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PREFACE

The purpose of IDA Paper P-2132, SDS Software Testing and Evaluation: A Review of the State-of-
the-Art in Software Testing and Evaluation With Recommended R&D Tasks, is to identify the technology
required for effective and efficient testing and evaluation of Strategic Defense System (SDS) software.
This document was prepared for the Strategic Defense Initiative Organization (SDIO), and provides an
overview of current testing and evaluation technology, a mapping of available technology against SDS
needs, and recommendations to close critical gaps in technology.

IDA Memorandum M-496 is a related document which provides a comprehensive, annotated bibliog-
raphy of the reference material acquired in the course of this work. IDA Memorandum M-513, another
related document, is a collection of the papers provided by leading experts in testing and evaluation tech-
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EXECUTIVE SUMMARY

Introduction

Testing and uvaluation are recognized as pivotal problems in the development of the Strategic Defense
System (SDS). Consequently, a development approach combining design, prototyping, and simulation is
being used to allow early evaluation of system requirements and designs. Loosely-coupled, decentralized
system architectures are being examined for their facility to reduce the testing problem to a manageable
level. But what testing and evaluation technology shall be used to ensure the reliability of, and provide
the necessary level of confidence in, SDS software? The purpose of this report is to address this ques-
tion.

* For the past decade, software testing and evaluation have been relatively unpopular subjects. Why this
happened is less important than its consequences. It has been a contributing factor to the lag between the
state-of-the-art and state-of-the-practice, which is the largest of any in the diverse areas of software
engineering, and has resulted in a shortage of research and development (R&D) resources and a small,
weak research community. Since SDS prototype software is already being developed, software testing
and evaluation are now critical concerns. The Strategic Defense Initiative Organization (SDIO) cannot

* wait for testing and evaluation issues to pop up later in the development process (a traditional approach
which has proven costly in the past), but must meet the challenge up front.

Once the importance of this challenge is recognized, appropriate actions can be taken. There is a sub-
stantial body of testing and evaluation technology whose use in an industrial environment is ready to be
investigated, preparatory to transitioning the technology into practice. The main body of this report

* describes the current status of different areas of this technology. It also outlines a number of tasks for
bringing promising elements of the technology into practice. While the use of advanced technology will
certainly help, it is by no means sufficient to resolve all testing and evaluation problems. In particular,
technology for the testing and evaluation of large, distributed and real-time software systems is still in its
infancy. The final part of this report, therefore, recommends a number of tasks to extend the boundaries
of technology to meet SDS needs.

Testing and evaluation technology is not, by itself, enough to ensure improved practices. Policy must
evolve in step with the technology to ensure its proper application. The process of setting and revising
policy is invariably lengthy and, therefore, policy inevitably lags behind the state-of-the-art. Conse-
quently, it is important that SDIO testing and evaluation policies be designed to encourage carefully con-
sidered innovation, rather than dictate the use of particular techniques. The disciplined development

0 approaches needed to produce reliable software and facilitate testing and evaluation are another policy.
issue, and one already under consideration in the evolving SDIO Software Policy (see Section 2.4.3).
Indeed, it is important to emphasize that reliability cannot be tested or evaluated into software. Reliable
SDS software can only be achieved through improvements in the "upstream" stages of the development
life cycle. Testing and evaluation during these activities will provide the necessary feedback to ensure
that these activities are performed properly.

Although this report specifically addresses testing and evaluation for SDS software, advances in test-
ing and evaluation practices achieved for SDS could be exploited to benefit all DOD software efforts.

SDS Software Testing and Evaluation Needs

The SDS will possess many characteristics which biress current testing and evaluation technology.
This fact, combined with the inability to conduct full-scale operational testing in the usual manner,

vii
* UNCLASSIFIED



UNCLASSIFIED

require that software testing and evaluation be assigned a central role of the development of the system
as a whole.

At a high level of detail, critical needs for SDS software testing and evaluation revolve around the fol-
lowing issues:

" Planning for software testing and evaluation must start with the user's definition
of operational system requirements, and system requirements must be reviewed
against the ability to conduct needed testing and evaluation.

" Testing and evaluation must be thoroughly integrated into a development life
cycle which includes prototyping, simulation, and the use of formal
specifications.

" The introduction and use of testing and evaluation technology must be carefully
planned to reflect programmatic concerns, including the need for well-defined
organizational support, roles, and policies.

The key mechanismv proposed for meeting these needs are:

" An overall test plan concept which institutionalizes an SDS testing and evalua-
tion process model. The model, itself, should provide an evolutionary frame-
work showing (1) how testing and evaluation fit into development activities, and
(2) what specific technology elements should be exploited. Moreover, the model
allows the flexibility necessary to allow the continuing adoption of improved
practices and tools.

" Explicit software testing requirements. These requirements should be initially
derived from system requirements and refined during the progression to code to
guide the application of testing and evaluation technology.

Dynamic Analysis Technology

There is an evolving body of technology for the dynamic analysis of sequential programs. There is no
doubt that disciplined application of available state-of-the-art techniques offers substantial improve-
ments over current testing practices. Although these techniques may be expensive to apply, their cost
largely accrues from execution costs; with appropriate automation, they do not place excessive burdens
on the skill or labor required from software developers. Major short-term deficiencies in dynamic
analysis of sequential programs arise from an absence of quantitative information on the error and fault
detection capabilities and costs of existing techniques, and the slow growth of understanding on how to
integrate the application of several techniques. One promising area deserving of greater attention is the
use of formal specifications to facilitate functional analysis, allow greater automation of the testing pro-
cess, and resolve problems due to the lack of effective oracles.

Technology for dynamic analysis of concurrent and real-time software is less mature. While testing of
sequential programs evolved from graph-theory based modeling of control flow properties, there is no
comparably stable basis for analysis, debugging, or run-time monitoring of concurrent and real-time
software. Even so, some emerging techniques seem very promising. The resources required to develop
necessary automated support and conduct trials of these techniques on realistic software efforts should
be provided. The slow progress in this area, however, requires consideration of alternative approaches.
For example, the use of self-testing software for critical SDS components must be investigated.

Dynamic techniques are rarely applied to precode products. The applicability of existing techniques to

viii
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* executable, pre-implementation representations such as the Strategic Defense Initiative (SDI) Architec-
ture Dataflow Modeling Technique (SADMT) (see Section 2.2.1) should be examined.

Static Analysis Technology

Again, there are many static techniques for the analysis of sequential code. Since these are largely
• automated, requiring minimal human effort to apply, a base set of static analyses should be routinely

required for all SDS software. There are relatively few techniques for the analysis of concurrent and
real-time software. As with dynamic approaches, development of the most promising techniques should
be fostered by providing the resources needed to develop necessary tools and to allow evaluation of these
techniques in realistic software development environments.

* Unlike dynamic approaches, there are a few techniques for static analysis of pre-implementation pro-
ducts. The use of a common set of formal representation forms for early SDS development products
which facilitate the use of existing static analysis techniques and provide a common framework for addi-
tional techniques must be examined. In particular, approaches such as fault tree analysis (which
identifies combinations of conditions which may lead to critical system or software failures) will be
extremely important in the SDS software testing and evaluation planning. For example, they will help to

* identify critical SDS components where additional testing dollars, or special fault-tolerance approaches,
are required.

Automated Support for Dynamic and Static Analysis

From the SDS perspective there are two promising trends here. First, recent tool developments are
* focusing on supporting testing and evaluation of Ada programs. In particular, the Ada language is clearly

becoming the target of choice for tools applying advanced techniques. Second, a few organizations are
undertaking the development of comprehensive testing and evaluation environments which will provide a
broad range of capabilities. Although these efforts are tackling difficult problems, researchers expect
sophisticated prototype environments to become available within two years (see Section 4.6).

* It must be clearly understood, however, that existing tools are more or less exclusively prototypes.
There are many techniques which are sufficiently mature to justify production quality automated sup-
port, but the lack of research resources has prevented development of tools which are suitable for
widespread use. Available tools generally lack robustness, complete documentation, speed, and the abil-
ity to handle very large software systems. The need for productization of existing prototype tools is
urgent and itself requires research to develop increased understanding of the issues involved. One of the

* pertinent issues is flexibility. Large scale tool integration efforts will only remain viable and useful if they
can continue to integrate the increasing numbers and varieties of tools that will emerge in the coming
years.

Formal Ve~fication Technology

* The foundations of formal verification were laid in the 1960's and followed by prototype verification
system development in the 1970's. In the early 1980's, the complexity of formal proofs and practical limi-
tations on the size of systems that could be verified at the program code-level became apparent. Incre-
mental improvements in verification tools and environments are being made but are not likely to make
code-level proofs of large systems feasible in the near term. On the other hand, the use of formalism in
software requirements, programming languages, and test specifications (prompted by the verification

* community) has increased assurance of correct operation of large systems significantly. Proofs of high-
level designs are feasible, even though code-level proofs remain attainable only for smaller, critical com-
ponents and subsystems.

ix
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Measurement Technology

The field of software measurement has traditionally been concerned with the application of stand-
alone metrics to software products and processes. Unfortunately, this approach has failed to produce
empirical results which are of major use to a software developer or manager. Problems with the current
technology include an inability to validate metrics or compare metric results across multiple projects and
organizations. Metrics are often abused by inappropriately viewing them as the goal of the software
measurement effort themselves, rather than low-level indicators of product and process qualities which
only make sense in the context of some measurement goal. However, when used with discretion, metrics
can provide insights into desirable and undesirable software characteristics.

There are several aspects of software measurement which must be substantially improved before
major benefits can be achieved. A well-established measurement methodology which helps in selecting
appropriate project metrics, collecting and validating the data obtained, and analyzing and interpreting
both the data and the metrics must be developed. Methods for deriving metrics for specific application
domains are also needed. Measurement processes must be integrated into software development activi-
ties in order to ensure early data collection, feedback to the development processes, and reuse of collec-
tion methods. Tools must be developed to automate the activities of the measurement process to the ful-
lest extent possible.

Reliability Assessment Technology

The thrust of current software reliability assessment technology is prediction of a software product's
future failure behavior from its past failure behavior. This prediction effectively supports management
activities such as estimating project schedules, optimizing the allocation of project resources, and optim- S
izing the timing of new software releases. However, it does not adequately support the feedback of relia-
bility information into the construction of highy reliable software and systems, which is of paramount
importance in the case of the SDS.

Software reliability assessment technology needs to evolve in a number of directions. First, to sup-
port the construction of reliable software, emphasis must shift toward the software development pro-
cess. That is, the targets of software reliability assessment should be software development methodolo-
gies, practices, tools, techniques, and other elements of the software development process, rather than
individual software products. The motivation here is that the best way to construct reliable software is to
utilize software development methodologies that have been shown to afford the highest degree of reliabil-
ity.

Second, the technology must enable software reliability to be assessed in a system context. In distri-

buted real-time systems, the software is responsible for dealing with timing constraints, hardware
failures, and software faults. Accordingly, software correctness and reliability depend on whether the
software meets its requirements with respect to real-time and fault tolerance.

Third, since software reliability must be taken into account when assessing system reliability, the tech-
nology must support system reliability assessment. In regard to this issue, the traditional practice of cast-
ing software reliability in hardware reliability terms and then using combinatorial analysis to derive sys-
tem reliability needs to be rethought. In particular, the distinction between design faults and age-related
faults needs to be given further consideration.

Recommended Tasks to Exploit and Extend Technology 0

Tasks to begin the process of making a sophisticated body of testing and evaluation technology

x
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* available for SDS software efforts fall into two groups. The first set of tasks provide the foundation for
bringing state-of-the-art technology into play, while learning more about its effectiveness. The technology
that can be immediately transitioned into practice lies largely in the areas of testing and evaluation of
sequential code products. The problem with less developed technologies lies in identifying those
deficiencies where intensive research has a strong probability of producing practically useful techniques
and tools in time for full scale development of SDS software. A number of tasks are needed to investi-

* gate emerging technology and to identify those areas where fundamental research should be sponsored.
These two groups of recommended tasks are outlined in Figures E-1 and E-2.

One of the important findings of this report is that the research community has not grown sufficiently
in the past decade or so and is not large enough or strong enough to meet the challenges raised by SDS
software testing and evaluation. Steps to strengthen and expand the software testing and evaluation

* research community must be promptly taken.

In addition, it must be recognized that technology transfer is, at least, as big a problem as technology
development. A well-supported effort devoted to technology transition for SDS purposes should be put
in place in the immediate future.

xi
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" Implement the test plan and testing requirements concepts to provide the mechanisms for:

- Better integration of testing and evaluation into development activities.

- Providing increased visibility, control, and repeatability of testing and evaluation activities.

" Establish a SDS Software Data Collection System which:

- Supports analysis of both SDS software and the technology used to develop, test, and support that
software.

- Provides a historical database capability and acts as a focal point for research.

" Develop a comprehensive testing and evaluation environment by:

- Exploiting promising ongoing environment development efforts.

- Meanwhile, assembling an interim "environment" from available-tools.

" Embark on a program of process modeling to explore effective, flexible ways of integrating testing
and evaluation into software development activities in such a way as to enable SDIO to keep up with
emerging technology.

Figure E-1. Tasks to Exploit Technology

" Conduct a series of technology demonstrations applying evolving technology to specific SDS prob-

lems. Example problems are:

- Identify critical SDS properties to be formalized and verified.

- Develop methods for reasoning about "degraded" systems.

- Develop testing and evaluation process specifications in software contexts.

* Sponsor a number of R&D tasks directed at specific gaps in technology (see Section 9). For example:

- Promote the use of increased formalism for early life cycle products.

- Develop a methodology, tools, and policy to support planning and execution of regression testing.

- Identify a minimum set of preconditions and postconditions which can be required in the
specification of all FSD SDS software.

- Develop a comprehensive measurement methodology.

* Monitor ongoing research efforts so that:

- Promising developments are promptly considered for SDS practice.

- The SDIO supports efforts which indicate solutions to specific SDS problems.

Figure E-2. Tasks to Extend Technology
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1. INTRODUCTION

Software testing and evaluation is widely recognized as one of the primary challenges in the develop-
ment of the Strategic Defense System (SDS). This challenge arises from several factors. First and
foremost, no system of comparable size has ever before been developed. Second, the system must be
reconfigurable to adapt to rapidly changing requirements, some of which will arise dynamically due to
countermeasures by adversaries. Third, it must perform massively parallel computations distributed on a
network of complex system components. Fourth, there will be hard real-time deadlines that must be met
by the SDS to achieve its mission and to ensure the safety of the system and environment. Fifth, the sys-
tem must be fault tolerant not only to continue operation in the face of inherent software and hardware
failures, but to survive in a hostile environment. The practical and political limitations on full-scale test-
ing in an operational environment further exacerbate the testing problem.

It must be accepted that SDS software testing and evaluation needs cross the boundaries of current
technology. If the traditional approach of postponing investigation of testing problems until testing activi-
ties are due to commence is followed, then the predictions of failure made by Parnas [Parn85] and others
[Lin85,Bump87] may be fulfilled. Moreover, testing and evaluation cannot be addressed independently of
software development. Software must be developed with error prevention in mind and designed to facili-
tate testing and evaluation. Since SDS prototypes are already being developed, the software testing and
evaluation challenge must be squarely faced and immediate actions taken to investigate solutions.

This report is the first step in an effort directed at identifying the technology that is needed for SDS
software testing and evaluation. The SDS development approach and special software testing and evalua-
tion concerns are discussed in Section 2. These are used to develop a conceptual model of the SDS
software testing and evaluation process which provides a framework for inducing the necessary syner-
gism between development and testing activities. Sections 3 through 7 review the state-of-the-art in
software testing and evaluation technology. Section 8 then maps current technology against needs to
determine what must be done to exploit the best of available technology. Although transitioning the
state-of-the-art testing and evaluation technology into practice can be expected to yield substantial
improvements in software reliability, it by no means ensures a sufficient technology for SDS purposes.
Section 9 recommends a number of R&D tasks to begin the process of resolving these deficiencies.

The remainder of this section sets the scene for the following discussions by outlining the role of test-
ing and evaluation activities in the software development life cycle. The current state-of-the-practice is
reviewed to provide a baseline against which possible improvements can be assessed. Finally, the role of
the Institute for Defense Analyses (IDA) Testing and Evaluation Workshop held in support of this work
is briefly described. First, some definitions of primary terms are appropriate.

1.1 Definitions of Terms

In this report, the term testing and evaluation is used in the general sense to refer to the planning, con-
ducting, and reporting of all activities involved in software validation and verification. In this context,
validation and verification are not distinguished as two separate activities but used jointly to refer to the
process of reviewing, inspecting, testing, checking, auditing, or otherwise establishing and documenting
whether or not items, processes, services, or documents conform to specified requirements. For the pur-
poses of this report, the terms dynamic analysis, static analysis, formal verification, and measurement
will be used to refer to the different types of validation and verification activities.

Dynamic analysis approaches rely on executing a piece of software with selected test data to detect, or
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in some cases demonstrate the absence of, software faults. Static analysis approaches have the same
goals, but do not base the recognition of faults on expected software outputs. Formal verification tech-
niques, the most rigorous analysis approaches, apply formal, mathematical principles to prove the
correctness of software designs and program code with respect to a formal specification of the behavior
in question. Measurement techniques are concerned with the quantitative evaluation of critical properties
of both software products and the processes used to develop and support software. Techniques for
assessing software reliability can be isolated as a subset of measurement techniques which base evalua-
tion of the property in question on the occurrence of software failures experienced during testing.

An error is a mental mistake made by a software developer. Its manifestation may be a textual problem
within the software called afault. A failure occurs when an encountered fault prevents the software from
performing a required function within specified limits.

Debugging is an activity related to testing and evaluation. While testing and evaluation activities are
designed to detect faults, debugging is concerned with textually isolating these faults and eliminating the
underlying error.'

Definitions of additional terms are given in the accompanying glossary.

1.2 Overview of the DOD Testing and Evaluation Process

As software development proceeds, successive products are reviewed against the requirements
specified by their predecessors. Typically, these reviews focus on the consistency and completeness of
the new products, and little rigorous testing and evaluation is performed on precode software products.
Testing and evaluation of code products occurs in three stages: unit, integration, and system testing. As
code is developed, each unit is tested individually. In a programming language such as Ada [M1LS3],
these units may be subprograms, packages, tasks, or generic units. Units are then incrementally com-
bined to test the interfaces between them. In later stages, this integration testing combines hardware and
software elements, proceeding until the entire system is integrated. Integration testing may follow a top-
down or bottom-up strategy. In top-down testing, the most abstract software units are combined first and
stubs are used to represent the more detailed units they invoke. Bottom-up testing starts with examining
the interfaces among the most detailed units, which are executed by a test driver that invokes the units in
the proper manner and provides the necessary input data to each. There are variations on these basic
strategies; for example, outside-in testing allows the units most directly concerned with handling inputs
and outputs to be tested first. The final stage of testing is system testing. Here the system as a whole is
examined to determine whether it meets its specified requirements.

The approved DOD model for software reviews and audits is shown in Figure 1-1, reproduced from
DOD Military Standard 2167A [DOD88], entitled Defense System Software Development. Here com-
puter configuration items (CSCIs) are partitioned into computer software components (CSCs), which
may themselves be decomposed into further CSCs and computer software units (CSUs). DOD-STD-
2167A specifies the products required from each development, review, audit, and testing activity,
together with evaluation criteria for major products. Although these evaluation criteria do address such
issues as traceability, understandability, and test coverage of requirements, they are largely subjective cri-
teria questioning the use of appropriate techniques or adequate test coverage and do not require meas-
urement of quantifiable properties.

Major defense acquisition programs require a Test and Evaluation Master Plan (TEMP). This docu-
ment is used by the Office of the Secretary of Defense (OSD) and all DOD components for oversight of
test and evaluation (T&E) activities. It is the basic planning document for all T&E related to a particular
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system acquisition, addressing T&E of both hardware and software elements. It specifies required
technical and operational characteristics for the system, the T&E responsibilities of all participating
organizations, a timing sequence for T&E activities, and necessary T&E resources. As a development
effort proceeds, the conduct and results of T&E activities are included.

Traditionally a software TEMP discusses T&E activities in the context of a waterfall software
development life cycle. These activities fall into two categories. Developmental Test and Evaluation
(DT&E) addresses attainment of critical technical characteristics such as correctness and certifiability.
Operational Test and Evaluation (OT&E), on the other hand, is concerned with the operatonal
effectiveness and suitability that are critical to the system's mission. OT&E may be preceded by
Qualification Testing (QT) and Initial Operational Test and Evaluation (IOT&E). Once the system is
deployed, it may be continued with Follow-on Operational Test and Evaluation (FOT&E).

It is generally good practice to have test teams which are independent of the software developers. This
prevents the developers from propagating any misconceptions of the software through to testing and
evaluation acdvities. It also allows for distinguishing between the different thought processes and skills
required in testing; a good software developer is not necessarily a good tester, and vice versa. Many
DOD projects require software to be tested and evaluated by an independent verification and validation
(IV&V) organization prior to acceptance. Ideally, the IV&V organization is provided by the eventual
software support agency.

1.3 State-of-the-Practice in Software Testing and Evaluation

Testing and evaluation have long been regarded as one of the weakest areas in the development of
software systems. The structured programming movement started by Dijkstra in the 1960's [Dijk76a] was
motivated by a desire to improve software quality, specifically by espousing development of demonstr-
ably correct code from rigorous specifications. This movement has since grown into a much wider
activity and the focus has broadened to address the introduction of increased rigor and structure into
early life cycle activities. These efforts have led to considerable advances in testing and evaluation tech-
nology over the past decade. Unfortunately, these advances have not been matched by a corresponding
improvement in the state-of-the-practice. It is not uncommon for intrinsic flaws to become apparent late
in the development of a system, necessitating the discard of efforts that have already consumed substan-
tial resources. Even worse, relatively trivial failures, often arising from unforeseen combinations of cir-
cumstances, have caused several medical, automotive, aeronautical, and defense systems to result in the
loss of life [Neum87].

The typical practice in software testing and evaluation revolves around a software developer's intui-
tion. As part of the DOD's Software Test and Evaluation Project (STEP), a review of current practices
in twelve development and IV&V organizations undertaking DOD software efforts was performed
[DeMi87a]. By and large, the only formalized techniques used in unit testing were structural testing (to
ensure that a given percentage of statements or control paths were executed during testing), exercising
the code with extremal and special values, and manual reviews. Only one development organization used
functional testing (to examine the conformance of a software implementation to its specification), and
only one lV&V organization used metrics to evaluate critical software properties. Integration and system
testing primarily consisted of functional testing, with only one development organization performing reli-
ability assessment. There was minimal use of automated tools to reduce the traditionally labor-intensive
nature of testing. The only tools used by three or more organizations were file comparators, analyzers or
code auditors, and dynamic execution verifiers. Although the STEP report was prepared in 1981 (it was
slightly revised in 1987) these findings still reflect current practices.

4
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* The SDIO must ensure that all contractors developing SDS software use the best available technol-
ogy. This cannot be achieved by simply imposing contractual requirements on software developers.
Software developers must be provided incentives to adopt improved practices. To this end, the technol-
ogy must first be applied to real software efforts to prove its utility and demonstrate the benefits that
accrue, and the results of these efforts widely disseminated. Furthermore, a rigorous testing and evalua-
tion approach can only be introduced into widespread practice when the automated tools that support its

• application are available.

1.4 The IDA Testing and Evaluation Workshop

Although several weak areas in technology are clearly obvious, it is difficult to determine which con-
• stitute critical shortcomings where intensive R&D over the next few years can be expected to result in

practically applicable technology that can be exploited for Full Scale Development (FSD) SDS software.
The leading researchers in the various areas of testing and evaluation technology were invited to join in a
workshop to address this issue. Prior to the workshop, these researchers were requested to provide posi-
tion papers outlining their views. Since several of the researchers are conducting promising research
efforts discussed later in this report, they were also asked to provide explicit data on the current status of

* these efforts and describe how useful they expect this evolving technology to be for SDS purposes. The
resulting collection of papers is presented in IDA Memorandum M-513 [Bryk89]. These researchers
were asked to review an earlier version of this document. This version reflects the inputs and comments
received from the workshop attendees.

In addition to researchers from academia, private companies, and DOD R&D centers, representa-
* fives from DOD organizations involved in Strategic Defense Initiative Organization (SDIO) software

efforts were invited to attend the workshop. The complete list of participants is provided in Appendix C.
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* 2. SDS SOFTWARE TESTING AND EVALUATION NEEDS

The SDS possesses characteristics which stress the application of current testing and evaluation tech-
nology. While these characteristics are individually not unique, never before have they been combined in
such a large and safety-critical application. The concerns arising from these characteristics have long
been recognized and the overall SDS development approach has been designed to facilitate software
testing and evaluation.

This section reviews these special characteristics and outlines the SDS development approach.
Against this background, specific objectives for SDS software testing and evaluation technology are
identified and a practical mechanism for integrating testing and evaluation more fully into software
development activities presented. Finally, related ongoing SDIO testing and evaluation activities are
identified.

2.1 Impact of SUS Characteristics on Testing and Evaluation

The SDS is conceived as a multi-layered defense that destroys attackers in their boost, mid-course,
* and terminal phases. Some battle management functions, such as detection, acquisition and tracking,

classification, and resource allocation are common to each layer of the defense. On a more global level,
there are functions which occur in all phases of battle or span multiple phases of battle management.
Examples in this case include surveillance, engagement, and situation assessment functions. Con-
currency will be used widely, both to coordinate subsystems that are distributed geographically and spa-
tially, and to provide the computational power needed on a single platform. The Battle

• Management/Command, Control, and Communication (BM/C3) system will have to integrate a software
system significantly larger than any previous system. The characteristics of weapons and sensors are yet
unknown and may remain fluid for several years. Consequently, system components will be subject to
independent modification with possibly changing interfaces. While the system is expected to idle during
most of its operational life, in an engagement it must operate under extreme and inflexible real-time con-
straints. Battle characteristics, and the SDS components available at that time, cannot be predicted with
any certainty.

The system will be dynamically, as opposed to statically, linked. This is necessary (1) because of the
constant physical movement of system components, (2) to allow for rapid reconfiguration of the system
in response to enemy countermeasures, and (3) to compensate for the loss of components that can be
expected in a hostile operating environment. The system itself is expected to be developed and deployed
in an evolutionary manner, with each version of the system meeting different requirements. These
requirements will evolve to provide increasing functionality, respond to major advances in technology
employed in (or countered by) the SDS, and reflect changes in the political arena.

2.1.1 Concurrent, Distributed Software

Concurrent software, whether with apparent parallelism on a uniprocessor or actual parallelism on
multiprocessor or distributed architectures, is subject to types of failure which do not occur with sequen-
tial software. These failures arise from problems with the synchronization and communication between
processes. Examples include deadlock and the simultaneous update of shared variables.

In the initial testing process individual concurrent processes can be treated, in some senses, as
independent, sequential programs. When the time comes to test the combined run-time behavior of the
processes, however, the non-determinism inherent in their concurrent behavior results in additional

7
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testing problems. When several processes execute with pseudo parallelism on a single processor, for
example, the scheduler may make different choices about the order of execution in response to condi-
tions external to a program. Consequently, a program supplied with the same set of test data on two
different executions can exhibit markedly different behavior. Moreover, if a program is ported across
environments, the new environment may employ an entirely different scheduling algorithm. It may even
include different processor construction which invalidates previous testing, for example, a different
real-time clock.

The non-determinism of concurrent software considerably increases the difficulty of detecting and
correcting errors and faults dependent on the relative scheduling of events and resources. Special tech-
niques and tools are required to mitigate these problems. Even relatively straightforward tasks, such as
monitoring testing coverage, become more complex. In this example, new types of coverage measures
are required to reflect the coverage achieved for both individual processes and synchronization activities.
The instrumentation needed to collect coverage information can distort the execution of the program,
thus introducing a complicating factor which exacerbates the non-determinism problem.

2.1.2 Real-Time Software

The principal distinction of a real-time system is that the physics of the application imposes time con-
straints on some of the computations. These time constraints are not merely performance metrics but a
correctness property for the computations. In other words, performance is a critical factor. The
software functionality cannot be tested independently of performance and, of course, this is dependent
upon the execution environment. In systems where the requested processing in a given time period is
likely, at times, to exceed available computation power, the issues of timeliness and importance are
tightly coupled. Testing must demonstrate that performance has been optimized for the most important
cases. In command, control, and communication systems, such as the SDS BM/C3, these important
cases are typically the exceptional ones, not the most frequent ones.

Process control systems are good examples of real-time systems. These systems are required to
respond to inputs within restricted time constraints to control ongoing external processes. There is
inherent non-determinism in the relative scheduling of events that arises from the varying order in which
inputs may occur. As with concurrent software, this non-determinism poses problems for testing and
evaluation. The rigorous timing constraints inherent to all real-time systems give rise to a further
difficulty; namely, any instrumentation of code has a significant impact on the software performance and
considerably complicates the analysis and repeatability of test results.

Since the execution environment is typically highly specialized, real-time systems are usually
developed on a different machine (the host) than that on which they will operate (the target). This allows
the host environment to provide development tools which may be unavailable in the target environment.
Testing and evaluation are performed on both machines. While testing practices vary from one project to
another, it is common for testing on the host to emphasis unit testing using the standard techniques
employed for non real-time applications. Integration testing may also be performed, but later stages of
integration testing require an environment simulator. Unit and integration testing are repeated on the tar-
get machine, along with system testing. Here again, an environment simulator may be required. If the
target machine has no debugging facilities, failures occurring during target testing may require recon-
structing the test in question on the host. This is exceptionally difficult and not always possible.

Although the limitations of the target environment may necessitate testing on the host, differences
between these environments may cast doubt on the validity of the testing.

8
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* 2.1.3 Dynamic Environments and Fault Tolerance

Dynamic linking of subsystems and components introduces another level of uncertainty. If all possible
reconfigurations, and the operational requirements which apply to each, could be explicitly identified, it
would still be infeasible to fully test each instantiation of the system. Nevertheless, techniques for
rigorously analyzing the factors which may necessitate reconfiguration and determining how the system

*• should respond to each factor individually or in combination must be developed. Innovative testing and
evaluation approaches are needed to provide the greatest possible coverage of the diverse environments
and operating modes expected to be encountered. In particular, all safety critical conditions leading to,
or arising from, reconfiguration must be identified.

One of the uses of dynamic environments is to increase the fault tolerance of a system. The infeasibil-
• ity of routine maintenance and repair of space-based components, and lack of time for any repair activi-

ties during an engagement, mandate that SDS make extensive use of fault tolerance. Testing and evalua-
tion of fault tolerant systems is not a well-understood process. Although some aspects, such as the nee,
to drive the system to failure, are recognized, they present additional testing challenges for the SDS.

At a more software specific level, fault tolerance poses additional questions. Consider for a moment
• N-version programming, which is one of the best known techniques for increasing software fault toler-

ance. The basic premise of N-version programming is that different software developers are likely to
introduce different faults into the software. Therefore, a large number of versions of a piece of software
are developed independently and executed together. The results from all the versions are compared and
the consensus assumed to be correct. Some researchers hold such high expectations of the inherent
tolerance of faults in the different versions as a group, that they claim individual versions need less test-

* ing than usual [Aviz85]. Unfortunately, recent experiments [Knig86a) indicate that the necessary statisti-
cal independence of faults rarely occurs in practice, undermining the fundamental assumption of N-
version programming. Until there are approaches for analyzing the fault independence achieved in any
particular application, and determining the resultant impact on reliability, this technique must be used
with care. Similar cautions apply to other software fault tolerance techniques.

2.1.4 In-Line Testing

The inability to perform full-scale operational testing in its deployed environment is one of the most
frequently stated arguments against the feasibility of the SDS. It is a legitimate concern. Even ignoring
the various political constraints, there are very real technical and economic prohibitions against such
full-scale testing. It would be very visible, providing potential adversaries with information which could
be used to negate the usefulness of the system. Moreover, the validity of the testing would be short-lived,
oatdated by even minor changes in battle characteristics that are not under U.S. control.

Nevertheless, the system must be designed to facilitate in-line testing once deployed. Although the
bulk of the testing will be performed prior to deployment, some testing will subsequently be necessary if

* only to validate assumptions made in the earlier testing, or diagnose failures reported by monitoring
processes. The prime difficulty here is that, once deployed, the system must operate continually.
Although most system components will be inactive for an indefinite period, the SDS must be ready to
respond instantly to any threat. The capability for in-line software testing has to be designed into the sys-
tem.

* 2.1.5 Evolving Requirements

The impact of continually changing requirements on software testing and evaluation is more pragmatic
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than the concerns so far raised. The problem is largely an economic one; the need to perform expensive
retesting after a change is made. Planning for such regression testing is often forgotten during system and
software engineering activities when developers are already faced with considerable technical challenges.
I, however, the retest concern is not addressed in a timely manner, the result will be software which,

when modified, requires retesting out of all proportion to the scale of the change. It would rapidly
become economically infeasible to keep such a system responsive to changing threats.

The amount of regression testing required after a software change must be (1) predictable, and (2)
proportional to the size of the change. Traceability from system requirements to later development pro-
ducts is not sufficient to ensure this. Good engineering practices, such as information hiding, must be
employed with regression testing specifically in mind, at the earliest stages of system development.
Regression testing will also be facilitated by maintaining good records of testing activities. Since it is
unrealistic to expect that full details about all testing events can be stored, a mechanism for identifying
and structuring pertinent details must be developed.

Revisions to system requirements are not necessarily confined to new versions of tAe system. For
example, a change in the attack capabilities of adversaries may require immediate modifications to the
system. The speed with which these modifications can be implemented and validated will be critical since
the system may be unable to fulfill its mission in the interim and would itself be increasingly vulnerable to
attack. These support activities cannot be left to less experienced software developers, as is often the
case. Skilled software developers who have an intimate knowledge of the system must be available to
devote their immediate attention to implementing necessary changes.

2,2 The SDS Development and Testing Paradigm

As is apparent from the preceding discussion, consideration of software testing and evaluation cannot
be postponed until the software is designed. It must be an integral part of the whole development pro-
cess. The SDIO has begun to act upon this insight, and some initial decisions have already been made.

2.2.1 The SDS Software Development Approach

The SDS software development approach will integrate design, prototyping, and simulation to allow
formulation of SDS requirements to be tied to early analyses of the effectiveness and suitability of alter-
native architectures. A key ingredient of this approach is the use of formal specifications for representa-
tion of SDS architectures. Formal specifications offer several benefits. They help to ensure that system
interfaces and functions are cleanly and modularly separated, thus improving the testability of the system
as a whole. They are also a prerequisite for all formal testing and evaluation approaches, including test-
ing formal specifications and proving formal properties about the specifications. One of the most
significant benefits, however, accrues from their potential for simulation. The SDIO has developed a for-
mal notation, called the Strategic Defense Initiative Architecture Dataflow Modeling Technique
(SADMT) [Linn88], to exploit this potential. This notation is designed to meet the specific needs of the
SDS and BM/C3 architectures. It represents architecture designs in such a way that they can be directly
input to simulation.

Expanded capabilities of this nature are being developed for the National Test Bed (NTB) where
requirements range from high-level system simulation through full-fidelity simulation of individual com-
ponents. This approach supports the detection of requirement and design errors early in the develop-
ment process when their correction is easy and does not require undoing much completed work.
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* Early operational testing is a natural consequence of the prototyping approach and timely analysis and
comparison of architectural models is possible. Prototypes can be exercised to determine, for example,
the impact of various damage scenarios on the ability of an architecture to continue functioning. Results
can be refined and expanded through an eventual full-scale engineering decision and deployment. This
allows the system and its components to be tested and evaluated over an extended period of time and
under a wide variety of operating modes, conditions, and environments.

The feasibility of building a testable SDS is tied to the choice of an SDS architecture. The SDS has
been described as a system that:

"... would need to respond to an offensive strike as a single organism, coordinating
perhaps millions of separate actions in a schedule timed in milliseconds." [Adam85]

System architectures that require such coordination between elements demand excessively sophisticated
software and cannot be adequately tested. The complex interaction of the units or components in such
an architecture means that the test of an individual unit will provide little assurance about the adequacy
of functioning for the system as a whole. Consequently, distributed, decentralized architectures which
reduce the complexity of the software by eliminating needless coordination have been chosen. Indepen-
dence allows clear design and separation of functions and explicit specification of the interfaces among
the functions. This in turn allows use of implicit coordination schemes where elements can act indepen-
dently based on their limited knowledge of the status of other elements and how these are anticipated to
behave. Of course, achieving a good, distributed, decentralized architecture is not easy. It requires an
effective modular decomposition of the system although there is little experience in how to accomplish
this and how to evaluate the results. Nevertheless, the use of decentralized architectures makes testing
SDS analogous to testing current offensive weapons. In addition to increasing the testability of the
overall system, concepts such as these, that reduce the complexity of required software, also increase
system security, evolvability, and robustness.

2.2.2 Use of the Ada Programming Language

In accordance with DOD Directives 3405.1 and 3405.2 [DODD87c,DODD87b], the SDIO has
adopted a policy requiring all software to be developed in Ada. This required use of a single program-
ming language provides an enormous advantage for testing and evaluation; namely, it allows a common
set of code-level testing and evaluation techniques and tools to be used across all SDS software efforts.
This makes the software developers' work easier, facilitates the introduction of state-of-the-art technol-

* ogy, and increases the cost-effectiveness of necessary tool development.

Ada was specifically developed to support "programming-n-the-large." Productivity and maintenance
issues were key drivers in its definition. Savings both through increased productivity and decreases in
maintenance cost are expected from the use of Ada. The techniques for interface specification and the
constructs for modularity and information hiding of Ada have been specially designed to support state-

• of-the-art software development methods and technology, including the development of portable and
reusable code.

The choice of Ada as the required programming language offers further advantages. Ada combines
advantages of many previous separate languages, such as strong typing and data abstraction. Of course,
techniques for evaluating conformance to proper Ada coding practices are necessary to ensure that

* strong typing and other desired practices are exploited to take maximum advantage of the language.
Through the use of predefined and user-defined exceptions, Ada also provides a basic capability for run-
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time detection and recovery from certain types of faults. Additionally, the Ada Compiler validation
effort has resulted in an impressive improvement in code portability across widely differing machines (in
comparison with other languages). Further advantages in code reuse from the combination of portability,
abstract interfaces, and generics, are becoming more evident as Ada experience increases, especially in
the area of constructing large systems.

One of the major challenges facing the SDS is that of producing trused software. While Ada alone
does not ensure the development of trusted software, it does provide language features important to the
implementation and verification of security attributes.

2.3 Integrating Testing and Evaluation into Development Activities

All too frequently, software testing and evaluation are regarded as tack-on activities to be performed
after code has been written. A software product is developed and then testing and evaluation performed
as a discrete step to get the "bugs" out. Herein lies a fundamental misconception that must be eliminated
before significant increases in software reliability can be achieved. Reliability cannot be tested into
software. Instead, development must be seen as an error prevention activity, with testing and evaluation
providing continual feedback on the validity of the current activity in its own right, and its implications
for subsequent activities. Only then will the increased visibility into the development process necessary
for timely identification of factors which impact testability and early diagnosis of problem areas be possi-
ble.

Consideration of testing and evaluation concerns must be brought forward to the earliest development
activities; this is true at both the system and software levels. For example, the time to develop the system
test plan is when system requirements are defined. If system requirements are accompanied by details on
how the conformance of the final system with those requirements will be determined, untestable require-
ments or those whose testing incurs unacceptable costs can be immediately identified; preventing mil-
lions of dollars being invested in an undeployable system. In the same way, the integration test plan
should be developed during architectural design activities. Usually, the unit test plan would be developed
during detailed design and coding of the software, leading to an overall relationship between test plan
elements as shown in Figure 2-11.

This figure contains some simplifications. For a system the size and complexity of SDS, for example, at
least one additional level of test planning is necessary, between integration and unit testing. Addition-
ally, only the major flows between activities and products are shown, the additional flows necessary to
establish the traceability of testing requirements have been omitted.

Figure 2-1 provides the starting point for an SDS software testing and evaluation process model. It
demonstrates a practical mechanism for the integration of testing and evaluation concerns into develop-
ment activities. The model shows the necessary planning for testing final code products. It also indicates
the need to test intermediate products. Experience has repeatedly shown that it is most effective to
detect and correct an error early in the lifecycle; the cost of detecting and correcting software faults
increases by a factor of 100 or more as the system is integrated [Boeh8l]. At each stage in the

1. This model of software processes for developing and testing SDS software was first proposed by Prof. L.J. Osterweil from the
University of California at Irvine. It was subsequently elaborated by Prof. Osterweil and Prof. L.A. Clarke (from the University
of Massachusetts).
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development cycle, testing requirements for the next stage must be specified. Of course, during the fol-
lowing stage, the software developers will accumulate additional testing requirements for the products of
that stage. The initial testing requirements passed on from the previous stage will, however, ensure that
previously identified concerns are addressed in a timely manner.

Testing requirements must be traceable through the entire system development process. Conse-
quently, they must be maintained as permanent attributes of the software and expressed in a formal nota-
tion which permits the necessary analysis of consistency and completeness. Additionally, these require-
ments must be stated in explicit and measurable terms against which testing and evaluation activities can
be monitored and analyzed to determine the effectiveness of testing-to-date and identify any outstanding
testing needs. Thus, testing requirements are envisioned as driving the testing at each stage and providing
a mechanism for integrating testing and evaluation activities into an overall testing strategy.

System Test ::Integration Test ' Unit Test
* Requirements ' Requirements Requirements
--------- a -------- a -------

Anysmestt Inegato s oo,,. U i
I AnalysestTes CopeeesAeuc Anlye

Sgure 2-1. Preliminary SDS Software Testing and Evaluation Process Model

What is most important about this proposed process model is not the specific process itself. Rather
that this process is an example of the flexibility in performing testing and evaluation that arises from the
principle of software process modeling and the adoption of software process programming as the basis
for software development specification and management. The particular development and testing model
discussed in this report is intended largely to indicate the innovative ways in which testing and evaluation
could be proposed, implemented, and experimentally evaluated if process modeling in general, and pro-
cess programming in particular, are understood and exploited. SDS software development efforts should
adopt the principle of software process programming and use it as the basis for exploring effective
software life cycle modeling and as the basis for realizing the kinds of flexibility that will be needed.

In view of the existing lack of research results, experimental technologies, and finished products, the
SDIO must expect that it will have to adopt and assimilate techniques and tools of unexpected types and
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varieties. If a specific, fixed and rigid software development process is assumed, it is certain that the
assimilation of these new techniques and tools will be awkward, if not impossible. Thus development life
cycle flexibility is essential.

It is important to note that the ability to perform rigorous testing and evaluation on intermediate pro-
ducts is dependent on the use of formal notations at all stages of development. Furthermore, the need to
provide timely feedback on development activities, particularly for large systems, implies the need for
incremental testing and evaluation performed on possibly incomplete products at each development
stage. As nov d by Clarke [Clar88a], although systems start out incomplete and are developed incremen-
tally, most of the tools implementing current techniques work on complete software representations.
This handicap must be resolved. Finally, since no single technique is sufficient at any one stage, testing
and evaluation techniques must be applied cooperatively. Simply applying one technique sequentially
after another yields neither increased nor efficient fault detection. Instead, different testing techniques
must be tightly integrated. Quantitative information on the capabilities of particular techniques when
applied to different types of software is also needed.

Many issues remain to be resolved. What information should be captured in the various test plan ele-
ments and in testing requirements? How can the necessary level of confidence in results dictated by the
possible impact on mission performance and other consequences of failure be specified? What is the
minimum synopsis of testing activities sufficient to facilitate retesting? Tasks to address these, and other,
questions are discussed in Sections 8 and 9.

2.4 Related On-Going Activities

Before proceeding, it is useful to note some of the other SDIO testing and evaluation activities that
are underway. While by no means an exhaustive list, the following identifies those activities relevant to
the purpose of this report.

