
UNCLASSIFIED
SECU01TV CLASS F'ICATION Or 'WOS PAGE flriten DOOR EnIO90d)

DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DBEFORE COMPLETING FORM

. REPO
R T 

NUMB
R . GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AI-TR 11037 .r1
4. TITL.E (and Subtitle) S. TYPE Or REPORT a PERIOD COVERED

Performance Evaluation of the Scheme86 and technical report
HP Precision Architectures a. PERPORMING ORG. REPORT NUMBER

7. AUTwOR.(s) S. CONTRACT OR GRANT NUMBER(@)

Henry M. Wu N00014-86-K-0180

9. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency April 1989
1400 Wilson Blvd. I. NUMUER 0 PAGES

Arlington, VA 22209 38
14. MONITORING AGENCY NAME G AOORESSli dillet IteMm Cntreillni Office) IS. SECURITY CLASS.'IE tht rei )

Office of Naval Research UNCLASSIFIED
Information Systems

Arlington, VA 22217 IS. OECLASSIFICATION/DOWN GRADING
I SCHEDULE

IS. DISTRIBUTION STATEMENT (of this R.,.ei)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tHe abrefec entered In Ick S0, II dtifeent rno fepet )

It. SUPPLEMENTARY NOTES

None

It. KEY WORDS (Cmntinue on reveree@ , /I o ld* U 06a a nmd IeotIpr b block nembe)

computer architecture
pipelining
performance evaluation
parallelism

30. AISTRACT (Co.Minv on owwofo side It noeooemy md identify by block rmimber)

The Scheme86 and the Hp Precision Architectures represent different trends in
computer processor design. The former uses wide micro-instructions, parallel

hardware, and a low latency memory interface. The latter encourages pipelined
implementation and visible interlocks. To compare the merits of these approache,
algorithms frequently encountered in numberical and symbolic computation were
hand-coded for each architecture. Timings were done in simulators and the re-

sults were evaluated to determine the speed of each design. Based on these

measurements conclusions were drawn as to which aspects of each architecture (OVER)

DD ,o 1473 E0TION1 O ,NOVSO,,OL.TE UNCLASSIFIED
S/N 0!02*014"6601 I SECUIlTY CL ASSI FICATION 01

r
THIS PAGE (Whent Diml Eninet



Block 20 cant.

are suitable for a high-performance computer.

6

jAccesjo; For

NTIS CRA&1
OTIC TAB E
U;-.d~lnoor~ced 13

BY
DistribUticl I

Ava~iii;y Co des

AvkI : ____j U



Performance Evaluation of the

Scheme86 and HP Precision Architectures

Henry M. Wu

Artificial Intelligence Laboratory
and

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

A.I. Technical Report No. 1103 April, 1989

Abstract

" ) The Scheme86 and the HP Precision Architectures represent different trends in com-
puter processor design. The former uses wide micro-instructions, parallel hardware,
and a low latency memory interface. The latter encourages pipelined implementa-
tion and visible interlocks. To compare the merits of these approaches, algorithms
frequently encountered in numerical and symbolic computation were hand-coded for
each architecture. Timings were done in simulators and the results were evaluated to
determine the speed of each design. Based on these measurements conclusions were
drawn as to which aspects of each architecture are suitable for a high-performance
computer. >

This report describes research done partially at the Hewlett Packard Laboratories and
is reproduced with their permission. Additional research was performed at the Artifi-
cial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for
the Laboratory's artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense of the United States under
Office of Naval Research contract N00014-86-K-0180.

Submitted to the Department of Electrical Engineering and Computer Science in 1987
in partial fulfillment of the requirements for the Degree of Master of Science



1. Introduction

This thesis describes experiments which measured the relative performance
of the HP Precision Architecture (internally known as Spectrum) and an experimental
processor architecture known as Scheme86. The main objective of the experiments
was to compare the different ways in which the two architectures provide fine grain
parallelism to increase the computation rate in the presence of a high-speed memory
system. In order to perform the comparison without subjecting either architecture
to arbitrary implementation and configuration constraints, we simulated hypothet-
ical systems, rather than measured real machines, to keep external parameters as
similar between the two as possible. The results were used to analyze the various ap-
proaches in designing high-performance processing units for scientific and engineering
applications.

1.1 Background

Most von-Neumann architectures consists of two subsystems, the processor
and the memory system. Operands, results, and sometimes instructions are stored
in memory. The processor fetches data from memory, operates on them, and then
stores the results back into memory. Frequently the processor requires multiple cycles
after fetching a complete set of operands before it is ready to update the result in the
memory and initiate another set of fetches. On the other hand the memory system
may need more than one cycle to complete a read or a write request. An efficient
architecture strikes a careful balance between the bandwidth of the two subsystems.
The operation of the two subsystems may also be overlapped so that the computer
executes faster than their combined delay allows.

Current VLSI technology allows very fast memory systems to be built. It
is no longer unreasonable to expect that memory systems, several tens of megabytes
in size, can be built with an access time (latency) of less than 100 nanoseconds. To
efficiently utilize the ever increasing bandwidth of memory, the processor must be
designed to be able to keep the memory system busy. Otherwise the processor will
be the bottleneck and the cost spent on having high-speed memory will be wasted.

The processor can efficiently utilize memory bandwidth if it is so fast that
whenever the memory system becomes idle, it has prepared a memory transaction
pending service. Given a particular hardware implementation technology, the use of
parallelism increases the speed of the processor.

Parallelism may be provided in two forms. Processors can incorporate mul-
tiple execution sites so that several operations can take place simultaneously. This
approach exploits parallelism by using more hardware or space. On the other hand,

• • i l I I I1



pipelining overlaps the execution of consecutive operations by dividing the hardware
into chunks that operate on different stages of each operation. Under optimal cir-
cumstances this approach can multiply the speed of the machine by the depth of
the pipeline. Pipelining creates parallelism by efficiently using time. Each of these
approaches has its pros and cons, and is not fully effective for all applications. In
the restricted case of a single pipelined interface to memory, it can be shown that
pipelined machines are slightly more flexible to utilize and program than multiple-
execution-unit machines.

The idea of providing multiple execution sites is not new and in fact has been
used since the early days of computer architecture, for example the CDC 6600. Many
computers have separate arithmetic units for calculating effective addresses. The
more recent Very Large Instruction Word (VLIW) computer proposed by researchers
at Yale University is a good example of machines using a large number of execution
units to increase their performance [Ellis 86]. Scheme86, an experimental processor
designed at the MIT Artificial Intelligence Laboratory, also has multiple execution
units and a long instruction word [Wu 86].

Reduced Instruction Set Computers (RISC) are currently in vogue in the field
of computer architecture. They are essentially machines with only one execution unit
that is heavily pipelined for increased throughput. What made this approach attrac-
tive is the need to keep the entire processor within a single VLSI chip, thus avoiding
the need for speed-critical signals to propagate through the relatively low-bandwidth
channel imposed by the physical package. Some people also believe that freeing up
space for more on-chip storage, in the form of register and instruction/data cache, is
a better tradeoff than incorporating extra processor hardware. Many academic RISC
machines have been designed at the University of California at Berkeley. Hewlett
Packard, a major manufacturer of commercial data processing equipment, recently
released the instruction set and architecture of their next generation computer. This
processor design, called the HP Precision Architecture (or Spectrum), was designed

based on extensions of the RISC philosophy [HP 86).

Making a distinction between machines with parallel execution units and
those with pipelining is deceptive. In fact, most practical machines provide, to some
extent, parallelism in both forms. In the interest of analyzing architectures, however,
this distinction is useful to help understand the issues involved.

In this experiment we tried to figure out the merits of the two approaches
by comparing the runtime of these architectures on hypothetical implementations.
Whenever necessary we assumed that the technology was high-end TTL. By com-
paring the competitiveness of one processor against the other, we tried to determine

2



which architecture was more attractive from the standpoint of implementation. We
also studied our claim that the pipelined approach is fundamentally more flexible,
but found that multiple execution units can be more appropriate in special cases.

