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(*19 continued)

in the context of a smart wing example implemented as a knowledge based expert system

using the interpretive shell CLIPS. In particular, we discuss knowledge representation

issues, damage detection, isolation and assessment strategies, real-time performance
issues, requirements on the expert system development tool imposed by the smart structure

attributes, smart structure design methodology, and present implementation details.

Under the damage detection, isolation and assessment strategy discussion, we present
the limitations of conventional hypothesis test formulations, expert systems based
damage diagnosis techniques which alleviate these limitations by exploiting the local
spatial and temporal signatures of a damage, and the applicability of artificial neural

networks to smart structures.
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1. INTRODUCTION

This report summarizes the research and development results of the SBIR

Phase I study entitled "Hierarchical Damage Tolerant Controllers for Smart

Structures" supported by U.S. Air Force under Contract No. F33615-88-C-3212.

The major aim of this study is the investigation and definition of a baseline

architecture for a smart aerospace structure which can detect and isolate

structural damage in real-time and provide on-line reconfiguration of the

structure's control system under the detected impairment conditions. In

particular, we investigate how a smart aerospace structure can be implemented

as a real-time knowledge based expert system by addressing issues involved

with structural knowledge representation, structural damage detection and

isolation strategies and real-time performance in an embedded environment.

1.1 Summary

A smart aerospace structure which can detect and isolate structural

damage in real-time and provide on-line reconfiguration of the structure's

control system under the detected impairment conditions would significantly

boost the reliability, maintainability and performance of current and proposed

Air Force flight and space vehicles. A closely related R&D effoiL in this

area is the Air Force Self-Repairing Flight Control System Reliability and

Maintainability program supporting the development of reconfiguration

strategies for aircraft subjected to actuator failure and surface damage, and

maintenance diagnostics for the development of non-real time diagnostic expert

systems for flight line maintenance [1]-[4].

What would be the key elements of a smart aerospace structure? First,

such a smart structure would have to incorporate new innovative sensors for

the fast detection of structural damage. Second, a smart structure would have

to include a decentralized controller architecture adaptable for on-line
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reconfiguration. Third, a smart structure should include a representation of

the necessary aerospace knowledge to generate damage hypotheses, reason and

reconfigure based on this knowledge representation. Fourth, a smart structure

has to reconfigure itself in real-time.

In the sensing area, most global rigid body sensors (e.g.,

accelerometer), can be used for damage detection examining the global effects

of structural damage. Since it is desirable to detect failures at the lowest

level of a fault tolerant hierarchy, local sensors would be the critical

sensor technology in the development of smart aerospace structures. The

sensing technology advancement would require increasing the accuracy of

current techniques such as hinge moment sensing for control surfaces and the

development of innovative new sensing and actuation arrays such as

piezoelectrics and fiber optic sensors built into the structure. In addition

to providing damage detection information, some of these sensing arrays can

also be used for actuation without the interaction effects common to

conventional actuators mounted on structures.

The baseline architecture of a smart aerospace structure has to offer a

decentralized solution in order to deal with dispersed sensor and actuator

locations, constraints on information transfer, and distribution of computing

resources for survivability considerations. We see the specification of a

decentralized information structure as one of the major technical problem to

be resolved. In such a decentralized baseline architecture, damage detection

and active control become decentralized failure detection and control

problems. Hence, current techniques on surface damage detection and

decentralized large scale system control techniques would be the starting

points for the smart aerospace architecture. Finally, the structural damage

detection problem is linked to sensor and actuation failure detection since
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any structural damage would impair nearby sensing and actuation devices as

well.

Another critical technical requirement for a smart aerospace structure is

the representation and incorporation of aero knowledge into the architecture

for use in damage detection and reconfiguration. Here, the issue is the

generation of embedded expert system code which can meet the memory size and

execution time contraints of embedded processors. Hence, the decentralized

damage detection and active control system should be built using artificial

intelligence methods so that based on observed symptoms and underlying

structural and aerodynamic knowledge, the smart structure can form, test and

make decisions about damage hypotheses, transform the structural damage

information into a model usable by the active control system, and reconfigure

the control law on-line to compensate for the effects of the damage.

Finally, the real-time requirements on damage detection and controller

reconfiguration precludes the use of current generation general purpose

artificial intelligence computers. Hence, the development of real-time expert

systems implemented on current flight and space qualified numeric processors

using conventional embedded programming languages (e.g., Ada) becomes a

critical issue.

Here, we investigate and define a smart aerospace structure baseline

architecture consisting of:

- sensor arrays for immediate damage detection such as in situ

piezolectrics and fiLer optic sensors used in conjunction with other

rigid and flexible body conventional sensors

- a knowledge based expert system for damage detection, isolation and

assessment which capture the domain expert's expertise in diagnosing

structural damage based on temporal and spatial damage signatures
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- an identification system which transforms the structural damage

information into a model suitable for the redesign of the active

co:.,roller on-line

a decentralized controller which reconfigures itself on-line based on

detected damage conditions and their estimated levels

- an expert system implementation which operates real-time based on a

knowledge compiler approach using general purpose numeric processors.

In this study, we investigate the desired architectural attributes of a

smart structure in the context of a smart wing example implemented as a

knowledge based expert system using the interpretive shell CLIPS. In

particular, we discuss knowledge representation issues, damage detection,

isolation and assessment strategies, real-time performance issues,

requirements on the expert system development tool imposed by the smart

structure attributes, smart structure design methodology, and present

implementation details. Under the damage detection, isolation and assessment

strategy discussion, we present the limitations of conventional hypothesis

test formulations, expert systems based damage diagnosis techniques which

alleviate tnese limitations by exploiting the local spatial and temporal

signatures of a damage, and the applicability of artificial neural networks to

smart structures.

1.2 Outline of the Report

The outline of the report is as follows. Chapter 2 contains the

formulation of the problem. In particular, we present an overview of the

relevant sensing technology, controller structure, damage detection

algorithms, artificial intelligence methods and artificial neural networks for

smart structures. Moreover, we discuss the issues involved in utilizing these

techniques in building smart structures in general terms. In Chapter 3, we
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present the desired architectural attributes of a smart structure in the

context of a smart wing knowledge based expert system. In particular, we

discuss the technical issues involved in building smart structures: knowledge

.epresentation, damage detection, isolation and assessment strategies, real-

time performance in an embedded environment and required expert system

development tools. The report ends with Chapter 4 which contains the

conclusions and recommendations.
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2. FORMULATION OF THE PROBLEM

2.1 Sensors for Smart Structures

In the development of a reconfiguration strategy for aircraft subjected

to actuator failure and surface damage, rigid body flight control

accelerometer and rate gyros, indicated airspeed, angle of attack and sideslip

indicators, and actuator command and surface position sensors have been used

for control surface damage detection algorithms [2]. One of the technology

gaps identified is the need for accurate hinge moment sensors since the

current hinge moment accuracy does not allow the incorporation of these hinge

moment sensors into monitoring algorithms [5].

In addition to the conventional structure/sensor architectures, there is

an increasing need for "smart materials" in space structures as well as in

airframe applications. Such materials would contain sensors and control

elements as integral parts of their structures to provide detection, and

perhaps prevention or correction, of imminent failure or misalignment. One

such possible approach is the in situ formation of piezoelectric thin films on

the surface of existing light-weight structural materials such as aluminum

alloys [6]-[11]. Piezoelectric material is a natural electromechanical

transducer. When an electric field is applied to such a material, a strain is

produced in it. Conversely, if the material is stressed mechanically, an

electric field is generated.

Polymeric materials with piezoelectric properties such as polyvinylidene

fluoride can be deposited as thin films are potential candidates for such

control materials. However, polymer materials typically have limited

lifetimes in the radiation and vacuum environment of space. In contrast,

ceramic piezoelectric materials have much greater stability. However, they

ce less easily formed into thin films, particularly on existing large

structures. Recently, significant advances have been made in using organic
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precursors such as alkoxides to produce piezoelectric ceramics such as barium

titanate.

Fiber optics can also be used by embedding a fault tolerant fiber optic

network into the structure and using fault tolerant network techniques to

detect and isolate structural damage. In such a fault tolerant network

environment, there are several available routing algorithms to detect and

isolate the malfunctioning nodes and paths for a given network topology. In

addition, it is possible to measure physical variables of interest in

structural applications using optic fibers. For instance, measurements of

both static and dynamic strain have been reported using optical fibers

embedded in composite materials [12).

Other potential sensors for damage detection in smart aerospace

structures include computer vision. Here, we see the development of a TV

based vision system for the detection of structural damage using, for

instance, edge detection algorithms.

