing Very Large Rule Bases

The rule indexing method described in section 9.6.2, CCW-1, provides an
efficient mechanism in searching possible candidate clauses as well as in detecting
binding conflicts among shared variables in early stage of execution. However,
since this scheme is based on guarded Horn clauses and mode declarations, its
application is somewhat limited to the parallel logic programming paradigm.

We are currently developing enhanced rule indexing methods to provide more
general and efficient accessing mechanism to VLIKI3s consisting of First Order
Logic clauses. Those schemes currently investigated are featuring type-checking
augmentation of CCW-I (CCW-2), a CCW scheme for general terms (CCW-3),
and a CCW scheme for general clauses (CCW-4).

CCW-2 has a similar structure to CCW-1, which can be constructed by con-
catenating transformed code words obtained from the arguments along with the
hashed value of a predicate name. Each code word for an argument is divided into
two fields; tag field and value field. Unlike CCNV-I, however, the tag field can
represent any argument types including lists and structured terms as well as vari-
ables and constants. The value field contains the transformed represciitation of
the corresponding argument according to the contents of its tag field. For exam-
ple, if a tag indicates the argument type of structured term, then the value field
contains the hashed value of primary functor, while if a tag is for a variable argu-
ment, the value filed represents variable identification number. This scheme can be
viewed as an augmentation of CCW-1 with the indexing scheme used in Warren's
Abstract Prolog Instruction Set [WAR83I. However, iii IWAVR831, only the first
argument is indexed. Table 9.6.1 shows an initial design o" CCW-2 scheme. In
contrast to CCW-1, CCW-2 can be used for current Prulog systems and does not
require mode declarations. It is expected that false drop can be considerably
reduced when compared to previously proposed schemes such as [WIS841 [RAN186
[COL861 [SH187] [WAD87] without sacrificing the compactness and uniformity or
CCW.

9-60

Argument Type Tag Field Contents of Value Field

Constant Ox Hashed Value of the constant
Function Qix Hashed Value of the Primary Functor/Arity
List 100 Hashed Value of the CAR constant

101 Variable ID for the CAR variable
Variable lx Variable ID

Table 9.6.1 Code Word Description in CCW-2

Extending the rule indexing schemes to arbitrary complex terms is one of the
most attractive research topic for the next year regarding rule indexing schemes
since we can perform almost exact unification on surrogate files and it is more
efficient than performing unification on actual terms. General term indexing can
be achieved by using a term descriptor (TD) in the position of a structured term
or list. In addition, this indexing scheme can be used as a basis for processing
more complex EDBs having structured terms as arguments.

Indexing clauses to perform resolution procedures on surrogate files (CCW-4)
will be also investigated. A code for CCW-4 can be obtained by generating CCW-
3 codes for all predicates in a clause together with a clause descriptor containing
pointers for the body literals. However, this scheme may cause false drop propa-
gation problems during the resolution procedures. That is, after a goal is resolved
to a number of subgoals, it would be difficult to detect false drops.

As rule indexing schemes become more general, specialized architectures such
as associative memories are less practical. Instead, general purpose parallel proces-
sors seem to be adequate for surrogate file processing, especially when a significant
portion of the surrogate file can reside in main memory. An initial study revels
that massively parallel computer systems with large main memory and simple
general purpose processing element could have good performance in processing sur-
rogate files due to the uniform structure of surrogate files. The Connection
Machine with 32K processors is currently being used to study 'various aspects of
surrogate files and will also be used for testing various rule indexing schemes.

9-61

9.7. Optics in Very Large Knowledge Bases

Optical computing (especially in its analog form) has been widely used in
applications like optical image processing, pattern recognition and signal process-
ing due to its highly parallel nature. Another area that can benefit significantly
from the advances in optical technology is that of the Very Large Knowledge
Bases (VLKB). Optics can play a key role in the future VLKB providing larger
storage capacity, higher transfer rates and parallel data manipulation. This sec-
tion discusses some of the possible improvements in the VLKB performance if opt-
ical computing is involved.

9.7.1. The Potential of Optical Computing

The application of optical computing to specific areas should take into
account the idiosyncrasies of the problems in the specialized architectures
employed in those areas. Some problems may be simplified when a narrower view
is taken. In knowledge and data base applications for instance, selection, projec-
tion and join are common processing chores. Search of fixed format data (e.g.
indices or pointers) could make effective use of optical content-addressable
memory which can be implemented by multiplexing a large number of holograms
in a thick recording material like lithium niobate [GAY851.

The need for large capacity and high bandwidth secondary storage will prob-
ably be satisfied by using optical disks. Optical preprocessing of the retrieved
data, without intermediate electrical conversion, will help deal with the extreme
data rates. Currently, access times of optical disks are larger than those of mag-
netic disks. The reason is that the focusing optics are bulkier than the 'flying'
miniature heads of magnetic disks. Data rates are comparable, with potential for
improvement since optical disk technology is relatively new.

However, in contrast with magnetic media, there are two promising possibili-
ties for increased optical disk performance by at least two orders of magnitude
both in terms of access time and sustained data rates. First, the read/write beam
could be deflected from track to track very rapidly (on the order of 100
microseconds) by entirely optical means. Second, due to the non-interference of
light beams and the relatively large head to medium spacing one could imagine
multiple beams being used for reading data with a single head carriage assembly
[CAR84]. Alternatively, an unfocused beam could simultaneously read data from
more than one point of a transmissive disk surface [MOS871. This, coupled with
the possibility of multiple heads will allow for enormous data rates. If we assume
achievement of access times of 100 microseconds and data rates of 300
MBytes/sec, this represents almost two orders of magnitude improvement over
current magnetic disks.

Input/Output systems will have to be designed with these rates in mind.
Current electronics would be hard pressed to handle them. However, if data could
be preprocessed "on the fly" in its optical form, then the ultimate data rate to the
electronics would be much lower on the average and the data much "richer" in
information. Intelligent use of optical pattern matching could provide us with a
set of primitive operations that could help efficiently implement higher order func-
tionlR!ity like, for instance, a subset of relational algebra operators.

9-62

For applications which demand fast searching of many megabytes of data all
this is very promising. But with current electronics technology if every subsystem
of a machine needs to cater to such high rates then its cost will be much higher
than necessary.

9.7.2. Optical Data/Knowledge Base Machines

Assuming a Data/Knowledge Base Machine (D/KBM) with multiple storage
units, multiple processors and the appropriate interconnection network, (Fig.
9.7.1), operating as a back-end machine to a host, we may consider four different
implementations involving optical devices.

SECONDARY INTER- PROCESSING

CONNECTION HOST

STORAGE NETWORK UNITS

Figure 9.7.1 A back-end Knowledge Base Machine.

a). Optical-Electronic-Electronic, where secondary storage consists of optical
disks while the interconnection network and the processors are electronic. This
approach suffers from low optical disk transfer rates but may benefit from the
availability of the technology. In any case, the only improvement will be t',e capa-
city increase.

b). Electronic-Optical-Electronic, where secondary memory consists of con-
ventional magnetic disks, data processing is electronic, while the interconnection
network will be optical. This approach will theoretically improve the overall sus-
tained I/O rate and allow all kinds of interconnections between disks and proces-
sors without conflicts. However, it still retains the bulky magnetic disk units and
all the problems associated with them.

c). Optical-Optical-Electronic. Here we have again optical disks for the mass
storage. Data in the form of light beams is extracted from the disks, passed
through all-optical interconnection network and only when it reaches the elec-
tronic processing units is converted to electrical signals. This design takes full
advantage of the huge capacity of otical storage and avoids the electron-to-photon
conversion, necessary with magnetic disks. The performance of this system will be
dramatically improved when multi-beam read/write operations (to be discussed

9-63

later) become available. However, the anticipated hundreds of MBytes/sec I/O
bandwidth from a single disk may drive the electronic processors into saturation,
moving the bottleneck to the other end of the machine. For this reason, the fourth
approach appears to be the best solution.

d). All-Optical D/KBM. Data is stored, retrieved, transferred and processed
completely optically and only when it is sent to the front-end computer, may be
converted to electrical signals. The feasibility of such a system is still under
dispute because of the currently inferior (compared to the electronic) performance
of optical processing techniques. However, a number of key factors, though still
experimental ideas, are in favor of this approach and their implementation will
signal the "green light" for all-optical information processing.

9.7.3. A Hybrid Opto-Electronic Preprocessor

In this section we discuss the design of a hybrid opto-electronic preprocessor
that can help reduce the data rate to the electronics by executing a limited set of
functions on the optical data [BER87b].

Figures 9.7.2 and 9.7.3 sketch our hybrid.

Fiber/ Free space

Preprocessor

i Electronic host

Optical disk

Figure 9.7.2 Optical communication and processing of high data
rate disk output.

9-64

from host

Writable reference pattern
j and mask

Optical comparato rC o ntroller

O tptical disk
and controller Packing

Fast electronic buffer4;
to host

Figure .7.3 Block diagram of a hybrid opto-electronic preprocessor.

The optical comparator receives the error-corrected optical bit stream, w-bits
wide, from the disk. The bit stream is compared on the fly against an optically-
encoded reference pattern. This pattern can contain "don't cares". When the
current frame matches the reference pattern, the "Interesting" portion of the
current frame is latched in a large electronic buffer (two-port cache) which holds it
until the host is ready to process it.

The buffer can be implemented as a ring to avoid any internal copying of
data. If the buffer ever becomes full, the controller stops the procedure. In this
way data rates in the order of 300 MBytes/sec can be accepted and filtered data
can be output on demand at a much lower rate.

The w bit3 of every symbol are encoded in a dual-rail manner by also includ-
ing the complement of each bit. Two symbols A and B are equal if AAS+XB=0
in a bit wise operation. The AND operation is done optically by sequentially pro-
pagating a ray of light through two or more points and the OR by imaging two
or more rays on the same point [GUI861.

9-65

Figure 9.7.4 depicts the flow of data through the process. It consists of the
following steps:

Input stream

Buffer

X Rsfl
me,.........

*m .mcm .m .m.m.m. .O
.... .m

mmmmmm'in16

~ - g

mmcm :::

frm mptca ds

4-mm* W 4 W-4

Fiur .. 4 rcsigsqec. nu aafo h ptcldsmsflee
anchceslsaeplcdic lre as lcrni.ufr

1) -ismiesra o aafo mh optca dsk i opaeoniu
ouslyagaint a rferene patern. he reerenc pattrnesu icudlto' crs

whic are rereene am a aroeosimcodnc ihteda-lecd

ing.Themamumlnthtamanbcachdimsmos

2) A matmch occur if the OR reut r l eofralntfksmos
where mmc k..:: istelnt fth eeec atrn n ftestp aaeeso h

bufmeringmoperation.

31. A msk speifies wich pats of te inpu stea ar cf iners mindh

spatinm y~ seaae pat are ~ "pce"i rdrtc eae otgos

,c~m-66

4). The packed result is transformed to electric signals and stored in the fast
electronic cache before the next match occurs.

One way that the matching operation can be implemented is shown in Figure9.7.5.

One symbol

• • • •Input

stream

Reference •

(b)

Figure 9.7.5 Three-dimensional arrangement of the optical symbol marcher
(after Guilifoyle [GUIL86]). (a) Each bit of every symbol is
represented by two comp Iementary light values that are AND-ed
with the corresponding bits of the reference pattern. (b) Thereference pattern is circulated up to a length of k symbols.
A match is detected when the first k detectors register a zero.

9-67

The input data stream and the reference pattern stream enter multi-channel
acoustooptic cells from two opposing sides. Light beams are imaged in such a way
that the complemented bits of the input stream symbols are AND-ed wil h the
uncomplemented bits of the reference pattern stream symbols (and vice versa), bit
per bit, symbol per symbol. Each detector accepts light from the 2w positions of
every symbol (OR operation). When the output is zero on the first k of the detec-
tors then a match has been detected. The operation depends on the circulation of
a pattern of length k~n symbols in the optical device that is driven by the refer-
ence pattern.

When a match is detected the interesting portion of the input pattern
(according to the mask) is packed and kept in the buffer. Packing entails applying
a position-dependent amount of delay to predefined regions of the input pattern
while it propagates. Hence, it should not be very difficult to implement. Finally,
the contents of the buffer can be accessed and updated by means of a few, simple
electronic counters.

In terms of relational algebra operators the preprocessor we have outlined can
be employed to perform projection and exact-match selection. In terms of logic-
based knowledge bases it can perform filtering of ground clauses. Selection on a
conjunction of exact-match criteria is simply accomplished by incorporating all of
them in the reference pattern. Disjunction-based selection could be done by using
concatenated search patterns if the total length is less than n (and matching on a
subset of the detectors), or by connecting more than one optical matcher in a
pipeline.

Operations that access data repeatedly (like joins) and/or randomly (like
sorting) cannot be implemented with a memory-less setup like the one described.
Nevertheless, the global connectivity of optics can undoubtedly be exploited with
other designs.

9.7.4. Future Work - Implementation of Relational Operations Using
Optics

Future research in the area of optics will be focused on investigating various
schemes for the efficient implementation of relational operations using optical dev-
ices such as spatial light modulator arrays, etalons and holographic memories.

The capabilities and limitations of the interconnect technology utilized in
realizing a computational or signal processing unit play an important role in
determining the speed and flexibility of the operations that can be achieved by
that unit. Optical signals can flow through three-dimensional space to achieve the
required interconnect pattern between elements of a two-dimensional data array
before executing the desired operation between them. To examine more closely
these advantages, three categories of operations must be considered.

The first category is that requiring single element operations like selection
and comparison. In such computations, each element in a one- or two-dimensional
array is processed independently from the rest of the array elements. The inter-
connectivity required by these operations is the loading and unloading of data to
a processor array. Clearly, optical interconnections have the advantage of being
able to input an entire data array in parallel using the third dimension of data

9-68

propagation. On the other hand, in our electronic associative processor, data can
be input and output only along the edges of a two-dimensional array, one row-
column at a time. Optics have a lot to offer in D/KB systems where single-element
operations are common.

Another category of operations is that of sorting, which is especially impor-
tant in D/KB systems. Computations of this type require global interconnections
between all the elements of the input array, that is, every element of the output
array is dependent of all the entries in the input array. The structure of the sort-
ing problem suggests an efficient algorithm in which computations grow as
O(N*logN). In order to achieve these computational savings, complex interconnect
configurations are necessary among the input elements of the array. Additionally,
these interconnections have to be changed during the different stages of the com-
putation. The requirement for dynamic interconnections can be exploited by
employing the perfect shuffle function configuration. The perfect shuffle can be
applied repeatedly at each stage of the computation to produce the currently
desired interconnect pattern, presumably at the expense of extra time required to
complete the interconnections. Optics offer the perfect shuffle function efficiently,
hence its use in hardware sorting units would lead to improvements in system
throughput.

The third category includes space and time variant operations like equi- and
theta-join. The input relations can form two one-dimensional arrays and each ele-
ment of the first array must be compared to all the elements of the second array.
The interconnectivity pattern for these operations varies in space and time. Furth-
ermore, the various interconnections are data dependent, making it impossible to
predict in advance the appropriate interconnection patterns required at the
different stages of the computation. The throughput of a parallel machine imple-
menting this type of operations is critically affected by the availability of a
dynamic and global interconnect network. Many processors could be idle for a
significant number of cycles waiting for data to be properly routed to them. The
overhead associated with the supervision of a controller in such a multiprocessor
environment lacking space and time variant interconnection network may severely
degrade all the advantages of parallel processing. Optics again offer great intercon-
nection flexibility.

At a higher level, the use of electronic content addressable memory has been
considered for improving the performance of database operations. Most of these
efforts have not met with much success primarily because of the small size and the
high cost of these devices and the slow data loading time. On the other hand, opt-
ical content addressable memories have the potential for holding megabytes of
data at an appreciably lower cost. Since they are hologram-based their major
disadvantage is that they are read-only. However, for very large data/knowledge
bases irdexing structures can be devised which are rather insensitive to updates
provided that the update rate remains moderate. Thus, holographic content
addressable memories could serve in the future for processing indices to very large
databases. We are currently investigating this issue in a separate research effort.
Finally, as the field develops, holographic memories may even be adopted as a pri-
mary storage medium.

9-69

9.8. An Architecture for Very Large Knowledge Bases

Existing Knowledge Bases (KB) have only a limited, relatively small size. In
the near future, however, KB with data and rules on the order of 1011 - 1013 Bytes
and an inference engine that can process hundreds of thousands of rules will be
needed so that the next appropriate step is towards architectures for Very Large
Knowledge Bases (VLKB). Obviously conventional techniques are not sufficient
for the effective manipulation of such a vast amount of information and new
powerful methods are required which will involve extensive parallel processing.

Currently, KBs are designed for specific problems such as bacterial infections
or nuclear reactor control. As a result their application is limited. In contrast to
these homogeneous, narrowly oriented systems, the future, general purpose VLKB
will contain different types of information such as: multiple rule sets, many con-
ventional and unconventional data bases, purely numerical data, formatted and
unformatted text. This diversion calls for different, types of processors too. For
example, associative processors, data filters, relational operators, text processors,
surrogate file processors etc. The incorporation of all these processing units in the
same system along with the efficient integration of Logic and a Data Base
Management System will be essential to any future design.

We are investigating various solutions for the management of very large data
and knowledge bases in the support of multiple inferencing mechanisms for logic
programming. The entire system must operate as a back-end machine removing
from the host computer all the time-consuming operations for retrieving and
manipulating data. As was previously pointed out, the evaluation of goals can
require the accessing of the extensional database (EDB) of facts in very general
ways and one must often resort to indexing on all fields of the facts. Cast in rela-
tional database terminology each relation must be indexed and each attribute of
each relation must also be indexed.

The use of surrogate files helps to improve retrieval performance because less
processing is required due to their smaller size. However, in some cases additional
performance can be obtained by distributing the surrogate file entries as uniformly
as possible over many disks to allow for parallel processing. We are developing a
special Surrogate File Processor (SFP), that will utilize the query code word
(QCW) as a search argument to obtain the list of unique identifiers that qualify.

A proposed architecture [BER87a] for this system involves several SFPs
operating on the disks that contain the surrogate file. The unique identifiers are
sent to an extensional data base manager which in turn retrieves the correspond-
ing tuples from the disks containing the EDB.

9-70

9.8.1. The Concept of the Data/Knowledge Base Processor

Shown in Figure 9.8.1 is the block diagram of the system where the surrogate
file and both the IDB and EDB are stored in the same group of disks which is
controlled by a single Data Collector (DC). Processing is performed by the
Data/Knowledge Base Processor (D/KBP) which is directly connected to the host
computer.

DISKS DC D/KBP HOST

Figure 9.8.1 A Data/Knowledge Base Back-End System.

The D/KBP, the heart and the brains of the system, will be a specially
designed piece of hardware that processes raw data coming from the disks per-
forming various relational operations, data filtering, sorting, searching etc. It will
encapsulate all the processing power necessary to manipulate the knowledge base
including specialized hardware such as the SFP, sorting pipes, other relational
operators and a general purpose processor. Its local memory will be large enough
to accommodate the appropriate software for the inferencing mechanism and the
data base management system as well as the qualified tuples that need further
processing.

When the host issues a request for a transaction to the D/KBP, the data
involved are located on the disks with the help of the SFP, retrieved and placed
to the local memory by the general purpose processor. Then a combination of
software and hardware techniques are employed in the D/KBP for the efficient
data processing so that only useful information is returned to the host.

However, even this configuration is inadequate to handle hundreds of GBytes
of data and unable to provide an acceptable I/O transfer rate. We envision a
Very Large Knowledge Base Architecture (VLKBA) that will have about 500
GBytes of magnetic and 1500 GBytes of optical disk storage in its full
configuration. The VLKBA is the topic of the next paragraph.

9-71

9.8.2. The Very Large Knowledge Base Architecture (VLKBA)

Shown in Figure 9.8.2 is an overall diagram of the initial design of a Very
Large Knowledge Base Architecture. The VLKBA consists of a large number of
secondary storage units (magnetic and optical disks, magnetic tapes) arranged in
groups. Each group is controlled by a single data collector which receives data
from multiple disks simultaneously and passes them to a Data/Knowledge Base
Processor. All the D/KBP's have access to a large semiconductor memory which
acts as a disk cache memory between the disks and the host machine.

Common T
DC D 4 Memory E HOST

_ 512 MB F
R

E

OD MD: Magnetic Disk DC: Data Collector

OD: Optical Disk D/KBP: Data/Knowledge Base Processor

Figure 9.8.2 The Very Large Knowledge Base Architecture.

The D/KBPs communicate with each other and with the front-end computer
through the common memory. The communication between the common memory
and the host is established with an interface that allows for maximum bandwidth
and arbitrary channel connection. The entire system is controlled by the Control
Processor which accepts requests from the host and translates them to the

9-72

appropriate commands for the VLKBA.

The primary goal of the design is to achieve maximum performance using a
high degree of parallelism. Each part of the VLKBA is described separately in the
following sections.

9.8.2.1. Memory Storage Units

In order to achieve such a huge capacity we can only consider the largest
currently available mass storage media, that is, magnetic disks with movable
heads and large optical disks. Some of the most important characteristics of these
devices are shown in Table 9.8.1.

MAGNETIC DISKS OPTICAL DISKS

(Moving Heads) (Large Diameter, Write-Once)

Capacity (GBytes) 1 - 5 5 - 10

Transfer Rate
Burst (MB/sec) 3 0.7- 10

Transfer Rate
Sustained (MB/sec) up to 3 0.2 - 1.0

Average Access
Time (ms) 15 - 30 150- 1000

Average Latency
Time (ms) 8- 10 20-60

Table 9.8.1. Secondary Memory Characteristics.

With the current capacity of the largest magnetic disks being on the order of
5 GBytes we need 100 such units to reach the desired 500 GBytes of magnetic
storage.

In the optical disk area there is a greater variety. Optical disks provide
significantly larger capacity but they have lower transfer rates. We are currently
examining the possibilities for multiple-beam read from a single disk which could
increase the I/O bandwidth dramatically. Another major disadvantage of the opt-
ical technology is the inability to change the information once it has been recorded
on the optical surface but it seems that this problem will be overcome in the next
few years.

The largest part (more than 1000 GBytes) of the optical storage will be pro-
vided by an optical 'jukebox" [AMM85, ALT86]; a device that accommodates
from 64 to 128 14-inch optical disks arranged in an on-line library configuration

9-73

and accessed via an automated handling mechanism similar in concept to the
well-known music jukebox. For the remaining 500 GBytes we are planning to use
Write-Once Large (14") Optical Disks with a capacity of 10 GBytes/platter.

A group of disks may be interleaved to speed up data transfers in a manner
analogous to the speedup achieved by main memory interleaving. Conventional
disks may be used for interleaving by spreading data across disks and by treating
multiple disks as if they were a single one. In the synchronized disk interleaving
mode [KIM85,861, every page of the memory is distributed orthogonally over a
group of M disks controlled by a common control unit. Every request for a specific
page (or a block of more than one page) is broadcasted simultaneously to all M
disks that execute the same transaction in parallel. The average service time (ST)
for a request is given by:

Ttr

ST = T +

where Ta is the average access time (average seek plus average latency time) and
Tt, is the time to transfer (read or write) a block of data. Path delays due to
rotational positioning sensing misses, which are significant in disk systems with
skew distribution, are completely eliminated. Obviously, the performance of the
design is improved when larger blocks of data are transferred. Synchronized disk
interleaving provides simplified control because the interleaved disks can be mani-
pulated as a single unit. Since the load is evenly balanced over all the devices,
queuing delays due to multiple requests for a specific disk are avoided, thus allow-
ing for maximum degree of parallelism and considerably lower service time. The
reliability of the system can be also improved with minimum redundancy. A typi-
cal number for M is 10.

Each D/KBP will have access to 10 synchronized magnetic disks with an
overall capacity of 50 GBytes. Every group of disks will be controlled by a
separate Data Collector. The Data Collector will receive data from all the disks
simultaneously thus obtaining a data transfer rate of about 30 MBytes/sec to
each Data/Knowledge Base Processor. Thus, we will have 10 such groups and the
total transfer rate can be as high as 300 MBytes/sec. Not shown in Figure 9.8.2 is
the disk controller. We envision that each disk will have its own control processor
and this processor will share the controller function with the Data Collector.

The average sustained transfer rate from the jukebox is a little below 50
MBytes/sec. Similarly, the low transfer rate from each of the other optical disk
drives allows 16 such units to be serviced by a single data collector. Therefore, the
output rate from the optical devices will be about 100 MB/sec raising the overall
total for the Disks-To-D/KBPs bandwidth up to 400 MB/sec. However, as previ-
ously stated, we believe that the data rate from optical disks has the potential to
be increased considerably through multi-beam reading. This speculation must
await the results of further research.

Provision will be made for at least one magnetic tape unit for back-up pur-
poses.

