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FOREWORD

This report is composed of reprints of papers published over the course of this program.
Each paper deals with some aspect of the design and capacity of optical pattern recogni-
tion systems. Paper#1 describes architectures and implementations for optical correlators
based on acoustooptic devices. Paper #2 analyses the capacity of optical correlators for
image recognition. The third paper describes optical correlators which use optical disks,
rather than AQ cells, as spatial light modulators. Papers 4 and 5 are concerned with
optical image recognition systems based on neural network models. The optical associa-
tive memory described in these papers uses a liquid crystal spatial light modulator, thin
holographic plates and a CCD to process two dimensional images. Papers 6-9 deal with
the use of photorefractive crystals to increase the adaptability and capacity of optical im-
age processing systems. Paper 6 describes a system which uses AO cells and a bismuth
silicon oxide crystal to implement a time integrating correlator. Paper 7 explores the use
of volume holographic materials, such as photorefractive crystals, as media for storing
spatial information at high densities. Various constraints are derived for the storage and
reconstruction of holographic information. Papers 8 and 9 describe methods for using the
dynamic nature and high storage capacity of photorefractive crystals to construct artificial .
neural networks. Paper #10 presents an analysis of optical image recognition systems
based on binary filters. Paper #11 describes an extension of correlation optical associative

memories to higher orders which results in higher storage capacity.
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. ACOUSTOOPTIC INAGE CORRERLATORS
Bung Gi Paek, Cheol Hoon Park, Fai Mok, and Demetri Psaltis

California Institute of Technology
Departaent of Klecotrical Engineering
Pasadena, Californis, 91125

datrodugtlon

Two dimensional correlation for perforaming image recognition is one of the earlieat
exanples of optical information processing suggested by Vander Lugt [1) and it still remains
. one of the most promising application areas for this teohnology. The reasons optical image
- correlators have not found to this day widespread usage in pattern recognition systems fall
into two categories: algorithsic limitations and lack of devices. Correlation-based pattern
recognition algorithes have well known limitations such as scale and rotational senaitivity.
Over the yearsa algorithas baaed on optical correlation have been developed [2-5], which show
proaise for overcoming some of the algorithaic liamitations, however they have not been put
to a real practical test becsuse of the lack of two dimensional apatial light modulators
that are necessary for the {mplesmentation of the oclasaic Vander Lugt correlator.
Specifically, two separate two dimensional SLMas are needed, one for recording the input

image and another for the reference.

Recently, there has been considerable progress in the development of spatial light
modulators whioch has led to several "rezl] time" implementations of optical correlators using
tvo dimensional devices (6-8]. In this paper we report on the use of acoustooptic
devices(AODa) whioch are by far the most highly developed SLMs available. AODs however are
one dimensional SLMs and in order to proocess two dimensional signals in an acoustooptic
image ocorelator, ve use a combinstion of temporal and spatial integrations [9-11). Imn this
paper we briefly review the principles of operation of acoustooptic image correlators and
then present the results of several sxperiments that were performed with real time systems
that we have assesmbled,

In the architectures we will discuss, an AOD is used as the tranaducer for the input
image that is to be recognized. Another aspeot we will explore is ways of making the
reference image prograsmadle rather than being fixed on a holograam rscorded on a
photographic fila. We will see that tise domain processing, an inherent part of the
sgoustooptic image correlstors, offers a very convenient way of introducing a programmable
reference and creates s set of promising algorithmic possibilities that are not realizable
with a fixed reference.

Ihe zeperal asthed

Single transducer acousatooptic devices are one dimensional spatial light modulators and
hence ‘they can not be used to represent an input image in its entirety at one time.
Typlcally the space bandwidtb product of the AOD is about equal to the number of resolvable
spots slong only one line of the image we want to process, As a rosult, the strategy for
building an acoustooptic image correlator is process the image one line at a time using a
space integrating optioal prooessor and sccumulate by temporal integration on a two
dimensional detector arrsy the results of the space integrating part of the systes to forn
the full two dimensional correlation, The basic idea will be explained with the aid of
Figure- 1. The operation we wish to perform is a two dimensionsl correlation:

g(x',y")s f[r(x,y)h'(xox',yoy') dxdy. (1)

The fnput image f(x,y) is imaged onto a TV camera that electronically acans the image and
produces a video aignal. The video signal 1s heterodyned to the appropriate center
frequency and then applied to the pilezoelectrio transducer of the AOD. Each horizontal video
line propagstes separately in the AOD and modulates the incident light, Since in our
procesasors the images are processed as individuasl lines, from now on we will denote the
input image as f(x,nd), where n is an integer and d is the line spacing in the vertical
direotion, The optical system is a multichannel one dimensional correlator that produces the
oorrelation betveen each input video line in the AOD and all the lines of the reference
image which {s stored in the optical aystem. The 1light incident on the two dimensional CCL
detector st the ocutput i1s modulated by:

Ea(xt,y') = Jr f(x.nd)h'(xox'.y') dx (2)
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Pigure 1. Two dimensional acoustooptic image correlator,

where x' and y' are the apatial coordinates at the output plane, In order to complets the
two dimensional operation, we need to ahift the two dimensional pattern g (x',y') Dy a
distance nd in the y' direction and then sum over n ({.e., accumulate the signal }ro- all the
different input lines). The required shift and add operation canm be accomplished very
conveniently by continually scrolling the photogenerated charge on the CCD during easch video
frame. After the nth input horiontal 1ine ia scanned by the TV camera and the correlation
betveon this nth input line and the reference is sdded onto the previous contents of the
CCD, the CCD is then triggered to electronically tranafer the entire charge pattern
vertically by one pixel. This procedure results in the formation of a charge pattern on the
CCD that can be expressed as follows:

g{x'y") -; 8a(x',y'end) = ff(x,nd)h'(xox',ndoy') dx (3)

The above is recognized as 2 sampled fora of the two dimensional correlation in Eq. (1). The
two dimensional correlation is produced continuously at the framse rate of the input TV
camera and it appears st the CCD output in the form of a standard video signal that can be
directly displayed.

Within this basic framevwork, there are several possible architectural variations
principally through choosing different implementations for the multichannel one dimensional
correlator, In references 13 and 14 we have desorided in detail two specific architectures.
In wvhat followa we present results from the experimental demonstratiocn of these aystess.

Holographic asoustaoptio image sorrslator

The holographic image correlator 1s shown in Fig.2. The details of the operating
prinociples have been reported in reference (10]., Here we describe the experimental
apparatus. The input image vas sensed with a high resolution TV camers. The video signal
from the TV camera vas heterodyned to the center frequenocy of the AOD (50 MHz), amplified
and applied to the AOD. The acoustooptic device in this experiment was a TeO, (Crystal
Technology # ¥0508) device with 35 MH: bandwidth and 70 microsecond delay. This was more
thaa adequate to sccomodate one standard video line (63 microseconds and 5 MHs)., After
approximately 52.7 aioroseconds froas the start of the horizontal olook the signal in the 40D
18 an acoustic repliom of the video line from the input image. At that instant the laser
diode is triggered to produce a short pulse to freese and read-out the signal in the AOD.
The laser diode used iz the experiments was RCA C86030R with peak power equal to 40
willivatts and pulsewidth equal to 50 nanoseconds. The pulsewidth must be ohosen equal to or
shorter than the iaverase of the bandwidth of the video signal s0 that the motion of the
signal in the 1light diffracted by the AOD o0an be neglected, The video bandwidth in these
experinents was 3MHs or less. The light diffrsoted by the AOD was Fourier transforsed ia
the horisontal direction and expanded vertically to illuminate s one dimensional Pourier
transforam hologram of the reference image. The light diffracted by the hologram was imaged
vertically and transforaed horiszontsally to produce the multiple one dimensional correlationa -
at the CCD plane,

The hologram was fabricasted in dichromated gelatin.ylelding effioiency 35% at the 8200w
vavelength, The imtenaity of the 1ight was detected at the CCD plapne. The horisontal clook
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from the CCD ia used to trigger the driving eleoctronios of the iaput TV camera and to
transfer the charge in the array downwards bdy one pixel., The CCD device used in the
experiments was 8 SOFY XC=-37 whose driving electronios were modified to sllow us to scroll
the charge on the CCD continuously during esch frame. This CCD camera has 38A pixels in the
horisontal direction and 291 pixels in the scrolling direction. The scrolling action of the
CCD completes the 2-D correlation as descrided earlier and the full 2-D correlations betveen
the image to which the TV camers (s poiated and the reference image stored on the Fourier
transfors hologras is produced at 30 frames per second and displayed on a monitor,

A photograph of the experimental apparstus 1s shown in Figure 3 showing that the systes
is relatively simple and compact. The laser diode 13 on the right and the CCD on the left
side of the photogreph in Pigure 3.