2.2 Decentralized Control for Smart Aerospace Structures

The active control of airframe, and flexible space structures in

particular, under structural damage will require decentralized control. The

decentralization constraint enters into large scale systems because it may be

impractical or even impossible to communicate signals from one controller to

another, due to for instance, data-bandwidth constraints. Moreover,

decentralization may be required by the control designer to achieve

reliability and survivability with graceful degradation under failures,

imposing a control structure in which control authority is relegated to

separate levels. An equally important aspect is the possibility of relief

from extreme computational constraints encountered in the design of a

centralized controller for the system. Since each control agent is
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responsible for producing only a subset of the inputs while using restricted

information, the overall dynamic system essentially reduces to a collection of

smaller subsystems for which controllers can be generated with more

computational ease than for a single larger-order system.

Early results in optimal decentralized control theory were of a negative

nature. The separation of estimation and control is not optimal for linear

decentralized control systems with quadratic cost and Gaussian disturbances.

In fact, the optimal control is not necessarily a linear feedback law, as

noted by Witsenhausen [13]; in general, the existence of an optimal law is not

guaranteed [141 for decentralized systems, and the optimal linear law can be

of infinite dimensions, and hence not realizable [15]. Questions as to the

importance of "signalling," "second guessing" and the extent of "cross-

communication" among decentralized controllers (which do not arise in

centralized systems), remain to be answered.

Recently, more successful results have been obtained by extending the

standard LQG control and estimation algorithms to decentralized systems with

fixed information exchange patterns [16]-[22]. For instance, the solution to

the decentralized LQG control problem without a central supervisor has been

obtained by Speyer in [21) by hypothesizing a network structure consisting of

interconnected nodes where the local filter's estimate at a given node is

fused with incoming data from other nodes to compute the globally optimum

estimate. The main benefits of this structure are parallel processing and

minimal required bandwidth for data transmission. Another class of

decentralized estimators results from the application of perturbation

techniques such as a structure consisting of a set of locally optimal

estimators for the individual subsystems driven by compensatory signals of a

global estimator on a higher level to account for the interconnection effects

[221.
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In summary, decentralized control using fixed information patterns appear

to be the most feasible approach for smart aerospace structures. The fact

that this formulation does not address the question of what structure should

be assumed may be considered a drawback in general decentralized system

applications. However, this aspect would not be a problem in aerospace

structure applications due to the large known body of knowledge about the

desired subsystems.

Since Large Space Structures (LSS) are infinite dimensional distributed

parameter systems, their finite order linear system approximations are used

for controller designs. These active LSS shape and vibration control methods

based on modal truncation of the structural modes suffer due to control and

observation spillover effects [23]. Spillover is the coupling between the

controller and the unmodelled dynamics within the bandwidth of the controller.

The destabilizing effects of spillover are more pronounced at higher modes

where the modelling uncertainty is higher for structures with no closed-form

solution for the eigenvalue problem. In the last decade, a significant amount

of control R&D effort has been expended to address these unique problems

associated with the control of large space structures such as decentralized

control [24]-[27], adaptive control based on identification techniques [28],

and robust reduced order controllers [29].

In contrast, colocated local direct velocity feedback, has been shown to

be unconditionally stable under some assumptions about the actuator dynamics

(24]. Recently, positive position feedback has been suggested as an

alternative to local velocity feedback (12]. This method is also not

sensitive to spillover and stable under minimally restrictive conditions.

Hence, local velocity/position feedback control algorithms would be ideal for

smart structure applications. However, our proposed decentralized smart
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structure concept would handle arbitrary decentralized information patterns

including non-colocated sensors and actuators.

2.3 Damage Detection Algorithms

The analytic redundancy approach to failure detection and isolation (FDI)

problems in dynamic systems uses the analytic relationships between various

sensor outputs arising from a knowledge of the underlying system dynamics.

Analytic redundancy can be either in the form of algebraic redundancy -- the

instantaneous relationship between sensor outputs, or dynamic redundancy --

the relationship between the time histories of sensor outputs. The term

"analytic redundancy" was coined in the early seventies to differentiate this

technique from the traditional hardware redundancy approach in which the

outputs of like sensors are compared for failure detection. Analytic

redundancy comes about from the common estimation capability of various sensor

groups. Sensor FDI algorithms make use of this inherent analytic redundancy

by considering different sensor subsets. Hence, the analytic redundancy

approach offers the capability of comparing dissimilar instrument outputs for

failure detection and thus, allows the design of reliable systems with reduced

hardware duplication requirements.

Over the last fifteen years, several failure detection and isolation

algorithms applicable to damage detection problems for smart structures have

been developed based on dynamic system descriptions. Such analytic redundancy

research culminated in the development of aircraft sensor fault tolerant

digital flight control systems such as the USAF DIGITAC A-7 and the NASA/LaRC

F8-DFBW application [31]-[32), engine sensor failure detection systems such as

the NASA/LaRC F100 application [33], strapped down navigation systems with

skewed sensor arrays such as the NASA LaRC RSDIMU [34], sensor fault tolerant

integrated flight control and navigation systems such as the NASA/LaLRC FINDS
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application [351, and more recently in reconfiguration strategies for aircraft

subjected to actuator failure/surface damage for the USAF Self-Repairing

Flight Control System Reliability and Maintainability program [36].

General failure detection and isolation methods for dynamic systems can

be divided into the following groups: a) parity techniques; b) failure

sensitive filters; c) jump parameter formulations; d) multiple model methods;

and e) innovations signature analysis. Parity techniques [37] encompass the

standard voting techniques for systems with parallel hardware redundancy and

their generalizations to systems with algebraic redundancy. Failure sensitive

filters exploit output decoupling concepts are used to make failures manifest

themselves in a fixed direction within the measurement space [38]. In jump

parameter- formulations, failures are modeled as jumps in system parameters

[39]. Multiple model methods are based on constructing a different model for

each failure mode [40]. Innovations signature analysis techniques include

performing statistical tests on measurement innovations [41].

Recent work has concentrated on extending the signature analysis methods

to nonlinear dynamic systems with modelling uncertainties. For instance, the

research by Caglayan and Rahnamai [2] resulted in a hierarchical actuator

failure/surface damage detection and isolation system based on the

modification of the multiple hypothesis test to account for modelling errors

in aircraft dynamics. In this approach, isolation thresholds are introduced

in addition to detection thresholds so that the algorithm first declares a

detection decision with a partial isolation decision, and a full isolation

decision only when a certain distinguishability criterion is met. The

performance of this developed actuator failure/surface damage detection and

isolation system has been demonstrated using the nonlinear AFTI F16 and Combat

Reconfigurable Control Aircraft dynamic simulators.
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The advantages to using analytic redundancy in reliability improvement

will be more pronounced in developing damage detection algorithms for large

space structures (LSS). Due to weight limitations, these structures will be

very flexible and, therefore, the suppression of the structural vibrations by

active control will be necessary for the critical substructures. Furthermore,

the proposed functional uses will dictate stringent design specifications for

shape control and pointing accuracy. Consequently, the overall reliability

design of the control hardware deployed in LSS will be critical in satisfying

the vibration suppression, shape control and pointing accuracy specifications.

These requirements, along with the weight and volume limitations of the

sensors and actuators which can be transported into space, will necessitate

the us, )f analytic redundancy in the design of fault tolerant control systems

for LSS. The automated diagnostics capability provided by the analytic

redundancy approach will be especially important in unmanned structures such

as the large flexible antennas. In addition, the reliability provided by an

analytic redundancy based scheme would be indispensable in an application

where the accuracy requirement is critical, e.g., the pointing accuracy of a

microwave energy transmitter.

The current failure detection and isolation technology developed for the

conventional rigid aircraft will not be directly applicable to large space

structures. First, these structures have infinite dimensionality since they

are distributed parameter systems. In practice, their description will be

approximated, through modal truncation, by a large dimensional linear system.

Therefore, current methods for low order systems will be unsuitable for LSS

due to the increased system order. The second challenge in LSS will be the

inadequacy of the model used for the system description, due both to

truncation and to a lack of knowledge about the parameters of the truncated

model. For instance, the application of the generalized parity technique to a
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simple flexible beam problem has shown that this approach is very sensitive to

system parameter errors [42). Again, the current methods which may be

adequate for low dimensional systems with fairly known parameters, e.g. a

conventional rigid body aircraft will prove unsuitable for LSS due to large

false alarms caused by the parameter modeling errors [43]. Since on-earth

testing for !.SS will be extremely limited, these limitations should be

incorporated into the design.