We needed concrete examples of both kinds of architecture in order to per-
form measurements. For this purpose we picked Scheme86, a primarily space-parallel
machine, and Spectrum, an architecture that encourages highly pipelined implemen-
tations. Both of these architectures have been designed or implemented in stock TTL
technology, giving us a reference with which to pick appropriate operating parameters
in our simulation.

3



2. Theory

This experiment was centered around the measurement of processor archi-
tectures. Specifically we compared two processor designs based on two different forms
of parallelism, namely parallelism in time and parallelism in space, to better utilize
memory bandwidth. Here we discuss why keeping memory busy is important, how
the two kinds of parallelism differ, and their pros and cons.

2.1 The Memory Bottleneck

Every computational problem is solved by the processor fetching operands
from the storage system, operating on them, and then writing the results out to
storage system again. Given the finite delay of fetching and writing to memory, the
computational task can complete no faster than the time necessary to bring all the
operands into the processor. Efficient operation is achieved if the processor issues
read requests as quickly as the memory can accept them, and the processor is able
to either overlap its operation with that of memory or take negligible time to work.
If the processor achieves this situation, by having enough computational resources, it
needs to be no faster, since the bottleneck is completely in the memory system.

High performance processors try to approximate this optimal situation by
several means. One is to cache operands in fast, multi-ported local registers to reduce
the need to access memory. This approach pays the price during context switches,
when registers have to be saved and restored. Another approach is to use high speed
hardware technology. The price is paid in component cost, the amount of heat gen-
erated, power consumption, interconnect technology, and design complexity. The
processor can also make use of parallelism. As we shall discuss in future sections,
parallelism can be exploited both in the time domain or the space domain.

The use of parallelism, coupled with the need to interact with memory over
some channel with finite bandwidth, gives rise to a scheduling problem when mapping
a computational problem onto the processor's hardware resources.

2.2 Parallelism in Space

Processors can increase their capacity by providing multiple execution sites.
Since this approach makes use of more hardware to provide extra speed, we refer to it
as parallelism in space. In this scheme, several threads of computation, optimally with
few interdependencies, can take place on separate execution units simultaneously. Un-
like perhaps the more familiar, although more recent, idea of multiprocessor systems,
this kind of parallelism works within each processor with finer grain size. Multiple
execution units make it possible to have more than one register-transfer-level instruc-

4



tion take place at once. Like all kinds of parallelism, however, it introduces problems
with synchronization and data dependencies.

To illustrate we consider a machine with n identical execution units. In
every quantum of time t, n operations take place. Hence, in an amount of time
equal to T, the number of operations carried out would be (Ltn), counting even ones
which are not usefully employed. Problems arise because these operations are fired
at the same time, and hence cannot make use of each others' results. Furthermore,
we may perform branching only at n operation intervals. Because these operations
generate their results at the same time, only one of these results may be an address
to memory unless the memory system is organized in multiple banks with separate
access paths. This, together with the fact that all these operations require their
operands simultaneously, means that only one new memory result is provided for
every n operations.

2.3 Parallelism in Time

Pipelining is a way of providing parallelism by splitting up computation
inside the processor into chunks. As computation flows within the machine to utilize
different hardware resources, any subsystem in the processor that is freed up can be
used to execute parts of subsequent instructions.

In this scheme, operations are started one by one. Assuming that n pipe
stages make up the complete path for one operation, with the delay in each stage
being (1), then the latency of one complete operation is still t. However, as soon as
an operation completes its first stage, i.e., after 1, the second stage can start. The
number of operations that can be initiated in time T is equal to the total time divided
by the interval between the start of successive stages. Therefore the number is (T)

or (2n, exactly the same as that of a machine with n execution units. This number
can be reached only if the entire stream of operations within T can be used. We have
also ignored the overhead in logic delay necessary to implement the pipeline registers
and control logic.

Here the dependency restrictions are less strict compared to the case of par-
allelism in space. Usually the result of an instruction is generated before all n stages
have passed, with the last one or two stages used for updating storage. This means
that the result can be used before n operations have taken place, provided that it
is forwarded to the appropriate place. Since results are generated sequentially, they
can be sent one by one to a single ported memory system, provided that the mem-
ory system can handle each request in less than time (i), most likely in a pipelined

fashion. Fortunately this kind of memory is not uncommon. In terms of control flow,

5



the worst case is that branches take effect in time t or n stages after they are issued,
but they do not have to fall on multiples of n operation boundaries. All things taken
into account, it is a little easier to schedule instructions on a pipelined machine than
one with multiple execution units, under the restriction that the memory system is
single ported and pipelined.

2.4 Which Is Better?

It would appear from the above discussion that pipelining is the kind of
parallelism we want. First of all it imposes less restrictions in terms of data and
control dependencies. It interfaces better with single-channel, pipelined memory that
is commonly in use. Perhaps most importantly, it requires little more hardware to
implement. This is particularly important in VLSI implementations. It may plain not
be possible to fit multiple execution units on a single chip. Because of the bandwidth
bottleneck across the pins on a chip, it may be advantageous to fit memory, in the
form of caches, within the chip rather than sacrifice the space for extra processor
hardware. This is in fact one of the chief premise of RISC architecture believers, who
advocate the use of minimal hardware with heavy pipelining to increase performance.

If this is the case, why would one ever want to employ parallelism in space?
The speed of a pipelined processor increases with the number of stages and decreases
with the latency of the slowest stagc. The number of pipe stages cannot be increased
beyond the point where the overhead of implementing an extra stage compared to it's
latency is prohibitive, or where the resulting load/use interlocks and branch delays
become impossible to utilize. The latency of each stage is determined by the hard-
ware technology used, and generally speaking the faster the technology gets the more
expensive and complicated it becomes to design and fabricate. In light of these real
life considerations, at some point it will be less profitable, if not entirely infeasible,
to improve performance using pipelining techniques compared to providing multiple
execution sites.

Some of the features thai make pipelined machines flexible and easy to pro-

gram involve more hardware and complexity than a bare-bones RISC machines. The
technique of forwarding increases the amount of connectivity between pipe stages.
In the interest of object code compatibility and density, some processors provide
automatic interlocking, requiring even more hardware and delay.

The goal of this comparison is to experimentally measure the effectiveness
of the two types of parallelism as used in two particular architectures hypothetically
implemented in a popular technology, namely TTL. We wish to show whether by using
parallelism in space we can implement processors with performance comparable with
or exceeding that of pipelined processors.

6



Since both types of parallelism clearly have their own advantages, we expect
the optimal solution is one that combines the use of both. Accordingly, we do not
claim that either pipelining or multiple execution units is superior or is the preferable
way of designing computers. What we wish to accomplish is to debunk theories which
unfortunately do try to claim just that. The results we find are useful in the future
design of high-performance processors for scientific and engineering operations.

7



3. The Scheme86 Architecture

Scheme86 is an architecture designed at the Artificial Intelligence Laboratory
at MIT [Wu 86]. It was originally intended as a microcoded architecture running a
Scheme interpreter as its control program, executing binary Scheme instructions as
opcodes. However, its data-paths and control structures are general enough that it
will execute user microcode programs of any flavor once they are downloaded into
its writable control store. As a matter of fact, for the purposes of this evaluation,
Scheme86 is not being viewed as a Scheme engine, but rather as a general purpose,
long instruction word machine at the micro-architecture level [Ellis 861. -

This viewpoint is particularly interesting because the Scheme86 architecture
features a distinctive data-path design. The processor incorporates a total of three
.1idependent execution units (EU) which operate simultaneously. Two of these are
general arithmetic units, and differ only in how they are connected to the memory
system. The first of the two is dedicated to performing address computation, while
the other is used solely for data transactions. The third execution unit performs both
a register transfer and a full-word equality test, while its operand paths are used to
read out register contents as addresses and data to the memory system if desired.