2.4.1 Organizational Activities

The SDIO T&E Directorate has established an SDS T&E Working Group. One of the tasks being ini-
tiated by this group is an activity designed to address outstanding policy, organizational, and logistics
issues for SDS software testing and evaluation. For example, the NTB will be the fecal point for element
and system level testing and evaluation and provide a communications network linking geographically
distributed facilities within the National Test Facility (NTF). One of the goals of this group is to deter-
mine whether the NTB should be the IV&V organization for SDS software.

The Simulation Engineering Group has been established as an advisory group to the SDIO on the sub-
ject of simulation and system performance evaluation. It has brought together the leading researchers in
this area to review ongoing research. A working group of this panel is currently developing requirements
for the Advanced Simulation Framework of the NTB.

2.4.2 Software Center

The SDIO is establishing a Software Center which will provide a focal point for software technology
awareness across the development activities in the SDS by an extensive training program for senior
software engineers. This training will also address the SDS development approach, for example,
software engineering environments, and software methodology and standards. Evaluated, working exam-
ples of approved environments will be available for inspection, and will also be used at the Center in the
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evaluation and certification of software submitted to the NTF by the elements. The Center will execute
research projects at the direction of the SDIO, and will track technology advances made in other pro-
grams of interest for the SDS. The Center will also provide technical support for the development of a
secure repository of trusted reusable components (mainly in Ada) for the SDS.

2.4.3 Development of Technical Policy

Proper use of software engineering approaches is an essential prerequisite for the development of reli-
able and testable software. Accordingly, the SDIO is developing a Software Policy [SDIO88a,SDIO88b]
which specifies those practices and techniques that must be employed in the development of mission-
critical SDS software. In a related effort, the SDIO C3 System Operational and Integration Function
(SOIF) is sponsoring the development of guidelines for tailoring DOD Quality Assurance standard

* DOD-STD-2168 [DOD86a] for use on SDS software efforts.

The National Computer Security Center (NCSC) is developing an SDS Security Policy which will pro-
vide guidance on the use of formal verification technology to develop secure and trusted software. The
first draft of this policy is expected before the end of 1988.

2.4.4 Planning Activities

Development of the SDS TEMP began in early 1987. The most recent version [SDIO87] was com-
pleted in June 1988. While the evolving software annex of the TEMP essentially conforms to DOD
TEMP guidelines [DODD87a], the non-waterfall SDS development life cycle has necessitated some

* divergence. For example, to take maximum advantage of the prototyping approach, the software annex
requires early OT&E of an evolving series of prototypes and experimental versions. Early OT&E will
revolve around examination of architecture designs. Subsequently, DT&E and OT&E will be performed
on all major prototypes and experimental versions, through to operational SDS software. T&E of proto-
types and experimental versions will not only examine the technical and operational properties of the
products under test, but will serve as the basis for projecting properties of the deployed system.

* Emphasis will be placed as well on an early operational assessment of the process of T&E in conjunction
with the objects of T&E.
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3. DYNAMIC ANALYSIS TECHNOLOGY

This section provides an overview of the state-of-the-art in dynamic analysis technology. It discusses
the major techniques and ongoing research efforts relating to the testing of both sequential and real-
time/concurrent software. Since these techniques require executing software products with test data,
they are largely used for testing program code. In those cases where software requirements and designs
are executable, however, many of the techniques can be applied to pre-implementation products.
Although the burgeoning development of large-scale testing and evaluation environments is discussed in
the Section 4, special concerns relating to oracles, coverage analyzers, and debuggers are covered in this
section. Finally, the critical gaps in technology are elucidated.

By necessity, the following material has been kept brief. Sources for further information are given in a
supporting bibliography (Youn88a]. This bibliography includes an extensive index to guide those seeking
sources for information on a particular topic.

3.1 Techniques for Dynamic Analysis of Sequential Programs

Of the areas covered by this report, technology for the dynamic analysis of sequential programs is the
most mature. This is not to say that there is a complete technology sufficient for all practical purposes.
Indeed, advances in fundamental theory can be expected for many more years. Currently, while there is a
small body of techniques that can be applied to SDS software considerable work is needed to turn the
few existing research prototypes into industrial strength, practical tools.

Testing techniques can be categorized as either white-box or black-box. White-box approaches derive
test data from consideration of the program structure. Path selection approaches are based on graph-
theoretic notions of control flow or data flow. They divide the input space of a program into domains
which cause particular control or data paths to be followed, and the program is executed on test cases
that are constructed by selecting test data from these domains. Remaining white-box approaches can be
further distinguished as either error-based or fault-based 2. Error-based approaches apply the whole
realm of programming knowledge, such as information about error-prone language constructs, to the
task of selecting test data which can find faults in the execution of a particular program path. Fault-based
approaches, as a group, are the most recent techniques to be developed. Here test data is designed to
demonstrate the absence of a predetermined set of faults in program statements. Black-box approaches,
also called functional testing approaches, derive test data from the functional requirements of a program,
without regard to the internal structure of the program.

The following subsections identify the notable dynamic analysis techniques in each category. As varia-
tions on several of the described techniques exist, these techniques should be regarded as a representa-
tive subset of those available, not an exhaustive listing.

The key features of several of the techniques discussed are summarized in Table 3-1. This table
identifies the types of faults that can be detected and whether this detection is guaranteed. It identifies if

2. Within the field there is a lot of confusion between error-based and fault-based testing. This is partly due to the fact that before
the adoption of the IEEE terminology which gives different meanings to the words "error" and "fault," these two words were
sed interchangeably. Consequently, the classifications used in this report are sometimes historical artifacts and the distinctions
between the identified methods is not always so clear.

17
UNCLASSIFIED



UNCLASSIFIED

automated tools are available to support application of the techniques to Ada programs, or programs
written in some other language. Under the heading of Inputs to the Testing Process, it indicates whether
common inputs such as program specifications, program text, and test data are required. Path analysis of
a program (usually provided by symbolic evaluation, see Section 4.1) is included in this category as
another relatively common input. Additionally required inputs are identified separately. Similarly, under
Outputs of the Testing Process, the table shows which techniques provide program outputs, which
require oracles to predict the correct outputs against which program outputs can be compared, and
which support locating the position of a fault in the program text. Again, other less common outputs are
described separately Finally, the table indicates those techniques that are suitable for practical applica-
tion and those that remain, to varying degrees, impractical for widespread application at the present
time.

ERRORS DETECT A O OF TESTING
SUPP NPUTS TO TESTING PROCESS PROCESS

U

NAETYPES OF ERRORS A < OT14ER OTHER
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Table 3-1. Key Features of Dynamic Analysis Techniques for Sequential Programs
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3.1.1 Path Selection Techniques

Path selection techniques focusing on the control flow through a program were the first systematic
testing strategies to be developed. Here the control structure of a program is represented as a finite,
directed graph with single entry and single exit points which correspond to the program beginning and
end. The nodes in the graph represent program statements, connected by edges which correspond to
possible control flows between statements.

The set of techniques based on control flow graphs are collectively known as structural testing tech-
niques. The initial three categories of structural testing techniques were: statement testing, branch test-
ing, and path testing. Of these, statement testing requires executing a program with test data that cause
each program statement to be executed at least once and is the weakest approach. At the other extreme,
testing of all program paths is considered the ideal. However, since the total number of possible program
paths in a typical large computer program is in the range of 1 5 to iW? (without counting the number of
loop traversals within each path), exhaustive path testing is generally infeasible. Branch testing requires
executing all program branches at least once and is commonly agreed to be the minimum acceptable path
selection criterion.

More recently, different approaches for developing intermediate strategies between testing all
branches and all paths have been developed. Woodward, Hedley, and Hennel [WoodS~aI, for example,
consider Linear Code Sequence and Jump (LCSAJ) program units. These are sections of the code
through which the flow of control proceeds sequentially until terminated by a jump. Program execution
paths can be described in terms of concatenated LCSAJs. A series of progressively more demanding
coverage measures is then based on examining the proportion of distinct subpaths of length n LCSAJs
exercised by the test data.

Another set of techniques intended to bridge the gap between branch and path testing are based on
data flow analysis. These techniques reflect the intuition that the path from a variable assignment to its
use must be executed to provide confidence that the correct value was assigned to that variable. Conse-
quently, data flow testing techniques select test data forcing the execution of different interactions
between a variable definition and references to that variable. As an example of the complexity and matu-
rity of current testing techniques, the underlying theory of data flow testing is summarized in Figure 3-1
(taken from [Fran86]).

Several different path selection criteria based on data flow relationships have been developed. Clarke
and Richardson have formulated a uniform model for three families of data flow testing criteria (Rapps-
Weyuker, Ntafos' required k-tuples, and Laski-Korel) and defined the criteria in each of these families in
terms of that model. They analyzed the path coverage of each criterion and developed a subsumption
hierarchy that demonstrates how these criteria relate to each other [Clar85a,Clar86a]. This analysis
showed that the most comprehensive of the criteria in each family are incomparable with each other as a
consequence of the different foci of the families. More recently, a new family of criteria [Fran86] has
been developed to circumvent the problem, common to all path-directed testing, of identifying non-
executable paths.

Weyuker has recently completed an empirical evaluation of the complexity of data flow testing tech-
niques [Weyu88]. This study focused on the number of test cases needed to satisfy different criteria, one
of the cost elements in applying these techniques. While theoretical upper bounds on the number of test
cases needed for most criteria are quadratic or exponential, Weyuker found that, in practice, far fewer
test cases are necessary. Figure 3-2 reproduces the information presented in [Weyu84a] and [Weyu88].

In a series of papers [Howd78a,Howd78b,Howd82a, Howden has addressed the theoretical
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The subprogram under test is represented by a Informally, the testing criteria require that test
flow graph. Variable occurrences are classified data execute def-clear paths from each node con-
as definitions, undefinitions, or uses; where uses taining a global definition of a variable to
either directly affect the computation or reveal specified nodes containing global c-uses and
the result of some earlier definition (c-use), or edges containing p-uses of that variable. For
directly affect the flow of control (p-use). each variable definition, all def-clear paths wrt

that variable from the node containing the
A c-use of a variable x in node i is defined to be a definition to some of the uses reachable by some
global c-use if the value of x has been assigned in such path must be executed. More precisely:
some block other than block i. A path
(i,n i,...,n,j), m>O, containing no definitions or
undefinitions of x in nodes n1 ,...,n, is called a TI DATArwWTfTNCIIJA

def-clear path wrt x from node i to node j and TomtT saisescriterionCforsubproam Piffor

from node i to edge(n,,j). A node i has a global coted e the foo asociatns
definition of x if it has a definition of x and there CP'rMTON ASSOCIATIONS REURIM

is a def-clear path wrt x from node i to some AII-defs Some (ij.,) .t. j C dcu(s..) or
some (l,(jk).x) sa. (Jk) E

node containing a global c-use or edge containing ,pu0.0).
a p-use of x. The subprogram's def-use graph is An.p.., Al(l,.k).x) a. .Ok) C dpu(xi).

obtained by associating with each node i, the sets All-p- .om..-a All (X/j.k).z),.t (Jk) f dpa(,i).

c-use(i)and def(i), and with each edge(ij) the set InUon, I dpv() - 4 then
some (,jzx) s.t. j ( dcu(xji). Note

p-use(ij). In addition, assumptions include that that e dc a ol dNot
the entry node has a definition of each parameter odpuW) dc(i)

and each global variable which occurs in the sub- Alc-uea.soo-.- Al (iU5 ) s.t. j fd 4(i). In )ddl.

program, and the exit node has an undefinition of tim, if dcns)- then some
(14t.k),z) 2.1. (jk) C dcuWz~).each local variable and a c-use of each variable Note that de Ihasglobul

parameter. definition of x, dcu(xi) - 4 ->

dpux) #.
All-uses All (ijzx) a.t. j ( dcu(xKi) and all

(,4.k).x) c.t. (Uk) 4 dpu(zxi).
V - the act of Variables A-du-path All do-psths from Ito j Un z for
N - the et of odes each j C dcu(x.k) and all du-paths
E - the set of edges from i to Ojk) wrt z for each Gjk)
dof(i) - (x C V zbas global defnition in block i) E dpu(z.l).
c-me(i) - (z V r res a global c-usa in block i) For comparison we also defne the criteriadal.odur
p-We(i,j) - {z C v I bas a p-as in edoe (iJ) (respectivelyall-edgMa. all-paths) which require that
dcu(zi) - {j f N I x f c-se) and there is a del-clow P cover every node (respectively every edge, every

path from i to j) path) In the Sow graph.
dpu(z,ij) - {0,k) ( E I z C p-useo,k) and there is a

de-clear path from i to (j,k)) The following relationship holds:

A def-c-use association is a triple (i,j,x) where i
is a node containing a global definition of x and j
e dcu(x,i). A def-p-use association is a triple
(i,(j,k),x) where i is a node containing a global
definition of x and (j,k) e dpu(x,i). A simple path f-%
is one in which all nodes, except possibly the first
and last, are distinct. A loop-free path is one in
which all nodes are distinct. A path
(n l,...,nj'n) is a du-path wrt x ifnI has a global
definition of x and either: i) nk has a c-use of x
and (n ,...,nj,nk) is a def-clear simple path wrt x, ,I
or ii) (4pflk) has a p-use ofx and (ni,...,nj) is a
def-clear loop-free path wrt x.

Figwe 3-1. Data Flow Testing Theory
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Tbeoretical Complexity

Let P be a program with n variables, m assignments, I input statements, and t conditional statements.
Let a test case consist of a single vector of input variables.

Then, the all-nodes and all-edges criteria require at most t+1 test cases. All-defs requires at most m+i*n
test cases. The all-p-uses, all-c-uses/some-p-uses, all-p-uses/some-c-uses and all-uses criteria require at
most 1/4 (t 2 +4t+3) test cases. All-du-paths requires at most 2' test cases.

Empirical Complexity

The automated data flow testing tool ASSET was applied to a suite of programs "Software Tools in
Pascal" by Kernighan and Plauger [Kern8l]. Testers were instructed to select atomic test cases using the
strategy of their choice. The data flow criteria were used as adequacy measures. For each program the

* following was computed:

an-e-Uses al-p-mes an-uses all-du;paths

1. Least squares line: t- a+ , where ( is the .52d+1.87 .76d+1.01 .81d+1.42 .93d+1.40
number of test cases sufficient to satisfy each

* criteria and d is the number of decision
statements

2. Weighted average of the ratios of d to t .43di .70ai .72di 80di

3. Maximum value of the ratio oft to d 3.5 2.33 3.67 3.67

* 4. Weighted average of the ratios of the 7.61 4.30 4.15 243.93
theoretical upper bound on the number of test
cases needed to satisfy t

5. Weighted average of the ratios of the number 1.79 1.96
of test cases sufficient to satisfy ail-deb to t

6. Weighted average of the ratios of the number .93
* of test cases sufficient to satisfy all-uses to the

number sufficient to satisfy ail-du-patbs

Although the theoretical upper bounds on the number of test cases needed to satisfy most of the criteria
• are quadratic or exponential, in practice only small numbers of test cases (as compared to the program

size) were needed.

Qualitative observations from empirical study:

- All-p-uses was generally harder to satisfy than all-c-uses, and a test which satisfied all-p-uses usually
* satisfied all-c-uses too (despite the fact that these are independent criteria).

- Although all-uses is more demanding than all-p-uses, a test set which was adequate when assessed by
all-p-uses was generally also adequate using all-uses.

- Even though the all-du-paths criterion has an exponential upper bound whereas the all-uses criterion
has a quadratic upper bound, in practice test sets sufficient to (almost) satisfy all-uses were frequently

• also sufficient to (almost) satisfy all-du-paths.

Figure 3-2. Complexity of Data Flow Testing
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effectiveness of several path selection and test data selection techniques. Of particular interest is
Howden's evaluation of path analysis since the reliability of path testing places an upper bound on the
reliability of all techniques that are based on testing of a subset of a programs' paths. The conclusion
given in [Howd76c] is: "If it were possible to test every path in a program, then path testing is found to be
reliable or almost reliable for about 65% of the [faults] found in the small survey of 11 (small, sequential]
programs in Kernighan and Plauger [Kern74a]."

In addition to being used as test data generation strategies, these path selection techniques can be
used as coverage measures. In this role, the code is instrumented to monitor the different control or data
elements that are executed in the course of testing. The adequacy of the completed testing is then meas-
ured as a function of the percentage of the structural units executed.

3.1.2 Error-Based Techniques

Much recent research has been directed at the notions of reliable and adequate test data first intro-
duced by Goodenough and Gerhart in 1975. Their theorem, called the "fundamental theorem of test-
ing," characterized the properties of a completely effective test data selection strategy based on
definitions of reliability, validity, and completeness. Essentially, a test data selection strategy is said to be
reliable if it guarantees to generate test data capable of detecting every fault in a program [Good75a].
This work was the first formal, systematic approach to a technology which had previously been charac-
terized by its dependence on the software developer's intuition. It has been one of the major influences
on direction and scope of later work.

Although Goodenough and Gerhart provided insight into how to develop effective program tests, they
did not develop an actual testing approach. Weyuker and Ostrand modified and refined Goodenough and
Gerhart's properties for ideal tests to investigate a testing strategy that combines consideration of likely
potential faults with more traditional path selection and functional testing approaches [WeyusOc]. The
program's input domain is partitioned based on program-independent and structural proper*:- -'i the
program, as well as potential faults that have been identified as likely for the problem being solved. "his
results in the identification of revealing subdomains. The key property of a revealing subdomain that
the existence of one element of the subdomain which leads to incorrect processing when used as an input
implies that all of the domain's elements are processed incorrectly. Equivalently, if any input is processed
correctly, then all inputs are processed correctly. Selection of test data, therefore, is reduced to choosing
an arbitrary element from each subdomain. This is sufficient to show the absence, or presence, of the
particular types of faults being considered. Although this strategy is largely a research vehicle and has
not been developed to the state of a practical testing technique, it remains interesting since it demon-
strates the goals to which many researchers have been working.

There is still no general theory that states whether a piece of test data protects all of the program exe-
cutions along a particular path from all kinds of faults. Even so, several testing techniques have been
developed that achieve test data adequacy for certain limited, well-defined types of faults. Indeed, some
of these techniques reliably demonstrate the absence of prespecified types of faults.

A commonly used classification is to distinguish program faults as either computation, domain, or
missing path faults. (This classification was first introduced and analyzed by Howden in [Howd76c].)
Computation faults result from incorrect operations performed along a correct execution pati, such as
missing or inappropriate assignment statements. Domain faults result from incorrect path traversals that
occur due to path selection faults. Finally, missing path faults occur when some special case requires a
unique sequence of actions, but the program does not contain a path whose execution will cause that
sequence of actions. Following this distinction, Clarke and Richardson have developed a strategy for
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selecting test data sensitive to particular computation faults based on analyzing a symbolic representation
of the path computation [Clar83b].

Howden and Zeil have proposed additional computation testing approaches based on the use of alge-
braic techniques for defining a neighborhood of functions. Howden's algebraic testing [Howd78b] estab-
lishes rules for choosing data to differentiate among all members of a functional class, and then applies
those rules to any program whose output is expected to fall within that class. Zeil's perturbation testing
[Zeil83a], developed for testing numeric code, involves the derivation of those members of a chosen
functional class which are indistinguishable from the program function using all the test data so far
applied. The key idea is to add a perturbing function to expressions occurring in the software and derive
the conditions under which that fault could go undetected by a given test path. In this way, perturbation
testing is really a path selection adequacy method, though it can also be used to generate test data to
reveal faults in arithmetic expressions.

In a system called EQUATE, Zeil merges perturbation testing and mutation testing (see Section 3.1.3)
to provide another technique capable of finding faults in the execution of a program path. Primary goals
are to remove the limitation of perturbation testing to numeric domains and the limitation of mutation
testing to detection of simple faults. An additional goal is to overcome the decrease in effectiveness

* suffered by both methods for programs employing high-levels of data and functional abstraction.
EQUATE selects a number of test locations throughout the program and chooses a set of expressions
derived from the abstract syntax tree of the module being tested. Test data is required that distinguishes
each pair of these expressions from one another at every test location [Zeil86]. Zeil describes a set of
designated expressions and constants, called terms, that are formed from the union of the following three
subsets:

0 1. The set of all expressions and subexpressions from the abstract syntax tree of
the module under test, called the expression set of the module.

2. The set of values first taken on by each expression set term at each test loca-
tion during testing, called the initial value set.

3. The set of expressions that can be formed by substituting any member of the
expression set for any subexpression of another expression set member, called
operand substitution terms.

Test locations occur at the beginning of each basic block and immediately following each statement in
the block.

Cohen and White have developed a technique called domain testing that guarantees, within a given
error bound, to detect path selection faults. This technique guides the selection of test data by geometric
analysis of path domain boundaries (where the boundary of a path domain is determined by the condi-
tional branches that are taken along the path). It generates test points on and near each boundary that
can detect whether a domain error has occurred. If so, one or more of the boundaries will have shifted,
or the corresponding predicate relational operator will have changed. Otherwise, if the program yields
correct results for the chosen test data, the path domain boundary is correct within the error bound.
Cohen and White proposed the first domain test data selection strategies and error bound criteria
[Whit78b], and later strategies which reduce the displaced domain associated with an undetectable
border and offer lower complexity [Whit86]. One of the serious limitations of domain testing is the need
to examine the potentially infinite number of domains that arise from iterated loops. Recent work has
focused on reducing this burden [Whit88a].

Partition analysis testing [Rich85a] integrates several testing strategies, such as domain, computation,
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and algebraic testing and a form of formal verification. It compares a program to its formal specification
and so is one of the few testing approaches that can detect missing path faults. The overall strategy
requires partitioning the input domain into procedure subdomains so that the elements of each sub-
domain are treated uniformly by the specification and processed uniformly by the implementation. Parti-
tion verification, a variation on symbolic testing (see Section 4.1), is performed to demonstrate the con-
sistency between the specification and its implementation. This verification is enhanced by partition test-
ing. Partition testing uses information related to each subdomain to guide the selection of test data
which, in executing the program, helps to determine whether the program conforms to its specification.

3.1.3 Fault-Based Techniques

Fault-based techniques differ from error-based techniques in that they examine program statements to
demonstrate the absence of a predefined set of faults.

Morell [More88] describes fault-based testing as a three stage process operating in an arena consisting
of (1) a specification, (2) a program, and (3) the domain of interest which is the source of test data,
together with a prescribed list of potential faults, called alternatives. The first stage requires identifying
the locations in the program where the alternatives might lie. Then a test set is developed which executes
these locations, yet yields correct output. Finally, information collected during the execution is used to
deduce that no alternative could have been inserted into the program without being detected by the test.
He goes on to provide a model of fault-based testing which can be used to investigate the theoretical limi-
tations of this group of techniques. Two orthogonal attributes are used to categorize fault-based testing
techniques. The breadth of a technique is given by number of potential faults considered, it may be finite
or infinite. Whereas the extent relates to the information used to determine the absence of faults and may
be local or global.

While all fault-based approaches support test data generation, they are primarily test data adequacy
measurement techniques. One of the earliest and perhaps the best known is mutation testing, also called
mutation analysis [Budd80a]. Mutation testing requires the definition of a set of mutation transforma-
tions, called error operators, which are applied singly to the elementary components of a program to
introduce certain types of simple errors as faults. Test data that can distinguish between the original and
mutated programs is then deemed adequate for detection of that particular type of error. The ability of
these simple errors to cover more complex errors is derived from the "Coupling Effect." The restriction
of introducing single errors is justified by an empirical principle called the "Competent Programmer
Hypothesis." These two assumptions are defined as:

Competent Programmer Hypothesis - The assumption that the program to be tested has been
written by a competent programmer [DeMi88a].

Coupling Effect - Test data that distinguishes all programs differing from a correct one by only
simple errors is so sensitive that it also implicitly distinguishes more complex errors [DeMi78.

Error operators exist to demonstrate the absence of common Fortran errors, and a set of error operators
appropriate to Ada programs is under development [Appe88]. Since the set of error operators is limited
and mutants are distinguished from the original program based on the program output, mutation testing
has finite breadth and global extent. While an effective technique, it is expensive. The need to apply error
operators individually can lead to the generation of hundreds of mutated programs, each of which must be
separately compiled and executed.

There are several variations of mutation testing which attempt to overcome some of the weaknesses of
the tec - ique in its original form. Whereas the original strategy (strong mutation testing) applies to a
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program as a whole, weak mutation testing [Howd82a,Howd87] applies to program components, usually
elementary computational structures. Since it is unnecessary to perform a separate compilation and exe-
cution for each mutation, weak mutation testing is cheaper to apply, although it cannot guarantee detec-
tion of faults in the function computed by a program.

Weak mutation testing was partially derived from Error Sensitive Test Case Analysis (ESTCA)
*Q [Fost8O]. This approach attempts to detect all common types of faults. As such, it was the earliest exam-

ple of an infinite breadth fault-based technique. Adapted from a hardware failure analysis technique,
ESTCA was developed by simulating frequently occurring code faults, identifying the most effective test
patterns for detecting these faults, and then deducing rules for an algorithm to generate fault sensitive test
data. The test data and expected outputs are derived from examination of a program's specification. The
program is then executed on the test data and the actual results compared against the expected results to

*• identify failures.

Race mutation testing [Howd82a] uses program traces to compare the results of a program and its
mutations rather than output values, thus allowing several mutation transformations to applied con-
currently. The most recent variation, firm mutation testing [Wood88], claims to combine the best elements
of strong and weak mutation testing. It uses components with more extensive scope than weak mutation

* testing, and permits partial execution of components so that many mutants can be applied in a single exe-
cution.

A form of mutation testing that allows validating a program against its specification has also been
developed [Budd85). Specifications are given in the predicate calculus, modified to clearly indicate the
input-output relationships of a program. These specifications are mutated by adding logical clauses to the

* input and output conditions. Contrary to other forms of mutation testing, the goal here is to generate test
cases which satisfy the additional constraints so that the original and mutated specifications produce the
same result. First the program and the original specification are executed on the test cases. If the results
from these executions indicate consistency between the specification and its implementation, the mutated
specifications are executed with the same test data. A mutation is eliminated when an input clause is
satisfied, but one or more output clauses are unsatisfied. Unlike the forms of mutation testing which only

* consider a program implementation, this method can identify missing path faults in a program.

Although most error- and fault-based approaches are designed to activate faults, few ensure that the
effects of faults are propagated through the program to be revealed as failures in the output. In order to
overcome this problem, much current work is investigating models for fault propagation, yielding fault-
based techniques with both infinite breadth and global extent.

S
Morell's approach utilizes symbolic execution for a dynamic model of fault activation and propagation.

This is applied to mutation testing to overcome the limitation requiring individual generation and execu-
tion of mutants. The fundamental concept underlying symbolic execution is the ability to model infinitely
many executions of a program with test data by a single symbolic execution. Morell modifies this concept
to executing infinitely many mutation alternatives in an execution. To use Morell's words: "For symbolic

* execution the key lies in encoding infinitely many inputs by a single symbolic input. For symbolic testing
the key lies in encoding infinitely many alternatives in a single symbolic alternative" [More88]. The
modified form of execution proceeds as usual until the expression containing the symbolic alternative is
reached. Then, instead of creating a symbolic value for an input, a symbolic value simulating the result of
the mutation transformations represented by the symbolic alternative is generated. This value is pro-
pagated through the program until it appears as an output embodying all the possible impacts of the alter-

* natives. This intuitively appealing approach has some drawbacks relating to undecidability problems in
program control flow. Morell is studying alternative definitions of a program path to resolve these prob-
lems.
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RELAY [Rich86a,Rich88] uses static analysis of the program to analyze fault activation and propaga-
tion. It defines revealing conditions which guarantee that a possible fault is activated dtiring execution and
that the fault effect transfers through computations and data flow until it is revealed. RELAY is applied by
choosing a fault classification and determining the origination conditions and transfer conditions for each
class of faults. These conditions are then evaluated for the program being tested to provide the revealing
conditions. Thus test data selection is treated in conjunction with path selection by selecting test data that
not only originates a fault but also transfers that fault to affect the output, guaranteeing the detection of
any fault of the chosen classes.

Although RELAY can be used for both test data selection and test data adequacy measurement, it was
primarily developed to serve a different goal. Researchers at the University of Massachusetts are under-
taking a long-term effort to evaluate test data selection techniques. One of the difficulties they have
encountered is that most existing techniques use different underlying models, making comparison
between techniques difficult. Therefore, RELAY was developed as a consistent model for software test-
ing which is expressive enough that most current testing techniques can be mapped on to it, although it is
particularly suited to those that are fault-based. RELAY has been used to analyze three fault-based cri-
teria: Budd's Estimate, Weak Mutation Testing, and ESTCA. This analysis demonstrates that none of
these criteria guarantees the detection of faults. Richardson and Thompson discuss two common
weaknesses: "First, the criteria do not thoroughly consider the potential unsatisfiability of their rules;
each criterion includes rules that are sufficient to reveal [faults] for some fault classes, yet when such rules
are unsatisfiable, many [faults] may remain undetected. Second, the criteria fail to integrate their rules;
although a criterion may cause an expression to take on an erroneous value, there is no effort made to
guarantee that the enclosing expressions evaluate incorrectly" [Rich86a]. These weaknesses are by no
means exclusive to the aforementioned techniques. As yet no effective rules for showing how to transfer
faults out of loops and conditionals have been developed.

Richardson and Thompson, the developers of RELAY, are currently investigating the use of the
RELAY model for integration and specification-based testing. They are also enhancing the capabilities of
RELAY with regard to data flow transfer, in order to facilitate processing of loops and modeling the
transfer of multiple faults. Other researchers, see [Long88], are attempting to extend the RELAY model
for application in fault-based testing of concurrent, real-time software.

There are three necessary and sufficient conditions for fault-based testing to ensure that a program is
correct with respect to its specification [More88]:

1. The fault-based arena must be alternate-sufficient. That is, either the original
program or one of the alternate programs must be correct. Since there is no
algorithm to determine alternate-sufficiency, the fault-based arena must be
assumed alternate-sufficient until proven otherwise.

2. Coupling does not occur for the test set. That is, each alternate can be indepen-
dently detected by a test set, along with combinations of alternatives that apply.
Again, it has been shown in [More84] that no algorithm for determining cou-
pling exists.

3. Coincidental correctness, where a fault on an executed path does not produce
erroneous results, does not occur.

These conditions are undecidable. Therefore fault-based testing cannot guarantee that a program is
correct. It does, however, offer valuable information on the absence of certain faults. Since software relia-
bility is directly related to the presence or absence of faults, this information could be exploited in
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* software reliability measurement. Morell is investigating the use of his model of fault-based testing as the
basis for a white-box model of software reliability.

3.1.4 Functional Techniques

The majority of the previously discussed white-box testing approaches consider only the program
implementation. By ignoring its specification, these methods are limited to testing what the program does,
rather than what it is intended to do. Functional testing techniques do not consider the internal structure
of programs. Instead, generation of test data (and expected results) relies on the specification of program
function, inputs, and outputs. In addition to revealing faults in programs, these black-box techniques usu-
ally have the desirable side-effect of detecting ambiguities and incompleteness in program specifications.

Howden has recently shown how different testing and analysis methods relate to an expanded interpre-
tation of functional testing, in which a system is viewed as a structure of related functions. This approach
can also be categorized as an error-based approach since it looks directly at how programmers make
errors, as opposed to the possible fault effects of those errors. He provides a model of how software is
constructed and of the reasoning errors that humans make during this process. From the premise that
software is developed by synthesizing functions, Howden discusses two views of programs. These are: (1)
hierarchical top-down functional structures, and (2) horizontal state transition diagrams. Completeness of
testing is then achieved by identifying the fault effects of possible errors and constructing methods for
detecting these faults. This work is reported in his book, Functional Program Testing and Analysis
[Howd87]. Since completing the book, Howden has investigated a more general error model. This new
model takes the view that abstraction and decomposition are the major tools for reasoning about complex

* objects, and different testing and evaluation techniques are suitable for the different kinds of errors which
may be made during these processes. Although not yet completed, this later work relates the different
forms of dynamic and static analysis and addresses all software products, not just code.

The earliest functional strategies were equivalence partitioning (Myer79], boundary-value analysis
[Myer79], and cause-effect graphing [Elme73]. Recognizing that exhaustive testing is rarely feasible, these
three strategies address the problem of trying to select the subset of all possible inputs that have the
highest probability of finding the most faults.

In equivalence partitioning the input domain of a program is partitioned into a finite number of
equivalence classes where, it is assumed, a test of a representative value of each class is equivalent to a
test of any other value. This implies that if one test case in an equivalence class detects a fault, all other

*' test cases would be expected to find the same fault. The minimal set of test cases covering all equivalence
classes is then developed by selecting test cases that invoke as many different input conditions as possible.
Boundary value analysis differs from equivalence partitioning by selecting values in both input and output
equivalence classes that test the edges of each class. These values are often called extremal/special values,
where extremal values are those that lie on the edges of variable domains and special values are those with
special mathematical properties. Since few other testing techniques provide good coverage of

* extremal/special values, this approach is frequently included in other techniques. Cause-effect graphing
offers some advantages over the other two techniques by exploring combinations of input conditions.
Here, a program's output domain is partitioned into effect classes, which also results in partitioning the
input domain into causes that correspond to particular effects. The different classes, and links between
them, are expressed in a combinatorial logic network called a cause-effect graph. The dependencies thus
revealed are used to derive appropriate test cases.

Another technique in this group is random testing. This technique is based on the idea of testing a pro-
gram by sampling for faults, and a measure of the program's correctness is given by the proportion of
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elements in the input domain for which it fails to execute correctly. It not only can uncover faults but pro-
vides a reliability measure for the program. In this latter function, the number of failures in a set of test
cases is related to the correctness measure via a probability distribution function that depends on the way
test data is chosen. Test cases are randomly generated from either a uniform distribution of a program's
input domain or from its operational profile. Once the input domain or operational profile is determined,
generation of random test data is usually much easier and cheaper than other test data generation stra-
tegies. Poor selection of the range can, however, lead to wasteful generation and execution of test data,
and inconclusive results. Also accurate identification of the input domain or operational profile depends
on the ability to predict the actual operating environment. This is not always possible.

Statistical testing is a variation on random testing. In this case, the emphasis is on certifying the opera-
tional effectiveness of the software, with an estimate of product reliability being given in terms of the
mean time to failure (MTT [Dyer85a]. Fault detection plays a secondary role. Test data is selected based
on the anticipated statistical distribution of the operational data to provide a realistic simulation of the
product environment. Randomized sampling techniques are used to introduce efficiencies in the size and
content of the samples. This approach provides a technical basis for making statistical inferences about
operational effectiveness based on test results. These results can be extrapolated to provide operational
reliability estimates.

While the value of random testing for detecting faults with a low probability of occurrence is uncertain,
recent, small-scale empirical experiments suggest that it potentially has a valuable role to play as one ele-
ment in an integrated testing strategy. For example, Duran and Ntafos have conducted several experi-
ments which indicate that random testing gives high levels of structural and fault-based coverage adequacy
measures. In the first case, these researchers report: "... of the 5 programs tested, a moderate number of
random test cases on the average achieved 97% of segment testing, 93% of branch testing, 57% of struc-
tured path testing, 72% of required pairs testing [Ntaf8la], 81% of [LCSAJ measure] TER3, and 74% of
[LCSAJ measure] TER4" [Dura84]. In the second case: "Seven programs were tested, using the mutation
system at Georgia Tech, with from 8 to 20 random test cases. 79% of the mutants were eliminated by the
test cases as compared with 84% for branch testing and 90% for required pairs testing (the number of
remaining mutants includes those that are equivalent to the original program" [Ntaf8la]. Additional
experimentation to substantiate these findings is needed.

The advent of formal specification languages has given rise to new types of functional testing where a
program specification is actively used to support the testing process, usually through automatic generation
of implementation-independent test data. Although many examples exist (see [Gogu79a,Muss79,Gorl87]),
this subsection focuses on three techniques which illustrate the ongoing work in this area.

Grammar-based testing techniques rely on the use of test grammars to generate program inputs and
expected outputs. The test grammar is developed from a formal specification of the program and provides
a separate partial specification that can be compared against the original specification to uncover ambigui-
ties. During implementation, the partial specification and the implementation are executed on identical
test data and the results compared to identify faults. One particular strategy, using attribute context-free
grammars [Dunc81], allows random generation of test cases or the application of testing heuristics (for
example, boundary value analysis, or ESTCA testing) for more systematic test case generation.

The other two approaches use algebraic specifications. An algebraic specification is made up of a list of
functions on a set of sorts (types) and a set of axioms defining properties of the defined functions. The first
of these approaches uses algebraic axioms of abstract data types to aid the testing process. The second
uses logic programming to generate test data sets from algebraic data type specifications.

The Data-Abstraction Implementation, Specification, and Testing System (DAISTS) [Gann8l]
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provides a language. for formal expression of the semantics of data abstractions, independent of their
implementation. This allows a program implementing abstract data types to be annotated with nonpro-
cedural, algebraic axioms and test cues to facilitate mechanical consistency checks between the axioms
and the implementation. Although the same software developer may write both axioms and implementa-
tion, the orthogonal nature of these two representation forms reduces the likelihood of the same faults
occurring in each. DAISTS is a compiler-based system. The compiler prepares a "program" which util-
izes the axioms as a test driver for the implementation. The software developer provides test points in the
form of expressions using the abstract functions. These are fed to the program which then cycles through
the test data, monitoring the execution of both axioms and implementation to determine if they agree.
There are two significant benefits to this approach. First, the software developer only supplies test inputs,
an oracle is not needed. Second, while the developer provides the implementation, axioms, and test
points, DAISTS automates the testing by developing the necessary test drivers.

Choquet and colleagues have developed an alternative approach for generating test data from algebraic
data type specifications. This approach arose from the noted similarity between an algebraic specification
and a logic program (both of which describe logical properties), and exploits logic programming for test
data generation. It is based on a formalized theory of testing. The basic assumption for test construction is
the Correlation Principle which states: "There exists a narrow correlation between specification structure

* and implementation structure" [Boug86]. It requires hypotheses relating to the concepts of higher- and
lower-level sorts occurring in hierarchical specifications. In [Choq86], these hypotheses are given as:

1. The regularity hypothesis for a level n states that if the testis successful for data
of complexity less than n (where a level of complexity is associated with each
member of an input subdomain], then the program behaves correctly for any
value.

2. The uniformity hypothesis states that if the test is successful for one datum in a
subdomain then the program behaves correctly for any data in this subdomain.

It is also required for specifications to be translated or considered as logic programs and the search stra-
• tegy to be controlled by a logic interpreter.

As with DAISTS, testing consists of verifying that an implementation satisfies each axiom of the
specification. In Choquet's approach, however, the specification of a function is used to produce input
data for that function and predict the expected result of the function. Test data sets are generated for each
axiom and collected together to form one test data set for the whole specification. Early test data genera-

* tion algorithms produced extensive data sets due to problems in applying the hypotheses. These have been
replaced by a more efficient procedure utilizing constraints on variables to delimit uniformity subdomains
[Choq86]. This improves the implementation of the uniformity hypothesis and so simplifies the test data
generated. A prototype tool implemented in Quintus Prolog is under testing at the Universite de Paris-
Sud.

3.2 Techniques for Dynamic Analysis of Concurrent and Real-Time Programs

As previously stated, testing of concurrent programs invariably starts with testing each task as an
independent unit using sequential program testing techniques. The tasks are then tested jointly, primarily
to examine their synchronization behavior. There are, as yet, few disciplined techniques for this latter

* form of testing. Moreover, since synchronization patterns are partially determined by a scheduler at run-
time, and are thus sensitive to timing, dynamic techniques may not be able to detect all existing faults.
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Researchers at the University of California (Irvine) have developed algorithms for applying structural
testing, based on control and data flow, to concurrent programs [Tayl86a]. In addition to detecting data
flow anomalies, these algorithms can detect synchronization faults such as waiting for an unscheduled
process, waiting for a process guaranteed to have already terminated, and scheduling a process in parallel
with itself. As with sequential programs, structural testing of concurrent programs can be used as both a
test data generation strategy and to measure the adequacy of completed testing. In this latter role, data on
concurrency state coverage, state transition coverage, and synchronization coverage for concurrent Ada
programs is collected and correlated over a set of test runs. Information on concurrency states and con-
currency histories is used, in conjunction with symbolic evaluation techniques, to guide test data genera-
tion.

Recognizing that concurrency-related faults have historically proven very difficult to test for, research-
ers at Stanford University have developed an alternative approach. They propose a type of self-checking
Ada program which provides run-time detection and recovery of faults. This approach exploits two anno-
tation languages which are used to include assertions specifying correct behavior in the program code.
ANNotated Ada (ANNA) (Luck84a] provides assertions on statements, variables, and program units.
Whereas the Task Sequencing Language (TSL) [Luck87] is used to specify constraints to be satisfied by
the sequences of tasking events occurring in the execution of the program. The annotations given in these
languages are automatically transformed into run-time checks that monitor the consistency of the
behavior of the program with its formal specification. (In the case of ANNA, optimize checks and a lim-
ited variety of proof techniques to analyze the consistency of checks prior to run-time are also available.)
The run-time checking against specifications can be executed in parallel with the underlying Ada, reduc-
ing the overhead involved and allowing the checks to be a permanent part of the Ada program.

The current version of TSL, TSL-I, can be used to aid the design of Ada tasking programs, but is pri- 9
marily intended to support testing and debugging. Constructs for defining abstract tasks will be added to
TSL-1 to develop a new language, TSL-2, suitable for specifying distributed systems prior to their imple-
mentation.

3.3 Specific Testing-Related Automation Issues

Although the majority of dynamic analysis techniques are supported by automated tools, these tools
are largely research vehicles or prototypes. The lack of widely available, production quality tools is one of
the factors contributing to the lag in transitioning state-of-the-art techniques into common lractice.
While this deficiency must be rectified, development of individual, stand-alone tools is not the solution. It
is unlikely that a single testing technique will ever be sufficient to guarantee reliable software. Current evi- S
dence indicates that a simple succession of techniques, where each is applied independently of its prede-
cessors and successors, is neither effective nor efficient. Comprehensive testing environments which sup-
port integrated application of a variety of techniques are critically needed. In this context, integrated
means that each technique builds on (partial) information gathered by previous techniques and may itself
provide information to be used by later techniques. On-going efforts investigating the development of
environments which support the cooperative application of dynamic and static techniques are discussed S
in Section 4.6.

There are, however, a number of automation issues which are specific to dynamic analysis. These are
discussed below.

0
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3.3.1 Coverage Analyzers

Coverage analyzers, also called coverage monitors, record information about the structural elements
executed during a program run. Coverage analyzers for sequential software have been available for many
years. Those for concurrent and real-time software, however, lie in the realm of research rather than prac-
tice. The significant problem that occurs in the case of concurrent and real-time software is that the cov-
erage must rellect al possible timing relations, of which there may be an infinite number.

Research into coverage analyzers for concurrent software is following two different approaches. Pro-
gram transformation techniques add logic to a concurrent'program to record pertinent information about
its execution. Alternatively, specialized run-time systems can be developed by modifying the run-time
scheduler to directly record the requisite information. Work in the area of program transformation has
been pioneered by German, Luckham, Helmbold, [Germ82a] and Rosenblum [Rose85b]. They have
developed techniques for transforming a concurrent Ada program into an equivalent program that exhi-
bits the same behavior but also records the state transitions through which the program progresses. The
drawback of this type of approach is the increased overhead which arises from extra entry calls and the
monitor task used to record all tasking activities. This overhead is generally unacceptable for real-time
software where any instrumentation of the code can significantly alter the timing characteristics and,
hence, behavior of the program. One possible solution for this problem is to use a separate processor to
monitor and record information about the program execution.

3.3.2 Debuggers

Debuggers aid in localizing software faults by allowing the software developer to stop the execution of a
program at interesting points and examine the value of such items as program counters and variables. An
interactive debugger allows the developer to step through a program, repeatedly stopping and restarting
the execution, and potentially setting and clearing monitors as necessary. As with coverage analyzers,
many debuggers are available for sequential programs. There is, however, a lack of quantitative informa-
tion about the capabilities and relative values of these tools that must be resolved before specific tools can
be recommended for widespread practice.