9-74

9.8.2.2. The Data/Knowledge Base Processors

The D/IKBP accepts data from the data collector and either processes it or
passes it through to the common memory. With regard to internal optimization
the D/KBP must be able to generate and control index information for the data it
manages, it must be able to optimally place the data on disk for minimization of
access and update time and it must be able to maintain the data in terms of secu-
rity, integrity, backup and recovery. Our work with the surrogate files, discussed
in previous sections, will have a significant impact on the design of the D/KBP.

A more detailed block diagram of the D/KBP is shown in Figure 9.8.3.

From Control Processor

D/KBP PROCESSOR

General Purpose

To Data To
Collector Surrogate Disk-Cache

File Data Data
Processor Filter Filter Processo,

8 MBytes Local Memory

Figure 9.8.3 The Data/Knowledge Base Processor.

It will contain 8 MBytes of local memory and several specialized processors.
The use of the Surrogate File Processor has already been illustrated. The General
Purpose Processor will undertake a part of the internal control of the D/KBP and
any other job that cannot be performed by the other processors (i.e. numerical
computations). In addition the D/KBP contains a filter processor which performs
the more common operations such as sort, merge, select, project and join as well
as a special text processor.

The D/KBP performs two classes of operations on the data it controls.
There are processes that respond to external commands from the control processor
as shown in Figure 9.8.2 and internal processes that it must undertake to operate
in a near optimal way. We believe that much of the inferencing capabilities of
current AI systems will become part of the database system to form an intelligent
database or expert database system or perhaps the term knowledge base system

9-75

will take on that meaning in the future. We believe that new functions will be
added to the database system to give it new functionality. For instance in work
by Yokota and Itoh [YOK861 they discuss a relational knowledge base system that
has the added functionality of unification-join and unification-restriction. The
D/KBP will be designed to include appropriate addition capabilities.

There will be one D/KBP for each group of magnetic disks, three for the
entire jukebox (because there are three different channels) and one for every
group o" optical disks bringing their total number to 16.

Returning to Figure 9.8.2 the nonprocessed or processed data are placed in
the common memory. These data will be removed via the control processor for
some applications but mostly via the interface to the host. The bandwidth
between the D/KBP and the common memory and between the common memory
and the interface will be on the order of 100's of MBytes/sec so as not to be a
bottleneck.

9.8.2.3. The Common Memory

The use of a fast electronic buffer, as a disk cache, between the disks and the
host offers many advantages; among them, higher bandwidth and synchronous
communication. The size of this memory, which may be common to all the
D/KBPs, lies in the order of 103 Bytes. It must accommodate multiple ports con-
nected in parallel that read and Nrite data simultaneously.

An initial design of such a system consists of a) the memory partitioned in
Mb banks, where Mb is equal to the number of ports connected to it, and b) the
appropriate interconnection network. Each page of the memory is orthogonally
distributed over all the banks so that, a word with address (p,d) -where p is the
page number and d the displacement in this page-- is located in the memory bank
Mid mod Mb] and its address in this bank is (p*Sp + d) / Mb, with Sp the size of
a page in words. Every port i scans continuously the memory banks according to
the sequence: i, i+1, ... , Mb-i, 0, 1, ..., i,... Such a distribution physically allows
simultaneous access from all ports, even to the same page, without causing any
conflicts among them nor any suspension. The access port speed should be equal
to that of the host's main memory, or at least half as fast.

This multiport, multiple-access disk cache can significantly enhance the per-
formance of the I/O system. Even if the overall Disk-to-D/KBP bandwidth is less
than 400 MBytes/sec, the transfer rate from the interface to the front-end com-
puter can be considerably higher especially when the disk-cache hit ratio
approaches 1.

The interface should allow multiple (on the order of 100) ports from the host
computer to be connected to the Common Memory. It will be a perfect shuffle
interconnection network. The appropriate connections will be established accord-
ing to signals from the Control Processor. Generally, more than one host might
have access to the knowledge base simultaneously.

9-76

9.9. Applications and Research Issues

As pointed out earlier we are concerned with the management of very large
data and knowledge bases in a multiple inferencing environment. However, the
VLKBA will serve as a resource for many other interesting avenues of research.
Among these are questions concerning the management of very large multimedia
databases, the development of new embedded architectures, the comparative
analysis of database indexing structures, the optimal reorganization of the data-
base in response to usage and some of the more mundane questions concerned
with concurrency control, back up, recovery and distribution. In addition, many
problems have to be solved in order to achieve the desired cooperation between
optical and magnetic equipment.

A promising field for future research is the all-optical data/knowledge base
machine. The rapid advance of optical technology, especially in the optical inter-
connection networks, may soon lead to entirely new architectures for DBMS. Con-
sider, for example, multiple laser beams reading on optical disks at data rates two
orders of magnitudes faster than the current ones. This constant stream of data
could be guided through optical fibers to an optical computer where many opera-
tions could be performed on the data prior to converting it to electronic pulses.
Such a system would eliminate the need for data collectors, some of the large sem-
iconductor memory and many of the processing units.

An additional use for VLKBA is the evaluation of experimental machines.
When a machine is evaluated on the basis of performance (time per job,
throughput, etc.) one must be able to keep the machine supplied with data. In
fact, the data rate to the machine under test must be greater than the ability of
the machine to handle it in order to obtain a realistic measure of performance.
This requirement applies across the entire range of applications from processing
intensive applications such as image processing to input/output intensive applica-
tions such as data base management. To obtain a realistic measure of a machine's
performance, both processing and input/output time must be taken into con-
sideration. Thus, if all of the data will not fit into the machine's main memory,
the time to input new data must be taken into account in the performance meas-
ure. The time to complete the job then is the sum of the load and process time
provided that they cannot be overlapped. In order to ensure a realistic test, the
VLKBA must have sufficient capacity and bandwidth to supply the data for a
large problem at stress rates to the machine under test.

For problems that are processing intensive, the VLKBA must be able to sup-
ply data to the machine being evaluated at the highest rate it can handle. Alter-
natively, suppose that the machine under test is input/output bound for problems
of interest. Then, preprocessing can be performed in the VLKBA in order to enrich
the data being sent to the machine under test. Thus, in addition to testing the
machine, the VLKBA can identify some of the requirements of the secondary
storage system to support the machine being evaluated.

The testing of machines places some severe constraints on the VLKBA. It
must be able to sustain output data rates in the hundreds of MBytes per second
range and have a data capacity in the hundreds of GBytes. It must have the facil-
ity to provide raw data to a machine under test at stress data rates and must also
be able to perform considerable processing activities in order to enrich the data
being sent to the machine under test. It must be able to interface with a wide

9-77

variety of machines. It must have some level of reconfigurability so that the above
functions can be performed, and it must be partitionable so that it can interact
with more than one machine simultaneously.

9-78

9.10. References

[AMM85] G. J. Ammon, J. A. Calabria, D. T. Thomas, " A High-Speed, large-
Capacity, "Jukebox" Optical Disk System," IEEE Computer, Vol. 18,
No. 7, 1985, pp. 36-45.

[AHU801 S. R. Ahuja, C. S. Roberts, " An Associative/Parallel Processor for Par-
tial Match Retrieval Using Superimposed Codes," Proc. Annual Symp.
on Computer Architecture, 1980, pp. 218-227.

[ALT86 W. P. Altman, G. M. Claffie, M. L. Levene, " Optical Storage for High
Performance Applications in the late 1980s and beyond," RCA
Engineer, Vol. 31, Jan./Feb. 1986.

[BAU71] R. Bauer, E. McCreight, " Organization and Maintenance of Large
Ordered Indexes," Acta Informatica, Vol. 1, 1972, pp. 173-189.

[BER87a] P. B. Berra, S. M. Chung, N. I. Hachem, " Computer Architecture for a
Surrogate File to a Very Large Data/Knowledge Base," IEEE Computer
Vol. 20, No.3, 1987, pp. 25-32.

[BER87b] P. B. Berra, N. B. Troullinos, " Optical Techniques and
Data/Knowledge Base Machines," IEEE Computer Vol. 20, No. 10,
1987, pp. 59-70.

[BIT83] D. Bitten, H. Boral, et al., " Parallel Algorithms for the Execution of
Relational Database Machine Operations,' ACM Trans. Database Sys-
tems, Vol. 8, No. 3, 1983, pp. 324-353.

[BRA841 K. Bratbergsengen, " Hashing Methods and Relational Algebra Opera-
tions," Proc. VLDB, 1984, pp. 323-333.

[CAR751 A. F. Cardenas, " Analysis and performance of Inverted Database
Structures," CACM, Vol. 18, No. 5, 1975, pp. 253-263.

[CAR791 .1. L. Carter, M. N. Wegman, " Universal Class of Hash Functions,"
Journal of Computer and System Sciences, Vol. 18, No. 2, 1979, pp.
143-154.

[CAR84] D. B. Carlin, J. P. Bednarz, et al., " Multichannel Optical Recording
Using Monolithic Arrays of Diode Lasers," Applied Optics, Vol. 23, No.
22, 1984, pp. 3994-4000.

[C HU871 S. N'f. Chung, P. B. Berra, " Surrogate File Structures for Very Large
Data/Knowledge Bases," submitted to a conference, 1987.

fCLA861 K. Clark and S. Gregory, " PARLOG: Parallel Programming in Logic,"ACM Trans. on Programming Languages and Systems, Vol. 8, No. 1,
1986, pp. 1-49.

9-79

[CON871 J. S. Conery, Parallel Execution of Logic programs, Kiuwer Academic
Publishers, Boston, 1987.

[COL86] R. M. Colomb, " A Hardware-Intended Implementation of Prolog
Featuring a General Solution to the Clause Indexing Problem," Ph. D.
Dissertation, University of New South Wales, October 1986

(DAT86] C. J. Date, An Introduction to ratabase Systems, Volume 1, Chap. 21,
Addison-Wesley Systems Programming Series, 1986.

DIG821 Digital Equipment Corporation, RA 81 Disk Drive Ui; Guide, 1982

[DWO84] C. Dwork, P. Kanellakis, J. Mitchell, " On the Sequential Nature of
Unification," Journal of Logic Programming, Vol. 1, 1984, pp. 35-50.

[FAG79] R. Fagin, J. Nievergelt, et al.," Extendible Hashing - A Fast Method for
Dynamic Files," ACM Trans. Database Systems, Vol. 4, No. 3, 1979,
pp. 315-344.

[FAL84] C. Faloutsos, S. Christodoulakis, " Signature Files: An Access Method
for Documents and Its Analytical Performance Evaluation," ACM
Trans. on Office Information Systems, Vol. 2, No. 4, 1984, pp. 267-288.

[FAL851 C. Faloutsos, S. Christodoulakis, " Design of a Signature File Method
That accounts for Non-Uniform Occurrence and Query Frequencies,"
Proc. VLDB, 1985, pp.165-170.

[GAR861 A. K. Garg, C. C. Gotlieb , "Order-Preserving Key Transformations,"
ACM Trans. on Database Systems, Vol. 11, No. 2, 1986, pp 213-234.

[GAY85I T. K. Gaylord, M. M. Mirsalehie, C. C. Guest, " Optical Digital Truth-
table Look-up Processing," Optical Engineering, Vol. 24, Jan./Feb.,
1985, pp. 48-58.

[GUI861 P. S. Guifoyle, W. J. Wiley, " Combinatorial Logic Based Optical Com-
puting," Proc. SPIE, Vol. 639-17, April, 1986.

[HAC88] N. I. Hachem, P. B. Berra, " Back End Architecture based on
Transformed Inverted Lists, A Surrogate File Structure for a Very
Large Data/Knowledge Base," HICSS21, to appear January 1988.

[KIM851 M. Kim, " Parallel Operation of Magnetic Disk Storage Devices: Syn-
chronized Disk Interleaving," Proc. Int'l Workshop on Database
Machines, 1985, pp. 300-330.

[KIM86] M. Kim, " Synchronized Disk Interleaving," IEEE Trans. on Computers,
V-1. C-35, No. 11, 1986, pp. 978-988.

JKIT83] M. Kltsuregawa, H. Tanaka, T. Moto-Oka, " Application of Hash to
Data Base Machine and Its Architecture," New Generation Computing,

9-80

Vol. 1, 1983, pp. 63-74.

[LAR79] P. -A. Larson, "Analysis of Repeated Hashing," BIT 20, 1980, pp.25-32.

[LAR80] P. -A. Lason, "Linear Hashing with Partial Expansions," Proc. VLDB,
1890, pp. 224-232.

[LARS1] P. -A. Larson, " Analysis of Index-Sequential Files with Overflow
Chaining," ACM Trans. on Database Systems, Vol. 6, No. 4, 1981, pp
871-680.

[LAR82] P. -A. Larson, " Performance Analysis of Linear Hashing with Partial
Expansions," ACM Trans. on Database Systems, Vol. 7, No. 4, 1982,
pp. 566-587.

[LIT80] W. Litwin, " Linear Hashing: A New Tool for File and Table Address-
ing," Proc. VLDB, 1980, pp. 212-223.

[LEE86I D. L. Lee, " A Word-Parallel, Bit-Serial Signature Processor for Super-
imposed Coding," Proc. Int'l Conf. on Data Engineering, 1986, pp.
352-359.

(LLO84] J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag,
1984.

(MIAL85] J. Maluszynski, H. Jan Komorowski, " Unification-free Execution of
Logic Programs," Proc. of Int'l. Conf. on Logic Programming, 1985.

[MAR771 J. Martin, Computer Data-Base Organization, second edition, Prentice
-Hall, Inc, NJ, 1977, Chapter 20.

(M.AR82] A. Martelli, U. Montanar, " An Efficient Unification Algorithm," ACM
Trans. on Programming Languages and Systems, Vol. 4, No. 2,. 1982,
pp. 258-282.

[MOR86] Y. Morita, H. Yokota, H. Itoh, " Retrieval-By-Unification Operation on
a Relational Knowledge Base," Proc. of 12th VLDB, 1986, pp. 52-59.

(MOS871 Y. S. Abu-Mostafa, D. Psaltis, " Optical Neural Computers," Scientific
American, March, 1987, pp. 88-95.

[OUK83] M. Ouksel, P. Scheuermann, " Storage Mappings for Multidimensional
Linear Dynamic Hashing," Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, 1983, pp. 90-105.

[PFA80] J. L. Pfaltz, W. J. Berman, E. M. Cagley, " Partial-Match Retrieval
Using Indexed Descriptor Files," CACM, Vol. 23, No. 9, 1980, pp. 522-
528.

9-81

[PAT78] M. S. Paterson, M. N. Wegman, " Linear Unification," Journal of Com-
puter and System Sciences 16, 1978, pp. 158-187.

[RA.M84] K. Ramamohanarao, R. Sacks-Davis, " Recursive Linear Hashing,"
ACM Trans. on Database Systems, Vol. 9, No. 3, 1984, pp. 369-391.

[RAM861 K. Ramamohanarao, J. Shepherd, " A Superimposed Codeword Index-
ing Scheme for Very Large Prolog Databases," Proc. Int'l Logic Pro-
gramming Conference, 1986, pp. 569-576.

[ROB65] J. A. Robinson, " A Machine-Oriented Logic Based on the Resolution
Principle," Journal of the ACM, Vol.12, 1965, pp. 23-44.

[ROB791 C.S. Roberts, " Partial Match Retrieval via the Method of Superim-
posed Codes," Proceedings of the IEEE, Vol. 67, No. 12, 1979, pp.
1624-1642.

[SAC831 R. Sacks-Davis, K. Ramamohanarao, " A Two Level Superimposed
Coding Scheme for Partial Match Retrieval," Information Systems Vol.
8, No. 4, 1983, pp. 273-280.

[SI87] D. Shin, P.B. Berra, " An Architecture for Very Large Rule Bases Based
on Surrogate Files," Proc. Int'l Workshop on Database Machines, 1987,
pp. 555-568.

[SHO86 Y. Shobatake, H. Also, " A Unification Processor Based on a Uniformly
Structured Cellular Hardware," Proc. of Int'l. Symp. on Computer
Architecture, 1986, pp. 140-148.

tSTO861 C. D. Stormon, " An Associative Processor and Its Application to Logic
Programming Computation," CASE Center TR 8611, Syracuse Univer-
sity, 1988.

[VIT86] J. S. Vitter, R. A. Simons, " New Classes for Parallel Complexity: A
Study of Unification and Other Complete Problems for P ," IEEE
Trans. on Computers, Vol. C-35, No. 5, 1988, pp. 403 -418.

[WAD87] M. Wada, Y. Morita, et al., " A Superimposed Code Scheme for Deduc-
tive Databases," Proc. Int'l Workshop on Database Machines, 1987, pp.
569-582.

[WAR83] D. H. D. Warren, "An Abstract Prolog Instruction Set," Technical Note
306, SRI International, October 1983.

(WIS84J M. J. Wise and D. M. W. Powers, " Indexing Prolog Clauses via Super-
imposed Code Words and Field Encoded Words," Proc. International
Symposium on Logic Programming, 1984, pp.203-210.

[WOO851 N. S. Woo, "The Architecture of the Hardware Unification Unit and An
Implementation," Micro 18 Proc., 1985, pp. 89-98.

9-82

4

[YA077] S. B. Yao, Approximating Block Access in Database Organization,"
CACM, Vol. 20, No. 4, 1977, pp. 260-261.

[YOK86] H. Yokota, H. Itoh, " A Model and an Architecture for a Relational
Knowledge Base," Proc. Annual International Symposium on Computer
Architecture, 1986, pp. 2-9.

9-83

Appendix 9-A

Surrogate File Structures

for

Very Large Data/Knowledge Bases

Soon Myoung Chung
P. Bruce Berra

Dep't. of Electrical and Computer Engineering
Syracuse University

Syracuse, NY 13244-1240
U.S.A.

(315) 423-4445
berra@sutcase.case.syr.edu
chung@sutcase.case.syr.edu

This work was supported by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air
Force Office of Scientific Research, Boiling AFB, DC 20332 under Contract No.
F30602-85-C-0008. This contract supports the Northeast Artificial Intelligence
Consortium (NAIC).

9-A-I

ABSTRACT

Surrogate files are very useful as an index for very large knowledge bases to

support multiple logic programming inference mechanisms because of their small

size and simple maintenance requirement. In this paper, we analyse the superim-

posed code word (SCW) and concatenated code word (CCW) surrogate ale tech-

niques in terms of storage space and time to answer queries in various cases. One

of the most important results of our analysis is that the size and the query

response time of the CCW is smaller than those of the SCW when the average

number of arguments specified in a query is small. It is also shown that most of

the query response time is used for the surrogate file processing when the exten-

sional database is very large. Therefore, if we use a special architecture to speed

up the surrogate file processing, the total query response time can be reduced con-

siderably.

9-A-2

1. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism

that can be utilized to respond to queries posed by users. The objective of such

systems is to capture the knowledge of experts in particular fields and make it

generally available to nonexpert users. The current state of the art of such sys-

tems is that they focus on narrow domains, have small knowledge bases and are

thus limited in their application.

As these systems grow, increased demands will be placed on the management

of their knowledge bases. The intensional database (DB) of rules will become

large and present a formidable management task in itself. But, the major

management activity will be in the access, update and control of the extensional

database (EDB) of facts because the EDB is likely to be much larger than the

DB. The volume of facts is expected to be in the gigabyte range, and we can

expect to have general EDB's that serve multiple inference mechanisms. In this

paper we assume that the IDB is a set of rules expressed as logic programming

clauses and the EDB is a relational database of facts.

In order to set the stage for the problem that we are interested in, consider

the following simple logic programming problem:

1. grandfather(X,Y) .- father(X,Z), parent(Z.Y)

2. parent(X,Y) - father(XY)

3. parent(XY) - mother(X,Y)

4. father(pat, tiffany) -

father(don, louise) -

9-A-3

5. mother(mary, louise) -

mother(lisa, tiffany)

6. - grandfather(X, joan)

The first three clauses form the I1DB of rules for this problem, the next two

sets form the EDB of facts and the last statement is the goal. To solve the prob-

lem (satisfy the goal), we must find the names of the grandfathers of joan. For

this we search the father and mother facts on the second argument position,

finding values for the first argument position that can be used later. Thus, we

need to find joan's mother and father before finding her grandfathers. If we ask a

similar but slightly different query

- grandfather(tom, X)

we search the first argument of the father and mother facts in attempting to

satisfy it.

Consider the following general goal statement of a logic programming

language

4- r (XX,. X)

9-A-4

In this case, values for some subset of the X,'s will be given in the process of

trying to satisfy its goal. Since the subset of the X's is not known in advance

and can range from one to all of the values, this places considerable requirements

on the relational database management system that supports the logic program-

ming language. In fact, in order to insure minimum retrieval time from the rela-

tional database all of the Xi's must be indexed. With general indexing the index

data could be as large as the actual EDB. In order to considerably reduce the

amount of index data yet provide the same capability, we have considered surro-

gate files. Obviously if not all of the X,'s can take part in goal satisfaction then

the indexing strategy will change, however in this paper we will assume the most

general case in which all of the X,'s are active.

Retrieving the desired rules and facts in this context is an extension of the

multiple-key attribute partial match retrieval problem because any subset of

argument positions can be specified in a query and matching between terms con-

sisting of variables and functions as well as constants should be tested as a

preunification step.

In the context of very large knowledge bases the c',stion arises as to how to

obtain the desired rules and facts in the minimum amount of time. Two reason-

able choices of indexing schemes to speed up the retrieval are superimposed code

word (SCW) and concatenated code word (CCW) surrogate file techniques dis-

cussed by D. Shin et al. [-211 and P.B. Berra et al. [21. Surrogate files are con-

structed by transformed binary codes where the transform is performed by well

chosen hzhing functions on the original terms. In [2], SCW, CCW and

transformed inverted list (TEL) surrogate files were discussed in terms of the struc-

tures, updating procedures, performance of relational operations on the surrogate

files, and possible architectures to support them. The term "surrogate file" dates

9-A-5

back to early work ai information retrieval and other terms, such as "signature

file" and "descriptor file" have been used to describe similar structures. [7, 8, 221

Compared with other full indexing schemes such as inverted lists [4], SCW

and CCW surrogate file techniques yield much smaller amounts of index data;

about 20% of the size of the EDB [2] while the inverted lists may be as large as

the EDB. This size advantage can yield increased retrieval performance especially

when the number of search arguments is greater than one. Inverted lists show

advantage in retrieval when a single argument is given since only one list need be

processed. Surrogate file technique based on SCW or CCW can be easily imple-

mented with parallel computer architectures because their structures are quite reg-

ular and compact. [1, 2, 14]

In terms of maintenance the surrogate file shows considerable advantages.

When a new tuple is added to a relation the SCW or CCW is generated and

added to the surrogate file. In the case of inverted lists each list must must be

processed. Similar operations must be performed for deleting tuples from a rela-

tion. When changes to an existing tuple are made, the surrogate file entry must

be changed and the proper inverted lists must be changed.

An important advantage of SCW and CCW surrogate file techniques is that

they can be easily extended for the indexing of the rules expressed as Prolog

clauses, where the matching between constants, variables, and structured terms is

required to test the unifiability. M. J. Wise et al.[251, K. Ramamohanarao et al.

[17], and M. Wada et al. (241 extended the SCW structure for the indexing of Pro-

log clauses and D. Shin et al. [21] extended the CCW structure to index the rules

and facts in unified manner.

9-A-6

In this paper, we analyse SCW and CCW surrogate file techniques on the

basis of storage space required for the surrogate file and time to retrieve the

desired facts from the EDB. We limit our discussion to the EDB because most of

the query response time is spent for fact retrieval and relational operations on the

EDB, and the proposed structures of SCW and CCW for rule indexing are quite

different, so it is difficult to make meaningful comparison at this time.

In the next section we introduce the structures and retrieval procedure of the

SCW and CCW surrogate file techniques. We then develop the equations for the

surrogate file size and the query response time. The analyses based on the simula-

tion results are discussed next and finally we close with some thought on the per-

formance improvement with SCW and CCW surrogate file techniques using a spe-

cial architecture.

2. System Model for SCW and CCW Techniques

2.1. Superimposed Code Word (SCW)

Let a fact D contain Ar argument values, D={d,d ,d.}. Each argu-

ment value (d, , 1-IAr) can be mapped into a binary representation by a well

chosen hashing function. The binary representation can be converted to another

binary representation with pre-defined length and pre-defined weight, called a

binary code word (BCW), by using a pseudo random number generator. The

weight of a binary representation is the number of 1's in the binary representa-

tion. The process of generating a BCW from an argument value is well described

in (181 by C. S. Roberts. The SCW of a fact is generated by ORing Ar BCW's

obtained from A. argument values. A unique identifier is then attached to the

SCW and the fact. This unique identifier serves as a link between the two and is

9-A-7

used as a pointer to the EDB or can be converted to a actual pointer to the EDB

by dynamic hashing schemes such as linear hashing. [11, 12, 13]

Suppose we have a fact type called borders which is given as follows:

borders (Country.1, Country_2, Body.ofWater).

For a particular instance

borders (korea, china, yellow sea).