2.4 Artificial Intelligence Methods for Smart Aerospace Structures

The recent success of expert systems technology [441, a subfield of

Artificial Intelligence, in diagnosis and monitoring problems in certain

application domains has initiated similar efforts in onboard flight monitoring

and diagnosis as well. Successful expert system applications such as SOPHIE

in computer assisted instruction [45], MYCIN in medical diagnosis [46],

PROSPECTOR in oil exploration [47], DENDRAL in biology [48] initiated onboard

real-time expert system developments such as Experimental Expert Flight Status

Monitor (EEFSM) in flight control systems monitoring [49], Faultfinder in

onboard aircraft diagnostics [50], and expert systems for self-repairing

flight control system maintenance diagnostics [4].

An expert system is a computer program that can perform a task normally

requiring the reasoning ability of a human expert [44]. Expert systems are

highly specialized according to their application domains. Although any

program solving a particular problem may be considered to exhibit expert

behavior such as computer programs implementing the damage detection

algorithms described in the last section, expert systems are differentiated

from other programs according to the manner in which the application domain

specific knowledge is structured within a program. In particular, expert
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system programs partition their knowledge into the following three blocks:

Data Base, Rule Base, and Inference Engine.

In other words, the knowledge about the application domain is

compartmentalized rather than distributed throughout the program. The Data

Base contains the facts about the application domain. The Rule Base contains

the set of rules specifying how facts in the Data Base can be combined to

generate new facts and form conclusions. The Inference Engine determines the

construct of reasoning in the application of the rules. For instance, the

diagnostic system MYCIN starts from the symptom facts in order to find the

conditions causing the symptom. This manner of reasoning is called "backward

chaining." In contrast, "forward chaining" inference sLirts with the

established facts to find a set of consistent conclusions. The partitioning

of application domain knowledge in expert systems allow the incremental

addition of rules to the Rule Base without major revisions to the program.

Moreover, the expert system can explain the reasoning chain by recording the

rules as they are applied.

While expert systems have been traditionally built using collections of

rules based on empirical associations, interest has grown recently in

knowledge-based expert systems which perform reasoning from representations of

structure and function knowledge. For instance, an expert system for digital

electronic systems troubleshooting is developed by using a structural and

behavinral description of digital circuits [51]-[54]. Qualitative process

theory [551-[58] is another approach allowing the representation of causal

behavior based on a qualitative representation of numerical knowledge using

predicate calculus.

QP theory is a first order predicate calculus defined on objects

parameterized by a quantity consisting of two parts: an amount and a

derivative, each represented by a sign and magnitude. In Qualitative Process
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theory, physical systems are described in terms of a collection of objects,

their properties, and the relationships among them within the framework of a

first c-der predicate calculus.

In applying QP theory to physical dynamic systems such as structural

damage detection problems, the bottoms-up approach in getting the qualitative

rules from low levels of elemental descriptions can possibly yield erroneous

results at higher levels [591. In contrast, finding qualitative rules at high

levels using a complete knowledge of the system via reduced order modelling

would not be susceptible to such problems.

For fault diagnosis in digital circuit applications, Davis advocates

reasoning from first principles starting with simple hypotheses, keeping track

of simplifying assumptions made, and using multiple representations (e.g.,

both physical and functional representation of a digital circuit) (51-54].

Multiple representation approach is analogous to Rasmussen's hierarchical

knowledge representation at several levels of abstraction [60] used in

modelling human problem solving strategies for complex systems.

Rasmussen introduces an abstraction hierarchy in modelling human fault

diagnostic strategies. This hierarchy is two dimensional. The first is the

functional layers of abstraction for the physical system: functional purpose,

abstract function, generalized function, physical function, and physical form.

The second is the structural layers of abstraction for the physical system:

system, subsystem, module, submodule, component. Using a qualitative

approximation method based on a simplified version of such a functional

hierarchy, a training system for marine engineers of a steam power plant has

been developed by Govindaraj [591.

The aerospace flight and space application domains introduce the

attribute of dynamics not encountered in early applications of expert systems.
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This necessitated the inclusion of a dynamics knowledge into expert systems

implementations [62]-[63].

Current commercially available expert system building tools (shells) are

not generally applicable to building expert systems for onboard fault

diagnosis applications due to the following reasons [64]: 1) the shells are

not fast enough; 2) the shells have insufficient facilities for temporal

reasoning; 3) the shells are not easily embeddable into conventional high

level programming languages and most cannot run on numeric microprocessors

used for embedded applications; 4) the shells have insufficient facilities for

devoting attention to significant events; 5) the shells are not designed to

accept onboard sensor data; 5) the shells have no integration with a real-time

clock and do not handle hardware interrupts; and 7) the shells cannot provide

guaranteed response times.

As discussed in [65], most interpretive expert system shells spend 90% of

their time in matching the current facts against the antecedent of rules in

their rule base. Hence, an expert system development approach where the

interpretive processing is performed off-line would offer a substantial

execution time improvement [67]. Similarly, the execution efficiency is a

strong function of the knowledge representation facilities employed in the

expert system shell. For instance, an approach based on multiple hierarchical

representations of a physical system and using forward chaining would have a

linear execution time complexity as compared to a rule based system with

forward chaining having exponential time complexity.

For ease of integration into conventional high level programs,

programming language of the expert system shell is an important choice. For

instance, the choice of a programming language commonly used for embedded

application such as Ada or C would be advantageous from an integration

viewpoint. Moreover, such an expert system would be easily portable to
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microprocessors commonly used for embedded applications (e.g., 1750A, 80386,

68020). Moreover, the language constructs for handling real-time issues

(tasking, interrupt servicing, exception handling) would be available to such

an expert system development tool.

As discussed by Laffey et al [64], there are two formal definitions for

real-time expert systems: the expert system is said to exhibit real-time

performance if a) it is predictably fast enough for the process being served,

or b) if it can provide a response within a given time limit.

For real-time fault diagnosis applications, even if an expert system

satisfies both of these premises, it would still not be sufficient for

inclusion in an embedded application since the quality of the response would

determine its inclusion in an onboard time-critical system. We believe that

the following is an appropriate criterion for real-time expert systems for

embedded applications: an expert system is said to exhibit real-time

performance if the execution speed of a standalone compiled version of the

expert system for a fixed application is comparable to the speed of a real-

time conventional program written to solve the specific application at hand.

The integration of expert systems technology into time-critical

applications presents new challenges due to the unique attributes of these

applications. For instance, most expert systems have usually been implemented

as standalone computer programs that presuppose a high degree of human

interaction will be available during the problem solving process. While this

approach is quite satisfactory for many naturally interactive applications,

immediate human interaction is neither available nor desirable in time-

critical smart structure applications. Similarly, the powerful explanation

feature of the inference mechanism in expert systems is also neither required

nor desirable during on-line execution in these applications.
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2.5 Neural Networks for Smart Structures

Neural networks [68] represent nonalgorithmic class of information

processing for using massively parallel distributed processing architectures.

Stimulated by the efforts directed at understanding the interconnection of

neurons in the human brain allowing the storage, retrieval, and processing of

complex data, research over the last 25 years in artificial neural systems has

produced solutions to complex problems in visual pattern recognition,

combinatorial search, and adaptive signal processing.

The most common artificial neural net structure is a network of

processing elements (neurons) connected with each other through interconnects

(information links). Each processing element can have multiple inputs and

only Dne output. The input/output relationship is described by a first-order

differential equation. Specifically, a weighted sum of the nonlinear

transformations of the multiple inputs along with a nonlinear transformation

of the current neuron's state are the driving functions of this first-order

differential equation. The weighting coefficients also satisfy a first-order

differential equation driven by a nonlinear transformation of multiple inputs

and the weighting coefficients associated with the input links. These two

first-order differential equations (also called the update and learning rules)

and a specific network topology [69] provide a complete neural network

specification.

Artificial neural networks produce a nearest-neighbor classifier. Since

the weighting coefficients change in an unpredictable manner, the global

stability of the neural network description is an important consideration.

The strongest theoretical result to date is due to Cohen and Grossberg (70]

who have shown that the neural net converges to one of the finite set of

equilibrium points corresponding to local minima of the energy function under

certain restrictive conditions (e.g., symmetric, positive weighting
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coefficients). Another advantage of neural nets is that the convergence to

the answer is independent of the number of local minima in the energy

function, thus comparing favorably to other general search techniques.

Although the global stability and convergence results have not been extended

to the case for nonsymmetric weighting coefficients, several successful

heuristic applications with nonsymmetric weighting coefficients have been

reported [69], [70], [72].

Conceptually, artificial neural networks are applicable to smart

structures for learning spatiotemporal stress patterns associated with an

undamaged structure for use in detecting structural damage. The relationship

between artificial neural network approach to spatiotemporal pattern

recognition and conventional signal processing structures (i.e., finite

impulse filters, correlation detectors, etc.) has been discussed by Myers

[73]. Used in this context for smart structures, neural networks would be the

nonalgorithmic counterpart of spatiotemporal filters. It is also conceptually

possible to train a neural network representation of a structure with a

multitude of damaged structure scenarios isolating a specific damage using the

neural net as a classifier. The relative advantages and disadvantages of this

approach are discussed on the next section.