Collimeting Acousto-oplic Astigmatic
Lona Devics Lena Syst Q:: Outecter
Puised 7 T
Laser G::%
Losey/ 0 Fouri v
Pulser A Thnuu:nhbvmn Out
Drover
Trigger £
o Qi 1%
[ Deloy | Dabie
Correlated
",:?“';“ ) vm’ Le—2-anis 1nput
c Comerc N ey IR
*1Osloy I x-v-Z
harizontal _/ Srome] Honmntal Oscilloxcope
0 Trigger Osciliator Sweep CD

Trigger

Figure 2. Bolographio acoustooptic image correlator,

Figure 3. Bxperimental setup of the system in Figure 2,

Ao example of the experiments that were
two faces shown at the top of
photograph the recomstructions

done with this systenm is shown {in Figure &, The
Figure 4 were used as inputs. On the left hand aide of the
of the two faces are displayed. These reconstructions were
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obtained by pointing the TV camera to an impulse-1like funation and thus producing at the
output the impulse response of the syastes, It is evident that the impulse response of the
system i3 an edge enhanced version of the original in order to suppress the
crosscorrelations. This was accomplished by fabricsting the hologram 30 that higher
frequency components were enhanced. All four possible gorrelations and their oross sections
are shown in Figure A in two disenaional display. The results show excellent discrisination
between the two faces,

The photograph shown in Figure 5 is an isometric view of the sutocorrelation of one of
the patterns in Figure %, A very sharp correlation peak is obtasined which 1is significant
because the correlation produced with this systes 1is partially incoherent, In a fully
incoherent correlator that operates on light intenaity (12], the correlation peak is
typically bdroad and rests on top of a biss plateau. In the systea we are describing in
this section, the correlation in the horzontal direction is performed by coherent amplitude
integration, whereas in the vertical direction it is done by integrating intensity. This
incoherent integration averages out the coberent noise effects (i.e. speckle and related
phenomena) and yet, the correlation pattern that is produced 1s bias free and its sharpness
in both dimensions 1s characteristioco of coherent ocorrelators.

Figure §, Experimental demonstration of Pigure 5. Isometrioc view of the auto-
the holographic acoustooptia correlation of one of the
correlator, patterns in Pigure 1}.

The results that we obtained from the system desoribed above have convinced us that
acoustooptics can essentially solve the device limitations of optical image correlatoras, at
least as far as the real time input stage is conceraned, If we ask vwhat are the limitations
of this systea in terms of perforsing adequately in a pattern recagnitioa application, the
anaver 1s clearly not that the optioal system does not perfors correlations vell enough. The
real issue nov is how to use an optical correlator to reocognize imagea, We have come to the
coanclusion that a digitally programmable reference is & key feature that needs to bde
ingorporated in optical correlators in order to make their applicability to pattern
regognition praotiocal.

The most obvious way to introduce a programmable reference to the -y.io- ia Figure 2 ia
by regording the Fourier trassform hologram on a real time SLM ratber than on photographic
film., Ve bave investigated the use of the Littoa magnetooptic spatial light modulator [13]

28 / SPIE Vol. 638 Hybrid image Processing (1986
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4 photograph of the experimental apparatus is shown in Figure 8. The LED uased in the
sxperiment 13 fabricated by Honeywell and it consists of 180 slements, each separated by 100
sicrons. Esch element transaits 5 miorowvatts of optical power. Ip the experiment ve will
. desoribe, only 32 elements of the array vere used., The electronic mesory that ia needed for

storing the reference isage vas built with standard RAM chips end it was designed to astore

binary images oconsisting of 32X100 pixels. The smesory wvas interfaced to the optical systess

through an array of 32 LED drivers and to also to an IBM personal coaputer which was used to

generate the reference patterns. The A0D and the CCD were the same devices that vere used in
L the experiments described earlier,

ACOUSTO-0PTIC CORRELATOR
LED o0
c ARRAY £
PARALLEL cco
'
READ-DUT
\ !ltﬂ'“lt seiver
l
HON{ [On
SYRC. SiGmAL
o
™
eyt
wens [} ot
. PERSONAL COMPUTER

=i

o

Am ““'.lr“‘ o

L

Figure 8. Experimental setup of the aystes in Figure 7.

A sample of the experimental results obtained with this system are shown in Figure 9. The

- input pattern (Fig. 9a) contains the word "LED" in two places. The reference image chosen in
this case to be the word LED and shown 1in Figure 9b is the reference image as displayed on

the screen of the cosputer. The output of the optical correlator 1s shown in Figures 9c and
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as & spatial filter in optical correlators {14], The magnetooptic device (MOD) we are using
is structured as & two dimensional array of 128X128 pixels, Each pixel canm be electrically
set to one of two possible magnetization states. Hence thias 1s a binary spatial light
saodulator. A feature of the device that is most interesting ia terms of recording holograms
is the fact that it is a bipolar light modulator [1A]. This implies that the average
amplitude transsittance of the hologras oan be made sero which allows an onr-axis Fourier
tranaform hologram to be recorded and read-out. A very simple slgoritha for recording
computer generated Fourier transafors holograms on this device was descrided and desonstrated
in reference [14]), The real part of the Fourier transfora of the reference image is examined
for each pixel., If it is positive, the corresponding pixel of the MOD is set to one of its
two atates, and if 1t is negative, it is set in the opposite state. This algoritha has
yielded excellent results in a conventional two dimensional optiocal correlator. It can be
modified for the scoustooptioc correlator in Figure 2 by siaply calculating tbe one
disensional Fourier tranfors of the reference image with a digital cosputer, then recording
on the MOD the sign of the real part of this transformed image. ) preliminary experisental
result with a system aimilar to the one in Figure 2, with an MOD replacing the hologram, was
‘"obtained. The results are shown in Figure 6. The input pattern that was imaged onto the TV
casera was the letter X shown in Figure 6a., The one dimensional Fourier transform hologras
of the letter X, computed and then recorded on the MOD, is shown in Figure 6b, The

autocorrelation of the letter X that was produced in real time as a video signal by the ccn
and displayed on a monitor, is shown in Figure 6o,

Figure 6. Experimental demonatration of the holographic acoustooptic correlator with a
programmable magnetoopticdevice. (a)Input, (L)Hologram. (c)Correlation
output.

Incohsrent LED acoustoantia sorcelator

In this section we present results froa an experimental desonatration of the incohereat
correlator that ia described in detail in reference [11). A schematic diagram of this
processor is shown in Figure 7. The basioc architecture follows from Figure 1!, The difference
between this and the system discussed in the previous section is the choice of the
sultichannel one dimensional correlator. The system in Figure 7 utilizes an array of
inaooherent time integrating correlators rather than cohereant space integrating correlators,
The temporal signal smsodulsting each of the LEDs in Figure T is correlated against the aignal
that {s launched into the acoustooptio device, These correlations are formed on separate
lines of the CCD at the output of the system. The reference image is stored in electrontic
senory vhich csn be read-cut in parallel suoh that each line of the reference image can
temporally modulate a separate LED, The slectronic memory is triggered to read-out its
contents in synchronisa with the horiszontsl clock froa the CCD, As each new input video line
is entered in the AOD, it {s correlated against all the lines of the reference image. Ais in
the previous architecture, thoe CCD is triggered to scroll in synohronism with the horisoatal
synsc of the input TY camera, wvhich at the end of each video frame, results in the formation
of the full tvo dimensional correlation between the input image and the reference image
stored in the electronic sesory.
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9d. These are pictures of the same thing with the coantrast of the display monitor adjusted
to displsy all tbhe cross correlations in figure 90, whereas in Pigure 9d only the
autocorrelation peaks are visidle. The orosscorrelsations in this case are bigher, vben
. cospared with the holographic correlator. This is because in an incoberent oorrelator, only

. . positive values can be directly represented. VWe are ocurreatly vorking os inocorporating in
this system the ocapadility to represent bipolar images. Thias peraits much grester
flexilility in ohoosing the reference image which ia turn permits the selection of tae
reference image to minimise the crossoorrelations and obtain perforsance ocosparable withk the
coherent correlator.