We would first hash the individual values,

H(korea) H(china) H(yellow sea)

100...01 010...00 110...00

then the SCW would be formed as follows:

H(korea) - 00...01

H(china) - 010...00

H(yellow sea) - 110...00
110 ... 01[0 ... 01

with the binary representations logically ORed together. The unique identifier is

attached as shown and the vertical line shows the boundary.

The retrieval process with the SCW surrogate file technique is as follows:

9-A-8

1) Given a query, obtain a query code word (QCW) by ORing BCW's

corresponding to argument values specified in the query.

2) Obtain a list of unique identifiers to all facts whose SCW's satisfy

QCW=QCW .AND. SCW

that is, obtain a list of all SCW's that have Vs in the same position as the

QCW by sequentially ANDing the QCW with all entries in the SCW file.

3) Retrieve all the facts pointed to by the unique identifiers obtained in step 2

and discard the facts not satisfying the query. These are called "false

drops". The facts satisfying the query are called "good drops". The false

drops are caused by the non-ideal property of hashing functions and the log-

ical ORing of BCW's which make facts with different argument values have

the same SCW.

4) Return the good drops to the user.

2.2. Concatenated Code Word (CCW)

The CCW of a fact is generated by simply concatenating the binary represen-

tations (BR's) of all argument values and attaching the unique identifier of the

fact. With the same example used for SCW, the CCW would be formed as

~100 ...0110 O...04110 ... 00)... 01.

The retrieval process with the CCW surrogate file is as follows:

1) Given a query, obtain a query code word (QCW) by concatenating BR's

corresponding to argument values specified in the query. The portion of the

9-A-9

query code word for argument values which is not specified in the query is

filled with don't care symbols.

2) Obtain a list of unique identifiers to all facts whose CCW's satisfies

QCW=CCW

by sequentially comparing the QCW with all CCW's in the CCW file. Note

in this case the matching is performed on both l's and O's.

3) Retrieve all facts pointed to by the unique identifiers obtained in step 2 and

compare the corresponding argument values of the facts with the query

values to discard the false drops caused by the non-ideal property of hashing

functions.

4) Return the good drops to the user.

3. Storage Requirement and Retrieval Performance of SCW and CCW

Techniques

Storage requirements can be expressed by the size of surrogate files and

retrieval performance can be measured by the query response time for a given

query. Notations that are frequently used in this paper are shown in Table 3.1.

9-A-10

Notations Meanings

Ar Number of arguments in a fact

Rq Average number of arguments specified in a query

GD Average number of good drops per query

FD Average number of false drops per query

Sdb Size of the extensional database in bytes

NR Number of facts in the extensional database

NSB Number of blocks in surrogate files

NDB Average number of extensional database blocks retrieved

S Size of surrogate file in bits

B Size of a block in bytes

BR Binary representation

BCW Binary code word

bbcw Bit length of a binary code word

QT Query Response time

Ts 3PSurrogate file processing time

Tdp Extensional database processing time

Tba A block access time

C1 Value distribution factor, that is, the average number
of facts which have the same value in the i-th argument

C Average of value distribution factor (Average redundancy)

Table 3.1. Summary of Notations Frequently Used

9-A- 11

3.1. Size of SCW and CCW Surrogate Files

The equations for the size of the SCW and CCW files are obtained in this

section under the assumption, that, if the input values are different from each

other, the selected hashing function maps those values into different output

values, that is, there are no collisions by the hashing function.

With the above assumption, C. S. Roberts [18) presented the optimal bit

length of a BCW in a SCW in terms of the number of arguments in a fact (A,),

the average number of arguments specified in a query (Rq), the number of facts in

the EDB (NR), and the average number of false drops (FD). The equation for the

bit length of a BCW (bbew) is given as

bbc R~ [ln(NR)-In(FD)I l (3.1)

bc -Rq [ln(2)12

The SCW also contains its unique identifier which must be greater than or equal

to 1og 2N, thus the minimal bit length of a SCW (b,,w) is

b~cw= (bbcw+ iogNRj. (3.2)

Hence, the minimal size of the SCW file (S.,w) is as follows:

SSCW - b3CW X NR. (3.3)

For a CCW file, the minimal size can be derived from the fact that the bit

length of the hashing function output for an argument in a fact must be at least

og2--R-I where C, called the value distribution factor, is the average number of

facts whose i-th arguments have the same value. From this fact, we can derive

the minimal sizes of the CCW file (Scow).

9-A-12

A CCW contains the binary representation of each argument value and its

unique identifier. Hence, the minimal size of the CCW file is

S(E NRI+ o2 X N(3.4)

In this paper, we assumed that the hashing function is ideal and simulated

the minimal storage requirement for surrogate files. However, in actual cases, the

hashing function is not ideal and there will be around 30% of collisions if the

number of the distinct hashing function output is equal to the number of distinct

input argument values.[15] As we increase the length of the binary representa-

tion of an argument value, the probability of collisions will decrease: for example,

if we assign two more bits to the binary representations in CCW surrogate file,

the probability of the collision will be less than 10% and the net increase in surro-

gate file size will be around 1.5% of the EDB size.

3.2. Query Response Time Using SCW and CCW Surrogate Files

The query response time depends largely on the size of surrogate files and the

method of obtaining pointers from the surrogate files. For the size of surrogate

files, the equations derived in the previous section are used. Also, it is assumed

that a sequential uniprocessor is available for surrogate file processing.

In general, the retrieval process using surrogate files can be divided into

several sub-processes as follows:

1. Access to the surrogate files to read the code words from those files.

2. Comparing the QCW of a query with code words and obtaining a list

9-A-13

of pointers (unique id's) to the EDB.

3. Access to the EDB to read the facts pointed to by the pointers

obtained in 2.

4. Comparing the query with the facts retrieved from the EDB. This

step is to discard the false drops.

3.2.1. Surrogate File Processing Time

Let B be the size of a block in bytes, then there are

NSB- 8XB (rS.. (3.5)
NS -| 8 X B I

blocks in surrogate files and each block contains I J code words except the

final block. Initially, the first block of the surrogate file is accessed in

Tb1 - Average seek time + Rotational delay (3.8)
B

+ Transfer rate

and the first block will be searched in

To - the number of bytes in a QCW (3.7)

Xtime for byte comparison / 2 X SB

+ (GD+FD) X (uid collection time)

NSB

where GD denotes the average number of good drops and FD denotes the average

number of false drops per query.

9-A-14

If we assume that the blocks in the surrogate fi? reside consecutively in a

disk, then the time for accessing the remaining (NSB - 1) blocks is

B

Tsa V B X(NSB(3.8)Transfer rate X (NSB - 1)

+ Rotational delay X (# of tracks for SF - 1)

+ Minimum seek time X (+ f cylinders for SF - 1) .

If sufficient number of buffers are provided, the reading of the last (NSB -1)

blocks can be overlapped with the searching of the first (NSB - 1) blocks. There-

fore, the maximum of these two times, i.e, max (Tsa, T. X (NSB - 1)) will con-

tribute to the surrogate file processing time. For the last block of the surrogate

file, the searching time is not overlapped with the block access time. Thus, the

total surrogate file processing time is

TP - Tba + max (T.,, T,, X (NSB - i)) + T. (3.9)

Here we ignore the buffer switching time and the process wake-up time, i.e, the

overhead time caused by buffering.

3.2.2. Extensional Database Processing Time

The average number of accesses to the EDB per query is the summation of

the average number of good drops and the average number of false drops. If the

facts to be retrieved are assumed to be randomly distributed over the EDB, the

average number of EDB blocks to be retrieved is

NDB d I k1-(- I)GD+FD) (3.10)

9-A-15

where Sdb denotes the size of the EDB in bytes. If we assume that attributes are

independent within a relation, GD can be approximated by using C, and NR.

Ci
NR I() if GD>I

IERq

GD - (3.11)
1 otherwise

Once a EDB block is retrieved, then the facts with matched unique id's will

be compared with the query to discard the false drops. The time for this com-

parison is

Td -. (GD + FD) X the number of bytes in a fact (3.12)
NDB

X time for byte comparison / 2 .

EDB block accessing and comparison can also be overlapped. So if we assume that

the EDB blocks are randomly accessed, the total EDB processing time is

Tdp - Tba + max (Tba,, Tdc) X (NDB - 1) + Tdc . (3.13)

However, since the EDB blocks are randomly accessed, the block access time is

much more than the block comparison time. Therefore, the total EDB processing

time can be simplified as

Tdp =z Tba X NDB. (3.14)

3.2.3. Query Response Time

The query response time for a given query is the summation of all the surro-

gate file processing time and the EDB processing time.

9-A- 16

QT,, , (or QTcCw) - TV + Tdp (3.15)

4. Simulation and Analysis for SCW and CCW Techniques

Simulations are performed with the equations for the size of surrogate files

and the query response time using SCW and CCW techniques assuming that the

surrogate files are consecutively stored in a disk, the EDB are randomly stored in

a number of disks and the block load factor of the surrogate file and the EDB is

1. If the EDB is dynamic, then the block load factor will be lowered and conse-

quently the number of blocks to be accessed will increase somehow. But once a

block is accessed, the time for processing a block will decrease.

4.1. Surrogate File Size

For the simulation of the surrogate file size , it is assumed that the EDB

remains at the same size regardless of variation of Ar and 15 bytes are used for

each argument value. Therofore, NR, the number of facts in the EDB, can be cal-

culated as follows:

NR[#INR Sdb
L15XAr

where Sdb represents the actual EDB size not including the unique identifiers for

each fact of the EDB. We also assumed that each argument of a fact in the EDB

has the same redundancy value, C., which is the average of the C,9s:

E¢I
iEA,

9 I Ar

The results for the size simulation are shown in Figures 4.1 through 4.3. In

Figure 4.1 we plot the size of the SCW surrogate file (S,,w) as a function of the

9-A- 17

number of arguments (A,) in a fact. The size of the surrogate file is expressed as

a percentage of the EDB. The EDB sizes are 101, I0' , and 109 bytes while the

average number of arguments in a query (Rq) takes on the values one and two.

Note that S3CW increases with the size of the EDB (Sdb) but decreases with Rq.

The reasons for this behavior are readily apparent from equations 3.1 to 3.3.

In SCW case, if we allow more false drops then the length of the SCW

becomes shorter which results in a smaller Sw,. However, more false drops leads

to more EDB accesses.

In designing the SCW surrogate file one must set the expected number of

arguments in a query. In terms of size, the worst case of course is when Rq is I

and as the value for Rq is set at progressively higher values SC W becomes very

small. However, if we assume large Rq in designing the SCW file, we have to allow

more false drops than the expected number of false drops, FD, whenever the

number of arguments specified in a query is smaller than Rq. (181

In Figure 4.2 we plot the size of the CCW surrogate file(Stew) as a function of

the average redundancy(C.) in the data. Note that with greater redundancy Sew

becomes smaller because a smaller number of bits can be used for each binary

code word. Also note that Sdb and Ar have significant effects on S,,,.

Finally, in Figure 4.3 we compare SSCW and SCCW for various conditions. With

regard to the size of surrogate files, we can say that the CCW file technique is

better than the SCW technique, even though Ss, .nay be smaller than S, when

Rq is large, because we assumed that the average number of arguments specified

in a query is usually not more than 2. However, in both cases the surrogate file is

generally less than 20% of the size of the EDB.

9-A- 18

~~vof~)S dA Fl4wlOnW~ OtatWbee Si:,

R q Average Nutrdbwr of Arpument$ Specified in a QU~Y

FD NuMbf Of Fa DropS

40

Scw d q

Surrogate
File Size

30
1

7

10

20

10 .

10.

00

0 2 4

Number of Argumnents in a Fact (A r

Figure 4,1 Fffct of IDIB Size and the Average Number of Argumrenlts

in a Query On the SCW Surrogate ie Size

(%Of Sd,

30

25

bAr

C~w 10 9. 2

Surrogate
File Size 20

10 ,2

910 ,10

10

5

5
10 102

10 ,10

0 Ii II

0 1 2 3 4 5 6 7 8 9

Logarithim of the Average Redundancy (log 2 C g)

Figure 4.2 Effect of the Average Redundancy on the CCW Surrogate
File Size

9-A-20

(%o SSCW: Ar .86, FO 1, Rqu 2
(%oSb CCW: Ar -6

25

20
SF , Sd

Surrogate 5CCW, 109

File Size

scw,0

10

ccw, 10 7

0 1 2 3 4 5 6 7 8 9

Logarithm of the Average Redundancy (log 2 C g

igure 4.3 SCW and CCW Surrogate File Size Comparison

9-A-2 1

When the size of the EDB is less than 107 bytes, the surrogate file size is

less than 2 Mbytes, so the whole surrogate file can be stored in a fast memory to

speed up the retrieval process.

4.2. Query Response Time

For the query response time, we assumed that the hashing function is ideal,

so there are no false drops with the CCW surrogate file technique and the SCW

surrogate file technique has only the false drops caused by the logical OR opera-

tion on the BCW's. A partial-match query is assumed and the BCW of the surro-

gate file is compared with the QCW by using sequential byte by byte comparison.

The query response time results for the SCW and CCW techniques are obtained

from the equations developed in the previous section and are shown in Figures 4.4

through "4.12. Table 4.1 shows the values of parameters used in this simulation.

The parameters relating to the disk are obtained from the characteristics of the

DEC RA81 disk.(6]

In Figures 4.4 through 4.6 and 4.7 through 4.9, we plot the query response

times, QT, and QTcc,, and corresponding subprocessing times for Sdb of 105 ,

107 , and 109 bytes, respectively. When Sdb is 105 bytes, most of the query

response time is spent for EDB access. But when Sdb is 10g bytes, the query

response time becomes very large and most of the query response time is spent

for surrogate file accessing and searching because of the increased surrogate file

size and sequential searching of the surrogate file. The number of arguments in a

fact (A,) has little affect on either QT,, or QTc, since we assumed that the Sdb

remains constant under the variations in Ar.

9-A-22

Parameter Value

Average seek time 28 msec

Minimum seek time 6 msec

Rotational delay 8.3 msec

Data transfer rate 2K bytes/msec

Data sector size 512 bytes

Sectors/track 52

Tracks/cylinder 7

Time for byte comparison 3 psec

Unique id collection time 10 pusec

Block size 2K bytes

Table 4.1. The Values of Parameters Used in the Simulation

9-A-23

(M3eC Sdbw10o bytes,8 92 Kbytes Zw

1800 Ar a6, Rq-2. FO.9

Tc -Tsp,+ TdpTd
OTc : SCW Query Responise Time

1600 T S : SFProcessing Time
T dp :EDB Processing Time

1400

1200

Time 1000

800

600

400

200

0 Tsp

0 1 2 3 4 5 6 7 8 9

Logarithim of th~e Average Redundancy (log02 Cg)

Figure 4.4 Components of the SCW Query Response Time (S dbn 10 5bytes)

9-A-24

(sec)

9Sdb - 107 bytes, 8 a 2 K bytes

Ar - 6, Rq -. 2. FD-9

8 OTscw Tsp + Tdp

a~cw
7

. Tdp

Time

4

3

2

TS

0 1 2 3 4 5 6 7 8 9 10 11 12

Logarithm of the Average Redundancy (log 2 C g

Figure 4.5 Components of the SCW Query Response Time (S db" 10 bytes)

9-A-25

sec) Sdb=109 bytes, B=2Kbytes

Ar - 6, Rq =2, FD=9

Qrs4w- Tsp T*

250

"sw Tsp

200

Time

150

100

50

Tsoo

0 1 2 3 4 5 6 7 8 9 10 11 12

Logarithm of the Average Redundancy (log 2 C g

Figure 4.6 Components of the SCW Query Response Time (S db= 10 bytes)

9-A-26

(msec) or .

1800

Sdb. 105 bytes. 1.2 K bytes T®

1600 A r M G. Rq-2

OTC, - + TT

QT0 : CCW Query Response Time

1400 T SF Processing Time

T dp EDB Processing Time

1200

1000

Time
800

600

400

200

TS

0 1 2 3 4 5 8 7 8

Logarithm of the Average Redundancy (log 2 C

Figure 4.7 Components of the CCW Query Response Time (S db 105 bytes)

9-A-27

(sec)

Sdbft1O bytes., B2 Kbytes

8 Ar a 6 . Rq =2

QTC-T- Is * dpT

4

Time

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12

Logarithm of the Average Redundan'cy (10g 2 C9g

7Figure 4.8 Components of the COW Query Response Time (S db 10 bytes)

9-A-28

(sec)

Sdb=10 9 bytes. B=2Kbytes

Ar a 6, Rq =2

QTCCW - Tsp + Tdp

300

250

Time

200 CTccw Tsp

150

100

50

T dp -0

0 I I I II

0 1 2 3 4 5 6 7 8 9 10 11 12

Logarithm of ihe Average Redundancy (log 2 C g)

Figure 4.9 Components of the CCW Query Response Time (S db = 10 bytes

9-A-29

When Sdb IS 105 bytes, Rq is not a factor which affects QTscw, but QT,.

increases as FD increases. However, when Sdb is 109 bytes, the result is reversed,

that is, Rq affects the QTsc, considerably while FD does not. There are two rea-

sons supporting this result:

i) Sa, decreases as Rq increases. However, when Sdb is small, S3, is also small

for any Rq so that the time for accessing and searching the SCW file is

almost constant. Therefore, the time for accessing the EDB, which depends

on FD, becomes a major factor in QT,,,.

2) When Sdb is large, Ss, becomes large so that most of QTscw is spent for

accessing and searching the SCW file. Therefore, SsCW is a main factor

deciding QT,.. Since S,, largely depends on Rq, the change in Rq is

directly reflected in QTsCw.

QTSC and QTce. are largely affected by Cs when Sdb is i05 bytes and Rq is

small. However, as Rq becomes large, the effect of C. on QTscw and QTCCW

decreases. This fact is well explained by the role of Rq and C. in determining the

number of good drops:

1) If Rq is small and C. is large, then there are so many good drops that a

large amount of time is required for accessing the EDB.

2) If Rq becomes large, the number of good drops decrease considerably, and so

does the EDB access time, which is the major component of the query

response time when Sdb is 105 bytes.

From Figures 4.6 and 4.9, we can see that when Sdb is 1 09 bytes, as C9

increases, QTscw remains constant while QTccw decreases. This occurs because a

fewer number of bits is required to uniquely identify each attribute value in the

CCW case. But when C9 is larger than a certain value, the query response time

9-A-30

starts increasing because of the increased EDB access time. Also, we can see from

Figures 4.8 and 4.9 that most of the query response time is used for the surrogate

file accessing and searching when the EDB is large. Therefore, if we use multiple

processors and/or associative memory to speed up the surrogate file processing, we

can reduce the query response time considerably. Since the surrogate files are

quite regular and compact, they can be mapped into the associative memory.

Thus, we can obtain a speed up by the content addressing capability and the

parallelism of the associative memory.[1, 2] In addition, we can also obtain a

speed up proportional to the number of processors because there is little need for

communication among the processors.

Since searching and disk access can be overlapped, if we increase the block

size, then the number of disk accesses can be reduced and we can save time as

long as the block searching time is less than the block access time. In the case of

a multiple disk system, the surrogate file and the EDB are distributed over a

number of disks and we can reduce the disk access time by seeking several disks

concurrently.

To compare the retrieval performance of the SCW and CCW techniques, we

plot QTSCw and QTCCw in Figures 4.10 through 4.12 for various parameter values.

From those figures we can see that QTCCW is smaller than QTSCW when Rq is small.

because SCW is smaller than S3CW when Rq is small.

9-A-31

(MSOc) cSdb= 105 bytes, 8w2 K bytes

SCW: A r -6 R q -2, FDi 1a=sCW
1800 CCW: Ar a6, Rq=2

1600

1400

1200

1000
QueryResponse
Time

800"

600"

400

200

o!I - I I I I I II

0 1 2 3 4 5 6 7 8 9

Logarthm of the Average Redundancy (log 2 C g

Figure 4.10 SCW and CCW Query Response Time Comparison (Sdb = 10 bytes)

9-A-32

(sec)

Sdb 10 7 bytes, . 2 K bytes

SCW: Ar - 6. Rq .2. F.I

CCW: Ar - 6, Rqu2

71".c w

,.l

6

Query

Time 4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Logarithm of the Average Redundancy (log 2 Cg)

7
Figure 4.11 SCW and CCW Query Response Time Comparison (Sdb = 10 bytes)

9-A-33

(sec) Sdb-10 9bytes, 8 2 Kbytes

SCW: Ar - 6, FO 1

600 CCW: Ar - 6 OT. R q
OT, 1

400
Query

Response
Time

300 OT , Ic

200 OT 5cw 2

100

0 1 2 3 4 5 a 7 8 9 10 11 12

Logaritm of the Average Redundancy (log 2 C g

Figure 4.12 SCW and CCW Query Response Time Comparison (S -b 10 9bytes)

9-A-34

5. Comparison of SCW and CCW Surrogate File Techniques

The size and query response time of the CCW is smaller than those of the

SCW when the average number of arguments specified in a query is small.

It is very easy to update SCW or CCW surrogate files. When a new fact is

added to the EDB, the corresponding code word is simply appended to the exist-

ing SCW or CCW surrogate files. No other operations are required. To delete a

fact, we must find and delete the entry in the surrogate file as well as in the EDB.

When one changes the value of a field. SCW requires that a new code word be

generated and the old one deleted. For CCW the change need only be made to

the portion of the code word in question.

One obvious advantage of CCW over the SCW is that many relational opera-

tions can be easily performed on the CCW surrogate file rather than on the rela-

tions themselves.[2l This offers considerable potential savings in time to carry out

those relational operations.

In SCW, the order of argument positions in either query or fact can't be

differentiated because a SCW is generated by the logical OR operations on the

BCW's. This property of SCW can be a disadvantage when used for rule index-

ing in the context of logic programming.

SCW surrogate file searching time can be reduced by using the bit-sliced

organization to store the SCW files.[14l But in that case, we must read and write

back many blocks of SCW surrogate file to update one SCW, which is not toler-

able when the EDB is dynamic.

In the SCW surrogate file technique, to reduce the the inherent false drops

caused by the logical OR operations on the BCW's, one may assign different code

9-A-35

weights to the BCW's of argument values depending on the occurrence frequency

and query frequency of the argument values. But to do this, the code weights of

frequently occurring argument values must be maintained in a table to be looked

up whenever generating a binary code word. [9, 181

8. Further Research Consideration

The main drawback of the SCW and CCW surrogate file technique is that

the whole surrogate file must be read to the main memory and searched. To

reduce the searching time, one can produce a block code word for each block of

the surrogate file and use the block code words as an index for the surrogate file.

A given QCW is compared with the block code words first and only those blocks

of the surrogate file whose corresponding block code words match the QCW are

retrieved and searched. But the speed up is achieved at the expense of the extra

storage space and maintenance cost for the block code words. The performance of

the block code words will depend on the following factors:

1) Type of hashing functions used for code generation

2) Algorithm for generating the block code words.

3) Blocking factor: number of code words blocked together to form a block code

word.

4) How frequently the database will change.

J. L. Pfaltz introduced the block descriptor generated by logical Oring the disjoint

codes of each record [161 and R. Sacks-Davis and K. Ramamohanarao developed

two level superimposed coding scheme.Jig, 20]

9-A-36

It has been shown that surrogate file processing time is dominant when the

EDB is very large. Thus, if we adopt multiple processors and/or associative

memory, we can reduce the surrogate file processing time considerably. A general

structure of a back end system which contains multiple processors for the manage-

ment of a very large extensional database of facts is shown in Figure 8.1. We

assume that there are gigabytes of data stored on the EDB disks and there are

gigabytes of CCW surrogate files stored on the SF disks. Suppose that the user is

interested in retrieving fact data given some subset of values from a particular

relation. The query code word would be constructed in the Request Processor

using the proper hashing function and considering the positions of the values

within the relation. The QCW would then be broadcast to all of the Surrogate

File Processors (SFP's) to be used as a search argument. One could think of the

SFP as a processor with associative memory with the QCW as the search argu-

ment. The SFP compares the QCW with each CCW and strip off the unique

identifiers of matching CCW's. As soon as any unique identifiers are found by the

SFP's they can be sent to the collector and passed on to the Extensional Data

Base Manager (EDBM) for processing. The EDBM will retrieve the facts, compare

them with the query to insure that a false drop has not occurred, put them in

blocks, and send the blocks to the logic programming engine.

Furthermore, the SFP's can be extended to support complex relational alge-

bra operations such as join. Consider a join using the hash join algorithm. (3, 10,

23] Since the surrogate files already consist of hash values, we only need to parti-

tion the portion of code words that represent the join variable and the associated

unique identifiers into buckets according to the ranges of code words. Then,

based on matching within each bucket (which can be done in parallel), pairs of

unique identifiers can be sent to the EDBM for final verification.