The recent interest in artificial neural networks is due to the

availability of fast, relatively inexpensive computers made possible by

advances in VLSI design for realizing neural network structures. Given that

the neurons in the human brain process information in milliseconds while

outperforming current serial supercomputers with a processing rate in

nanoseconds, there is considerable interest in the new generation

neurocomputers and computing environments.
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3. DESIRED ARCHITECTURAL ATTRIBUTES OF A SMART STRUCTURE

In this chapter, we discuss the desirable attributes of a baseline

architecture for a smart structure example involving damage detection and

isolation of structural damage for an airplane wing. The objective of the

smart wing is to detect and isolate structural damage on a wing and to assess

the impact of the identified damage. Here, we discuss the various issues

involved in implementing such a knowledge based expert system and in

incorporating neural networks into such an intelligent system.

3.1 An Example - Smart Wing

The smart wing expert system example has been implemented as a rule-based

expert system using CLIPS (Giarratano 1987). CLIPS - C Language Integrated

Production System - is a tool for the development of rule-based expert

systems. CLIPS provides a powerful rule syntax and an inference engine based

on the Rete match algorithm [66]. We have selected CLIPS for this example

since it is written in C, embeddable to other programs written in different

languages (C, Ada, FORTRAN), and portable across various hardware platforms.

Figure 3.1 shows the actual and the idealized multi-cell box beam wing

structures used in simulating and designing the example expert system. As

seen from 3.1, the idealized wing has a symmetric and taperless cross section.

Since the main objective of the example is the analysis of knowledge

representation, damage detection and isolation strategies and real-time

performance issues, the model complexity has been kept to a minimum by making

the following assumptions. The wing has no twist. Flanges (longitudinal

stiffeners) carry only axial loads whereas wing skin and webs carry only shear

loads. Furthermore, the direct stress over the flange cross section and the

shear stress over the web skin cross section are assumed to be uniform.
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Figure 3.1: Actual and Idealized Wing Structure

Figure 3.2 shows a typical wing geometry. As seen from the figure, a

strain sensor is embedded onto each subsection of a flange between the ribs.

This sensor array geometry is selected because of its simplicity. In a real

application, the sensor array geometry would be selected after going through a

structural analysis in order to cover the critical areas (e.g., inboard

leading edge area, trailing edge surfaces, etc.). The type of sensing

technology (e.g., discrete vs. continuous strain sensing) used would also

impact the selected geometry. Figure 3.2 also shows the location of the

hydraulic line. A smart structure would also be expected to reason about the

damage interior to the wing such as hydraulic lines, fuel tanks based on the

observed and assessed external damage.
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Table 3.1 shows the CLIPS fact defining the wing geometry. Data must be

in the fact-list in order for rules to have access to them. The deffacts

statement must be followed by a name, in this case "wing-geometry." The first

four facts describe the position of the wing in the cartesian coordinate

system used in this example (Figure 3.3). The next fact specifies the total

number of booms (14) in the wing and cross-sectional area of each boom (0.75)

in square inches. The next fact states that the wing is five inches thick,

has a chord length of 30 inches, and a span of 60 inches. The next fact,

(delta-booms 5), describes the distance between the booms in inches. The

fact, (delta-measure 10 starting-at 5), describes the distance between the

strain measurement sensors and the starting location. That is, the sensors

are located on each boom, ten inches apart starting at five inches from the

wing tip. The idealized wing is a box beam with two cells. This is described

by the fact, (cell number 2). The fact, (webs thickness 0.05), specifies the

thickness of the webs and skin of the wing. Finally, the last fact describes

the location of the hydraulic line. The hydraulic line has three main

sections and this fact has three sets of coordinates to identify the location

of each section.

Table 3.1: CLIPS Fact Defining Wing Geometry

(deffacts wing-geometry
(max x 30) ;max x location (inches)
(max y 60) ;max y location (inches)
(min x 0) ;min x location (inches)
(min y 0) ;min y location (inches)
(booms number 14 area 0.75) ;total number of booms, x-sec area [sq.in.]
(wing thickness 5 chord 30 span 60) ;in inches
(delta-booms 5) ;distance between booms
(delta-measure 10 starting-at 5) ;location of measuring devices
(cells number 2) ;number of cells in box beam
(webs thickness 0.05) ;in inches

; Below is the starting and ending locations of the hydraulic line.
(hydraulic-line x start 2.5 end 2.5 y start 10.0 end 52.5

x start 2.5 end 27.5 y start 52.5 end 52.5
x start 27.5 end 27.5 y start 52.5 end 60.0))
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Table 3.2 shows the CLIPS rule asserting the generation of wing booms

(longitudinal stiffeners) into the fact list. The rule named "generate-

objects-booms" is used to generate the facts called "booms,"

(booms top x ?x-location y ?y-location meas 0.0 old est 0.0 old),

and place them in the fact-list. "Booms" are multi-field facts that contain

information describing the current status of the boom (longitudinal stiffener,

flange) at each sensor location. The first field identifies the surface that

a boom is on, either top or bottom. The next four fields represent the x and

y sensor location being considered. The next three fields, meas 0.0 old,

describe the strain sensor measurement value and the status of that

measurement. Since this rule is used for the initial generation of these

facts, the value of the sensor measurement is set to 0.0 and the status is set

to old. When the simulation is run, a rule will replace the 0.0 with a

calculated measured value and change the status to updated. Likewise, est 0.0

old, describes the estimate of the sensor measurement and the status of the

estimate.

The first pattern on the left hand side of "generate-objects-booms,"

(generate-booms), is used to control when this rule will fire. Before this

pattern will be satisfied an initialization rule must fire to place (generate-

booms) in the fact list.

There are a total of 84 sensors located on the booms of the wing. A

"booms" must be generated for each one and placed in the fact-list. This is

accomplished by incrementing the x location until the maximum value is reached

and then incrementing the y location until its maximum value is reached and

generating a "booms" at each location. The next three patterns,

?counter-x <- (x-counter ?x-location)

(wing thickness ? chord ?wing-chord span ?wing-span)

(test (<= ?x-location ?wing-chord))
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check the x location to see if it is less than or equal to the chord of the

wing. If it is not, then this rule does not fire and the rule that increments

the y location. If it is, then these patterns are satisfied and the next

three patterns are considered:

(y-counter ?y-location)

(delta-measure ? starting-at ?start)

(test (<= ?y-location (- ?wing-span ?start)))

These patterns check the y location to see if it is less than or equal to the

wing span. If it is not then all of the "booms" have been generated and the

next rule on the agenda will fire. If it is then these patterns are satisfied

and this rule will fire and generate a new "booms" fact at ?x-location ?y-

location. The last pattern,

(delta-booms ?di stance-between-booms),

must also be in the fact-list before this rule will fire. However, since this

fact was part of the deffacts statement named "wing-geometry" it is known to

be in the fact list. When this rule fires the four actions on the right hand

side of the rule are taken:

(retract ?counter-x)

(assert (booms top x ?x-location y ?y-location meas 0.0 old est 0.0 old))

(assert (booms bottom x ?x-location y ?y-location meas 0.0 old est 0.0 old))

(assert (x-counter =(+ ?x-location ?distance-between-booms)))).

The first action taken is to remove the fact representing the current x

location from the fact-list. This is accomplished with the statement,

(retract ?counter-x).

In order to retract a fact it must first be associated with a variable on the

left hand side of the rule. The second pattern in this rule,

?counter-x <- (x-counter ?x-location),
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associates the variable ?counter-x with the fact (x-counter ?x-location). The

second and third actions taken are to generate the object boom and assert them

onto the fact-list. The fourth and final action is to increment the x

location counter by the ?distance-between-booms and assert it onto the fact-

list.

Table 3.2: CLIPS Rule for Generating Booms

;This rule asserts the objects 'booms' into the fact list

(defrule generate-objects-booms
(generate-booms)

?counter-x <- (x-counter ?x-location)
(wing thickness ? chord ?wing-chord span ?wing-span)
(test (<= ?x-location ?wing-chord))

(y-counter ?y-location)

(delta-measure ? starting-at ?start)
(test (<= ?y-location (- ?wing-span ?start)))

(delta-booms ?distance-between-booms)

(retract ?counter-x)

(assert (booms top x ?x-location y ?y-location meas 0.0 old est 0.0 old))
(assert (booms bottom x ?x-location y ?y-location meas 0.0 old est 0.0 old))
(assert (x-counter =(+ ?x-location ?distance-between-booms))))

Figure 3.4 shows one possible damage simulation scenario considered in

this study: two holes of arbitrary size on the top and bottom of the wing at

two possibly different locations. Figure 3.5 shows the circularity assumption

made in simulating and diagnosing the damages. The objective of the smart

wing expert system is to detect and isolate the damage, to find out the

impaired structural elements, and to assess the impact of the damage on

residual strength. The smart wing expert system performs its reasoning based

on its knowledge of the wing structure and the strain sensor array and

concentrated external load measurements. In the damage diagnosis section, we

outline reasoning methods based on the computing residuals between the actual
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strain measurements and the strain estimates computed using the external load

measurement and structural knowledge and other methods which do not require

the measurement of any external load.