—,

a b ¢ d

Figure 9, Experimental demonstration of incoherent LED correlator. (a) Input.
(b) Refer2nce image. (c),(d) Correlation output,
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CAPACITY OF OPTICAL CORRELATORS

Joff Yu, Fai Mok, and Demetri Psaltis

) . Department of Electrical Engineering
. California Institute of Technology
Pasadena, California 91125

ABSTRACT

The capacity of the Vander Lugt correlator, defined as the maximum number of separate images that can be
recoguised, is estimated. The increase in capacity that results from the use of a volume hologram in place of the
commonly used planar hologram is derived. The effects of binarising the reference filter and the shift invariant
properties of the two classifying systems are also analysed.

L Introduction

Vander Lugt correlators have been used for a long time in optical pattern recognition!l]. In the typical
implementation, shown in figure 1, the Fourier trasform of an input image is used to read out a hologram containing
the Fourier transform of a reference image. This diffracted beam is then inverse Fourier transformed to produce
the correlation between the input and reference images on the output plane. Vander Lugt correlators are typically
used as pattern recognition systems. Whether or not a peak is present at the output of the correlator determines
whether or not the input image is sufficiently close to the stored reference . Recently much work has been done on

. the use of a Vander Lugt correlator to pattern classifiation Lz”a] In this case, the correlator distinguishes whether
the input is a member of one of two classes with each class being composed of many images. Typically, a reference
filter is formed as a linear combination of the images in both classes and the presence or absence of a peak at the
correlation plane determines which class the input belongs to.

~

INPUT FOURIER
PLANE TRANSFORM
FILTER CORRELATION
PLANE

Fig. 1. Vander Lugt correlator.

In this paper, we discuss the capacity of the Vander Lugt correlator. This is to say we estimate the maximumn
niaber of images that can be stored in the reference filter before the system begins to misclassify images. This
capacity has been studied in great detail for systems without shift invariance (e.g.perceptrons). The classic results
from pattern recognition about the capacity of a linear discriminaut function do not directly apply in this case
because the VanderLugt correlator is shift invariant. In this paper, we will discuss the capacity of the system
incorporating the shift in. wiiance of the Vander Lugt correlator. We will also discuss the effect on the capacity of
binarizing the reference filter and lastly we will demonstrate that by using a volume holgram to record the filter,
the capacity of the system is greatly increased, as well as be becoming capable of multi-class classification.

11.Capacity of Lincar Filters

In the niost common patlern classification scheme, the inner product is performed between the inpnt inage

1
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#(z,y) composed of N pixels and a reference filter A(z,y).

vy
0= f 3 Mz, i) [1)

yY=la'=mil

Comdparing the output O with a pre-set threshold, determines which of the two classes the input belonged to. A
standard method of forming the reference filter is as a linear combination of the images in both classes:

M .
Mz,y) = Y widi(z,v) [2)

=)

The weights w; can be chosen through a variety of training algorithms such as the perceptron learning algorithm.
It is a well known result that the capacity of such a system i514]

M =2N 131‘.

where N is the number of pixels in each image. In this paper, we will consider the construction of a simpler flter
in which the weights are binary.
wg{l if ¢; € Class 1 4]

0 if¢,eClass Il

In other words, the filter is formed by simply summing the images belonging to class 1, while ignoring those in
class 2. This is implemented in a Vander Lugt correlator, by multiply exposing the holgram to the images in class
1 while doing nothing for the images in class 2. Classification can then be performed by detecting and thresholding
the output at the center of the correlation plane. For the remainder of the paper, we will assume that the images
¢(z,y) consist of binary N pixels, each pixel being a bipolar (ie 1 or -1), independent random variable. Under
these assumptions, the capacity of the VanderLugt correlator using the peak-only detection scheme can by found
be solving the following transcendental equation{5|:

N
M= TR &

As N — oo, the above expression asymptotically approaches

N
M= 8logN l6i

Thus the use of the simpler method for constructing the reference filter, results in a relatively modest loss in
capacity by a factor of 16logN

1I1. Capacity of Shift Invariant Filters

Because Vander Lugt correlators are inherently shift invariant it is possible to classify prescribed images and
their shifted versions as well. In order to implement a shift invariant classification scheme, detection at the output is
done over the entire correlation plane. As a result the detection of a peak anywhere in the output plane determines
whether the input is a member of class 1 or a shifted form of a member in class 1. Figure 2a shows a cross section
through the origin of the digital correlation of an input image with a filter containing only one image. The resulting
output shows a single correlation peak and relatively small sidelobes. When the reference is constructed by addiug
3 images (figure 2b, the sidelobe structures shows a significant rise in amplitude. However, since only tge single
correlation peak lies above the threshold, classification of the input image i- still performed correctly. However,
when the number of reference images is increase to 6 (Fig.2c), there are now twc peaks which lie above the threshold
level. Az a result, the system can no longer decide whether the input image s a member of class 1 or a shifted
version of 2 member of class 1. Therelore, we expect that the capacity of the s:ift invariant system is smaller. For
the r«;la(ively simple method of filter construction , we can readily derive an an.iytic capacity for the shift invariant
correlator.




:EE | l .;—m_g: - l M=3 :E - | MeE

oF F —| o i

: - B R
(a) () - ©

Fig. 2. Digital correlations of a shift invariant filter

In the shift invariant case, the Vander Lugt system performs a correlation between one of the input image
é(z,y) and the reference filter h(z,y)

vN VN
Ofz,y) = Y D Mz, ¥z +2,¢ + ). 7]
y'=mlz'=m]
For the case where the filter is constructed by simply summing the images in class 1 (multiple exposure) and

assumiing the same input statistics for each image, the capacity of the shift invariant Vander Lugt system is given
by the solution of the following transcendental equation (5]

N
M= —— 8
4log(M>N) 18
- Asymptotically, the capacity approaches N
_ M= 16logN 1o}
Thus, the capacity is decreased by only a factor of two from that of the non shift invariant system.
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This result is important since there is to our knowledge no prior extimate for the loss in capacity due to shift
invariance. For the case considered here (the filter derived as a simple sum), the loss is very small; a factor of 2.
To verify the theoretical capacity of the correlator, 100 computer trials were averaged to determine the capacity
for various N . For each trial, two random vectors were generated to form the initial reference filter. Each image
was correlated to determine whether classification was performed correctly. If no error occured, a new random
image was added to the reference filter and correlation with all the image was done. The number of images in the
reference was increased until a misclassification occured. At this point, the capacity was said to be one less than
the aumber of images stored in the reference.

Figure 3 shows the capacity of both the peak only and shift invariant systems as a function of the number of
pixels, N, in the image. Experimental simulations show good agreement with theoretical predictions. It is important
to note that because the simulations were performed in the regime of small N, vhe transcendental equations for the
capacity (eqs [5) and [8]) were used to plot the theoretical curves.

IV.Capacity of Binary Filters

As demonstrated above, the capacity of the VanderLugt system can be very large. One potential limitation -
that might prevent us from actually implementing such a large pattern classification system is the accuracy with
which the hologram can record the reference. To get a feel for the susceptibility of the system to nonlinearities and
inaccuracies, we considered the capacity of the Vander Lugt correlator when the reference filter has been binarized.