9-A-37

REQUEST REQUEST

EXTNSINAL REQUESTED

Uid ETENSONAL FACTS

2 r4 SpM.-iEDS
EDS

Figure 8.1 Back End System for Fact Management

9-A-38

7. Conclusion

CCW and SCW surrogate file techniques are analysed in terms of storage

requirements and retrieval performance. The size and query response time of the

CCW is smaller than those of the SCW when the average number of arguments

specified in a query is small. Since the size of the CCW and SCW files are gen-

erally less than 20o of the EDB and the maintenance of those files is very simple,

they are suitable for the applications requiring very large dynamic EDB. Addi-

tionally, many relational operations can be performed on the CCW surrogate files

rather than on the relations.

CCW and SCW surrogate file techniques can be implemented easily with

multiple processors and/or associative memory to speed up the retrieval process

in very large knowledge base system. Our future research is towards the develop-

ment of special architectures supporting those surrogate file techniques.

9-A-39

References

[1] S. R. Ahuja, C. S. Roberts, "An Associative/Parallel Processor for Partial

Match Retrieval Using Superimposed Codes," Proc. 7th Annual Symp. on

Computer Architecture, May 1980, pp.218-227.

[2] P. B. Berra, S. M. Chung, N. I. Hachem, " Computer Architecture for a Sur-

rogate File to a Very Large Data/Knowledge Base," IEEE Computer Vol. 20,

No.3, March 1987, pp.25-32.

[3] K. Bratbergsengen, " Hashing Methods and Relational Algebra Operations,"

Proc. VLDB, 1984, pp.323-333.

[4] A. F. Cardenas, " Analysis and Performance of Inverted Data Base Struc-

tures," CACM, Vol. 18, No. 5, 1975, pp.253-263.

[5] R. M. Colomb, " A Hardware-Intended Implementation of Prolog Featuring

A General Solution to the Clause Indexing Problem," Ph.D dissertation,

Univ. of New South Wales, Australia, 1988.

[81 Digital Equipment Corporation, RA 81 Disk Drive User Guide, 1982

[71 H. C. Du, S. Ghanta, et al.," An Efficient File structure for Document

Retrieval in the Automated Office Environment," Proc. Int'l Conf. on Data

Engineering, 1987, pp.165-172.

[8] C. Faloutsos, S. Christodoulakis, " Signature Files: An Access Method for

Documents and Its Analytical Performance Evaluation," ACM Trans. on

Office Information Systems, Vol. 2, No. 4, 1984, pp.267-288.

9-A-40

[9] C. Faloutsos, S. Christodoulakis, " Design of a Signature File Method that

Accounts for Non-Uniform Occurrence and Query Frequencies," Proc. VLDB,

1985, pp.185-170.

[101 M. Kitsuregawa, H. Tanaka, T. Moto-Oka, " Application of Hash to Data

Base Machine and Its Architecture," New Generation Computing, Vol. 1,

1983, pp.63-74.

(11] P. -A. Larson, " Performance Analysis of Linear Hashing with Partial Expan-

sions," ACM Trans. on Database Systems, Vol. 7, No. 4, 1982, pp.588-587.

(12] P. -A. Larson, A. Kajila, " File Organization: Implementation of a method

Guaranteeing Retrieval in One Access," CACM, Vol. 27, No. 7, 1984, pp.870-

677.

[131 P. -A. Larson, " Hash Files: Some Recent Developments," Proc. 1st Int'l

Conf. on Supercomputing Systems, 1985, pp.67 1-879.

[14] D. L. Lee, "A Word-Parallel, Bit-Serial Signature Processor for Superimposed

Coding," Proc. Int'l Conf. on Data Engineering, 1986. pp.352-359.

[151 J. Martin, Computer Data Base Organization, second edition, Prentice-Hall,

1977

[16] J. L. Pfaltz, W.J. Berman, and E.M. Cagley, " Partial-Match Retrieval Using

Indexed Descriptor Files," CACM, Vol. 23, No. 9, 1980, pp.522-528.

[17] K. Ramamohanarao, J. Shepherd, " A Superimposed Codeword Indexing

Scheme for Very Large Prolog Databases," Proc. 3rd Int'l Logic Program-

ming Conference, 1986, pp.589-576.

9-A-41

1181 C.S. Roberts, " Partial Match Retrieval via the Method of Superimposed

Codes," Proceedings of the IEEE, Vol. 67, No. 12, 1979, pp.1824-1842.

(19] R. Sacks-Davis, K Ramamohanarao, "A Two level Superimposed Coding

Scheme for Partial Match Retrieval," Information Systems Vol. 8, No. 4,

1983, pp.273-280.

[20] R. Sacks-Davis, " Performance of a Multi-key Access Method Based on

Descriptors and Superimposed Coding Techniques," Information Systems,

Vol. 10, No. 4, 1985, pp.391-403.

[211 D. Shin, P.B. Berra, " An Architecture for Very Large Rule Bases Based on

Surrogate Files," Proc. 5th Int'l Workshop on Database Machines, 1987,

pp.555-568.

[22] D. Tsichritzis, S. Christodoulakis, " Message Files," ACM Trans. on Office

Information Systems, Vol. 1, No. 1, 1983, pp.88-98.

[23] P. Valduriez, G. Gardarin, ° Join and Semijoin Algorithms for a Multiproces-

sor Database Machine," ACM Trans. on Database Systems, Vol. 9, No. 1,

1984, pp.133-161.

[241 M. Wada, Y. Morita, et al., " A Superimposed Code Scheme for Deductive

Databases," Proc. 5th Int'l Workshop on Database Machines, 1987, pp.569-

582.

(25] M. J. Wise, David M. W. Powers, " Indexing Prolog Clauses via Superim-

posed Code Words and Field Encoded Words," Proc. Symposium on Logic

Programming, 1984, pp.203-210.

9-A-42

Appendix 9-B

Back End Architecture based on Transformed Inverted Lists,
A Surrogate File Structure for a Very Large Data/Knowledge Base

Nabil I Hachem P Bruce Berra

Department of Electrical and Computer E~ngineering.
ivracuse University. Syracuse. NY 132.14-1240

ABSTRACT The approach presented in this paper relies on an
inverted list indexing scheme that is performed on the s'irro-

Knowledge based systems have gained prominence in gate files instead of the usual database inversion applied in
the rapidly growing field of Artificial Intelligence (A). The conventional information retrieval systems. In iBERSV!. Con-
current state of the art of such systems focuses on narrow catenated Coding and Transformed Inverted Lists (TIL) were
domains of knowledge bases with limited applications. In the introduced as efficient surrogate file techniques for the
future, those systems must deal with more general applica- management of Very Large Knowledge bases. Our scope, in
tions and existing Very Large Databases present a source of this paper, is to present a deterministic analysis of the TIL
information to be used for these Al applications. Surrogate technique and introduce a parallel back end system for the
file techniques, which rely on a compressed image of the management of Very Large Knowledge bases.
database, present a promising approach to the formidable
management task of such Very Large DatayKnowledge base. We begin by introducing the system model in Section 2.
In this paper we present a detailed analysis of Transformed then derive the minimum storage and query response time
Inverted Lists (TIL). an inverted surrogate file structure, and equations in Sections 3 and 4. In Section 5. simulation results
describe a parallel back end architecture, based on TIL, for are presented followed by a discussion of the maintenance
the management of a Very Large Data, Knowledge Base. aspects of the TIL technique in Section 6. Section 7 intro-

duces a parallel architecture for the processing of the TIL
Index Terms: Very Large Data Knowledge Base. Surrogate surrogate files. Finally, a summary of our results with some
File. Inverted Lists. Indexed Files. Database Mlachines. concluding remarks are given in Section 8.

1. Introduction 2. System Model for Transformed Inverted Lists

Knowledge based systems have gained prominence in Single or multilevel indexing is a common technique
the rapidly growing feld of Artificial Intelligence (A) The used in database management systems (DBMS) for fast data
current state of the art of such svstems focu.ses on narrow a-cess. In partial match retrieval. creating index files for
domains with limited applications Existing Very Large Data- more than one field in a record is necessary The extreme
bases prsent a rich source of' information to he used for A case artses when every entry in a record is indexed indepen-
applications and new demands for the management of such dently and is referred to as inverted lists organization
Data. Knowledge bases are foreseen to be essential f'or the (DAT8S, Chap. 2lf The problem behind using inverted lists

new generation of knowledge based systems. Berra et al is that the size of the indices can become enormous, equal to
DER8;' relate the problem to the general partial match or even larger than the database size.
retrieval problem and various techniques have been studied Transformed Inverted Lists (TIL) are similar to inverted

for partial match retrieval using surrogate files. lists with the main difference that indices are built based on
the binary representation (OR) f the hashed output of aThe term surrogate file (SF) dates back to ea rly work in given field in a record of the database relation Two TIL

information retrieval and other equivalent terms such as sig- types. TILl and TIL2, are considered in this paper A simple
nature and descriptor files are also used for such struc- relation is illustrated in Figure 2.1. The fields are referred totures Ill Typical work related to surrogate files processing ,s as arguments and the BR values for argument position 2 are
found with the Superimposed Coding method of Roberts listed.
R08791. Ahuja et a JAHUSOI and ".ee LEE861 proposed
associative architectures for the fast processing of superim- The application environment of the TIL technique
posed code words. Furthermore, Colomb et al !COJ85! and would be the management of a large Knowledge Base of
Wise et al JWVIS841 relate the technique as an indexing facts, referred to as the extensional database (EDB). within a
scheme for a logic programming environment. Lloyd et a logic programming context. We assume thit many different
ILLOSO and 821 have taken an interresting approach in relations (fact types) with varying degrees and cardinalities
which they select bit values in the facts and interlace them exist in the very large extensional database that we are con-
to form a code word. sidering. P'urthermore. we assume that the tuples are stored

in such a way that one first accesses the relation followed by
0 Refer to Falousas FA.ISl for a review ,f YatlOus meth,'1s for ccess- an access to a particular tuple via its unique identifier (Uid)

,n textual dau using surrogatf e s The unique identifier could be derived from the "primary

9-B-I

VW j At, Arl I All 1 AS4 jED~

. e

4 l l Ib, I I I ll l

,d liftpL e i'ud i i id

I I met, , ;,d~
bet

4, 4bet b)

,,as til !:,

1 , 1 t iPrim .. e

A41 L I i

Filp L I A SmpIf KaMwi4e Sn RitoionAr .aeg ri'.

key" of the relation or a serially generated number attached .1 TTLI for At, w SM

to each fact We will obtain the n ..ne .)f ,he .-tion .,ni .a
-u set of values along with their positions in the relation
from the logic programming process when it requests data
Thus. the storage structure for the actual facts themselves 't w 4 4
would be very simple and a method such as extendible hash- /W4.1
ing iFagin FAG,9;) could be used to guarantee retrieval of a 09 1 r 2 psim
given Ct in at mo~st two disk accesses "Fhis presuppose=4 Ir " ..J N
that all secondary key retrievals will take place on the surro-

Sate file or through post processing of the retrieved cuples if
there are many different types of users of the same database b - i I Psi

b. 2 Pa WI

2.1. TU.. , Description =74,__-___

TILL consists of a two level indexed inverted list Figure j .,
2.2 illustrates the TILL organization for argument position '2
of the relation of Figure 2.1. The blank entrie in the pri-
mary index file are usually included for updating purposes . t,. Fil.
The secondary index file for a given argument in a tuple is
an ordered list of the B.. of the hashing function output of F.

that argument with the attached unique idencifier i L'id The Fiuu LU 1U for At a Firm Li
fi-st entry in each block of this file is duplicaced in the pri- the tertiary index file consists of a Uid. so that the numlier
mary index file with an attached pointer to the correspond- of entries in this file is equal to the number of records in the
ing sec.ondary index block address. Frthermore index files database relation. Each entry tn the TIL2 secondary index
are partitioned in blocks of B bytes each It is observed that file consists of three fields: the BR of the hashed function
the entries in the primary index file are ordered as well output of an argument value Isay BR=brel. a list length

When a given BR a to be retrieved (say BR-br3). the entry "L" that provides the number of records in the data-
primary index file is sequentially accessed using the Bft base that have the same entry value in a gven argument
the search argument and the pointer to the secondary block position (2 for brf) and a pointer to the address of the first
address corresponding to that BR retrieved I pt2 in our exam- Uid in the tertiary file that has BR-br6 This pointer con-
pie) Then the secondary file is accessed in a direct mode and sists of the block address and a displacement value in the
the required block(s) retrieved and searched sequentially for block.

the occurrence(s) of the requested BR. The output is a liSt of The retrieval process for TL2 is similar to TILL. but
Lids (utd3 and uidll for our example) corresponding to the requires the accI of an additional index level.
value of the request. 2.3. Partial Match on Multiple Atgument Positions

When more than one arguiment position match is
2.2. "[1,2 Deription requested in a query, the different outputs from the inverted

lists searches need to be intersected The outcome of the
TIL2 is a three level indexed inverted list organization intersection is a set of Uids that complies with the query

and is illustrated in Figure 2.3 for the same example relation, requirements. Finally this set of Uids is used to directly
The difference between TIL2 and TILL lies in that the TILL access the main database for the retrieval of the matched
secondary index file is now split into two files: the TIL2 records. The gain in retrieval time when using transformed
-. "ondary index file and the tertiary index file Each entry in inverted lists is mainly due to the small size or the surrogate

9-B-2

Not.n\,neanincs Simulation Values
B Size of a block iBlocking Factor) 2-16 Kbytes;

Tk DiAk seek time 2s msec
Ttz Rotational latency 5 m5rec
TR Disk transfer rate 2 Mbytes sec
WL Processor word lengtn b_ its
T. eriage word compari.on t;mc 3 ,
A . Number of argunien: - n a uple -ti)
R, 1,%raqe number of arguments in a quer.

\umber of tupies in the ,Iatabad,
DG -k.erage number or goo, drops
- ., Database size 10-IO1 bytes

- - __ TILL or T[L2 5urrogate File size

'59 d 4. ,,3 Primar. nPcondarv or Tertar. Index File Size
BR Binary representation of the hashing function output

QT Query Response Time
SFT Surrogate File processing rme
IT Intersection time

DA Time ror retrieving records in the database
C, Vaiue distribution acror. that is. the average

number of records which have the same value in the
i-th argument

C, .Average of value ,htribution factor (Average redun- 1-4006
t anrv)

Table 2 !,zvm of Notations

files and the fast access resulting from the indexing sche:i- Denoting by Si.d,zx. 3Zd S ifd.0X the minimal sizes or the

Caly conjunctive partial match queries are considered. Ju imary and secondary index files of TILl respectively the
the reader should be aware that disjunctive queries have the minimal size of TILL Surrogate Files s:
same level of complexity. with the lists intersection operation
replaced by a multiple sets union operation STI1- - Siadqx2+Siadtzi

It is noted that the inversion level of the surrogate files
is determined by the -V applicatioi being considered. Since
our underlying. application involve logic programming and 3.1. Secondary Index File Size
relational databases, we will assume fully inverted surrogate
files throughout In Sections 3 and 4. we derive the minimum Each entry in a secondary index file consists of two
storage and the query response time equations. The analysis fields: 1) The Binary Representation (BR) of the hashing
;s based on a compact representation of the data and does function output for an argument. 2) The Uid of the tuple in
not take into account overflow chains It is meant to pin- which it is found. The number of entries in the secondary
point performance bottlenecks. to be resolved in the design of index file. tor each argument. is equal to the number of
the back end system. Table 2.1 lists the main abbrevia-tions tuples N in the database. Therefore, the secondary index size
used in our analysis Due to space limitations, we present the (in bits) is given by:
equations and simulation results for TILL only and refer the A, k, \
reader to Hachem et al HACS7 for additional details , . = (,og--., fiog'N XN

3. Minimum Storage Overhead for TUl. Surrogate where St., is the secondary index size per argument position

Files

In this section the minimal sizes of TILL files are 3.2. Primary Index File Size
derived assuming no blank entries are available in the index
files Those sizes are based upon the following parameters

oAn entry in the primary index file consists of two fields-II The bit lengt~h of the hashing f'unction output ('or an
1rgumebit lengthofthehashin t funR.in uut r a A pointer to a given block in the secondary index file. and
rgumentthe BR of the first argument value in that block. The

bits where C,. called the value distribution number of blocks in a secondary index file. denoted NbU is

factor. is the average number of records whose i-th equal to IB---where B is the block size in bits, block Each

arguments have the same value I

21 The Unique Identifier (LdI for each tuple is encoded block addres s thus encoded in og .,NM bit. and the

in og,N bits. In practical applications, the "ids are number of entries in the primary index file of a given argu-
ment "i" is equal to the number of blocks of it secondary

foN index file so that the total size of the primary index file is:

encoded in a fixed number of bytes equal to

9-B-3

lThe surrogate file processing cime SFTII is subdivided
-i . ' C B- [into four sub-processes

I Primary Index Retrieval Time

2 Primary Index Search Time

.1 Secondary Index Retrieval Time
4. Query Response Time of TEL, 4 Secondary Index Search Time

The derived !quvions are based on the following gen- Dle to assumption 4 above. primary and secondary index
erai as3sumptions on the hardware ani system modeis search times are neglected and we do not report them in this

I A given BR is equally likely to he sjpecifed in a paper
query

2 The primary and secondary indices are stored in .m-1UgUOS scona~y torge bloks nd rderd ith 4.1. Primary Index Retrieval Timetiguous seconda, y storage b~ocks ,end ,'rdered with

respect to the BR values so that a 1xlk :,an ,e
searched in log time. Fast sequential retrieval being followed the average

number of blocks. N ,,ib. retrieved for each query argument:1 Buffer sizes are sufficient to hold the rtr- v-.t I hi .. Il

4. The disk controlterqsl include a 'omparator .%ii,c: i, position is'

used to perform on the fly comparison 40 rhac parttAl fsill
overlapping of the primary ilex blocks rrr!evai and Nilb-l
search is achieved. This enables is d;srearui thie disk Nvllib =

rotational latency time for the retrieval of successive -

blocks from secondary storage Furthermore. il blocks
relevant to a given index file are assumed to reside on With RQ as the number of arguments in a query, and
the same cylinder in secondary storage. This .;sump- sequential access of primary index blocks, the average TILL
tion holds as the index file sizes under consideration is primary index retrieval time. Tisdul.rtrte,.i. 1:

rela tively sm a ll s ill

3. Main processor comparison is word :riented and th +1 xB

time required to perform a comparison is Tx B- 2.-R, % L -xTR

T. being the average word comparison time and WL

the word length of the main processor

6 We assume a stable file a defined by Larson LAR8I' 4.2. Secondary Index Retrieval Time
and do not account. in our deterministic analysis, for
the overhead incurred by searching overflow records The TILl secondary index retrieval time is based on the
according to Larson s stochastic model, the expected average number of secondary index blocks. N.,Vb. to be
number of additional disk accesses required to search an retrieved for each argument position in a query The total
indexed-sequential file is around 0 3 accesses secondary index retrieval time. T,,.,.,_ is given by-

The hashing fuctions do not lead to collisions How-

ever. in practice, collisions could be deleted by post Tra2.. fq. - (T,*-4Ti N XT

clhecking of the retrieved records from the EDB prior to , R

shipping them to the logic programming environment, and with CMub, as the number of entries in a secondary index
This could be performed on the fly but is not included
in rhe present analysis. Although not required for the
analysis. if order preserving hashing functions are pro- C,
vided (Garg GARS6'). TIL files couid handle range C , C.,I
queries as well

The Query Response Time (QTI) for TILl is divided 4.3. Intersection Time
into three procenses:

1) Surrogate File Processing and Uid Retrieval Two cas are considered:
(SFTI).
2) Uid Intersection Time (ITR - I no intersec,,-' is required and the number of

2) Ud [nersettonTime{IT good drops GD) is C,.
3) Database Access Time IDA) to read the goo d I whe m r ta
identified records) satisfying the query. R, > I when more than one argument value is

specified in a query. the lists of retrieved Cids must be inter-

It is noted that process 2 and .3 above are independent 4ected Denoting by NC(R,). the number of comparisons
of the TIL type followed. The Query Response Time for the required to perform the intersection operation. the total
TILl technique is written intersection time is then written a:

QTI - SFTI - IT -. DA

9-B-4

TIx L_ - 4"°
IT-

An estimate if the number of comparison steps NCiR 'or
the intersection operation is derived in AppenJwix 2. As noted 120
previously. we aume conjunctive queries with no loss of IN
,'nerality as the union operation for disjunctive queries has -1-
,lie same level of complexity as the intersection operation '0

4.4. Database Access Time"

'.iith GD as the number of good responses to a query a 1 2 3 a 5 7 a 9
and the probability (--) of a given response to be w a O l°tr of the hwe"Fl Re e (IogqC,)

-c I Effect d ft Odom Ute NSin Wdl fr m in a
7B ~TooW an uwl TL1 Swagat ?1

specific block, the database access time is. following Carde-
na' equation CAR751 and assuming direct access to the Due to space limitations, all reported plots. are based on a
main database: disk block size of 2 Kbytes.

B f$, 1 [n Figure 5.1. the TILL Surrogate File to Database size
DA - (T,.,, + TIL + -) -- x(I-4l- -) ratio is plotted versus the logarithm of the average redun-T1 4 dancy ractor, for different Seb and A, values. In general the

SF size of TILL spans from a low of g.2%. for log2Cs==g.
A, LO and SOb - LOS- to 41.89,o for logCsO...,-2 and
Sdb - 100 It is noted that the plots in Figure 5.1 manlyFollowing Appendix 2, the number of good responses a reflect the variation of the secondary index file size as the

estimated as: primary index file size can be shown to be negligible. In
HAC87!, the storage requirements for TIL2 are reported to

[.[(C, range from 8 to 200 of the size of the database.
GDl ,l N- Figures 5.2 to 5.5 illustrate the TILL Query Response

Time (QTI) and its corresponding subprocessing times

(SFTI, IT and DA) for different database sizes and number
It is observed that the database access equation is based of arguments in a query. Figures 5.2 and 5.3 relate to

on successive selection with replacement. Yao YAO77 medium sized files (Sdb - LO bytes) while Figures 5.4 and 5.5
discusses selection without replacement and points out the are typical of very large files (Sdb - 109 bytes). It is observed
cases where Cardenas equation gives rise to a significant that QTl is highly dependent on the SF processing time
error For our purposes. Cardenas approach is satisfactory (SFTI) for low values of C, (up to 512) and then becomes
as the number of good responses is expected to be small for highly dependent on the intersection time (IT) The drop in
very large knowledge bases. database aes time (DA). observed between the plots of

Figures 5 2 and 5.4 or 5.3 and 5.5, is due to the dependency

5. Simulation and Analysis of T L Techniques of the number of good responses (GD) on the ratio C& For
a fixed C6, this ratio decreases with increasing database sizes.

In the following analysis ad computer evaluation for No plots are included for the case where R. M 1. In this
the derived TIL equations, the parameters are as follows: situation, the query response time for TILL is dependent on

the number of good responses which is Cc Furthermore.
I) Each tuple in a database relation consists of a TIL2 query response time variations are the same as for
number of arguiments. A,. of IS characters each. TILL. The only difference being that TIL2 requires one addi-
2) In the derived equations, the C, parameter is depen- tional disk access per query argument, that is baianced by a
dent on the argument position i To simplify those smaller disk transfer time for large values of the redundancy
equations. we have used an average value for C,. factor C . The disk transfer time is smaller due to a smaller
namely C.. surrogate file size.
3) The system variables for the simulation are given in We conclude that the TIL techniques are efficient as to
Table 2.1 Disk parameters are based on the DEC RAnt the storige. query response time combination. Even for rela-
hard disk system KRI83: tively large redundancy factors, the query response time 3

9-B-5

I I ~ ~~T I I i

, .4/
.=4 GTI)

~/,

5.44

1 2 3 4 5 6 7 5 IQ 3 I!6 7 a 9 G
Logo*"vi of te Aweaqe Reduntlaicy (toq,C,) LaqiatMM of the M"oq Redwid.wcy (loqC,)

F'qn 5.2 Ciwioonwt;of the TVL Gwy Reswoae -,,me FiW* 5.4 Cmponet of tt* I OM~ lespfi iie

II ,1 /
,Sdb I) /r R-)

'054x

2o.. /

-0. A lo A

4. 8 '5 78 0 t 0 12 3 5 6 9 1OH1
Loqwium of the *weWq Rediisay (Ioq,) Loqmtii of te A"yng Redlwdacy (toq,)

c'qixe S.3 CaIISOa.f thle MI Ou"~Respnse rt Figure 5.5 Comoonets of the TIL? Quwy R sp, ,se f
(S1i- rlut, tG. 114-4). (SIbytm 00&AG. Rq.4

a hifl a few seconds while the storage overhead of the surt- the different record pointers and unique identifiers.
.)ite hiles lies in the LO to 20 Q% range of the databaise size. It Some important miuntenance aspects are the add.
,a noted that conventional inverted IitS. '%ith full indexing. delete and update operations. When adding a new record to
may require an overhead well in excess of 100 'o of tie the database, all the index filet; have to be accessed and reor-
latabas size. dered ' which is a time consuming operation. The Use of

overflow blocks would decrease the time requirements for the
insert operation with a negative impact on query response

S. Maintenance Aspocts of TU.. Surrogate Files time. Block inserts could be followed but this technique is
not applicable to real time databases. [a any case. periodical

One of the difficulties in using the TIL techniques is time consuming reordering is necesary. Deleting records
their maintenance requirementsi. Those become a serious could b, performed by marking techniques and delaying
drawback. especially in %. highly volatile database environ- reordering and packing operations to off line maintenance
ment The above analysis pertains to a static surrogate file periods. Finally, updates require the access -.nd rearrange.
If for example. 30%f expansion of the main database is for. mnent of the affected attribute's Indices.
seen. the overall increase of the surrogate flies sizes can be It can be stated. in general. that tbo overall manage-
greatt. than 3007. due to the additional increase required for ment system requirements for TIL Surrogate Files is complex

9-B-6

Meanwhile. the second list is processed in a similar way
;1Klfl at 0E !NI 111AM I

___________,_ .,nd sent to the XCIP module Then. the two resulting iists
- _ I -f possible responses are intersected by the XCMP block

The output of Uids (f any) is sent to the collector iCOL,-
£ GZ.7 LECTOR) that acts as a buffer and tne block of good

-t-... responses MHITS) is passed on to the Extensional Data Base
Manager 1EDB.M for processing The EDBM will retrieve the
facts. compare them with the search criteria to insure that a
collision has not occurred, put them in blocks, and sends

V them to the logic programming engine.
I ;In the case where more than two lists are to be inter-

c,.J..Scra I sected. the outcome of the tvwo lists intersection is fed back
--- --- from the COLLECTOR to the XC.MP block for a new cross

uS- ._ mSrU comparison operation with the third list coming from the
0,_,'log , _-SFD'SFP pairs. This process is continued until all the argu-

ments in the query are properly processed When a single
argument query is considered, the MUX passes the incoming
list from the SFD'SFP pair to the COLLECTOR that relays

-S- . ,. it to the EDB manager. The complete system can be viewed
as a three level pipeline controlled by the Requests

I I S M FOR FACT Wi, ElMT Scheduler Optimizer.