HYDRAULIC LINEuo

DAMAGE °AG
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Figure 3.4: Wing Damage Scenario

tHYDRAULIC LINE 0FOO

DAMAGE . \DMG

. STRAIN SENSOR

Figure 3.5: Wing Damage Model
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3.2 Knowledge Representation Issues

Procedural information - commonly used to represent sequences of actions

and algorithms - is usually realized as mostly linear arrangements of

instructions. Traditional computer languages (Ada, C, FORTRAN) are examples

of knowledge representation tools using primarily procedural information

strategies. These languages work well for those problems that can be treated

in an easily reducible, one step at a time, sequential approach.

Topological information - commonly used to represent the relationships

among multiple entities in a fixed but arbitrary arrangement - is usually

realized as a graph structure composed of a set of nodes with arcs forming the

various interconnections of the nodes. Traditional representations of

topological knowledge include both graphical approaches and computer generated

network data structures. Graphic hardcopy diagrams can be easily made, but

are not easily represented by traditional computer languages. It is possible

to dynamically produce data structures to represent topological information,

but the design and development needed for this task is often time consuming.

As typified by the simple smart wing example, smart structures require a

hybrid knowledge representation allowing both structural declarative knowledge

and sequential procedural knowledge. For instance, in the smart wing example,

the description of the physical interconnection between the wing rib, flange

and web, longitudinal stiffener, skin elements and the location of sensing

arrays on these structural members, and the relative location of other

hardware housed inside the structure (e.g., hydraulic lines, electrical wires,

fuel tanks, etc.) requires a topological knowledge representation capability.

Such a symbolic representation is ideally suited for an expert system

implementation. In contrast, an estimation algorithm for predicting the

strain at a given location performed at each sampling interval requires a
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procedural knowledge representation facility. Ideally, a real-time expert

system shell should support both of these knowledge representation facilities.

Another desired knowledge representation construct is the hierarchical

representation of a physical system at several levels of abstraction. Such a

structural knowledge representation facility is usually available in hybrid

expert system shells which allow object definitions with inheritance

relationships. In this example, such a hierarchical representation of a smart

wing can take the following form: At the highest level, the wing can be

described by wing sections in between the ribs. At this level, only

representative sensors can, for example, need to be monitored. At the next

lower level of hierarchy, wing subsection can be further decomposed into spar

web and flanges, booms, etc.

The hierarchical representation of a wing is not restricted to the

physically identifiable partitioning of the wing structure described above.

For example, at a higher level over the interconnected physical element

structure, the wing may be described by a set of modal dynamics. Such a modal

representation may be used to detect the presence of a damage using

conventional rigid body sensors and would initiate reasoning based on the

interconnected element description at the lower level to isolate the damage

using sensor arrays to a given structural element. Similarly, a level below

the interconnected physical element description, a finite element description

of the wing elements can be used to further assess the magnitude of a given

detected and isolated damage condition.

Apart from the evidence of similar diagnosis strategies employed by

humans, such a hierarchical representation would enable a faster reasoning

mechanism than a flat description where all elemental dynamic objects have to

be tested at each iteration, Moreover, in such an inference tree, a failure

declaration at a higher level may deemed to be a false alarm at a lower level
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based on a more accur-ce physical system model. Ideally, a real-time expert

system shell for smart structures should support hierarchical knowledge

representation at various levels of abstraction so that both top-down

diagno:i_, bottxrs up simulation or hybrid Lailure diagnosis strategies can be

employed.

3.3 Damage Detection, Isolation and Assessment Strategies

There are two major elements in assessing the impact of a damage on the

wing. The first is the determination of residual strength which would impact

the structural maneuver limits after a damage. The second is the

determination of aerodynamic effects which would impact the control

reconfiguration strategy after a damage. Under residual strength effects, it

is important to determine not only the current damage but also be able to

reason about future likely effects such as delamination based on the current

damage effects. Under aerodynamic effects, it is important to determine the

control effectiveness of surfaces after a damage based on the detected

structural damage. These assessment requirements necessitate the

determination of the size of the hole caused by the damage and the stress

redistribution in the wing after a damage.

For designing the damage detection and isolation strategy, an appropriate

set of procedural rules can be initially selected from the wealth of

algorithms developed for fault diagnosis in dynamic systems [74)-[77]. These

algorithms have been developed for detecting sensor, actuator and component

failures in dynamic systems. In the smart wing context, we will assume that

the strain sensor hardware redundancy is such that any strain sensor failure

can be attributed to structural damage. We now discuss the applicability of

these algorithms to smart structures.
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3.3.1 Hypothesis Test Formulations

Denoting the strain measurements by y where i denotes the location

across a rib and j denotes the location across a flange, the external load by

f, the postulated damage circles by AI and considering only a static case for

simplicity, the multiple hypothesis test formulation to the damage detection

and isolation problem at hand would require the computation of measurement

residual r..:

rij = yij - E[yij lall ymn not in A and f] (3.1)

for all strain measurements yij for each damage hypothesis A . Here, E

denotes the expected value of yij given all measurements not affected by the

postulated damage area A . The computation of the estimate would involve

using a global spatial filter based on the discretized partial differential

equation describing the wing stress distribution. Considering that the number

of strain measurements in this example is 2x6x7 = 84 and the number of

postulated damage circles would substantially exceed 84 (considering cases

when more than one sensor would be involved in a damage and the likelihood of

different top and bottom damage locations), it is clear that the brute force

approach of multiple hypothesis test to the problem at hand would result in a

combinatorial explosion.

As a second approach, consider the application of the global surface

damage detection and isolation algorithm used in the CRCA reconfiguration

strategy. Such an approach would require the computation of

= Yij - Elyij all yij' f and no damage] (3.2)riiJ

for each yi in the sensor array. That is, the measurement residual is the

difference between the actual measurement and the estimate of the measurement
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using all measurements under the no damage hypothesis. Here, the tradeoff is

between modelling uncertainty and damage signature. For a given yij, the more

the estimate is based on that measurement yij' the less the effects of

modelling errors would be on the residuals. On the other hand, the less the

estimate is based on that measurement y 1 j' the more the damage signature would

be on the residuals. After a compromise filter design is selected, then the

residuals would be processed to filter out the damage signature under each

postulated damage scenario. Although this approach would have less

computational burden that the multiple hypothesis testing formulation, it

still would require a considerable amount of computational throughput.

Although these formulations do not result in a practical solution, they do

provide a formal framework to study the damage diagnosis problem. We discuss

the most important one, namely, the damage signature issue next.

3.3.2 Damage Signature

Since a wing is a distributed parameter system (described by a partial

differential equation), it exemplifies the two types of damage signature

induced by a structural damage: spatial and temporal. The spatial signature

is the characteristic of the stress distribution over the structure after a

damage. For example, a strain peak associated with a hole in a wing is such

an example. In the previous section, the relative magnitudes of r, in (3.2)ij

would constitute such a diagnosis information.

The temporal signature is the stress characteristics of a damage over

time. For instance, a natural damage would result in a slow crack whereas

battle damage would result in a fast crack. In the context of the previous

section, modifying (3.2) via
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r (k) = yi (k) - E [yij (k) jall y i(k-i), f(k-l) and no damage] (3.3)

would show a temporal strain peak over time associated with the onset of a

damage (where k denotes the time index).

As discussed in the previous section, the brute force application of

system theoretic damage detection algorithms do not result in a practical

solution. What is required in an expert system solution capturing the problem

solving skill of an expert with expertise in the structure and damage

detection, isolation and assessment strategies. Such an approach is discussed

next.

3.3.3 Expert System Based Damage Diagnosis

In the smart wing example, we have considered a number of strategies in

detecting and isolating a damage from the observed temporal and spatial

signatures of a damage. For the first strategy for each strain measurement,

we compute

=ij = E[yij if and no damage] (3.4)

that is, an estimate of the measurement based on the current external load

value and the knowledge about the wing structure. This is the procedural rule

performed at each sampling instant using a loop construct. In general, this

estimate can be computed using either open-loop or closed-loop filtering based

on the known properties of the wing (e.g., model description, finite element

description, etc.)