In this case, the reference filter consists of a thresholded version of the filter generated from the multiple
exposure algorithm

M
h(z,y) = sgn[d_ widi(z, )] (10]
=y

Again, assuming that the input fixels consists of bipolar independent random variables, we find that the capacity
of the binary Vander Lugt correlator is asymptotically

N

2 c———— |
M Orlog_N 1]

There is only a further x/2 reduction in capacity from that of the non binarised shift invariant filter.

Linear (N=256, M=3) Binary (N=256, M=3)

%WMLW«- MM' ik

(a) (b)

Fig. 4. Digital correlations of the linear and a binary filters

In figure [4], a comparison is made between the linear and a binary filters. In both cases, the input images
had 256 pixelz and the reference filter contained 3 images. As seen from the figure, the sidelobe level of the binary
correlator is significantly larger than that for the linear filter. As a result, as additional images are added 1o the
refetence filter, the binary correlator will begin to misclassify sooner. This will correspondingly lead to a lowe
capacity (theoretical and experimental) for the binary correlator. In figure 5, the capacity of both the binarized
and nonbinarized filters are plotted as a function of the number of pixels in the image. Again, computer simulation<
demonstrate a good agrecment with theoretical predictions.
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Y.Capacity of the Volume VanderLugt Correlator

In this section, we consider the use of a volume hologram to record the reference filters in a Vander Lugt
correlatori‘(i}. We expect that because information is recorded in three dimensions as opposed to the two dimensions
for plane holograms, the storage capacity of the volume VanderLugt correlator is increased.

Let us first consider how a volume Vander Lugt correlator operates (Fig.6). Consider the correlation between
two point sources. In the recording stage (Fig.ﬁ:), the point source generates a plane wave which interferes with
a reference wave to form a grating which is recorded in the volume hologram. When an input point source at the
same position is presented to the correlator (Fig.6b), a new plane wave reads out the stored grating. The diffracted
plane wave is then focussed to form the expected correlation peak at the output. If, however, the input point source
is shifted in the direction parallel to the plane of incidence éFig.&). the plane wave that is generated will not be
Bragg matched with the grating in the volume hologram. Consequently no diffracted wave will be produced and
no correlation spot will be formed. In the direction perpendicular to the plane of incidence, the volume hologram
exhibits very little Bragg sensitivity and a correlation can still be read out. As a result, shiftz of the input in a
direction paralle] to plane of incidence will not be recognised, while in the perpendicular direction the correlator
remains shift invariant. ’

For an'arbitrary input,A(z,y) and reference image, R(z,y), it can be shown that the output of the volume
Vander Lugt correlator is {7]
O(z,y) = [A(z, y) * R(z, y)] sinc{az) 12}

where a = Tsind/2AF and ° is the correlation operator. T is the thickness of the hologram, 4 is the Bragg angle,
and F is the focal length of the inverse Fourier transform lens. In other words, the output of the correlator consists
of the correlation between the input and reference apodised by a sinc function whose width is determined by the
thickucess of the volume hologram.
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Fig. 6. Recording and readout of a volume hologram.

To experimentally demonstrate this apodising effect, the auto correlation of an O was performed using the
volume Vander Lugt correlator. Figure 7 shows a digitally generated autocorrelation of an 8 which simulates a
standard Vander Lugt correlator with a reference O recorded on a plane hologram. In the volume Vander Lugt
correlator, the reference O was recorded on a lithium niobate crystal measuring 25x25xSmm. The reference beam
was situated such that the plane of incidence was in the horizontal direction. Figure 8a shows the output of the
volume Vander Lugt correlator when the input O is positioned at the same plane as the reference O. The output
consists of the standard correlation of the two O's multiplied by the horizontal sinc fuuction. When the input O is
shifted in the direction parallel to plane of incidence (Fig. 8b), the correlation shifts and only correlation structure
to one side of the peak is presented at the output. The smaller spot lying to the right of the primary horizontal
band corresponds to the very strong correlation peak lying in the first sidelobe of the apodizing sinc function.
Further shifts of the input as shown in figure 8¢, merely reads out the correlation structure further from the peak.

Fig. 7. Digital autocorrelation of an O.
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(b.)
Fig. 8. Experimental outputs of the volume Vander Lugt correlator.

The Bragg selectivity in the volume VanderLugt correlator allows one to perform multi-class categorisation of
the input images(8]. In the recording stage (Fig.9a), a set or reference filters is recorded by interfering each with a
reference beam separated by the angular bandwidth of the volume hologram. When an input image is presented .
to the volume Vander Lugt correlator (Fig.9b), a set of correlations is performed simultaneously and presented
spatially distributed at the output. The Bragg selectivity of the hologram guarantees that the correlation bands
will not interfere with each other. As a result, by detecting which band the correlation peak appear, determines
which of many classes the input image belongs to.

REFERENCE
FILTERS

RECORDING STAGE

(a)
lqr*\\\\
NV
NPUT " vooue V)
PLANE HOLOGRAM
FILTER CORRELATION

READOUT STAGE
(b)

Fig. 9. Recording and readout stage of the multi-class categorization volume Vander Lugt correlator.
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We can consider each corrslation band as a seperate output channel performing a simple pattern classification
task independent of the other channels. By assuming the same input statistics for the images in each class, the
capacity of each output channel can be analytically derived. In this case, the maximum number of images that can
be stored was found to be equal to that of the standard VanderLugt correlator [eq.5|. Asymtotically, the capacity
of each channel approaches N

’

= e———— — 3
16logN N-oo (23]

The number of output channels, K, that can be stored in the volume hologram is
K = TLond (1<K <N [14)

AF

where L is the actual dimension of the output detector array in the direction pa.rallel~ to the plane of incidence.
Hence the total capacity of the system is

KN
Mma-m (N —o0;1< K <N) [15)

Thus the effect of the using a volume hologram is that the capacity is increased by the number of output channels
the hologram can support and one to perform multi-class classification. However, one drawback is the partial loss
of shift invariance in one direction that results from the use of a volume hologram.

Y. Conclusion

In conclusion, we have demonstrated that the capacity of a Vander Lugt correlator without shift invariance is
N/8logN for the simple additive filter. By incorporating the shift invariance inherent in an optical correlator, the
capacity is only decreased by a factor 2. Furthermore, by binarising the reference filter, there is a further loss by a
factor of /2. However, by utilising a volume holgram to record the reference filter, the capacity of the correlator
is incre by a factor that can be as high as N with a proportional loss in shift invariance.
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OPTICAL DISK BASED CORRELATION ARCHITECTURES

Demetri Psaltis, Mark A. Neifeld and Alan Yamamura
Department of Electrical Engineering
California Institute of Technology
Pasadens, CA 01125

In this paper we describe and experimentally demonstrate optical image correlators
that are implemented using optical memory disks. Optical correlation for pattern recog-
nition [1] has long been considered a promising application for optical processing. One of
the reasons such correlators have not been used in practical applications yet has been the
lack of suitable spatial light modulators to be used as real time input devices. Recently,
this limitation has to a large extent been removed through the development of a variety of
2-D SLM’s [2] and concepts that allow the utilization of mature 1-D (acoustooptic) SLM’s
(3]. Attention has therefore shifted to the design of appropriate filters to perform reliable
recognition [4]. In most practical applications a single filter is not suffiicient to produce
reliable recognition, and the use of spatial (5] and temporal (3] mulitiplexing to search
through a library of filters emerges as the most straightforward solution to the problem.
The optical disk correlator architectures we describe in this paper provide an extremely
efficient method for performing this task since they combine in a single device the huge
memory required for storage of the library of reference images, the spatial light modulator
needed to represent the reference in the optical correlator, and the scanning mechanism to
temporally search through the library.