.ind those techniques are not recommended in volatile data- 7.2. Analysis of the Proposed Architecture

.ase environments.
In this Section. we analyze the motivations and the

benefits of the described architecture. One recurrent criticism
7. Back End Architecture for Knowledge Base against the use of inverted file structures is that their perfor-
Management mance degrades as the number of arguments in a query

increases. A good algorithm would tend to perform in the

In this Section. we describe and analyze the benefits of opposite way. as one hopes to do work proportional to the
a parallel back end architecture for the management of expected number of tuples in an answer. This criticism is
knowledge based systems with TIL surrogate Files assessed based on the sequential processing of the surrogate

inverted lists, but is ntigated if parallel processing algo-
rithms running on multi-processor architectures are designed

7.1. Back End S)stem for transformed inverted lists. We will have to look at the
-quations for the different subcomponents of the query

Shown in Figure 7 i is a back end zstem lor the response time for TIL. namely SFTI. IT and DA.

management of a very large excensional datable of Facts
This system will also manage many ntentionai databases 'urrogiue Files Processing Speedup
(sers of inference ru;es). but those are not shown on the
diagram We asume that there are many gigabytes of fact From the equations. derived in Sections 4.1 and 4.2. for
data stored on the EDB disks. Likewise. there are several the TILL surrogate files processing time (SFTI) and Figures
gigabytes of surrogate file data stored on the SF disks SFD). .2 through 3.3. we observe that SFTl is proportional to the

Since we have assumed the relational model we will store the number of arguments in a query (Rq) and is related to the

.acts by relation and then by tuple unique identifier within disk access cost for the retrieval of the inverted lists indices.

relations. As previously mentioned we will access the EDB The TIL structure is well suited for parallel processing

-nIy by relation name and then by tuple identifier. so through the distribution of the inverted lists to multiple
xtendible hashing or some such technique that minimizes storage and associated processor units (SFP). For the case of

fisk accesses can be used a single user ' :! queries on a relation with degree "d", an O(d)
speedup for the surrogate files processing time can be

As in example. assume that a user's request requires achieved with a maximum of "d" SFD/SFP pairs. For a

access to only two lists. The relevant blockis) from the first multi-user system. the speedup which can be achieved is a

list would be retrieved from the SFD and input to its azssoci- function of the number of SFD/SFP pairs and the applica-

ated surrogate file processor (SFP) where on the fly com- tion being considered. The surrogate file will actually consist

partsons are made for matches by the comparator (CMP) of many sets of inverted subfiles. one set for each relation.

Note that the SFP consists of a comparator (CMP) and Those sets will be distributed over the SF disks in order to

cache (CACHE) with their associated control microprocessor insure maximum parallelism in disk accessing.

IMP). The unique identifiers would be stripped off and sent The distribution algorithm follows an optimization cri-
to the Intersector Hardware block (INT HNV) through the teron related to the application on hand We note that the
multiplexer (MUX) The list of .ids is piped in the pipeline -A "user* is relerred to U the applicatmo propammer A si, user
sorter (SORTER) and then fed to the cross-lits comparator refers to a single aphA,-'on environment Versus a mUMlt-user , 1 mlitipie
(XCMP) ppiicutons environment

9-B-7

,isignment problem is NP.Complete and heuristic ai;o-
rithims specifically designed for the proposed architecture. 9 Comments on the Database Access Time
ire being presently developed for the prop(.r distribution of
the surrogate inverted lists. The outcome -f the algorIthm Database access time (DA. depends on the locality of
%%ould be a storage mapping of the surrogate inverted lists the good responses and would be determined by the cluster-
t h at i used by the Requests Scheduier Optimizer for queryht ueOptimize rng scheme for the tuples in the existing EDB In our
optimization. analysis. DA Is derived following Cardenas assumptions

Disk access cost can be further reduced by the use of CARTS, of uniform distribution for the records over the
cache memory in each SFP unit This cache would store the EDB secondary storage blocks. In a multi-user environment.
primary indices which are relatively small in size. With a clustering can achieve optimal DA values for one user while
cache hit ratio of 0.g. the average number of disk acc.ses. degrading the response time for another EDB clustering is
per inverted list. drops to L 1 from the v'alue of 2 that is an open design problem that lies tn the class of
assumed in the equations for SFT1 In practice. the number NPComplete problems. Its discussion is not within the
of disk accees. per inverted list search. is slightly higher scope of this pa.per
clue to the overflow chains that are bound to exist and which
were not accounted for in our analysis LARt S. Conclusion

2 tntersection Operation Speedup In this paper. we presented the equations to estimate
the storage overhead and query response time for

The equation for the intersection operation cost tIT1 Transformed Inverted Lists. Surrogate files based on TIL
was derived in Section 4.3. From this equation and the were found to be efficient as to a space/time criteria While
analysis of" Appendix ", IT can be easily shown to heavily the size of the TIL files is larger than the ones for other tech.

depend on C,. While negligible for small databases. IT niques like Superimposed and Concatenated Code Words

becomes a computation bottleneck for medium and large BERS71, it lies within an acceptable range of storage over.

data.knowledge bases with high average redundancy factors head 110 to 30 % of the database size). The superior partial

(C) (See Figures 5.2 to 5.5). It is noted that the plots match response time of the TIL file structures is an asset for

represent computed intersection time for equal attribute their use in the context of a Very Large Knowledge Base.

.- lectaies- for example if R - 2. the same C, is assumed TIL surrogate files are found to be well suited for paral-
tor both arguments in the query If we follow the reasoning (el processing with multiple storage/processor units. Based on
that the probability of bot ' arguments an the query having TIL file structures, we described and presented a preliminary
high redundancy factors as low. then our plots are pessimistic analysis of a parallel back end architecture for partial match
and realistic values for IT would be noticeably smaller. This queries on a VLDKB. Our current research is directed
argument can be made for any database size towards the development of the proposed back end system.

Nevertheless. for a VLDKB, the plots in Figures 5.2 to based on current and additional results. Many more issues

.5 .5 reflect an essential need for special intersection hardware, shall be addressed such an updating, integrity, collisions and

referred to as the [ntersictor In Figure 7.1, the {ntersector i adapting the inverted surrogate files to volatile

part of the [NT HW block and consists of the pipeline sorter data.knowiedge bass. Another open resrch problem we

iSORTER) and cross-list comparator IXC.MP) units. The are studying s the development of optimal allocation algo-
rithms for the surrogate inverted lits on multiple

sorter is essential, following our discussion in Appendix "2. r se, pro e s r i r ssm.

and shall be optimized to handle large lists of Cids as they storage. processor units.

present the computation bottleneck of the intersection opera-
rtion The XCMP block as used to cros compare the sorted Acknowledgement
list of Uids from the output of the SORTER with an incom-
tng list bf U'ids from a SFP This work was supported by the Air Force Systems

With L ,I as the minimum length of the lists involved Command. Rome Air Development Center. Graffiss Air Base,
in the intesection operation. an O(Lma) computation steps New York 13441-5700. and the Air Force Office of Scientific
could be achieved with the Intersector Compared with an Research, Bolling AFB. DC 20332 under Contract No
QLXlog-.,,.J computation steps of the best sequential F3002-85-C-0008. This contract supports the Northeast
algorithm. the speedup achieved with the hardware Intersec- Artificial Intelligence Consortium (NAIC).
tor would be 04 og2Lma5).

For high query rates, the operation of the [NT HW
block and the SFD/SFPs are overlapped, thus increasing the
throughput of the system. The number of [ncerseccor blocks Appendix 1: Average Number of Adjacent Blocks
is not bound to one, a. shown in Figure 7 1. and is a func- Coaining the Same Argument Value
tion of the throughput constraint of the design. Maximizing
the level of pipelining between the SFDSFP pairs and the
INT HW block(s) is an additional requirement on the optimi- The average number of consecutive blocks containing

zation algorithm It is worth noting that a different intersec- records with the same a.th argument value in an index file is

tion hardware could be derived based on a parallel cartesian derived The following terms are defined:

product algorithm. \Ve believe that such hardware would be t) Ci. the number of records with the same i-.th
more elaborate than the sorter, cross comparator combina- argument value.
Ion. 2) C%. the number of records in an index file block

9-B-8

31 X. number of consecutive blocks as a randcn: lists, the number of additional comparisons depends on the
variable. We have to compute EX). the expecte, expected number of "hits" from the first two.list intersection
value of . Denoting this number by GD. GD -. where N is the

It is noted that the C, records reside n msecutively in an N
index file, and the first record can be located at an'y khl number of records in the database For R, M 3. we need

position in an index block with equal probability Three asc C3XIog, f(GD 1) I1 additional comparisons So that NCI3)

are considered is written as:

uI C, < Cb The number of blocks to be retrieved is
either I or "2 blocks We can ,rite. .C(3) NC(2) + C3×loK--

PIX -2) - E and PIX =) - I --
C, C,

21 C, > Cb . with C, - aXCt5+r and rO: The process can be extended to include additional inter-
S>-section steps for larger values of R. It is note,4 that Carde-

C, X modC5) in L nas :CAR75; does not attempt to give an estimate of the
P(X - b C, and intersection time and Frederowicz's approach FRE87 is

'C. (C,modCb) - I different than ours.

C, C,

Ci As to the number of good responses GDI. we wrote. for
with Cmod'C5 C, - , -]C, R, M 2:

GD L, CtXCa Assuming uniform distributions for the
3) C, - nXCb.In this case we write N

C, Cb -I values of an argument, the number of good drops can be
P(X - 1 " 1) ----- and extrapolated to:

GD- - N C
PIX .D= Ft.~-Cb Cb ~

For all three cases. it is easily shcwn that the expected
value of X. EIX). is governed by the following equation: References

E(X) = '-
C5 Cb

'AHU0 i Ahuja S.R. Roberts C.S, "An Asociativet Parallel
Processor for Partial Match Retrieval Using Superimposed
Codes." Proc. 7th Annual Symp. on Computer Architecture.

Appendix 2: Estimating the Number of Required August 1190. pp 218-227.
Comparisons for the Intersection Operation

BERST' Berra P B. Chung S.M. Hachem N 1. "Computer
Stockmeyer and Wong ST07T: give the following Architecture for a rurrogate File to a Very Large

bounds on the number of comparisons. l(m.n,k). required to Data:Knowledge Base" IEEE Computer, March 1987. pp 25-
nterseet two lists. m and n. of arity k Im < i. .12.

llm.n.kl < (m -,nlXlog~m Im n - lXk - m + i CAR7S Cardenas AF, "Analysis and Performance of
I(m.n.k) Max (m - n Xlog-m - 2.9m.(m - n - ljXk - m I inverted Data Base Structures." Communications of the

ACM Vol. 18, No. 5. May 1975, pp 253-263.

In our case the arity k-I and number of comparisons.
NC(2), to intersect two lists of cardinaiities CI<C., is COL Colomb R.M, Jayasoorth." A Clause Indexing Sys-

tem for Prolog based on Superimposed Coding," The Aus-
tralian Computer Journal. Vol. 18. No. 1. February 1986. pp

NC(2)>MazX(C 1 + C2)Xlog-.C1 - 2.gC1 .C.. LS-25
NC(2)<4C t + C2)Xlog.,C "* C,

'DAT8IG Date C.J "An In&z.4,iction to Database Systems.
The upper bound is based on sortin- te list of smaller Volume I" Addison-Wesley Systems Programming Series.

cardinality prior to performing the cross 'stz comparison in 1986.
at most C: x ogn(Cit-)j comparisons It is known that

two-way merge sort on a uniprocesor requires at most ,FAG791 Fagin R. Nievergelt J, Pippenger N. and Strong
Clxlog2C t comparison steps. It is easy to derive an algo. H.R. "Extendible Hashing-A Fast Access Method for
rithm that would perform within the specified bounds Dynamic Files." ACM Transactions on Database Systems,
KNU731. Furthermore. if we need to intersect more than 2 Vol. 4. No. 3. September 1g79. pp 315-344.

9-B-9

FALS Faloutsos C. "Access .lethcds for Text" Computing
Surveys. Vol. 17. No. 1. March 1985. pp 4q-.74

FRES Frederowicz J, "Database Performance Evaiu-tiL..n
in an Indexed File Environment" ACMl Transactions on
Daitabase Systems, Vol. 12. No 1. \larrh 10,7. pl' -10

GAR86 Gar; A.K. Gotlieb C C "Order-Pr ,,rving [\(.y
Transformations." AC.M Transactions on Database S_-Ystems.
Vol. It. No. 2. June 1986. pp 213-234.

LA.C87' Hachem NI. Berra P.B. "Parallel Architecture ror
Transformed Inverted Lists. A Surrogate File Structure for a
Very Large Data. Knowledge Base" ECE Department 7,chni-
cal Report. Syracuse University. June 1987

K.NU73: Knuth DE. "The Art of Computer Pro;rammin;.
Sorting and Searching". Volume .3 Addison-\\esley Publish-
nz C 1071

KRI831 Kriddle B. and %IcKusick M.K. "Performance Effects
:f Disk Subsystem Choices for VAXZ systems Running- 4.2
BSD U.NIX." UC. Berkeley C.S Department Technical
report . 1983.

LARL Larson P. "Analysis of Index-Sequential Files with
Overflow Chaining" ACM Transactions on Database Sys-
tems. Vol. 6. No. 4, December 1981. pp 671-680.

LEE86: Lee DL. "A Word-Parallel. Bit-Serial Signature Pro-
cessor for Superimposed Coding," International Conference
on Data Engineering, IEEE-CS, February 1986. pp :352-350

LLO O Lloyd JW. "Optimal Partial-Match Retrieval." BIT
20. 1980. pp 406-413

LLOS2. Lloyd J.W. and Ramamohanarao K. '"Partial-Match
Retrieval for Dynamic Files." BIT 22. 19*2. pp L50-168.

ROBT9I Roberts CS. "Parttal Match Retrieval via the
Method of Superimposed Codes." Proceedings of the IEEE.
Vol 67. No. 12. December 1979. pp 1624-1642.

STO7Q; Stockmeyer L.J, Wong C.K. "On the Number of
Comparisons to Find the Intersection of Two Relations"
SIA.M Journal on Computing, Vol. 8. Nb. 3. August 79. pp
388-404. !A

\Is841 Wise M.J. and Powers D. "Indexing Prolog Clauses
via Superimposed Code Words and Field Encoded Words."
Interntitonal SyMp. on Logic Programming, February 1984.
pp 203-210.

YA077' Yao SB. "Approximating Block Access in Database
Organization" Communications of the ACM. Vol. 20. No 4.
\pril 77. pp 260-261.

9-B-10

Appendix g-C

AN ARCHITECTURE FOR VERY LARGE RULE BASES BASED ON

SURROGATE FILES1

DONGHOON SHIN

P. BRUCE BERRA

Syracuse University, Syracuse, New York 13244-1240, USA

ABSTRACT

To support a large set of rule bases as well as ground facts, we propose an
efficient retrieval method by transforming heads of clauses and facts into

Concatenated Code Words (CCW) to form a surrogate file. By adopting the 'mode'
dcclarations used in PARLOG, the heads of clauses can be represented by function-
free terms, and then are transformed to CCW to be used as an index to gain access
to the actual database. A simplified unification operation on surrogate files can be
cfficiently implemented by means of a specialized associative processor due to the

uniform structure of surrogate files.

This work was supported by the Air Force Systems Command, Rome Air
Development Center at Gnffiss Air Force Base in New York, and the Air Force
Office of Scientific Research at Boiling AFB in Washington DC under Contract
No. F30602-85-C-0008. This contract supports the Northeast Artificial
Intelligence Consortium (NAIC).

9-C-I

.. ===.= =====. ,==un . u I I I I I I

An Architecturefor Very Large Rule Bases Based on Surrogate Files

01TRODUCTION

Future computer systems will be expected to provide highly efficient
management of large shared knowledge bases for knowledge-directed applications
such as expert systems. Previous knowledge base systems such as ILEX (1) and
DELTA (2) have the dual structure consisting of an inference engine and a
knowledge base. These have attempted to combine a relational database system to
manage the knowledge base with a logic programming system to serve as the
inference engine. For efficient management of a large database, the Extensional
Database (EDB) is separated from Intensional Database (IDB). Though this
approach has exhibited a great deal of efficiency for handling a large set of facts
(EDB), it may not be suited to applications supporting large rule bases (IDB)
which heretofore have been assumed to be small enough to reside in the main
memory. ft has also been observed that most inefficiencies stem from the interface
between these two very different systems.

On the other hand, in some recently proposed systems, there is no
distinction between the IDB and EDB. That is, both facts and rules are managed and
stored uniformly. A machine that uses the idea of database retrieval based on the
unification operation is the Sabbatel's Prolog database machine (3). It can search
desired data form secondary storages by the "on the fly" execution of unification.
Sabbatel proposed the Prolog's top-down evaluation strategy with AND/OR
parallelism and set-oriented processing to reduce the number of accesses to
secondary storage. Recently, Yokota and Itoh proposed the "Relational Knowledge
Base Model" to provide a machine with a uniform representation of the knowledge
base (4). Unlike the relational database model that consists of only ground
instances, this model can accommodate variables and complex structured terms. In
this case, the exact match of database operations should be extended to unification
due to the variables and structured terms that can appear in the knowledge base.
However, the processing load required for such an operation on a large knowledge
base stored in secondary storage is expected to be enormous. Furthermore, this
approach can be inefficient because of the 'top-down' query evaluation strategy,
especially when a large set of ground facts are involved.

Presented in this paper are techniques for managing a very large knowledge
base to support diverse requirements for applications of logic programming
systems based on surrogate files (5) and associative processors. We also propose an
integrated knowledge base machine architecture that can effectively support very
large sets of rules as well as facts in the context of logic programming

9-C-2

environment.
This paper consists of 6 sections. In the next section we give some basic

definitions followed by restricted representations of clause heads to be used to form
a surrogate file. In section 3, we present the basic method of constructing a
surrogate file for rules and facts. Section 4 describes the basic idea for unification
on a surrogate file and an associative processor to realize it. Section 5 presents the
architecture of the proposed knowledge base machine and its parallel processing
model. Finally, in section 6, we present some conclusions and suggestions for
future work.

PRELIMINARIES

Conery (6) has classified the inherent parallelism in logic programming
systems into three major categories: AND-Parallelism, OR-Parallelism and Low-
level Parallelism. Our major concern here is a special case of OR-parallelism called
search parallelism which has been defined as a parallel distributed search to find
every clause with a head that unifies with the selected goal. Since a search
performed by integrated knowledge base machines should be based on unification
rather than equality, it is well known that an efficient implementation of
unification is the central issue in logic based systems. Several processors dedicated
to the unification operation have been proposed in recent years to accelerate this
most time-consuming operation in logic programming evaluation (7)(8) (9).

Informally, the main purpose of unification is to make two or more terms
identical by proper and the most general substitutions for logical variables in the
terms. A term is defined as follows (10):
(1) A variable is a term denoted by a capital letter such as X.YZ,...
(2) A constant is a term denoted by a lower case letter such as a.b,..
(3) If f is an n-ary function and tl,..,tn are terms, then f(tl,..,t n) is a term.

Ever since Robinson introduced the basic algorithm of the unification
operation for the resolution principle (11), more efficient algorithms have been
proposed and the complexity of the unification operation has been analyzed by
many researchers (12)(13). Among them, two algorithms (14X15) are claimed to be
linear. These algorithms are based on a complex data structure called Directed
Acyclic Graph (DAG). Also, Morita proposed a linear representation of a term
suited to stream processing of unification (16). The DAG and linear representations
of a term are shown in Fig. I (a) and (b) respectively.

9-C-3

An Architecture for Very Large Rule Bases Based on Surrogate Files

f

g h

(a) DAG

(f2)(g3)(X0)(b0Xc0)(h2Xa0)(X0)

(b) Charcter Suing

Fig. I The Representations of a Ter m(f(g(X.b,c), h(a,X))

Our major concern in implementing unification for very large rule bases in

secondary storage, is finding all potential candidate clauses within a small amount

of time so that we can deal with real time applications. Since the full unification

on such data will require a heavy processing load, our goal may not be achieved

without restricting unification. Furthermore, the results of (12) indicate that, since

unification is inherently sequential, even parallel evaluation of a unification

algorithm may not offer a considerable speed-up over a sequential one.
The major processing load stems from 'occur checks' to prevent the

unification from entering an infinite loop. That is, when testing if a variable X

unifies with a strctured term t, a check should be done whether X occus in t (i.e.
{X/f(X))). We can eliminate these requirements by adopting mode declarations to

construct a 'standard form' of clauses as in PARLOG (17) where the structured
arguments appearing in clause heads can be transferred to the bodies of clauses.

A PARLOG program that possesses a single solution consists of a sequence

of guarded Horn clauses. A guarded Horn clause of PARLOG has the form
A:-G1,G2,..Gm:B I ,B2,..,Bn.
m,n O

If m-O then the commit oprerator can be omitted. A candidate clause of
PARLOG is one which succeeds in all input matching with the call (subquery) and

whose guard literals (G,G2,...Gm) are proven to be true.

9-C-4

PARLOG exploits "mode" declarations for the clauses in the single solution

relation to avoid the requirement of full unification, and to control process
synchronization (17). A mode declaration for a predicate can constrain the
unification between a goal and a clause (head) in a program. Mode declaration is of

the form

mode R(mI,m 2 Mk)
where R is a predicate name and each mi is either "?' or '^'.

An argument annotated with a ' in the mode declaration for a predicate can

only be used for input matching against the corresponding argument of a call. That
is, the unification between a call and the head of the clause is successful only if the
corresponding argument in the call is instantiated (i.e. not a variable). Otherwise

the evaluation suspends. On the other hand, an argument annotated with a 'A' must
be used for output matching against a variable of the corresponding position of a

call. In other words, the corresponding argument of a call should be an
uninstantiated variable on unification. If the argument is not an uninstantiated
variable, the unification fails.

The mode declaration is used to determine the 'standard form' of clauses at
the first stage of compilation. In the standard form, all complex terms appearing
in the heads of clauses can be represented as pure variables, and all input and output
matching between a call and the heads of clauses are translated to explicit
unification primitives instead of general unification.

Consider, for example, a simple PARLOG program
mode member(?,?).
member(H,[HT]).

member(H.[XM) :- -H=X : member(H,T).
where ':' is the commit operator and -H-X is a guard.

This program can be mapped into the standard form
membWKY) :- (Xrr]<=Y,H-X:.
member(HY) :-XIT]<=Y,-H-X: member(H,).
The term [XIT] that was in the second argument position of the second

clause head appears as (XIT]<=Y because it has the mode '?'. Here '<=' is the Dne

way unification primitive that can only bind variables in its left argument([XITI).