Feeding operands to these execution units is a register array with six log-
ical read ports and three logical write ports. I A total of 60 general registers are
available, in addition to several special purpose interface registers. The data-paths in
Scheme86 are tagged, meaning that some portion of a data word is reserved for dy-
namically identifying the type and size of objects. In addition to the three full-word
execution units mentioned above, Scheme86 has a dedicated type code unit capable
of performing two simultaneous type comparisons. In the proposed implementation,
Scheme86 tag fields are 8 bits wide, while the width of the datum fields are 24 bits.
The architecture uses word addressing, giving an address space of 64 megabytes.

Scheme86 is often referred to as a "long instruction word" machine because
of its wide instrictions, which are over 160 bits in length. An instruction has fields
for controlling the register sources and results, arithmetic operations, and various
hardware functions. Every instruction explicitly specifies both the next instruction
and an alternate location to conditionally branch to. The flexibility in the instruction
format allows powerful computation to be performed during a single cycle.

For example, the assembly language instruction shown in Figure 3.1, which

The hardware part is actually a dup.l-ported register file. The additional read

ports are implemented using copies of the array, while two write cycles give the effect
of three write ports.

8



performs two arithmetic operations, a register transfer, a memory operation, two type

checks, ana a conditional jump, can be executed on Scheme86 in one cycle. In this
instruction, EuI generates a memory address, EU2 computes the data, E3 performs
a register transfer, while the type code unit checks if the type of two operands are

integers. A memory write is initiated and execution continues either at an error

handler or the integer add routine.

(state
(EUI (assign ((rog memory-address) (reg stack)) (+ (reg stack) 1)))

(EU2 (assign ((rag memory-write-buffer) (reg C)) (+ (reg A) (rog B))))
(EU3 (assign (rog A) (fetch (reg memory-read-buffer))))

(TCU (test A (reg A) (type fixnum))

(test B (reg B) (type fixnum)))

(store (rog memory-address) (reg memory-write-buffer))

(if (or (type-incorrect? a) (type-incorrect? b))

(goto TYPE-ERROR-HANDLER)

(goto FIXNUM-ADD)))

Figure 3.1 Sample Scheme86 Instruction

The Scheme86 architecture is optimized for low latency memory accesses.
The memory read results are not written into the general register file, but instead are

fed into specialized interface registers (MEMORY-READ-BUFFER). The timing of the proces-

sor cycle is arranged so that register reads are completed just as the content of the
buffer becomes stable, and the arithmetic units may proceed to operate immediately.

The result of the operation is then fed directly into the memory system again as the
next address to use. While memory is being accessed the processor performs internal

book-keeping chores, such as instruction fetching (from a separate control store) and

register updates. This strategy allows a memory transaction to complete and the

result be made available for use in the cycle immediately following the one issuing
the transaction. Because of the overlap, it is arguable whether Scheme86 makes use
of any pipelining techniques. Even if we were to consider this approach pipelining,

the pipe length is no more than two deep, no possibility of delay slots or interlocks
exists, and the latency of each pipe stage is not the same, something very different
from classical pipelined machines such as Spectrum.

The main advantage of this approach is that the memory-to-memory latency
is kept to an absolute minimum. For example, a pointer fetched from memory can be
incremented and immediately used as a read address after one ALU delay. Usage similar

9



to this occurs frequently in modern, structured and object-oriented programming
languages, especially in scientific and engineering applications. Many LISP programs
spend much of the time doing CAR-CDR chaining, 2 and C programs often make extensive
use of references to data in structures organized as linked lists. In general, all indirect
data accesses, including basic system operations like variable references off of stack
frames, benefit from this approach.

The drawback of this approach is that the processor cycle time is now linked
to memory speed. In fact, assuming that the processor can be designed faster than
memory, then the minimum cycle length of Scheme86 is the latency of memory plus
the delay through its arithmetic unit along with some register delays. This was not a
concern in the case of Scheme86 's, because the architecture was designed with high
speed memory in mind. In proposed implementations, fast static CMOS memory will
be used for the entire memory system to keep the latency to less than 100 nanoseconds.
As it turned out, the processor's internal operation will be the bottleneck. All in all,
Scheme86 machines are expected to run at cycle times around 150 nanoseconds, given
the current plans for implementation in Advanced Schottky TTL technology.

Scheme86 represented a collection of ideas but was never a very precisely
defined architecture. For the purposes of simulation in this experiment, we closely
modeled the description of the machine as specified in [Wu 86), which included a
detailed description of the architecture and a proposed TTL design. Since then im-
plementation plans have evolved and many optimizations were suggested. These were
not accounted for in this comparison. As it turned out, the optimizations would not
have greatly affected the figures collected in our particular set of experiments.

2 An informative study performed recently at MIT showed that during the

compilation of a Scheme program, CAt and CDR were the most frequently called prim-

itives, and each alone out-numbered the frequency of arithmetic instructions by an

order of magnitude.

10



4. Spectrum

The Spectrum architecture is an extension of the Reduced Instruction Set
Computer (RISC) design principles. It shares with RISC's the ideas of a direct imple-
mentation of the instruction set, a small number of fixed size instructions, a limited
number of addressing modes, reduced memory access through the use of load/store
instructions, and visible pipeline delays in the form of branch delay slots and memory
access interlocks. The Spectrum architecture is well documented in literature [HP

861. Here we will focus on some points that are particularly interesting with respect
to this experiment.

The first item of interest is the notion of pipelined implementation. The
Spectrum instruction set is designed to enable and encourage hardware implemen-
tations which divide the work of each instruction into multiple pipe stages. The
exact number and function of each stage depends largely on the implementation, but
roughly speaking three distinct phases can be identified. They are the instruction
fetch/register read phase, the execution phase, and the write phase. In a pipelined
implementation with this organization, the machine would simultaneously be oper-
ating on three instructions, delegating to each pipe stage the appropriate portion of
each. This approach has the problem that an instruction starts executing before the
previous one can produce a result or cause an effect. This is problematic when the
first instruction is a branch. Spectrum solves the problem by using delayed branches,
specifying that the instruction following a branch is always executed. Any side effects
caused by the second instruction can be suppressed. The time spent in its execution,
however, cannot be reclaimed. Because of the existence of these branches the instruc-
tions in the pipeline might not always be doing useful work. When this is the case
the effective throughput is less than the theoretical maximum, which in this case is
three times the reciprocal of each instruction's latency.

Pipelining also affects the timing of memory references. Referring to the
above pipe structure and also to figure 4.1, a memory transaction start at the end
of the execution phase when the effective address is computed. At that point, the
next instruction's execution phase is just starting. It is thus very difficult to finish
the transaction in time for this instruction to make use of the result. Depending on
the ratio of the latency of each pipe stage to the latency of the memory system, the
memory result may not be used until cycles (t + 2), (t + 3), or even later. The cycles
in between are called load/use interlocks. For example, a 125 nanosecond Spectrum
processor has one load/use interlock when interfaced with a 125 nanosecond memory
system, while a 62.5 nanosecond version will have two such interlocks when wired to

11



t I I I E I W I I: Instruction/Register Fetch phase

t+1 I I I E I V I E: Execution phase

t+2 I I I E I V I W: Write (Commit) phase

I t lt+ilt+2l Effective Throughput

Figure 4.1 A Hypothetical Spectrum Pipeline

the same memory. 1 Interlock cycles may be filled by instructions not depending on
the completion of pending memory transactions. However, the Spectrum architecture
specifies that null cycles are inserted automatically by the hardware when an interlock
is detected and the programmer is not explicitly making use of them.

The effectiveness of this approach depends largely on the memory reference
pattern of the program. If many independent references need to be made, such as
when registers are unconditionally restored from the stack when exiting a procedure
invoked with a callee-saves convention, the processor makes good use of the memory
system by being able to start requests as quickly as the memory system can receive
them. 2 However, when dealing with memory references that are chronologically
dependent, this mechanism slows things down because of the extra cycles involved.
The results of our experiments seem to indicate that the effect of this problem is
minimal when the number of interlocks per read is less than two.