The first architecture we will describe is shown in Fig. 1. Each reference image is
recorded as a 2-D computer generated Fourier transform hologram on the disk. The in-
put image goes through the beamsplitter, it is Fourier transformed by the lens, and it
illuminates the hologram on the disk. The reflected light contains a term proportional to
the product of the transforms of the input and reference images. The same lens retrans-
forms the reflected light and the correlation is produced. A principal issue of concern in
this architecture is the suitability of commercially available disk systems for recording and
reconstruction of holograms. We have identified a write-once disk system which is manu-
factured with glass (rather than plastic) covers of sufficient optical quality that has allowed
us to reconstruct the recorded data using coherent light. We will report the results of this
experiment at the conference. The rotation of the disk is used to perform a search through
images centered at the same radial position on the disk. An auxillary scanning mechanism
is needed in order to position the correlator “head” in the correct radial position. As
the disk rotates the entire correlation pattern shifts in one dimension at the output as
long as the reference hologram remains in the field of view. A time-delay-and-integrate
(TDI) CCD sensor can be used to integrate this traveling correlation pattern in order to
improve sensitivity. Alternatively a 1-D parallel read-out detector array can be used that
sequentially produces slices of the 2-D correlation pattern as it travels past the detector
array.

A straightforward modification of the system of Fig.1 is obtained by recording holo-
grams that are Fourier transforms of the reference images only in the radial dimension
since the rotation of the disks provides the necessary shift between the input and reference
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along the tracks. The light reflected from such a hologram is Fourier transformed in the
radial direction and integrated in the orthogonal dimension onto a 1-D parallel read-out
array. The signal from the detector array is again the 2-D correlation presented as a se-
quence of 1-D slices. The advantage of this architecture compared to the previous one is
that it has the same light efficiency as the TDI system without the relative complication
of the TDI sensor. Therefore the experiments we will present are with this type of system.

The above architectures require storage of the reference images in the form of computer
generated Fourier transform holograms. This provides the advantage of shift invariance
which means that we do not need to be concerned with accurate positioning within a single
track of the correlation head with respect to the data recorded on the disk. This is a very
important practical consideration; the disadvantage however is an increase by a factor of
100 or more in the space bandwidth product required to record the hologram compared to
the space bandwidth product of the image itself and an increased computational overhead
to record the disk. In addition, the smaller size of the recording results in reduced phase
uniformity requirement for the disk. In many cases it is only necessary to record the
reference images as binary patterns [6] in which case they can be directly recorded on the
disks. Gray scale images can be recorded using some form of area modulation as is done
with video disks for example.

There are two types of architecture we will discuss that allow the reference images
themselves to be stored on the disk rather than their Fourier transforms. The first is shown
in Fig. 2. The input image goes through the beamsplitter and it is Fourier transformed
by lens L;,. A Fourier transform hologram of the input is recorded in a photorefractive
crystal using a reference beam that is incident from the right, as shown in the figure. Once
the hologram is recorded the input is blocked and the the disk is illuminated. L, takes
the Fourier transform of the reference image that is in t\ie field of view of the illuminating
beam and L; transforms the light diffiracted by the holosram to produce the correlation at
the output plane. The rotation of the disk is used to se.rch through a library of images in
the radial direction and a TDI detector can be used at tiie output to increase sensitivity as
before. Multiple holograms could be mulitiplexed in the crystal to address different radial
positions on the disk or the entire head can.be scanned to address different radial positions
as before. We have not yet completed the experimental demonstration of this system but
we expect that at the conference we will present the experimental results from this system.

The final architecture we will discuss is shown in Fig. 3. The advantage of this
architecture is that it operates on the light intensity and consequently the requirement for
phase uniformity is greatly relaxed. As a result it is possible to implement this architecture
with most existing disk systems. This correlator works as follows. The reference images
are recorded on the disk and the input is imaged through a 1-D scanning device onto
the disk. The scanner can be either acoustooptic (as shown in Fig. 3) or a rotating
- mirror. It provides the relative displacement in the radial direction between the input
and reference images that is necessary to calculate the correlation function. The disk
rotation provides the displacement in the orthogonal direction. The scanner translates
the input image completely accross the stored reference image each time the disk rotates
by a distance equal to a pixel of the reference. The intensity of the light reflected from
the disk at any one time is proportional to the product between the input and a shifted
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version of the reference. The reflected light is collected (integrated) on a single detector
which produces as its output a temporal video signal of the 2-D correlation. This system
was experimentally demonstrated with acoustooptic scanners. Two types of acoustooptic
scanners can be used: A “flying spot® scanner in which a chirp signal propagates in the
acoustooptic device acting as a traveling lens that scans the diffiracted image at a rate equal
to the acoustic velocity. This system completes a scan in a few us, therefore a complete 2-D
correlation takes approximately a few ms. The second scanner that we have demonstrated
is a more conventional acoustooptic deflector that scans slowly but permits a higher space-
bandwidth product of the input image. A sample of experimental results obtained with
the system of Fig.3 is shown in Fig.4. Fig. 4a is a photograph of the pattern recorded
on a write-once disk (the acronym CIT) and Fig. 4b is the 2-D correlation produced by
the optical system of Fig. 3 and displayed by raster scanning the detector output on a
2-D monitor. Correlations can be produced with our experimental apparatus at rates up
to 1000, 100X100 pixel images per second. The optically calculated correlation is in good
agreement with the expected autocorrelation function of the CIT pattern. It should be
pointed out that since this system operates on intensity we can only represent positive
quantities. In order to represent bipolar input and/or reference images we need to add
biases at the input stage and subtract it from the output (3], a technique that has been
successfully used in a variety of incoherent architectures.

The number of bits that can be stored in the type of disk that we use for most of
our work (a write-once, 12 cm diameter system from SONY) is more than § billion: The
number of 100 x 100-pixel images that can be stored in such a disk is more than 5,000,
assuming a generous factor of 100 for loss of spacebandwidth product due to representation
(e.g. area modulation for gray scale representation). The rate at which all these images
can be interrogated for a possible match with the input is limited by one or more of the
following factors: The scanning speed of the disk (40Hz in our case), the speed of the radial
scanning mechanism, and the sensitivity and the bandwidth of the output detectors and
the electronics following them. As an example consider the system of Fig.2. At 40 Hz disk
rotation rate, we obtain 1000 image correlations per 1/40th of a second (i.e. 40,000) image
correlations per second), yielding a reasonable 4 MHz bandwidth per detector. It would be
extremely difficult to duplicate this capability electronically and it can be achieved with
ezisting optical technology. Moreover it is precisely such capability that is required for
practical pattern recognition problems.

- The research reported in this paper is supported by the Army Research Office.
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Abstract. An experimental demonstration of a holographic associative
memory is presented. The system utilizes an array of classic VanderLugt
correlators to implement in paraliel the inner product between an input
and a set of stored reference images. Each inner product is used to read
out an associsted image. Theoretical analysis of the system is given, and

experimental resuits are shown.
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1. INTRODUCTION

Several types of optical associative memories have been pro-
posed over the years. Ghost ima*e type associative memory
was suggested by van Heerden' and was investigated by
others, including Gabor.? In a ghost image holographic asso-
ciative memory, a hologram of a pattern A is made using the
pattern B as the reference. If the hologram is illuminated by
A, then the output becomes A * A » B, where + denotes
correlation and * denotes convolution. If A is a noise-like
random phase object, then the output can be well approxi-
mated by B. If the space-bandwidth product (SBP) of the
output images is equai to the SBP of the hologram, then this
type of associative memory can store only one pair of associa-
tions.? If the SBP of the hologram exceeds the SBP of the
output patterns, then the number of associations that can be
simultaneously stored on the same hologram is equal to the
ratio of the two SBPs.? Random phase diffusers can be used to
improve the quality of the reconstructed images by making
the effective bandwidth of the pattern A larger, which makes
the A ¢ A closer to the ideal delta function. The diffuser also
makes A; * A, closer to zero for the cross terms when multi-
ple associations are stored on the same hologram. Willshaw et
al.* discussed optical memories quite similar to the ghost type
and also suggested using thresholding at the output for reduc-
ing the cross-correlation “noise™ when multiple associations
are stored.

A second class of associative memories can be constructed
as an array of holographic correlators®>” that compare the
input and a bank of reference patterns. If a correlation peak is
detected above threshold, the associated pattern is produced.