The expert system rule base captures a domain expert's damage model. For

instance, referring to figure 3.2, here is one such possible domain expertise

formulation. The longitudinal stiffeners outboard of the hole can not carry

axial loads. Strain sensors on damaged flanges measure approximately zero

outboard of the hole. The sensors on undamaged booms located outboard the
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damage senses a uniformly redistributed load after a damage. The sensors

inboard side of the damage would show no change due to a damage. Under these

simplified set of rules, the following damage detection and isolation rules

given in Table 3.3 would then apply:

Table 3.3: Qualitative Rules for Damage Detection and Isolation

If a strain sensor is not functioning, then the flange section containing

the sensor has been damaged.

If a strain sensor measurement is significantly greater than its

estimate, then the flange section containing that sensor is carrying

additional load due to a damage on the same rib or further inboard.

If a strain sensor measurement is significantly less than its estimate,

then the flange containing that sensor has been damaged further inboard.

The CLIPS implementation of the damage detection rule is given in Table

3.4. As the name implies the rule "detect-the-damage" incorporates the damage

detection strategy used in the Smart Wing example. This rule determines which

booms have been damaged.

The first statement in this rule,

(declare (salience -10))

is used to control when this rule can fire. All activated rules with a higher

salience will fire first. When a rule does not have its salience declared

than it is given a salience of 0 by default. This rule was given a salience

of -10 to insure that all the estimates of the sensor measurements have been

calculated before checking for damage.

The next statement in this rule,
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?sensor <- (bad-sensors ?number-of-bad-sensors-on-the-wing),

binds the fact (bad-sensors ?number-of-bad-sensors-on-the-wing) to the

variable ?sensor so that this fact can be retracted from the fact-list when

this rule fires. This fact is used to keep track of the total number of

sensors affected by the damage. Each time a sensor is determined to be

affected by damage this fact is removed from the fact-list (retracted), the

new total is calculated, and a new "bad-sensors" fact is asserted onto the

fact-list. Retracting old facts from the fact-list makes the program run

more efficiently. A fact will usually be retracted if it is going to be

reasserted by the same rule.

The fact in the next pattern of the rule,

?boom <- (booms ?surface x ?x-location y ?y-location

meas ?measured-value updated

est ?estimated-value updated)

is bound to the variable ?boom since it will be retracted if this rule fires.

This fact contains the measured and estimated values of strain at a given

(x,y) location. The actual values are bound to the variables ?measured-value

and ?estimated-value. These values are used in determining if damage has

occurred. Another value used in determining damage is the value in the third

pattern of this rule,

(damage-detection-threshold ?threshold).

The last two statements on the left hand side of this rule are the actual

conditions that must be satisfied to detect damage on a specific boom. The

first condition,

(test (> (abs (- ?measured-value ?estimated-value)) ?threshold)),

is used to determine if the difference between the measured and estimated

values for strain are greater than the detection threshold. Satisfaction of
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this condition alone indicates that damage has occurred, but the next

condition,

(test (< (abs ?measured-value) (abs ?estimated-value)))

is needed to determine which boom(s) has actually been damaged. A damaged

boom can no longer carry its original load. Therefore, the measured strain of

a damaged boom at a given location will be less than the estimated strain at

the same location. The second condition is satisfied when this situation is

true.

There are four actions on the right hand side of the rule "detect-the-

damage". The first two action,

(retract ?sensor)

(retract ?boom)

retract the facts that were bound to the variables ?sensor and ?boom on the

left hand side of the rule. These facts are retracted because they are being

replaced in the final two action of this rule,

(assert (booms ?surface x ?x-location y ?y-location

meas ?measured-value old

est ?estimated-value damaged))

(assert (bad-sensors =(+ ?number-of-bad-sensors-on-the-wing 1)))).

A new "booms" fact is asserted onto the fact-list. It has changed the status

of the measured value to 'old' to indicate that this measurement has been used

in the damage detection rule. The status of the estimated value has been

changed to reflect that this boom at the current location has been damaged.

The value associated with the "bad-sensors" fact is incremented by one in

order to update the total number of sensors affected by the damage.
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Table 3.4: CLIPS Rule for Damage Detection

;This rule is used to detect damage. It calculates the difference
;between the measured values of stress and the estimated values.
;When the difference is greater than a specified threshold damage
;has occurred. If the above condition is satisfied and the magnitude of
;the measured value is less than the magnitude of the estimated value
;then the boom under consideration has been damaged.

(defrule detect-the-damage
(declare (salience -10))

?sensor <- (bad-sensors ?number-of-bad-sensors-on-the-wing)

?boom <- (booms ?surface x ?x-location y ?y-location
meas ?measured-value updated
est ?estimated-value updated)

(damage-detection-threshold ?threshold)

(test (> (abs (- ?measured-value ?estimated-value)) ?threshold))
(test (< (abs ?measured-value) (abs ?estimated-value)))

(retract ?sensor)
(retract ?boom)

(assert (booms ?surface x ?x-location y ?y-location
meas ?measured-value old
est ?estimated-value damaged))

(assert (bad-sensors =(+ ?number-of-bad-sensors-on-the-wing 1))))

The CLIPS implementation of the damage isolation rule is given in Table

3.5. The rule "detect-the-damage" determines which booms have been damaged,

but it does not determine where on the booms the damage occurred. The rule

"isolate-the-damage" is used to determine the y location of the damage on a

particular boom. This is done by locating the furthest inboard sensor on a

damaged boom that has been affected by the damage.

Since damage can not be isolated until it has been detected the rule

"isolate-the-damage" was given a salience of -20. This salience is less than

that of "detect-the-damage" so "isolate-the-damage" will not fire until all

activations of "detect-the-damage" have fired.

The first pattern on the left hand side of "isolate-the-damage,

(booms ?surface x ?x-location-of-sensor y ?y-location-of-sensor
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meas ?measured-value old

est ?estimated-value damaged),

will be matched by any of the "booms" facts in the fact-list that had their

status changed to 'damaged' by "detect-the-damage". The next pattern,

?great <- (greatest-y ?surface ?x-location-of-sensor

?y- location-of-the-furthest-inboard-sensor damaged I undamaged),

will be matched by ary "greatest-y" facts that have the same ?x-location-of-

sensor as the previous "booms" fact. The "greatest-y" fact keeps track of the

y location of the furthest inboard sensor on a damaged boom that has been

affected by the damage. The condition,

(test (< ?y-location-of-the-furthest-inboard-sensor

?y-location-of-sensor)),

is used to determine if the current "greatest-y" fact needs to be updated.

This condition is satisfied when the y location of an affected sensor on a

damaged boom is greater than the current "greatest-y" y location for that

boom.

When the condition is satisfied "isolate-the-damage" fires and these two

action take place:

(retract ?great)

(assert (greatest--y ?surface ?x-location-of-sensor

?y-location-of-sensor damaged)))

The first action removes the old "greatest-y" fact from the fact-list and the

second action places a new "greatest-y" fact on the fact-list. The new

"greatest-y" now has the updated y location.
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Table 3.5: CLIPS Rule for Damage Isolation

;This rule isolates the damage on each failed boom to the most inboard
;y location where damage has been detected.

(defrule isolate-the-damage
(declare (salience -20))

(booms ?surface x ?x-location-of-sensor y ?y-location-of-sensor
meas ?measured-value old

est ?estimated-value damaged)

?great <- (greatest-y ?surface ?x-location-of-sensor
?y-location-of-the-furthest-inboard-sensor damagedjundamaged)

(test (< ?y-location-of-the-furthest-inboard-sensor

?y- location-of-sensor))

(retract ?great)

(assert (greatest-y ?surface ?x-location-of-sensor
?y-location-of-sensor damaged)))

The initial attempt at the estimate damage diagnosis strategy has certain

shortcomings. First, the procedural computation for every strain sensor

measurement is a time-consuming task. Second, the strategy depends on knowing

the external load -- a hard computational problem especially in a maneuvering

dynamic environment. Both of these deficiencies can be alleviated by further

investigating the damage diagnosis skill of an expert and incorporating into

the design. Here, we outline some possible solutions.

One such possible solution is to introduce temporal local filtering in

computing the strain sensor measurement estimates. A simple solution, which

might suffice under slowly varying (compared to the underlying measurement

sampling rate) external force conditions is replacing (3.4) by:

iij(k) = E[yii(k) ij(k-l)]- yij(k-1) (3.5)

The assumption above states that the estimate of a strain measurement is

equal to the previous measurement under no damage conditions. Therefore, any

discrepancy between the current actual and estimated measurements would

indicate the presence of a structural damage which would be isolated using the
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same set of rules in Table 3.1. Using the strain estimate provided by (3.5)

would eliminate both the necessity of measuring external load and computing

the strain estimate globally. Other approaches based on closed-loop temporal

filtering based on the local structural constraints or adaptive techniques

based on the local temporal stress gradient can also be employed instead of

the approximation in (3.5).