The indeterminacy of events in concurrent programs poses a significant problem for debugging. The
behavior of the program is potentially affected by factors out of the software developer's control. Conse-
quently, it may be extremely difficult to reproduce the circumstances that led to a failure and diagnose its
cause. Moreover, the debugger itself may interfere with the execution time and other run-time characteris-
tics (such as paging behavior), resulting in modified patterns of interaction between the processes being
executed. Collecting information which is useful in diagnosing faults is also non-trivial, since a failure may
not actually occur until the program execution is severely corrupted. In consequence, debuggers for con-
current software must be more closely intertwined with testing activities than their sequential counter-
parts.

Researchers distinguish between two types of concurrency; namely, multiple processes executing on a
single processor or concurrent processes executing on several processors. In the first case, a software
developer can look at the order in which events occur to determine the causes of failures, and can stop all
processes at the same instant when necessary. An example of work in this area is that being conducted by
Helmbold and Luckham at Stanford University [Helm83]. These researchers differentiate between possi-
ble types of Ada tasking faults. Task sequencing faults occur when a program's tasks interact in a different
order than anticipated. Deadness faults occur when a task communication failure prevents part of a con-
current computation from proceeding. Whereas most deadness faults can be detected by analysis of the
computation of a program, task sequencing faults often require additional information pertaining to the

31
UNCLASSIFIED



UNCLASSIFIED

intended behavior of the program. Helmbold and Luckham have developed a prototype tool which
detects and analyzes deadness faults. Program transformation techniques are used to modify each task to
inform a special monitor task about tasking actions about to be performed. Based on this information, the
monitor maintains a continually updated picture about the program's tasking state, wh:ch is checked for
deadness faults whenever new information is received. To aid in debugging, the monitor can print
snapshots of the tasking picture and trace task interactions. The interactive interface to the tool allows the
software developer to single-step through task interactions and request diagnostic information as needed.

Future extensions to the TSL monitor will provide the capability to monitor user specified assertions
about task events and so facilitate detection of task sequencing faults [Helm85]. This is part of an overall
effort to develop a testbed for specific kinds of Ada tasking programs, such as run-time schedulers for
Ada tasking on multiple processors. This effort includes the development of a monitor/debugger for TSL
on multiprocessors systems (Sequent Symmetry), and the definition of debugging techniques utilizing TSL
specifications and the TSL monitor.

In the second case, where processes execute on multiple processors, the order in which events occur
can only be determined by looking at the communications between the processes. These communications
must be disabled to suspend all processes at the same relative time (there is a communication delay prob-
lem which makes it impossible to suspend processes at the same actual time). A common approach for
this class of debuggers is to use a hierarchy of tools consisting of a traditional debugger to aid in testing
each process independently and a higher-level debugger to monitor communications. A review of
debuggers for concurrent programs executing on different processors is given in [Gord88].

In [Gord88], Gordon and Finkel also describe their tool TAP which is implemented on the Charlotte
[Fink83] distributed operating system. TAP is used to detect timing faults which are caused by misorder-
ing of the communication events between processes. It maintains a history of the communication events
that occur during software execution as a directed, acyclic graph, called a timing graph. The nodes in a
timing graph represent events, whereas arcs from one node to another indicate the temporal pre-
cedence between events. TAP is designed to be always active, thus overcoming the problem of the
debugger changing the behavior of the program being monitored and potentially masking faults. Using
TAP, a skeleton timing graph is continually built during the program execution. When a fault is encoun-
tered, TAP suspends all processes, constructs the full timing graph, and waits for instructions from the
user. It then aids in diagnosing the cause of the fault by allowing the user to backtrack through the timing
graph to examine the order in which events occurred and the contents of messages. Since, unlike most
debuggers of this class, TAP can analyze communication events after the fact and does not require
active control over the execution, it can be used both during program testing and to find timing faults in
operational software.

The worst case debugging problem occurs when concurrent processes must operate under real-time
constraints on a bare machine. Here the common practice is to develop and test the software on a host
machine where extensive development support is available and then perform limited testing on the target
machine. The target may provide no support for debugging activities. If a failure occurs during testing on
the target, it is often necessary to return to the host to isolate the cause. Even if the same scheduler algo-
rithm is used on both machines, different behaviors may occur due to differences in processor construc-
tion. Examples of factors which cause the target execution to deviate from the host execution include: a
less (or more) precise real-time clock, real-time input simulators on the host that operate at a different
rate to the actual inputs to the target, and variations in the relative speed of the processors. Taylor, at the
University of California (Irvine), is investigating techniques to allow reconstruction of an erroneous target
execution at the source language level (Ada) on a host machine [Tayl82b]. Although prototype tools are
being developed, it will likely be several years before practical solutions to this problem are available.
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3.3.3 Built-In Test

Although nearer to the hardware aspect of instrumentation, the issue of built-in-test (BIT) [Batt87]
must also be considered. Beginning in the late 1960's, troubleshooting of electronic components embed-
ded in weapon systems became too complex for traditional, manual approaches. As a result, diagnostic
probes began to be built into electronic components to allow easier detection of faults. These probes, or
diagnostics, must be designed into electronic components; they cannot be added as an afterthought. Most
DOD embedded weapon systems are designed with BIT as an operational requirement.

In a similar vein, a separate autonomous machine can be used to monitor system execution. Although
potentially expensive, this approach, theoretically, does not affect timing characteristics and can provide
"playback" for reproducing specific execution sequences. It can also be used to limit the execution over-

*• head incurred for self-checking code, or the dynamic monitoring provided by tools such as TAP. Support
for permanent self-test of concurrent software by downloading the checking of TSL specifications onto
spare processors is under investigation at Stanford University.

3.4 Summary of Major Gaps in Dynamic Analysis Technology

So far this section has outlined the dynamic analysis technology that has been, or is being, developed.
Not all of this technology is currently available for use, or would be suitable for SDS software efforts were
it available. But what technology is needed? Other sections of this report raise the question of how all the
different forms of testing and evaluation should fit together, and how they should cooperate with develop-
mental activities. Here, a number of technology gaps that are particular to dynamic analysis and indepen-

* dent of these larger issues can be identified. By and large, these gaps are not simple, independent prob-
lems; the state-of-the-art is not yet at this point. Instead, these gaps reflect some of the fundamental
deficiencies in software testing and evaluation.

3.4.1 Need for Oracles

Most dynamic analysis techniques require some means for determining whether the program output is
correct. Conceptually, at least, this implies the need for an oracle which can produce "correct" programs
outputs against which actual outputs can be compared. In practice, humans usually play the part of the
oracle, although this can result in high testing costs and is often inaccurate for all but small programs.

Some techniques resolve the lack of an oracle by creating formal, executable specifications to generate
the expected output. When these derive specifications from the code itself, however, there is at least the
possibility of mirroring erroneous program assumptions in the created specification. Some researchers
have proposed using N-version programming to deduce correct outputs based on the consensus of the N-
versions of a program. Unfortunately, recent research indicates some problems with the fundamental N-
version hypothesis that requires statistical independence between failures in the N-versions of a program

O (see Section 2.1.3).

It is probable that no adequate solution of this problem will be achieved until increased formalization
of early lifecycle activities yields sufficiently formal specifications (embodying, for example, first-order
predicate calculus) to define software processes. Even then, the difficulty in defining all correct
sequences of events poses problems for concurrent and real-time software.
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3.4.2 Completeness of Analysis

What is the meaning of a successful test? A good test is one which exposes faults. The meaning of a test
in which the software executes successfully is uncertain; it does not necessarily indicate the absence of
faults. This is part of the larger question of completenes or, in other words, knowing what has been
achieved in testing activities. Although completeness in general applies to the overall testing and evalua-
tion activity, it is particularly troubling for dynamic analysis techniques. Unlike many other forms of test-
ing and evaluation, these techniques are not simply applied or not applied; they can be applied to widely
varying extents.

Much research is needed before this issue can be fully understood. Meanwhile, a very simplistic solu-
tion is to tie the notion of completeness to the concept of minimum levels of testing coverage. (This is an
extremely limited translation of completeness and is proposed only as a stop-gap measure for practical
purposes; that is, it provides a step forward but falls a long way short of the ideal.) Wide acceptance of a
minimum level of testing coverage for all software systems has long been sought. This is starting to be
achieved as industry increasingly accepts branch testing as the minimum coverage requirement. In the
case of SDS, however, branch testing is an inadequate across-the-board minimum. A hierarchy of
minimum coverage requirements must be determined such that increasingly severe coverage requirements
can be mapped against increasingly critical software. These coverage measures must address different
aspects of dynamic analysis, such as the coverage required for structural and data flow testing, fault-based
testing adequacy measures, and functional testing coverage.

3.4.3 Assessment of Capabilities of Techniques

The last several years have seen a relative increase in experimental evaluations of dynamic analysis
techniques. For illustrative purposes, the results from two of these evaluations are reproduced in Figure
3-3 and Table 3-2. Experiments such as these not only provide empirical evidence of the utility of particu-
lar techniques for detecting certain types of errors or faults, but some general guidance on how, or which,
techniques can support each other for more thorough analysis. While some of these experiments were
admittedly conducted on small, sample programs, others utilized realistic programs intended for practical
use. The chief handicaps in comparing the results across experiments remain: (1) the continuing lack of a
standardized error/fault categorization scheme, and (2) the limited volume of experiments.

This work notwithstanding, practical descriptions of the error/fault detection capabilities and costs of
existing techniques are still unavailable. In a few cases, such as data flow testing and domain testing, sim-
ple cost information pertaining to the number of test cases needed to achieve various levels of testing cov-
erage is available. This must be supported by data on the cost of generating and executing test cases
which, of course, is impacted by the available automated support tools and the underlying operating
environment. The cost to analyze test results can also be a pertinent factor. Even so, this information is
only meaningful in terms of the increased reliability these costs deliver. Since testing is a time consuming
and expensive task, it is important that "the point of diminishing returns" can be recognized in a timely
manner, as this applies to the case in hand.

Information on capabilities should specify how the performance of a technique varies for different
types of programs. For example, the use of certain control and data structures can severely degrade the
cost-effectiveness of certain techniques. Some techniques simply do not handle array references; arrays
are treated as a single variable and array elements are not differentiated. A series of weightings that distin-
guish between programs in terms of their testing difficulty is needed. Assessment of a technique's
effectiveness must also take into account any fundamental limitations or assumptions. For example, coin-
cidental correctness is a limiting assumption of many techniques. Coincidental correctness occurs when a
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All-edges 0 79
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* computation errors domain errors

FIgure 3-3. Frequency of Errors Detected

* fault is executed but the program does not fail, thus an incorrect program may be falsely assumed correct.
Determining the absence (or presence) of coincidental correctness is generally undecidable, but some
new analysis techniques are beginning to address how to ensure that the effect of a triggered fault is indeed
transferred to the output. The relative costs and benefits of using techniques as either test data generation
strategies or adequacy measurement tools should also be investigated. This latter point is just one part of
the more general question pertaining to the cost-effectiveness of variously combined applications of tech-

* niques.
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# Test Mutants MutationTest Data Technique Cases Killed Score

Statement Analysis 5 642 .67

Specification Analysis 13 780 .81

Branch Analysis 9 749 .78

Minimized Domain Analysis 36 932 .968

Domain Analysis 75 943 .980

Mutation Testing 347 962 1.00

Table 3-2. Comparison Using the MOTHRA Mutation System

Taken as a whole, capability profiles would provide urgently needed guidance in the selection and appli-
cation of appropriate techniques for each testing effort. They would also be useful in determining which
techniques should be provided by a comprehensive testing environment. Both theoretical and empirical
evaluations of techniques are needed to acquire the necessary data; theoretical studies to provide insight
into the power and effectiveness of techniques, and empirical trials to reveal the ease of use of a tech-
nique. Experimental studies are particularly important in dynamic analysis research since worst case
analysis often gives very pessimistic upper bounds that do not satisfactorily reflect practical performance.

3.4.4 Integrated Application of Techniques

No single analysis technique is sufficient to ensure highly reliable software. Researchers are discovering
that a simple sequence of several different techniques applied independently does not necessarily increase
error/fault detection capabilities. Moreover, many techniques rely on much of the same basic information
(such as control and data flow patterns), and sequential application of techniques is highly inefficient as
the same information must be generated repetitively. The relationship between techniques must be closely
examined to identify those which best support one another, or even subsume others. Powerful and
efficient testing environments cannot be built until such integrated techniques are available. At a higher
level of concern, the relationship between the different forms of testing and evaluation needs to be stu-
died. The distinction between, for example, dynamic analysis, static error analysis, and formal
verification is narrowing as symbolic evaluation is increasingly a necessary precursor for each.

These problems are well-recognized and several researchers are examining approaches for integrating
dynamic analysis techniques with some forms of static analysis. Hopefully, integrated techniques will start
emerging in a couple of years. Meanwhile, the larger picture of integration must not be ignored.

3.4.5 Analysis of Concurrent and Real-Time Software

There is an acute lack of techniques for dynamic analysis of concurrent and real-time software.
Although there is an emerging set of static techniques, only dynamic approaches are able to detect prob-
lems arising from the execution environment of the software.
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* Unlike the foundation provided by graph theory for analysis of sequential programs, there is no com-
monly accepted theoretical base for analysis of concurrent and real-time software. Fundamental research
is needed to develop a firm foundation from which technology can evolve. There are a few instances of
such work, for example that being conducted by Weiss [Weis88a]. At the current time, it would be prema-
ture to select just one of the emerging approaches and concentrate research resources in that direction.
Multiple research avenues must be pursued with plenty of cross-fertilization and dissemination of infor-

*• mation between efforts. In view of its dependence on the operating environment, this research should
include efforts which take a combined view of software and hardware concerns.

0
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4. STATIC ANALYSIS TECHNOLOGY

There are many different types of static analysis. For practical purposes, formal verification techniques
and techniques oriented towards measurement of critical software properties are discussed separately, in
Sections 5, 6, and 7.

Remaining static analysis techniques can be divided into four groups. The first group consists of those
techniques which produce general information about a program, for example, symbol cross-referencers,
rather than search for actual faults. These are relatively common and often provided by a compiler. The
second group, static error analysis3 techniques, are designed to detect specific classes of faults or
anomalous constructs in a program. They focus on type and units analysis, reference analysis, expression
analysis, and interface analysis. While some types of static error analysis can be automated, others are
restricted to manual application. In contrast, the third group, symbolic evaluation techniques, are entirely
automated. The final group consists of manual review techniques, namely code inspections and structured
walkthroughs. This section concentrates on the latter three categories and discusses the state-of-the-art in
these types of static analysis for sequential programs, concurrent and real-time programs, and pre-
implementation products.

The final subsections summarize the major technological gaps in this area and review the current trends
in automated support for both dynamic and static analysis.

4.1 Techniques for Static Analysis of Sequential Programs

Data flow analysis was one of the earliest static error analysis techniques and focuses on the detection
of violations of sequencing constraints. It was derived from work in compiler code optimization where
information is gathered to increase code efficiency by eliminating unnecessary computations. Initial work
on data flow analysis was conducted by Fosdick and Osterweil. They defined a data flow anomaly as "a
sequence of the events reference (r), definition (d), and undefinition (u) of variables in a program that is
either erroneous in itself or often symptomatic of an error" [Fosd76a]. A software developer is required
to specify all desirable and required sequences of events, the program is then analyzed to detect viola-
tions, which may arise from omitted and superfluous code errors.

Numerous notations for specifying sequencing constraints have been developed. These are based, for
example, on the path expressions of Habermann [Camp79,Kieb83J; finite state machines [Howd83]; flow
expressions (an extension of regular expressions) (Shaw78]; and axiomatic specifications [Gutt78a]. Vari-
ous tools for applying data flow analysis have been developed [Fosd76a,Brow78,Conr85], mostly for
analyzing Fortran programs. Data flow analysis has also been proposed as a way of guiding test data selec-
tion; the resulting data flow testing techniques are discussed in Section 3.1.1. Much of the early data flow
analysis work focused on techniques and tools for the detection of fixed, and frequently limited, classes of
data flow conditions. In the last few years, Olender and Osterweil have developed a more flexible mechan-
ism for specifying a variety of event sequencing problems, which can be mechanically translated into algo-
rithms capable of solving these problems (Olen86].

Another common static error analysis technique is interface analysis. In [Howd87], Howden identifies

3. As is the case with various aspects of error-based and fault-based testing, the term static error analysis is a historical artifact.
These techniques would be more properly categorized as static fault analysis techniques.

39
UNCLASSIFIED



UNCLASSIFIED

three levels of interface analysis, these are: module-interface analysis, data-interface analysis, and
operator-interface analysis. Module-interface analysis is the highest level of interface analysis. It is used to
analyze the interfaces between system objects for consistency, completeness, and redundancy. Data-
interface analysis, the next level of analysis, exploits user provided descriptions of the expected transfor-
mations to examine the transformations of one type of data into another that occur within a program
module. Finally, the lowest level of analysis, operator-interface analysis, analyzes data structure operators
to determine whether (1) these operators are applied to appropriately typed objects, and (2) the sequence
of operators is, in fact, legal. (Of course, these types of interface analyses are automatically provided by
compilers for languages such as Ada which provide encapsulation and strong-typing).

During empirical studies of large systems, Howden noted that the significant problems in these systems
arise from the difficulty of keeping track of data, rather than the more specific types of faults such as com-
putation faults. This led to the development of a new analysis technique for detecting decomposition
errors, called flavor analysis [Howd87]. Here flavors denote the meaning of particular variables and can be
used in much the same way as type information is used to determine proper variable usage. In order to
detect incorrect assumptions (concerning variable names or missing code, for example), flavor statements
are included in the code and subsequently analyzed for consistency. Howden describes two types of flavor
statements, those which summarize (1) current assumptions about flavors, and (2) the flavor effects of
statements or sections of code [Howd89]. Although flavor statements can be translated into both
compile-time and run-time checks, Howden states that their primary use is in static detection of false
assumption decomposition errors. An initial flavor analysis tool has been developed. An advanced tool
which can check assumptions about scheduling and temporal assumptions is planned to support flavor
analysis of concurrent and real-time software.

Symbolic evaluation is a technique whereby a program is executed over symbolic rather than actual
data. Symbolic values are assigned to input variables and the user selects a path through the program to be
evaluated. Each expression along this path is evaluated by substituting symbolic values for the variables.
Thus, symbolic evaluation can be used to analyze the conditional branching predicates of a program, in
addition to the output computations. The approach can be varied by symbolically evaluating a program
over a mixture of actual and symbolic data, or examining the traces of intermediate symbolic values
assigned to variables.

Symbolic evaluation is used for a variety of purposes. In symbolic testing [Howd77a], symbolic values
of output variables are generated and compared (usually manually) against a program specification to
identify faults. Symbolic systems of predicates for a program path can be used to analyze the subsets of
the input domain that cause particular program paths to be executed; test data to execute these paths can
also be generated [Rich85a]. In this capacity, symbolic evaluation techniques are an essential element of
many of the dynamic analysis approaches discussed previously. They also provide the capability to detect
infeasible paths, although rules for determining feasibility cannot detect all such paths. Symbolic evalua-
tion is also used in proofs of correctness. Meanwhile, its potential continues to be investigated. Perhaps
the most recent innovative application of symbolic evaluation is Moreli's approach to combining symbolic
evaluation with mutation testing, yielding a fault-based dynamic analysis technique with both global extent
and infinite breadth (see Section 3.1.3).

4.2 Techniques for Static Analysis of Concurrent and Real-Time Programs

Taylor and Osterweil have extended data flow analysis techniques to detect faults and anomalies in con-
current programs [Tayl8Oa]. The same classes of variable usage faults sought in sequential programs can
be found in concurrent programs, for example, referencing an uninitialized variable. A number of data
flow faults unique to concurrent programs can also be detected. In this latter case, Taylor and Osterweil
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have developed algorithms for detecting the following faults and anomalies: (1) waiting for an
unscheduled process, (2) scheduling a process in parallel with itself, (3) waiting for a process guaranteed
to have previously terminated, (4) referencing a variable which is being defined by a parallel process, and
(5) referencing a variable whose value is indeterminate. Both interprocess and interprocedural data flow
are analyzed, based on process augmented flowgraphs (PAFs) which provide a graph representation of a
system of communicating concurrent processes.

Another area being investigated by Taylor is static concurrency analysis. This technique identifies
anomalous synchronization patterns in concurrent programs through state-based program analysis tech-
niques. Unlike dynamic analysis approaches, static concurrency analysis can potentially examine all pos-
sible synchronization patterns. It does, however, suffer some disadvantages. Static analysis cannot iden-
tify all infeasible paths and so may report spurious faults involving these paths. Moreover, static con-
currency analysis has been shown to be NP-complete and is only practically useful for programs compris-
ing a relatively small number of processes. As with all static approaches, it is weak in dealing with dynami-
cally identified objects such as array elements and pointers. With respect to Ada, this includes task entry
families and tasks that are components of dynamically allocated data objects.

Together with other researchers at the University of California (Irvine), Taylor has developed an
approach for mitigating some of these problems. Here static concurrency analysis is combined with sym-
bolic execution, by interleaving phases of the two techniques [Youn86a]. This interleaving allows symbolic
execution to prune away the infeasible paths otherwise identified by concurrency analysis, and con-
currency analysis to support symbolic execution by selecting paths leading to possible concurrency-related
faults. Tools to apply this approach to Ada programs are under development.

Another group of researchers, at Stanford University, are developing a language for the specification of
distributed Ada systems that will facilitate both static and dynamic analysis [Luck87]. TSL (see Section
3.2) is intended to provide rigorous investigation of concurrent programs without the overhead imposed
by formal verification. The first version of TSL was developed to explore the underlying concepts
involved in the specification of concurrent systems. Based on their success in so doing, a more general-
purpose, second version of the language (TSL-2) has been developed, together with some automated
analysis tools.

4.3 Techniques for Static Analysis of Pre-Code Products

Data flow, concurrency, and interface analysis are not restricted to code products. Assuming that
appropriately formalized representations are used, they can also be applied to pre-implementation pro-
ducts. For example, researchers at the University of Massachusetts have being investigating issues revolv-
ing around the description, enforement, and analysis of relationships between system components. Their
approach to providing Precise Interface Control is called PIC [Wolf86c]. PIC extends the visibility con-
cepts of declaration, scope, and binding which underlie traditional interface analysis by distinguishing
between two types of visibility. These are requisition of access (which occurs when an entity requests the
right to make reference to, or use, some set of entities) and provision of access (which occurs when a
entity grants the right of reference to some set of entities).

The PIC approach supports a variety of analyses. Basic interface analysis examines type and
requisition/provision information to determine the interface consistency within and among modules. Stub
analysis checks the consistency between the view taken by each referencing module of a particular stub,
and the consistency of each of these views against some "official" specification of that module. Finally,
update analysis compares two versions of the same submodule to look for changes in declarations,
requisition/provision specifications, or references to non-local entities. Although update analysis does
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not directly address interface analysis, it is useful for identifying parts of the software which require
reanalysis following some change. In each case, different forms of these analyses are provided to
correspond to different types of (sub)modules.

The AdaPIC toolset is an instantiation of the PIC approach for use with large Ada systems. This proto-
type toolset is being tailored to support consistent abstractions, incremental analysis, and order-
independent development so that an incremental approach to interface control can be adopted.

Safety analysis is a critical concern for complex systems such as the SDS. Even if error-free software
were a feasible objective, the possibility of failures in the operating environment still pose safety risks.
Leveson defines a technique called Software Fault Tree Analysis (SFTA) for analyzing the safety of a
software design, independently of its functionality. This technique can be performed at various levels of
abstraction, on either designs or code (the use of SFTA on Ada code is discussed in [Cha88]).

SFTA is derived from fault tree analysis (FTA), a technique originally developed to measure hardware
safety. This genesis has the benefit of allowing hardware and software fault trees to be linked together at
their interfaces, so that an entire system can be analyzed. FTA starts with a hazard analysis of the system
where potential hazards are identified and classified according to their severity. As part of this process,
failures which impact system safety are distinguished from nonsafety failures; safety failures are those
where the ability to provide degraded operation takes second place to the need to minimize the damage of
the failure. The root of the fault tree is then given by specifying a critical failure which is assumed to have
occurred, called a loss event. SFTA uses backwards reasoning to identify all possible conditions which
may lead to this failure, building the fault tree by showing the relationships between these conditions. This
analysis continues until all the leaves susceptible to analysis describe events of calculable probability. At
the point where the fault tree reaches the software interface, high-level requirements for software safety
have been determined based on software behavior which could compromise system safety. SFTA then (1)
demonstrates that the design logic will not produce safety failures, and (2) determines the environmental
conditions which could lead to a software generated safety failure.

In FTA, failure statistics cai 'e produced and sensitivity analysis used to measure the effect of each
loss event. In [Leve83a], Leveson describes how such numerical analysis is less suited for the software
case and defines the following uses for SFTA:

" Identification of the most likely causes of a loss event, which can guide testing and
evaluation efforts and pinpoint those areas where most testing dollars should be
allocated.

" Identification of critical modules which require special fault-tolerance pro-
cedures, e.g., run-time assertions, exception handling, or redundancy.

" Identification of unsafe states and the conditions under which fail-soft and fail-
safe procedures should be invoked.

Tools to aid in the production and analysis of fault trees are being developed at the University of Califor-
nia (Irvine). Researchers plan to use these tools to gain further understanding of SFTA.

4.4 Manual Review Techniques

Manual review techniques such as structured walkthroughs [Myer78a] and code inspections [Faga76]
evolved from the simple desk checking approaches commonly used by software developers. Each type of

42
UNCLASSIFIED



UNCLASSIFIED

review is performed by a team of software developers, each of whom plays a well-defined role to focus
attention on different aspects of the program. The major distinction between these two techniques lies in
the goal of the review. The purpose of an inspection is to check for specific errors identified on an error
checklist. Walkthroughs have a wider scope of concern. In addition to manually simulating the execution
of the software, the participants review design decisions and the overall approach taken by the developer.
Although these reviews are expensive in terms of the manual effort required, they are among the most
cost-effective techniques for eliminating faults. They also offer a significant side benefit in team building
and ensuring back-up knowledge about a piece of software.

Walkthroughs and inspections can be applied in diverse ways. For example, a review may be conducted
by all participants acting in concert, or by participants reviewing the software product independently and
then pooling results. Table 4-1 shows results of a small-scale experiment which investigated different appli-
cations of review techniques, as reported in [Myer78a]. Gannon has reported on the frequency with
which different types of errors were identified by using inspections and branch testing independently and
in conjunction [Gann79a], see Figure 4-1.

Method Mean # of Median # of Range of Cumulative Mean Man-Minutes
Errors Found Variance Errors Found Errors Found Errors Found Per Error

A. Computer-based + specification 4.5 4.8 4.5 1-7 13 37

B. As inA, + listing 5.4 5.5 5.5 2-9 14 29

C. Manual walkthrough/inapection 5.7 3.0 6 3-9 11 75

D. Pooling independent results using A 7.3 3.6 8 4-10 13 34

E. As D, but using B 8.3 2.8 8 6-11 14 34

F. As D, but using A and B 7.2 3.4 7.S 3-10 15 37

G. Combined A and C 7.6 4.3 8 5-10 14 15

Table 4-1. Comparison of Different Applications of Review Techniques

These review techniques are not restricted to implementation products. With the appropriate roles
and, in the case of inspections, lists of potential errors, they can be applied to any type of software pro-
duct.

4.5 Summary of Major Gaps in Static Analysis Technology

Many of the critical gaps identified for dynamic analysis technology also apply to static analysis. For
example, the issue of integrated application of techniques affects both dynamic and static analysis. Quan-
titative information on the capabilities and costs of static analysis techniques is also needed. While such
capability profiles should be much simpler to determine for static than dynamic techniques, this informa-
tion is still unavailable. There is still a lack of proven capabilities for the static analysis of concurrent
software. Even more than in the case of dynamic analysis, existing techniques are at the boundaries of the
state-of-the-art and have only been applied on small, example problems. Much additional research is
needed. In particular, since static analysis of concurrent software is often a NP-complete problem, a
better understanding of how this analysis can be made sufficiently fast is necessary. The need for transfer
of promising technology into practical use is again a critical concern.
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Figure 4-1. Percentage of Errors Discovered by Inspections and Branch Testing Using the Fortest Sys-
tem

The remainder of this subsection discusses three problems which have impeded the use and develop-
ment of static analysis technology. The first relates to the programmatic issue of requiring use of available
static analysis techniques. The second addresses the lack of common, formal representation forms for
early life cycle products.

4.5.1 Establishing Static Analysis Policy

The earlier parts of this section focused on the more advanced types of static analysis. Looking at the
entire body of software static analysis technology, some of which has been around for well over a decade,
there are many available techniques. Since most of these are fully automated, requiring little effort on the
part of a software developer, they are relatively cheap to apply. Although manual review techniques are
not, of course, automated, sufficient data has been collected to demonstrate their usefulness.
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There should be a well-established policy requiring routine use of a core set of these techniques.
Instead of a collection of ad hoc tools, this core set (where appropriate) should be supported by a well-
designed collection of commercially developed, cooperating tools.

4.5.2 Common Set of Formal Representations for Pre-Implementation Products

With the exception of various simulation and modeling approaches, static analysis is the main vehicle
for examination of pre-implementation products. Unlike the dozen or so commonly used programming
languages, there is a great number of representation forms for early life cycle products. These languages
not only differ in syntax and semantics, but exploit a diverse variety of underlying conceptual models.
Many embody only a limited degree of formalism which has precluded rigorous analysis of early develop-
ment products. Lack of a widely-used, common set of languages has diffused the efforts of an already
small research community and impeded the development of a substantial body of static analysis tech-
niques (and supporting tools) for any particular language.

The need for increased formalism in early development activities has long been recognized. The reason
why it rarely occurs in practice lies in the difficulty of using formal languages. While not all formalisms
are, or need be, highly mathematical, the few existing formal languages generally employ mathematical
reasoning which is beyond the educational preparation of most software developers. Although these
languages could be designed for easier use, and better supported by automated tools, there is a fine line
between providing easy-to-use notations and loosing the benefits of strict formalism.

4.5.3 Compatibility of Modular Interfaces

Although some work addressing the compatibility of modular interfaces is being performed, this is an
area deserving much more attention. In particular, compatibility of hardware/software interfaces needs to
be addressed. In as much as systems design will emphasize modularity in the future, and formal
specification of interfaces, symbolic execution, testing, or formal verification methods for establishing
interface consistency are needed.

4.6 Automated Support for Dynamic and Static Analysis

Increased emphasis must be placed on the development of production quality, automated support
tools. Automated tools have long been an essential ingredient for effective and efficient testing and

* evaluation. As techniques become more complex, tools which automate the application of these tech-
niques are increasingly indispensable. While extensive automation is not the solution to all testing and
evaluation problems, it will significantly reduce the traditionally human-intensive nature of testing and
evaluation. The provision of an integrated environment to support the use of state-of-the-art analysis
activities will be a key element in their success. It is worthwhile noting, however, that as more sophisti-
cated toois are developed to apply techniques in an integrated manner, software developers will require

• more education in the use of tools. Guidance will be necessary to ensure the proper and imaginative use
of such tools in each type of circumstance.

At the turn of the decade, the majority of tools were those that provided analysis capabilities for For-
tran, Cobol, and PL/1 programs. Several reviews of available tools are to be found in the literature. One
of the most recent reviews was that conducted as part of the STEP effort [DeMi87a]. Over recent years,

* the trend towards supporting analysis of these older languages has been changing and the majority of new
prototype tools are being developed to support the analysis of Ada programs. As research vehicles, these
prototypes are not designed to be robust, easy to use, or portable. In many cases, significant effort will be
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required to develop production quality counterparts that are suitable for widespread use. Yet it is vital that
this effort be expended as part of the technology transfer activities necessary to bring new technology into
everyday practice.

While stand-alone tools applying individual techniques were very much the norm in the 1970's, the
recognized need for multiple techniques cooperating in an integrated strategy is promoting the develop-
ment of a few powerful testing and evaluation environments. The Mothra environment [DeMi87b],
developed by the Georgia Institute of Technology and Purdue University, is one of the first such environ-
ments. It currently provides mutation testing, structural testing, and a form of functional testing. Sym-
bolic testing is expected to be added within the year. The existing system supports analysis of Fortran pro-
grams, and it has been distributed to a few sites for evaluation and beta testing. Another version support-
ing analysis of Ada programs is expected to become available in the near future. Since mutation testing is
computationally intensive, researchers are investigating how to merge large numbers of program mutants
into a small set of highly vectorizable programs which can exploit the architecture of vector processors,
such as the Cray X-MP or the Alliant FX/8, for efficient execution of all the mutants [Math88a].

Researchers at the University of Massachusetts are in the early stages of developing another extensive
Ada testing and evaluation environment [Clar88b]. Their intention is to support all the major, current
analysis approaches, including data flow testing, EQUATE, and RELAY. This environment, called the
Testing, Evaluation, and Analysis Medley (TEAM), is designed as a hierarchy of tools that is both flexible
and extensible. Accordingly, there are two important aspects to the design. First, the system architecture
is designed to provide layers of capabilities that support more advanced analysis techniques. Second, as
many general capabilities as possible are recognized. One tool in particular, the ARIES generic inter-
preter, will be central to many other tools. ARIES has several distinctive features: (1) it is an generic
interpretation system which is instantiated to yield a customized interpreter for use in a particular tool, (2)
it is multilingual and can be used with a variety of procedural languages, and (3) it is a multi-computational
model system capable of supporting both conventional models of execution and a variety of symbolic and
data flow models. It is expected that this interpreter will provide the symbolic interpretation capabilities
required for an Ada symbolic evaluation system.

One of the goals of the TEAM environment is to allow researchers to conduct experimental studies of
existing analysis approaches. In particular, researchers plan to investigate the integration of analysis tech-
niques, analysis support for pre-implementation products, and incremental analysis of potentially incom-
plete products. In addition to the emphasis on generic and language-independent capabilities mentioned
above, Clarke cites several additional requirements for TEAM [Clar88b]. These include effective user
interaction models providing natural interfaces which reduce the burden on the user and ensure interface
uniformity across tools. A process programming approach [Oste87a] will also be adopted such that
TEAM itself will prescribe the acceptable uses and interactions among tools, relieving the user of
unnecessary responsibilities and facilitating the inclusion of new capabilities.

This effort, as a whole, is being carried out in the context of the Arcadia software development
environment [Tayl88I. The initial prototype of the TEAM environment will contain basic data flow and
symbolic evaluation capabilities and should be running by the end of 1988.

The prototype software and hardware development environment being built by researchers at Stanford
University [Luck86a] has a wider focus than the efforts so far discussed. This environment is based on the
use of wide-spectrum languages which provide a notation for describing the intended behavior of a system
and the implementation of that behavior. These languages are ANNA, TSL, and the VHDL Annotation
Language (VAL) [Luck86a]. Special emphasis is placed on distributed computing, both in providing tools
for handling concurrency in the subject system, and in designing tools that utilize concurrency in the
environment itself. ANNA and TSL can be used to develop specifications of Ada systems that are
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susceptible to, xespectively, symbolic execution and simulation. Annotations given in these languages can
also be automatically transformed into run-time checks which, as mentioned in Section 3.2, provide a
form of self-checking Ada software. The prototype environment contains most of the tools required to
support these functions, in various stages of maturity. In addition to the potential power of the testing and
evaluation functions supported, this environment is very promising in its ability to integrate testing and
evaluation into system development activities.

Looking at the field as a whole, however, it is clear that the number of static analysis tools is much
smaller than the number of dynamic analysis tools. In view of the complimentary roles and benefits of
static and dynamic approaches, this imbalance should be rectified.

It is also important to emphasize the critical need for flexible environments. Any environment
(whether intended to support development activities, testing and evaluation activities, or both) which can-
not continue to integrate the increasing numbers and types of tools that will emerge in the coming years
will have a very short-lived usefulness. The necessary flexibility must be designed into an environment.
Although this requires additional upfront planning and expenditures in the environment development
process, it would be "penny-wise and pound-foolish" to follow any other course.
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* 5. FORMAL VERIFICATION TECHNOLOGY

This section reviews the state-of-the-art in formal verification technology. After a brief overview cf
what formal verification attempts to achieve and what benefits it offers, the current status of the technol-
ogy and ongoing research and development are reviewed. Finally, some high-level technology issues are
raised and recommendations are discussed.

5.1 Focus and Benefits of Formal Verification

The objective of formal verification is to prove, using mathematical logic, that systems, in theory, will
behave according to their specifications. The term formal refers to the level of rigor required in system
specifications and the construction of valid proofs. English is not a precise enough language for stating
technical specifications or arguing that systems satisfy their requirements. Mathematical notations with
rigorous definitions provide the necessary precision and allow system correctness arguments to be
checked by automated tools. The clause in theory is included to recognize that proofs apply to idealized
models of systems, not to the actual physical systems themselves. For example, verification of high-level
language software assumes the correct and reliable operation of compilers, run-time support systems, and

* hardware.

Several ingredients are necessary to prove properties of systems, including:

1. Rigorous definitions or specifications of the behavior and performance required
to achieve each property - typically a set of system relationships that must hold

* under all circumstances;

2. Rigorous definitions of the meaning (that is, effects) of all statements and
expressions that can be formulated in the programming language used - also
called the language's formal semantics;

3. Rigorous definitions of the effects of each machine instruction available on the
• target hardware; and

4. Sound rules of logical inference, which guarantee that only true assertions can
be proved.

Verification and testing should be viewed as complementary technologies. Proofs address entire
classes of possible circumstances, where testing exercises only a relatively small number of actual cases.
Verification is useful, therefore, to assure system properties that are impossible to test adequately. Secu-
rity in operating systems, for example, can be assured by proofs of security properties, but is extremely
difficult to assure through testing. Verification is not a substitute for testing, however, because tests can
be applied to actual physical systems as well as to idealized models. That is, testing can produce counter
examples that invalidate assumptions upon which proofs are based. Proponents of formal verification are
not likely to volunteer to fly in aircraft that have been verified but not tested.

5.2 Status of Current Technology

This section briefly surveys currnt verification techniques in three areas: software, hardware, and sys-
tems.
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5.2.1 Techniques for Software

The principal techniques for verifying software are described below, starting with techniques for simple
sequential software. These techniques apply to software designs expressed as high-level programs as well
as to actual program code. Programming language features that complicate the verification process are
then briefly discussed, followed by descriptions of additional techniques for verifying concurrent and
parallel software.

5.2.1.1 Sequential Software

Techniques for proving properties of programs written in conventional procedural programming
languages are the oldest and most well known to software and system developers. These techniques were
introduced by Floyd [Floy67] and Hoare [Hoar69], and have been refined and improved by numerous
researchers, including Dijkstra [Dijk76a] and Gries [Grie8l].

The general approach assumes that programs start in an initial state with a set of initial conditions, and
must complete in a state that satisfies a set of required final conditions. This may be represented symboli-
cally in two possible forms. The first is

initialstate [ program ) final_state

finalstate - requiredfina 1_conditions

which means: starting from the initial state, executing the program will result in the final state, and the
final state satisfies (implies) the required final conditions. The second form is

initialstate --+ weakestinitialconditions

weakestinitial conditions [ program I required finalconditions

The weakest initial conditions are the minimal conditions under which executing the program will
always result in satisfying the required final conditions. This second form is preferred for developing a
program and its proof together as one process.

Programs are made up (typically) of sequences of statements. Proof rules for sequences of statements
require the result of each successive statement to satisfy the weakest preconditions for the next statement.
Symbolically, this can be expressed as 9

w-Akestinitial condition [ statement_1 I intermediateresult

intermediateresult -. weakestintermediateprecondition

weakestintermediateprecondition ( statement_2 ) requiredresult

Weakest preconditions are typically derived in reverse order, starting with the last statement in the pro-
gram. Proving that a program satisfies its requirements amounts to deriving the effects of each statement
and proving that all intermediate results imply the corresponding intermediate preconditions.

Additional rules for interpreting the effects of assignment statements, conditional statements, loops, •
and procedure calls can be spelled out in terms of the results they produce. For example, a conditional
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statement such as

IF test-condition THEN
thenstatements

ELSE
else-statements

END IF;

can produce two possible results: one produced by the then..statements, when the test condition is true,
and one produced by the elses-tatements, when the test condition is false. Turning this around to look for
a weakest precondition to achieve a required result requires solving the following expressions:

weakest-precondition
AND testcondition ( thenstatements ) then-result

weakest_precondition
AND NOT testcondition [ else-statements ) else-result

thenresult - required-result

elseresult - requiredresult

That is, the weakest precondition for an if-then-else statement is the most general condition that allows
both alternative results to satisfy the required result.

Loop statements that have conditional exits operate much like conditional statements. Loops, how-
ever, require the derivation of another condition called the loop invariant. Consider, for example, the
loop statement:

WHILE NOT exit condition LOOP
loopbody

END LOOP;

If the exit condition is false, meaning the loop body will be executed, there are conditions that, if true
before the loop body is executed, will remain true afterwards. The loop invariant is the most general of
these conditions. That is,

loop invariant
AND NOT exitcondition ( loopbody ) loop bodyresult

loopbody_result -. loopinvariant

The weakest precondition for a loop statement as a whole is independent of its exit condition, since the
exit condition may be either true or false at that point. The loop invariant is the critical precondition. In
fact, the invariant is the key to a loop's overall behavior. The proof rule for a loop statement can be for-
mulated in terms of the invariant as follows:

loopinvariant ( loopstatement ) loop invariant AND exitcondition

Loop invariant conditions can be difficult to discover. There are no simple rules or procedures by
which they can be automatically derived.
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All that remains to complete the proof of a loop statement is to prove that the loop terminates. This
requires demonstrating that the loop body moves a step closer to making the exit condition true on each
iteration. An inductive argument can then be made to guarantee that the loop will eventually terminate.

Function and procedure subprograms can simplify large programs. They also simplify program
verification. A proof of a subprogram's behavior can be derived once and used as a lemma everywhere the
subprogram is called. Function calls must be embedded within statements. Any input restrictions
imposed on parameters or global variables by a function, therefore, must apply to the containing state-
ment. A symbolic expression representing the value returned by the function can then be substituted in
the proof rules.

Proof rules similar to those described above for loops and conditional statements can be formulated for
procedure calls. They will typically include input restrictions imposed on parameters and global variables,
and will define the resulting conditions that will hold when the procedure returns control to the calling
program. These proof rules generally have the form

preconditions -+ input-restrictions

input-restrictions [ procedurecall ) resultingconditions

resultingconditions -+ requiredresults

where input parameter and global variable restrictions are applied to the actual arguments and the current
environment, and the resulting conditions are similarly transferred to reflect the new program state upon
return.

Recursive functions and procedures require termination arguments similar to those required for loops.
It must be shown that every recursive call solves a simpler version of the original problem and that, at
some point, a solution can be reached directly, without further recursion.

5.2.1.2 Complications

This brief tutorial on verification techniques oversimplifies the task. There are numerous complica-
tions in proving properties of real system designs and real application software. The first complication is
that proofs are more detailed, involve more steps, and are more tedious than the designs or programs
themselv s. While much of the tedium can be mitigated by automated tools, constructing proofs is still a
demanding task.

Other sources of complication stem from language characteristics. In Ada, for example,
e Side effects from functions can change the state of a program in the middle of

evaluating expressions,

* Exceptions can leave results of computations in undefined states, and

* Aliasing of procedure parameters and global data can have additional side effects.

These characteristics make rules for int ,' reting statements more complex and require software
developers to verify many more intermediate c, ditions to produce complete proofs. One of the reasons
for recommending that properties of software be proven as an integral part of the development process is
that many of these complications can be avoided by restricting use of these language features.
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* 5.2.1.3 Concurrent Software

The introduction of concurrency (multitasking) in programming languages adds a new dimension to the
verification problem. The simple model of a single sequence of statements is no longer adequate to
describe computations. Several sequences of statements may be active at one time and their execution
may overlap and interleave in arbitrary ways, making it virtually impossible to isolate a program's state at

* any particular point.

Properties of concurrent software can be divided into two major classes [Lamp83]:

" Liveness properties - which identify program behavior that must be achieved
(e.g., that tasks respond correctly and cooperate to satisfy the program's require-
ments); and

" Safety properties - which identify inconsistent or untenable program states that
must never arise.