This implies that this term can only be used for input matching against the given
argument Y of the call. The repeated use of the term H in the head of the first

clause is detected as an implicit test because both terms have the mode 'T'. Thus the

term [Hr is changed to [XT (here X is an arbitrary variable) and an explicit test

unification primitive '=' is added in the guard. In order to change a non-variable

9-C-5

An Architecture for Very Large Rule Bases Based on Surrogate Files

term with the mode '
A

' to the standard form, the assignment unification primitive
I:=' should be used in the body. The unification primitives of PARLOG are

described in (17). Maluszynski and Komorowski (18) have also discussed the use of
mode to constrain full unification.

Consequently, the structured arguments (e.g. [HMf) in the clause head can

be transferred to the guard or body of a clause as shown in the above examples.

SURROGATE FILES

Surrogate files are constructed by hashing transformation of terms. The

principal techniques that we have considered for the construction of the surrogate
file include concatenated code words (CCW), superimposed code words (SCW),
combinations of CCW and SCW, and transformed inverted list (Tl) (5). But, we
will use only CCW to illustrate the ideas.

Suppose we have a fact called parent(timothyjohnson). We would first hash

the individual values of each argument,
H(timothy) H(johnson)

I I

010111111 010110000

concatenate them, and then attach a unique identifier to obtain the CCW
010111111 I 010110000 I uid
where the vertical line shows the boundaries.

The same unique identifier would also be added to the actual fact itself so

that a CCW can be used as an entry for each fact via the unique identifier.
This technique has been used for partial match retrieval on large set of facts

with varying degrees and cardinalities. In retrieving facts, we assume that the facts

are stored in such a way that one first accesses the relation and then a particular
tuple using a unique identifier. Thus, we do not need to transform the predicate

name (e.g. parent) for the facts. We obtain the unique identifier from processing the

surrogate file, and the name of the relation from the given query. Thus, the storage

structure for the facts themselves would be very simple and the desired facts can be
retrieved in at most two disk accesses.

Most relational operations such as selection and join, which are required for

the bottom-up query processing in logic-oriented database systems, can be

performed on the surrogate file rather than on the actual database. This makes

relational operations much faster and increases the system's performance when a

9-C-6

large volume of ground facts exiSL
In a CCW representation of a clause head containing variables, we do not

consider suuctured terms and assume that the clause head contains pure variables

and constants as arguments based on the transformation technique by adopting the

mode declaration.
Variables should be distinguished from constants. This can be done by

setting the msb (most significant bit) of the CCW to' I '. Unlike facts, there are
only a small number of rules that define a predicate, i.e. rules with the same head.

Thus, we need to transform the predicate name as well as arguments.
Suppose we have rules for 'ancestor',

anceswr(XY):-paXnt(XZ)Ancstor(Z,Y).
rY):-parentXY).

We hash the predicate name and arguments by the same hashing function

used in CCW for facts. The number of arguments is also concatenated to the
hashed value of predicate name.

H(ancestor) 2 (No. of Arg.) H(X) H(Y)
I I I I

011100000 0010 100100111 100101001.
The CCW representations for the two rules would be the same except for the

uid's to be attached to them.

0111000000010 I 100100111 I 1001010011 uidI
0111000000010 1 1001001111 1001010011 uid_2

Thus, a surrogate file can be used to find the corresponding bodies of clauses
with which a goal can unify via uid's.

This method guarantees retrieval of all desired terms (clause heads or facts)
although, due to possible collisions resulting from the hashing method some

undesired terms may be retrieved. A longer word length for the CCW can minimize
such collisions, and post retreval comparisons can be used to eliminate unwanted

ems.
In the next section, we describe how one might perform unification on a

surrogate file by proposing a special associative memory for bidirectional don't care

matches.

9-C-7

An Architecture for Very Large Rule Bases Based on Surrogate Files

UNIFICATION ON SURROGATE FILES

In this section, we present the basic idea of unification on a surrogate file
using an associative processor. We have shown in section 2 how to transfer the
complex structured arguments in the head of a clause to its body. For simplicity,
we assume that the query contains only pure variables and constants. Thus, the
Query Code Word (QCW) can be encoded by the same technique as described in
section 3.

First, for all constants in a QCW, the corresponding arguments of the CCW
must be either the same constant or a variable in order for the terms to be unifiable
(Input matching Condition).

In the input matching step, we regard all variables as "don't care match"
indicato. Unlike usual "don't care" matches, however, we need bidirectional don't
care matches because the data residing in associative memory, as well as the QCW,
may also contain variables. Since general associative memories do not provide this
capability, a special associative memory is required. We designed an enhanced
associative memory for bidirectional don't care matches, as shown in Fig. 2. Since
by assumption only variables and constants appear in a QCW, input matching
among a QCW and a number of CCW's, each representing a head of a clause, can
be performed in O(1) time (i.e. constant time).

By input matching, most unqualified terms can be pruned. After input
matching, we assume that the qualified terms (heads) are read one by one for further
processing. Thus post processing will be required for only a relatively small
number of terms, namely the qualified terms.

Obviously, the above condition is not sufficient. Consider, for example, two
terms of the form q(a.X,b) and q(Ya,Y). Though they satisfy the condition, they
are not unifiable. We need post processing for the shared variables that appear in
arguments of qualified CCW's. If the same variable appears in arguments of a
CCW, they should be bound to the same constant or variable (Input matching
consistency).

9-C-8

QCW 01110....0010 100100111 100101100

lacetor 2:: ,,,I 'o
eg netr2XYuid-l

Ill' uid_2

CCW 01110....0010 100100111 100101000 uidl

01110....0010 I00100111 I 00101000 uid_2

Fig. 2 An Associative Memory for CCW

The prime objective of unification is to find proper bindings for variables.
After input matching and consistency checking are performed, the variables of
qualified terms (CCW's) are substituted by the constants obtained from input
matching. The reverse operation is required to bind variables in QCW. If these
terms are unifiable, then the similar condition as the input matching condition will
be satisfied. That is, for all constants in a qualified CCW, the corresponding
arguments of QCW should be either the same constants or variables (Output
matching condition).

Finally, a consistency check for the variables in the QCW needs to be
performed. That is, if the same variables appear in the arguments of the QCW,
they should be bound to the same constant or variable (Output matching
consistency).

The unification method always works with the function-free terms. In the
next section, the overall architecture and a processing model, as an example of
parallel valuation of logic programs, are described.

THE KNOWLEDGE BASE MACHINE ARCHITECTURE

The knowledge base machine architecture for surrogate fie processing
consists of four major components (Fig. 3):

1) A control processing element

9-C-9

An Architecture for Very Large Rule Bases Based on Surrogate Files

(Control Processor(CP) + Main Memory).
2) A database manager,
2) A high s- ed shared memory and
4) Several surrogate file processors (SFPs).
The Control Processor can be a general purpose high performance processor.

The main memory can be viewed as a local memory of the CP. In the logic
programming framework, the CP performs the resolution (variable substitution)
and accesses the actual KB. In our logic programming framework, we assume that
the clause heads and facts are stored across distributed surrogate files under SFPs.
The clause bodies, on the other hand, are contained in the database which is
controlled by the control processor.

[Main "_._ onolDaas

,Shared

SFFP SFP SS.111

Fig. 3 Proposed Knowledge Base Machine Architecture

Our system can be viewed as a shared-memory system which is a tightly
coupled multiprocessor that provide all SFPs equal access privileges to the shared
common memory. Because of the Eight coupling between processors and
memories, this system can exhibit high performance. As can be seen in Fig. 3,
SFPs do not need to communicate with each other. That is, the unification
operation is local to each SFP, the CP does not access the local memories of the

unification processors, and a SFP is not allowed to access the main memory. All
the communications required between the CP and SFPs are performed by accessing

9-C-10

shared memory. The contents of shared memory, once written by a SFP as a result
of a successful unification, are not changed until a new initial goal is to be
executed. Since the data in the shared memory is always valid, whenever the shared
memory gets new data from a surrogate file processor, the CP can read the data.
The maximum performance is achieved when the CP does not have any idle time.

As shown in Fig. 4, to prevent possible contention problems, we propose
to use high speed shared memory and to give the CP a higher priority in accessing
(read) the memory than the SFPs (write).

Since our architecture incorporates several SFPs for unification. OR-
parallelism can effectively be exploited in top-down evaluation of a query. AND-
parallelism, however, may not give us a considerable speed-up due to the binding
conflicts among shared variables. Consequently, an OR-parallel/AND-sequential
processing model with breadth-first search strategy is currently considered. Due to
its breadth first search nature, the resulting model is in some respects similar to
the LPS algorithm of DADO (19).

Broalcst

GE GE)IIIII Read

Fig. 4 The Sequence of Data Paths in Run Time

The CP broadcasts the initial goal to each SFP, where the surrogate file is
managed and unification is performed. A processor that succeeds in a unification,
accesses theshared memory to write the variable bindings and uid. The uid can be
used by the CP to identify the corresponding body portion of a qualified head. The
control processor resolves the body literals with the bindings and broadcasts the
subgoals one at a time. The flow chart of this method is presented in Fig. 5.

For example, to evaluate the goal :-? ancestor(timothy,X), the control

9-C-iI

An Architecture for Very Large Rule Bases Based on Surrogate Files

processor broadcasts it to each SFP. Each SFP tests to see if an

ancestor(timothy,A) can be unified with any header it contains by transforming the
goal to a QCW. There will be two matches in our example, the one from

ancestor(X 1,Y 1):-parent(X 1 ,Yl) and another from ancestor(X 2 ,Y 2):-

parent(X2 ,Z2), ancestor(Z 2 ,Y2).

cP

Get an Initial Goal

C Yes
Broadcast a Coal More Goals?

from shared Memory Resolve literals

,F .. , t

QCW to shared memory

Fig. 5 Logic Programming Evaluation based on Surrogate Files

Assume that the uid of the first clause is 'uid- V and the one corresponding

to the second clause is 'uid_2'. The control processor reads the shared memory to
get the corresponding uids and variable bindings resulting from a successful

unification. In our example, the contents of shared memory that can be accessed by
the CP after broadcasting the initial goal would be either <(X/timothy, YI/A),

uidI> or < (X2/timothy, Y2/A), uid_2>. We do not care which clause succeeded

first. A portion of the body corresponding to either uidl (i.e. parent(X1 ,Y1)) or

uid_.2 (i.e. parent(X2 ,Z2), ancestor(Z2 ,Y2)) is accessed from actual database via

uid's, and the corresponding body is resolved by the bindings. That is, the variables
which appeared in the body portion are substituted by obtaining them from shared

memory. If the second clause is unified before the first one, the CP creates two

AND processes of parent(timothy,Z 2) and ancestor(Z 2 ,A). Then the goal,

parent(timothyZ 2), is broadcast first.

9-C-12

In our processing model, if the SFP is efficient enough to make the control

processor busy, the time required for unification is negligible. Hence a considerable

amount of speed up can be gained in accessing secondary storages. The overall

architecture is designed to exploit the advantages of both shared and private

memory systems based on the top level algorithm described in Fig. 5.

CONCLUSION AND FUTURE WORK

We described surrogate file structures and a processing method that one

might use to evaluate goals in top-down fashion when a large number of rules

exist. When a large volume of facts are involved, the top-down query processing
may be inefficient (20). In this case, a set-oriented, bottom-up query processing is

more desirable than the top-down, tuple based one. Since the surrogate file

technique has been originally designed for ground instances of facts, they can be

effectively used for the bottom-up, set-oriented query processing in the framework

of logic-oriented database systems. In addition, by separating the bodies (the actual

codes for operations) from heads (an entry point for the procedure call), the

surrogate file processing technique could support multiple knowledge

representation schemes as well as conventional procedure- based, compiled
languages.

We are currently approaching an efficient implementation of a knowledge

base system in two ways. The first is to develop special hardware to process

surrogate files; these files can allow efficient access to the knowledge base residing
in secondary storages. The second is to consider optical techniques that can

potentially increase data rates by orders of magnitude and thus speed access to the

knowledge bases. This paper presented one of the first approaches.

REFERENCES

1. i, D. A Prolog Database System, Research Studies Press, London,1984.
2. Murakami, K. et al. IEEE Computer, pp. 76- 92, June 1985
3. Sabbael, G. B. et al. Proc. of the Second Int. Logic Programming

Conference, pp. 207-217, 1984
4. Yokota, H. and Itoh, H. Proc. of the 13th Int. Symp. on Computer

Architectures, pp. 2-9, 1986
5. Berra, P. B. , Chung, S. M. and Hachem, N. I. IEEE Computer, pp. 25-32,

March 1987

9-C-13

An Architecture for Very Large Rule Bases Based on Surrogate Files

6. Conery, J. S. , Parallel Execution of Logic programs, Kluwer Academic
Publishers, Boston, 1987

7. Woo, N. S. Micro 18 Proceedings, pp. 89-98, 1985
8. Shobatake, Y. and Aiso H. Proc. of 13th Int. Symp. on Computer

Architectures, pp.140-148, 1986
9. Stormon, C. D. CASE Center TR 8611, Syracuse University, October 1986
10. Lloyd. J. W. Foundations of Logic Programming, Springer-Verlag, 1984
11. Robinson, J. A. J. of the ACM, Vol.12, pp. 23-44, 1965
12. Dwcrk, C., Kanellakis, P. and Mitchell, J. Journal of Logic Programming,

Vol. 1, pp. 35-50, 1984
13. Viter, J. S. and Simons, R. A. IEEE Transactions on Computers, Vol. C-35,

No. 5, pp. 403 -418, 1986
14. Paterson MI S. and Wegman, M. N. Journal of Computer and System

Sciences 16, pp. 158-167, 1978
15. Martelli, A. and Montanari, U. ACM Transactions on Programming

Languages and Systems, Vol.4, No.2, pp. 258-282, April 1982
16. Morita, Y., Yokota, H. and Itoh, H. 12th VLDB, pp. 52-59, August 1986
17. Clark, K. and Gregory, S. ACM Transactions on Programming Languages

and Systems, Vol.8, No.l, pp. 1-49, January 1986
I8. Maluszynski, J. and Komorowski, H. J. Proc. of Second Int. Symp. on Logic

Programming, 1985
19. Lowry, A., Taylor, S. and Stolfo, S. Proc. of the Int. Conf. on Fifth

Generation Computer Systems, pp. 436-448, 1984
20. Kifer, M. and Lozinskii, E. Proc. of Third Data Engineering, pp. 375-385,

1987

9-C-14

Appendix 9-D

Optical Techniques and Data / Knowledge Base Machines

P. Bruce Berra

Nikos B. Troullinos

Dept. of Electrical and Computer Engineering

Syracuse University, Syracuse, NY 13244-1240

(berra,nicktrou) @ sutcase.case.syr.edu

July 1987

This work was supported by 1) the Air Force Systems Command, Rome Air

Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force

Office of Scientific Research, Boiling AFB, DC 20332 under Contract No. F306002-85-C-

0008 which supports the Northeast Artificial Intelligence Consortium (NAIC) and 2) the

New York State Science and Technology Foundation through Grant No. SSF (86)-26.

9-D-1

CONTENTS

Short statement

Intrduction

Optical storage

Optical communications

Digital optical processing

Architectural issues

Optics in Data/Knowledge machines

Conclusion

9-D-2

Short statement

Optical storage, communication and processing hold the potential for two orders of

magnitude performance improvement in data / knowledge base processing.

9-D-3

Optical Techniques and Data/ Knowledge base machines

Introduction

The task of collecting, accessing and maintaining data, in all its forms, is the main

concern of database management. Over the years it has been established as one of the most

vital computer applications. With the advances of technology -.nd the ever increasing

dependency on computers, these system have expanded both in number and complexity

and now encompass such diverse application areas as distributed, multimedia and

CAD/CAM databases; as well as knowledge bases for AI systems. Hundreds of

commercial Data Base Management Systems (DBMSs) are available, targeted for machines

ranging from mainframes to personal computers.

Database systems are not without problems however. There are many respects in

which current systems need further development: the amount of data that can be stored is

often insufficient, although well into the range of trillions of bytes for the largest

applications; the response time can be slow, especially for complex transactions like

context-sensitive searches or searches of unstructured data such as in full text retrieval

systems. The interface to the user is not optimal despite powerful query languages, often of

a non-procedural nature. The cost of acquiring and maintaining the hardware-software

components of such systems is high, although the performance to cost ratio is being

improved continuously.

Database machines, i.e. computers with architectures and software optimized for

database management, can help in solving or easing the response/capacity/cost limitations.

Evidendy, solutions to all of the problems demand much more than an alternative hardware

approach. Moving functions from software to hardware and performing as many as

possible in parallel, are two directions which lead to performance improvements. Progress
9-D-4

Optical Techniques and Data / Knowledge base machines

in electronic technology, especially with VLSI, has lowered the costs of logic and memory

enough to make deviations from the classic general purpose architectures attractive.

Unfortunately, the main obstacle, access time for data in magnetic secondary storage has

remained essentially constant despite the dramatically increased capacity of the devices

themselves.

If one abstracts from the qualities of the proposed or implemented database machines

the following are present or desirable: very large storage capacity, use of specialzed

structures for the disk I/O;, memory hierarchy with large data cache; utilization of

parallelism and content addressable (associative) memories; special purpose architectures

for performing well defined primitive functions like selection, joining or sorting and,

finally, operating systems of suitable functionality and performance.

Comrnercially, the field of database machines is not yet mature, with only a handful

of products on the market and various research efforts going on at universities and in

industrial settings. The issues involved in designing any new architecture are complex and

all encompassing, and the traditional ones are so deeply rooted (or well serving) that

progress is bound to be rather slow.

With the requirements for database management as given above it is natural to look to

optics for possible solutions. This is due primarily to the large storage density achieved in

optical disks and the speed and parallelism inherent in light waves. Optical disks, as

discussed in the next section, have enormous capacities and although they are currently

characterized by various limitations they have the potential of competing successfully with

magnetic disks.

9- D-- 5

Optical Techniques and Data / Knowledge base machines

The inherent speed and bandwidth of optics has already resulted in major advances

in telecommunications because of optical fiber technology. The advantages of optics are

beginning to be felt in multiple processor communication and will affect future designs to

the interboard, interchip or even to the intrachip levels. The reason is the ability to carry

information without interference at GigaHertz rates through guided-wave or free-space

propagation.

The development of optical processors is also receiving considerable attention partly

because of the high speed of some optical switching elements and partly because of the

two-dimensional character of optical processing which suits many problems. All these

developments taken together will have significant implications for the design of data and

knowledge base systems as we shall discuss in subsequent sections of this article.

9-D-6

Optical Techniques and Dam / Knowledge base machines

Optical storage

Storage is "raw material" for data/knowledge base systems. It is required in great

quantity and at the lowest possible cost. Technology has done very well so far in keeping

up with (and fueling) the demands; the figures stating the decline of cost per stored bit are

always very impressive. In Figure I we show rounded values for the most important

characteristics of three types of storage/memory devices so that order-of-magnitude

comparisons can be made.

MOSRAM Magnetic Disk Optical Disk

Cai 1 Mbyte 1 Gbyte 10 Gbyte
Access ime IOOns 20ms 1Urms

C49 $100 $10000 $10000
Volatile Yes No No

Erasable Yes. Yes No'

Comparison s 6

Accesstme 1 2x0 10
Cost/Mbyte ($) 100 1 0 1

not presently
Order of magnitude figures for

Fig. 1 storage /memory elements

The widespread appearance of optical storage can be traced to the introduction of

video laser disks a decade ago. In its simplest form, a beam of light detects the presence (or

absence) of pits on a revolving reflective layer and servomechanisms are employed for

tracking and focusing. The end result is dam storage at areal densities an order of

magnitude higher than those of the best magnetic hard disks. These properties are even

more impressive if we consider the fact that imaging is done from a considerable distance

9-D-7

Optical Techniques and Data / Knowledge base machines

(order of millimeters) and we can dispense with extreme mechanical tolerances and the

super clean environment of high performance magnetic disks (Fig 2). This implies cheap

removability, an almost ideal solution to the problem of data backup. Another implication is

the development of automatic changers or "jukeboxes" with an aggregate capacity in the

hundreds of gigabytes.

Magnetic tape economics has a rather different character because, as with removable

optical cartridges, the cost of the medium and not of the drives is the most important factor

since these systems are primarily used for archival storage. Automated (magnetic tape)

cartridge systems are currently available which can hold one Terabyte of data at half the

projected cost per Megabyte of optical disks and with an average access time of 10

seconds. Such an access time may seem unacceptable for some applications but one has to

be reminded of the 105-106 ratio in access time that exists between semiconductor memory

and magnetic storage. Also, one should be careful in comparing technologies of a radically

different age.

Magnetic Optical

Head/medium gap 0.1 Pim 1000 W
Substrate Ultra-smooth Al AI,glass,polymer

Medium thickness 1 <P 1 pin
Encapsulation No Yes
Environment Sealed Open

Fig. 2 Magnetic and optical storage devices

The development of optical disks will almost surely follow the trends present in the

well established and mature magnetic disk industry: high performance, state of the art

devices from a few manufacturers for the mainframe and advanced applications market, and

9-D-8

Optical Techniques and Data / Knowledge base machines

low-cost, low-end but respectably performing products for a commodity-like market of

high volume and intense competition.

Technical and cost limitations have dictated three types of optical storage that can be

compared to the ROM, PROM and RAM memories of semiconductor technology. Read-

only optical disks have their contents fixed at production time, usually by stamping from a

master, and will be used mainly for distribution, in a machine-readable form, of materials

previously printed or remotely accessed. The strongest contender for the immediate future

is the CD-ROM which is a direct descendant of the audio compact disk. It offers a storage

capacity of about 600 megabytes on a disk 120mm in diameter (or 5 1/4 "for the recently

introduced OROM - Optical Read Only Memory) that can be mastered for approximately

$3000 and can be replicated in quantity for $5 each [Chen86]. At least a dozen companies

have models either in inventory or production. Prices for the drives range from $500 to

$2000 and are bound to decline with massive demand and availability. Having randomly

accessible information at the volume and cost that is provided by CD-ROMs opens up a

new world of applications. Both professional and consumer markets can be well served

and CD-ROMs may weil prove to be the second coming of the home computer.

Write-once disks avoid the mastering and stamping steps when mass replication is

not needed. Information can be recorded in a non-reversible way which makes this type of

storage ideal for archival purposes. But even for operations that do not have an archival

nature the extremely large capacity of the disk renders the non-erasability relatively

unimportant Their widespread acceptance is of course subject to the development of

operating system support and standardization. Currently available optical disks are of this

and the previous type with the largest and more expensive ones tending to be of the write

once (or WORM: write once - read many times) type. There is little agreement on the

mechanical or electrical characteristics and one of the few common features is the ability to

9-D-9

Optical Techniques and Data / Knowledge base machines

interface with the IBM PC. In the near future it is likely that 10 Gigabyte drives will be

available for about $10000, a substantial saving over magnetic disk drives.

Finally, read/write erasable disks based on magneto-optic, phase change or

mechanical deformation phenomena in a variety of materials may prove to be a superior

counterpart to current, state-of-the-art, magnetic disks. For example, at RCA's Advanced

Technology Laboratories the Optical Disk Buffer is under development with twelve,

double-sided 14-inch erasable magneto-optic disks [Airnan86]. The projected performance

and comparison with IBM's 3380 is given in Fig. 3. The most important difference is the

200 Mbyte/sec transfer rate which is achieved by 9-track, parallel, spiral recording.

IBM 3380 Optical Disk Buffer

30 surfaces 24 surfaces
1.34 x 109 bits/surface 4 x 1010 bits/surface

3 Mbytes/sec 200Mbytes/sec
25ms access time 100ms access time

RCA's Optical Disk Buffer compared with ahigh performance contemporary magnetic

disk drive

Another exciting potential made possible by the large medium to head spacing is the

rapid deflection of the read/write laser beam between two tracks in less than 100 4s. This

will overcome the problem of the slow access time which tends to be the major limitation

especially when disk capacities are increased so dramatically. It could be achieved by the

variable deflection angle of a grating that can be established by two control beams on a non-

linear optical material (Neff87].

9-D-1O

Optical Techniques and Data / Knowledge base machines

Optical storage will most likely complement but not replace magnetic storage. The

capability of erasing in real time without undue fatigue is the major technical problem which

must be solved before the impact is widely felt. Of course, stan dtion can neither be

hurried nor indefinitely postponed without causing either a blocking of innovation or yet

another interfacing nightmare. Software support for new media takes time to develop.

Compatibility among the three differen types of optical disks is desirable but problematic.

But even by conservative estimates the cost of having information available within the

access time of a disk will drop dramatically. The natural outcome is to see applications

greatly increasing their demands for storage.

Because of the increased demands, these improvements in storage technology will

make corresponding advances in computational performance even more worthwhile. And

this will remain true whether or not the technology used is electronic.