Another noteworthy aspect of the Spectrum architecture is the sole use of
load/store instructions for accessing memory. Memory results can only be loaded
into the general registers, which also serve as the sole source of data to memory. One
implication of this feature is that effective address calculations are never implicit in
arithmetic instructions. To add two numbers in memory, for example, we need two
load instructions to fetch the operands, one to perform the add, and yet another to
write the result out. This strategy helps to minimize the cycle time of simple instruc-

1 Here we assume that caching and virtual address translation, if needed, are

performed as part of the memory system.
2 If the memory latency to processor pipe speed ratio is over 2 (more than

1 load/use interlock per read), the memory system must be internally pipelined to

allow the processor to issue references in every cycle.

12



tions. In the optimal case where the programmer or compiler is effective in keeping
operands in registers rather than in memory, faster cycles contribute to shorter com-
putation time. In cases where memory operations are required, Spectrum provides an
adequate mix of addressing modes, including ones that modify registers, so that most
effective address computation can be done entirely within load/store instructions.

The Spectrum implementation commercially available now is known as the
HP9000/840 computer. Similar to Scheme86's proposed implementation, the 840
(internally known as the Indigo) is implemented using standard TTL technology. It
has a three stage pipe. Each stage has a latency of 125 nanoseconds. It is debatable
whether this number is suitable as a guideline to the speed of this architecture in
TTL. It is often claimed that issues like virtual memory, reliability, and commercial
requirements slowed this processor down. A Spectrum processor built to academic
standards and requirements and does not have to wait for cache and virtual memory
operation will probably run faster.

13



5. Workload Selection

For the results of this experiment to be meaningful, we were very concerned
about isolating all extraneous factors of the system we were measuring, that is, the
processor architecture. To this end we chose to perform the simulation using small
kernel programs, hand-coded in each architecture's native instruction set.

5.1 Rationale and Ramifications

The reasons for this choice are easy to explain. We could not simply cal-
culate the performance of these architectures using standard instruction mixes. The
instruction set of these machines are so different from each other and also from any
generic processor that no choice of an instruction mix would have been fair and intu-
itive. The performance of these machines are also highly dependent on the dynamic
behavior of the programs, in particular the way memory is accessed. Using trace data
would also be problematic because of the difference in the two instruction sets.

We wanted to be careful not to include factors imposed by the implementa-
tion of high-level languages. Hence it was impossible to use large software applications
as our benchmark, since they are typically written in high-level languages and the
task of rewriting them in assembly code would be prohibitive. By keeping the size
and number of the kernels small, we were able to optimize the implementation as seen
fit on each machine. This was all done by hand-coding, under the assumption that
humans would approximate and most probably exceed the performance of the best
compilers. The small size of the code also made their behavior very tractable, and
any results obtained could easily be explained by reviewing the structure of the code.
It was also possible to have multiple experts review some of the kernels to make sure
that they were indeed reasonably optimized implementations. I This would not have
been feasible with real application code.

This particular choice led to some concern that our experiments did not
account for the reality that most of the actual programs that machines built with
these architectures will eventually run are going to be in the form of compiled code.
Our results would be meaningless if it were substantially more difficult to write a
compiler for one architecture than the other. Fortunately, there are existence proofs
of excellent compilers for both types of architecture [Coutant 86][Johnson 861[Ellis
86]. In fact, the problem of optimizing for parallelism in time (Spectrum) versus
parallelism in space (Scheme86) are very similar in nature, and progress in one area
is readily usable in the other [Ellis 86].

1 The benchmarks for Spectrum were reviewed by Hewlett Packard and certi-
fied to be efficient implementations of the algorithms.

14



Another factor in defense of our choice is that we had a very specific applica-
tion of these architectures in mind, namely the area of high performance scientific and
engineering computation. It was thus possible to select a set of benchmarks that is
truly representative of the kind of programs of interest. This was also the reason why
we decided not to use the industry's standard set of kernels in favor of a hand-picked
collection of what we considered common, important, and relevant algorithms. We
were particularly concerned with processor performance, so the fact that kernels do
not typically make use of I/O didnot bother us.

Still, the choice of the appropriate benchmark kernels is a an ill-understood
"black art". The set we came up with included a two-space LISP garbage collector, an
s-expression pattern matcher, an arbitrary-precision arithmetic package (Bignums),
and an integer-FFT routine. Our choices were influenced by many criteria. We
wanted both symbolically and numerically oriented code to be represented. Each
kernel had to be the generalization of a larger class of algorithms. The programs
should be the vital parts of actual applications. Finally, these programs ought to
make extensive use of low-level mechanisms, such as procedure calling, dispatching,
and dynamic typing, to name a few. We also tried to ensure that the data structures
used contained a balanced mix of both dynamically and statically allocated data with
and without manifest types; we included kernels that operate on both linked lists of
union structures and simple arrays of integers.

Before hand-coding each of these benchmarks, we implemented each algo-
rithm in either C, Scheme, or sometimes both to make sure that they were correct.
In addition they provided a control with which to verify whether the kernels produced
the correct answers. The high-level language implementations also served nicely as
documentation to the more obscure, highly "bummed" machine code.

On Spectrum, these kernels were carefully coded to avoid causing load/use
interlocks or branch delays. Because the code has to run efficiently on hypothetical
Spectrum's with a variable number of interlock slots, we optimized the code for as
many load/use delay cycles as we could without sacrificing performance in other ways.
The code for Scheme86 followed the Spectrum implementation as closely as possible,
although sometimes that meant a small sacrifice in speed. For example, although
doing post-incrementing in one cycle required the use of more resources (execution
units) than doing pre-incrementing on Scheme86 , we stuck to the former because the
code was more natural that way on Spectrum , which can do both at the same speed.

5.2 The Garbage Collector

The garbage collector tested was an assembly language implementation of the

15



one in the C version of the MIT Scheme system. It was based on the Minsky-Fenichel-
Yochelson algorithm [FenYoc 69], with extensions to handle statically determined
stable regions known as constant space and pure space. This program made heavy
use of low level processor functions, such as pointer manipulation, memory block
move, n-way dispatching, equality tests, and magnitude comparisons. The algorithm
is basically a breath-first tree traversal useful not only for storage reclamation and
compaction, but also for summarizing the state of complicated networks represented
as tree structures. As a test case we garbage collected the Scheme runtime system,
which contained about half a megabyte of reclaimable data. 2

Since Scheme86 was designed with LISP implementations in mind, it was to
no onels surprise that given the extensive tag-support in Scheme86 's architecture,
garbage collection was the benchmark it fared best on. However, we did some cal-
culations to factor this advantage out and the results then becomes consistent with
those obtained in the other cases.

5.3 The Pattern Matcher

The algorithm for the pattern matcher was taken from [Abelson 85]. Origi-
nally written in Scheme, it formed part of a query language system. Pattern matching
is a simplified case of unification which in turn is the basis of logic programming sys-
tems such as Prolog. The program was part recursive and part iterative, and in
our hand-coded implementation a caller-saves convention was used to implement pro-
cedure calls. Besides exercising the procedure call mechanism of the architectures,
it performed a recursive tree-walk down its input parameters to make heavy use of
CAR-CDR chaining. Part of the algorithm involved allocating and searching through
association lists. This resembled the deep search approach for variable lookup used in
high-level language compilers and interpreters. This benchmark also involved doing
tagging operations. The input list and pattern we used contained about 100 elements,
with parts up to 10 levels deep.