Liveness properties can be analyzed using process modeling techniques such as Petri nets [Pete77] or mes-
sage passing schemes such as Communicating Sequential Processes (CSP) [Hoar85]. Tasking models usu-

* ally assume that tasks interact only in well-defined, controlled ways; namely, when they synchronize with
each other or exchange messages. This allows the techniques for verifying sequential program code to be
applied to the behavior of individual tasks between synchronization points. Proofs of concurrent pro-
grams, therefore, attempt to show that:

1. Modeled tasks satisfy the program's required liveness properties;

• 2. Program tasks and synchronization points correspond directly with modeled
tasks;

3. Synchronization points are the only places where tasks interact; and

4. Individual tasks, in isolation, satisfy their own input-output requirements.

* Safety properties are invariant conditions similar to those described for loops. These invariants, how-
ever, are global to the program and must hold across all tasks. An example safety property is freedom
from deadlock. The invariant condition to be proven is that no tasks will ever be blocked waiting for syn-
chronization with each other in such a way that none of them can ever proceed.

Temporal logic [Pnue77] is a technique used to reason about both liveness and safety properties of con-
* current programs. Temporal logic extends the predicate calculus with expressions that indicate time

dependencies such as henceforth and eventually. For example, liveness properties are usually proven by
showing that a program progresses from one stable, global state to another. The exact sequence of indivi-
dual steps, however, cannot be determined because of their concurrent execution. A temporal logic
specification of such a transition is

* HENCEFORTH initialstablestate

-. EVENTUALLY next-stable-state

Stable states are typically task synchronization points, including task initiation and termination.

Temporal logic obeys a full set of algebraic laws that allow formal reasoning about the behavior of con-
* current programs. For example, the following equivalence relation captures the concept that a condition P

is not always true if eventually it can become false.
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NOT (HENCEFORTH conditionP) - EVENTUALLY (NOT conditionP)

5.2.1.4 Parallel Software

Parallel software is distinguished as a special case of concurrent software where concurrent operations
are performed synchronously. These techniques are directed toward fine-grained machine parallelism
rather than the general multi-tasking models of concurrency previously discussed.

Recently, Chandy and Misra [Chan881 introduced a new unified theory of parallel computation. Their
approach addresses a wide range of granularity in concurrent operations and applies to a wide range of
parallel machine architectures. In this model, program execution starts from an initial state and repeat-
edly selects and executes assignment statements nondeterministically. Each assignment statement may be
guarded by a conditional expression and may assign values to multiple variables in parallel. The only con-
straint on the nondeterminism is that every assignment must be selected and executed infinitely often.
The theory is simplified by not including conventional program control flow in the model and by assuming
that all programs run forever. In practice, programs terminate when they reach a fixed point, where all
open assignment statements leave the program state unchanged.

Although this model is very simple, it is fully adequate for expressing and analyzing useful and efficient
parallel computations. One advantage of a simple model is that formal semantics and proofs of properties
can be greatly simplified. This model also appears to support methods for efficiently mapping programs
onto several types of shared-memory multiprocessor machine architectures.

5.2.2 Techniques for Hardware

Verification of high-level language software assumes the correct and reliable operation of compilers,
run-time support systems, and hardware. Proofs of properties at the abstract program level are of limited
value if the correctness of translation and execution cannot be equally assured. One approach to solving
this problem is to define a series of abstract machines, each of which can be emulated by the next machine
using a relatively simple (that is, provable) set of software macros. At the top end of the series is an
abstract machine that directly executes the high-level program. At the bottom end is a machine that maps
directly to the target hardware. That is, there is a one-to-one correspondence between the last abstract
machine and the design of the actual physical hardware. This technique transcends the machine
instruction-set level and can be used to prove program properties down to the micro-code and hardware
gate level.

5.2.3 Techniques for Systems

Formal verification of complete hardware and software systems is an active research area. Capabilities
that system verification will require include:

" Formal system-level specification techniques - including hardware and software
performance specification and analysis techniques.

" Compatible modeling techniques for diverse system components that, for exam-
ple, allow proven properties of hardware components to be incorporated in
proofs of software components.

* System construction techniques that allow composition of proven components to
yield provable systems.
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5.2.4 Automated Support

Automated tools for verification include processors for formal specification and program annotation
languages, verification condition generators, theorem provers, and proof checkers. Specification and
annotation languages are typically variations of the predicate calculus. Verification condition generators
attempt to describe symbolically the state transitions made by each statement in a program. Proofs are
made up of arguments that program statements achieve specified conditions. Theorem provers attempt to
construct proofs automatically using artificial intelligence techniques. Proof checkers are simpler systems
that can verify correct proofs created manually or using other sources of automated help.

First-generation verification systems that have been developed include AFFIRM [Gerh80,Suns77],
FDM [Kemm80], Gypsy [Good86a,Ambl76al, HDM [Robi79], and the Stanford Pascal Verifier [Luck77].
The first four of these systems were reviewed and evaluated in an extensive report by Kemmerer
[Kemm86]. The FDM and Gypsy systems have been approved by the National Computer Security Center
(NCSC) for the verification of systems targeted for Al security certification. NCSC has also stated that
the Gypsy system will be used in all verification of SDS software. These systems are complicated, how-
ever, and it is not easy to transfer knowledge gained on one system to another.

5.3 On-Going Research and Development Efforts

This section discusses current research and development activities being conducted to advance the
state-of-the-art of verification theory and practice.

5.3.1 Basic Research

Basic research is needed to develop understanding of several fundamental open verification problems.
These problems are wider than simple gaps in the current technology and are likely to take some time to
solve. Work is currently being done in these areas, but no results have been reported. The following sec-
tions describe current and needed efforts in the areas of real-time systems, distributed systems, and
degraded system operation.

5.3.1.1 Real-Time Systems

The critical property to be verified in most real-time systems is that processes meet their deadlines. The
answer is affected by the algorithms employed, efficiency of object code generated by the compiler,
scheduling policies and performance of the run-time system, and target hardware performance. The prob-
lem, therefore, spans the entire system design, which is what makes it so difficult.

In the past the deadline problem has been addressed by worst-case analysis, which tends to produce
overly pessimistic solutions. That is, systems are overbuilt for normal operations to ensure that they c.n
handle the extreme worst-case deadline situations. Specific techniques employed include: algorithms with
fixed execution times, assembly language or hand-optimized object code, fixed priorities, deterministic
scheduling, and target hardware upgrades. Each of these techniques simplifies the deadline verification
problem, but they often restrict capabilities that could be supported under normal (slack) operating con-
ditions.

Adaptive algorithms and scheduling techniques that adjust to system workload have been introduced to
gain processing capabilities during slack periods. For example, when system workload is light, slower but
more accurate algorithms can be used and useful background operations can be perf-,rmed. As the
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workload picks up, background operations are dropped and required processes can switch to faster algo-
rithms. In addition, as a process nears its deadline, it may try to increase its scheduling priority to assure
its completion. Formal methods are needed for reasoning about these techniques that would allow
development of proofs of adaptive program behavior.

5.3.1.2 Distiluted Systems

Distributed systems are characterized by communication latencies between subsystems. This makes it
extremely difficult for subsystems to synchronize their actions. Tuning constraints on coordination, for
example, may not allow subsystems to fully verify each other's actions or readiness. That is, they may
have to proceed on the assumption that the other subsystems are performing their functions at the right
time. Formal verification of such systems requires methods for reasoning about system behavior that do
not require a representation of the system's global state, which cannot be known because of the uncer-
tainty of the timing of individual local transitions.

5.3.1.3 Degraded System Operation

Fault-tolerant systems are able to recover from or adapt to certain types of component failures. Many
such systems may continue to operate in a degraded mode until the failed component can be repaired or
replaced. Current verification techniques assume correct operation of underlying hardware and peri-
pheral devices such as sensors. Methods for reasoning about system behavior in the presence of potential
component failures is needed to verify fault-tolerant systems.

5.3.2 Applied Research and Development

Applied research and development addresses technology gaps that do not require significant break-
throughs in fundamental understanding. In most cases these problems can be solved by creative applica-
tion of known engineering techniques and careful implementation. The primary activity in this category is
development of production-quality automated tools.

A second generation of verification tools is currently in development. These tools are intended, pri-
marily, to improve the utility of earlier tools by assuring the soundness of the underlying logic system,
standardizing on programming and annotation languages (for example, Ada and ANNA), improving user
interfaces, and improving performance. Examples of such efforts include the Annotated Verifiable Ada
(AVA) system being developed by Computational Logic, Inc. and the Penelope system being developed
by Odyssey Research Associates.

5.4 Application Issues

This section discusses three important issues relating to the application of verification technology:

* Identification of critical properties and components within a system that will
require verification,

* Education and training in verification techniques, and

* Insertion of verification technology into software and system development
processes.
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5.4.1 Identification of Critical Properties and Components

5.4.1.1 Critical Properties

Critical properties of a system as a whole must be identified as early as possible in the development pro-
cess. These properties affect critical design decisions in partitioning and allocating functional responsibili-

* ties within a system. Properties that must be proven at the system level imply requirements for com-
ponents with proven properties and construction techniques that preserve those properties.

5.4.1.2 Critical Components

Critical system components that will require verification also need to be identified as early as possible
in the development process. Proving properties of components is much easier when the proof process is
made an integral part of their design and implementation. In fact; proofs of correct components may be
impossible to construct after the fact, because of design decisions and programming practices that
increase the complexity of proofs. Early identification of critical components can significantly reduce the
needed verification effort.

5.4.1.3 Levels of Criticality

As a corollary to identifying critical properties and components, identification of levels of criticality
would help in assessing verification requirements and allocating assurance resources between testing and
verification.

5.4.2 Education and Training

Formal verification requires high levels of skill and maturity in logic and abstract mathematics. This is
not likely to change even with high-quality automated tools. Tools make programmers more productive by

• handling the tedious details of proofs, but generating proofs will still require abstract analytical skills,
understanding of proof techniques, and considerable mathematical sophistication.

These skills are not commonly taught in computer science courses today. Instead, students must take
theoretical mathematics courses, which may be (or seem) quite unrelated to verification applications. This
arrangement does not produce enough graduates with sufficient mathematical skills to enable the industry

* to verify software, hardware, and systems on a regular basis. Changing computer science and related
engineering curricula to include foundations for, and direct applications of, formal verification could
alleviate this shortage.

5.4.3 Technology Insertion

• Two factors that would facilitate the application of verification techniques within the industry are: (1)
access to production-quality verification tools, and (2) publication of worked examples of formal software
and system specifications and proofs. Earlier versions of verification tools were primarily research vehi-
cles built for experimentation in academic environments. Newer versions should be much more robust,
easier to use, and easier to move from one machine to another. These tools can therefore be made avail-
able to a much wider community of potential users. Anyone who might consider employing formal

• verification techniques should never be discouraged by the lack of available tools.
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Most people learn by following examples. Small, textbook examples are useful for learning the basic
concepts of formal verification. Larger examples are necessary to demonstrate how these concepts scale
up to verifying full-fledged systems. Case studies of full-scale verification projects are needed to provide
models of how the technology can be applied and how the efforts should be managed.
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6. SOFTWARE MEASUREMENT TECHNOLOGY

This section of the report discusses the field of software measurement. An introduction to the various
types of software metrics is given, along with a discussion on some of the early and existing measurement
efforts. Finally, a discussion of future directions in the field of software measurement is presented.

6.1 Introduction

Software measurement deals with the understanding, characterizing, evaluating, predicting, and control-
ling of software products and processes. This field has traditionally been associated with the application
of metrics to software products and processes. The majority of these software metrics, when used in a
context-free fashion, have not yielded results which are demonstrably useful to either software developers
or managers. Consequently, current efforts are directed at providing a framework within the software
development life cycle which will facilitate better understanding of the metrics values and aid in creating
higher qual: .y software products.

6.2 Types of Metrics

Software metrics are typically classified as either process metrics or product metrics. Process metrics
are measures which quantify attributes of the development process and of the development environment.
Product metrics are measures of various characteristics of a software product. A general discussion on
process and product metrics can be found in [Cont86].

Examples of process metrics include the education level of programmers, the degree of automated tool
support, and number of design walkthroughs. These metrics have the potential to provide feedback dur-
ing the software development process and help managers to predict or monitor the progress and the utili-
zation of resources within a project. While some studies have shown significant statistical correlation
between the metrics and measured quantities relating to cost or fault rates, these studies often hold true
in a only a particular environment. Little research has been performed on metrics which can be
effectively applied across environments. In addition, the estimation models have usually given limited
consideration to the underlying software development paradigm (for example, waterfall versus prototyp-
ing).

Product metrics can be classified as external or internal product metrics. External product metrics are
those that rely on data collected during testing and actual use of a software product. They include perfor-
mance metrics, maintainability metrics (as measured through cost of maintenance), and testability
metrics (as measured through the cost of testing and the number of post-release errors). They also include
reliability metrics (as measured through fault rates); these reliability metrics are discussed in more detail
in Section 7. These metrics are all direct measures of quantitative attributes and, as such, are excellent
indicators to the extent that the test data set used to derive the metrics matches the data actually encoun-
tered in operation.

Internal product metrics are metrics which rely on examination and static analysis of a software product.
The goal of these types of metrics is to provide an indirect measure of the same attributes measured by
external product metrics, but in a more cost effective way. Internal product metrics can be collected much
earlier in the software development process than external product metrics, thus providing improved feed-
back that can guide the project. Examples of high-level metrics include complexity, portability, correct-
.nes, and maintainability These are usually assessed through examination of easily-measured low-level
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metrics such as the maximum level of nesting, the use of user-defined data types, and the number of lines
of code in a program. Internal product metricR are the most controversial. It is generally agreed that sin-
gle low-level metrics (for example, lines of code) do not provide enough information to derive a high level
indicator (for example, level of effort required, number of faults, or complexity) [Kafu8a]. Moreover, it
has not been conclusively demonstrated, through statistically significant experiments operating from a
sound theoretical basis, that the low-level attributes actually relate to the high-level attributes of concern,
and there is a lack of empirical data for assessing the value of using sets of such metrics.

Empirical validation of these metrics have been hampered for three main reasons. First, the data used
to derive a researcher's metric is commonly artificially obtained from a controlled experiment. Often,
data is gathered from the results of studying software developed during a programming course(s), or col-
lected from small, non-typical programs found in industry. While controlled metric experiments are use-
ful for exploring new, unknown phenomena and may lead to statistically significant results, they often do
not scale up in real-world case studies [Basi86a]. Second, the statistics generated from a metric are some-
times questionable. Little data is used in the development of the metrics, therefore its relevance is not
valid in the general case. Finally, it is often not clear what a particular metric is measuring. Metrics are
described in general terms (for example, program complexity) which leave the object of measurement
unclear.

Another problem associated with the use of metrics is the feasibility of artificially manipulating
software so that desired metric values are achieved while not changing the functional characteristics in
any beneficial way. Any measureable criterion serves as a motivator for project personnel, thus the use of
context-free metrics must be closely scrutinized. While artificial manipulation is more difficult when
several sets of metrics are specified, it can lead to incidents where increasing the value of measured attri-
butes becomes the goal of the development effort, rather than increasing the inherent quality of the
software.

Internal product metrics are often used to provide input into various software cost estimation models
[Boeh84a]. These models analyze various software quality factors to determine the level of effort required
for software development, and provide a means for resource estimation and allocation.

Until these metrics are better understood, they must be used with caution. This is not to say they are
without value; indeed, metrics can be often useful in indicating software which may require closer scru-
tiny. Low-level metrics, in particular, should be looked upon as indicators of desirable and undesirable
software characteristics, and not used for ascertaining the intrinsic worth of software.

6.3 Early Metrics Research Efforts

Much of the early work in software measurement dealt with software complexity metrics. These types of
metrics sought to provide quantitative estimates of program complexity by measuring a variety of software
attributes. It is commonly accepted that complex programs are more difficult to understand, maintain,
and modify, than simple programs. One of the earliest and most simple measures for assessing software
complexity is the Lines Of Code (LOC) metric. This measure derives from when software was entered on
punched cards. Each card typically represented a line of code and, as such, it was easy to compare and
contrast the size of the physical card decks. While punched cards are no longer a common media for
software, the term remains as the most simple measure of program size. Program size is correlated to
software complexity in that, usually, when size increases, so does complexity. The LOC measure is one of
the easiest complexity measures to derive and is usually used as a benchmark for comparing other com-
plexity metrics.
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In 1976, McCabe introduced a graph-theoretic complexity measure which provided initial insight into
the management and cor-sol of program complexity [McCa76]. McCabe's metric, named the Cyclomatic
Complexity Metric, is based on graphs representing the control flow of a program. Programs with higher
numbers of basic control paths are deemed more difficult to understand, modify, and maintain and, there-
fore, generate a higher cyclomatic number. The cyclomatic number is used as an indicator of those
modules that may contain code which will be difficult to test and maintain. While McCabe's complexity
metric is being used in industry as a useful indicator of potential software problems, it has not been shown
to provide a better estimate of program complexity than the LOC measure [Hame82,Evan83a].

In 1977, Halstead published a monograph entitled "Elements of Software Science" [Hals77a]. Halstead
claimed that the metrics of Software Science were firmly based on the methods and principles of classical
experimental science, and that the measuring process could be reduced to a few mathematical equations.

• Immediately after its publication, a considerable debate arose over whether or not the Software Science
metrics represented software in general, or only responded to a limited class of software
[Albr83,Bike79,Curt79a,Shen83,Zweb79]. However, in recent years Halstead's work has been shown to
have serious theoretical flaws which render Software Science equivalent to simple LOC metrics
[Card87a].

*O 6.4 Early Measurement Research Efforts

This section of the report discusses two major research efforts which occurred early in the software
measurement field. The National Aeronautics and Space Administration (NASA) Software Engineering
Laboratory (SEL) created an organization which has provided a unique ability to study the implementa-

* tion and results of a large data gathering effort. The Rome Air Defense Center (RADC) has funded a
variety of software measurement research efforts which have contributed to the understanding of software
metrics.

6.4.1 Software Engineering Laboratory

• The SEL is a joint venture between the NASA/Goddard Space Flight Center, the University of Mary-
land, and the Computer Sciences Corporation. One of the goals of the SEL has been to improve under-
standing of the impact that metric usage has on productivity and the quality of software products
[Basi85a]. It has identified various metrics that are useful for evaluating and predicting the complexity,
quality, and cost of Ada programs [Basi83a]. In addition, extensive data collection techniques have been
developed which provide the basis for further metric research. The SEL utilizes NASA-developed,

• operational software to provide the basis for empirical investigation into various aspects of metrics
research and validation.

6.4.2 Rome Air Development Center Software Quality Work

The RADC has been involved in a long-term program to improve and control software quality. One of
the key goals of this effort has been an attempt to identify the-major issues of software quality and provide
a well-defined process whereby the software quality of Air Force weapon systems can be better specified
and measured. RADC's initial work was to identify and define a set of software quality factors that are
relevant throughout the software development lifecycle [McCa77]. Table 6-1 reproduces these quality fac-
tors, together with the primary user concern that each factor is perceived as representing. The various
user concerns are grouped into three acquisition concerns, representing how well a product performs,
how well it is designed, and how adaptable it is.
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Acquisition Concern User Concern Quality Factor

How well does it utilize a resource? Efficiency

How secure is it? Integrity

Performance -How well does it function? What confidence can be placed in what it does? Reliability

How well will it perform under adverse conditions? Survivability

How easy is it to use? Usability

How well does it conform to the requirements? Correctness

Design - How valid is the design? How easy is it to repair? Maintainability

How easy is it to verify its performance? Verifiability

How easy is it to expand or upgrade its capability or performance? Expandability

How easy is it to change? Flexibility

Adaptation - How Adaptable is it? How easy is it to interface with another system? Interoperability

How easy is it to transport? Portability

How easy is it to convert for use in another application? Reusability

Table 6-1. RADC Quality Concerns

Figure 6-2 shows how various quality factors are decomposed into a hierarchical software quality meas-
urement framework where each factor is broken down into several criteria. Each criterion is then further
subdivided into a set of metrics. The 13 quality factors are composed of 29 criteria, while 73 metrics have
been defined consisting of over 300 lower-level metrics. It is the combination of these lower-level metrics
which ultimately generates a high-level software quality factor. Although there is little empirical evidence
to validate these correlations, general relationships have been validated (for example, low coupling
between modules seems to produce more maintainable software). Currently, these metrics and factors
serve only as guides to, or simple indicators of, a program's quality.

In 1978, RADC and the US Army Computer Systems Command sponsored enhancements to the initial
metrics framework [McCa8O]. These enhancements provide a project manager with a description of those
quality factors typically considered to be the most important. An Automated Quality Measurement Tool
has been developed to automate the collection of specific metric data and to provide various quality meas-
urement results.

In 1979, RADC sponsored research into software quality issues regarding software reusability and
interoperability [RADC83a]. Metrics for assessing the quality of networked computers and distributed
systems have also been developed [RADC83b].

6.5 Existing Automated Support

Although much metric research is language-independent, implementation of automated product
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Figure 6-1. Software Quality Model

metrics usually requires tools to be geared to a specific language. While there are many metrics tools avail-
able for the analysis of software written in languages such as FORTRAN and COBOL, tools tailored for
the Ada language are only beginning to emerge. However, since much of the DOD-sponsored metric
research is currently focusing on automated support for the Ada language, increasing numbers of Ada-
oriented tools can be expected over the next several years.

The remainder of this subsection outlines the current, major Ada-oriented metric tools/efforts.

6.5.1 AdaMAT

Dynamics Research Corporation has developed an Ada Measurement and Analysis Tool (AdaMAT) to
5 provide automated metric analysis of Ada software [Perk86]. AdaMAT supports a metrics framework

which measures six software criteria (anomaly management, independence, modularity, self-
descriptiveness, simplicity, and system clarity) supported by 150 software metric elements. It consists of
three separate tools: (1) a data collection tool for static analysis of the Ada software, (2) a quality analysis
component providing an interactive analysis of the code and isolation of problem or unusual code, and (3)
a report generator which collects the results of the completed analysis. AdaMAT metrics are arrayed in a
hierarchy based upon the RADC metrics framework [Cava78] with tailorings for the Ada language. In this
framework, the lowest level metrics are data items, which produce information on such concerns as max-
imum level of nesting and number of "out" parameters in a procedure. At the next level up, metric-
elements use the data items to provide information such as local types referenced and local levels of nest-
ing. Metric-elements are then used to create software quality sub-criteria which in turn provide informa-
tion on such concerns as flow simplicity and error prevention. Finally, at the highest level, software quality
criteria provide information on general aspects of software qualities, such as modularity, simplicity, and
anomaly management.
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6.S.2 ATVS 0

Although not yet completed, General Research Corporation, under contract to RADC, is developing
an Ada Test and Verification System (ATVS) [RADC86]. ATVS is a test and measurement tool which
provides static and dynamic analysis of Ada source code in addition to the collection of software quality
measurement data. Static analysis includes call dependency, task termination dependency, and potential
circular deadlock detection. Dynamic analysis is achieved by instrumenting the source code with probes,
and yields information about test coverage, timing, and tasking activity analysis. In addition, ATVS will
provide for the translation of manually entered assertions into executable code. Software quality measure-
ment data is collected during testing activities. This data is then made available to both the user and other
tools which are planned to be integrated into a software development environment RADC is construct-
ing.

6.5.3 Software Metrics Data Collection (SMDC)

Developed at Purdue University, the Software Metrics Data Collection (SMDC) system [Yu88a] pro-
vides a comprehensive repository of data which can function as a testbed for the detailed analysis of infor-
mation related to software development. SMDC is an APL-based system which runs on a UNIX4 4.3
BSD environment. It provides an extensive facility for the mathematical and statistical manipulation of
data collected during software development with a view towards metric analysis. The data currently
resident within SMDC has been acquired from the public domain, industry, academic, military, and other
sources. Metrics such as development effort, duration, Software Science, Cyclomatic Complexity, LOC,
and others are collected and stored in the SMDC.

6.5.4 The NOSC Tools

In 1983, the Naval Ocean Systems Center (NOSC), under contract to the World Wide Military Com-
mand and Control System (WWMCCS) Information System (WIS), contracted for a wide selection of
software tools to be written in, and for, the Ada language. This software, collectively known as the NOSC
tools, includes automated support for such tasks as database management, graphical interfacing, text pro-
cessing, project management, and metric analysis. One of the metrics tools provides an implementation
of the Software Science, Cyclomatic Complexity, and LOC complexity measures specifically tailored to
the Ada language. The NOSC software resides in the public domain.

6.6 Future Directions in Measurement Technology

There are several areas which need to be improved if effective software measurement is to be achieved.
A solid measurement methodology must be developed which will provide a framework from which
appropriate metrics can be selected for a project and data collection and validation can be facilitated.
Methods which provide better feedback of the results of metric analysis into software development activi-
ties are needed. In addition, there is a need for extensive automation of various tools and techniques to
support the entire measurement process and its integration into software development.

4. UNIX is a registered trademark of AT&T
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* 6.6.1 Measurement Methodology

Metrics have traditionally been applied to software products and processes in a somewhat bottom-up,
stand-alone fashion. The measurement strategy typically revolves around a collection of independent
metrics which are applied to the software undergoing analysis. Measurement begins when coding nears
completion, and ends when acceptable levels of desirable attributes are attained.

It is generally recognized that the current application of stand-alone, evaluative measures of software
development products or processes does not yield results that can be effectively interpreted, compared,
or validated. A methodology is required to integrate the diverse aspects of establishing measurement
requirements, guiding the selection of appropriate metrics, and supporting the collection, interpretation,
and validation of results.

Basili and Rombach have proposed a software engineering process model which seeks to achieve this
objective (Basi88a]. The model is based on two paradigms: the Quality Improvement paradigm, which
provides a guide to improving the software development process, and the Goal/Question/Metric
(G/Q/M) paradigm, which guides the selection of appropriate measures.

The Quality Improvement paradigm proposes a sequence of six steps which guide activities necessary to
better understand and improve the software construction process. In the first step, the current project
environment is characterized. This step attempts to identify the various factors which will influence the
project development (for example, problem domain, personnel factors, product factors, and ava!:bole
resources). Second, goals for a successful project development are set. Example goals are improvement
of the quality of the product, a reduction in production costs, and achievement of a stated software relia-

* bility threshold for a product. Third, the appropriate methods and tools for the project are chosen with
the objective of maximizing project goals. Next, the software is developed, and data related to the goals,
methods, and tools of the project are collected. Data can be gathered from forms, interviews, and
automated tools. The Quality Improvement paradigm does not specify what data to collect or how the
data is to be collected, but only provides a basic framework so that each specific step can be detailed (and
perhaps automated) by the organization. The next step is a post mortem study of the gathered data in

• order to evaluate current practices including both the development and measurement processes and tools,
determine problems, and make recommendations for the improvement of these practices in future pro-
jects. The final step simply requires that the organization does actually build upon and exploit the
knowledge gained from this data collection and analysis in subsequent projects.

The G/Q/M paradigm provides (1) an operational formulation of the second step of the Quality Improve-
* mer.t paradigm and (2) the glue to tie together all the steps of the Quality Improvement paradigm. Here,

an approach is specified for determining and specifying the goals of a software development project.
These goals are then refined into a set of quantifiable questions which provide the basis for determining
the appropriate software metrics and the data to be collected. Automated templates and guidelines are
provided to assist in the derivation of these goals, questions, and metrics.

The GIQ/M paradigm is innovative in that the derived metrics depend heavily upon the goals and
characteristics of the specific project or organization. It recognizes that the goals of most projects are
different, and seeks to end the dependence of an organization upon a single set of metrics by which all
software development efforts must be measured. The G/Q/M and improvement paradigms have been
successfully applied to several industrial settings outside of the SEL [Romb87a,Romb87b].

Basili and Rombach are constructing an environment called TAME (Tailoring A Measurement
Environment) to support the Quality Improvement and G/Q/M paradigms [Basi88a]. A series of TAME
prototypes which support the measurement of Ada projects are currently being developed [Basi87a].
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6.6.2 Integration of Measurement Into Software Development

The majority of current measurement programs employ a variety of stand-alone tools to perform metric
analysis. However, the coherent specification, collection, and analysis of metrics requires an integrated
environment for measurement; integrated in the sense of feeding back metric information into the
software development process so that both current and future development can be improved. Too often,
the results of metric analysis are used only for evaluating software, and not for learning how to better
design, implement, and measure software. The TAME environment (mentioned above) is an encouraging
effort aimed at providing an integrated environment in which software process specification languages are
used to describe both the development and measurement processes as well as their interfaces.

Selby has developed a set of guidelines for incorporating metrics into a software development environ-
ment [Selb87a]. These guidelines address the varying scope of metrics an environment should possess (for
example, product as well as process metrics and design as well as code metrics), and also the method for
collecting and analyzing metrics.

6.6.3 Needs for Future Automated Support

Automated tools are required for effective and affordable software measurement. While there exist
many tools which deal with software metric analysis, few automate the activities of evaluating, predicting,
controlling, and learning. This is not surprising, given the traditional focus on the use of simple, stand-
alone software metrics. Efforts must be directed at developing a complete measurement environment
which supports a comprehensive measurement methodology.
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7. SOFTWARE RELIABILITY ASSESSMENT TECHNOLOGY

This section discusses software reliability, one of the factors that determine software quality. Software

reliability is singled out for further discussion for two reasons:

1. Highly reliable software is essential in the SDS, and

* 2. Software reliability is perceived as being unique among the software quality fac-
tors.

Musa, for example, claims that software reliability is "probably the most important of the characteristics
inherent in the concept 'software quality' " and "the most readily quantifiable of the attributes of software
quality" [Musa87].

7.1 Scope

As its title suggests, this section focuses on how to assess software reliability. It is not intended to cover
the issue of how to achieve software reliability (or, perhaps more accurately, how to achieve reliable

* software). Nevertheless, to place this section in context, it is worthwhile to at least identify the basic
approaches that can be used to enhance software reliability.

Clearly, the most powerful approach is fault prevention. Here, the aim is to improve the software
development process itself, so that faults are never introduced into the software. Ideally, the software
development process would enable the construction of fault-free software. The entire field of sotiware

* engineering is directed at improving the software development process.

Another approach to increasing software reliability is to facilitate the detection and correction of faults
and errors. Four technologies embodying this general approach are covered in the preceding sections of
this report: dynamic and static analysis, formal verification, and software measurement (that is, software
quality evaluatic a).

A third approach to increasing software reliability is software fault tolerance, in particular, software-
implemented methods for enhancing tolerance to software faults. This approach was briefly discussed in
Section 2.1.3. Its aim is to minimize or eliminate the impact of software faults. The most prominent
software fault tolerance methods are recovery blocks [Rand75,Ande76a] and N-version programming
[Aviz85,Knig86a]. These methods have been developed in recognition of the fact that software faults can-

* not be totally prevented or eliminated, but that their impact (at least in the form of critical failures) must
be minimized.

7.2 Current Methodology

* An overview of the state of the art in software reliability assessment is presented in this subsection.
The point of this overview is to clarify what is meant by software reiabilit), and, moreover, to indicate
what type of work is being done in the name of software reliability assessment. For a comprehensive
treatment of the subject of software reliability assessment, the reader is referred to
[Farr83,Goel85,Musa87,Rama82].
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7.2.1 Definition of Software Reliability

The term software ieliability has taken on a narrow meaning in the rftware engineering literature, in
particular a much narrower meaning than those not conversant with the literature might suppose.
According to Musa, software reliability is the "probability of failure-free operation of a program for a
specified time in a specified environment" [Musa87]. Software failure, in turn, is defined as the "depar-
ture of program operation from requirements" (Musa87]. At this point, subjectivity enters Musa's stream
of definitions: requirements are not defined, but only discussed. Musa concludes that they can include
both explicit and implicit needs. Thus, a behavior can be classified as a failure on the basis of unstated
requirements, which are inherently subjective. Environment is equated with operational profile, which is
defined as "the set of all possible input states (input space) with their associated probabilities of
occurrence." As noted in [Rama82], "the software need be correct only for inputs for which it is
designed (specified environment)."

Finally, although time may seem like a straightforward concept, it can be interpreted in a number of
ways, to suit the application at hand. According to [Goel85], it "may mean a single run, a number of runs,
or time expressed in calendar or execution time units."

7.2.2 General Approach to Software Reliability Assessment

The problem that has received the most attention in the field of software reliability assessment is that of
estimating future failure behavior from past failure behavior. In Goel's words [Goel85],

A commonly used approach for measuring software reliability is via an analytical model
whose parameters are generally estimated from available data on software failures. Relia-
bility and other relevant measures are then computed from the fitted model.

The analytical model is referred to as a software reliability model. Numerous software reliability models
have been proposed [Farr83,Goel85,Musa87,Rama82].

Some work has been done on predicting reliability from properties of the software and the process by
which it was developed [Musa87,McCa87a]. This work is not addressed here, because it is so closely asso-
ciated with software metrics, the topic of the previous section of this report. In particular, the conclu-
sions of the previous section apply to the specific case of software reliability prediction.

7.2.3 Classification of Software Reliability Models

In [Goel85], Goel divides software reliability models into four broad classes:

" Times Between Failures Models: In these models, the time between failures is
treated as a randor. variable, drawn from a distribution whose parameters depend
on the number of faults remaining in the program. l~ypically, the time between
failures is assumed to decrease as faults are detected (and subsequently
corrected). Hence, these models are sometimes referred to as software reliability
growth models. Estimates of the parameters are obtained from the observed
values of times between failures. Estimates of software reliability, mean time to
next failure, etc., are then obtained from the fitted model.

* Failure Count Models: In this class of models, the failure process is represented as
a stochastic process with a time dependent failure rate. Again, it is typically
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assumed that the failure rate decreases over time. Parameters of the failure rate
can be estimated from the observed values of failure counts or failure times.

Fault Seeding Models: In these models, a known number of faults is seeded into a
program with an unknown number of indigenous faults. Based on the number of
seeded and indigenous faults discovered during testing, an estimate of the original
(that is, prior to seeding) fault content of the program is made.

" Input Domain Based Models: In the basic model of this class, test cases are gen-
erated randomly from an operational profile that is assumed to be representative
of the real usage of the program. Based on the number of failures observed during
execution of the test cases, an estimate of program reliability is obtained.

Models of the first two classes are sometimes referred to collectively as time domain models. Time
domain models are the best established and most widely used models.

7.2.4 Time Domain Models

Time domain models are strongly advocated by Musa, lannino, and Okumoto in [Musa87]. In this
book, the authors discuss the theory and application of the models. They present a model classification
scheme, describe several specific models in each class, and offer a set of model comparison criteria. The
criteria include predictive validity, capability, quality of assumptions, applicability, and simplicity. On the
basis of these criteria, two models, both of which fall into the failure count model category, are judged
superior to the others: the basic execution time model and the logarithmic Poisson execution time model.

Both models interpret "time" to be execution time, and both provide for a mapping from execution
time to calendar time. Furthermore, both assume that the failure process is a nonhomogeneous Poisson
process. That is, failures occur according to a Poisson process, with a time varying rate. The rate is
referred to as the failure intensity (mean number of failures per unit time).

The fundamental concepts underlying the two models is depicted in Figure 7-1, which is extracted from
[Musa87]. In the basic execution time model, the failure intensity X decreases linearly with the mean
failures experienced p:

XWp = X0 V0

where X0 is the initial failure intensity and vo0 is the total number of failures that would occur in infinite
time. In the logarithmic Poisson execution time model, the failure intensity decreases exponentially:

X(A) = X0 exp (- #A) ,

where X0 again represents the initial failure intensity and 0 is the failure intensity decay par ameter. As
explained in [Musa87], the basic execution time model represents the case in which the discovery of each
failure (and subsequent repair of underlying faults) leads to a constant reduction (of 1 divided by the total
number of failures) in failure intensity. The logarithmic Poisson execution time model, on the other hand,
represents the case in which early failures lead to greater reductions in failure intensity than later failures.
In other words, the "benefit" accrued by repair processes (initiated in response to failures) decreases
exponentially as a function of the number of failures.
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Figure 7-1. Failure Intensity Functions

As indicated in the figure and equations, each model has two parameters, one being the initial failure
intensity X0 and the other representing failure intensity change (total failures v0 in the basic execution time
model and failure intensity decay parameter 0 in the logarithmic Poisson execution time model). The
values of these parameters may be estimated from failure data via standard statistical techniques
[Musa87]. In addition, for the basic execution time model, parameter values may be predicted, prior to
execution of the software, from characteristics of the software [Musa87].

Several useful measures can be derived from these models. They include the expected number of
failures to reach a specified failure intensity objective and the expected execution time to reach a specified
failure intensity objective. These measures are also detailed in (Musa87].

7.3 Critique of Current Methodology: Some Fundamental Problems and Limitations

Current software reliability assessment technology suffers from some fundamental problems and limi-
tations. These seem to stem from the fact that software reliability assessment has not established itself as
a discipline in its own right; current technology remains bound to the hardware reliability assessment
technology from which it evolved.

7.3.1 Evolution fiom Hardware Reliability Assessment

The field of software reliability assessment evolved from the field of hardware reliability assessment.
But there are key differences between software and hardware that limit, or should limit, the extent to
which the hardware concepts can be applied in the software world. Some of these differences and their
implications are described below.

7.3.1.1 Source of Failures

As noted in [Musa87, the source of hardware failures (at least of the hardware failures traditionally
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addressed in hardware reliability assessment) is the physical aging and deterioration of hardware com-
ponents. The source of software failures is software faults, which are manifestations of design and imple-
mentation errors. Hardware failures resulting from faults introduced by design errors share more in com-
mon with software failures than with sge-related hardware failures. Thus, the distinction could be made
on the basis of aging versus design instead of on the basis of hardware versus software.5

This observation has a critical, but largely unheeded, implication. Hardware reliability is inherently
time and usage dependent (as in 5-year, 50,000 mile automobile warranties). Thus, it makes sense for
hardware reliability to be defined in terms of failure-free operation over a specified "exposure" time
period.

Software reliability, on the other hand, is not directly dependent on time. First, consider software
faults, which are the source of software failures. Assuming that the software is not changed, software
faults are time-invariant. That is, software faults are introduced during design and implementation; new
software faults do not arise because of the passage of time or occurrence of processing. Now consider
software failures. Software failures are dependent on inputs. For a given (deterministic) program and a
given input state, either the software always operates correctly or it always fails. Time is not a factor,
except in the sense the software may be exposed to different inputs over time. Given the same operational
profile, the software reliability does not vary with time.

So, while time (in some unit of exposure) appears to be the "right" independent variable for hardware
reliability assessment, it is not so natural for software reliability assessment. Software reliability is depen-
dent not on time directly, but on (1) the presence of faults and (2) the exposure to faults, more precisely,
the exposure to input states that lead to execution paths on which faults are encountered. Both of these
factors have to be taken into account in assessing software reliability.

This view is reflected by Parnas [Parn88]. He suggests two complementary probabilistic measures of
software quality: reliability and trustworthiness. Software reliability is defined as "the probability of not
encountering an input history that causes a failure"; software trustworthiness is defined as "the probabil-
ity that no serious design error remains after a set of randomly chosen tests [have been] passed."

Therefore, the emphasis on time domain models of software reliability may not be appropriate, espe-
cially in the case of highly reliable software. For highly reliable software, the goal is not to estimate meas-
ures such as failure rate, but to assure that critical failures cannot occur.

7.3.1.2 Target of Assessment

In hardware reliability assessment, the basic targets of assessment are relatively low-level components,
suc" as memory chips. The reliability of a given class of components (for example, a given type of
memory chip or a given batch of a given type of memory chip) is established by sampling from the popula-
tion of components in the class. The components in a class are identical in design but are distinct physi-
cally. It is assumed that the components of a class have the same reliability, but that failures in the indivi-
dual components are independent.

The low-level hardware components are used as building blocks in constructing higher level

5. However, in keeping with general practice, this section continues to use the hardware/software categorization, with the
understanding that hardware reliability is being used in the traditional sense of age-related reliability.
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components, or systems. The reliabilities of the building blocks can be used to estimate the reliabilities of
the system [Shoo86]. For example, the reliability of two series-connected components (that is, two com-
ponents, both of which must operate correctly) is the product of the reliabilities of the two components.
Again, the independence of failures in different components is the underlying assumption.

Combinatorial analysis is at the core of hardware reliability assessment. In fact, it is the building-block
approach in conjunction with the combinatorial analysis that supports the construction of hardware sys-
tems with specified levels of reliability.

In software reliability assessment, on the other hand, the basic targets of assessment are relatively
high-level components. As noted in [Musa87],

In general, it appears that these models can be applied to any type or size of software pro-
ject, with the following exception. Very small projects (less than about 5000 lines of code)
may not experience sufficient failures to permit accurate estimation of execution time com-
ponent parameters and the various derived quantities.

Moreover, the high-level components are "unique." Instead of being designed as building blocks, they
are application-specific. Thus, the combinatorial analysis that is fundamental to hardware reliability
assessment does not carry over to software reliability assessment.

This distinction between hardware reliability assessment and software reliability assessment is recog-
nized by McCall, et al. Their articulation of the problem, repeated here for emphasis, is as follows
[McCa87a]:

Hardware components consist of separate parts, each of which may be used in many other
applications, such as a 1A 250V diode or a 16k dynamic [Random Access Memory] RAM
chip. Failure rates can be established for these parts either from test or from analysis of
field data. The procedures of MIL-STD-756B [Reliability Modeling and Prediction] assume
that the reliability of a component is the product of the reliability of its (series-connected)
parts. The software analog to this would be to test individual assignment, branching, and
[Input/Output] I/O statements and to declare the reliability of a procedure to be the pro-
duct of the reliability of its individual statements. This analog is faulty because:
(a) statements cannot be meaningfully tested in isolation and (b) many software failures
arise not from faults in a single statement, but rather from interactions between multiple
statements (or from interactions between hardware and software).

The point is that the ultimate objective of traditional hardware reliability assessment - the construc-
tion of systems with specified levels of reliability - cannot be accomplished in the software domain in the
same way that it is in the hardware domain.

7.3.2 Applicability to Life Cycle Phases

In [Goe8S5, Goel discusses the applicability of software reliability models to the following phases of
the life cycle: (1) design phase, (2) unit testing, (3) integration testing, (4) acceptance testing, and (5)
operational phase. Based on assumptions made by the various models, which he enumerates in the arti-
cle, he comes to the following conclusions. Integration testing is the only phase where all four categories
of models - times between failures models, failure count models, fault seeding models, and input domain
based models - are ap:)1icable. None of the models is applicable during the design phase, because of the
lack of test cases and failure history. None is applicable in practice during unit testing, although fault
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*5 seeding models and input domain based models are applicable in theory. During acceptance testing, the
fault count and input domain based models are applicable, while the others are not. Finally, during the
operational phase, only the fault count models are applicable.

The point here is that the current methodologies are applicable only to software that is being executed,
and, moreover, only at integration testing and later in the life cycle.

7.3.3 Applicability to Highly Reliable Systems

The acceptance testing of highly reliable software, which is a crucial aspect in the development of the
SDS, presents its own unique problem. Highly (or ultrahighly) reliable software should exhibit no (criti-
cal) failures during acceptance testing. In this case, a "failure history" does accumulate, but it is one of

*O no failures. Are the models applicable to highly reliable software? Or are they applicable only to "unreli-
able" software? The problem is captured in the following dilemma posed by Knight 6:

Hypothesis 1. For a system that is required to achieve very high reliability, if any failure
occurs during verification testing, then the system will never achieve the required level of

* reliability7

Hypothesis 2. If a system does not fail during testing no reliability assessment is possible
because there is no data.

* Hypothesis 2 is clearly an overstatement. Statistically valid conclusions can be drawn from the lack of
failures. According to Parnas [Parn88], testing can in theory be used to establish trustworthiness in
software. However, as he warns, the amount of testing that would be required in practice is simply prohi-
bitive.