More recently, following the resurgence of interest in
neural network models of computation.®'® several new
holographic memories have been proposed.''~'® In this paper
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we are concerned with the holographic memory proposed by
Psaltis and Farhat.'"'2 This memory can be thought of as a
compromise between the ghost and correlation peak detection
memories. We discuss this point with reference to Fig. 1,
where the three possible implementations are shown. In the
ghost image memory shown in Fig. 1(a), the input pattern f
is correlated against all stored memories, and the correlation
function is then convolved with the associated stored output
pattern. The final resuit is obtained by summing all of the
reconstructed images. The peak detection memory shown in
Fig. 1(b) detects the presence of the peak in the correlation
plane to determine the best match between the input and one
of the stored input images. Once the match has been estab-
lished, only the corresponding memory is illuminated. which
eliminates the crosstalk and the distortion present in the ghost
holograms. The final possibility, shown in Fig. i{c). is to
sample the correlation plane only at the origin. where autocor-
relation peaks occur, using an array of pinholes (rather than to
actually detect the peak). The spatially sampled correlation
peak rather than the entire correlation plane is then convolved
with the associated stored output image. This eliminates the
distortion present in the ghost image holograms but does not
entirely eliminate the crosstalk. Consequently. compared to
the ghost holograms, the quality of the recalled images is
dramatically improved in this case: however. the number of
patterns that can be stored in the same hologram is reduced.
compared with the peak detection type. The crosstaik at the
output of the system can be reduced by thresholding if the
stored patterns are binary, and further improvement can be
realized for autoassociations (i.e., the input and output stored
patterns are the same) through the use of feedback.®'" The
advantages of the latter type of memory are its simplicity.
since no active devices are needed at the intermediate level.
and its robustness with respect to failure of components. In
the peak detection memory. if the element that senses the
correlation peak of a particular stored pattern fails. the entire
memory is erased. Moreover, this type of memory (also re-
ferred to as outer product memory) is widely used in the
modeling of neural networks, and it generalizes very naturally
to multilayered networks.

In this paper we describe in detail two holographic associa-
tive memories that utilize the pinhole sampling method. Both
memories are constructed as an array of VanderLugt correla-
tors. Multiple images are multiplexed on Fourier transform
holograms. A single hologram is used in the first architecture.
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an autoassociative memory, since the input and output pat-
terns are the same. The second architecture utilizes two sep-
arate holograms for storing the input and output patterns and
can be cither auto- or heteroassociative. The experimental
demonstration of both systems operating as autoassociative
memories is described.

2. ARCHITECTURES

To construct a two-dimensional outer product associative
memory, we need to impiement the following operation:

h(x.y) = f Tix.y. E.mf(E.m)dE dv . 0
where
M
Tix.y.&n) = 2 hp(X, ) mlE) . 2)
m=1

T(x.y. £&.m) is the synaptic matrix in accordunce with the outer
product storage mechanism, f(€,m) is the :mth input memory,
hm(x.y) is the associated output pattern, and M is the
number of memories stored. f(§,n) is the input function to the
memory, and h(x.y) is its output. In the remainder of this
paper we concern ourselves with autoassociative memories, in
which hy(x.y) = fa(x,y). To implement Eq. (1), we need a
four-dimensional interconnection matrix that cannot be di-
rectly implemented optically. However, if we substitute Eq.
(2) into Eq. (1) and rearrange, we end up with the following
inner product representation:

M
hix.y) = I[ 2 fm(x.y)f,.(g.v\)]f(i‘mdﬁ dn

M
=y [fr,,.(g.m'ﬂ&.mdg dn]f...(x.y) . 3)

From Eq. (3) we deduce that the optical implementation of
this memory can be decomposed into three steps. First, the
inner product of the input and each memory must be formed.
This can be optically evaluated as the correlation sampled at
the origin. Second, each inner product must be multiplied by
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Fig. 2. Optical setup for the recording of the holographic memory.
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Fig. 3. Schematic diagram of the holographic memory system.

the associated memory. Finally, these products must be
summed over all of the memories to produce the final resuit.
The images are stored in & conventiona) Fourier transform
hologram, as shown in Fig. 2. All of the memories to be
stored are arranged side by side, spatially separated from each
other. In the analysis, it is assumed that each memory is
separated by the same distance along the x and y directions.
The Fourier spectrum of all of the memories interferes with a
single tilted plane wave to simultancously make a multiple
hologram. The amplitude distribution at the input plane is

M
> fl€ = a1 = b )

mw=]

where a,, and by, are the positions of the mth image in the §
and m directions, respectively. When we record the inter-
ference on a holographic plate at the hologram plane, the
amplitude transmittance of the hologram becomes

M :
E Fm(u.v)exp | —j(ua, + vb,)) + exp(—juo)

M
= Y Friuviexpiiluam = fo) + vbml}

m=|
+ conjugate term + dc terms ., 5

where Fr(u,v) is the Fourier transform of f (x,y) and &, is a
constant that determines the angle of incidence of the refer-
ence beam.

The system used to recall the information stored on the
hologram, shown in Fig. 3, is a modified VanderlLugt corre-
lator. The input pattern is placed at plane P, and is Fourier
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by leas L. The transform illuminates the holo-
ic memory placed at the Fourier plane P,. The correla-
of the input and each memory are produced at pianc P,
Jeas L. 'l'hemnerpmductvnlmmampledbymmy
pinholes at Py. Each pinhole is positioned exactly where
of the mnd was ceatered when the Fourier
transform hologram was recorded. Therefore, if the input is
oae of the stored images centered on the optical axis, then a
sharp autocorrelation peak will form at P, on one of the
pinholes. Light emerging from each pinhole is reflected by a
mirror placed immediately afier the pinholes, and the re-
flected light illuminates the hologram to form the recon-
structed images of all of the memories at the output plane P,.
The recoastruction due to light from each pinhole is the entire
composite memory shifted by the position of the pinhole. At
the origin at plane P, we obtain the superposition of all of the
memories. The strength with which each memory is repre-
sented in this superposition is proportional to the value of the
inner product between the input and the corresponding mem-
ory. A window is placed at P, to select only the desired
central portion of the reconstructed holographic images.

We now describe the operation of this system analytically.
Let f(£, m) be the amplitude transmittance at plane P, in Fig.
3. Then, the term of interest in the amplitude of the light
diffracted by the hologram is

H

52.3

M
>, Fu,vFa(u.viexpljlu(an = &) + vbul} . )

At the correlation output plane P,, the light amplitude is the
Fourier transform of Eq. (6):

M
2 Bu(—X'. =¥ ) * 8{x’ = an + £0.Y’ — bu} . v

where g (x',y’) is the correlation of f,(§,m) with f(§,n), and
x',y’ are the coordinates in plane Py. The correlation output is
sampled by the pinhole array located at coordinates x’ = a,, —
€0, ¥y = bm in P;. We assume that the pinholes can be
adequately described mathematically as delta functions.
Then, the light reflected by the mirror at plane P; can be
written' as

y :
> [s-(-xK-y’) *5{x’ ~am + &0y’ - bm}]

X 8{x' — am + &0y’ = b}

M
= D 8a(0.03{x’ =~ 2 + £0.y" = bal . ®)

The reflected light illuminates the hologram in P;, and the
amplitude of the light traveling from right to left in Fig. 3
immediately to the left of P, is given by

M M
3 S 2a(0.00Fn(u.vIexp{~j{u(@m = am) + V(bm = bul} .

m=lm'=] “
The light at the output plane P, is the Fourier transform of
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Fig. 4. Closed-loop version of the holographic memory system.

Eq. (9). Note that in the above equation, unless m = m’, the
spectra Fr(u,v) will emerge on a high spatial frequency car-
rier, which means that they will be reconstructed off-axis at
Ps. The total light amplitude at P, can be written as

M M
2 Y em00)n(x + 3y = 2y + by~ by) . (10)

m=lm's=)

When we observe the light only through a window that is
centered around the optical axis and is equal in size with each
memory, only the terms m = m’ survive:

M
S 2a(0.00m(x.y) . (11

m=]

If £ is real,

M
> 8a(0.0)n(x.y) . (12)

Comparing the result in Eq. (12) with Eq. (3), we see that the
optical system we described is exactly the outer product asso-
ciative memory.