Optical Communications

The quest for ever increasing throughput in digital systems has made clock period

and pulse widths shrink down to the nanoseconds region. The bandwidth needed for

transmitting these signals intelligibly is very large. As a result interconnections have

become the most critical limitation; for instance in supercomputers we have to use short,

expensive to assemble transmission lines instead of the ordinary connection techniques

used at lower frequencies. A second problem is clock skew, i.e. the difference in arrival

time of pulse fronts that originate from distant parts of a circuit. This skew of the input

signals could potentially cause a gate to generate erroneous outputs. In order to avoid

skew, interconnection length must be resmcted and connections with different electrical

lengths must be padded to compensate for the different intrinsic delays. To appreciate the

problem consider that runs of a few centimeters lead to I ns delays which is a significant

9-D-11

Optical Techniques and Data / Knowledge base machines

portion of the clock period. Unfortunately, these problems are not alleviated by the use of

VLSI because, as it is widely known, dimension scaling leaves the RC delay time

unchanged, at least in a first order approximation.

Currently, the advantages of photons as carriers of information are used to connect

machines in local area networks with optical fibers. At a more detailed level,

communication between modules of high-speed multiprocessor machines can benefit from

either fiber-confined or free- ;pace optical propagation. Further down, chip to chip

communication of thousands of signals at the projected high rates could be done optically

with less power and interference using integrated waveguide optics. Finally, within

integrated circuits reflection holograms placed at a distance above the plane of the laser

diodes and the photodetectors seem particularly well suited for distributing gigahertz clock

signals. A comprehensive account of the prospects of optical interconnects can be found in

Goodman et al (Goodman84].

Optics may also have solutions for dynamic interconnection needs. We frequently

avoid implementing efficient parallel algorithms because of the global, random references

they demand. Crossbar switches and shuffle exchange networks are two topologies that

can be beneficially realized with optics. The most important element of the appeal of optics

as an interconnect technology is the three-dimensional propagation. For example, an optical

crossbar can be very naturally implemented with a column of sources that each illuminate

one row of a planar switching array. A row of detectors is placed on the other side with

each detector accepting light from a single column of the array (Fig. 4). A 32-by-32

crossbar has been built and larger ones are under development (Bell86].

9-D-12

Optical Techniques and Data / Knowledge base machines

0 0

k 2

2k
2k+ 1

k+n/2 n-2
n-1 n-1

Shuffle Exchange n8 Generalized Crossbar n=4

Optical Crossbar n,8

Fig 4 Interconnection primitives
and optical Implementation of the crossbar

Problems that have to be overcome include the incompatibility of silicon with the

materials that are used for fabrication of semiconductor lasers and LEDs, the attachment of

optical fibers to integrated circuits, the lack of sensitive holographic materials at the light

wavelengths that semiconductors sources produce and the slow response of spatial light

modulators. Even with these difficulties though, interconnections may prove to be optics'

greatest contribution to computing.

Digital optical processing
9-D-13

Optical Techniques and Data / Knowledge base machines

The development of the digital computer is so closely associated with the

development of electronic technology that we tend to think they are inseparable. But the

elementary operations are logical and could be performed by a variety of different

technologies. In this section we discuss processing issues in general since it is impossible

to separate the functionality required for general purpose computations from that of data /

knowledge base processing.

Research in the general area of information processing using optical techniques has

been going on for more than three decades. Traditionally, optical processing has been very

successfully applied to images and was based on continuous, but often nonlinear,

phenomena. Recent advances in optical bistabilities offer promises of a broader view of

optical information processing. The possibility of optical logic and optical memory brings

digital optical operations closer to reality.

Silicon-based semiconductor logic has already approached the physical limits of

switching speed. The investigation of new materials like GaAs has resulted in high speed

practical devices which are currently characterized by low integration scale and high cost.

Superconducting devices working at cryogenic temperatures (Josephson junctions) looked

promising a few years ago, then fell into disadvantage and now are enjoying revived

interest because of the recent discovery of high-temperature superconducting phenomena.

Optics way have some answers for these limitations. The large bandwidth, innate

parallelism and non-interfering propagation offer mechanisms for overcoming the ever-

present communication problems. Switching tines for recently demonstrated optical logic

elements range from milliseconds to femtoseconds but with an exorbitant amount of energy

9- D- 14

Optical Techniques and Data / Knowledge base machines

required for the fastest operations. Although experts agree that it is too early to reach

conclusions, there is hope for reducing the necessary energy to a realistic amount.

If one is not willing to forgo the flexibility of djijW information processing then any

viable alternative to semiconductor devices must include:

(a) Elementary switching devices with (usually two, but multivalued logic may

also be considered) stable states which can represent information encoded

digitally, and

(b) Functional devices, built from the above, such as logic gates and memory cells

integrated in dense and low cost packages.

It appears more than one optical phenomenon can be put to work. Fabry-Peror

cavities and quantum wells are two of the structures that have been utilized so far with

moderate success.

9-D-15

Optical Techniques and Data / Knowledge base machines

Incident Forward beam Transmitted
beam ba

Reverse beam

I AU Resonance

Partially reflective surfaces

Inidn Forward beam Transmitted

beam ba

Reverse beam

___________________________________ jDestructive
cancellation

Fig. 5 Fabry-Perot cavity

A Fabry-Perot cavity or etalon (Fig 5) transmits incident light when the optical length

of the cavity is an integral multiple of half-wavelengths. If the space between the two

partially reflective surfaces consists of an optically nonlinear material (Fig 6) then the

transmitted light intensity follows the familiar hysteresis curve (Fig 7).

9- D-16

Optical Techniques and Data / Knowledge base machines

Constant Forward beam Modulated
beam I beam

Signal 4Reverse beam
beam

Non-linear material

Fig. 6 Optical amplification in
a Fabry-Perot cavity

c Stable region
z

Switch Switch
down up

Stable region

INCIDENT INTENSITY-4b,

Fig. 7 Effect of a non-linear material
In a Fabry-Perot cavity

Quantum-well materials are formed by alternating extremely thin layers of two

materials with different electron band gaps. The overall effect is nonlinearities which are far

more intense than those that can be obtained using intrinsic semiconductors. Two optical

devices based on quantum well phenomena are known as SEED (Self Electrooptical Effect

Device) and QWEST (Quantum Well Envelope State Transition) [Bell86].

The above cases must be further researched in order to determine whether they

exhibit the required properties of alternative logic elements as given below:

9-D--17

Optical Techniques and Data / Knowledge base machines

The input/output transfer function must have a shape similar to the ones shown in

Fig 8. The one on the left is the necessary shape for transforming the sum of the

intensities of two signals to the AND function and the one on the right is for the OR.

For implementing inversion (negation) a descending symmetric curve is necessary.

z

1Off -

A and B A orB8
INCIDENT INTENSITY -w

Fig. 8 Implementing Boolean Connectives

The nonlinearity must have a gain of at least 4 - 10 times to accommodate fanout and

distribution losses.

Logic levels must be restored after each operation because, in contrast with

traditional "analog" applications of optics, digital processing requires thousands of

operations. This requirement is equivalent to saying that the logic elements must have

three "ports", just like an electronic transistor.

Phase variations (a unique problem due to the wave nature of light) should not affect

the function of the logic element. For all possible device states reflections and cavity

resonances should be controlled (the equivalent of electrical "impedance matching").

9-D-18

Optical Techniques and Dam / Knowledge base machines

9 Though in theory two-input gates are all that is needed, practical systems will be very

difficult to design unless four or more mutually non-interacting inputs are provided.

9 Tolerance to fabrication variations like doping densities, line widths and surface

flatness are essential for low cost as is relative immunity to temperature changes.

The previous account does not exhaust the possibilities for optical logic. Shadow

casting techniques (albeit relying on optical to electrical conversions) are common and they

rely on selective blocking of light by opaque regions. Memory elements are in theory

obtainable when amplifying non-linearities are combined in a setup that exhibits positive

feedback.

Digital data in most u'aditional data processing applications, is character-based and so

inherently one-dimensional. Acoustooptic devices are very good in accurately transforming

one-dimensional time-domain signals of extreme bandwidth (order of gigahertz) to spatial

perturbations, in effect "freezing" the input signaL Optical processing can then be applied in

order to perform common operations like correlation and pattern recognition [Psaltis84]. In

the last section of this article we outline the design of an optical comparator that uses

multichannel acoustooptic cells to filter high-rate disk data.

For two dimensional data, such as images, spatial light modulators are used to

modify the intensity of a reference beam of light according to the intensity of an input

beam. Operations like amplification, negation and thresholding can be done in parallel for

all points on the device surface. Unfortunately the time response of most known devices is

currently on the order of milliseconds.

9-D-19

Optical Techniques and Data / Knowledge base machines

It is too early for a verdict to be reached concerning the prospects of optical

techniques in processing, especially if we are to take into account that the yardstick against

which they are to be measured is the well matured electronic techniques. Smith and

Tomlinson (Smith8l] reviewed optical devices and compared them to electronic ones.

Although they were reluctant to speak of a digital optical computer they reported superiority

of optical devices in the subpicosecond range of switching rates. The switching power

required for this ultra fast operation is rather high, with thermal transfer problems as a

result, but the authors argued that this is not a very serious obstacle. The reasons are, first,

that devices with reactive nonlinearities reflect and do not absorb most of the incident light

energy and, second, that the low duty cycle required if these devices are to interface with

"slow" electronics greatly reduces the restrictions imposed by thermal dissipation.

The question as to which technology switches the fastest is only part of the overall

problem. The communications ability of the technology is at least as importan It becomes

evident as archimctral questions come into play that an inability to communicate can

quickly compromise any advantage a technology might have in terms of speed. To

appreciate the severity of this problem one need only consider the rapid degradation of

performance in multiprocessor systems when there is appreciable interprocessor

communication.

From a simplistic viewpoint, the relative merits of electronics and optics seem to

correlate to the properties of electrons and photons. Electrons can influence each other at a

distance, so it is easy for an electrical signal to affect another one to perform switching;

however, this interaction has unwanted side effects in the form of capacitance and

inductance which complicate communications. Photons are the opposite. The absence of

interaction gives optics the superior communication qualities but also makes it hard to

9-D-20

Optical Techniques and Data / Knowledge base machines

perform switching. Nevertheless, switching has been achieved at energies comparable to

electronics and this may eventually put electronics in a disadvantage.

Architectural issues

The hardware of electronic computers has made tremendous advances in the last 40

years going from vacuum tubes to very large scale integrated circuits. On the contrary, the

architectur of computers and the imperative programming languages used to express their

programs have remained fundamentally the same because they implement the classic

computing model named after John von Neumann. As a result the opportunities offered by

VLSI and parallelism are not fully exploited and computer power is reaching the limits

imposed by the physical laws of electronics.

The central problem of the von Neumann model is referred to as the von Newnann

bottleneck and involves the performance limitations that result from the sequential, address-

mediated communication between the CPU and memory. It is brought on by the limited

number of interconnections that can be supported in a practical manner by an electronics-

based technology.

For example, if memory consists of N bytes then it is completely impractical to

support N interconnections between the memory and the logic unit with wires (Fig. 9).

Using address decoding the interconnections are reduced to r !og 2N 1 which is very

practical since an immense amount of memory, e.g. 4 Gigabytes, can be addressed with

only a few, in this case 32, lines and a prodigious one, e.g. 16 Exa-bytes (18 x 1018) with

only 64. This is the classic space-time tradeoff.

9-D-21

Optical Techniques and Data / Knowledge base machines

M

.. Logic .

Input Output

Fig. 9 Finite State Machine
with van Neumann bottleneck

Constrictions similar to von Neumann's are also found at other levels. At the module

level broadcast-bus st'ucturmes are used for communicating between modules. At the chip

level the limited number of external connections forces the use of time multiplexing. In

contrast, the number of elements within the chip can be enormous and many applications

would benefit from parallel signal commuications..

One of the simplest models for computing, the classic finite state machine does not

have this sort of problem. All storage elements are updated in parallel without the need for

addresses (Fig. 10). In addition, the storage elements need not preserve their contents for

more than one cycle. This may prove valuable in our quest for practical optical memories.

9-D-22

9-E-9

Optical Techniques and Data / Knowledge base machines

v Logic

Input Output

Fig. 10 Classic Finite State Machine

The difficulty with FSMs is that the number of connections between the

combinational and memory units is very large. But optical techniques may already have an

answer for this. Sawchuck and Strand [Sawchuck84] described an experimental system

which was composed of two main components. A spatially parallel array of independent

optical gates provided the logic and memory functions, and a computer generated hologram

served as a beam-steering element to arbitrarily connect gate outputs to gate inputs in a free

space setup (Fig 11). Their system had only 16 gates but it was built to demonstrate the

concept by optically implementing a synchronous master-slave flip flop and a driving

clock.

9-D-23

Optical Techniques and Data / Knowledge base machines

Hologram
Interconnections

Optical gate array
memory &loc

Inputs _ _ _ Outputs

Fig. 11 Free-interconnection
non von Neumann processor

It is not clear whether the above results can be extrapolated to systems with

thousands or millions of gates. The previous authors state that arbitrarily space-variant

interconnections are limited by current hologram recording techniques. On the other hand,

for space-invariant interconnections, lik the ones necessary for cellular logic, there is

practically no limit even with today's technology.

Another example of an optical processor meant more as an existence proof rather

than as a practical design was given by Huang [Huang84]. He demonstrated the practicality

of an exceedingly uniform and simple approach based on a functional logic block that can

perform all sixteen Boolean connectives such as NOR, NAND, OR etc. These blocks,

which are implemented by using only AND gates, are grouped in pairs called logic cells so
9-D-24

Optical Techniques and Data / Knowledge base machines

that both a signal and its complement can be simultaneously generated. Finally, pairs of

logic cells can be grouped to form afunctionlinterconnection module that can be

programmed to either perform logic or implement various interconnection primitives. If the

latching properties of optical gates (as propagation time approaches switching time) are

used for storage and the modules are connected so that the output of the one is the input of

the next, then an optical pipelined processor will be formed.

Subsequent research lead to the idea of symbolic substitution where the only

operation is the recognition of a 2-D subpattem and its substitution by a different one

[Brenner 86]. This shows the capability of supporting space-variant operations with a

mechanism that is space-invariant. Symbolic substitution has been used to implement

Boolean logic, binary arithmetic, cellular logic and simulate Turing machines.

One general observation that should be kept in mind concerning the architecture of

optical computers is that an evolutionary approach might not be the best. Optics has unique

characteristics and qualities and these should be exploited by appropriate architectures, even

if that implies that we have to widen our perception of computing machines. Neural

network modeling and other connectionist ideas seem to be one of the alternatives in sight

[Mostafa87].

Optics in Data/Knowledge Base machines

The application of optical computing to specific areas should take into account the

idiosyncrasies of the problems in the specialized architectures employed in those areas.

Some problems may be simplified when a narrower view is taken. In knowledge and data

base applications for instance, selection, projection and join are common processing

chores. Search of fixed format data (e.g. indices or pointers) could make effective use of

optical content-addressable memory which can be implemented by multiplexing a large
9-D-25

Optical Techniques and Data / Knowledge base machines

number of holograms in a thick recording material like lithium niobate [Gaylord85]. The

need for large capacity and high bandwidth secondary storage will probably be satisfied by

using optical disks. Optical preprocessing of the retrieved data, without intermediate

electrical conversion, will help deal with the extreme data rates.

Currently, access times of optical disks are larger than those of magnetic disks. The

reason is that the focusing optics are bulkier than the 'flying' miniature heads of magnetic

disks. Data rates are comparable, with potential for improvement since optical disk

technology is relatively new. However, in contrast with magnetic media, there are two

promising possibilities for increased optical disk performance by at least two orders of

magnitude both in terms of access time and sustained data rates. First, as mentioned in the

optical storage section, the read/write beam could be deflected from track to track very

rapidly (order of 1001s) by entirely optical means. Second, due to the non-interference of

light beams and the relatively large head to medium spacing one could imagine multiple

beams being used for reading data with a single head carriage assembly [Carin84] or an

unfocused beam could simultaneously read data from more than one point of a transmissive

disk surface (Mostafa87]. This coupled with the possibility of multiple heads will allow for

enormous data rates. If one assumes that access times of a 100 gs and data rates of 200

Mbytes per second are achieved then this represents almost two orders of magnitude

improvement over current magnetic disks. Input/Output systems will have to be designed

with these rates in mind. Current electronics would be hard pressed. However, if data

could be preprocessed "on the fly" in its optical form, then the ultimate data rate to the

eldt ronics would be much lower on the average, and the data much "richer" in

information. Intelligent use of optical pattern matching could provide us with a set of

primitive operations that could help implement efficiently higher order functionality like, for

instance, a subset of relational algebra operators.

9- D-26

Optical Techniques and Data / Knowledge base machines

For applications which demand fast searching of many megabytes of data all this is

very promising. But with current electronics technology if every subsystem of a machine

needs to "cater" to such high rates then its cost will be much higher than necessary. In the

remainder of this section we discuss the design of a hybrid opto-electronic preprocessor

that can help in this situation. A high-level sketch is depicted in the Figures 12 and 13.

Fiber/ Free space

Preprocessor

Electronic host

Optical disk

Optical communication and
Fig. 12 processing of high data rate

disk output

9-1D-27

Optical Techniques and Data / Knowledge base machines

from host

Writable reference pattern
and mask

....... Optc a comparator Controller

Optical disk Cl
and controller IPacking

Fast electronic bufferI
to host

Fig 13 Block diagram of a hybrid
opto-olectronic preprocessor

The optical comparator receives the error-corrected optical bit stream from the disk

which is w-bits wide and it is compared on the fly with an optically-encoded reference

pattern. This pattern can contain "don't cares". When the current frame matches the

reference pattern the "interesting" portion of the current fr-ame is latched in a large electronic

buffer (2-port cache) which holds it until the host is ready to process it. The buffer can be

implemented as a ring in order to avoid any internal copying of data. If the buffer ever

becomes full then the controller stops the procedure. In this way data rates in the order of

200 Mbytes/sec can be accepted and filtered data can be output on demand at a much lower

rate.

9-D-28

Optical Techniques and Data / Knowledge base machines

The w bits of every symbol are encoded in a dual-rail manner by including also the

complement of each bit. Two symbols A and B are equal if

AB+ AB - 0

in a bit-wise operation. The AND operation is done optically by sequentially propagating a

ray of light through two or more points and the OR by imaging two or more rays on the

same point [Guilfoyle86].

Figure 14 depicts the flow of data through the process. It consists of the following

steps:

1. A w-bits wide stream of data from the optical disk is compared continuously against

a reference pattern. The reference pattern may include "Don't cares" which are

represented as a pair of zeroes in accordance with the dual-rail encoding. The

maximum length that can be matched is n symbols.

2. A match occurs if the OR results are all zero for a length of k symbols, where k is the

length of the reference pattern, one of the setup parameters of the buffering

operation.

3. A mask specifies which parts of the input stream are of interest and the spatially

separated parts are "packed" in order to became contiguous.

4. The packed result is transformed to electric signals and stored in the fast electronic

cache before the next match occurs.

9-D-29

Optical Techniques and Dama / Knowledge base machines

Input streamn

I Buffer

Reference
pattern

Mask to
xResult hs

::::::::: kresult

*0 W

* S * ~ S~*

from ptica dis

4- W:W-.

Procssin seune nu aafo

Fig.~ 14..........skIsfilerd ndthersut

are lace In lare, fst eectrnic uffe

On* a ht h acin prtoncnb mpeetdissoni.Fg 5 h

acce ptih drmte2ioiiososkr ybl O prto) We h upti
49-D-30

Optical Techniques and Data / Knowledge base machines

zero on the first k of the detectors then a match has been detected. The operation depends

on the circulation of a pattern of length k < n symbols in the optical device that is driven by

the reference pattern.

When a match is detected the interesting portion of the input pattern according to the

mask, is packed and kept in the buffer. Packing entails applying a position-dependent

amount of delay to predefined regions of the input pattern while it propagates and hence,

should not be very difficult to implement. Finally, the contents of the buffer can be

accessed and updated by means of a few, simple electronic counters.

9-D-- 3 1

Optical Techniques and Data / Knowledge base machines

One symbol

Input
stream

Reference 00
~Detector Array

(a)

2

I n F (b)

JA k

Three dimensional arrangement of the optical symbol
matcher.

(a) Each bit of every symbol is represented by two
complementary light values that are AND-ed with

the corresponding bits of the reference pattern.

(b) The reference pattern is circulated up to a length of
k-symbols. A match Is detected when the first k
detectors register a zero.

9-D-32

Optical Techniques and Data / Knowledge base machines

In terms of relational algebra operators the preprocessor we have outlined can be

employed to perform projection and exact-match selection. In terms of logic-based

knowledge bases it can perform filtering of ground clauses. Selection on a conjunction of

exact-match criteria is simply accomplished by incorporating all of them in the reference

pattern. Disjunction-based selection could be done by using concatenated search patterns if

the total length is less than n (and matching on a subset of the detectors) or by connecting

more than one optical matcher in a pipeline. Operations that access data repeatedly (like

joins) and/or randomly (like sorting) cannot be implemented with a memory-less setup like

the one described. Nevertheless, the global connectivity of optics can undoubtedly be

exploited with other designs.

At a higher level, the use of electronic content addressable memory has been

considered for improving the performance of database operations. Most of these efforts

have not met with much success primarily because of the small size and the high cost of

these devices and the slow data loading time. On the other hand, optical content addressable

memories have the potential for holding megabytes of data at an appreciably lower cost.

Since they are hologram-based their major disadvantage is that they are read-only.

However, indexing structures to very large data /knowledge bases can be devised which

are rather insensitive to updates provided that the update rate is not extreme. Thus,

holographic content addressable memories could be used in the future for processing

indices to very large data bases and as the field develops they may even be adopted as a

primary storage medium.

Conclusion

The issues that are raised by the possibility of a different way of implementing digital

computers are far from being just technological. One cannot afford to consider them in

9-D-33

Optical Techniques and Data / Knowledge base machines

isolation and without questioning the applicability of current models for computing. This

makes any attempt to pinpoint future directions risky and vulnerable to obsolescence if

revolutionary progress takes place. Electronics technology and the von Neumann model

have been so well entrenched that straying away from these precepts was not common a

few years ago. It also requires competence in a multitude of different scientific fields; it is

only recently that we are witnessing such interdisciplinary efforts.

The field of digital optical computing is so young that nearly every kind of research

would be beneficial. Optical storage, optical communications and optical devices need

development before one can claim that optics has penetrated computer technology.

Attacking real problems of a rather limited scope, like the limitations of data / knowledge

base machines and pursuing short-term payoffs is the best way to insure sustained interest.

Optical communications and storage are already setting the infrastructre on which

more general applications of optics depend. New general directions seem to be worth

exploring. Bridging the gap, or sharing ideas between the purely discrete, symbolic world

of contemporary computer electronics and the inherently continuous and parallel modeling

possible by optical phenomena is one. Dynamic "architecture compilation" driven by the

algorithmic requirements of the problem being solved and the resources available is

another. In the final analysis optics may have great potential in making computing even

more pervasive. Continued efforts are necessary to determine if this potential is real.

9-D-34

References

(Altman86] W.P. Altman, G.M. Claffie, M.L Levene, Optical storage for high

performance applications in the late 1980's and beyond, RCA Engineer

Magazine, 31-1, January/February 1986

[Bell86] Trudy E. Bell, Optical Computing: A field in flux, IEEE Spectrum, pp

34-57, August 1986

[Brenner86] K.H. Brenner, A. Huang, N. Streibl, Digital optical computing with

symbolic substitution, Applied Optics, Vol 25, pp 3054-3060, 1986

[Carlin84] D.B. Carlin, J.P. Bednarz, CJ. Kaiser, J.C. Connolly, M.G. Harvey,

Multichannel optical recording using monolithic arrays of diode lasers,

Applied Optics, vol 23, no 22, pp 3994-4000, 14 November 1984

[Chen86] Peter Pin-Shan Chen, The compact disk ROM: How it works, IEEE

Spectrum, April 1986, pp 44-49

[Gaylord85] T.K. Gaylord, M.M. Mirsalehi, C.C. Guest, Optical digital truth-table

look-up processing, Optical Engineering, vol 24, January/Febr iury

1985, pp 48-58

[Goodman84] J. Goodman, F. Leonberger. S.Y.Kung, R.A. Athale, Optical

interconnections for VLSI systems, Proc. IEEE Vol. 72, July 1984, pp

850-866

[Guilfoyle86l Peter S. Guilfoyle, W. Jackson Wiley, Combinatorial Logic Based

Optical Computing, Proceedings SPIE, Vol 639-17, April 1986

9-D-35

[Huang84] Alan Huang, Architectural Considerations Involved in the Design of an

Optical Digital Computer, Proc. of the IEEE, Vol. 72, no. 7, July 1984,

pp 780-786

[Mostafa87] Yaser S. Abu-Mostafa, Demeu-i Psaltis, Optical Neural Computers, Sci.