7.3.4 Traditional Uses of Software Reliability Assessment

At this point, it is appropriate to consider the role that software reliability assessment traditionally
plays in the software engineering process. In [Musa87], Musa, Iannino, and Okumoto cite the following
four uses of software reliability assessment:

* To (quantitatively) evaluate software engineering technology;
6 * To evaluate development status during the test phases of a project;

To monitor the operational performance of software and to control new features
added and design changes made to the software; and

To gain insight into the software product and the software development process,
0 through a quantitative understanding of software quality.

Software reliability modeling has proved to be effective in the cited uses (especially the second and

6. This dilemma was posed at the IDA Testing and Evaluation Workshop that was held in support of this report. While it could of
course be more carefully stated, it does make its point.

4 7. Hypothesis I holds only if very high reliability means 100% reliability, or absence of failures.

73
0 UNCLASSIFIED



UNCLASSIFIED

third), which are valuable in certain environments, such as the American Telephone & Telegraph (AT&T)
environment in which Musa and others have applied the models.

7.4 Conclusion

This section presents a summary evaluation of current software reliability assessment technology,
based on the above critique. It then suggests directions for future research. Finally, it closes by attempt-
ing to put software reliability assessment into a proper perspective.

7.4.1 Summary Evaluation of Current Software Reliability Assessment Technology

Clearly, the preceding critique of software reliability assessment technology raises questions about the
applicability of the current failure-history-based methodology to highly reliable systems. As Goel con-
tends in a position statement prepared for the IDA Testing and Evaluation Workshop [Bryk89]:

The current methodology for evaluating software reliability is based on a very restricted
premise, viz, the future error occurrence phenomenon is a stochastic extrapolation of the
recent past. This approach is too simplistic and is not likely to be very useful for ultra-high
reliability systems, such as [the] SDS.

More significantly, this critique raises questions about the philosophy and assumptions underlying
today's software reliability assessment technology. It can be argued that current software reliability
assessment methodologies, as well as the definition of software reliability itself, are "artifacts" of the evo-
lution of software reliability assessment from hardware reliability assessment. Design faults (be they
hardware or software) demand a new approach; they cannot be treated adequately by the same methodol-
ogy that was developed for age-related faults.

The current definition and methodologies constrain what can be done in the context of software relia-
bility assessment. In particular, current methodologies can be useful only as management tools, in accom-
plishing purposes such as estimating project schedules, optimizing the allocation of project resources,
and optimizing the timing of new releases of software. Granted, these are worthwhile purposes; the
acceptance of current software reliability assessment technology stems, in large part, from its success as a
management tool in exactly these types of applications.

However, the ultimate goal of any reliability assessment technology should be to facilitate and assure
the construction of systems of specified levels of reliability. Because of the fundamental limitations of
current software reliability assessment methodologies in this regard, further work on enhancing current
methodologies is unlikely to yield satisfactory results.

7.4.2 Future Directions of Software Reliability Assessment Technology

In order for software reliability assessment technology to contribute significantly to SDS development,
the software engineering community must support the evolution of the concept of software reliability.
Software reliability assessment must move beyond the goal of estimating future failure behavior based on
past failure behavior toward the goal of constructing reliable software and, ultimately, reliable systems.
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7.4.2.1 Assessment of the Software Development Process

Just as it is not possible to "test" correctness into software, it is not possible to test reliability or
trustworthiness into software. So, what can be done? As suggested by Parnas [Pam88] and Evangelist
[Bryk89], the solution lies in the software development process. Parnas maintains [Parn88]:

* Software can be used in safety-critical applications but extreme discipline in design, docu-
mentation, testing and review are needed. Standard practice is not adequate.

Because of the inevitable reliance upon the software development process as the most powerful means
of constructing reliable software, software reliability assessment technology should shift focus - from
assessment of the reliability of individual software products to assessment of the reliability of software
engineering methodologies, practices, tools, and techniques.8 Then, the software engineering community
could begin to approach the ultimate goal of the construction of reliable software.

Of course, this is a most challenging task. It involves capturing, recording, and analyzing features of
the software development process, throughout the life cycle. In most of the software measurement work
that has been done to date, the completed software product rather than the entire software development
process is the target of measurement and analysis. Efforts have concentrated on measuring isolated, low-
level features of software products. While the low-level features are readily measurable, the significance
of their measured values is questionable.

In undertaking the task of assessing the software development process, the following points should be
* kept in mind:

" Methodologies and practices, in order to be compared, must be rigorously defined
and faithfully followed.

* "Desirable" properties of software, such as reliability, must be identified; then,
effective measures, which can quantify these properties, must be defined.

• * Effective experimental design must be employed.

7.4.2.2 Assessment of Software Reliability in a System Context

Software reliability must be assessed in a system context. As noted in Section 2.1, the correctness of
* software for distributed, real-time applications cannot be established in isolation from the underlying

computing system, for two distinct reasons. First, in real-time applications, the correctness of software
entails not only the values of results, but also the time at which results become available. Timing, of
course, is a function of the software, as well as of the underlying computing system.

Second, in complex distributed real-time systems, hardware components are bound to fail, software
* faults are bound to exist, and unexpected inputs are bound to occur. The software, as the controlling ele-

ment of the system, must be designed to deal with these faults and failures. The software must provide for
system fault tolerance and graceful degradation.

8. Here, the reliability of a methodology means the reliability afforded by the methodology to the software product being
developed.
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Therefore, just as the correctness of software depends on its ability to meet timing constraints, its
correctness also depends on its ability to degrade gracefully in the face of faults, failures, and unexpected
inputs. The problem lies in the quantification of "graceful degradation." Intuitively, the concept involves
a mapping of the domain of potential faults/failures into a range of "mission impairment." For a specified
subset of the domain, the software should be able to assure a mission impairment of zero. Beyond that
subset of the domain, the mission impairment should not rise "dramatically," but "gracefully."

The issue of fault tolerance must be addressed in all phases of the life cycle:

" Potential faults and failures must be identified at the outset.

" The required level of fault tolerance must be specified, perhaps in terms of the
"graceful degradation" curve.

" Fault tolerant techniques must be incorporated into the software, to provide for
the required level of fault tolerance.

" The impact of faults and failures, as well as the effectiveness of fault tolerant tech-
niques, must be assessed during design (possibly through simulation), as well as
during testing.

" The reliability afforded by various fault tolerant techniques must be assessed, in
the same way that the reliability of other software engineering methodologies
should be.

7.4.2.3 Assessment of System Reliability

Finally, software reliability must be taken into account when assessing system reliability. Often, system
designers assume a software reliability of 100% when evaluating system reliability [Parn88]. Such an
assumption is clearly unreasonable. Innovative approaches are needed here. It is not sufficient to follow
the much touted practice of simply casting software reliability in hardware reliability terms and then using
combinatorial analysis to derive system reliability. The distinction between design faults -nd age-related
faults must be considered.

7.4.3 Caveat

In closing this section, it is appropriate to place software reliability assessment (and, more generally,
software testing and evaluation) in perspective. Specifically, it is important to recognize or acknowledge
what software testing and evaluation can not accomplish, so that unrealistic expectations do not prevail.

Consider the concept of software reliability. In its broadest sense, software reliability is equated with
the probability of "mission success." It is assumed that highly reliable software will successfully perform
the intended mission. This sense of the concept is intuitively appealing, as evidenced by the fact that dis-
cussions on software reliability, especially in the context of SDS, almost always degenerate into discus-
sions on the feasibility of builamg a successful system; but, it leads to inflated expectations of what
software reliability assessment, as well as software testing and evaluation, can accomplish. The probabil-
ity of mission success depends on factors that fall outside the scope of software and the traditional
software testing and evaluation process. These factors include the following:

* Validity of Input Assumptions: Software is developed to respond to specified
inputs, in the case of the SDS, for example, a specified threat. If the specified
threat differs from the actual threat, then the fact that the software is "ultrahighly
reliable" for the specified threat indicates little or nothing about the reliability of
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the software for the actual threat.

* Validity of Hardware Assumptions: Hardware (and, more generally, environmen-
tal) assumptions have the same impact as input assumptions. If they are invalid,
then the reliability of the software with respect to those assumptions indicates lit-
tle about reality.

* Effectiveness of Strategy: Strategy is embodied in software. How can the reliabil-
ity (or effectiveness) of a strategy be quantified? Are probabilities of success
computed for non-automated (defensive or military) strategies? Software reliabil-
ity can hardly be expected to subsume quantification at this level.

In short, traditional software testing and evaluation can offer some assurance that a software product
* accurately implements a proposed solution to a specified problem, but cannot assure that the problem is

adequately specified or that proposed solutions are in !-ome sense "good." As pointed out in Section 2,
the most effective approach for dealing with these difficult issues is an iterative development approach,
incorporating formal design specifications, simulation, and prototyping. This approach has been adopted
by the SDIO. It is important that software testing and evaluation research and development focus on sup-
porting this approach.
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8. RECOMMENDED TASKS TO EXPLOIT EXISTING TECHNOLOGY

This section of the report identifies a number of tasks required to ensure that SDS software testing and
evaluation attains the maximum effectiveness and efficiency achievable within the current bounds of tech-
nology. These tasks do not fall into classifications of dynamic and static analysis, formal verification,
measurement, or reliability assessment. Instead, they cut across these distinctions to provide a common

* framework into which desirable elements of each type of available technology will fit. Tasks to extend
technology are discussed separately in Section 9.

The gap between the state-of-the-art and practice in testing and evaluation is very wide. Consequently,
it should be possible to effect a substantial improvement in software reliability by requiring the use of a
core set of advanced techniques, supported by high-quality, effective automated tools.

To achieve this goal, this section outlines four major tasks. The first task focuses on the critical need to
integrate testing and evaluation activities into software development as a whole. It also addresses how
software developers should be provided with explicit guidance as to whicL techniques are appropriate
under certain circumstances and how these techniques should be applied to achieve the necessary
confidence in results at acceptable cost. The second task discusses the requirement for a SDS Software

* Data Collection System which will capture and assess information about not only the software being
developed, but the technology used to develop, test, and support that software. The third task identifies
some of the issues involved in the development of an automated environment to support testing and
evaluation of SDS software. In many respects, the final task provides crucial support for the three preced-
ing ones. It concerns the exploitation of process modeling techniques to both explore and specify
effective, flexible ways of integrating testing and evaluation into software development activities. While

• primarily intended to exploit available technology, these tasks do themselves require some advances in
technology. For example, although a sophisticated environment will, at least initially, support application
of available testing and evaluation techniques, its development requires increased understanding of the
ways in which techniques can be cooperatively applied.

Before proceeding to discuss these tasks in more detail, a word of caution is appropriate. There are
& many important research results which have never had the benefit of significant prototype development

and exploration. There is an important need for more thorough experimentation with these research
ideas, and this is best accomplished by transferring the ideas from the academic research setting in which
they were developed to advanced technology development laboratories. New technology must initially be
applied on a few selected software efforts before being required for general practice. This will provide an
opportunity to carefully monitor the application of the technology to determine its benefits and costs in

* both technical and programmatic senses. These testbed sites should be typical software development
efforts where software developers work under realistic deadlines to develop "real" code. The introduc-
tion of new technology can incur cost and schedule penalties. These risks must be reflected in contracts
and software developers provided with incentives to explore the full potential of the new practices. Addi-
tionally, before new technology is inserted into SDS practices, the appropriate policies and organizational
support must be in place. Technology transition and insertion is a difficult and expensive activity. It is,

• however, a necessary prerequisite to advancing the state-of-the-practice. A separate, strongly funded
technology transfer effort that runs in parallel with R&D efforts must be instituted.

Although primarily intended for SDS software, the technology discussed here offers increased
effectiveness for all software testing and evaluation efforts.
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8.1 Test Planning and Testing Requirements

An initial model of a possible, promising SDS life cycle development process was given in Section 2.3.
The role that a sample set of the various techniques discussed in this report play in the testing and evalua-
tion embedded in this process is shown in Figure 8-1. This figure is not meant to imply that all the
identified techniques are those specifically recommended for use, but to illustrate the types of testing and
evaluation techniques that can be applied during various development activities. It provides an initial pic-
ture of how testing and evaluation activities can be effectively integrated into the development process to
provide timely feedback on development activities. Many issues require further investigation. For exam-
ple, what role should simulation play in the testing and evaluation scheme? A specific set of candidate
techniques suitable for each stage of software development should be identified. As data on the respec-
tive costs and benefits of these candidate techniques becomes available, those required for SDS software
testing and evaluation should be determined.
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Figure 8-1. Process Model and Candidate Techniques

In particular, for SDS, this process model should be extended to provide support for determining
which SDS engineering products must be subject to testing and evaluation, and the level of effort required
for different products. Additionally, the development process model must be supported by a model of the
improvement process which defines such activities as assessing engineering trade-offs to determine, for
example, where testing dollars should be allocated.

One of the mechanisms proposed for implementing this model is the formalized use of system and
qoftware test plans. It is vital that the necessary programmatic practices to implement this test plan con-
cept be investigated.
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The other mechanism is the use of formal testing requirements imposed at each development stage.
These requirements should provide precise specification of testing objectives which enables quantitative
assessment of both testing and evaluation progress and outstanding needs. They should not only guide the
selection of the appropriate techniques for software under test, but also guide the application of these
techniques. Traceability from system requirements, through testing requirements, down to individual test-
ing objects and activities is necessary to support both monitoring of the overall test and evaluation status
and to facilitate regression testing.

Notations and practices for specifying and using testing requirements must be developed. Although the
requirements will guide the use of existing technology, identifying what information should be captured,
how it should be represented, and how used is a difficult problem. For example, one of the simplest ways
(though in practice insufficient by itself) to specify the minimum level of dynamic analysis for a piece of
sequential software is to provide structural coverage measures. Different types of coverage measures are
appropriate for unit, integration, and system testing. Whereas coverage for unit testing is typically
assessed based on the control and data elements exercised, the proportion of program unit invocations
exercised, or the proportion of possible sequences in which they are invoked, is a better measure for
integration testing. A further degree of abstraction is appropriate for assessing the coverage of system
testing. Here coverage measures reflecting the system functions exercised should be used, where func-
tions are ranked to reflect their criticality to the system mission and the possible severity of the conse-
quences of their failure.

Even if simple coverage measures were a sufficient means for specifying the required degree of dynamic
analysis, hierarchies of coverage measures balancing the extent of required testing against the criticality of
the software under test and the cost of achieving different levels of coverage would be needed. There are
hierarchies which can be exploited for this purpose, but there is little experience to support mapping lev-
els of criticality to levels of required coverage. What are the factors that determine criticality, what
discriminates between different degrees of criticality, and how should criticality be stated? Having deter-
mined the coverage required, which dynamic analysis techniques should be employed, how extensive
should the test data used for each be?

A related issue concerns integrating the results of testing and evaluation into different stages of
development, and using different techniques, to determine the sufficiency of completed testing and
evaluation and to provide an overall view of the software status. For example, in the case of measuring
software properties, the use of a common, underlying base set of metrics is vital since trade-offs between
software properties are inevitable and the overall characteristics of the system will be largely determined
from evaluation of individual subsystems and components. How should testing requirements and results
be captured as permanent attributes of a program, supported by sufficient details to repeat the testing at
need? How can the flexibility necessary to allow evolution of the testing practices embedded in the
development process be provided? These, and other, questions must be addressed before the testing
requirements mechanism can be institutionalized.

8.2 SDS Software Data Collection System

It is extremely important that a program-wide SDS software data collection system (SSDCS) be esta-
blished. The SSDCS should be similar in nature to the measurement and collection capabilities of the
NASA SEL. As such, it will support analysis of not only SDS software, but serve as a valuable resource
for the better understanding and advancement of the technology used to develop, test, and support that
software.

The SSDCS will provide the focal point for investigating the composition, effectiveness, and

81
UNCLASSIFIED



UNCLASSIFIED

applicability of the SDS software measurement program. An overall SDS measurement strategy must be
developed which provides proper support for the understanding, evaluation, and control of SDS
software. This strategy must include a validated set of metrics collected within a measurement methodol-
ogy which is integrated into development activities. In addition, the measurement strategy must be con-
tinuously monitored for effectiveness and applicability. The SSDCS will perform experiments and
demonstrations to develop, tailor, and validate those elements of the measurement strategy.

Although primarily intended to improve understanding of existing technology, data which supports the
advancement of technology should also be collected. An initial set of technology questions, or goals,
which need to be addressed is shown in Figure 8-2. One of the lessons learned in metrics research is to
collect only the data that are needed for a specific purpose. A large volume of data often leads to
superficial analysis, which does not contribute to understanding. Consequently, the data required to
achieve the technology-related goals of the SSDCS must be clearly defined, and the costs associated with
collecting and analyzing that data weighted against the potential benefits. While a part of the data collec-
tion will, of necessity, require manual procedures, development and testing environments must be instru-
mented to automate data collection to the maximum extent possible. Instrumentation requirements for
these environments must be defined. The specific programmatic support needed to establish and maintain
an SSDCS must also be determined; including consideration of the diverse topics of organizational roles
and responsibilities, contractual implications, and policy directives.

8.3 Automated Testing and Evaluation Environment

As the field of testing and evaluation technology matures, automated support is no longer merely desir-
able, but increasingly a prerequisite for the application of today's sophisticated techniques. Software
developers need access to a collection of useful testing and evaluation tools with the capability to build an
evolving picture of the status of the software under test.

The provision of a comprehensive testing environment which supports all aspects of preparing for, exe-
cuting, and reporting on testing and evaluation activities is a high-priority goal. Requirements for the test-
ing environment must be determined. Issues of technique integration, generic components, incremental
support, language independence, user interaction models, and environment support have been identified
previously. Another important concern is the relationship between the different forms of testing and
evaluation technology. For example, dynamic analysis approaches traditionally employ inductive
methods, whereas formal verification employ deductive methods. This distinction is narrowing as more
dynamic analysis techniques use deductive methods to identify the test data necessary to execute selected
paths. Thus, the symbolic evaluation that is the front-end of formal verification is becoming a crucial ele-
ment of many analysis techniques. Similarly, some testing and evaluation activities can borrow from com-
piler technology, or even be provided through compiler extensions. Test management should be embed-
ded in the environment, leading to proactive tools which guide the user in the application of appropriate
techniques for the case in hand. (Process programming should be investigated as a mechanism for achiev-
ing this and earlier stated goals.) Finally, the development of efficient testing algorithms which can exploit
the capabilities of supercomputers to facilitate the use of computationally intensive testing techniques
should also be examined.

Development of such an environment is a significant undertaking, and the possibility of building on

9. Note: These objectives were first identified by Miller in late 1970's [Miil7Qa], though here are slightly modified.

82
UNCLASSIFIED



UNCLASSIFIED

Dynamic and Static Analysis Objectives:

1. Develop a series of well-understood weighting of programs that distinguish them in terms
of their analysis difficulty.9

2. Collect data to confirm/refine capability profiles on techniques and tools.

Formal Verification Objectives:

1. Determine model parameters for estimating costs and schedules for development of for-
mally verified software components.

Measurement Objectives:

1. Support development of tailorable metrics for specific application domains.

2. Build metric-based models of the development processes and products and use them for
improvement.

ReHaLility Assessment Objectives:

1. Support development of a model that predicts reliability from the characteristics of the
software development and testing process. 9

General:

1. Gather significant experience with testing and evaluation of large systems that reveals
empirical principles which can minimize its cost, or increase its effectiveness at the same
cost.9

2. Develop a psychology of testing and evaluation which aids in designing and imple-
menting organizations for its effective performance. 9

3. Evaluate the cost and benefits of the technology introduced.

Figure 8-2. Technology Objectives for the SSDCS
existing efforts should be carefully investigated. The following is a list of only a few of the current efforts
that are of particular interest in this respect:

" Dynamic and Static Analysis:

- The Arcadia and TEAM environments, and

- The system development environment from Stanford University.

e Formal Verification:

- The Annotated Verifiable Ada (AVA) system being developed by Computa-
tional Logic, Inc.

- The Ulysses project at Odyssey Research Associates.

* Measurement:

- The Software Metrics Data Collection System,
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- Basili's and Rombach's goal-oriented approach, and

- AdaMAT.

Reliability Assessment (the measurement efforts noted above also apply here):

- The RADC Software Reliability Measurement Framework,

- Revision of MIL-STD-785B (Reliability Program for Systems and Equipment
Development and Production), by EIA Committee on System Reliability
(G41), Subcommittee on Software Reliability, and

- IEEE STDs 982.1 (Dictionary of Measures to Produce Reliable Software) and
982.2 (Guide for the Use of Measures to Produce Reliable Software).

While the testing environment must be available prior to full scale development of SDS software, its
availability is unlikely to significantly precede the full scale engineering phase. In the interim, a. primitive
environment should be assembled from available tools. The primary goals of this interim environment
are to (1) provide immediate support to ongoing SDS efforts, (2) start the technology transfer process, (3)
support collection of quantitative information on the capabilities of current techniques and tools, and (4)
early experimentation with processes aimed at effective integration of testing and evaluation in the
development life cycle. Although unable to provide the efficient and effective testing and evaluation
expected for a carefully defined environment, such a collection of tools offers a significant improvement
over current practices.

Examples of a few candidate tools (taken from those mentioned in this report) for inclusion in such an

interim environment are:

" Dynamic and Static Analysis:

- The AdaPIC toolset, and

- The MOTHRA mutation testing system.

" Formal Verificatiun:

- The Gypsy Verification Environment.

" Measurement and Reliability Assessment:

- The TAME Environment.

- The Ada Test and Verification System (ATVS).

These example candidates have been selected on the basis of (1) support for testing and evaluation of Ada
code, and (2) the possibility that they require less than 6 man-months of effort to reach at least advanced
prototype status. Additional candidates must be identified and all evaluated with respect to SDS software
testing and evaluation needs. The cost to apply the tools and provide them routinely to software develop-
ers on a Government Furnished Equipment (GFE) basis should also be investigated. A query to research-
ers in the different areas of testing and evaluation to identify additional candidates has already been ini-
tiated.

8.4 Process Modeling

Testing and evaluation processes must be well-specified. This is necessary to allow such benefits as
universally understood testing and evaluation practices and meaningful monitoring of testing and
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evaluation activities. It is also necessary to facilitate the adoption of testing and evaluation practices
which can expand and grow with technology and to further the understanding of that technology. The
tasks to exploit technology just discussed exemplify this need. Indeed, to be effective, they require these
capabilities as a necessary precursor.

Process modeling, in particular process programming, should be investigated as a mechanism for
achieving these goals. Existing techniques and experience in process programming, such as those gained
on the Arcadia project, should be exploited for this purpose. An activity to define SDS testing and evalua-
tion processes should be undertaken. An additional activity to investigate the specification of an effective,
flexible SDS software development model that fully integrates testing and evaluation activities is also
recommended.
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9. EXTENDING THE BOUNDARIES OF TECHNOLOGY

The tasks in Section 8 provide a framework for bringing existing technology into SDS practice and pro-
moting a better understanding of the basic interrelationships between development and testing and
evaluation activities. This approach to carefully considered innovation holds great promise. Even so,
current gaps in testing and evaluation technology preclude confident deployment of a reliable SDS. Fun-
damental research to resolve critical deficiencies is urgently required. In particular, technology for testing
and evaluation of large, concurrent and real-time software is largely nonexistent for practical purposes.

Here again, three major tasks, or more properly task areas, are recommended. First, the SDS faces
specific technical problems which require practical solutions in the relatively near-term. A series of tech-
nology demonstrations to investigate the capabilities of emerging technology to solve these problems is
proposed. The second task area presents a number of areas where fundamental R&D is needed to address
shortfalls in technology. Finally, a series of tasks to monitor ongoing testing and evaluation research
efforts is recommended. All these task areas concentrate on well-focused research tasks to be conducted
over the next 5 years. It is expected that these tasks will lead to the recognition of additional R&D efforts
which should be supported over a much longer timeframe.

Unfortunately, the software testing and evaluation research community is too small and too weak at
present to rise to the challenges of SDS software testing and evaluation. The community must be
strengthened and expanded as quickly as possible. This report has identified the need for expanded
research, development, technology transfer and productization. All these require significant infusion of
resources. More the just money is needed, however. If contracts were let to perform all of the work that is
needed, there are not enough researchers in a position to perform the contracts. The SDIO should con-
sider taking the lead in encouraging other DOD agencies to join with them in building up the testing and
evaluation research community to attack the critical problems surrounding highly reliable software.

9.1 Technology Demonstrations

There are a number of areas where the practical use of emerging technology could provide increased
understanding of that technology to facilitate its advancement. Similarly, when researchers and software
developers are required to address specific problems in a practical arena, they are likely to gain increased
understanding of the problem which, in turn, provides valuable insights into possible solutions, or sup-
ports the development of a working solution pending necessary theoretical advances.

A series of technology demonstrations which require solutions to specific technical problems is recom-
mended. This proposal is in keeping with the planned development of SDS; current activities, as a whole,
are either technology demonstrations or experimental developments. Testing and evaluation technology
demonstrations should be conducted on recognizable components of the SDS with a view to potentially
providing practically useful products. There are several goals which should be applied to all demonstra-
tions, such as requiring increased use of formalism throughout the life cycle.

An initial list of candidate problems to be investigated is given in Figure 9-1. In each case, the specifics
of a suitable technology demonstration must be determined so that a decision to pursue a demonstration
can be firmly based on projected costs and benefits. Not all of the problems must be addressed individu-
ally; the ability to define demonstrations which tackle a combination of problems must be investigated.
The possibility of exploiting current software efforts (both SDS and other DOD efforts) to provide vehi-
cles for these demonstrations should be considered.
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9.2 Specific Research and Development Tasks

Resolution of the major gaps in testing and evaluation technology requires fundamental advances in the
underlying concepts. While the SDIO should not be requiring research simply for research's sake, some
pure R&D efforts are necessary to find answers to SDS software testing and evaluation problems.

Brief descriptions of an initial set of recommended R&D tasks are given below.

* Dynamic and Static Analysis Problems:

- Develop techniques for designing testable software and measuring achieved degree of testability.

- Develop/investigate specification languages and techniques which can provide an oracle capability to support
the dynamic analysis of products from later development activities.

- Develop a hierarchy of coverage measures which map against levels of criticality in SDS software.

- Perform a fault tree analysis of a sample SDS element and use to determine how to specify impact on testing
requirements and the need for fault-tolerance, fail-soft, and fail-safe mechanisms and procedures.

- Identify SDS software elements which require permanent runtime self-test, develop methods for specifying
self-test requirements and techniques for validating achievement of these requirements.

* Formal Verification Problems:

- Verified Ada run-time support systems.

- Verified secure communications over noisy channels.

- Verified distributed and autonomous systems.

* Measurement and Reliability Assessment Problems:

- Development of a Comprehensive Measurement Methodology.

- Integration of Measurement into Software Development.

- Automated Tool Support.

Figure 9-1. Candidate Problems to be Addressed in Technology Demonstrations

9.2.1 General R&D Tasks

1. Increased Formalism for Early Lifecycle Products. Current specification technology does not support
timely feedback to development activities or early identification of errors. The SDIO has recognized this
problem and provided one step forward by requiring use of an architectural design language (SADMT)
which supports design-to-simulation capabilities. This report itself has identified the need for formal test-
ing requirements. Formal languages for specifying both system and software requirements and designs are
also needed. Existing languages should be investigated to identify a minimal subset which can be recom-
mended for use on SDS efforts.

Existing testing and evaluation technology that can be applied to these pre-implementation descriptions
should be identified. It is, however, likely that new techniques and tools geared towards these more
abstract descriptions will be required. Although it is doubtful that a single, say, system requirements
language will be sufficient for the needs of all the diverse types of SDS elements, a small common subset
of system requirements languages is desirable so that researchers and software developers can focus on
supporting only a few languages. The special needs for each type of language should be identified.
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2. Testing and Evaluation Process Proamming. Process programming [Oste87a] involves encoding
software development processes in a rigorous language, such as a programming language. Such formal-
ized specification of testing and evaluation processes offers several benefits. For example, when the
necessary interactions between software developers and testing and evaluation tools are captured, it
becomes possible for a testing environment to explicitly guide testing activities, rather than merely
respond to the commands given by a software developer. Moreover, the act of writing process programs
promotes a better understanding of the underlying activities and allows this understanding to be widely
disseminated. While high-level testing and evaluation process programs can be independent of particular
software efforts, at a more detailed level they must usually be tailored to a specific effort or testing
environment. Indeed, the maximum benefits from testing and evaluation process programs will only be
obtained when a testing environment is designed to exploit this capability, and vice versa. Consequently,
an activity to define and develop process programs to support SDS software testing and evaluation activi-
ties should proceed in parallel with the development of an SDS testing environment (see Section 8.3).
Over the last few years, the researchers undertaking the development of the Arcadia and TEAM environ-
ments have gained much experience in process programming which could be used to facilitate this task.

3. Regression Testing. A relatively small task is needed to address the issue of regression testing. As pre-
viously discussed, the SDS will be subject to continually changing requirements and operating environ-
ments. Thus, considerable effort will be invested in retesting and reevaluating the software. Efforts to
facilitate this activity, and reduce its scope, offer potentially enormous payoffs. One of the most important
issues is that of sensitivity focus; from the earliest stages, all products should be analyzed to determine
whether the regression testing required by a change to the software is proportional to the scope of that
change. Additional issues particularly pertinent to regression testing include traceability of system
requirements through to testing and evaluation objects/activities and the recording of testing and evalua-
tion histories.

9.2.2 Dynamic and Static Analysis R&D Tasks

1. Techniques and Tools for Analysis of Concurrent and Real-Time Software. There are large research
areas of critical importance to SDS testing and evaluation which are still largely unaddressed. SDS

0 software will be highly concurrent and will have a strong real-time orientation. Research into testing and
analysis of such software is barely beginning. There are a small number of early research efforts under-
way. The limitations of these efforts are well recognized and the need to strengthen them and augment
them with others are also well known. Major new research efforts are required to develop the technology
needed for adequate testing and analysis of this type of software.

2. SDS Software Validation Suites. It is extremely desirable that a base set of tests that are applicable to
each component of SDS software be developed. Such a validation suite would play a valuable role in
achieving a known level of software assurance across all SDS software, and comprise a major element of
acceptance testing. In many respects, this validation suite would be similar to the Ada Compiler Valida-
tion Capability (ACVC) established by the Ada Joint Program Office. It could be made available to
software developers and all software required to pass the tests as a measure of readiness for acceptance
testing. As faults are identified in operational software, the validation suite would be extended with tests
which could detect these faults prior to deployment. Substantial resources will be required to develop and
apply the validation suite. It will be a major technical challenge to determine the requirements for,
design, develop, and maintain an evolving validation suite which provides both a good level of software
assurance and efficient utilization of computing resources. The programmatic issues concerned with
assigning responsibilities and allocating necessary resources for developing, maintaining, and applying the
validation suite must also be investigated.
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Validation suites can serve additional roles. For example, the issue of correctness of run-time kernels is
crucial to Ada software but unlikely to be fully resolved within the next five years. Meanwhile, validation
suites for Ada tasking programs supported by specifications of the expected run-time behavior could be
developed. When a specified program is run with a particular kernel and its behavior fails to conform to
the specification, this will serve as an indication of some problem with the kernel, compiler or such. This
is a non-trivial task since the run-time analysis will generally require the use of formal specifications. Such
specifications, however, if carefully planned, will ultimately be useful in the formal verification of the
software under examination. This type of role for validation suites has many applications. Another exam-
ple would be a validation suite for simulators of SDS software.

3. Develop Methods for Formally Specifying Real-Time, Distributed, and Degraded Systems and Test-
Ing Behavior Against Specifications. The following subsection (Section 9.2.3) identifies the need for
methods reasoning about real-time, distributed and degraded systems. To do this will require break-
throughs in three or four separate technologies, including specification languages, proof rules accom-
panied by formal semantics, proof methods, and automated proof systems. Meanwhile, the path towards
formal verification can be exploited to yield early, practical results. To this end, methods for formally
specifying the expected behavior of these types of systems, and then testing actual behavior against the
specifications, should be developed.

4. Develop Methods for Building Self-Checking Software in Multiprocessor Systems. The correctness of
software in multiprocessor systems cannot be assured prior to deployment with current technology. Even
if this were not the case, self-checking software that can guard against post-deployment corruptions is still
advisory. Consequently, self-checking software has a potentially vital importance for SDS software. As
with the other R&D tasks listed here, some eary work in this area is being performed. Much additional
effort is required, however, to produce products which can be applied to SDS.

9.2.3 Formal Verification R&D Tasks

1. Identify Critical Properties to be Formalized and Verified, Levels of Criticality, Priorities. Critical
properties of a system as a whole must be identified as early as possible in the development process.
These properties affect critical design decisions in partitioning and allocating functional responsibilities
within a system. Properties that must be proven at the system level imply requirements for components
with proven properties and construction techniques that preserve those properties.

As a corollary to identifying critical properties and components, identification of levels of criticality
would help in assessing verification requirements, assigning priorities to development and verification
effort, and allocating assurance resources between testing and verification.

2. Identify Critical Life-Cycle Components to be Formalized and Verified. Critical system components
that will require verification also need to be identified as early as possible in the development process.
Proving properties of components is much easier when the proof process is made an integral part of their
design and implementation. In fact, proofs of correct components may be impossible to construct after
the fact, because of design decisions and programming practices that increase the complexity of proofs.
Early identification of critical components can significantly reduce verification schedules and effort.

3. Develop Methods for Reasoning about Real-Time Systems. The critical property to be verified in
most real-time systems is that processes meet their deadlines. Results are affected by the algorithms
employed, efficiency of object code generated by the compiler, scheduling policies and performance of
the run-time system, and target hardware performance. The problem, therefore, spans the design of the
entire system. Advances are needed in several areas including real-time specification languages, formal
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semantics, proof rules and methods, and automated support.

In the past the deadline problem has been addressed by worst-case analysis, which tends to produce
overly pessimistic solutions. That is, systems are over built for normal operations to ensure that they can
handle the extreme worst-case dead"ne situations. Specific techniques employed include: algorithms with
fixed execution times, assembly language or hand-optimized object code, fixed priorities, deterministic
scheduling, and target hardware upgrades. Each of these techniques simplifies the deadline verification
problem, but they often restrict capabilities that could be supported under normal (slack) operating con-
ditions.

Adaptive algorithms and scheduling techniques that adjust to system workload have been introduced to
gain processing capabilities during slack periods. For example, when system workload is light, slower but
more-accurate algorithms can be used and useful background operations can be performed. As the work-
load picks up, background operations are dropped and required processes can switch to faster algo-
rithms. In addition, as a process nears its deadline, it may try to increase its scheduling priority to assure
its completion. Formal methods are needed for reasoning about these techniques that would allow
development of proofs of adaptive program behavior.

4. Develop Methods for Reasoning about Distributed Systems. Distributed systems are characterized by
communication latencies between slbsystems. This makes it extremely difficult for subsystems to syn-
chronize their actions. Timing constraints on coordination, for example, may not allow subsystems to
fully verify each others actions or readiness. That is, some subsystems may have to proceed on the
assumption that the other subsystems are performing their functions at the right time. Formal verification
of such systems requires methods for reasoning about system behavior where the timing of state transi-

* tions is uncertain.

5. Develop Methods for Reasoning about "Degraded" Systems. Fault-tolerant systems are able to
recover from or adapt to certain types of component failures. Many such systems may continue to
operate in a degraded mode until the failed component can be repaired or replaced. Current verification
techniques assume correct operation of underlying hardware and peripheral devices such as sensors.

* Methods for reasoning about system behavior in the presence of potential component failures is needed to
verify fault-tolerant systems.

6. Develop Support for Proving Attributes Throughout System Development. Second generation
verification tools are improving the utility of earlier tools by assuring the soundness of underlying logic
systems, standardizing on programming and annotation languages (Ada and Anna), improving user inter-

• faces, and improving performance. Additional standards and production-quality tools are needed for for-
mal requirements and design notations that can be used as a basis for proofs.

9.2.4 Measurement Technology R&D Tasks

1. Develop a Comprehensive Measurement Methodology. Current measurement methodologies do not
* provide an adequate framework ior metric analysis. Methods must be developed which address the

requirements of the measurement process, guide the appropriate selection of metrics, and aid in collect-
ing, interpreting, and validating metric results. Such a measurement methodology should encourage the
top-down generation of metrics based upon the needs of the particular project/organization (for example,
primary emphasis on reliability or portability, cost and time factors). The methodology should support
the tailoring of metrics based on the specific needs of the project/organization, and the particular charac-

* teristics of the project environment.
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2. Integration of Measurement Into Software Development. The fundamental purpose of software meas-
urement is the generation of knowledge and information which will permit the creation of higher-quality
products. The measurement process must produce results which are fed back into the software develop-
ment process to support improvement and learning.

3. Automated Tool Support. There currently exist almost no metric tool support other than those which
automate metric analysis. The integrated measurement methodology previously mentioned will require
automation at various levels. Requirements determination, metric selection, collection, interpretation,
and validation will all require some degree of automated tool support. In addition, a historical database
should be established which can be used to validate existing metrics and examine proposed metrics.

9.2.5 Software Reliability Assessment R&D Tasks

1. Assessment of the Software Development Process. To support the construction of reliable software,
emphasis must be placed on the software development process. That is, the targets of software reliability
assessment must be software development methodologies, practices, tools, techniques, and other ele-
ments of the process, rather than individual software products. The motivation here is that the best way to
construct reliable software is to utilize software development methodologies that have been shown to
afford the highest degree uf reliability. This task should be accomplished through the Measurement Tech-
nology R&D tasks described above, by ensuring proper emphasis on metrics that capture the concepts of
reliability. A necessary precondition, of course, is the effective representation of development processes
through such a medium as process programming.

2. Assessment of Software Reliability in a System Context. The technology must enable software reliabil-
ity to be assessed in a system context. In distributed real-time systems, the software is responsible for
dealing with timing constraints, hardware failures, and software faults. Accordingly, software correctness
and reliability depend on whether software meets its requirements with respect to real-time and fault
tolerance.

3. Assessment of System Reliability. Since software reliability must be taken into account when assessing
system reliability, the technology must support system reliability assessment. In regard to this issue, the
traditional practice of casting software reliability in hardware reliability terms and then using combina-
torial analysis to derive system reliability needs to be rethought. In particular, the distinction between
design faults and age-related faults needs to be given further consideration.

9.3 Monitor Technology Research

This report does not identify any technology deficiencies which have not previously been recognized.
Consequently, some of the problems discussed herein are already being addressed by various researchers.
The SDIO must maintain a close awareness of these ongoing R&D efforts so that (1) promising develop-
ments are promptly considered for SDS practice, (2) the SDIO helps to fund efforts which indicate solu-
tions to specific SDS problems, and (3) none of the SDIO-sponsored research redundantly duplicates
other work.

An initial list of ongoing R&D efforts to monitor can be compiled from those mentioned in this report.
Mechanisms for establishing, and maintaining, contact with these efforts must be developed, and
appropriate responsibilities assigned. General contact with the research community as a whole is neces-
sary so future research efforts are considered for inclusion in this task as they arise. For example,
researchers from the University of California (Irvine), the University of Massachusetts, and Purdue
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University are collaborating in the development of a 20 year research plan which is a candidate for future
inclusion in the fist of R&D efforts to monitor.

93
UNCLASSIFIED



UNCLASSIFIED

94
UNCLASSIFIED



UNCLASSEDLED

REFERENCES

[Albr$3] Albrecht, A.J., and J.E. Gaffney. "Software Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Validation." IEEE: Transactions on Software
Engineering, 9/6 (Nov 1983):639-648.

[Amb176a] Ambler, A.L., et al. 1976. "Gypsy: A Language for Specification and Implementation of
Verifiable Programs." ACM: SIGPLAN Notices, 12/3 (Mar 1976).

[Ande76a] Anderson, T., and R. Kerr. 1976. "Recovery Blocks in Action: A System Supporting High
Reliability." In Proceedings 2nd International Conference on Software Engineering, October
13-15, San Francisco, CA:,. Washington, DC: IEEE Computer Society Press.

[Appe88] Appelbe, W.F., R.A. DeMillo, D.S. Guindi, K.N. King, and W.M. McCracken. 1988. Using
Mutation Analysis for Testing Ada Programs. Purdue University. Technical Report SERC-TR-
9-P. Also published in Proceedings Ada-Europe '88, June, Munich, Germany.

[Aviz8S] Avizienis, A. "The N-Version Approach to Fault-Tolerant Software." IEEE: Transactions
on Software Engineering, 11/12 (Dec 1985):1491-1501.

[Bake79] Baker, A.L., and S.H. Zweben. "The Use of Software Science in Evaluating Modularity Con-
cepts." IEEE: Transactions on Software Engineering, 5/2 (Mar 1979):110-120.

[Basi83a] Basili, V.R., and E.E. Katz. 1983. "Metrics of Interest in an Ada Development." In Proceed-
ings IEEE Computer Society Workshop on Software Engineering Technology Transfer, April 25-
27, Miami Beach, FL, 22-29. Los Angeles, CA: IEEE Computer Society.

[Basi85a) Basili, V.R., and R.W. Selby Jr. 1985. "Calculation and Use of an Environment's Characteris-
tic Software Metric Set." In Proceedings 8th International Conference on Software Engineering,
August 28-30, London, England, 386-391. Washington, DC: IEEE Computer Society Press.

[Basi86a] Basili, V.R., R.W. Selby Jr., and D.H. Hutchens. 1986. "Experimentation in Software
Engineering." IEEE: Transactions on Software Engineering, 12/7 (Jul 1986):733-743.

[Basl87a] Basili, V.R., and H.D. Rombach. 1987. "TAME: Tailoring an Ada Measurement Environ-
ment." In Proceedings Joint Conference of 5th National Conference on Ada Technology and
Washington Ada Symposium, March 16-19, Arlington, VA, 318-325. Washington, DC: ACM
Ada Technical Committee.

[Adam8S] Adam, J.A., and P. Wallich eds. "Star Wars SDI: The Grand Experiment." IEEE SPEC-
TRUM, 22/9 (Sep 1985):34-64.

[Basi88] Basili, V.R., and H.D. Rombach. "The TAME Project: Towards Improvement-Oriented
Software Environments." IEEE: Transactions on Software Engineering, 14/6 (Jun 1988):758-
773.

[Batt87] Battaglia, M. May 1987. Integrated Diagnostics Program Plan and Roadmap. Joint Policy
* Coordinating Group: Logistics Research, Development Test and Evaluation Integrated Diag-

nostics Working Panel.

[Boeh8l] Boehm, B.W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.
Also published in IEEE: Transactions on Software Engineering, 10/1 (Jan 1984):4-21.

[BoehS4a] Boehm, B.W., T.E. Gray, and T. Seewaldt. "Prototyping Versus Specifying: A Multiproject
• Experiment." IEEE: Transactions on Software Engineering, 10/3 (May 1984):290-303.

95
UNCLASSIFIED



UNCLASSIFIED

['Boig86] Bouge, L., N. Choquet, L. Fribourg, and M.C. Gaudel. "Test Sets Generation from Algebraic
Specifications Using Logic Programming." ACM: Journal of Systems and Software, 6/4 (Nov
1986):343-360.

[Brow78] Browne, J.C., and D.B. Johnson. 1978. "FAST: A Second Generation Program Analysis Sys-
tem." In Proceedings 3rd International Conference on Software Engineering, March 10-12,
Atlanta, GA, 142-148. Washington, DC: I Computer Society Press.

[Bryk89] Brykczynski, B., and C. Youngblut. 1989. Towards SDS Testing and Evaluation: A Collection
of Relevant Topics. IDA Draft Memorandum Report M-513. VA: Institute for Defense Ana-
lyses.

[BuddSOa] Budd, T.A., R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1980. "Theoretical and Empiri-
cal Studies on Using Program Mutation to Test the Functional Correctness of Programs." In
Proceedings 7th ACM Annual Symposium on Principles of Programming Languages, January
28-30, Las Vegas, NV, 220-233. Baltimore, MD: ACM Order Department.

[Budd85] Budd, T.A, and A.S. Gopal. "Program Testing by Specification Mutation." IEEE: Computer
Language, 10/1 (Jan 1985).

[Bumpg7] Sen. Bumpers. "The Software Pitfall Facing an Early-Deployed SDI." Congre.sional Record
-- Senate. March 11, 1987:3040-3041.