5.4 Arbitrary Precision Arithmetic (Bignum)

The arbitrary precision integer arithmetic package, often called the Bignum
package, was based on the "classical" algorithms from Knuth's work [Knuth 691.
We chose to test two of the operators, namely addition (which is essentially the
same as subtraction) and multiplication, knowing that the code for division would
be too hard to code, analyze or debug. To do Bignum addition we used loops that

2 In the absence of caching and virtual memory, the runtime of this algorithm

is independent of the size of the address space or the amount of gar,agc, and dctpcnds
purely on the amount of active data.

16



iterate through the two operand arrays of digits, adding corresponding elements,
keeping track of the propagating carry, and writing the result to a third array. This
is very similar to another popular benchmark for scientific computation: the vector
inner product. Bignum multiplication is just two nested loops doing almost the same
kinds of operations. Bignum arithmetic is frequently found in algebraic simplification
systems and data encryption applications.

The radix size chosen for our package was 24 bits, given that it is Scheme86's
proposed word size. In an attempt not to handicap Spectrum's performance using
an unnatural word length, 3 we added 24 bit arithmetic instructions to the Spectrum
simulator. The semantics of these instructions followed those of their 32 bit coun-
terparts as much as possible. This allowed us to ignore a particular implementation
detail of the two architectures and therefore to compare the results for this benchmark
directly. Note that since Scheme86 's cycle time is theoretically limited by memory
and address computation delays rather than data calculation latency, increasing the
word size to 32 bits (without a corresponding change in address width) would not
affect the worst case cycle time.

Another unspecified instruction added to both architectures is.a 24 bit mul-
tiply. We felt that actual implementations of these architectures, if used for high-end
scientific and engineering applications, would probably incorporate a multiplier in
hardware. These high-speed devices are readily available in VLSI implementation
nowadays. The overhead incurred by software emulation of its function would be so
high that the result obtained in this experiment would be skewed. This instruction
was also useful for the FFT benchmark.

A 24 bit multiplication generates 48 bits of result. Since both machines are
in principle three-bus architectures, 4 the destination of the top 24 bits of the product
cannot be independently specified. We decided that on both architectures, it would
go into some predefined register. This is consistent with the way similar problems are
handled in these architectures. 5

For addition the operands contain more than 35 digits of 24 bits each. We
tested multiplication with a 20 digit Bignum.

5.5 Fast Fourier Transform (FFT)

The FFT algorithm needs no introduction. It is a classic example of a com-
putation intensive scientific program. Here we chose to do integer FFT's, because

3 Spectrum instructions use 32 bit arithmetic.
4 This is only true of a single execution unit in Scheme86
5 For example, the ADDIL instruction on Spectrum always puts its result in

register one.

17



we did not want to allow floating point performance to affect our conclusions about
the processor's architecture. The particular implementation we used came originally
from [Gabriel 86], but was modified to work with integers using techniques outlined

in [Burrus 85]. Again 24-bit integers were chosen, and the 24-bit multiply instruction
was used. A 1024 element FFT was found to cost an amount of time in the same
order of magnitude as the other benchmarks, and was thus chosen to be included in
our main set of results. Other array sizes provided handy examples for analyzing the
effect of different data working set sizes when doing cache effectiveness studies.

18



6. System Parameters

For our results to be meaningful, a proper choice of system parameters must
be made. Our decision to use simulation greatly increased the freedom in making our
choices. However, the problem remained difficult because of our desire to measure
the relatively abstract notion of "processor architecture". Great care was taken to
minimize the introduction of extraneous factors. In particular, implementation de-
pendent parameters must not enter into the final results. The problem was further
complicated by the fact that the architectures under test were designed with very
different purposes in mind.

6.1 Cycle Length (Cycle Time)

The first problem we faced was the assignment of cycle lengths to both ma-
chines. Although the simulators faithfully and accurately produced cycle counts for
each benchmark, the results would be meaningless if we did not have a notion of how
long each cycle would take, at least in a relative sense, on real machines.

Reasonable estimates for the cycle time can be made because we restricted
our experiment to that of measuring the architectures assuming that that they were
implemented in standard TTL. Either proposed or actual implementations of both
machines in this technology were available as a guideline.

Yet the problem was not that simple. The two architectures were originally
designed for very different reasons, and they greatly affected implementation strat-
egy. Scheme86 is an academic processor designed to run a very special program: the
Scheme interpreter. In many ways reliability and flexibility were sacrificed in favor of
a simplistic, speedy design. Spectrum, on the other hand, is a general purpose com-
mercial processor designed to work with virtual storage and time sharing operating
systems.

The solution we chose was quite unique. First, we used cycle time estimates
to decide which was the faster processor. Then, with that as our control, we speeded
up the other processor until it ran as fast as the first, as indicated by the runtime
of the kernels. We were then able to examine the resulting cycle time of the second
processor to see whether it was possible to implement it using the control processor's
technology. This approach was ideal because we were interested not solely in deciding
which processor was empirically faster, but also their relative characteristics and their
suitability for future implementation in various technologies.

As it turned out, Scheme86 's expected cycle time of 150 nanoseconds made it
the faster of the two machines. It was thus chosen as the control processor. Because
of the pipelined approach Spectrum uses to access memory, given a fixed memory

19



speed (see section below) it was not possible to continuously vary its cycle time in
the interest of keeping the pipe stages balanced. In addition, the processor cycle

to memory cycle length ratio determined the number of load/use delays one must

insert. With the memory speed we chose (around 100 nanoseconds) it was convenient
to test Spectrum at cycle times of 125 and 62.5 nanoseconds. The former number

was actually close to the actual cycle time of an available Spectrum implementation,

making the choice additionally interesting.

This method of analysis makes sense of course only because our interest was
in measuring hypothetical implementations of architectures. It would be extremely
faulty when used to infer the merits of the actual machines.

6.2 Memory Speed

Scheme86 and Spectrum were originally designed to be interfaced to two very
different kinds of memory systems. The former specified the use of high speed, uni-
formly organized memory, while the latter expected a hierarchical structure composed
of caches and layers of virtual address translation. Since memory speed is a crucial
factor in determining runtime, but was ncrt a parameter of our system-under-test

(processor), it was important that we used a uniform memory speed for both proces-
sors. We also did not want the effective memory speed to in any way be probabilistic,
since that would make our result depend even more on our choice of workload. A flat
memory system was thus chosen.

Since our concern was the area of high-performance applications, it was rea-
sonable to assume that the memory speed would be high. Given the memory chip

technology at the time of our experiments, we expected such a memory, consisting of
tens of megabytes of real storage, would have a latency of around 100 nanoseconds. 1

This was in fact the kind of memory system Scheme86 expected to have. On the other
hand, this also corresponded nicely to the latency Spectrum 's memory would have if

its cache were 100% effective, for example if its size was larger than the working set
of data of the problem it was solving.

As discussed earlier, the particular choice of memory speed affected our as-
signment of cycle times for the machines. As a result of the number we picked,
Scheme86's cycle time was fixed at 150 nanoseconds, while we decided to test Spec-

trum at 125 and 62.5 nanoseconds.

This number included degradation due to fanout, buffering, reliability mar-

gins, etc. The chips we had in mind were 64K static RAM chips with an access time

of 45 nanoseconds. At the time of writing a 25 nanosecond version of this chip is

available.

20



6.3 Instruction Fetch Technology

Scheme86 uses wide instructions that are fetched from a writable control
store separate from main memory, and Spectrum fetches relative narrow instructions
through an I-cache sourced by the same memory used to hold data. These two
approaches makes the available instruction fetch bandwidth of the two architectures
potentially different. Considering that Scheme86 was designed to run only the Scheme
interpreter, and Spectrum was from the outset a general purpose machine, these
differences reflect more the requirements of the architectures' proposed application,
rather than the architects' intention if the sole purpose was performance on large
scientific applications. It is conceivable to outfit Scheme86 with a Spectrum like I-
cache to make it feasible for large programs, or vice versa to equip Spectrum with a
separate control store to optimize it for a special piece of code. For the comparison
of the two architecture to be meaningful, this difference must be factored out.