We have replaced the strain estimate with its previous measurement so

that the temporal damage signature can be exploited to detect and isolate on

damage. There is also a spatial signature of a structural damage. it is also

possible to develop rules exploiting the spatial signature of a damage in

detecting and isolating a damage. Table 3.6 gives such a possible set of

rules.

Table 3.6: Damage Diagnosis Rules Based on Spatial Signature

If a strain sensor is not functioning, then the flange section containing

the sensor has been damaged.

If there is a malfunctioning strain sensor, then the damage is bounded by

the two functioning sensors on each of the malfunctioning sensor located at

the same rib cross section.

If a strain sensor is significantly less than its neighboring sensors on

the same rib cross section, then the flange containing that sensor has been

damaged further inboard.

The qualitative rules in Table 3.6 can be quantified by introducing the

following estimate for a strain measurement:
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yij Elyijl y i , j - I ' yi'j-l and no damage] (3.6)

Eq. (3.6) requires a local spatial filter around every strain measurement by

using the two adjacent strain measurements on each side. Approximations based

on the local spatial gradient can also be used. Such a neighborhood

definition would result in a maximum damage signature for damage holes

covering at most a single sensor. Other definitions of neighborhood are also

possible. For example, for a given strain measurement, yij, using the sensors

on the four corners of a square defined by Yi-1, j, i~l, j,

y. _ I around the strain measurement yij would be another suitable localYi, jl1

neighborhood definition.

Finally, combined local temporal and spatial filtering is also another

possible approach for generating damage detection information. Here again,

approximations based on the empirical computation of the local temporal and

spatial gradients may suffice for damage detection purposes. For instance,

the local filtering would be defined over a three-dimensional cube including

the time dimension in addition to the two dimensions defining sensor array

position on the structure. As before, the maximum damage signature would be

generated by excluding all sensors affected by the damage in the cube. For

example, considering damage holes covering a single strain sensor, the strain

prediction given by

ij (k) = E[y ij(k) iyjl(k-1), yij(-), Y i,j+l ( k - 1 ) , yi,j-l ( k ) ,

y . (k)] (3.7)

would yield such a signature.
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3.3.4 Applicability of Artificial Neural Networks

As discussed in the previous chapter, neural network architectures are

appropriate for applications requiring massive parallel distributed

processing. If the sensor arrays used in a smart structire are based on a

continuous sensing mechanism, then any discrete spatial sampling of a sensor

array would induce a large data array suitable for such a parallel processing.

Mapping each strain sensor onto a processing element in a neural network and

defining the interconnects between the processing elements based on the local

neighborhoods defined in the last section, such a neural network can be

trained with undamaged wing data to find the optimal weighting coefficients

under no damage conditions.

For example, considering the neighborhood defined by the strain

measurements lYi-1, j,Yi, j+IYi+IjVYi, j-I around strain measurement yij for

the static case using the most elementary model of a neuron (i.e., linear

weighted average), we would have the following representation for yij

Yij = wij(i-l'j)Yi-l,j + wi (i'j+l) Yi,j~1) ij+l

+ Wi(i+l,j)yi+l, + w (i,j-l) Yij-i (3.8)

The training of the neural network with a set of simulated wing

(undamaged) stress data would then yield the set of weighting coefficients

wi (-,-) for each strain sensor measurement.

Hence, neural network based prediction of strain measurements is a

nonalgorithmic counterpart of the local prediction filters discussed in the

previous section. The similarities between neural networks for analyzing

spatiotemporal input patterns and algorithmic signal processing structures

(Finite Impulse Response filters, etc.) are noted in [73). In contrast to the

nonalgorithmic approach inherent in the neural network formulations, the model
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based expert system would incorporate the expert's knowledge (local

smoothness constraints on strain (e.g., discretized form of a known partial

differential equation representation), material properties, (e.g., density,

joining fabrication, etc.) in solving for the weighting coefficients.

Once the strain prediction model is found by either a knowledge based

expert system or a neural network approach, then there relations can be used

to aetect a structurai dlamage. As for isolating and assessing damage, the

knowledge based expert system seems to be currently a more feasible solution

since current control law designs cannot make use of the neural net

representation of a structure di-ectly. Therefore, the damage information has

to be translated into area loss, decrease in residual strength type

information. Although it seems to be at least conceptually possible to train

the neural net with a multitude of damaged wing data in order to create a

damage signature dictionary, it is not clear to see the efficiency of such an

implementation over a knowledge based expert system approach.

Summarizing, artificial neural networks can play a complementary role in

building smart structures based on a knowledge based expert system approach.

The research questions that would be crucial on applying neural nets to smart

structures are the following: How does the selection of training data (e.g.,

various external loads, dynamically varying external load, etc.) affect the

resulting weighting coefficients? How can the adaptive learning mechanism

differentiate between normal dynamic behavior of an undamaged structure and

behavior associated with a damaged structure? How can the desire of maximum

damage signature attribute be incorporated into the selection of the

interconnection structure?
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3.4 Real-Time Performance in an Embedded Environment

An smart structures such as the example described, has to exhibit strict

real-time performance. For instance, in an unstable aircraft such as the X-

29, such a system has to produce the correct answer in at most two sampling

instants whenever the inflicted damage could cause a flight control

instability. Therefore, just being predictably fast enough most of the time

or just proviiin- an answer within a time limit are not satisfactory criteria

for real-time performance. Hence, the worst case execution time performance

of an expert system has to be determinable before embedding into a time-

critical application. Therefore, a real-time expert system shell should

support user defined search strategies so that the fault diagnosis strategy of

the domain expert can be incorporated into the expert system design.

The CLIPS implementation of the smart wing expert system contains

approximately 50 rules. The executable image of the rule-based expert system

is approximately 350 Kb. Since the standalone run-time CLIPS is 280 Kb, the

rule base introduces an additional 70 Kb. Since increasing software size

imposes additional weight requirements on an aircraft (more memory, wires,

power, etc.), the comparison underscores the importance of generating a tight

expert system code for embedded applications.

In terms of execution speed, a standalone (i.e., noninteractive) version

the CLIPS implementation was not generated to evaluate execution time

performance. However, based on our analysis of similar applications [67], an

interpretive shell approach is not currently feasible for real-time operation

with a large rule base. Our study in [671 outlines a rule set compiler

technique which allows the interpretation to be performed off-line, thus

allowing a faster real-time performance. The rule set compiler alleviates the

overhead associated with pattern matching, and fact assertion and retraction

found in conventional expert system shells.
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Although not implemented, there are at least two logical hybrid

implementations of the smart wing example. The first one would be using a

procedural code for reading the measurements and computing the various

estimation parameters (sequential algorithmic tasks performed at every

sampling instant) as user defined functions in CLIPS. This would reduce the

number of rules by about 50%, increase execution speed over the standalone

CLIPS version wlt n accompanying slight decrease in program size. The other

alternative would be the replacement of rules in a procedural language version

with a CLIPS call for performing the damage detection, isolation and

assessment functions. We suspect that the program size and execution speed of

this hybrid implementation would be comparable to the first one.

3.5 Requirements on the Expert System Development Tool

Here, we outline the desirable attributes of an ideal expert system shell

for developing smart structure applications.

3.5.1 External Environment Interface

Real-time fault monitoring systems for smart structures have to read in

data at a fixed raLt from a set of sensors (e.g., piezoelectrics, fiber optics

sensors, etc.). Hence, a real-time expert system for onboard applications

should support efficient input and display data functions. Since conventional

expert systems development presuppose an interactive environment, an efficient

repetitive data read-in and assignment facility is not available in most

expert system shells.

3.5.2 Temporal Reasonin2

In real-time systems, an expert system has to reason about past, present,

and future events. Moreover, the temporal sequence of events has to be
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accounted for as well. In the theory of temporal reasoning, a number of

formulations have been developed [61]. The two most important ones are based

on, first, assertions about time intervals and, second, assertions about time

points. For instance, in an interval based formalism, one deals between

interval relations such as before, after, overlaps, starts, finishes, etc.

Such a temporal logic propagates constraints about intervals by transitivity.

Most expert system shells do not support such temporal reasoning. Only

in hybrid expert systems supporting dynamic objects, objects and their links

to classes can be modified at runtime. In the smart wing example, the

temporal reasoning is implicitly contained in the sampling of the

measurements. In general, every physical model of a physical dynamic system

would dictate a different time interval for which the input and output

measurements have to be saved. Ideally, an expert system shell should support

the specification of the memory attribute of a dynamic object (the time

interval over which the reasoning about a fault has to be performed).