[Camp79] Campbell, R.H., and R.B. Kolstad. 1979. "Path Expressions in Pascal." In Proceedings 4th
International Conference on Software Engineering, September 27-29, Munich, Germany, 212-
219. Washington, DC: IEEE Computer Society Press.

[CardS7a] Card, D.N., and W.W. Agresti. "Resolving the Software Science Anomaly." ACM: Journal
of Systems and Software, 7/1 (Mar 87):29-36.

[Cava78] Cavano, J., and J.A. McCall. 1978. "A Framework for the Measurement of Software Qual-
ity." In Proceedings ACM Software Quality Assurance Workshop, November 15-17, San Diego,
CA, 133-139. New York: Association for Computing Machinery.

[Cha88] Cha, S.S., N.G. Leveson, and T.J. Shimeall. 1988. Safety Verification in Murphy Using Fault
Tree Analysis. University of California.

[ChanS8] Chandy, K.M. and J. Misra. 1988. Parallel Program Design: A Foundation. Reading, MA:
Addison Wesley.

[Choq86] Choquet, N. 1986. "Test Data Generation using a Prolog with Constraints." In Proceedings
Workshop on Software Testing, July 15-17, Banff, Canada, 132-141. Washington, DC: IEEE
Computer Society Press.

[Clar83b] Clarke, L.A., and D.J. Richardson. 1983. "The Application of Error-Sensitive Testing Stra-
tegies to Debugging." In Proceedings ACM SIGSOFT-SIGPLAN Software Engineering Sympo-
sium on High-Level Debugging, March 20-23, Asilomar, CA. Published in ACM: Software
Engineering Notes, 8/4 (Aug 1983):45-52. Baltimore, MD: ACM Order Department.

[ClaS5a] Clarke, L.A., A. Podgurski, D.J. Richardson, and S.J. Zeil. 1985. "A Comparison of Data
Flow Path Selection Criteria." In Proceedings 8th International Conference on Software
Engineering, August 28-30, London, England, 244-251. Washington, DC: IEEE Computer
Society Press.

[Clar86a] Clarke, L.A., A. Podgurski, D.J. Richardson, and S.J. Zeil. 1986. "An Investigation of Data
Flow Path Selection Criteria." In Proceedings Workshop on Software Testing, July 15-17, Banff,
Canada, 23-32. Washington, DC: IEEE Computer Society Press.

96
UNCLASSIFIED



UNCLASSIFIED

[ClarSal Clarke, L.A., D.J. Richardson and S.J. Zeil. "Team: A Support Environment for Testing,
Evaluation, and Analysis." In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, November 28-30, Boston, MA,
121-129.

[ClarSb] Clarke, L.A., and SJ. Zel. January 1988. An Advanced Testing System for Ada, System
Description and Design. University of Massachusetts.

[ConrSS] Conradi, R., and D. Svanaes. January 1985. FOR7VER - A Tool for Documentation and Error
Diagnosis of FORTRAN-77 Programs. University of Trondheim. Technical Report 1/85.

[ContS6] Conte, S.D., H.E. Dunsmore, and V.Y. Shen. 1986. Software Engineering Metrics and
Models. Menlo Park, CA: Benjamin/Cummings Publishing Company.

* [Curt79a] Curtis, B., S. Sheppard, P. Milliman, M. Borst, and T. Love. "Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics." IEEE:
Transactions on Software Engineering, 5/2 (March 1979):95-104.

[DeMI78] DeMillo, R.A., R.J. Lipton, and F.G. Sayward. "Hints on Test Data Selection: Help for the
Practicing Programmer." IEEE: Computer, 11/4 (Apr 1978): 34-41.

* [DeMi87a] DeMillo, R.A., W.M. McCracken, R.J. Martin, and J.F. Passafiume. 1987. Software Testing
and Evaluation. Menlo Park, CA: The Benjamin/Cummings Publishing Company.

[DeM183a]DeMillo, R.A., D.S. Guindi, K.N. King, W.M. McCracken, and A.J. Offutt. 1988. "An
Extended Overview of the Mothra Software Testing Environment." In Proceedings 2nd
Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 142-151.
Washington, DC: IEEE Computer Society Press.

[Dijk76a] Dijkstra, E.W. 1976. A Discipline of Programming. Englewood Cliffs, NJ: Prentice Hall.

[DOD86a] DoD Standard STD-2168. 1 August 1986. Defense System Software Quality Program (draft).

[DOD88] DoD Standard-2167A. Defense Systems Software Development. 29 February 1988.

[DODD87a] DoD Directive 5000.3-M-3. November 1987. ref:Software Test and Evaluation Manual.

(DODD8Th] DoD Directive 3405.2.30 March 1987. Use of Ada in Weapon Systems.

[DODD87c] DoD Directive 3405.1.2 April 1987. Computer Programming Language Policy.

[Dunc81] Duncan, A.G., and J.S. Hutchison. 1981. "Using Attribute Grammars to Test Designs and
Implementations." In Proceedings 5th International Conference on Software Engineering,
March 9-12, San Diego, CA, 170-178. Washington, DC: IEEE Computer Society Press.

[Dura84] Duran, J.W., and S.C. Ntafos. "An Evaluation of Random Testing." IEEE: Transactions on
Software Engineering, 10/4 (Jul 1984):438-444.

[DyeriSa] Dyer, M. 1985. "Software Verification Through Statistical Testing."

[Eime73] Elmendorf, W.R. November 1973. Cause-Effect Graphs in Functional Testing. IBM: Technical
Report 00.2487.

[EvanS3a] Evangelist, W.M. "Software Complexity Metric Sensitivity to Program Structuring Rules."
ACM: The Journal of Systems and Software, 3/6 (Nov 1983):231-243.

(Faga76] Fagan, M.E. "Design and Code Inspections to Reduce Errors in Program Development."
IBM: Systems Journal, 15/3 (1976):182-211.

(Farr83] Farr, W.H. September 1983. A Survey of Software Reliability Modeling and Estimation.
Dahlgren, VA:Naval Surface Weapons Center. Technical Reprt NSWC-TR-82-171.

97
UNCLASSIFIED



UNCLASSIFIED

[Fink83] Finkel, R.A., M.H. Solomon et al. April 1983. Charlotte: Part IV of the First Report on the
Crystal Project. University of Wisconsin. Technical Report 501.

[Floy67] Floyd, R.W. 1967. "Assigning Meaning to Programs." In Proceedings American Mathematical
Society Symposium in Applied Mathematics, vol. 19, 19-31. Providence, RI: American
Mathematics Society. Also published in ACM: Communications of the ACM, 14 (Jan
1971).39-45.

[Fosd76a] Fosdick, L.D., and L.J. Osterweil. "Data Flow Analysis in Software Reliability." ACM: Com-

puting Surveys, 8/3 (Sep 1976):305-330.

[FostS0] Foster, K.A. IEEE: Transactions on Software Engineering, 6/3 (May 1980):258-264.

[Fran86] Franki, P.G., and E.J. Weyuker. 1986. "Data Flow Testing in the Presence of Unexecutable
Paths." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 4-13. Wash-
ington, DC: E Computer Society Press.

[Gann79a] Gannon, C. "Error Detection Using Path Testing and Static Analysis." IEEE: Computer, 12/8
(Aug 1979):26-31.

[Gan81i] Gannon, J.D., P.R. McMullin, and R.G. Hamlet. "Data Abstraction Implementation,
Specification and Testing." ACM: Transactions on Programming Languages and Systems, 3/3
(Jul 1981):211-223.

[Gerh80] Gerhart, S.L., et al. 1980. An Overview of AFFIRM: A Specification and Verification System.
University of Southern California. Technical Report PR-79-81. Also published in Proceedings
IFIP Congress 1980, 343-347. Amersterdam: North-Holland.

[Germ82a]German, S.M., D.P. Helmbold, and D.C. Luckham. October 1982. "Monitoring for
Deadlocks in Ada Tasking." In Proceedings AdaTEC Conference on Ada, October, Arlington,
VA, 10-25.

[GoeISS] Goel, A.L. "Software Reliability Models: Assumptions, Limitations, and Applicability,"
IEEE: Transactions on Software Engineering, 11/12 (Dec 1985):1411-1423.

[Gogu79a] Goguen, J.A., and J.J. Tardo. 1979. "An Introduction to OBJ: A Language for Writing and
Testing Formal Algebraic Program Specifications." In Proceedings Conference on
Specification of Reliable Software, Cambridge, MA, 170-189.

[Good75a] Goodenough, J.B., and S.L. Gerhart. "Toward a Theory of Test Data Selection." IEEE: Tran-

sactions on Software Engineering, 1/2 (Jun 1975):156-173.

[Good86a] Good, D.I. 1986. Report on Gypsy 2.05 -January 1986. University of Texas at Austin.

[Gord88] Gordon, A.J., and R.A. Finkel. "Handling Timing Errors in Distributed Programs." IEEE:
Transactions on Software Engineering, 12/10 (Oct 1988):1525-1535.

[Gorl87] Gorlick, M.M., C.F. Kesselman, D.A. Marotta, and D.S Parker. May 1987. Mockingbird: A
Logical Methodology for Testing. Computer Science Laboratory.

[Grie$1] Gries, D. 1981. The Science of Programming. New York: Springer-Verlag.

[Gutt7Sa] Guttag, J.V., E. Horowitz, and D.R. Musser. "Abstract Data "lypes and Software Validation."
ACM: Communications of the ACM, 21/12 (Dec 1978):1048-1064.

[Hals77a] Halstead, M.H. 1977. Elements of Software Science. New York: Elsevier North-Holland Pub-
lishing.

[Hame82] Hamer, P.G., and G.D. Frewin. 1982. "M.H. Halstead's Software Science - A Critical Exami-
nation." In Proceedings 6th International Conference on Software Engineering, September,

98
UNCLASSIFIED



UNCLASSIFIED

Tokyo, Japan, 197-206. Washington, DC: E Computer Society Press.

[Helm83] Helmbold, D.P. and D.C. Luckham. November 1983. Runtime Detection and Description of
Deadness Errors in Ada Tasking. Stanford University. Program Analysis and Verification
Group Report no. 22. Technical Report CSL-TR-83-249.

[HelmSb] Helmbold, D.P., and D.C. Luckham. 1985. TSL: Task Sequencing Language. Stanford
University Technical Report. Also in Proceedings SIGAda International Conference, May,
Paris, France. Published inACM: Ada Letters,V/2 (Sep-Oct 1985):255-274.

[Hoar69] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming." ACM: Communications
of the ACM, 12/10 (1969):576-583.

[HoarS'] Hoare, C.A.R. "Communicating Sequential Processes," Prentice-Hall International, 1985.

[Howd76c] Howden, W.E. "Reliability of the Path Analysis Testing Strategy." IEEE: Transactions on
Software Engineering, 2/3 (Sep 1976):208-215.

[Howd77a] Howden, W.E. May 1977. Symbolic Testing - Design Techniques, Costs, and Effectiveness.
Gaithersburg, MD: National Bureau of Standards. Technical Report NBS-GCR-77-89.

[Howd78a] Howden, W.E. "Theoretical and Empirical Studies of Program Testing." IEEE: Transactions
on Software Engineering, 4/4 (Jul 1978) :293-298.

[Howd7Sb] Howden, W.E. "Algebraic Program Testing." ACTA Informatica, no. 10 (1978):53-66.

[Howd82a] Howden, W.E. "Weak Mutation Testing and Completeness of Test Sets." IEEE: Transactions
on Software Engineering, 8/4 (Jul 1982):371-379.

[Howd83] Howden W.E. 1983. "A General Model for Static Analysis." In Proceedings 16th Annual
Hawaii International Conference on System Sciences, 163-169.

[Howd87] Howden, W.E. 1987. Functional Program Testing and Analysis. New York: McGraw-Hill.

[Howd89] Howden, W.E. 1989. "Current Validation Research and Development Activities." In Towards
SDS Testing and Evaluation: A Collection of Relevant Topics. IDA Memorandum Report M-
513. Alexandria, VA: Institute for Defense Analyses. Draft.

[KafuS5a] Kafura, D.G., and J.T. Canning. January 1985. A Validation of Software Metrics Using Many
Metrics and Many Resources. Virginia Polytechnic Institute. TR-85-6.

[Kemm8O] Kemmerer, R.A. 1980. FDM - A Specification and Verification Methodology. System Develop-
ment Corp. Technical Report SP-488.

[Kemm86] Kemmerer, R.A. 1986. Verification Assessment Study Final Report, Volume I: Overview, Con-
clusions and Future Directions. National Computer Security Council. Technical Report C3-
CR01-86.

[Kern74a] Kernighan, B.W., and P.J. Plauger. 1974. The Elements of Programming Style. New York:
McGraw-Hill.

[KlebS3I Kieburtz, R.B., and A. Silberschatz. "Access-Right Expressions." ACM: Transactions on
Programming Languages and Systems, 5/1 (Jan 1983):78-96.

[Knig86a] Knight, J.C., and N.G. Leveson. "An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming." IEEE: Transactions on Software Engineering,
12/1 (Jan 1986):96-109.

[Lamp83] Lamport, L. "Specifying Concurrent Program Modules." ACM: Transactions on Programming
Languages and Systems, 5/2 (Apr 1983):190-222.

99
* UNCLASSIFIED



UNCLASSIFIED

[LeveS3a] Leveson, N.G., T. Shimeall, 3. Stolzy, and J. Thomas. 1983. "Design for Safe Software." In
Proceedings AAA Space Science Meeting, January, Reno, NV.

[LiUSS] Lin, H. June 1985. Software for Ballistic Missile Defense. Center for International Studies.
Massachusetts Institute of Technology.

[Llnn88] Linn, J.L, C.D. Ardoin, C.J. Linn, S.H. Edwards, M.R. Kappel, and J. Salasin. April 1988.
Strategic Defense Initiative Architecture Dataflow Modeling Technique: Version 1.5. Alexandria,
VA: Institute for Defense Analyses. IDA Paper P-2035.

[Long88] Long, D.L., and L.A. Clarke. 1988. "Task Interaction Graphs for Concurrency Analysis." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 132-133. Washington, DC: IEEE Computer Society Press.

[Luck84a] Luckham, D.C., and F.W. von Henke. September 1984. An Overview of ANNA A
Specification Language for Ada. Stanford University. Technical Report CSL-TR-84-265. Also
published in IEEE: Software, 2/2 (Mar 1985):9-24.

[Luck86a] Luckham, D.C. 1986. Anna: A Language for Specifying and Debugging Ada Software. Univer-
sity of Stanford. Draft manuscript, 180 pages.

[Luck87] Luckham, D.C., D.P. Heimbold, S. Meldal, D.L. Bryan, and M.A. Haberler. July 1987.
"Task Sequencing Language for Specifying Distributed Ada Systems." In Proceedings of
CRAI Workshop on Software Factories and Ada, Capri, Italy, eds. A.N. Habermann and U.
Montanari, 249-305. Springer-Verlag LNCS No. 275. Also published as Stanford University
Technical Report CSL-TR-87-334.

[Math88a] Mathur, A.P., and E.W. Krauser. April 1988. Mutant Unification for Improved Vectorization.
Purdue University. Technical Report SERC-TR-14-P.

[McCa76] McCabe, T.J. "A Complexity Measure." IEEE: Transactions on Software Engineering, 2/4
(Dec 1976):308-320.

[Meld88] Meldal, S., D. Luckham, and M. Haberler. 1988. "Specifying Ada Tasking Using Patterns of
Behavior." In Proceedings IEEE 21st Hawaii International Conference on System Sciences,
January, 129-134.

[MILS3] Military Standard MIL/ANSI-STD-1815A. January 1983. Ada Programming Language.

[Mil79a] Miller, E. 1979. "Program Testing Technology in the 1980's." The Oregon Report: In Proceed-
ings Conference on Computing in the 1980's, 72-79. Washington, DC: IEEE Computer Society
Press.

[More84] Morell, L. 1984. A Theory of Error-Based Testing. Ph.D. thesis, University of Maryland. Also
University of Maryland, Technical Report TR-1395.

[More8] Morel], L.i. 1988. "Theoretical Insights into Fault-Based Testing." In Proceedings 2nd
Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff, Canada, 45-62.
Washington, DC: IEEE Computer Society Press.

[Musa87] Musa, J., A. lannino, K. Okumoto. 1987. Software Reliability: Measurement, Prediction,
Application. New York: McGraw Hill.

[Muss79] Musser, D.R. 1979. "Abstract Data Type Specification in the AFFIRM System." In Proceed-
ings Conference on Specification of Reliable Software, 47-57. Also published in IEEE: Transac-
tions on Software Engineering, 6/1 (Jan 1980):24-32.

[Myer78a] Myers, G.J. "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections." ACM: Communications of the ACM, 21/9 (Sep 1978):760-768.

100
UNCLASSIFIED



UNCLASSIFIED

[Myer79] Myers, G.J. 1979. The Art of Software Testing. New York: John Wiley and Sons.

[NeumS7] Neumann, P.G., and contributors. "Risks to the Public." ACM: Software Engineering Notes,
12/1 (Jan 1987):3-33.

[Ntaf$la] Ntafos, S.C. 1981. On Testing with Required Elements. University of Texas at Dallas. Technical
Report 90. Also published in Proceedings 5th International Computer Software and Applica-
ions Conference, November 18-20, Chicago, IL, 132-139. Los Alamitos, CA: IEEE Computer
Society Press.

[Olen86] Olender, K.M., and L.J. Osterweil. 1986. "Specification and Static Evaluation of Sequencing
Constraints in Software." In Proceedings Workshop on Software Testing, July 15-17, Banff,
Canada, 14-22. Washington, DC: IEEE Computer Society Press.

[OsteS7a] Osterweil, L.J. March 1987. "Software Processes are Software Too." In Proceedings 9th Inter-
national Conference on Software Engineering, March 30 - Arpil 2, Monterey, CA, 2-13. Wash-
ington, DC: IEEE Computer Society Press.

[Parn85] Parnas, D.L. "Software Aspects of Strategic Defense Systems." ACM: SIGSOFT Software
Engineering Notes, 10/5 (Oct 1985):15-23.

[Parn88] Parnas, D.L., A.J. van Schouwen, and S.P. Kwan. May 1988. Evaluation Standards for Safety
Critical Software. Queens University. Technical Report 88-220.

[Perk86] Perkins, J., D.M. Lease, and S.E. Keller. 1986. "Experience Collecting and Analyzing
Automatable Software Quality Metrics for Ada." In Proceedings 4th Annual National Confer-
ence on Ada Technology, March, Atlanta, GA, 67-74.

[Pete77] Peterson, J. "Petri Nets." ACM: Computing Surveys, 9/3 (Sept 1977):223-252.

[Pnue77] Pnuenuli, A. 1977. "The Temporal Logic of Programs." In Proceedings of the 18th Annual
Symposium on Foundations of Computer Sciences, Oct 31 -Nov 2.

[RADCS3a] Rome Air Development Center. July 1983. Software Interoperability and Reusability, Vols. I
and IL Griffiss Air Force Base, NY: Rome Air Development Center. Technical Report

* RADC-TR-83-174.

[RADC83b] Rome Air Development Center. July 1983. Software Quality Measurement for Distributed
Systems, Vols I, II and IfL Griffiss Air Force Base, NY: Rome Air Development Center.
Technical Report RADC-TR-83-175.

[RADC86] Rome Air Development Center. 1986. Ada Test and Verification System (ATVS). Griffiss Air
* Force Base, NY: Rome Air Development Center. RADC Contract F30602-86-C-0192.

[McCa87a] McCall, I.A., W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, S.
Fenwick, P. Yates, M. Hecht, and R. Vienneau. November 1987. Methodology for Software
Reliability Prediction, Vol. L Griffiss Air Force Base, NY: Rome Air Development Center.
Technical Report RADC-TR-87-171.

[Rama82] Ramamoorthy, C.V., and F.B. Bastani. "Software Reliability - Status and Perspectives."

IEEE: Transactions on Software Engineering, 8/4 (Jul 1982):354-367.

[Ratd75] Randell, B. "System Structure for Software Fault Tolerance." IEEE: Transactions on Software
Engineering, 1/2 (Jun 1975):220-232.

[Rich8Sa] Richardson, D.J., and L.A. Clarke. 1985. "Testing Techniques Based on Symbolic Evalua-
tion." In Software: Requirements, Specification, and Testing, T. Anderson (ed.), 93-110.
Blackwell Scientific Publications.

101
UNCLASSIFIED



UNCLASSIFIED

[RIebS6a] Richardson, DJ., and M.C. Thompson. December 1986. An Analysis of Test Data Selection
Criteria Using the RELAY Model of Error Detection. University of Massachusetts. Technical
Report 86-65.

[RIch8] Richardson, D.J., and M.C. Thompson. 1988. "The RELAY Model of Error Detection and
Its Application." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis,
July 19-21, Banff, Canada, 223-230. Washington, DC: IEEE Computer Society Press.

[RobI79] Robinson, L., K.N. Levitt, and B.A. Silverberg. 1979. The HDM Handbook. SRI Interna-
tional. Project No. 4628.

[Romb87a] Rombach, H.D. 1987. "A Controlled Experiment on the Impact of Software Structure on
Maintainability." IEEE: Transactions on Software Engineering, 12/3 (Mar 1987):344-354.

[Romb8b] Rombach, H.D., and V.R. Basili. 1987. "A Quantitative Assessment of Software Mainte-
nance: An Industrial Case Study." In Proceedings of the Conference on Software Mainte-
nance, September 21-24, Austin, TX, 134-144.

[Rose85b] Rosenthal, L.S. January 1985. Guidance on Planning and Implementing Computer System
Reliability. Gaithersburg, MD: National Bureau of Standards. NBS Special Publication 500-
12.

[SDIO87] Strategic Defense Initiative Organization. 30 June 1987. Strategic Defense System Test and
Evaluation Master Plan (TEMP).

[SDIO88a] Strategic Defense Initiative Organization. 16 November 1988. Strategic Defense System
Software Policy.

[SDIO8Sb] Strategic Defense Initiative Organization. 16 November 1988. Software Policy. SDIO Manage-
ment Directive No. 7.

[Selb87a] Selby, R.W. Jr. 1987. "Incorporating Metrics into a Software Environment." In Proceedings
Joint Conference of 5th National Conference on Ada Technology and Washington Ada Sympo-
sium, March 16-19, Arlington, VA, 326-331. Washington, DC: ACM Ada Technical Commit-
tee.

[SERC87] Software Engineering Research Center. 1987. The Mothra Testing Environment, User's
Manual. Purdue University. Technical Report SERC-TR-4-P.

[Shen83] Shen, V.Y., S.D. Conte, and H.E. Dunsmore. "Software Science Revisited: A Critical
Analysis of the Theory and Its Empirical Support." IEEE: Transactions on Software Engineer-
ing, 9/2 (Mar 1983):155-165.

[Shaw78] Shaw, A.C. "Software Descriptions with Flow Expressions." IEEE: Transactions on
Software Engineering, 4/3 (May 1978):242-254.

(Shoo86] Shooman, M.L. 1986. Probabilistic Reliability: An Engineering Approach. New York:
McGraw-Hill, 1968. Updated and reprinted, Malabar, FL: Krieger, 1986.

[Tayl80a] Taylor, D.J., D.E. Morgan, and J.P. Black. "Redundancy in Data Structures: Improving
Software Fault Tolerance." IEEE: Transactions on Software Engineering, 6/6 (Nov 1980):585-
594.

[Tay185] Taylor, R.N., and T.A. Standish. "Steps to an Advanced Ada Programming Environment."
IEEE: Transactions on Software Engineering, 11/3 (Mar 1985):302-310.

[Tay186a] Taylor, R.N., and C.D. Kelly. 1986. "Structural Testing of Concurrent Programs." In
Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 164-169. Washington,
DC: IEEE Computer Society Press.

102
UNCLASSIFIED



UNCLASSIFIED

[TayS8] Taylor, R.N., F.C. Belz, L.A. Clarke, L. Osterweil, R.W. Selby Jr. , J.C. Wileden, A.L.
Wolf, and M. Young. 1988. "Foundations for the Arcadia Environment Architecture." In
Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, November 28-30, Boston, MA, 1-13.

[Welasga] Weiss, S.N. 1988. "A Formal Framework for the Study of Concurrent Program Testing." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 106-113. Washington, DC: IEEE Computer Society Press.

[WeyuS0c]Weyuker, E.J., and T.J. Ostrand. "Theories of Program Testing and the Application of
Revealing Subdomains." IEEE: Transactions on Software Engineering, 6/3 (May 1980):236-
246.

[Weyu84a]Weyuker, E.J. "The Complexity of Data Flow Criteria for Test Data Selection." Information
Processing Letters, 19/2 (Aug 1984):103-109.

[Weyu88] Weyuker, E.J. 1988. "An Empirical Study of the Complexity of Data Flow Testing." In
Proceedings 2nd Workshop in Software Testing, Verification, and Analysis, July 19-21, Banff,
Canada, 188-195. Washington, DC: IEEE Computer Society Press.

[Whit78a] White, L.J., F.C. Teng, H. Kuo, and D. Coleman. 1978. An Error Analysis of the Domain
Testing Strategy. Ohio State University. Technical Reprt CISRC-TR-78-2.

[Whit86] White, L.J., and I.A. Perera. 1986. "An Alternative Measure for Error Analysis of the
Domain Testing Strategy." In Proceedings Workshop on Software Testing, July 15-17, Banff,
Canada, 122-131. Washington, DC: IEEE Computer Society Press.

[Whit88a] White, L.J., and B. Wiszniewski. 1988. "Complexity of Testing Iterated Borders for Struc-
tured Programs." In Proceedings 2nd Workshop in Software Testing, Verification, and Analysis,
July 19-21, Banff, Canada, 231-237. Washington, DC: IEEE Computer Society Press.

(WolfS6c] Wolf, A.L., L.A. Clarke, and J.C. Wileden. September 1986. The AdaPIC Toolset: Support-
ing Interface Control and Analysis Throughout the Software Development Process. University of
Massachusetts. COINS Technical Report 86-51. To appear in IEEE: Transactions on Software
Engineering.

[Wood80b] Woodward, M.R., D. Hedley, and M. Hennell. "Experience with Path Analysis and Testing
of Programs." IEEE: Transactions on Software Engineering, 6/3 (May 1980):278-286.

[Wood8] Woodward, M.R., and K. Halewood. 1988. "From Weak to Strong, Dead or Alive? An
Analysis of Some Mutation Testing Issues." In Proceedings 2nd Workshop in Software Testing,
Verification, and Analysis, July 19-21, Banff, Canada, 152-158. Washington, DC: IEEE Com-
puter Society Press.

[Youn86a] Young, M., and R.N. Taylor. 1986. "Combining Static Concurrency Analysis with Symbolic
Execution." In Proceedings Workshop on Software Testing, July 15-17, Banff, Canada, 170-178.
Washington, DC: IEEE Computer Society Press.

[Youn88a] Youngblut, C., B. Brykczynski, K. Gordon, R.N. Meeson, and J. Salasin. Bibliography of
Testing and Evaluation Reference Material. Alexandria, VA: Institute for Defense Analyses.
Draft IDA Memorandum M-496.

[Yu88a] Yu, T.J., B.A. Nejmeh, H.E. Dunsmore, and V.Y. Shen. "SMDC: An Interactive Software
Metrics Data Collection and Analysis System." ACM: Journal of Systems and Software, no. 8
(1988).

[Zei183aJ Zeil, S.J. "Testing for Perturbations of Program Statements." IEEE: Transactions on Software
Engineering, 9/3 (May 1983):335-346.

103
UNCLASSIFIED



UNCLASSIFIED

[Zei186] Zeil, S.J. 1986. "The EQUATE Testing Strategy." In Proceedings Workshop on Software Test-
ing, July 15-17, Banff, Canada, 142-151. Washington, DC: IEEE Computer Society Press.

[Zweb79] Zweben, S.H., and M. H. Halstead. "The Frequency Distribution of Operators in PLI Pro-
grams." IEEE: ransactions on Software Engineering, 5/2 (Mar 1979):91-94.

104
UNCLASSIFIED



UNCLASSIFIED

APPENDIX A: GLOSSARY OF TERMS

While attempting to define the majority of terms used in this paper, the reader is assumed to be familiar
with general software-related terms and, therefore, this glossary focuses on testing and evaluation terms.
Where necessary, the reader is referred to the IEEE Standard Glossary of Software Engineering Termi-
nology, for additional definitions.

Many of the following definitions are taken from the IEEE and other existing glossaries. In each such
case, the definition is followed by a reference to the relevant source. These sources are listed at the end of
the glossary.

Al CERTIFICATION: The distinguishing feature ACCURACY: (1) Those attributes of the
of systems in this class is the analysis derived software which provide the required precision in
from formal design specifications and verification calculations and outputs, or (2) a measure of the
techniques and the resulting high degree of degree of freedom from error; the degree of
assurance that the Trusted Computing Base is exactness possessed by an approximation or
correctly implemented. This assurance is measurement. [RADC83].
developmental in nature, starting with a formal
model of security policy and a formal top-level ADAPTABILITY: A measure of the ease with
specification of the design. which a program can be altered to fit differing

user images and system constraints. [RADC83].
ABSTRACTION: (1) A view of a problem that
extracts the essential information relevant to a ADAPTIVE ALGORITHMS: Multiple algorithms
particular purpose and ignores the remainder of that are selected at run-time depending on pro-
the information. (2) The process of forming an gram conditions such as workload and required
abstraction. [IEEE83]. accuracy.

ABSTRACT MACHINE: A representation of the ADAPTIVE PROGRAMS: Programs that employ
characteristics of a process or machine. [IEEE83] adaptive algorithms.

ABSTRACT MODEL SPECIFICATIONS: Also ADEQUATE TEST DATA: A test data set T is
called the Predicate Transform Method. For syn- adequate for a program P if P behaves correctly
tax it employs the basic precondition/post- on T but all incorrect programs behave
condition format developed by Hoare. It defines incorrectly.
functions in terms of an underlying abstraction
selected by the specifier. AFFIRM: An automated verification system

developed at the University of Southern Califor-
ACCEPTANCE TESTING: Formal testing con- nia, Information Sciences Institute.
ducted to determine whether or not a system
satisfies its acceptance criteria and to enable a ALGEBRAIC SPECIFICATION: An algebraic
customer to determine whether or not to accept specification is made up of a list of functional
the system. See also QUALIFICATION TEST- symbols (constructors and defined functions) on
ING, SYSTEM TESTING. a set of sorts and of a set of axioms defining pro-

perties of the defined fun., ions.
ACCESSIBILITY: Code possesses the charac-

* teristic accessibility to the extent that it facilitates ALGEBRAIC TESTING: A testing approach in
selective use of its parts. [RADC83]. which program correctness is treated as a pro-

gram equivalence problem.
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ALGORITHM: (1) A finite set of well-defined ARCHITECTURE: See SYSTEM ARCHITEC-
rules for the solution of a problem in a finite TURE.
number of steps; for example, a complete
specification of a sequence of arithmetic opera- ARCHITECTURAL DESIGN: (1) The process of
tions for evaluating sin x to a given precision. (2) defining a collection of hardware and software
A finite set of rules that gives a sequence of components and their interfaces to establish a
operations for performing a specific task. framework for the development of a computer
[IEEE83). system. (2) The result of the architectural design

process. [IEEE83]
ALGORITHMIC NOTATION: Use of an algo-
rithm to express a proof. ARIES: The generic interpreter developed for the

TEAM testing environment.
ALPHA TESTING: Testing of a software product
or system conducted at the developer's site by the ARITHMETIC EXPRESSION: A formula which
customer. See also BETA TESTING. defines the computation of a value.

ALTERNATE-SUFFICIENT: As used in Morell's ARRAY: A composite object consisting of corn-
model of fault-based testing, the case where ponents that have the same type.
either the original program or one of the alternate
programs must be correct. ASSERTION: A logical expression specifying a

program state that must exist or a set of condi-
ALTERNATIVES: As used in Moreli's model of tions that program variables must satisfy at a par-
fault-based testing, the set of alternative pro- ticular point during program execution; for exam-
grams derived by making a series of small, ple, A is positive and A is greater than B. See also
predefined changes to the original program. INPUT ASSERTION, OUTPUT ASSERTION.

[LEEE83]
ANNA: A language used to annotate Ada pro-
grams by making assertions on statements, vari- ASSIGNMENT STATEMENT: An instruction
ables, and program units which can be used to express a sequence of operations, or used
transformed into both static and dynamic checks to assign operands to specified variables, or sym-
for certain types of faults and failures. bols, or both. [IEEE83]

ANNOTATION LANGUAGE: A language which ASYMPTOTICAL NORMAL ESTIMATOR: An
defines assertions that can be used to annotate a estimator is called asymptotical normal if its dis-
product expressed in some other language, tribution is almost normal for sufficiently large
thereby facilitating either static or dynamic sample sizes.
checking of particular properties of the annotated
product. AUDIT: (1) An independent review for the pur-

pose of assessing compliance with software
ARC: In a directed graph, the oriented connec- requirements, specifications, baselines, stan-
tion between two nodes. Also called an edge. dards, procedures, instructions, codes, and con-
[Mill81] tractual and licensing agreements. (2) An activity

to determine through investigation the adequacy
ARCADIA: A software development environ- of, and adherence to, established procedures,
ment under development by a consortium of instructions, specifications, codes, and standards
academic and commercial organizations. The or other applicable contractual and licensing
principal characteristics of the Arcadia design requirements, and the effectiveness of the imple-
revolve around the use of process programming mentation.
and tool fragments to yield a highly flexible and
extensible architecture. AUGMENTABILITY: Those attributes of the

software which provide for expansion of
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capability for functions and data. Code possesses BREADTH: The breadth of a fault-based tech-
the characteristic augmentability to the extent nique reflects the number of potential faults con-
that it can easily accommodate expansion in corn- sidered. It may be finite or infinite.
ponent computational functions or data storage
requirements. [RADC83]. BLOCKED: A process is blocked when it is wait-

ing for an event to occur before execution can
AUTONOMOUS PROOFS: In networks of proceed.
processes, an autonomous proof treats a process
like an independent entity which, therefore, BLOCKING FREEDOM: When a process can
requires an independent specification. The never get into a blocked state.
specifications (but not the code) of the com-
ponent processes are used in the proof. BOTTOM UP TESTING STRATEGY: A sys-

tematic testing philosophy that seeks to test those
AVAILABILITY: The probability that a specified modules at the bottom of the invocation structure
function or capability can be initiated or invoked first. [Mill81]
when the system is operated in its intended
environment for a specified period of time. BOUNDARY VALUE ANALYSIS: A selection
[DeMi88] technique in which test data are chosen to lie

along boundaries of input domain (or output
AXIOMATIC CORRECTNESS PROOF: A range) classes, data structures, procedure param-
proof that employs the Axiomatic Method to ver- eters, etc. Choices often include maximum,
ify correctness of a program. minimum, and trivial values or parameters. This

technique is often called stress testing. [Adri82]
AXIOMATIC METHOD: See INVARIANT
ASSERTION METHOD. BOYER-MOORE THEOREM PROVER: A tool

that mechanizes proofs in a logical theory
developed by Boyer and Moore. Primarily an

BASIC EXECUTION TIME MODEL: Software induction machine, it incorporates many ad hoc
reliability model in which the failure process is proof strategies and expression simplifiers.
assumed to be a nonhomogeneous Poisson pro-
cess with linearly decreasing failure intensity. BRACKETED SECTIONS: Regions of text,
[Musa87]. immediately surrounding an input/output state-

ment in which the global invariant need not hold.
BETA TESTING: Testing conducted at one or
more customer sites by the end-user of a BRANCH TESTING: A test method satisfying
delivered software product or system. See also coverage criteria that require that for each deci-
ALPHA TESTING sion point each possible branch be executed at

least once. [IEEE83]
BINDING: The assigning of a value or referent to
an identifier; for example, the assigning of a value BUG: See FAULT.
to a parameter or the assigning of an absolute
address, virtual address, or device identifier to a BUILT-IN-TEST: Hardware with built-in-test
symbolic address or label in a computer program. capabilities is hardware in which diagnostic
See also DYNAMIC BINDING, STATIC BIND- probes are designed into electronic components
ING. [IEEE83] to facilitate easier detection and investigation of

faults.
BLACK BOX TESTING: See FUNCTIONAL
TESTING. BULK CONSTANT: The proportion of faults that

cause failures.
BLOCK: See PROGRAM BLOCK.
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CALENDAR TIME: Chronological time, includ- COINCIDENTAL CORRECTNESS: Program
ing time during which a computer may not be run- testing detects an fault by discovering the effect of
ning. [MusanJ that fault. It is possible, however, that an fault on

an executed path may not produce erroneous
CAUSE-EFFECT GRAPH: A combinatorial results for some selected test data; this is referred
logic network representing causes (distinct input to as coincidental correctness.
conditions or equivalence classes of input condi-
tions) and effects (output conditions or a system COLLATERAL TESTING: That testing coverage
transformation) and the logical relations between which is achieved indirectly, rather than as a
them. direct object of a testcase generation activity.

1fi1]
CAUSE-EFFECT GRAPHING: A test data selec-
tion technique. The input and output domains are COMMUNICATING SEQUENTIAL PROC-
partitioned into classes and analysis is performed ESSES (CSP): A technique in which the syn-
to determine which input classes cause which chronization between concurrent processes is
effect. A minimal set of inputs is chosen that will explicit and, as a result, the semantics of message
cover the entire effect set. [Adri82] passing can be expressed formally.

CERTIFICATION: Acceptance of software by COMMUNICATION AXIOM: Used in the CSP
an authorized agent usually after the software has proof to verify that the assertions made in
been validated by the agent, or after its validity sequential proofs after communication points are
has been demonstrated to the agent. [Adri82] valid.

CHANNEL NAME: Symbolic name assigned to a COMMUNICATION CHANNELS: The logical or
communication channel. physical means by which data is transmitted

between devices and/or processes.
CLOCK TIME: Elapsed time from start to end of
program execution, including wait time, on a run- COMMUNICATION HISTORY: The history of
ning computer. [Musa87] communication events that occur during the exe-

cution of a distributed program.
CODE: (1) A set of unambiguous rules specifying
the manner in which data may be represented in a COMMUNICATION SPACE: Consists of those
discrete form. (2) To represent data or a com- symbols, known within the module, by which
puter program in a symbolic form that can be information can be passed to or from the module
accepted by a processor. (3) To write a routine. from outside it. Communication space mechan-
(4) Loosely, one or more computer programs, or isms consist of formal parameters, global vari-
part of computer program. [IEEE83] ables, and return parameters. [MilI81]

CODE AUDITOR: An automated tool which COMMUNICATION EVENT TRACING: The
checks for conformance to prescribed program- process of keeping a history of the communica-
ming standards and practices. tion events as they occur in running a distributed

program.
CODE INSPECTIONS: See INSPECTIONS.

COMPETENT PROGRAMMER ASSUMP-
COHESION: A relative measure of the strength TION: An assumption used in mutation testing
of relationships among the internal components that competent programmers produce programs,
of a module insofar as they contribute to the vari- which, if not actually correct, are close to being
ation in assumptions made by the outside pro- correct.
gram concerning the role the module plays in the
program. (RADC83]. COMPILE-TIME CHECK: Checking performed

when a computer program expressed in a
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problem-oriented language is translated into the including arithmetic operations and logic opera-
assembly code or machine code of a particular tions; and that can execute programs that modify
computer- themselves during their execution. A computer

system may be a standalone unit or may consist of
COMPILER: A computer program used to several interconnected units. Synonymous with
translate a higher order language program into its ADP system, computing system. [IEEE83]
relocatable or absolute machine code equivalent.
Contrast with INTERPRETER. CONCURRENCY HISTORY: The sequence of

concurrency states beginning with the initial state
COMPLEXITY: (1) The degree of complication of a concurrent system. A proper history is a
of a system or system component, determined by finite history in which all elements are unique,
such factors as the number and intricacy of inter- save possibly the final element of the sequence. A
faces and conditional branches, the degree of complete history of a program S is the set of all
nesting, the types of data structures, and other proper histories of S.
system characteristics. [IEEE83] (2) A charac-
teristic of the software interface which influences CONCURRENCY STATE COVERAGE:
the resources another system will expend or com- Member of a series of successively more stringent
mit while interacting with the software. testing coverage measures analogous to structural

and data flow testing criteria for sequential pro-
COMPONENT: A basic part of a system or pro- grams. See also STATE TRANSITION COVER-
gram. [IEEE83] AGE, SYNCHRONIZATION COVERAGE.

COMPUTATIONAL FAULT: An incorrect path CONCURRENCY STATE GRAPH: A graphical
computation, such as an fault caused by missing representation of a complete concurrency history
or inappropriate assignment statements. where each node represents a unique con-

currency state and each edge represents a transi-
COMPUTATION TESTING: A testing technique tion from one concurrency state to another.
which analyzes path computations and selects test
data aimed at revealing computation faults. CONCURRENCY STATE: A concurrency state

summarized the control state of each of the con-
COMPUTATIONALLY EQUIVALENT: Two current processes at some point in an execution,
programs, or portions of a program, are said to including synchronization information, while
be computationally equivalent if they produce the omitting other information such as data values.
same results.

CONCURRENT PROCESSES: Processes that
COMPUTATIONALLY INTENSIVE: Software may execute in parallel on multiple processors or
where the majority of processing occurs in com- asynchronously on a single processor. Concurrent
puting required functions rather than handling processes may interact with each other, and one
inputs and outputs. process may suspend execution pending receipt

of information from another process or the
COMPUTATIONAL INDUCTION: An inductive occurrence of an external event. (IEEE83]
method for proving things about recursively
defined functions. CONFIGURATION: (1) The collection of inter-

connected objects which make up a system or
COMPUTER SYSTEM: A functional unit, con- subsystem. (2) The total software modules in a
sisting of one or more computers and associated software system or hardware devices in a
software, that uses common storage for all or part hardware system and their interrelationships.
of a program and also for all or part of the data [DACS79]
necessary for the execution of the program; exe-
cutes user-written or user-designed programs; CONSISTENCY: Those attributes of the software
performs user-designated data manipulation, which provide for uniform design and
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implementation techniques and notation. CORRECTNESS SPECIFICATIONS: In the
[RADC83]. constructive method, a sublanguage which for-

mally describes the specifications of the program.
CONSISTENT ESTIMATOR: An estimator is

said to be consistent if its variance tends to zero CORRELATION PRINCIPLE: There exists a
and its expectation tends to the true population narrow correlation between specification and
parameter as the sample size tends to infinity, implementation structure.

CONTROL FLOW: The sequence of operations COUPLING: A measure of the strength of data
performed in the execution of an algorithm, interconnection among modules.

COUPLING EFFECT: An assumption used in
CONTROL PATH: The sequence of control mutation testing which states that test data that
statements that affect the execution of a particu- can distinguish between programs differing from
lar program path. a correct one by only simple errors is so sensitive

that it also implicitly distinguishes from more
CONSTRUCTIVE ASSERTION: An assertion complex errors.
used by the constructive program verification
method. COVERAGE ANALYZER: A software tool

which determines and assesses measures associ-
CONSTRUCTIVE PROGRAM VERIFICA. ated with the invocation of program structural
TION: Correetness proofs are established con- elements to determine the adequacy of a test run.
structively by interweaving the generation of pro-
gram statements and their accompanying asser- COVERAGE CRITERIA: Usually applied to cov-
tions with proof justifications. erage of a program's logic, coverage criteria

specify that each statement, branch, or path must
CONTROL FLOW: The sequence of operations be executed at least once during program testing.
performed in the execution of an algorithm.
[IEEE83] COVERAGE MEASURE: See TESTING COV-

ERAGE MEASURE.
CONTROL LOCATION PREDICATES: A set of
axioms which state how control behaves in a con- COVERAGE MONITOR: See COVERAGE
struct. ANALYZER.