Because of the fact that Scheme86 instructions are so much wider in width,
it would on the surface seem like it instruction bandwidth requirement is much more
than that of Spectrum . If this were the case, it would clearly be unreasonable to
factor instruction fetching out of our timing, for it would represent a major deficiency
of Scheme86 's architecture, and it wouldn't even be clear whether it were possible
to construct an adequately fast and large instruction unit for this architecture.

Fortunately, this is in fact not the case. Since both machines in principle use
hard-wired instruction, or, in other words, direct implementation of the instruction
set, the bit rate of instructions flowing into the processor is governed only by how
much work gets done per unit time. The more number of bits flow into the machine,
the more work can be specified and performed. A wider instruction simply means that
more semantic information gets transferred per chunk. In short, since the number
of bits needed to specify and control the execution of an operation is constant, the
instruction bandwidth is dependent only on the speed at which the operation is
performed, and has little to do with instruction width. The faster the machine, the
higher the required instruction bandwidth must be.

This optimistic and theoretical view of the situation needs to be qualified.
Because the size of instructions are fixed, and the flow of bits is discrete in time,
parts of an instruction may be wasted if the amount of work to be perform at the
instance requires less than the full word to specify. Because Scheme86 has to work
with larger chunks of bits per unit time, there is more of a chance that bits will be
wasted. Furthermore, the Spectrum instructinn f,-rrnat relies much more on decoding
than Scheme86's, so it requires less number of bits to encode the same instruction.
All in all, we expect Scheme86 's instruction bandwidth to be somewhat higher than

21



Spectrum's. However, the general feeling with people we consulted with seem to
indicate that with currently available instruction fetching technology, this difference
is insignificant, and may be safely ignored.

Given the above assumption, we proceeded to unify the time in the two
simulators we attribute to instruction fetching. To simplify our analysis, this was
set to zero. In other words, we assumed that the two machines were equipped large
enough instruction caches.

22



7. Simulation

Simulation, rather than analysis or actual timings, was chosen as the ba-
sic method for these experiments. This choice was made not only to make tile ex-
periments much easier to conduct, but was actually the only alternative given the
requirements of this comparison.

7.1 Rationale

Our goal was to compare architectures, not implementations. As a result
actual machines cannot be used for timing because that would certainly introduce
implementation dependent factors. For example, on the only Spectrum currently
available I the processor always interlocks and hence takes two cycles when the
instruction following a memory read request involves a register write. Not only is
this deficiency not specified in the architecture, it is not expected to be present on
future Spectrum machines. This problem was obviously not modeled when designing
the simulator.

At least one of the architectures we compared has not been implemented.
A proposed design and an implementation plan of Scheme86 were completed in the
summer of 1986, but construction never commenced. Working machines using the
Scheme86 architecture are not expected to exist until late 1987. Spectrum machines
with cycle times fast enough to match Scheme86's performance are also not expected
to appear until that time. This ruled out the possibility of measuring real systems.

Some of the system parameters we chose to use were not realizable, at least at
the time of the experiments. We wanted the processors to run on a fast, flat memory
system with no caching. Although Scheme86 was designed with such a memory in
mind, all proposed Spectrum implementations at the performance level of interest
has caching and virtual memory built in. The only way to model the memory we
want would have been to use a Spectrum with an infinitely sized data cache. This is
clearly not feasible except in simulation. We wanted instruction fetching to cost no
time. This required that we use an instruction cache of an extremely large size. This
was very easily accomplished in the simulators.

We made some necessary alterations to the published architectures. To im-
plement the FFT benchmark it was necessary to include a 24 bit multiplier on both
machines. To be comparable with Scheme86, Spectrum had to use 24 bit arithmetic
when running the Bignum package. These changes were very straightforward to im-
plement in the simulators.

Running the kernels in simulators, we avoided any overhead that may be

1 Hewlett Packard Series 9000 Model 840

23



incurred by the operating system. Furthermore no artifacts associated with hardware
or software monitors were introduced. Every instruction executed in the simulator
directly contributed to performing the workload. Some of our kernels finished in quite
a short time, and the introduction of these external factors would have skewed the
results in unacceptable ways.

There was no need to introduce random behavior into the simulators. Each
kernel program was run as the single process, with no operating system intervention.
The programs were chosen to involve no I/O, and consisted only of processor/memory
interactions. The memory system modeled used no caching or virtual storage. The net
result of all these was that the behavior of the simulators was completely deterministic.
Accordingly only one set of results need to be collected. The need for repetition was
eliminated. This would not have been possible if we had tried to measure real systems.

The simulators provided additional data on useful metrics such as cache hit
rates (had there been caches) and instruction mix statistics, trace data, and hardware
utilization. Some of these numbers would have been extremely expensive to collect in
real systems. Furthermore the simulators were instrumented with features that made
debugging the kernels much easier than it would have been on a real machine.

7.2 Approach

Except perhaps for the FFT kernel, the benchmark programs we chose were
not meant to be stand-alone programs. For example, the garbage collector and
Bignum package most frequently occur as components of a LISP system. The pat-
tern matcher was taken from a query system. These programs require a non-trivial
amount of computation to set up their input.

It is chiefly because of this reason that we chose to embed the simulator as
a primitive function or a subroutine other programs. The host programs, all written
in C, ran natively on the computer performing the simulation. Instead of calling the
kernel directly, the host program invoked the simulator, which then took control and
started executing instructions for the machine simulated. The simulated code shared
the hosts' data structures in their data space.

In the case of Spectrum, the garbage collector and pattern matcher used the
C version of the MIT Scheme system as the host. The simulator itself was also written
in C. Two tiny C programs which were nothing more than number readers and printers
served as the host program for the rest of the benchmarks. The Spectrum machine
code that makes up the benchmark suite were compiled into the host programs'
executable images. As a consequent of this decision, the simulator ran only on real
Spectrum hardware. This restriction can probably be lifted given some work.

24



The Spectrum simulator modeled the architecture at the instruction level.
Instead of directly modeling the behavior of hardware parts in a hypothetical imple-
mentation of the architecture, procedures and C operators abstractly performed the
register transfer operations specified by each instruction. It was ironic to discover
that writing such a simulator felt very similar to writing microcode for Spectrum,
except of course that Spectrum was never intended to have microcode.

To be compatible and comparable with Scheme86, 24-bit arithmetic instruc-
tions not specified in the original architecture had to be implemented. The semantics
of these instructions closely followed their 32 bit counterparts on a real Spectrum
machine. The shorter word length made the instructions a lot easier to implement in
the simulator in C. In addition, we added multiply instructions to Spectrum. These
delivered 48 bit signed and unsigned products, the top 24 bits of which always resides
in register one.

The Scheme86 simulator ran under the Scheme system. Scheme procedures
and data structures were used to set up input. A Scheme86 assembler was written in
Scheme. Scheme86 microcode were stored in a C array, and thus were dynamically
reloadable. The Scheme86 simulator was simply a Scheme primitive, which when
invoked would fetch instructions from this array.

Also written in C, the simulator simulated Scheme86 at the hardware func-
tional level. Though not a logic or gate level simulator, each of its modules modeled a
hardware subsystem in the proposed implementation, and each procedure performed
the function of some hardware part. In every cycle, the procedures representing each
subsystem were always invoked. Their behavior was specified by the encoding of the
current micro-instruction. This was not true in the Spectrum simulator, in which,
through the instruction dispatch mechanism, only the relevant handlers were used
each cycle.

Scheme86 and the machines Scheme ran on (MC68020, Spectrum ) use dif-
ferent addressing conventions. The former was designed to use word-addresses, while
the latter are byte-addressed machines. Because of the need for Scheme86 to share
Scheme's heap, all the memory transaction functions in the simulator must do address
translations. This turned out to be hard to do efficiently because of the existence of
untyped non-pointer object in Scheme. The actual conversion mechanism chosen was
adequate for our set of benchmarks, but would not work in general. Consistency
checks were put in to make sure that no odd cases arose. Since this problem does not
exist in real life, the cost of doing the conversion was of course not accounted for in
the simulation.