If the input pattern is most similar to the stored image
fm(§,M), then the correlation between the input and f,,, will
be the strongest, and consequently [from Eq. (12)]. fm (x.y)
will be amplified the most in the final output reconstruction.
However, there is still crosstalk, since all of the other mem-
ories are also weakly read out. This crosstalk can be elimi-
nated if the stored images are binary, in which case the output
can be thresholded and fed back to the input for multiple
iterations.® A closed-loop version of the holographlc memory
is shown in Fig. 4. The light at the output is detected on a
two-dimensional CCD. The video signal from the CCD is
electronically thresholded and fed back to the input plane of
the system through an electronically addressed spatial light
modulator The Litton magneto-optic spatial light modula-
tor'” is one candidate device that can be used for this purpose.
The system also can be configured with optical feedback
using an optically addressed spatial light modulator.

An alternative implementation of this typc of associative
memory is shown in Fig. 5. This architecture is basically an
unfolded version of the system in Fig. 3. In other words,
instead of having a mirror that reflects the light back through
the same system, we have two identical optical systems. one
after the other. This allows us to use two separate holograms.
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Fig. 6. Experimental setup of the system in Fig. 3.

which provides added flexibility in designinf the system and
also makes heteroassociations possible.'®'® The system
shown in Fig. 5 is an autoassociative memory with feedback
and thresholding. An input image enters the system through
the beamsplitter, as shown in the figure, and is thresholded by
an optically addressed spatial light modulator. Several de-
vices can be used for this purpose, such as the Hamamatsu
microchannel spatial light modulator®® or the Hughes liquid
crystal light valve.2' The optical system from plane P, to
plane P; is a modified VanderLugt correlator similar to the
one used previously. The correlation patterns are sampled by
an array of pinholes at Ps, and the light emerging from plane
P, illuminates a second, identical system. The light reaching
plane P, is the superposition of all of the images that have
been stored in the multipiexed holograms. Each image is
weighted by the inner product between the pattern recorded
on the spatial light modulator from the previous iteration and
itself. Thus, the systems shown in Figs. 4 and S are function-
ally identical. As will be seen when we describe the experi-
mental demonstration of the two systems, the added flexibil-
ity of the system in Fig. S can significantly improve the
performance.

3. EXPERIMENTAL RESULTS

The experimental apparatus assembled to demonstrate the
memory of Fig. 3 is shown in Fig. 6. The multiplexed Fourier
transform hologram (item 3) was fabricated in dichromated
gelatin. The pinhole array (5) was made by drilling four holes

CALTECH
HOLOGRA

ASSOCIA
"MEMORY4

m7.mmmmmhmwmmm
experiment.

Fig. 8. Correlation outputs for (a) the first and (b] the third memoaries
st the input.

on a thin metal plate. The diameter of each pinhole was 350
pum. The pinhole array was then placed in contact with a
mirror. A CCD camera (7) was used to detect the output of the
memory through the beamsplitter (6). The four patterns used
as the memories in this experiment are shown in Fig. 7. The
patterns obtained at the correlation plane (or equivalently. the
plane of the pinholes) when the first and third stored patterns
were presented at the input are shown in Figs. 8(a) and 8(b),
respectively. A sharp autocorrelation peak is evident in both
cases, and the position of these peaks coincides precisely with
the position of two of the four pinholes. It is interesting to
note that the inclusion of the pinholes destroys the shift in-
variance of the VanderLugt correlator. If the input patiern is
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shifted from its nominal position, then the correlation peak
shifts as well; consequently, it misses the pinhole, and thus no
light is reflected. If the pinholes are removed, however, we
are back to ghost holography. The recalled image obtained
when the pinholes are removed and the first memory is placed
at the input plane is shown in Fig. 9. This image was obtained
at the output of the system (on the CCD) with the masking
window removed. The image is obviously highly distorted,
and there is no apparent favoring of the correct memory. A
dramatic improvement is obtained when the pinhoies are in-
cluded (Fig. 10, with partial inputs also displayed). In this
case, cach memory is faithfully reconstructed. The shift in-
variance of the system can be restored by including a quad-
ratic nonlinearity in the correlation plane.?2

The experimental apparatus of the loop system (Fig. S) is
shown in Fig. 11. The system was constructed with the micro-
channel spatial light modulator as the threshold device, and
the holograms were recorded on thermoplastic plates. The
four Fourier transform lenses and the pinhole array are visible
in the photograph. Several results obtained with this setup are
shown in Fig. 12. The four faces used as the memories are
displayed in Fig. 12(a). Figures 12(b) and 12(c) show the
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reconstruction of the first and second holograms, respectively
(see Fig. 5). Note that the reconstruction of the first holo-
gram, used for recognition in this architecture, is edge en-
hanced. This was accomplished by recording the hologram
such that the high spatial frequency portion of the spectrum
was enhanced, which ensures that the cross-correlations be-
tween the four faces are much smaller than the autocorrelation
peaks. The second hologram, used for read out of the stored
information, is recorded so that a faithful reconstruction is
obtained using diffuse illumination during the recording. The
partial input and the complete recalled image are shown in
Figs. 12(d) and 12(e), respectively. The noise evident in Fig.
12(e) is speckie, a consequence of the diffuser used to form
the second hologram. Comparing Fig. 12(e) with Fig. 10, we
see that in Fig. 10 there is still evidence of crosstalk superim-
posed on the reconstructed images, while no crosstalk is de-
tectable in Fig. 12(e). The thresholding performed by the
spatial light modulator, the high space-bandwidth product of
the images used, and the virtual orthogonalization of the four
memories accomplished by the high pass filtering in the first
stage combine to climinate the crosstalk in a single pass
through the loop in the second experiment.
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Introduction

In this paper we report recent experimental results from the optical associative mem-
ory that we have described previously {1,2]. This system is a single layer neural network .
architecture simulating a 2-D array of approximately 10° neurons on which images can
be represented. [his 2-D array of neurons is fully interconnected via holograms and the
system is organized as an auto-associative memory with feedback. An external image pro-
jected into the system causes one of the stored images to become a stable state of the
system. The ability of the system to recognize distorted versions (e.g. rotated, shifted,
or scaled) of a stored image depends critically on the gain of the system as the light goes
around the loop. High gain provides invariance to distortions but ultimately it also leads
to a loss in discrimination against unfamiliar images. Thus there is an optimum choice of
parameters of the system that yields optimum performance. In what follows we describe
how the parameters affect the performance of the memory and we report the performance
(in terms of discrimination vs. invariance) obtained by the experimental system.

Experimental System

A schematic diagram of the optical associative loop is shown in Fig.1 and a photo-
graph of the experimental apparatus is shown in Fig.2. This processor is comprised of
two cascaded correlators of which the first is used for calculating the degree of similarity
between the external input image and the images stored in the hologram. The second cor-
relator uses the output from the first correlator to reconstruct the same images that are
also stored in the second hologram to provide the feedback signal for the loop. The oper-
ation of this associative loop can be explained with the aid of the block diagram shown in
Fig.3a. In this example four images spatially separated and stored in the Fourier transform
holograms H; and H; as shown in Fig.3b. When the input pattern A is presented as an
input to the system, the first correlator produces the auto-correlation pattern along with
three cross-correlations at plane P;. The pinhole array at P, samples these correlation
patterns at the middle of each pattern where the inner products between the input and
each of the stored images form. Each of the four beams that go through the pinholes goes
through the second correlator to reconstruct the four images stored in hologram H;. These
reconstructed images are spatially separated and superimposed at plane P;. The stored
image which is most similar to the input pattern gives the strongest correlation signal
hence the brightest reconstructed image. The weakly read-out from the cross-correlation
can be eliminated by thresholding by the LCLV. The output of the LCLV becomes the new
input image for the loop and thus iterations take place. The stable pattern that forms as
a recirculating image in the loop is the stored image that is most similar to the original
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input.