Amer., March 1987, pp 88-95

[Neff87] John A. Neff, Major Initiatives for optical computing, Optical

Engineering, Vol 26, No 1, January 1987, pp 002-009

[Psaltis84] Dememri Psaltis, Two-Dimensional Optical Processing using One-

dimensional Input Devices, Proc. of the IEEE, Vol. 72, Nc. 7, July

1984, pp 962-974

(Sawchuk84] Alexander A. Sawchuk and Timothy C. Strand, Digital Optical

Computing, Proc. of the IEEE, Vol. 72, No. 7, July 1984, pp 758-779

[Smith8l] Peter W. Smith and W. J. Tomlinson, Bistable Optical Devices promise

subpicosecond switching, IEEE Spectrum. Vol. 8 , June 1981, pp 26-

33

9-D-36

Appendix 9-E
AN INITIAL DESIGN OF

A VERY LARGE KNOWLEDGE BASE ARCHITECTURE

P. Bruce Berra
Periklils A. Mltkas

Department of Electrical & Computer Engineering
Syracuse University

Syracuse, New York 13244-1240
(315) 423-4445

July 1987

A 8 S T R A C T

In this paper we present an Initial design for a Very

Large Knowledge Base Architecture. The purpose of this

architecture Is to serve as a test bed for conducting

research In very large data and knowledge bases. When

completed the system will contain lO0's of gigabytes of

magnetl% and optical disk storage, at least one ha;f of a

gigabyte of solid state memory, parallel paths with very

wide bandwidths between elements, and multiple data and

knowledge base processors.

This work was supported by the Air Force Systems
command, Rome Air Development Center, Grifflss Air Force
Base, New York 13441-5700, and the Air Force Office of
Scientific Research, Boiling AFB, DC 20332 under Contract
No. F30602-85-C-0008. This contract supports the Northeast
Artificial Intelligence Consortium (NAIC). In addition It
was supported by the Defence Advansed Research Projects
Agency (DARPA).

9-E-1

AN INITIAL DESIGN 0F

A VERY LARGE KNOWLEDGE BASE ARCHITECTURE

INTRODUCTION

Database management, as currently practiced, Is a

relatively mature field having had Its origins In the

1960's. Databases affect our lives whether through weather

predictions, airline reservations, stock quotations, food

production, football players or unpaid parking tickets. In

fact, the control and management of databases Is a billion

dollar Industry that continues to grow and will have an even

greater affect on our daily lives In the future. One of the

major problems that has plagued us since the origin of the

field is how to deal effectively with very large databases.

To appreciate the magnitude of some databases one need only

think about the hundreds of satellites that are beaming data

back to the earth 24 hours/day, seven days a week or the

vast Information contained In libraries or the Information

on the millions of tax returns that must be entered Into the

Internal Revenue Service databases each year.

Partially In response to the problems of large

databases, researchers have been very active for the past 20

years In the development of database machines. These

machines have as their primary focus the use of parallel

processing to Improve the performance of the database

management function. Secondarily, they are concerned with

9-E-2

the implementation of certain database functions In hardware

rather than software thus Improving performance.

In the last five to ten years there has been

considerable Interest In the use of database technology to

Increase the scope of artificial Intelligence (AI)

applications particularly In the knowledge base area. This

has placed new demands on the database field both In terms

of Increasing functionality and In terms of Increased

performance.

In order to in#-t these demands we must develop new

knowledge base system architectures that are able to manage

very large data and knowledge bases. The new machines must

not only be able to process the data from existing databases

In the servicing of Al applications such as expert systems,

but must also be extended and Improved to process and manage

knowledge as well. The future for both of these fields Is

very bright since much of what we now know as Al will be

Integrated with the database system. To understand this one

need only consider the current flurry of activity In the

Interface between logic programming and relational database,

expert database systems and Intelligent database systems.

This marriage will allow Al researchers to address larger

and more complex problems and adds considerable vitality to

database systems.

In April 1987 Syracuse University announced the

formation of the National Parallel Architecture Center

(NPAC) supported by the Defense Advance Research Projects

9-E-3

Agency (DARPA). The Initial phase of NPAC concerns the

procurement, use and evaluation of innovative parallel

computer architectures (I.e. Encore Multimax, Thinking

Machines Connection Machine and others). The next phase

includes research and development of new parallel computer

architectures Including the Very Large Knowledge Base

Architecture (VLKBA) considered here.

in this paper we discuss the Initial design of the

VLKBA. The system will have considerable magnetic and

optical disk capacity (100's of Gigabytes), wide bandwidth

Interconnections, large solid state cache memory (1/2

Gigabyte), special data and knowledge base processors and

Interfaces to several different architectures. The purpose

of the system is to serve as a test bed in the study of very

large data and knowledge base problems some of which are:

query optimization for fast data retrieval, comparison of

various knowledge base Indexing techniques, interface

between Data Base Management System (DBMS) and Logic

Programming, back-up and recovery from system failures and

real-time applications.

In the first Section of this paper the requirements of

a Very Large Knowledge Base (VLKB) are discussed and two

architectures are briefly presented that lead to the

description of the proposed system In Section 2. The last

Section discusses the steps towards building this system and

some of Its possible applications.

9-E-4

......... . . -- ., .m~ m m m I Ili I II II IIi

1.1 REQUIREMENTS OF A VERY LARGE KNOWLEDGE BASE

A Knowledge Base (KB) Is often defined as a collection

of a) facts, b) rules or heuristics about these facts, and

c) Inferencing mechanisms suitable for reasoning, that

allows the system to reach Intelligent conclusions. A major

problem In the KB design is developing the right techniques

and tools for knowledge representation. Four different

approaches are dominant In this area namely, Logic

Programming. Frames, Semantic Networks and Production Rules,

and all of them are based in logic. Al research In the last

decade has passed through the development of enhanced Al

languages like LISP to the emergence of experimental

knowledge base tools like EMYCIN. Now, In the third

generation already, fully supported tools for expert systems

are commercially available (KEE, Personal Consultant, et

al).

Most of these systems are capable of handling Knowledge

Bases of only a limited, relatively small size. In the near

future, however, Knowledge Bases with data and rules on the

order of 1011-10 13 Bytes and an Inference engine that can

process hundreds of thousands of rules will be needed so

that the next appropriate step is towards architectures for

Very Large Knowledge Bases. Obviously conventional

techniques are not sufficient for the effective manipulation

of such a vast amount of information and new powerful

9-E-5

methods are required which will Involve extensive parallel

processing.

Currently, Knowledge Bases are designed for specific

problems such as bacterial Infections or nuclear reactor

control. As a result their application Is limited. In

contrast to these homogeneous, narrowly oriented systems,

the future, general purpose VLKB will contain different

types of Information such as: multiple rule sets, many

conventional and unconventional data bases, purely numerical

data, formatted and unformatted text. This diversion calls

for different types of processors too. For example,

associative Processors, data filters, relational operators,

text processors, surrogate file Processors etc. The

Incorporation of all these processing units In the same

system along with the efficient integration. of Logic and a

Data Base Management System will be essential to any future

design.

1.2 THE SURROGATE FILE APPROACH

We are Investigating various solutions for the

management of very large data and knowledge bases In the

support of multiple Inferencing mechanisms for logic

programming. The entire system must operate as a back-end

machine removing from the host computer all the time-

consuming operations for retrieving and manipulating data.

9-E-6

Since the evaluation of goals can require the accessing of

the extensional database (EDB) of facts In very general ways

one must often resort to indexing on all fields of the

facts. Cast In relational database terminology each relation

must be Indexed and each attribute of each relation must

also be Indexed. For very large databases the amount of

Index data can become very large; In fact it may be as large

as the data Itself. Thus, If we have 500 Gbytes of fact data

we can have 500 Gbytes of Index data. We are currently

trying to solve this problem [Ber87] with a partial match

retrieval mechanism Involving surrogate files. These are

transformed representations of the Index data with most of

the Information but with only 20% of the size. We have

analyzed concatenated code words, superimposed code words

and transformed Inverted lists as Possible structures for

the surrogate flies.

We will use concatenated code words (CCW) to Illustrate

some of the Ideas. Perhaps the most simplified view of a CCW

is that It 13 Just a concatenation of the hashed values of

the arguments In a tuple (in binary) with a unique

Identifier attached to It. The unique Identifier Is also

attached to the tuple and Is used as a link (pointer) in the

retrieval process. In order to access the database In

response to a query from the logic programming Inferencing

mechanism we must first generate a query code word by

transforming the known arguments to a binary representation.

9-E-7

we must place them in their proper location vis-a-vis

argument positions In the relation and fill the unknown

argument positions with don't care values. This query code

word is then used as the search argument in accessing the

concatenated code word surrogate file. From this process we

obtain a list of unique Identifiers that are used to access

the extensional database. The retrieved facts are then

compared with the original query values to insure that

hashing collisions have not occurred and the resulting facts

are sent to the logic programming Inferencing mechanism.

The use of surrogate files helps to Improve retrieval

performance because less processing is required due to their

smaller size. However, In some cases additional performance

can be obtained by distributing the surrogate file entries

as uniformly as possible over many disks to allow for

parallel drocessing. We are developing a special Surrogate

File Processor (SFP), that will utilize the query code word

as a search argument to obtain the list of unique

Identifiers that qualify. Not only will this surrogate file

processor be used for the process discussed above but

certain relational operations (I.e. selection, Join) can be

performed on the CCW thus further Improving performance.

The proposed architecture [Ber87] for this system

involves several SFPs operating on the disks that contain

the surrogate file. The unique Identifiers are sent to an

extensional data base manager which In turn retrieves the

corresponding tuples from the disks containing the EDB.

9-E-8

1.3 THE DATA/KNOWLEDGE BASE PROCESSOR

Instead, shown In Figure 1 is the block diagram of the

system where the surrogate file and both the Extensional and

Intensional Data Bases are stored In the same group of disks

which Is controlled by a single Data Collector. Processing

is performed by the Data/Knowledge Base Processor (D/KBP)

which Is directly connected to the host computer.

DISKS0C 'D/KBP HOST

Figure 1. A Data/Knowledge Base Back-End System.

The D/KBP, the heart and the brains of the system, will

be a specially designed piece of hardware that processes raw

data coming from the disks performing various relational

operations, data filtering, sorting, searching etc. It will

encapsulate all the processing power necessary to manipulate

9-E-9

the Knowledge Base Including specialized hardware Such as

the Surrogate File Processor, sorting pipes, other

relational operators and a general purpose processor. Its

local memory will be large enough to accommodate the

appropriate software for the Inferencing Mechanism and the

Data Base Management System as well as the qualified tuples

that need further processing.

When the host Issues a request for a transaction to the

O/KBP, the data involved are located on the disks with the

help of the Surrogate File Processor, retrieved and placed

to the local memory by the general purpose processor. Then a

combination of software and hardware techniques are employed

In the D/KBP for the efficient data processing so that only

useful Information Is returned to the host.

However, even this configuration IS Inadequate to

handle hundreds of GBytes of data and unable to provide an

acceptable i/O transfer rate. We envision a Very Large

Knowledge Base Architecture (VLKBA) that will have about 500

GBytes of magnetic and 1500 GBytes of optical disk storage

In Its full configuration. The VLKBA is the topic of the

next section.

9-E-10

2. THE VERY LARGE KNOWLEDGE BASE ARCHITECTURE (VLKBA)

Shown In Figure 2 Is an overall diagram of the Initial

design of a Very Large Knowledge Base Architecture. The

VLKBA consists of a large number of secondary storage units

(magnetic and optical disks, magnetic tapes) arranged in

groups. Each group Is controlled by a single data collector

which receives data from multiple disks simultaneously and

passes them to a Data/Knowledge Base Processor. All the

D/KBP's have access to a large semiconductor memory which

acts as a disk cache memory between the disks and the host

machine. The D/KBPs communicate with each other and with the

front-end computer through the common memory. The

communication between the common memory and the host Is

established with an Interface that allows for maximum

bandwidth and arbitrary channel connection. The entire

system Is controlled by the Control Processor which accepts

requests from the host and translates them to the

appropriate commands for the VLKBA.

The primary goal of the design Is to achieve maximum

performance using a high degree of parallelism. Each part of

the VLKBA Is described separately In the following

paragraphs.

9-E-1I

I-

00

0 - -

e4 0
00

C6 -2
Ad'

24 v
00 ca 0

0 W

0 (v

9-E 12.

Z.J_ Memory Storage Units

In order to achieve such a huge capacity we can only

consider the largest currently available mass storage media,

that Is, magnetic disks with movable heads and large optical

disks. Some of the most important characteristics of these

devices are shown In Table 1.

With the current capacity of the largest magnetic disks

being on the order of 5 Gigabytes we need 100 such units to

reach the desired 500 GBytes of magnetic storage.

TABLE 1. Secondary Memory Characteristics

MAGNETIC DISKS OPTICAL DISKS

(Large-diameter,
(Moving heads) Write-once)

Capacity (GB) 1 - 5 5 - 10

Transfer rate
Burst (MB/sec) 3 0.7 - 10

Transfer rate
Sustained (MB/s) up to 3 0.2 - 1

Average access
Time (ms) 15 - 30 150 - 1000

Latency (ms) 8 - 10 20 - 60

In the optical disk area there is a greater variety.

Optical disks provide significantly larger capacity but they

9-E-13

fall behind In the transfer rate. We are currently examining

the possibilities for multiple-beam read from a single disk

which could Increase the i/O bandwidth dramatically. Another

major disadvantage of the optical technology Is the

Inability to change the Information once It has been

recorded on the optical surface but It seems that this

problem will be soon overcome.

The largest part (more than 1000 GBytes) of the optical

storage will be provided by a "Jukebox* [Amm85, Alt86]; a

device that accommodates from 64 to 128 14-Inch optical

disks arranged In an on-line library configuration and

accessed via an automated handling mechanism similar In

concept to the well-known music jukebox. For the remaining

500 Gbytes we are planning to use Write-Once Large (14")

Optical DIsks with a capacity of 10 GB/platter.

A group of disks may be Interleaved to speed up data

transfers In a manner analogous to the speedup achieved by

main memory Interleaving. Conventional disks may be used for

Interleaving by spreading data across disks and by treating

multiple disks as If they were a single one. In the

synchronized disk Interleaving mode [KIm86J, every page of

the memory is distributed orthogonally over a group of M

disks controlled by a common control unit. Every request for

a specific pag(s (or a block of more than one page) is

broadcasted simultaneously to all M disks that execute the

9- E- 14

same transaction In parallel. The average service time (ST)

for a request Is given by:

ST a Ta (Ttr/M

where Ta Is the average access time (average seek plus

average latency time) and Tr Is the time to transfer (read

or write) a block of data. Path delays due to rotational

positioning sensing misses, which are significant In disk

systems with skew distribution, are completely eliminated.

Obviously, the performance of the design is Improved when

larger blocks of data are transferred. Synchronized disk

Interleaving provides simplified control because the

Interleaved disks can be manipulated as a single unit. Since

the load Is evenly balanced over all the devices, queueing

delays due to multiple requests for a specific disk are

avoided, thus allowing for maximum degree of parallelism and

considerably lower service time. The reliability of the

system can be also Improved with minimum redundancy. A

typical number for M is 10.

Each D/KBP will have access to 10 synchronized magnetic

disks with an overall capacity of 50 GBytes. Every group of

disks will be controlled by a separate Data Collector. The

Data Collector will receive data from all the disks

simultaneously thus obtaining a data transfer rate of about

30 MBytes/sec to each Data/Knowledge Base Processor. Thus,

we will have 10 such groups and the total transfer rate can

9-E-15

be as high as 300 MBytes/sec. Not shown In Figure 2 Is the

disk controller. We envision that each disk will have Its

own control processor and this processor will share the

controller function with the data collector.

The average sustained transfer rate from the Jukebox is

a little below 50 MBytes/sec. Similarly, the low transfer

rate from each of the other optical disk drives allows 16

such units to be serviced by a single data collector.

Therefore, the output rate from the optical devices will be

about 100 MB/sec raising the overall total for the Disks-To-

O/KBPs bandwidth up to 400 MB/sec. However, as previously

stated, we believe that the data rate from optical disks has

the potential to be Increased considerably through multi-

beam reading. This speculation must await the results of

further research.

Provision will be made for at least one magnetic tape

unit for back-up purposes.

2.2 The Data/Knowledge Base Processors

The O/KBP accepts data from the data collector and

either processes It or passes it through to the commnon

memory. With regard to Internal optimization the D/KBP must

be able to generate and control Index Information for the

data It manages, It must be able to optimally place the data

on disk for minimization of access and update time and It

must be able to maintain the data In terms of security,

Integrity, backup and recovery. Our work with the surrogate

9-E-16

files EBer873 will have a significant Impact on the design

of the O/KBP.

A more detailed block diagram of the D/KBP Is shown in

Figure 3. It will contain 8 MBytes of local memory and

From Control Processor

I
0/KBP PROCESSOR

General Purpose

Processor

To Data To
Collector Surrogate Data Data Text Disk-CacheS File •

Processor Filter Filter Processor

8 MBytes Local Memory

Figure 3. The Data/Knowledge Base Processor.

several specialized processors. The use of the Surrogate

File Processor has already been Illustrated. The General

Purpose Processor will undertake a part of the Internal

control of the D/KBP and any other Job that cannot be

performed by the other processors (I.e. numerical

computations). In addition the O/KBP contains a filter

9-E-17

processor which performs the more common operations such as

sort, merge, select, project and Join as well as a special

text processor.

The O/K8P performs two classes of operations on the

data It controls. There are Processes that respond to

external commands from the control processor as shown In

Figure 2 and Internal processes that It must undertake to

operate In a near optimal way. As previously mentioned we

believe that much of the Inferencing capabilities of current

Al systems will become part of the database system to form

an Intellgent database or expert database system or perhaps

the term knowledge base system will take on that meaning In

the future. We believe that new functions will be added to

the database system to give It new functionality. For

instance In work by Yokota and Itoh [Yol86] they discuss a

relational knowledge base system that has the added

functionality of unification-join and unification-

restriction. The D/KBP will be designed to Include

appropriate addition capabilities.

There will be one D/KBP for each group of magnetic

disks, three for the entire Jukebox (because there are three

different channels) and one for every group of optical

disks bringing their total number to 1.

Returning to Figure 2 the nonprocessed or processed

data are placed In the common memory. These data will be

removed via the control processor for some applications but

9-E-18

mostly via the interface to the host. The bandwidth between

the D/KSP and the common memory and between the common

memory and the Interface will be on the order of 100's of

megabytes so as not to be a bottleneck.

2.3 The Common Memory

The use of a fast electronic buffer, as a disk cache,

between the disks and the host offers many advantages; among

them, higher bandwidth and synchronous communication. The

size of this memory, which may be common to all the D/KBFs,

lies In the order of 108 Bytes. It must accommodate multIple

ports connected In parallel that read and write data

simultaneously.

An Initial design of such a system consists of the

memory partitioned In B banks, where B Is the number of the

ports connected to It, and the appropriate Interconnection

network. Each page of the memory Is orthogonally distributed

over all the banks so that, a word with address (p,d) --

where p Is the page number and d the displacement In this

page-- is located In the memory bank M(d mod B) and Its

address In this bank is (PS + d)/B, with S the size of a

page in words. Every port I scans continuously the memory

banks according to the sequence: II+I,....-1,0,1...,I,...

Such a distribution physically allows simultaneous access

from all ports, even to the same page, without causing any

conflicts among them nor any suspension. The access port

9-E-19

speed should be equal to that of the host's main memory, or

at least half as fast.

This multiport. multiple-access disk cache can

significantly enhance the performance of the i/0 system.

Even If the overall Disk-to-D/KBP bandwidth Is less than 400

MB/sec, the transfer rate from the Interface to the front-

end computer can be considerably higher especially when the

disk-cache hit ratio approaches 1.

2.4 The Interface

The Interface should allow multiple (on the order of

100) ports from the host computer to be connected to the

Common Memory. It will be a perfect shuffle Interconnection

network. The appropriate connections will be established

according to signals from the Control Processor. Generally,

more than one host might have access to the Knowledge Base

simultaneously.

9-E-20

3. APPLICATIONS AND RESEARCH ISSUES

As pointed out earlier we are concerned with the

management of very large data and knowledge bases In a

multiple Inferencing environment. However, the VLKBA will

serve as a resource for many other Interesting avenues of

research. Among these are questions concerning the

management of very large multimedia databases, the

development of new embedded architectures, the com1arative

analysis of database Indexing structures, the optimal

reorganization of the database In response to usage and some

of the more mundane questions concerned with concurrency

control, back up, recovery and distribution. In addition,

many problems have to be solved In order to achieve the

desired cooperation between optical and magnetic equipment.

A promising field for future research Is the all-

optical data/knowledge base machine. The rapid advance of

optical technology, especially In the optical

Interconnection networks, may soon lead to entirely new

architectures for DBMS. Consider, for example, multiple

laser beams reading or writing on optical disks at data

rates two orders of magnitudes faster than the current ones.

This constant stream of data could be guided through optical

fibers to an optical computer where many operations could be

performed on the data prior to converting It to electronic

pulses. Such a system would eliminate the need for data

9-E-21

collectors, some of the large semiconductor memory and many

of the processing units.

An additional use for VLKBA is the evaluation of

experimental machines. When a machine Is evaluated on the

basis of performance (time per Job, throughput, etc.) one

must be able to keep the machine supplied with data. In

fact, the data rate to the machine under test must be

greater than the ability of the machine to handle It In

order to obtain a realistic measure of performance. This

requirement applies across the entire range of applications

from Processing Intensive applications such as Image

processing to Input/output Intensive applications such as

data base management. To obtain a realistic measure of a

machine's performance, both processing and Input/output time

must be taken Into consideration. Thus, If all of the data

will not fit Into the machine's main memory, the time to

Input new data must be taken Into account In the performance

measure. The time to complete the Job then Is the sum of the

load and process time provided that they cannot be

overlapped. In order to ensure a realistic test, the VLKUA

must have sufficient capacity and bandwidth to supply the

data for a large problem at stress rates to the machine

under test.

For problems that are processing Intensive, the VLKSA

must be able to supply data to the machine being evaluated

at the highest rate It can handle. Alternatively. suPPose

9-E-22

that the machine under test Is Input/output bound for

problems of Interest. Then, preprocessing can be performed

in the VLKBA In order to enrich the data being sent to the

machine under test. Thus, In addition to testing the

machine, the VLKBA can Identify some of the requirements of

the secondary storage system to support the machine being

evaluated.

The testing of machines places some severe constraints

on the VLKBA. It must be able to sustain output data rates

In the hundreds of megabytes per second range and have a

data capacity In the hundreds of gigabytes. It must have the

facility to provide raw data to a machine under test at

stress data rates and must also be able tO perform

considerable processing activities In order to enrich the

data being sent to the machine under test. It must be able

to Interface with a wide variety of machines. It must have

some level of reconfigurability so that the above functions

can be performed, and It must be partItionable so that It

can Interact with more than one machine simultaneously.

'E-23

CONCLUSION

In previous sections we outlined the architecture of a

very large knowledge base system, some of the Al/data base

research projects It would support and Its use In the

evaluation of parallel computers. The design and development

of the system Is a significant research project In Itself

and requires a carefully planned phased approach.

The overall design will be such that the system's

generality is maintained In terms of reconfigurablilty,

partItionablilty and Intelligence while allowing for gradual

growth. We plan to design and build the system as research

progresses. Specifically, the VLKBA will gradually evolve

from a prototype system through a series of design stages,

from essentially a small disk farm to a large Intelligent

processing system. We are currently developing the surrogate

file processor which will be part of and Influence the

design of the D/KBP, we are conducting research aimed at the

Integration of Al and data base and we are Investigating the

feasibility of an all optical database machine. All of these

projects will have considerable Influence on the VLKBA.

9-E-24

REFERENCES

[Amm53] Ammon, G.J., Calabria, J.A., Thomas, D.T., "A High-

Speed, Large-Capacity, "Jukebox" Optical Disk
System," IEEE Computer, Vol. 18, Pp. 36-45, July
1985.

[Alt8S] Altman, W.P., Claffie, G.M., Levene, M.L., "Ootlcal
Storage for High Performance Applications In the
late 19809 and beyond," RCA Engineer, Vol. 31,
Jan./Feb. 1986.

EBer87] Berra, P.B., Chung S.M., Hachem N.I., "Computer
Architecture for the Processing of a Surrogate File
to a Very Large Data/Knowledge Base," IEEE Computer,
Vol. 20. pp. 25-32, March 1987.

CKlm8a] Kim, M., "Synchronized Disk Interleaving," IEEE
Transactions on Computers, Vol. C-35, pp. 978-988,
November 1986.

[Yol86] Yokota, H., H. Itoh, "A Model and an Architecture
for a Relational Knowledge Base," The 13th Annual
International Symposium on Computer Architecture,
pp. 2-9, June 1986.

9-E-25

MISSION
of

RomeAir Development Center

SRADC plans and executes research, development, test and selected

acquisition programs in support of Command, Control, Communications

and Intelligence (C31) activities. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3I systems. The areas

of technical competence include communications, command and control,

battle management, information processing, surveillance sensors,

intelligence data collection and handling, solid state sciences,

electromagnetics, and propagation, and electronic, maintainability, and

compatibility.