25



7.3 Correctness

Great care was taken to ensure the correctness of the simulators. Both
simulators passed the ultimate test: they flawlessly executed all the benchmarks and
gave correct results. Small, tractable examples were also used to both validate the
simulators' operation and verify that any data collected were accurate.

The simulators used discrete time models. The smallest unit of time was a
cycle, in which one instruction completed. 2 The simulators counted cycles. It was
the users' job to assign the corresponding amount of time. Because of this simplistic
model, accuracy was reasonably assured.

In the case of Scheme86, simulation was done close to the hardware level.
Each module in the simulator corresponded to an actual hardware subsystem in the
proposed implementation, and each procedure modeled an actual piece of hardware.
Many debugging hooks were put in to ensure that each subsystem independently
produced the correct result.

The Spectrum simulator, on the other hand, modeled the functional behavior
of the instruction set rather than mimicked the hardware. Again the design was
modular, with abstract functions used throughout to implement common operations.
Not only did this approach ensure a proper implementation for all instructions, it
also made adding instrumentation trivial.

All the important metrics measured by the simulators were collected using
multiple means. For example, we kept track of the number of times each instruction
was used, along with a total count of how many instructions were executed, and made
sure the two numbers matched. Instrumentation in the memory system counted the
number of memory references, and this had to match the number of load and store
instructions issued.

All in all, we believe that the simulation faithfully modeled the characteristics
of the architectures and the data collected were accurate.

Both machines had single cycle instructions

26



8. Peripheral Experiments

Our choice to use simulation opened up opportunities to do all kinds of
experiments and data collection. Here we describe some of the various tests we
performed on the architectures. The results for these tests are reported in the next
chapter.

S.1 Spectrum Load/Use Effectiveness

We were interested in knowing whether a lot of time was wasted on Spectrum
waiting for memory to return. In order to find out, the Spectrum simulator was
instrumented to separately tabulate unused interlock slots. We ran the kernels at
one, two, and three load/use delays per memory read. By doing so we came up with
a dynamic measure of how effective these slots can be scheduled.

8.2 Scheme86 Execution Unit Usage

We suspected that utilization of Scheme86 's execution unit would not be
high. To prove our theory, in every instruction the simulator marked the execution
units used. The number of active cycles for each execution unit compared to the total
number of cycles ran through the machine gave us an idea of the percentage of time
Scheme86 was idle.

8.3 The Cost of Tags

Unlike Scheme86, Spectrum did not come with tag extraction and manipu-
lation instructions. To study how much this costed the architecture in running our
kernels, we examined the instruction mix figures collected by the simulator. The
kernels were written so that all bit extract and deposit operations dealt with tags, so
their frequency gave us a good indication of how often we had to deal with tagging. By
factoring out these cycles in the runtime calculation, we estimated the performance

of Spectrum if it had tag support.

8.4 What If We Had a Cache?

Although our major experiments were performed assuming a flat memory
system, we simulated the action of caches to find out how they would perform. A
number of set-associative caches were tried, using different total sizes and line sizes.
We also measured the effect when instructions were cached as well as data.

8.5 What If Spectrum Had Multiple Execution Units?

We changed the Spectrum simulator so that it could execute two instructions
in every cycle, applying the constraint that the second cannot make use of the result

27



of the first. However, we allowed both instructions to simultaneously issue memory
references. This test gave us estimates of the speedup possible if Spectrum had
multiple execution units.

28



9. Results and Analysis

Experiments were conducted using the methods and parameters described
in the previous chapters. Extensive use of script files made the experiments quick
to run and easy to repeat. In the following discussion, we shall refer to Spectrum
running at 125 nanosecond as the Spectrum125 and the same architecture running at
62.5 nanoseconds as the Spectrum625.

9.1 Runtime Figures

The most important result is the figures showing the speed of the processors.
This information is summarized in Figure 8.1. As is evident from the results, Spec-

trum requires a cycle time of 62.5 nanoseconds to compare favorably with a Scheme86
implemented using 150 nanosecond technology.

Unit: 10- 3s Scheme86 Spectrum
Test (150 ns) (125 ns) (62.5 ns)

Garbage Collection 39.97 99.06 56.24
Pattern Match 0.958 1.672 1.252

Bignurn Addition 0.01910 0.03175 0.01844
Bignum Multiplication 0.256 0.423 0.236

FFT (1024) 10.21 20.28 10.14

Figure 9.1 Raw runtimes of the benchmarks at different cycle times.

The results obtained were consistent with what was expected. We know that

Scheme86 has three times as many execution units and five times the instruction
width as Spectrum, and consequently we expect that Spectrum needs to run over
three times as fast to be as powerful. The fact that empirical data show Scheme86

to be only 2.4 times faster (using Spectrum as base) proves our claim that it is more

flexible to make use of parallelism gained by pipelining than by multiple execution
units. Our numbers also show that any Scheme86 execution unit is, on the average,

idle 33% of the time. This is consistent with the performance measured.

9.2 Tag Handling

Figures on the mix of instruction types dynamically encountered during ex-
ecution of these benchmarks indicate that the absence of tag handling hardware on
Spectrum mildly affected its performance on symbolic code. In the garbage collector

tag manipulation accounted for 23% of the elapsed cycles. There the type tag were

examined and dispatched on. In the pattern matcher 16% of the time was spent

29



masking tags to prepare valid pointers, with an additional 8% used to assemble the
correct segment address on Spectrum. In these benchmarks the tagging scheme fol-
lowed the one used by the MIT CScheme implementation which puts an 8 bit type in
the top byte of a pointer. A better encoding mechanism may reduce the cost of tag
extraction.

To estimate the performance of a hypothetical Spectrum extension that fea-
tured tag handling hardware, we can subtract cycles attributed to tag manipulation
from our runtime calculations. Applying this rule, Spectrum125 required 76.3 ms to
complete the GC. Spectrum625 used 43.30 ms, as compared to 39.97 ms on Scheme86.
In the case of the pattern matcher, the numbers were 1.27, 0.91 and 0.96. No tag
manipulation was required on the other kernels. The reader is reminded that since
tag handling instructions were often used to fill delay slots, some of the time originally
lost do tagging operations may not be reclaimable even with hardware support. In
other words, the Spectrum numbers represent a lower bound on its runtime.

Even allowing for the lack of tag handling hardware on Spectrum, the results
still show that it would require a 62.5 ns Spectrum to provide comparable performance
to Scheme86.

9.3 Load/Use Interlocks

On the Spectrum architecture with only one load/use interlock after each

load instruction (125 nas), almost all such slots can be scheduled for useful work. Less
than 2% of the time was spent in interlocked cycles, except for Bignum addition, in
which around 9% of the cycles were wasted. With two slots per load the range of idle
cycles resulting from an interlock delay is from 0% to 20%. When the number of slots
was at 3, the maximum further increased to 30%. The minimum, however, stayed at
0%. 1

These number show that making use of load/use interlocks is not a problem
when there are less than three per load. The large range in the percentages suggests
that these problem is highly application dependent.

9.4 Cache Performance

Our hypothetical cache experiments show that caches of the kind and size
currently planned for Spectrum machines are effective. In cases where the working set

I The so-called "one write port" problem on some production Spectrum ma-

chines was not present in the simulator. This meant that any instruction can be used
to fill interlocks.

30



of memory is larger than the cache, 2 the hit rate is near 80%. When the working set
is small the hit rate is over 95%. This justifies our original assumption that processors
of this type tend to have high speed and low latency memory. The cache performed
well even when instructions were also fetched from the unit, proving that instruction
fetching would indeed take little time even in real implementations.