CONTROL STRUCTURE: (1) A construct that CRITICAL RANGE: Metric values used to clas-
determines the flow of control through a com- sify software into categories of acceptable, margi-
puter program. [IEEE83]. (2) The sequence of nal and unacceptable. [IEEE88]
control constructs performed in the execution oI
a program. CRITICAL SECTION: A segment of code to be

executed mutually exclusively with some other
COOPERATION PROOF: A proof in which segment of code is called a critical section. Seg-
processes cooperate. That is, the process interac- ments of code are required to be executed muta-.
tions maintain the global assertion and all local ally exclusively if they make competing uses of a
assertions which are made. computer resource or data item. [IEEE83]

CORRECTNESS: See PROGRAM CORRECT- CRITICAL VALUE: Metric value of a validated
NESS. metric which is used to identify software which

has unacceptable quality [IEEE88]

CORRECTNESS PROOF: See PROOF OF

CORRECTNESS. CROSS-REFERENCER: (1) A computer pro-
gram that provides cross-reference information
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on system components. For example, programs storage configuration. [IEEE83]
can be cross-referenced with other programs,
macros, parameter names, etc. This capability is DATA TYPE: A class of data characterized by
useful in problem-solving and testing to assess the members of the class and the operations that
impact of changes to one area or another. (2) A can be applied to them; for example, integer,
utility program which provides cross-reference real, logical. (IEEE83]
data concerning a program written in a higher
level language. These utility programs analyze a DATA-ABSTRACTION IMPLEMENTATION,
source program and provide as output such data SPECIFICATION, AND TESTING SYSTEM
as follows: 1. Statement label cross-index, 2. (DAISTS): An compiler-based testing system
Data name cross-index, 3. Literal usage cross- which supports testing the implementation of
index, 4. Inter-subroutine call cross-index, 5. Sta- abstract data types against user-defined algebraic
tistical counts of statement types. axiomatic specifications of those data types.

CYCLOMATIC COMPLEXITY: The cyclomatic DATA-INTERFACE ANALYSIS: A form of
complexity of a program is equivalent to the interface analysis which examines the transforma-
number of decision statements plus 1. [Adri82] tions of one type of data into another type based

on available definitions of allowable transforma-
tions.

DATA: A representation of facts, concepts, or

information in a formalized manner suitable for DE-EUTROPHICATION MODEL: A reliability
communication, interpretation, or processing by model, based on exponential failure intensity in
human or automated means. [IEEE83] terms of time, developed by Jelinski and

Moranda.
DATA ABSTRACTION: The result of extracting
and retaining only the essential characteristic pro- DEADLOCK: The state in which two or more
perties of data by defining special data types and processes are waiting for a resource that is held
their associated functional characteristics, thus by the other.
separating and hiding the representation details.
[IEEE83] DEADNESS FAULT: A fault which occurs when

part of a concurrent computation can no longer
DATA FLOW ANALYSIS: Consists of the graph- proceed due to a task communication failure.
ical analysis of collections of (sequential) data
definitions and reference patterns to determine DEBUGGER: A software tool intended to assist
constraints that can be placed on data values at the user in software fault localization and, poten-
various points of executing the source program. tially, fault correction.

DATA FLOW ANOMALY: A sequence of the DEBUGGING: The process of correcting syntac-
events reference (r), definition (d), and of vari- tic and logical faults detected during testing.
ables in a program that is either erroneous in Debugging shares with testing certain techniques
itself or often symptomatic of an error. and strategies, but differs in its usual ad hoc appli-

cation and local scope. [Adri82]
DATA FLOW TESTING: A testing technique
which provides a set of successively more DECENTRALIZED (SDS) ARCHITECTURE: A
stringent path selection criteria that guide the Strategic Defense System architecture in which
selection of test data to examine the relationships important battle management decisions are made
between variable definitions and variable uses. locally on a platform. (Note that command and

control decisions may still be made in a global,
DATA STRUCTURE: A formalized representa- centralized fashion.)
tion of the ordering and accessibility relationships
among data items without regard to their actual DECISION NODE: A node in the program
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digraph which corresponds to a decision state- extended to include design functions as well as
ment within the program. [Mil81) requirement functions. [Adri82]

DECISION STATEMENT: A statement in which DESK CHECKING: The manual simulation of
an evaluation of some predicate is made that program execution to detect faults through step-
(potentially) affects the subsequent execution by-step examination of the source code for faults
behavior of the module. [Mfi81] in logic or syntax. See also STATIC ANALYSIS.

[IEEE83]
DECISION-TO-DECISION PATH: See SEG-
MENT. DETAILED DESIGN: (1) The process of refining

and expanding the preliminary design to contain
DEDUCTIVE SYSTEM: A deductive system is more detailed descriptions of the processing
composed of axioms and rules of inference by logic, data structures, and data definitions, to the
which valid statements, or theorems, may be extent that the design is sufficiently complete to
derived from the axioms and other theorems. be implemented. (2) The result of the detailed

design process. [IEEE83].
DEGRADED SYSTEM: A degraded system is
one in which some functionality has been surren- DETERMINISM: The property of a transforma-
dered in order to allow continued processing of tion process that the same outputs are always pro-
critical functions after a failure has occurred. duced for a given set of inputs. [DACS79].

DENOTATIONAL MODEL OF PROGRAM- DETERMINISTIC PROGRAMS: Those pro-
MING NOTATION: The semantics of program- grams in which control flow is deterministic.
ming constructs of an abstract programming
language are defined by semantic valuation func- DEVELOPMENTAL TEST AND EVALUA-
tions. TION: Test and evaluation that focuses on the

technological and engineering aspects of the sys-
DENOTATIONAL SEMANTIC DESCRIPTION tem, or equipment items. [DACS79]
OF Ada: A description of Ada using a denota-
tional model. DIFFERENTIAL MODEL: A reliability model

proposed by Littlewood to account for the possi-
DEPLOYMENT: The operational employment of bility that some faults are more likely to occur
a system in its intended, target environment, than others.

DESIGN: (1) The process of defining the software DIGRAPH: Short name for directed graph.
architecture, components, modules, interfaces, [Mill81]
test approach and data for a software system to
satisfy specified requirements. (2) The results of DIRECTED GRAPH: Consists of a set of nodes
the design process. [IEEE83] interconnected with oriented arcs. An arbitrary

directed graph (digraph) may have many entry
DESIGN SPECIFICATION: A specification that nodes and many exit nodes. A program digraph
documents the design of a system or system com- has only one entry and one exit. [Mil81]
ponent; for example, a software configuration
item. Typical contents include system or com- DIRECT METRIC: A metric that represents and
ponent algorithms, control logic, data structures, defines a software quality factor, and which is
data set-use information, input/output formats, valid by definition (e.g., mean-time to software
and interface descriptions. [IEEE83] fault of 1000 operating hours for the factor relia-

bility). [IEEEE8J
DESIGN-BASED FUNCTIONAL TESTING: The
application of test data derived through func- DISTRIBUTED ARCHITECTURE: A system
tional analysis (see FUNCTIONAL TESTING) architecture in which there is not a global address
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space and which is often geographically distri- changing software components or structure while
buted. a system is running. [IEEE83]

DISTRIBUTED PROCESSING SYSTEM: (1) A
cooperative distributed processing system is EDGE: In a digraph, the oriented connection
defined as a collection of interconnected process- between two nodes. Also called an arc. [Mill811
ing elements with decentralized control that per-
mits cooperation among processors for the exe- EFFICIENCY: The extent to which the software
cution of a single task. (2) Distributed systems are performs its intended functions with a minimum
an appropriate response to distributed functions consumption of computing resources. [IEEE83]
to be performed. The functions may be distri-
buted geographically, operationally, or manageri- EFFICIENT ESTIMATOR: If two different esti-
ally. The important characteristic is that they be mators have the same expectation, then the one
functionally independent of one another and have with the smaller variance is said to be more
weak., well-defined data flow oriented interac- efficient.
tions. (3) A cooperative arrangement of intercon-
nected computers whose quasi-autonomous ELEMENTARY COMPUTATIONAL STRUCT-
operations are coordinated by a reassignable exe- URES: In a program, those objects such as refer-
cutive program. [DACS79] ences to variables, arithmetic expressions and

relations, and Boolean expressions that may
DOMAIN ERROR: Is an incorrect path domain appear independently or as part of a more corn-
that occurs due to path selection or missing path plex component.
faults.

EMULATOR: Hardware, software, or firmware
DOMAIN TESTING: A testing technique that that supports the imitation of all or part of one
generates test data to detect domain errors in a computer system by another. [IEEE83]
program. Detection of domain errors is
guaranteed within a quantifiable error bound. ENTRY NODE: In a program digraph, a node

which has more than one outway and zero inways.
DYNAMIC ALLOCATION: The allocation of An entry node has an in-degree of zero and a
addressable storage and other resources to a pro- non-zero out-degree. [Mill81]
gram while the program is executing. [IEEE83]

ENVIRONMENT: The combination of all exter-
DYNAMIC ANALYSIS: The process of evaluat- nal or extrinsic conditions that affect the opera-
ing a program based on execution of the program. tion of an entity. [DACS79]
[IEEE83] ENVIRONMENT SIMULATOR: An automated

DYNAMIC ASSERTION: A technique which replication of the external world constructed for
inserts assertions about the relationship between testing.
program variables into the program code. The
truth of the assertions is determined as the pro- EQUATE: An automated testing system which
gram executes. [Adri82] merges weak mutation testing and perturbation

testing to find faults in the execution of paths in
DYNAMIC BINDING: Binding performed during an Ada program.
execution of a program. Contrast with STATIC
BINDING. [IEEE83] EQUIVALENCE PARTITIONING: A test data

selection technique based on considerations of
DYNAMICALLY RECONFIGURING: See (1) partitioning the input domain of a program
DYNAMIC RESTRUCTURING. into a finite number of equivalence classes such

that a test of a representative value of each class
DYNAMIC RESTRUCTURING: The process of is equivalent to a test of any other value and (2)
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each test case should invoke as many different for generating test data sensitive to commonly
input conditions as possible in order to minimize occurring faults.
the total number of test cases necessary.

ERROR-BASED TESTING: Testing where infor-
ERROR: (1) A discrepancy between a computed, mation about programming style, error-prone
observed, or measured value or condition and the language constructs, and other programming
true, specified, or theoretically correct value or knowledge, is applied to select test data capable
condition. [IEEE83] (2) A mental mistake made of detecting faults, either a specified class of
by a programmer which may result in a program faults or all possible faults.
fault.

EVALUATION: The process of examining a sys-
ERROR CHECKLIST: A list of errors that must tem or system component to determine the extent
be looked for during an inspection. The list is to which specified properties are present.
compiled from errors that have frequently been
found during prior inspections. EVOLUTIONARY DEVELOPMENT AND

DEPLOYMENT: A paradigm for constructing
ERROR CORRECTION MODEL: A model to computer systems where the system is developed
estimate the mean correction time. and deployed in a series of versions with increas-

ing functionality.

ERROR CORRECTION RATE: Number of

errors corrected per unit of time. EXCEPTION: An event that causes suspension
of normal program execution. [IEEE83]

ERROR COUPLING EFFECT: The assumption,
used in mutation testing, that test data on which EXCEPTION HANDLING: A set of program-
all simple mutants fail is so sensitive that it is ming techniques for recognizing and acting upon
highly likely that all complex mutants must also exceptions.
fail.

EXECUTABLE SPECIFICATION: A
ERROR GUESSING: A test data selection tech- specification which is given in a sufficiently for-
nique. The selection criteria is to pick values that mal notation to allow its execution by a computer.
seem likely to cause [failures]. [Adri82]

EXECUTABLE STATEMENT: A statement in a

ERROR OPERATOR: A transformation applied module which is executable in the sense that it
to a program to produce a mutation of the pro- produces object code instructions. [Mil81]
gram that contains a specific type of fault. Test
data that can distinguish between the original and EXECUTION: The process of carrying out an
mutated programs is said to be adequate for instruction or the instructions of a computer pro-
detecting that fault. gram by a computer. [IEEE83]

ERROR QUEUE LENGTH: Number of errors EXECUTION ENVIRONMENT: See ENVIRON-
detected waiting to be processed by the fault- MENT.
correction personnel.

EXECUTION PATH: See Path.

ERROR SEEDING: The process of intentionally

adding a known number of faults to those already EXECUTION TIME: (1) The amount of actual or
in a program for the purpose of estimating the central processor time used in executing a pro-
number of indigenous faults in the program. gram. (2) The period of time during which a pro-
[IEEE83] gram is executing. See also RUN TIME. [IEEE83]

ERROR SENSITIVE TEST CASE ANALYSIS EXHAUSTIVE TESTING: Executing the pro-
(ESTCA): A testing technique that provides rules gram with all possible combinations of values for
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program variables. [Adri82] a fault is encountered. [IEEE83]

EXIT NODE: In a digraph, a node which has FAILURE COUNT MODEL: Software reliability
more than one inway, but has zero outways. An model in which the failure process is represented
exit node has zero out-degree, and a non-zero in- as a stochastic process with a time dependent
degree. MU181] failure rate. [Goel85].

EXPECTED VALUE: Mean of a random vari- FAILURE DETECTION RATE: Number of
able. (MusaS7] failures detected per unit of time.

EXPRESSION ANALYSIS: A form of static FAILURE HISTORY: In software reliability
error analysis that detects certain commonly modeling, the record of software failures, in
occurring faults associated with the evaluation of terms of failure times or failure counts per inter-
expressions; for example, incorrect or incom- val.
plete parentheses.

FAILURE INTENSITY: Failures per unit of time,
EXPRESSION SET: In the EQUATE system, the the derivative with respect to time of the mean
set of all expressions and subexpressions from value function of failures. [Musa87]

0 the abstract syntax tree of the module under test.
FAILURE INTENSITY DECAY PARAMETER:

EXTENT: The extent of a fault-based testing In the logarithmic Poisson execution time model,
technique reflects the scope of information used the parameter that represents the rate of
to determine the absence of a predefined set of exponential decay of the failure intensity as a
possible faults. It may be local or global, function of mean failures experienced. [Musa87].

EXTREMAL TEST DATA: Test data that is at the FAILURE INTERVAL: Time between failures.
extreme or boundary of the domain of an input [Musa87]
variable or which produces results at the boun-
dary of an output domain. [Adri82] FAILURE PROBABILITY: The probability of

failure under specified conditions.

FACTOR SAMPLE: A set of factor values which FAILURE RATE: The ratio of the number of
is drawn from the metrics data base and used in failures to a given unit of measure; for example,
metrics validation. [IEEE88] failures per unit of time, failures per number of

transactions, failures per number of computer
FACTOR VALUE: A value (see metric value of runs. [IEEE83]

40 the direct metric that represents a factor.
[IEEE88] FAILURE SEVERITY: Classification of a failure

by its operational impact. [Musa87]
FAIL-SAFE: A fail-safe system limits the amount
of damage caused by a failure and may not strive FALSE ASSUMPTION DECOMPOSITION
to continue functionality. ERROR: Errors resulting from incorrect assump-

0 tions about the meaning or usage of data.
FAIL-SOFT: A fail-soft system continues opera-
tion but provides only degraded performance or FAULT: A manifestation of an error in software.
reduced functional capabilities until the fault is A fault, if encountered, may cause a failure.
removed. [IEEE83I

0 FAILURE: The inability of a system or system FAULT CORRECTION RATE: Number of
component to perform a required function within failures corrected by the failure-correction per-
specified limits. A failure may be produced when sonnel per unit of time.
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FAULT CORRECTION PROFILES: The indicate the possible effect of critical failures.
profiles (in terms of number of people, and fault
correction rate) of the failure correction- FIDELITY: Fidelity is defined as the accuracy
personnel assumed for a particular model, with which a given algorithm is mechanized for a

given operating system and hardware system.
FAULT DENSITY: Probability density of the [DACS79]
failures.

FILE COMPARATOR: A software tool which
FAULT REDUCTION FACTOR: Net reduction compares two files to identify discrepancies
in faults per failure experienced. [Musa87] between them.

FAULT SEEDING MODEL: Software reliability FINITE INPUT SEQUENCES: A finite set of
model in which the number of indigenous faults symbols which forms a string of characters used
in a program is estimated from the number of as the input for some process.
seeded faults and indigenous faults that are
detected. [Goe185]. FINITE STATE MACHINE: A computational

model consisting of a finite number of states, and
FAULT-BASED TESTING: Testing which transitions between these states. [IEEE83
employs a test data selection strategy designed to
generate test data capable of demonstrating the FIRM MUTATION TESTING: A version of
absence of a prespecified set of faults; typically mutation testing which merges the strengths of
frequently occurring faults. strong and weak mutation testing by using com-

ponents with more extensive scope than weak
FAULT-TOLERANCE: The probability that a mutation testing and allowing several mutants to
system detects, recovers, and insulates itself from be applied in a single program execution.
the effects of specified component faults or
failures in order to maintain a high degree of avai- FIRST-ORDER LOGIC: See PREDICATE CAL-
lability when operated under stated conditions for CULUS.
a specified period of time. [DeMi88]

FIRST-ORDER PREDICATE CALCULUS: See
FAULT-TOLERANT SOFTWARE: A software PREDICATE CALCULUS.
structure employing functionally redundant rou-
tines with concurrent error detection, and provi- FLAVOR ANALYSIS: A form of analysis used in
sions to switch from one routine to a functional testing large scale software systems to detect
alternate in the event of. a detected fault. incorrect assumptions about the meaning and
[DACS79] usage of data.

FAULT-TOLERANCE TECHNIQUES: Program- FLEXIBILITY: The effort to extend the software
ming techniques which increase the fault- mission, functions, or data to satisfy other
tolerance of a system or system component; for requirements. [RADC83]
example, N-version programming, recovery
blocks. FLOWCHART: A graphical representation of

the definition, analysis, or solution to a problem
FAULT TREE: The tree built during (software) in which symbols are used to represent opera-
fault tree analysis which is developed using back- tions, data, flow, and equipment. [IEEE83I
ward reasoning to the identify the causes and con-
ditions which may lead to a critical failure. FOLLOW-ON OPERATIONAL TEST AND

EVALUATION (FOT&E): Operational test and
FAULT TREE ANALYSIS: A form of safety evaluation conducted after deployment of a sys-
analysis that assesses hardware safety to provide tem. For example, to validate assumptions made
failure statistics and sensitivity analyses which in previous operational testing.
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FORMAL DEVELOPMENT METHODOLOGY requirements without regard to the final program
(FDM): An automated verification system, structure. [Adri82]
developed by the System Development Corpora-
tion and employing the Ina Jo language.

GENERATOR: In the EQUATE system, the

FORMAL LANGUAGE: A language whose rules expression set term whose subexpression was
are explicitly established prior to its use. modified in the derivation of operand substitution
Synonymous with artificial language. Examples terms.
include programming languages, such as FOR-
TRAN and Ada, and mathematical or logical GENERIC COMPONENT: A generic component
languages, such as predicate calculus. [IEEE83] is one which can be instantiated in a number of

predefined ways so that each occurrence of the
FORMAL SEMANTICS: The mathematical component can be tailored to suit a particular
definition of the semantics of a language. usage. For example, a generic component which

provides a set of queue handling routines might
FORMAL SOFTWARE DEVELOPMENT: The be designed so that it can be instantiated to
use of formal methods to specify, verify, and test operate on queues with different message for-
software. mats.

FORMAL SPECIFICATION: In proof of GEOMETRIC MODEL: A reliability model pro-
correctness, a description in a formal language of posed by Moranda as a variation of the De-
the externally visible behavior of a system or sys- Eutrophication model.
tern component. Generally, a specification writ-
ten and approved in accordance with established GEOMETRIC POISSON MODEL: A reliability
standards. [IEEE83] model proposed by Moranda as an alternative to

the Geometric model.

FORMAL VERIFICATION: See VERIFICA-
TION. GLOBAL ASSERTION: Those assertions which

are valid for the whole program being validated.
FUNCTION: (1) A specific purpose of an entity
or its characteristic action. (2) A subprogram GLOBAL INVARIANT: Those assertions which
that is invoked during the evaluation of an expres- do not change for the whole program.
sion in which its name appears and that returns a
value to the point of invocation. [IEEE83] GOAL/QUESTION/METRIC PARADIGM: A

measurement approach which aids in determining
FUNCTIONAL ABSTRACTION: A design stra- and specifying the goals of a software develop-
tegy in which programs are viewed as a hierarchy ment project.
of abstract functions.

GRAMMAR-BASED TESTING: A testing
FUNCTIONAL REQUIREMENT: A requirement method that generates test cases from a formal
that specifies a function that a system or system specification of a system or system component.
component must be capable of performing.
[IEEE83] GRAPH: A model consisting of a finite set of

nodes having connections called edges or arcs.
FUNCTIONAL SPECIFICATION: A set of [IEEE83]
behavioral and performance requirements which,
in aggregate, determine the functional properties GYPSY SPECIFICATION LANGUAGE: A
of a software system. [Mill8l] language consisting of two intersecting com-

ponents: a formal specification language and a
FUNCTIONAL TESTING: Application of test verifiable high-level programming language.
data derived from the specified functional
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GYPSY VERIFICATION ENVIRONMENT HOST MACHINE: A computer used to develop
(GVE): An automated verification system software intended for another computer.
developed at the University of Texas at Austin [IEEE83]
and employing the Gypsy language.

IMPLEMENTATION: (1) The implementation of
a program is either a machine executable form of

HARDWARE: Physical equipment used in data the program, or a form of the program that can
processing, as opposed to computer programs, be automatically translated (e.g., by compiler or
procedures, rules, and associated documenta- assembler). (2) That process by which an archi-
lion. Contrast with SOFTWARE. [IEEE83] tectural design is turned into a delivered program.

It includes the detailed functional and procedural
HARDWARE-IN-THE-LOOP SIMULATION: A design, coding, testing, and documentation
simulation that includes one or more physical ele- necessary to meet program requirements, either
ments of the system being simulated, interacting for new or modified software. [DACS79]
with the software models of the remaining system
elements. IMPROVEMENT PARADIGM: A paradigm

which guide activities necessary to better under-
HAZARD: A set of conditions (state) that has an stand and learn from the software construction
unacceptable risk of leading to an accident, given process.
certain environmental conditions.

INA JO: A non-procedural specification language
HAZARD FUNCTION: (1) The probability that based on an extension of first-order predicate cal-
an error occurring in a given infinitesimal time culus, used in the Formal Development Metho-
interval given that no error has occurred previ- dology automated verification system.
ously to that interval. (2) Instantaneous failure
rate of a system. (Musa's model.) (3) The error- INCREMENTAL ANALYSIS: Occurs when (par-
rate relationship. [DACS79] tial) analysis may be performed on an incomplete

product to allow early feedback on the develop-
HAZARD RATE: Probability density (per unit of ment of that product.
time) of failure given that failure has not occurred
up to the present. [Musa87] INCREMENTAL TESTING: See INCREMEN-

TAL ANAL YSIS.
HEURISTIC: An exploratory method of problem
solving in which solutions are discovered by INDEPENDENT VALIDATION AND VERIFI-
evaluation of the progress made toward the final CATION (IV&V): Verification and validation of a
result. Contrast with ALGORITHM. [DACS79] software product by an organization that is both

technically and managerially separate from the
HIERARCHICAL DEVELOPMENT METHO- organization responsible for developing the pro-
DOLOGY (HDM): An automated verification duct. [IEEE83]
system developed by SRI International and
employing the SPECIAL state-machine language. INDETERMINISM: Inverse of DETERMINISM.

HOARE LOGIC: A logic in which the behavior INDUCTION: The use of a mathematical tech-
of a statement S is specified by an assertion P nique that employs reasoning from a part to a
describing possible states before execution of S, whole.
and a second assertion Q describing possible
states after the execution of S. INDUCTIVE ASSERTION METHOD: A proof

of correctness technique in which assertions are
HOMOGENEOUS: Processing characteristics written describing program inputs, outputs and
that do not vary with time. intermediate conditions, a set of theorems is

developed relating satisfaction of the input
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assertions to satisfaction of the output assertions, INPUT CONDITION: See INPUTASSERTION.
and the theorems are proved to be true. [IEEE83]

INPUT DOMAIN: See INPUT SPACE.
INEVITABILJTY: A program will inevitably est-
ablish predicate R in the computation started in INPUT DOMAIN BASED MODEL: Software
state S if and only if for every sequence t in the reliability model in which reliability is estimated
computational history ot S there is an initial sec- from the fraction of test runs resulting in failure.
tion r of t such that R holds in the last state of r. Failures are weighted according to the opera-

tional profile of the software. [Goel85]
INFEASIBLE PATH: A sequence of program
statements that can never be executed. [Adri82] INPUT SPACE: Consists of that subset of a

module's communication space which can be (1)
INFERENCE RULES: The basic building blocks altered externally to the module, and (2) which is
of formal proof. They generally consist of a (potentially) used within the module in such a way
number of hypotheses and a conclusion, the idea that affects its execution. [Mil811
being that the validity of the conclusion can be
inferred from the validity of all the hypotheses. INPUT-SPACE PARTITIONING TESTING

TECHNIQUES: Testing techniques which employ
INFERENCE SYSTEM: A set of inference rules. a test data generation strategy based on partition-

ing the input space of a program.
INFORMATION HIDING: The technique of
encapsulating software design decisions in INSPECTION: A formal evaluation technique in
modules in such a way that the module's inter- which software requirements, design, or code are
faces reveal as little as possible about the examined in detail by a person or group other
module's inner workings; thus, each module is a than the author to detect faults, violations of
"black box" to the other modules in the system. development standards, and other problems.
The discipline of information hiding forbids the [IEEES3I
use of information about a module that is not in
the module's interface specification. [IEEE83] INSTRUMENTATION: See PROGRAM

INSTRUMENTATION.
INITIAL OPERATIONAL TEST AND EVALUA-
TION: The first phase of operational test and INTEGRATION: The process of combining
evaluation conducted on preproduction items, software elements, hardware elements, or both
prototypes, or pilu, production items and nor- into an overall system. [IEEE83]
mally completed prior to the first major produc-
tion decision. It is conducted to provide a valid INTEGRATION TESTING: An orderly progres-
estimate of expected system operational sion of testing in which software elements,
effectiveness and suitability. hardware elements, or both are combined and

tested until the entire system has been integrated.
INITIAL VALUE SET: In the EQUATE system, [IEEE83]
the set of values first taken on by each expression
set term at each test location during testing. INTEGRITY: (1) The probability that stored

information and data will not be modified by
INPUT: See PROGRAM INPUT. unauthorized means. [DeMi88] (2) The extent to

which unauthorized access to the software or data
INPUT ASSERTION: A logical expression speci- can be controlled. [RADC83].
fying one or more conditions that program inputs
must satisfy in order to be valid. [IEEE83] INTERFACE: A shared boundary. An interface

might be a hardware component to link two dev-
INPUT CLAUSE: See INPUTASSERTION. ices or it might be a portion of storage or registers

accessed by two or more computer programs.
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[IEE8E3] LEMMA: An intermediate conclusion in the
development of the proof of a theorem.

INTERFACE ANALYSIS: Checks the interfaces
between program elements for consistency and LIFECYCLE: See SOFTWARE LIFECYCLE.
adherence to predefined rules or axioms.

LINEAR CODE SEQUENCE AND JUMP PRO-
INTERFACE CONTROL: Interface control GRAM UNITS: Sections of the code through
requires that input/output specifications must be which the flow of control proceeds sequentially
controlled as engineering configuration items at until terminated by a jump in the control flow.
system design, implementation, integration, and
operation times. [DACS79] LIVENESS: A program property that states that

a desired state, such as termination, can be
INTERFERENCE-FREE: See NON-INTER- reached.
FERENCE.

LOGARITHMIC POISSON EXECUTION TIME
INTERMITrENT ASSERTION METHOD: A MODEL: Software reliability model in which the
formal verification method that proves properties failure process is assumed to be a nonhomogene-
of programs by induction on their space. The ous Poisson process with exponentially decreas-
method only applies to while statements. ing failure intensity. [Musa87].

INTEROPERABILITY: The effort to couple the LOGICAL ASSERTIONS: Logical postulates
software of one system to the software of another usually used to characterize legitimate program
system. [RADC83]. input and output states and hence the effect

(semantics) of the program.

INTERPRETER: (1) Software, hardware, or

firmware used to interpret computer programs. LOOP: A set of instructions that may be exe-
Contrast with COMPILER. [IEEE83] cuted repeatedly while a certain condition pre-

vails. [IEEE83]
INTERPROCESS COMMUNICATION: The
sending and receiving of messages by the LOSS EVENT: In fault tree analysis, the critical
processes/entities within an operating system. failure which is assumed to have occurred and
[DACS79] which forms the root of the fault tree.

INVARIANCE: A predicate R is invariant in the
state S if and only if R is true in every state of MAINTAINABILITY: (1) The probability that
every sequence in the computational history of S specified unavailable functions can be repaired or
unless the state is blocked or empty. restored to their operational state in the system's

intended maintenance environment during a
INVARIANT ASSERTION METHOD: A proof specified period of time. [DeMi88] (2) The aver-
method in which one deduces the correctness of age effort to locate and fix a software failure.
complex statements from the correctness of their [RADC83].
components. MANUAL REVIEWS: See INSPECTION and

INVOCATION: (1) The transfer of control to an WALKTHROUGH.
entity causing it to be activated. (2) The linking to
or insertion of a procedure body by means of a MATHEMATICAL INDUCTION: See INDUCT-
named reference within a procedure. Subroutine ION.
linking is sometimes referred to as a "call." Code
insertion is referred to as a "macro call." MEAN TIME BETWEEN FAILURES (MTBF):
[DACS79]. The sum of mean time to failure and mean time to

repair.
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MEAN TIME TO FAILURE (MTrF): (1) A METRIC VALUE: An element from the range of
measure of the time elapsed before a failure a metric; a metric output. [IEEE,88]
occurs where units of time may reflect either exe-
cution time or calendar time. Used as an indica- MISSING PATH FAULT: Occurs when a special
tion of software reliability. (2) Expected value of case requires a unique sequence of actions, but
the failure interval. NMusa87] the program does not contain a corresponding

path. This type of fault is cause by missing condi-
MEAN TIME TO REPAIR (MTTR): Expected tional statements.
value of the time required to restore to normal
operation. [Musa87] MODE: A way of operating a program to perform

a certain subset of the functions that the entire
MEASURE: To ascertain or appraise by compar- program can perform, as selected by control data
ing to a standard; to apply a metric. [IEEE88] or operating conditions. Often, the mode of a

program will be defined as program states, with
MEASUREMENT: 1) the act or process of transitions annotated to delineate events causing
measuring; 2) a figure, extent, or amount the passages between modes of operation.
obtained by measuring. [IEEE88 [DACS79]

METRIC: A measure of the extent or degree to MODULARITY: Those attributes of the software
which a product possesses and exhibits a certain which provide a structure of highly cohesive
quality, property, or attribute. [IEEE83] modules with optimum coupling. [RADC83]

METRICS DATA BASE: An organized collec- MODULE: A module is a separately invocable
tion of factor values and corresponding metric element of a software system. [Mill81]
values. [IEEE88]

MODULE-INTERFACE ANALYSIS: A form of
METRICS FRAMEWORK: A tool used for interface analysis which examines the interfaces
organizing, selecting, communicating and between system components for consistency,
evaluating the required quality attributes for a completeness, and redundancy.
software system; a hierarchical breakdown of fac-
tors, sub-factors, and metrics for a software sys- MOTHRA: An automated testing system which
tern. [IEEE88] applies mutation testing, structural testing, and a

form of functional testing to FORTRAN pro-
METRICS METHODOLOGY: A systematic grams.
approach to establishing quality requirements and
identifying, implementing, analyzing and validat- MULTI-LEVEL SECURITY: A mode of opera-
ing software quality metrics for a software sys- tion permitting data at various security levels to
tem. [IEEE88I be concurrently stored and processed in a com-

puter system, when at least some users have nei-
METRICS PLAN: A document that contains a ther the clearance nor the need-to-know for all
complete software quality metrics framework for data contained in the system. [IEEE83]
a system, the set of documented metrics, and the
set of documented data items. [IEEE88] MULTI-TASKING: A method of describing con-

current programs as collections of separate tasks.
METRICS SAMPLE: A set of metrics values
which is drawn from the metrics data base and MULTI-UNIT TEST: Consists of a unit test of a
used in metrics validation. [IEEE88] single module in the presence of other modules.

It includes (1) a collection of settings for the input
METRICS VALIDATION: The act or process of space of the module and all the other modules
ensuring that a metric correctly predicts a quality invoked by it, but (2) precisely one invocation of
factor. [IEEE88] the module under test. [Mill8l]
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MUTANT: A mutated form of a program pro- NON-PROCEDURAL LANGUAGE: Those
duced by applying an error operator which intro- languages which do not have procedure call state-
duces a predefined fault into a program state- ments in their syntax.
ment.

NONHOMOGENEOUS POISSON PROCESS
MUTATION ANALYSIS: See MUTATION MODEL: A reliability model developed by Goel
TESTING. and Okumoto.

MUTATION TESTING: A method to determine NP-COMPLETE: A problem for which all
test set thoroughness by measuring the extent to known solutions do not have a polynomial-time
which a test set can discriminate the program solution.
from slight variants of the program. [Adri82]

MUTATION TRANSFORMATION: See ERROR OPERAND SUBSTITUTION TERMS: In the
OPERATOR. EQUATE system, the set of expressions that can

be formed by substituting any member of the
MUTUAL EXCLUSION: Mutual exclusion expression set for any subexpression of another
occurs when each process accessing shared data expression set member.
excludes all others from doing so simultaneously.

OPERATING MODE: See MODE.

N-VERSION PROGRAMMING: The indepen- OPERATING SYSTEM: Software that controls
dent generation of N>2 functionally equivalent the execution of programs. An operating system
programs from the same initial specification. The may provide services such as resource allocation
N programs possess all the necessary attributes scheduling, input/output control, and data

* for concurrent execution, during which com- management. Although operating systems are
parison vectors are generated by the program at predominantly software, partial or complete
certain points. [DACS79] hardware implementations are possible. An

operating system provides support in a single spot
NETWORK OF PROCESSES: A set of rather than forcing each program to be concerned
processes executing in parallel and communicat- with controlling hardware. [IEEE83]
ing via a communication channel.

OPERATIONAL: The status given a software
NODE: 1) A number assigned to a place within a package once it has completed contractor testing
program text. Generally, nodes are assigned only and it is turned over to the eventual user for use
to executable statements. [Mill8l] 2) A vertex in a in the applications environment. [DACS79]
graph.

OPERATIONAL ENVIRONMENT: The environ-
NON-EXECUTABLE PATH: See INFEASIBLE ment in which a system or system component will
PATH. be deployed and operate.

NON-EXECUTABLE STATEMENT: A declara- OPERATIONAL PROFILE: The expected run
tion or directive within a module which does not time distribution of inputs to a program.
produce (during compilation) object code
instructions directly. [Mill81] OPERATIONAL RELIABILITY: The reliability

of a system or software subsystem in its actual use
NON-INTERFERENCE: In verification of paral- environment. Operational reliability may differ
lel programs, those assertions which will be valid considerably from reliability in the specified or
regardless of the manner in which the programs test environment. [IEEE83].
interact.

OPERATIONAL SOFTWARE: See
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OPERATIONAL. integration testing where units handling program
inputs and outputs are tested first, and units

OPERATIONAL REQUIREMENTS: Qualitative which process the inputs to produce outputs
and quantitative parameters which specify the being incrementally included as the system is
desired operational capabilities of a system and integrated.
which will serve as a basis for determining the
operational effectiveness and suitability of a sys-
tem prior to deployment. PAGING: The technique of repeatedly using the

same areas of internal storage during different
OPERATIONAL TEST AND EVALUATION: stages of program execution. [IEEE83]
Formal testing conducted prior to deployment to
evaluate the operational effectiveness and suita- PARAMETER ESTIMATION: The process of
bility of a system with respect to its mission. establishing parameter values for a model.

OPERATIONAL TESTING: Testing performed PARAMETER PREDICTION: Determination of
by the end user on software in its normal operat- parameter values from characteristics of the
ing environment. (DOD usage) [IEEE83] software product and the development process.

[Musa87]
OPERATOR: (1) In symbol manipulation, a sym-
bol that represents the action to be performed in PARTIAL CORRECTNESS: Conditional or par-
an operation. Examples of operators are +,,*,/. tial correctness of a program (as opposed to total
(2) In the description of a process, that which correctness) is obtained when proving the
indicates the action to be performed on correctness of a program is based on the assump-
operands. [IEEE83] tion that the program terminates.

OPERATOR-INTERFACE ANALYSIS: A form PARTITION ANALYSIS: A program testing and
of interface analysis which examines the usage of verification technique which employs symbolic
operators applied to data structures. evaluation to provide common representations of

a program's specification and implementation.
ORACLE: A mechanism to produce the See also PARTITION ANALYSIS TESTING,
"correct" responses to compare with the actual PARTITION ANALYSIS VERIFICATION.
responses of the software under test. [Adri82]

PARTITION ANALYSIS TESTING: The test
OUTPUT: See PROGRAM OUTPUT. data selection process used in partition analysis

to generate test data based on analysis of both the
OUTPUT ASSERTION: A logical expression program specification and implementation.
specifying one or more conditions that program
outputs must satisfy in order for the program to PARTITION ANALYSIS VERIFICATION: The
be correct. [IEEE83] verification process used in partition analysis

which attempts to determine the consistency pro-
OUTPUT CLAUSE: See OUTPUTASSERTION. perties that hold between a program specification

and its implementation.
OUTPUT CONDITION: See OUTPUT ASSER-
TION. PATH: A sequence of segments. [Mill81]

OUTPUT SPACE: Consists of the collection of PATH ANALYSIS: Program analysis performed
variables, including file actions, which are (or to identify all possible paths through a program,
could be) modified by some invocation of the to detect incomplete paths, or to discover por-
module. [Mili81] tions of the program that are not on any path.

[IEEE83]
OUTSIDE-IN TESTING: A strategy for
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PATH COMPUTATION: The function that is PERTURBING FUNCTION: A term added to
computed by the sequence of executable state- arithmetic expressions to introduce a known
ments along a path. Symbolic evaluation gives a fault. Used in perturbation testing to determine
path computation as a vector of the algebraic whether particular potential faults may go
expressions for the output values, undetected by a given test path.

PATH DOMAIN: Corresponds to a particular PERTURBATION TESTING: A test path ade-
execution path in a program and consists of the quacy measurement technique that proposes
input data points that cause the path to be exe- using the reduction of the space of undetectable
cuted. faults as a criterion for test path selection and is

intended to reveal faults in arithmetic expres-
PATH DOMAIN BOUNDARY: The boundary of sions.
a path domain determined by the predicate
interpretations in the path condition. PETRI NET: A method of analyzing state transi-

tions.
PATH EXPRESSION: A logical expression indi-
cating the input conditions that must be met in PIECE-WISE EXPONENTIALLY DISTRI-
order for a particular program path to be exe- BUTED: Applied to the distribution of the execu-
cuted. [IEEE83] tion time between failures means that the hazard

rate is a constant that changes only at each error
PATH SELECTION ADEQUACY CRITERIA: correction.
Criteria which can be used to assess the adequacy
of executing a given set of program paths for PORTABILITY: The ease with which software
detecting a specified set of potential faults. can be transferred from one computer system or

environment to another. [IEEE83]
PATH SELECTION CRITERIA: Criteria which
specify the set of paths to be executed during pro- POST-ASSERTION: An assertion attached to
gram testing. the end of a program being verified which is

expected to be satisfied whenever execution
PATH SELECTION ERROR: Occurs when a passes this point.
program incorrectly determines the conditions
under which a path is executed. This may be due POTENTIALITY: A program has the potential to
to an incorrect conditional statement or an establish predicate R in the computation started
incorrect assignment statement that affects a con- in state S if and only if there exists a finite
ditional statement. sequeqce r such that r is an initial section of same

sequence in the computation history of state S
PATH TESTING: A test method satisfying cover- and R holds in the last state of r.
age criteria that each logical path through the pro-
gram be tested. Often paths through the program PRECISE INTERFACE CONTROL: An
are grouped into a finite set of classes; one path approach to interface analysis which uses requisi-
from each class is tested. [Adri82] tion of access and provision of access concepts to

extend the traditional notion of visibility.
PERFORMANCE: The ability of a computer sys-
tem or subsystem to perform its functions. PREDICATE: A logical formula involving var-
[IEEE83] iables/constants known to a module. [Mill8l]

PERFORMANCE REQUIREMENT: A require- PREDICATE CALCULUS: A first-order
ment that specifies a performance characteristic language in which one can make general state-
that a system or system component must possess; ments about all objects in a fixed set called the
for example, speed, accuracy, frequency. universe. The formulae in this language are con-
[IEEE83] structed out of names for relations and names for
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individual objects in the universe. ongoing external processes.

PREDICATE INTERPRETATION: A constraint PROCESS STEP: Any task performed in the
equivalent to a program predicate where program development, implementation or maintenance of
variables are replaced by their symbolic values in software (e.g., identify the software components
terms of input variables, of a system as part of the design). [IEEE88]

PREDICATE TRANSFORMER: A function that PROCESS METRIC: Metric used to measure
maps an assertion and a syntactic unit into characteristics of the methods, techniques, and
another assertion. tools employed in acquiring, developing, verify-

ing, and operating the software system. [VEEE8
PREDICTIVE ASSESSMENT: The process of
using a predictor metric(s) to predict the values PROCESS PROGRAMMING: The specification
of another metric. [IEEE88] of software development processes in a pro-

cedural manner (for example, a programming
PREDICTIVE METRIC: A metric which is used language) which serves to formalize and commun-
to predict the values of another metric. [IEEES8] icate these processes, facilitate their analysis, and

define the necessary interactions and interfaces
PROBABILITY: The fraction of occasions on between automated and manual actions.
which a specified value or set of values of a quan-
tity occurs, out of all possible values for that PROFILE: A compendium of information which
quantity. [Musa87] contributes to the definition of an environment.

[DACS79]
PROBABILITY DENSITY: Probability per unit
variation of random variable. [Musa87] PRODUCT METRIC: Metric used to measure

the characteristics of the documentation and
PROBABILITY DISTRIBUTION: The set of code. [IEEE88
probabilities corresponding to the values that a
random variable can take on. [Musa87] PROGRAM: See Module.

PROCEDURE SUBDOMAIN: A partition of a PROGRAM BLOCK: In problem-oriented
program's input data such that the elements of languages, a computer program subdivision that
the subdomain are treated uniformly by the serves to group related statements, delimit rou-
specification and processed uniformly by the tines, specify storage allocation, delineate the
implementation. Used in Partition Analysis. applicability of labels, or segment paths of the

computer program for other purposes.
PROCESS: In a computer system, a unique,
finite course of events defined by its purpose or PROGRAM COMPONENT: See COMPONENT.
by its effect, achieved under given conditions.
[LEEE83] PROGRAM COUNTER: A variable which indi-

cates the program statement currently being exe-
PROCESS AUGMENTED FLOWGRAPH: An cuted.
annotated graphical representation of communi-
cating concurrent processes formed by connect- PROGRAM CORRECTNESS: (1) The extent to
ing the graphs representing the individual which software is free from design defects and
processes with special edges indicating all syn- coding defects; that is, fault free. [IEEE83]. (2)
chronization constraints. Extent to which the software satisfies its

specifications and fulfills the user's mission
PROCESS CONTROL SYSTEM: A system objects. (RADC83]. (3) If for all initial states that
embedded in some larger system that interacts belong to the set of legitimate initial states, the
with external devices or objects to control program P terminates with a final state that
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belongs to the set of legitimate final states, then programs. [IEEE83]
program P exhibits program correctness.

PROOF: A structure of valid applications of
PROGRAM DEBUGGING: See DEBUGGING. inference rules to obtain a conclusion (proof).

PROGRAM GRAPH: Graphical representation PROOF JUSTIFICATION: Concerns establish-
of a program. [Adri82] ing, in a precise algorithmic notation, the reason-

ing required to determine the validity of the asser-
PROGRAM INSTRUMENTATION: (1) Probes, tions.
such as instructions or assertions, inserted into a
computer program to facilitate execution moni- PROOF CHECKER: A program that checks for-
toring, proof of correctness, resource monitor- mal proofs of program properties for logical
ing, or other activities. (2) The process of prepar- correctness.
ing and inserting probes into a computer pro-
gram. (EEE83] PROOF OF CORRECTNESS: A formal tech-

nique used to prove mathematically that a pro-
PROGRAM PATH: See PATH. gram satisfies its specifications. [IEEE83]

PROGRAM PREDICATE: See PREDICATE. PROOFS OF PROGRAMS: See PROOF OF
CORRECTNESS.