3.5.3 Integration into Conventional Software

Since most current embedded applications dictate either Ada or C, an

expert system shell written in one of these languages would allow an easy

integration into conventional software. CLIPS is an example of such a shell

written in C. It is completely embeddable in other applications written in

FORTRAN, Ada, and C by building an appropriate interface package. In a real-

time onboard expert system, such an interface should be accomplished without

incurring any significant computational overhead.

3.5.4 Symbolic and Numeric Reasoning

In the smart wing example, the reasoning about the interconnections

between the structural elements (ribs, flanges, hydraulic lines, etc.) need a
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topological knowledge representation which requires symbolic reasoning. Other

higher level information such as hydraulic system test results, maintenance

history about a specific unit can be easily incorporated into such a

representation, thus allowing additional reasoning power for asserting

malfunctions. In contrast, the expressions on the left hand side of if-then-

else rule in the smart wing involve mathematical computations (e.g.,

computation of the strain measurement residuals). This example is a fairly

simple application; in most systems, more elaborate mathematical computations

(involving, for instance, operations with matrices vectors, etc.) would be

needed. Hence, an ideal expert system shell for onboard real-time smart

structure applications should support extensive domain algebra in rule

expressions.

3.6 Smart Structure Design Methodolojy

The first step in smart structure development cycle is to study the

structure to be described. It is not important at this stage of the cycle to

fully specify the entire structure, even if such knowledge is available as

would be the case in an already existing system. What is important is to

identify the structural objects (elements) of interest and to organize a

complex structure description in terms of a nested hierarchy where much of the

lower level details are temporarily hidden by a high level description. An

appropriate high level description may, for instance, consist of less than a

dozen objects along with their interconnections. Those objects at one level

in the hierarchical arrangement can later be represented as entire subsystems

at the immediately lower level; these subsystem descriptions may be supplied

at a later time. The goal here is to use the power of nested representation

to hide low level details so as to avoid having such details overwhelm the

entire modeling effort.
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The next step in modeling a structure is to examine any available

component libraries for reusable subsystem descriptions. For example, one

library may contain composed of flanges, webs, ribs, while another may contain

various types fiber optic based sensors, while another can contain various

joiner models.

The third step of the system modeling task is to write a first attempt at

a user description of the structure using the selected expert system shells.

This first try should use only the highest layer of the modeled system along

with any usable library subsystems. After the user description of the

structure is written, it can be run through the expert system shell compiler

to detect and report various errors even though not enough information may be

present for damage detection or assessment activities.

Once this high level topographical description is proved syntactically

correct, the fourth step of incorporating procedural information in the expert

system description of the structure. At this stage in the model cycle, it

would be prudent to first write the procedural information required for system

state presetting and simulation and insure its proper functioning before

implementing diagnostic knowledge.

The fifth step is to try interpreting the system model simulation using

the expert system shell, and continuing refinements in the model based upon

observations of its behavior. As more confidence in the correctness of the

model is gained, the fidelity of the model can be improved with the

expansion/substitution of various components throughout the model with lower

level subsystem representations. Ultimately, !very component in the model's

topological knowledge is either atomic (undivisible) or represented by a

subsystem; additionally, the entire system has simulation code present and

tested.
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Once a system model is established with a complete topography and

complete simulation procedural knowledge, the sixth stage of model development

is to provide the system model with diagnostic procedural knowledge. For each

system and component in the model, diagnostic ruleset code is written to

perform tests upon functions for that part of the model. The goal of

achieving high speed diagnostic capability can be met by designing damage

signature checks for the higher level components; when these checks are

passed, it alleviates time consuming examination of checks at lower levels.

However, as is the case with simulation ruleset code, diagnostic code for

a given system only has to be written once and can then be duplicated and

reused for other system models. Also, both diagnostic and simulation

procedural information for subsystems can be written by specialists and then

later used by generalists without requiring the generalists to be fully

familiar with the lower level details.

For certain time critical applications, circumstances may occur so that

it may not be possible to run all of the desired diagnostic code in the

limited time available. For these applications, a family of consistency

checks may be written such that the quicker running (more general) checks are

used first and slower running (more specific) checks are used should time

remain available. This graded strategy helps ensure that at least some

diagnostic results are generated even if the interval allowed for diagnosis is

insufficient for the circumstances for a particular cycle. The reasoning here

is that it is better to derive a general, partially useful result instead of

no result at all.

The exact details of a diagnostic ruleset will vary among differing

structures. However, for system models with multiple levels, a top-down

selective approach would be appropriate for fixed time interval diagnosis.

This approach, unlike the bottom-up full evaluation approach used for
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simulation, will spend time working on only those subsystems where problems

are suspected. In order to test the diagnostic code, the developer can

purposely introduce faults in the system simulation. Such introduction can be

performed by various techniques: reading in a faulty system state via a preset

operation, writing deliberate faults in the system topography or simulation

information, or by providing for the interactive prompting for critical

information during simulation.

Now armed with a well-tested system model, the developer should now

review the model for any potentially reusable components, and to take such

components and add them to the system library for future smart structure

application.

The final step in the development cycle is to use the expert system shell

to generate a standalone compiled version of the expert system in a

conventional programming language in a manner suitable for porting the model

to an embedded computer environment. Under this stage of the development, the

standalone interpreted/compiled version of the expert system would be tested,

first, using a nonreal-time simulation generated sensor data, second, using,

laboratory recorded sensor data in a nonreal-time simulation environment,

third, using a real-time laboratory simulation environment, and fourth, using

the embedded program in a flight test.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

We have investigated and defined a baseline architecture for a smart

aerospace structure consisting of:

- sensor arrays for immediate damage detection such as in-situ

piezolectrics and fiber optic sensors used in conjunction with other

rigid and flexible body conventional sensors

- a knowledge based expert system for damage detection, isolation and

assessment, capturing the domain expert's expertise in diagnosing

structural damage based on temporal and spatial damage signatures

- an identification system which transforms the structural damage

information into a model suitable for the redesign of the active

controller on-line

- a decentralized controller which reconfigures itself on-line based on

detected damage conditions and their estimated levels

- an expert system implementation which operates real-time based on a

knowledge compiler approach using general purpose numeric processors.

Our baseline architecture assumes availability of local sensors for

structural damage detection such as embedded fiber optics. Furthermore,

global sensors such as rigid body accelerometers can also be incorporated into

the hierarchical description damage detection system as well. Starting from

current actuator failure and flight control surface failure detection

algorithms, we have formulated the structure of a hierarchical damage

detection algorithm and outlined its shortcomings in smart structure

applications. We have then investigated various expert systems based damage

detection and isolation strategies which alleviate these shortcomings by

analyzing the local temporal and spatial signature of a damage. We have then

analyzed the implementation details using a CLIPS implementation of a smart
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wing example. In particular, we have identified the knowledge representation

issues in building smart structures and resultant requirements on an expert

system development tool.

In summary, our investigation has shown that a knowledge based expert

system approach seems to be a viable method for implementing the "brain" of a

smart structure. Such an approach requires an expert system shell allowing

the specifications of both the physical connectivity and proximity of

structural elements and the functional dynamic behavior of these structural

components. Our analysis indicates that the local spatial and temporal

signatures of a damage can be exploited in detecting and isolating a damage

without running into a combinatorial explosion associated with conventional

failure detection techniques. Moreover, we have shown how artificial neural

networks can also play a complementary role in implementing such knowledge

based damage detection and isolation strategies. Finally, the real-time

performance of such a system in an embedded environment requires an expert

system development tool such that the interpretive portion of the expert

system can be performed off-line to minimize the size of the on-line software,

and user defined search strategies can be implemented to maximize execution

efficiency in an embedded environment.

4.2 Recommendations

Based on our Phase I analysis, we recommend the following:

- generalize and implement the smart wing concept for a real aircraft

wing

- analyze performance using a realistic nonreal-time simulation

- analyze performance using actual undamaged and damaged wing data

- perform laboratory demonstration using a selected sensor array

technology
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- perform the necessary R&D to accomplish the four preceding tasks.

Under the Phase I analysis, we have identified potentially suitable

knowledge representation, and damage detection and isolation strategies for

implementing the brain of a smart structure. In this recommended follow-on,

we would determine the best manner of implementing such a structure. In

addition, a real application would uncover additional knowledge representation

requirements and strategies exploiting additional information in determining

damage. The analysis with a realistic wing simulation would allow the study

of the impact of modelling errors on the developed strategy. It is crucial

that the smart structure should be able to operate with an imperfect knowledge

base. Finally, using the available wind tunnel data for a damaged wing would

represent the ultimate test of the impact of such modelling errors on both

representation and reasoning about faults. Finally, a laboratory

demonstration or the use of laboratory recorded data would identify the

necessary sensor interface and modelling issues to be resolved.
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