9.5 Concluding Remarks

The remaining question is whether it is easier to build a 62.5 nanosecond
Spectrum than a 150 nanosecond Scheme86. The existing implementations do not
provide reliable clucs to answer this question, mainly because they are not designed

solely with speed in mind. Many other factors, such as reliability, backward compati-
bility, and cost effectiveness influence the final product. In the case of Scheme86, time
and unsophisticated technology impaired its expected speed. However, judging from
the results, it is fair to say that space-parallelism is quite useful and can be employed
to speed up processors without going to the expense of providing fast hardware tech-
nology. It can be used effectively when higher speed logic implementations are either
unattainable or undesirable.

One noteworthy point is that our results are obtained at some particular
memory speed and logic family chosen because they represent what is expected to
be commonplace in the kind of technical.computing environment we are interested
in. Because Spectrum encourages pipelined implementations and memory speed does
not govern its cycle time, its performance is more consistent across implementation
technologies than Scheme86 . On the other hand Scheme86, as currently designed,
will not do very well when interfaced with slow memory. It is also not very suitable
for VLSI implementation because of the amount of logic and connectivity it requires.
Speculation is that Scheme86 would compare well with Spectrum implemented in
ECL and TTL, and Spectrum will fare much better with VLSI technology.

Spectrum was originally designed as a scalable architecture that allows im-
plementations at all performance levels. The primary mechanisms for varying per-
formance are different logic families and memory speeds. The first factor is limited
by physical device and signal propagation delays, along with fabrication constraints.
The second parameter can be altered by the use of large and effective caches. For
very high end applications, even combining these two measures may not be adequate
to produce a fast enough machine. As specified now, Spectrum provides few hooks
to promote space-parallelism. Since space-parallelism can be an effective means of
raising performance, this problem is worth further research.

2 GC of a 1 Mb heap using a 64Kb cache, and a 4096 element FFT with a 16

Kb cache

31



As a test of this theory we simulated a Spectrum implementation that con-
tained two execution units. In this hypothetical machine two instructions can be
executed each cycle when there are no register usage conflicts. 3 Without any re-
coding to make use of the space-parallelism gained, the speed improvements varied
from 35% (garbage collection) to 60% (all others). It is reasonable to expect that
with careful code generation, a better speedup can be sustained.

3 In this test we allowed multiple memory transactions in the same cycle.

32



10. Conclusions and Future Work

We performed experiments to measure the relative performance of Scheme86
and Spectrum. We found that Scheme86 was very competitive in performance to
Spectrum, showing that using parallelism in space by providing multiple execution
units can be a feasible method of designing high performance processors that is in-
terfaced to high speed memory. We also showed that pipelined machine are more
flexible to program and can be improved when parallelism in space is also exploited.

10.1 What We Did Wrong

In choosing to use hand-coded kernels as our workload, we severely limited
the number of test cases we could use. More time and effort would have allowed us
to come up with a larger assortment of tests to make our results more statistically
conclusive.

We chose to base our experiments on two architectures that actually existed.
Although this had the side benefit that our results can also be used to gain some in-
sight into Spectrum and Scheme86 , it was very hard to separate the effects of the two
kinds of parallelism from the millions of other design decision made in coming with
them. Perhaps what's even worse is that since we measured hypothetical implementa-
tions and configurations of these architectures, our results can be very misleading if
used inappropriately to deduce the actual performance of actual Scheme86 or Spec-
trum machines.

Many implementation details about Spectrum processors were internal to
Hewlett Packard. This hurt our ability to draw some more concrete conclusions
regarding issues like how fast we can implement one in TTL or other technology,
whether it is feasible to put in multiple execution units, and how much the processor
is slowed down because of virtual memory and other commercial requirements. The
Spectrum architecture and instruction set went public just as this work was about
finished, making it extremely hard to consult other experts on the subject. Further-
more Spectrum was not a pure RISC or pipelined machine. In hind sight we may have
been better off looking at an academic processor like the Berkeley RISC machines or
Standford's MIPS processors, of which much more implementation detail is known.

Although there may be people who claim that the memory speed at which
we tested the processor was unrealistically high compared to the current state of the
art, we maintain that we probably still tested the architectures at a memory speed
which was too low. Judging from the improvements in the speed, density, and power
consumption of static RAM chips in the last few years, the kind of memory systems
we talked about are not only possible, but already available. To make this research
be useful to future work we should have assumed even faster memory.

33



10.2 Future Work

Because of the pace at which the computer architecture field is going, it is
probably pointless to spend more effort on these two particular architectures, as they
will probably be obsolete in a few years. However, the problem of parallelism at the
processor data-path level will remain to be an important one. The answer to how
best to improve the speed of computers will change as application and implementation
technology evolve. Experiments with the same goals as ours ought to be performed
as new theories in computer architecture are proposed in order to provide concrete
evidence to performance claims and keep computer architects honest.

34



Acknowledgments

I would like to thank Prof. Gerald Sussman for supervising my work on this
project. He came up with the idea of such a comparison and provided lots of help
and encouragement along the way.

This thesis was done in cooperation with the Hewlett Packard Laboratories,
where Mike Cannon served as my manager and supervisor. Mike helped me resolve
many of the technical issues on a day to day basis and made sure I was always focused
in the right direction.

Many thanks is due to Bob Shaw at HP Labs who had many lengthy dis-
cussions with me and provided an uncountable number of good ideas to improve my
work.

Many thanks is also due to Alan Snyder at HP Labs who had some not so
lengthy discussions with me and yet provided an equal number of good ideas.

Other members of our group at HP, including Walt Hill, Roy D'Souza, Jim
Kempf, Peter Canning, and Scott Maravich also gave valuable comments and criti-
cisms. Daryl Odnert and Suneel Jain of the Computer Languages Lab, and Vivek
Pendharkar of the Architecture Lab at HP Cupertino kindly reviewed and improved
the benchmark programs written for Spectrum.

Prof. Jon Allen of MIT served as faculty advisor while I was at HP. He
reviewed the proposal on this work and made sure it was on track throughout it's
duration. Many good suggestions also came out of meetings from him.

Prof. William Daily took time to carefully review a presentation I made
on the subject of this thesis. His comments were very helpful to me in the final
preparation of this document.

35



References
[Abelson 1985]

Abelson, Harold, and Sussman, Gerald Jay, with Sussman, Julie. 1985.
Structures and Interpretation of Computer Programs. Cambridge, Mass.:
MIT Press.

[Burrus 1985]
Burrus, C. S., and Parks, T. W., with Potts, James F. 1985. DFT/FFT and
Convolution Algorithms, Theory and Implementation. Jon Wiley and Sons.

[Coutant 1986]
Coutant, D. S., Hammond, C. L., Kelly, J. W. 1986. Compilers for the
New Generation of Hewlett-Packard Computers. Hewlett-Packard Journal,
January 1986.

[Ellis 1986]
Ellis, John R. 1986. Bulldog: A Compiler for VLIW Architectures. Cam-
bridge Mass.: MIT Press

[FenYoc 1969]
Fenichel, R., and Yochelson, J. 1969. A Lisp garbage collector for virtual
memory computer systems. Communications of the ACM 12(11):611-612.

[Gabriel 1986]
Gabriel, Richard P. 1985. Performance and Evaluation of Lisp Systems.
Cambridge, Mass: MIT Press

[HP 1986]
Precision Architecture and Instruction Reference Manual. Cupertino, Ca.:
Hewlett Packard Manual Part Number 09740-90014

[Johnson 86]
Johnson, Mark Scott, Miller, Terrence C. 1986. Effectiveness of a Machine-
Level, Global Optimizer. SIGPLAN Notices, July 1986. The Association for
Computing Machinery.

[Knuth 69]
Knuth, Donald E. 1969. The Art of Computer Programming, Vol. 2. Read-
ing, Mass.: Addison-Wesley Publications.

[Wu 1986]
Wu, Henry M. 1986. Scheme86 - An Architecture for Microcoding a Scheme
Interpreter. S.B. thesis, Department of Electrical Engineering and Computer
Science, MIT.

36