PROGRAM PROVING: The act of demonstrat-
ing that a program is correct. PROOF OF SOUNDNESS: Proof that all state-

ments in the theory that are derived from
PROGRAM SPECIFICATION: The formaliza- theorems (true statements) by rules of inference
tion that precisely states the requirements and of the theory must be true.
objectives which the program is to satisfy.

PROOF RULES: The inference rules that permit
PROGRAM TESTING: See TESTING. the derivation of more complex theorems, includ-

ing theorems about the semantics of a complete
PROGRAM TEXT: The set of statements, exe- program.
cutable and non-executable, which make up a
module. Program text is expressed in a program- PROTOTYPE: A limited implementation of a
ming language. [Mill8l] system built in order to capture or validate some

aspects of a system design. The fundamental con-
PROGRAM TRACE: A record of the execution cept is that a prototype of a system is more chea-
of a computer program; it states the sequence in ply or more quickly constructed than the actual
which the instructions were executed. system. Hence, some aspects of function or exe-

cution speeds are typically sacrificed.
PROGRAM TRANSFORMATION: To replace
one segment of a program description by another, PROTOTYPING: A discipline of system design
equivalent description. [DACS79] where the function of the actual system is cap-

tured in a series of increasingly accurate proto-
PROGRAM VERIFICATION: The act of demon- types.
strating that a program achieves some intended
purpose. PROVISION OF ACCESS: In the AdaPIC sys-

tem, provision of access occurs when a entity
PROGRAM UNIT INVOCATION: See INVOCA- grants the right of reference, or use, to some set
TION. of entities.

PROGRAMMING LANGUAGE: An artificial PURIFICATION DEGREE: The ratio of change
language designed to generate or express in the hazard rate function from the beginning of
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testing to the end versus what it was at the begin- randomly choosing a subset of all possible input
ning. values. The distribution may be arbitrary or may

attempt to accurately reflect the distribution of
inputs in the application environment.

QUANTIFIER-FREE FORMULAE: Formulae in
which there are no operations that bind the vari- RANDOM VARIABLE: A variable that
ables in a logical formula by specifying their quan- possesses the property of randomness (see RAN-
tity. DOM). [Musa87]

QUALIFICATION TESTING: Formal testing, REAL TIME CONSTRAINTS: Those constraints
usually conducted by the developer for the custo- imposed by the environment in which the system
mer, to demonstrate that the software meets its is going to operate.
specified requirements. See also SYSTEM TEST-
ING. REAL-TIME: Pertaining to the processing of

data by a computer in connection with another
QUALITY: The degree to which a program process outside the computer according to time
possesses a desired combination of attributes that requirements imposed by the outside process.
enable it to perform its specified end use. This term is also used to describe systems operat-

ing in conversational mode, and processes that
QUALITY ASSURANCE: A planned and sys- can be influenced by human intervention while
tematic pattern of all actions necessary to provide they are in progress. [IEEE83]
adequate confidence that the item or product
conforms to established technical requirements. REASONING SYSTEMS: Systems capable of
[IEEE83] performing the deduction of logical expressions

SQSfrom other logical expressions.
QUALITY ASSURANCE METHOD: An

approach for reducing the risk associated with a RECONFIGURATION: Adjustment of the rela-
software system and one or more properties. tionships between the software modules in a

software system or hardware devices in a
QUALITY ATTRIBUTE: A characteristic of hardware system.

* software; a generic term applying to factors, sub-
factors, or metric values. [IEEE88] RECOVERY BLOCK: Software fault tolerance

mechanism. A recovery block consists of a con-
QUALITY SUB-FACTOR: A decomposition of a ventional [program] block which is provided with
quality factor or quality sub-factor. [IEEE88] a means of error detection (an acceptance test)

and zero or more stand-by spares (the additional
0 QUALITY FACTOR: An attribute of software alternates). [Rand75].

that contributes to its quality. [IEEE88]
RECURSION: An initial condition is defined,

QUALITY REQUIREMENT: A requirement that and the transformation from one condition to the
a software attribute be present in software to next is defined in terms of the previously defined
satisfy a contract, standard, specification, or conditions.
other formally imposed document. [IEEE88]

RECURSION INDUCTION: To prove that g=h
(a) show that g and h satisfy the defining equation

RANDOM: Possessing the property of having for some other function f, and (b) show that f
more than one value at one time, each occurring holds over the domain of interest.
with some probability. [Musa87]

RECURSION THEOREM: A theorem about
RANDOM TESTING: An essentially black-box primitive and partial recursive functions due to
testing approach in which a program is tested by Kleene.
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RECURSIVE FUNCTION THEORY: Each model which takes account of improvements in
recursive function is defined by combining some reliability that result from correcting faults in the
initial functions using composition, recursion, software.
and minimalization.

RELIABLE TEST DATA: A set of test data T is
RECURSIVE PROGRAMS: Those programs reliable for program P if it reveals that P contains
that have or use recursive procedures or func- an fault whenever P is incorrect.
tions.

RELIABLE TEST DATA SELECTION STRA-
REFERENCE ANALYSIS: A form of static error TEGY: A test data selection strategy is reliable if
analysis which can detect reference anomalies; it guarantees to generate test data capable of
for example, when a variable is referenced along detecting every fault in a program.
a program path before it is assigned a value along
that path. RENDEZVOUS: The interaction that occurs

between two parallel tasks when one task has
REGRESSION TESTING: Selective retesting to called an entry of the other task, and a
detect faults introduced during modification of a corresponding accept statement is being executed
system or system component, to verify that by the other task on behalf of the calling task.
modifications have not caused unintended [IEEE83]
adverse effects, or verify that a modified system
or system component still meets its specified REQUIREMENT: A condition or capability that
requirements. [EE83] must be met or possessed by a system or system

component to satisfy a contract, standard,
REGULARITY HYPOTHESIS: The regularity specification, or other formally imposed docu-
hypothesis for a level n consists in assuming that ment. The set of all requirements forms the basis
if the test is successful for data of complexity less for subsequent development of the system or sys-
than n, then the program behaves correctly for tem component. [IEEE83]
any value.

REQUIREMENTS LANGUAGE: A language
RELAY: A fault-based test data selection tech- used to provide a succinct and unambiguous
nique based on defining revealing conditions that specification of the required system capabilities.
guarantee that a fault originates failure during
execution and that the failure transfers through REQUIREMENTS SPECIFICATION: A
computations and data until it is revealed, specification that sets forth the requirements for

a system or system component; for example, a
RELIABILITY: (1) The probability that the software configuration item. lypically included
software will perform as intended under stated are functional requirements, performance
conditions for a specified period of time. requirements, interface requirements, design
[DeMi88] (2) The probability that the software requirements, and development standards.
will perform its logical operations in the specified [IEEE83]
environment without failure. [RADC83]

REQUISITION OF ACCESS: In the AdaPIC sys-
RELIABILITY ASSESSMENT: The process of tem, requisition of access occurs when an entity
determining the achieved level of reliability of an .equests the right to refer to, or make use of,
existing system or system component. some set of entities.

RELIABILITY MODEL: A model used for RESOURCE ASSIGNMENT: The process of
predicting, estimating, or assessing reliability, granting the request for a resource by a task.
[IEE83]

RETESTING: See REGRESSION TESTING.
RELIABILITY GROWTH MODEL: A reliability
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REUSABILITY: The effort to convert a software SAFETY PROPERTY: A program property that
component for use in another application. is satisfied if conditions or actions that should
(RADC83]. never happen within a program never occur.

REUSABLE THEORIES: Formal reasoning rules SATISFIABILITY: Concerns the existence of an
that can be used by more than one system. interpretation that satisfies the verification condi-

tions in a proof of correctness.

REVEALING SUBDOMAIN: A subset of a

program's input domain is revealing if the SCHEDULER: A computer program which allo-
existence of one incorrectly processed input cates resources to waiting processes to allow
implies that all of the subset's elements are pro- them to execute in an efficient or prioritized
cessed incorrectly. Conversely, if one input is pro- manner.
cessed correctly, all elements in the subdomain
are processed correctly. SCHEDULING ALGORITHM: A set of rules

used to determine how available processing
ROBUSTNESS: The extent to which software can resources should be allocated to parallel tasks
continue to operate correctly despite the intro- based on priorities of the tasks.
duction of invalid inputs. [IEEE83]

SCOPE: The range within which an identified
RUN-TIME: The instant at which a program unit displays itself. Scope of activity refers to the
begins to execute. [IEEE83] boundaries within which a data structure or pro-

a gram element remains an integral unit. Scope of
RUN-TIME ENVIRONMENT: The environment control refers to the submodules in a program
in which a program executes, either the host or that potentially may execute if control is given to

0 target environment, a cited module. Scope of error denotes the set of
submodules that are potentially affected by the

RUN-TIME SYSTEM: A set of software routines detection of a fault in a cited module. [DACS79]
added to a compiled program, typically at link
time, to implement the semantics intended by the SECURITY: The extent to which computer
compiler. hardware, software, and resident information and

* data are protected from specified threats such as
RUN-TIME SCHEDULER: Software which allo- unauthorized access, use, modification, destruc-
cates processing resource to parallel tasks. tion, transmission, or disclosure. [DeMi88]

SAFE SYSTEM: A system which prevents unsafe SEGMENT: A (logical) segment or decision-to-
states from producing safety failures. decision path, is the set of statements in a module

which are executed as a result of the evaluation of
SAFETY: The extent to which the program is pro- some predicate (conditional) within the module.
tected from exposure to a specified set of It begins at an entry or decision statement and
hazards. [DeMi88] ends at a decision statement or exit, and should

be thought of as including the sensing of the out-
SAFETY ANALYSIS: Identification of the possi- come of a conditional operation and the subse-
ble causes, and evaluation of the possible conse- quent statement execution up to and including the
quences, of critical system failures. Intended to computation of the next predicate value, but not
determine the necessary fault tolerance or other including its evaluation. [Mill81]
mechanisms needed to ensure safe operation in
the system under various operating conditions SELF-CHECKING SOFTWARE: Software
and modes. which makes an explicit attempt to determine its

0 own correctness and to proceed accordingly.
SAFETY FAILURE: A failure which leads to
casualties or otherwise serious consequences. SEMANTICS: (1) The relationship of characters
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or groups of characters to their meanings, documentation and data pertaining to the opera-
independent of the manner of their interpretation tion of a computer system. (2) Programs, pro-
and use. (2) The relationships between symbols cedures, rules, and any associated documentation
and their meanings. IEE& 3] pertaining to the operation of a computer system.

Contrast with HARDWARE. [IEEE&3]
SEMANTIC CHARACTERIZATION: Determin-
ing the approach used in the formal definition of SOFTWARE ASSURANCE: See QUALITY
the semantics of programming language con- ASSURANCE.
structs.

SOFTWARE COMPONENT: General term used
SEMANTIC VALUATION FUNCTIONS: to refer to an element of a software system, such
Semantic valuation functions map programming as module, unit, etc. [IEEES8]
constructs to the values (numbers, truth values,
function, and so on) that they denote. SOFTWARE ENGINEERING: The systematic

approach to the development, operation, mainte-
SENSITIVITY ANALYSIS: In safety analysis, nance, and retirement of software. [IEEE83]
that analysis which assesses the potential impact
of a potentially critical failure on the ability of the SOFIWARE FAULT TREE ANALYSIS: A form
system to perform its mission. of fault tree analysis used for analyzing the safety

of software designs or code.
SENSITIVITY FOCUS: In the context of regres-
sion testing, the concern that the amount of SOFTWARE LIFE CYCLE: The period of time
retesting required after a software change is pro- that starts when a software product is conceived
portional to the extent of that change. and ends when the product is no longer available

for use. The software life cycle typically includes
SEQUENTIAL PROCESSES: Processes that exe- a requirements phase, design phase, implementa-
cute in such a manner that one must finish before tion phase, test phase, installation and checkout
the next begins. [IEEE83] phase, operation and maintenance phase, and

sometimes, retirement phase. [IEEES3]
SEQUENTIAL PROOF: A formal proof made
for sequential processes. SOFTWARE PRODUCT: A software entity

designated for delivery to a user. [IEEE83]
SHARED VARIABLE: A variable shared by
more than one process. SOFTWARE QUALITY: (1) The totality of

features and characteristics of a software product
SHARED VARIABLE COMMUNICATION: A that bear on its ability to satisfy given needs; for
variable shared by more than one process and example, conform to specifications. (2) The
used to communicate between processes. degree to which software possesses a desired

combination of attributes. (3) The degree to
SIDE EFFECT: Processing or activities per- which a customer or user perceives that software
formed, or results obtained, secondary to the pri- meets his or her composite expectations. (4) The
mary function of a program, subprogram, or composite characteristics of software that deter-
operation. [IEEE83] mine the degree to which the software in use will

meet the expectations of the customer. [IEEE83]
SIMULATION: Use of an executable model to
represent behavior of an object. The computa- SOFTWARE QUALITY INDICATORS: Process
tional hardware, external environment, and even guidelines in the form of detailed data, derived
code segments may be simulated. (Adri82] from scheduled surveys, inspections, evaluations,

and tests, that provide insight into the condition
SOFTWARE: (1) Computer programs, pro- of a product or process.
cedures, rules, and possibly associated
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SOF'rWARE QUALITY METRIC: A function often a machine-processable combination of
whose inputs are software data and whose output natural and formal language, used to specify the
is a single (numerical) value that can be inter- requirements, design, behavior, or other charac-
preted as the degree to which software possesses teristics of a system or system component.
a given attribute that affects its quality. [IEEE88] [IEEE83]

SOFTWARE RELIABILITY: (1) The probability SPECIFICATION MODEL: A model used to
that software will not cause the failure of the sys- give a formal specification of a program.
tem for a specified time under specified condi-
tions. The probability is a function of the inputs SPECIFICATION MUTATION: A form of muta-
to and use of the system as well as a function of tion testing which is applied to program
the existence of faults in the software. The inputs specifications to determine the absence or pres-
to the system determine whether existing faults, if ence of a predefined set of potential faults in the
any, are encountered. (2) The ability of a program implementation of the specification.
to perform a required function under stated con-
ditions for a stated period of time. [IEEES3I STACK FRAMES: A stack element of a push-

down stack automaton.
SOFTWARE RELIABILITY MODEL: See

• RELIABILITY MODEL. STANFORD PASCAL VERIFIER: A tool which
reasons in quantifier-free first-order predicate cal-

SOFTWARE REQUIREMENT: See REQUIRE- culus.
MENT.

STARVATION FREEDOM: Occurs when a pro-
SOFTWARE TOOL: A computer program used cess (which is not blocked or deadlocked) cannot

* to help develop, test, analyze, or maintain get into a state where a request for a resource will
another computer program or its documentation; never be granted.
for example, automated design tool, compiler,
test tool, maintenance tool. [IEBE83] STATE TRANSITION: A change from one pro-

gram state to another.
SOURCE LANGUAGE: (1) A language used to

* write source programs. (2) A language from STATE TRANSITION COVERAGE: Member of
which statements are translated. [IEEE83] a series of successively more stringent testing cov-

erage measures for concurrent programs analo-
SPECIAL: The state-machine specification gous to structural and data flow testing criteria for
language employed by the Hierarchical Develop- sequential programs. See also CONCURRENCY
ment Methodology verification system. STATE COVERAGE, SYNCHRONIZATION

* COVERAGE.
SPECIAL VALUES: Special values have special
mathematical properties; for example, zero, one, STATE-MACHINE LANGUAGE: A language
a very small value, a very large value, accepted by a finite state automaton.

SPECIAL VALUES TESTING: Testing to ensure STATE-MACHINE SPECIFICATION: Defines a
proper handling of all special values, set of functions that specify transformations on

input. The set of functions may be viewed as
SPECIFICATION: A document that prescribes defining the nature of the abstract data type or
in a complete, precise, verifiable manner, the describing the behavior of an abstract machine.
requirements, design, behavior, or other charac-
teristics of a system or system component. STATEMENT COMPLEXITY: A complexity

SI[IEEE83I value assigned to each statement which is based
on (1) the statement type, and (2) the total length

SPECIFICATION LANGUAGE: A language, of postfix representations of expressions within
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the statement (if any). These values are intended STRONG TYPING: A programming language
to represent a statement's potential execution feature that requires the data type of each data
time. [Mill811 object to be declared, and that precludes the

application of operators to inappropriate data
STATEMENT TESTING: A test method satisfy- objects and, thereby, prevents the interaction of
ing the coverage criterion that each statement of a data objects of incompatible types. [IEEE83]
program be executed at least once during pro-
gram testing. [Adri82] STRUCTURAL COVERAGE MEASURE: A

measure of the structural coverage accomplished
STATIC ANALYSIS: The process of evaluating a during testing activities. Usually given as the per-
program without executing the program. centage of program statements, branches, or
[IEEE83] paths which have been executed.

STATIC ANALYZER: A software tool that aids STRUCTURAL INDUCTION: A formal proof
in the evaluation of a computer program without method using recursive induction upon the struc-
executing the program. Examples include syntax ture of the data manipulated by a program.
checkers, compilers, cross-reference generators,
standards enforcers, and flowcharters. [IEEE83] STRUCTURAL TESTING: A testing method

where the test data are derived solely from the
STATIC BINDING: Binding performed prior to program structure. [Adri82]
execution of a program and
not subject to change during execution. Contrast STRUCTURED PROGRAMMING: (1) A well-
with DYNAMIC BINDING. defined software development technique that

incorporates top-down design and implementa-
STATIC CONCURRENCY ANALYSIS: A tech- tion and strict use of structured program control
nique for determining all the possible synchroni- constructs. (2) Loosely, any technique for organ-
zation patterns in a concurrent program, without izing and coding programs that reduces complex-
program execution. ity, improves clarity, and facilitates debugging and

modification. [LEEE83I
STATIC ERROR ANALYSIS: Analysis of a pro-
gram to determine whether certain kinds of faults STRUCTURED WALKTHROUGH: See WALK-
or dangerous conditions are present. See TYPE THROUGH.
AND UNITS ANALYSIS, REFERENCE
ANALYSIS, EXPRESSION ANALYSIS, INTER- STUB: Special code segments that, when invoked
FACE ANALYSIS. by a code segment under test, will simulate the

behavior of designed and specified modules not
STATICALLY LINKED: See STATIC BINDING. yet constructed. [Adri82]

STATISTICAL TESTING: A testing approach STUB ANALYSIS: In the AdaPIC system, stub
which employs the probability distributions of the analysis checks the consistency of multiple views
product inputs and randomized sampling tech- of the same stub, and the consistency of each of
niques to organize test material. The randomiza- these views against some authorized specification
tion supports statistical inferences about the of that module.
product's operational characteristics and an esti-
mate of its expected reliability (MTTF). SUBGOAL INDUCTION: A proof method that is

applicable to while statements as the output struc-
STRESS TESTING: See BOUNDARY VALUE ture, and assumes that the functional abstraction
ANALYSIS. of the loop body is available.

STRONG MUTATION TESTING: See MUTA- SUBSYSTEM: A group of assemblies or com-
TION TESTING. ponents or both combined to perform a single
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function. [[EEE&3]. SYMBOLIC INPUTS: See SYMBOLIC DATA.

SUPERFLUOUS CODE ERROR: An error SYMBOLIC INTERPRETATION: Where the
which occurs when a program contains code values taken on by variables are represented as
which is never executed or is redundant for some algebraic expressions that denote the computa-
reason. tional history of those variables.

SURVIVABILITY: (1) The probability that the SYMBOLIC TESTING: A method of examining
software will perform and support critical func- the path computation and path condition to
tions in its intended environment without failure ascertain the correctness of a program path.
when a specified portion of the system is inopei-
able. [DeMi88]. (2) The probability that the SYMBOLIC VALUES: Values which are main-
software will continue to perform or support criti- tained as algebraic expressions given in terms of
cal functions when a portion of the system is the symbolic names assigned to input values.
inoperable. [RADC83].

SYNCHRONIZATION: The exchange of signals
SYMBOL CROSS-REFERENCER: A software used when certain processes must be stopped at a
tool that produce dictionaries relating the sym- given point until some event under the control of
bols used in a program by logical name. another process has occurred.

SYMBOLIC ALTERNATIVE: Used in a SYNCHRONIZATION COVERAGE: Member of
modified form of symbolic execution to a series of successively more stringent testing cov-
prepresent the effect of several mutation transfor- erage measures for concurrent programs analo-
mations. gous to structural and data flow testing criteria for

sequential programs. See also CONCURRENCY
SYMBOLIC DATA: Symbols used to represent STATE COVERAGE, STATE TRANSITION
actual input data. COVERAGE.

SYMBOLIC DEBUGGING: The process of exa- SYNCHRONIZATION FAULT: A fault which
mining a path computation and path domain in results from incorrect sequencing and communi-
order to obtain information about the cause of a cations between concurrent processes.
known fault.

SYNTACTIC UNIT: A unit that corresponds to a
SYMBOLIC EVALUATION: See SYMBOLIC set of statements in a program which define an
EXECUTION. operation upon some object.

SYMBOLIC EVALUATION SYSTEM: A SYNTAX: (1) The relationship among characters
software tool that accepts symbolic values for or groups of characters, independent of their
some of the program inputs and algebraically meanings or the manner of their interpretation
manipulates these symbols according to the and use. (2) The structure of expressions in a
expressions in which they appear. It can be used language. (3) The rules governing the structure of
to support test data generation, assertion check- a language. See also SEMANTICS. [IEEE83]
ing, path analysis, and detection of data flow
anomalies. SYSTEM: A collection of people, machines, and

methods organized to accomplish a set of
SYMBOLIC EXECUTION: A verification tech- specified functions. [IEEE83]
nique in which program execution is simulated
using symbols rather than actual values for input SYSTEM ARCHITECTURE: The structure and
data, and program outputs are expressed as logi- relationship among the components of a system.
cal or mathematical expressions involving these A system architecture may also include the
symbols. [IEEE83] system's interface with its operational
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environment. [MEE83] TASK COMMUNICATION: See PROCESS
COMMUNICATION.

SYSTEM COMPONENT: See COMPONENT.
TASK ENTRY FAMILY: An entry declaration

SYSTEM DESIGN: The process of defining the for a task which includes a discrete range and so
hardware and software architectures, corn- declares a family of distinct entries.
ponents, modules, interfaces, and data for a sys-
tem to satisfy specified system requirements. TASK SEQUENCING FAULT: A fault which
[IEEE83] occurs when a program's tasks interact in a

different order than anticipated.
SYSTEM HAZARD: See HAZARD.

TASK SEQUENCING LANGUAGE: A language
SYSTEM INTERFACE: See INTERFACES. used to annotate Ada programs by specifying

constraints to be satisfied by sequences of task
SYSTEM PERFORMANCE: See PERFOR- events. These constraints can be transformed
MANCE. into dynamic checks for certain types of faults

and failures.
SYSTEM REQUIREMENTS: See REQUIRE-
MENTS. TEMPORAL LOGIC: A logic theory with tem-

poral quantifiers (for example henceforth and
SYSTEM SAFETY: The ability of the system to eventually), which permits statements about tern-
prevent critical failures leading to unacceptable poral conditions to be made.
consequences. Examples of unacceptable conse-
quences include the failure of the system mission, TERMINATION: The act of finishing a program
and loss of life or property or a proof.

SYSTEM SECURITY: See SECURITY. TEST: A unit test of a single module consists of
(1) a collection of settings for the input space of

SYSTEM ROBUSTNESS: See ROBUSTNESS. the module, and (2) exactly one invocation of the
module. A unit test may or may not include the

SYSTEM SPECIFICATION: See SPECIFICA- effect of other modules which are invoked by the
TION. module undergoing testing. [Mill8l]

SYSTEM TESTING: The process of testing an TEST AND EVALUATION (T&E): A formal
integrated hardware and software system to verify testing process used to evaluate the technical and
that the system meets its specified requirements. operational characteristics of a system. Per-
[IEEE,83] formed in a number of stages, for example,

QUALIFICATION TESTING, DEVELOPMEN-
TAL TEST AND EVALUATION, INITIAL

TAP: A debugger designed to detect timing faults OPERATIONAL TEST AND EVALUATION,
caused by the misordering of events in a distri- OPERATIONAL TEST AND EVALUATION,
buted system. FOLLOW-ON OPERATIONAL TEST AND

EVALUCATION.

TARGET ENVIRONMENT: SEE TARGET E

MACHINE. TEST BED: (1) A test environment containing
the hardware, instrumentation tools, simulators,

TARGET MACHINE: The computer on which a and other support software necessary for testing a
program is intended to operate. Contrast with system or system component. (2) The repertoire
HOST MACHINE. [IEEE83) of test cases necessary for testing a system or sys-

tem component. [IEEE83]
TASK: See PROCESS.
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TEST CASE: See TEST DATA SET. TEST MANAGEMENT: Management procedures
designed to control in an ordered way a large and

TEST DATA: See TEST DATA SET. evolving amount of pieces of information on sys-
tem features to be tested, on system implementa-

TEST DATA ADEQUACY: See ADEQUATE lion plans, and on test results. [DACS79
TEST DATA.

TEST PATH: The specific (sequence) set of seg-
TEST DATA GENERATOR: An automated tool ments that is traversed as the result of a unit test
that accepts as input a computer program and test operation on a set of test data. A module can
criteria, generates test input data that meet these have many test paths. [Mill81]
criteria, and, sometimes, determines the
expected outputs. [IEEE83] TEST PLAN: A document prescribing the

approach to be taken for intended testing activi-
TEST DATA SELECTION STRATEGY: Pro- ties. The plan typically identifies the items to be
vides guidance for selecting test data for a pro- tested, the testing to be performed, test
gram; for example, a branch testing test data schedules, personnel requirements, reporting
selection strategy selects data that cause those requirements, evaluation criteria, and any risks
program paths to be executed such that each requiring contingency planning. [IEEE83I
branch is executed at least once.

TEST POINT: A tuple containing a value for
TEST DATA SET: A specific set of input and out- each program input.
put -values for the variables in the communication
space of a module that are used in a test. Also TEST REPEATABILITY: An attribute of a test
called a test case. indicating whether the same results are produced

each time the test is conducted. [IEEE83]
TEST DRIVER: A program that directs the exe-
cution of another program against a collection of TESTABILITY: (1) The extent to which software
test data sets. Usually the test driver also records facilitates both the establishment of test criteria
and organizes the output generated as the tests and the evaluation of the software with respect to
are run. [Adri82] these criteria. (2) The extent to which the

definition of requirements facilitates analysis of
TEST GRAMMAR: A context-free grammar the requirements to establish test criteria.
which describes those aspects of a program to be [IEEE83]
tested, as well as the assumptions as to which test
cases are considered equivalent. The grammar TESTING: The process of exercising or evaluat-
generates test data in levels of ever increasing ing a system or system component by manual or
complexity of test cases. At each level the pro- automated means to verify that it satisfies
grammer may use the results of testing at previous specified requirements or to identify differences
levels to strengthen the assumptions on the test between expected and actual results. Contrast
grammar, thereby reducing the number of test with DEBUGGING. [IEEE83]
cases generated at subsequent levels. [DACS79]

TESTING COVERAGE MEASURE: In general,
TEST HARNESS: See TEST DRIVER. a measure of the testing coverage achieved as a

result of a test, often expressed as a percentage of
TEST INSTRUMENTORS: Automated tools that the number of statements, branches, or paths
produce an altered version of a program or com- that were traversed. [Mill8l]
ponent that is logically equivalent to the
unmodified program but contains calls to special TESTING ENVIRONMENT: A collection of
data collection routines that record information software tools to assist the user in planning, con-
pertaining to the execution behavior of the pro- ducting, and reporting on testing activities.
gram.
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TESTING, EVALUATION, AND ANALYSIS TRACE: See PROGRAM TRACE.
MEDLEY: A testing environment under develop-
ment at the University of California (Irvine) TRACE MUTATION TESTING: A form of muta-
which will support incremental and integrated tion testing where certain classes of program
application of a number of different dynamic and traces rather than output values are used for dis-
static analysis techniques to Ada programs. It is tinguishing between a program and its mutants.
expected to become part of the Arcadia software This eliminates the need for assumptions such as
development environment, the Coupling Effect and allows repeated applica-

tions of mutation transformations.
TESTING TARGET: The current module (system
testing) or current segment (unit testing) upon TREE: An abstract hierarchical structure consist-
which testing effort is focused. [Mill811 ing of nodes connected by branches, in which: (a)

each branch connects one node to a directly sub-
THEOREM PROVERS: Tools to mechanize the sidiary node, and (b) there is a unique node called
process of producing a formal proof. the root that is not subsidiary to any other niode,

and (c) every node besides the root is directly
THRESHOLD VALUES: Values of technical or subsidiary to exactly one other node. [IEEE83]
operational properties and parameters below
which the overall system worth will be unaccept- TRUSTWORTHINESS OF SOFTWARE: Proba-
able. bility that no serious [software] design error

remains after a set of randomly chosen tests [have
TIME DOMAIN MODELS: Software reliability been] passed. [Parn88].
models in which reliability is considered a func-
tion of time. Include times-between-failures TYPE ANALYSIS: A form of static error analysis
models and failure-count models. involving the determination of correct use of

named data items and operations. Usually, type
TIMES BETWEEN FAILURES MODEL: analysis is used to determine whether or not the
Software reliability model in which the time domain of values (functions, etc.) attributed to an
between failures is treated as a random variable entity are done so in a correct and consistent
whose parameters depend on the number of manner.
faults remaining in the program. [Goel85].

TIMING GRAPH: A directed acyclic graph UNIFORM: All possible values or selections
representing the partial ordering of events for a occur with equal probability. [Musa87]
distributed program.

UNIFORMITY HYPOTHESIS: The uniformity
TOOL: (1) See SOFTWARE TOOL. (2) A hypothesis consists in assuming that if the test is
hardware device used to analyze software or its successful for one datum in a subdomain then the
performance. program behaves correctly for any data in this

subdomain.
TOP DOWN TESTING STRATEGY: A sys-
tematic testing philosophy which seeks to test UNIT TEST: See TEST.
those modules at the top of the invocation struc-
ture earliest. [Mill81j UNIT TESTING: The process of testing each unit

in isolation. See also INTEGRATION TESTING
TOTAL CORRECTNESS: In proof of correct- AND SYSTEM TESTING.
ness, a designation indicating that a program's
output assertions follow logically from its input UNITS ANALYSIS: Units analysis determines
assertions and processing steps, and that, in addi- whether or not the units or physical dimensions
tion, the program terminates under all specified attributed to an entity are correctly defined and
input conditions. [IEEE83] consistently used.
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UNREACHABILITY: A statement (or segment) character or group of characters that refers to a
is unreachable if there is no logically obtainable value and, in the execution of a computer pro-
set of input-space settings which can cause the gram, corresponds to an address. [IEEE83]
statement (or segment) to be traversed. [Mill8l]

VARIABLE ASSIGNMENT: An expression
UNSAFE STATE: A state which may lead to a which assigns a value to a variable.
safety failure unless some specific action is taken
to avert it. VARIABLE DEFINITION: A program statement

which defines a variable and its allowable usage.
UPDATE ANALYSIS: In the AdaPIC system,
update analysis compares two versions of the VARIABLE NAME: An identifier allocated to a
same submodule to look for changes in declara- variable for purposes of reference. See also
tions, requisition/ provision specifications, or VARIABLE.
references to non-local entities.

VARIABLE REFERENCE: Accessing a value
USER INTERACTION MODEL: A model which from a variable.
defines the possible user interaction with a
software system or tool. VARIABLE UNDEFINITION: Causing the value

of a variable to become undefined; for example,
when the program control flow passes beyond the

VAL: A formal language for specifying the scope of a variable.
behavior of hardware designs whose architectures
are specified in VHDL. It provides the capability VARIABLE USAGE ERROR: A programming
for automatic comparison of behavior of different anomaly arising from the erroneous usage of vari-
levels of a VHDL hierarchical design during ables; for example, a reference to an undefined
simulation. variable, the definition of a variable which is

never referenced, or a dead variable definition
VALIDATED Ada COMPILER: An Ada com- where a variable is defined twice without an inter-
piler that has been determined by the Ada Joint vening reference.
Program Office to compile Ada source code in
accordance with the language specification given VERIFIABILITY: The adequacy with which a
in the Ada Language Reference Manual. given algorithm represents the requirements of

the physical world. [RADC83].
VALIDATED METRIC: A software quality
metric whose values have a specified association VERIFICATION: (1) The process of determining
with the corresponding values of a designated whether or not the products of a given phase of
quality factor or with the values of a valid metric the software development cycle fulfill the require-
of that factor, when the two sets of metric values ments correctness. (3) The act of reviewing,
are obtained from the same domain (e.g., the inspecting, testing, checking, auditing, or other-
same software components). [IEEE88] wise establishing and documenting whether or not

items, processes, services, or documents con-
VALIDATION: (1) The process of evaluating form to specified requirements. [IEEE83]
software at the end of the software development
process to ensure compliance with software VERIFICATION CONDITION GENERATOR:
requirements. [IEEE83] (2) Static and dynamic A program that generates sets of logical condi-
analysis of a software product to ensure it attains tions that must be proven in order to verify
the features and performance attributes software.
prescribed by its requirements.

VERIFICATION SYSTEM: A software tool that
VARIABLE: (1) A quantity that can assume any accepts as input a computer program and a
of a given set of values. (2) In programming, a representation of its specification, and produces,
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APPENDIX B: ACRONYMS

ACM Association for Computing Machinery
ACVC Ada Compiler Validation Capability
AdaMAT Ada Metrics and Analysis Tool
Al Artificial Intelligence
AJPO Ada Joint Program Office
ANNA ANNotated Ada
AT&T American Telephone & Telegraph
ATVS Ada Test and Verification System
AVA Annotated Verifiable Ada
BIT Built-in-test
BM/C3 Battle Management/Command, Control, and Communication
C3 Command, Control, and Communication
COCOMO COnstructive COst MOdel
CPU Central Processing Unit
CSC Computer Software Component
CSCI Computer Configuration Item
CSP Communicating Sequential Processes
CSU Computer Software Unit
DACS Data and Analysis Center for Software
DAISTS Data-Abstraction Implementation, Specification, and Testing System
DARPA Defense Advanced Research Projects Agency
DBMS DataBase Management System
DIANA Descriptive Intermediate Attributed Notation for Ada
DOD Department of Defense
DT&E Developmental Test and Evaluation
IEEE Institute of Electrical and Electronics Engineers
EIA Electronics Industries Association
ESTCA Error Sensitive Test Case Analysis
FDM Formal Development Methodology
FOT&E Follow-on Operational Test and Evaluation
FSD Full Scale Development
GFE Government Furnished Equipment
GVE Gypsy Verification Environment
HDL Hardware Design Language
HDM Hierarchical Development Methodology
HOL High Order Language
IDA Institute for Defense Analyses
IEEfl Institute for Electrical and Electrunics Engincers
IO Input/Output
IOT&E Initial Operational Test and Evaluation
IV&V Independent Verification and Validation
LCSAJ Linear Code Sequence and Jump
LOC Lines of Code
MIMD Multiple-Instruction, Multiple-Data streams
MTBF Mean Time Between Faults
MF Mean Time to Failure
MTTR Mean Time to Repair
NASA National Aeronautics and Space Administration
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NCSC National Computer Security Center
NOSC Naval Ocean Systems Center
NTB National Test Bed
NTDS Naval Tactical'Data System
NTF National Test Facility
PDL Program Design Language
OT&E Operational Test and Evaluation
OSD Office of the Secretary of Defense
OT Qualification Testing
R&D Research and Development
RADC Rome Air Defense Center
RAM Random Access Memory
SADMT Strategic Defense Initiative Architecture Dataflow Modeling Technique
SCA Static Concurrency Analyzer
SDI Strategic Defense Initiative
SDIO Strategic Defense Initiative Organization
SDS Strategic Defense System
SEL Software Engineering Laboratory
SIMD Single-Instruction, Multiple-Data streams
SMDC Software Metrics Data Collection
SOIF System Operational and Integration Function
SSDC SSDS Software Data Collection System
SSDS Software Data Collection System
STEP Software Test and Evaluation Project
T&E Test and Evaluation
TAME Tailoring A Measurement Environment
TEAM Testing, Evaluation, and Analysis Medley
TEMP Test and Evaluation Master Plan
TSL Task Sequencing Language
VAL VHDL Annotation Language
WIS WWMCCS Information System
WWMCCS World Wide Military Command and Control System
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APPENDIX C: WORKSHOP PARTICIPANIS

The following identifies the individuals who participated in each of the workshop panels. In addition
to these, the welcoming remarks were given by LtCol I. Price, SDIO, and the workshop was attended by
the SDIO sponsor of this effort, LtCol C. Lillie.

C.A Participants in the Validation Panel

Mr. Lou Chmura Naval Research Laboratory
Code 5533
Washington, DC 20375-5000
(202) 767-3249
chmura@nrl-css.arpa

Dr. Lori Clarke COINS Dept.
University of Massachusetts
Amherst, MA 01003
(413) 545-1328
clarke@cs.umass.edu

Dr. Rich DeMillo Computer Science Dept.
Purdue University
West Lafayette, IN 47907
(317) 494-7823
rad@purdue.edu

Dr. Laura K. Dillon Computer Science Dept.
University of California
Santa Barbara, CA 93106
(805) 961-3411
dillon@aslan.ucsb.edu

Dr. William Howden Dept. of Computer Science and Engineering
University of California
Mail Code C-014
La Jolla, CA 92093-0114
(619) 755-3359
howden@odin.ucsd.edu

Dr. Virginia Kobler US Army Strategic Defense Command
CSSD-H-SBY
PO Box 1500
Huntsville, AL 35807
(205) 895-3857
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Dr. David Luckham Computer Systems Lab, ERL 456
Stanford University
Stanford, CA 94305
(415) 497-1242
dcl@sail.stanford.edu

Dr. Leon Osterweil Dept. of Information and Computer Science
University of California
Irvine, CA 92717
(714) 856-4048
ljo@ics.uci.edu

LtCol James Price SDIO
TE

1E149
Washington, DC 20301-7100
(202) 693-1600

Dr. Debra J. Richardson Dept. of Information & Computer Science
University of California
Irvine, CA 92717
(714) 856-7353
nichardson@ics.uci.edu

Mr. Ken Rowe NCSC
ATN: C33
9800 Savage Rd.
Ft. Meade MI) 20755-6000
(301) 859-4491
rowe@dockmaster.arpa

Dr. John Salasin GTE Government Systems Corporation
1700 Research Boulevard
Rockville, MD 20850
(301) 294-8400
salasinjj%ncsd.decnet@gtewd.arpa

Dr. Richard N. Taylor Dept. of Information & Computer Science
University of California
Irvine, CA 92717
(714) 856-6429
taylor@ics.uci.edu

Dr. Dolores Wallace National Institute of Standards and Technology
Technology Bldg.
B266
Gaithersburg, MD 20899
(301) 975-3340
wallace@swe.icst.nbs.gov
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Dr. Lee White Dept. of Computer Engineering and Science
CASE Western Reserve University
509 Crawford Hall
Cleveland, OH 44106
(216) 368-2802
leew@alpha.ces.cwru.edu

Mrs. Christine Youngblut Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(301) 948-8391
youngb@ida.org

Dr. Steven Zeil Dept. of Computer Science
Old Dominion University
Norfolk, VA 23508
(804) 683-4832
zeil@cs.odu.edu

C.2 Participants in the Verification Panel

Dr. William Easton Peregrine Systems, Inc.
P.O. Box 192
Bluemont, VA 22012
(703) 689-1168
easton@ida.org

Dr. Warren Hunt, Jr. Computational Logic, Inc.
1717 West Sixth Street,
Suite 290
Austin, TX 78703-4776
(512) 322-9951
hunt@cli.com

Dr. C. Terrence Ireland NCSC
7800 Savage Rd.
Ft. Meade, MD 20755
(301) 859-4371
cti@mimsy.umd.edu

Dr. Richard Kemmerer Dept. of Computer Science
University of California
Santa Barbara, CA 93106
(805) 9614232
kemm@hub.ucsb.edu
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Dr. Timothy Lindquist Computer Science Dept.
Arizona State University
Tempe, AZ 85287
(602) 965-2783
lindquis@ajpo.sei.cmu.edu

Mr. Terry Mayfield Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5524
mayfield@ida.org

Dr. Reg Meeson Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 845-3541
meeson@ida.org

Dr. Richard Platek Odyssey Research Associates
301A Dates Dr.
Ithaca, NY 14850-1313
(607) 277-2020
oravax!richard@cu-arpa.cs.cornell.edu

Mr. Andy Moore Naval Research Laboratory
Washington, D.C. 20375-5000
(202) 767-6698
moore@nrl-css.arpa

Mr. David Nielson Titan Systems, Inc.
Test and Evaluation Dept.
2000 WestPark Dr.
Westboro, MA 01581
(508) 870-0006

Mr. Karl Nyberg Grebyn Corporation 0
P.O. Box 1144
Vienna, VA 22180
(703) 281-2194
karl@grebyn.com or nyberg@ajpo.sei.cmu.edu

C.3 Participants in the Software Measurement Panel

Dr. Victor Basili Dept. of Computer Science
University of Maryland
College Park, MD 20742
(301) 454-8742
basili@mimsy.umd.edu
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Ms. Sabrina Beckman Titan Systems, Inc
2705 Artie St. Wuite 25
Huntsville, AL 35805

Mr. Bill Brykczynski Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5515
bryk@ida.org

Mr. David Card Computer Sciences Corp.
8728 Colesville Rd.
Silver Spring, MD 20910
(301) 650-3245

Mr. Joseph Cavano RADC/COE
Griffiss Air Force Base, NY 13441
(315) 330-4476

Dr. Michael Evangelist MCC
3500 W. Balcones Center Dr.
Austin, TX 78759
(512) 338-3479
wme@mcc.com

Dr. Kathy Holland National Computer Security Center
A[TN: C33
9800 Savage Rd.
Ft. Meade, MD 20755-6000
(301) 859-4491

LtCol Charles Lillie SDIO
TE
1E149
Washington, DC 20301-7100
(202) 693-1600
lillie@hc.dspo.gov

Dr. Cathy Jo Linn Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5520
clinn@ida.org

Dr. Dieter Rombach Dept. of Computer Science
University of Maryland
College Park, MD 20742
(301) 454-8974
rombach@mimsy.umd.edu
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LtCol Anthony Shumskas OSD DT&E
3D1075
Washington, DC 20301-7100
(202) 695-4421

Dr. Richard Selby Dept. Of Information & Computer Science
University of California
Irvine, CA 92717
(714) 856-6326
selby@ics.uci.edu

Dr. Vincent Shen MCC
3500 W. Balcones Center Dr.
Austin, TX 78759
(512) 338-3345
shen@mcc.com

C.4 Participants in the Reliability Assessment Panel

Dr. Frank Ackerman AT&T Bell Labs
Room 6E 110
Whippany, NJ 07981
(201) 386-3377
attunix!whuxr!afa

Mr. Jim Baldo Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5516
baldo@ida.org

Dr. Amrit Goel Syracuse University
ECE Dept.
111 Link Hall
Syracuse, NY 13244
(315) 443-4350
goel@suvm.acs.syr.edu

Dr. Carlos Gonzalez Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 323-3818
cgonzalez@gmuvax.gmu.edu
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Dr. Karen Gordon Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 845-3591
gordon@ida.org

Dr. John Knight Software Productivity Consortium
1880 Campus Commons Dr. North
Reston, VA 22091
knight@software.org or jck@virginia.edu

Dr. Andre M. Van Tilborg Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000
avantil@nswc-wo.arpa

CDR David Vaurio USN
Computer Security R&D
National Security Agency
Ft. Meade, MD 20755
(301) 859-4485

Dr. Charles Waespy Institute for Defense Analyses
Operational Evaluation Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 845-2587
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