In the system of Fig.1 the input pattern is imaged onto the LCLV by lens L; and
through beam splitter BS3. A collimated argon laser beam illuminates the read-out side
of the LCLV through beam splitters BS; and BS,. A portion of the reflected light from
the LCLYV that propagates straight through BS), is diverted by BS3, and it is imaged by
lens Lo onto a CCD television camera. This provides real time monitoring of the activity
of the system. The portion of the light that is reflected by BS, into the loop is Fourier
transformed by lens L; and illuminates the hologram H,. The correlation between the
input image and each of the stored images is displayed at plane P;. The pinhole array at
P, has center spacings corresponding to the spatial separations of the stored images. The
remainder of the optical system from Pz back to the neural plane P, is essentially a replica
of the first half, with the hologram H; storing the same set of images at H;. Fig 4 shows
an example of an experiment performed with this loop. Fig. 4a is the external input,:-
in this case a partially obstructed image of one of the stored patterns. Fig.4b shows the
response of the system with the external input still present, and Fig.4c shows the stable
state of the loop after the external input is removed.

One of the interesting properties of this system is its dynamics. The time for the
loop to reach a stable state depends very much on the initial conditions. Fig.5a shows
the temporal response of the loop to an input pattern. When the signal in the lower
trace becomes high, it indicates that the external input is ON. The upper trace shows the
corresponding response of the loop. The initial rise is due to the presentation of the input
whereas the second rise is due to the fact that the feedback path was closed. It is seen
that it takes about two seconds for the loop to reach a stable state whereas the rise time
of the LCLYV is approximately one second in the mode we operated it. When the external
input is turned off, the loop remains latched to a stable state which is one of the stored
images. Fig.5b shows the same experiment but with input intensity reduced to one third of
the first input. The second rise of the upper trace shows that it takes approximately four
seconds for the loop to reach its stable state. After the input is turned off the loop gives
the same output intensity. This example shows that initial conditions affect the dynamics
of the loop but it does not affect its final state. We will see in the next section similar
invariances when the input is shifted and rotated.

" The loop dynamics and related invariance properties can be best understood by using
a network model as shown in Fig.6. Each resolution element of the LCLV simulates a
separate neuron and with resolution of the device used being approximately 400 x 400
pixels, 160,000 neurons are simulated. Each of these neurons is globally connected and
fed back to everyone via the two holograms. The optical signal is attenuated in the loop
due'to the diffraction efficiencies of the Fourier transform holograms and the losses from
pinholes as well as lenses and beam splitters. Therefore neurons have to provide optical
gain to compensate this loss. In our system this is achieved by adding an image intensifier
at the photoconductor side of the LCLV. The microchannel plate of the image intensifier is
sensitive to a minimum incident intensity of approximately 1 nW/em? and it reproduces
the input with an intensity 10 times brighter (10 uW /em3). This is bright enough to drive
the LCLV. If we use a beam with intensity equal to 10 mW/cm? to read the LCLV then
the intensity of the output light is approximately 1 mW /cm?. Thus, the combination of the
image intensifier and the LCLV provide optical gain up to 10%. Fig.7a shows the input-

.—'—-'———J



output characteristics of the optical thresholding element which is similar to a sigmoid
function. The optical gain can be adjusted by changing the bias voltage of the image
intensifier. Fig.7b shows the relationship between the bias voltage applied to the image
intensifier and the gain.

The dynamics of the recall process can be described by using an iteration map formed
by the gain and loss curves as shown in Fig.8. In the figure the slope of the straight line
is proportional to loop loss due to the holograms and the pinholes and it is superimposed
with the input-output response of the neurons. The intersection points of this line with the
neuron gain curve at point Q; determines the threshold level and Q3 represents a stable
point. If the initial condition of the neuron is above the threshold point 1, the signal
grows in each iteration until it arrives and latches at Q3. On the other hand, if the initial
condition is below 01 the signal will decay to zero. The number of iterations depends on
the distance of the initial condition from the threshold. This explains the dynamics of
Fig.5. Similarly, if the loop loss is lJow or the neuron gain is high one can expect that the
loop will converge faster to a stable state. Raising the gain also has the effect of lowering
the threshold of the system. In the following section we will see that the setting of the
gain is the key parameter that mediates the trade-off between distortion invariance and
discrimination capability of the loop.

Invariance versus Discrimination Trade-offs

In the previous section we saw that as long as the gain is high enough and the external
input is strong enough to produce an initial condition for the LCLV that is above threshold,
then the loop will converge to one of the stored stable states. Since the external input
does not affect the shape of the final state, but rather it selects which state is produced
we can build a degree of invariance in the system since a shifted, rotated or scaled version
of a stored image can cause the stored image to be recalled. The effect of such distortions
of the input image are to decrease the level of the initial condition. Therefore, by raising
the neuron gain, no matter how much we change the initial condition by rotating, shifting,
and scaling the input image, the loop can always be made to produce an image as a stable
state. But the ability to correctly recognize a stored image from a distorted input and the
discrimination capability, i.e. the ability to distinguish images from one another are two
things that compete with each other. If there is too much gain then just shining a flush
light at the input of the system causes it to lock on to one of its stable states. If the gain
is set too low then even an input that is a slightly distorted version of one of the stored
images is not recognized. There are two parameters under our control that can affect the
gain in the loop: The gain of the neurons and the size of the pinhole.

We will use Fig.3b as an example. Let fi(z,y),¢ = 1,2,3,4, represent the images of
the letters A, B, C, D, respectively and let the pinhole size be W. Then the reconstructed
images in the window at P, can be shown to be

> losi(z, )rect(iIrect ()] + fi(=.y)

=]

where * represents the convolution operation, g,1(z,y) is the auto-correlation of A and
d1i,¢ # 1, are the cross-correlations of A with B, C, D, respsctively. We see that the
images are blurred by the finite dimension of the pinholes. Decreasing W gives better
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image quality but we need to increase the gain of the neurons to compensate for the loss
due to the small pinholes. At the other limit, if the pinhole size is increased we do not need
very high gain neurons but the image quality deteriorates. In the limit when W becomes
infinitely large, the reconstructed image in the window at P, becomes a superpasition of
all the stored images, each equally strong, and severely blurred. Thus there is an optimum
pinhole sise and an optimum neuron gain. Fig.9 shows the minimum gain required and
maximum gain allowable for the loop to sustain a stable memory as a function of pinhole
size. Below the minimum gain the loop can not recognize any image in the sense that
once the external input is cut off the loop activity decays to zero. Above the maximum
gain the loop loses discrimination capability meaning that any input image even a flash
light will induce the loop into a stable state. This behavior is consistent with our previous
predictions. Note that the minimum gain increases when the pinhole size is increased to
more than 250 um. This is because the reconstructed images are blurred so much that
the correlation peaks are weakened and the losses in the loop are increased. Fig.9 shows
that the optimum pinhole size in this system is in the range of 70 um to 150 um. We
choose 90 um for the rest of the experiments.

Two kinds of invariances are studied; shift and rotation. The images stored in the
holograms were four faces. The invariance capability was measured by presenting to the
network one of the stored images rotated and/or shifted by varying amounts and monitor-
ing the response of the system under various gain conditions. From Fig.9, the minimum
gain for this pinhole used is 2.8 x 10% and the maximum gain is 1.2 x 105. We made
measurements under low gain (=3 x 10%) and high gain (=10%) conditions. The results
of the shift experiment are shown in Fig.10. Fig.10a shows that as the input image is
shifted away from the memory position, the loop response time becomes longer because
the correlation signal is shifted away from the pinhole. This makes the initial condition of
the loop weaker thus it takes more iterations to reach a stable state. If the input is shifted
too much then the correlation peak misses the pinholes completely thus the input is not
recognizable. However, the output intensity is shift invariant as long as the loop recognizes
the input. Fig.10b shows that the tolerance to shift can be increased by increasing the
neuron gain. But in this high gain region the loop has poor discrimination capability and
it also incorrectly recognizes a similar face as one of the stored images.

The dynamics and invariance properties under rotation of the input were also mea-
sured by using the same pinhole diameter and optical gain. The results are shown in
Fig.11. It is seen that by increasing the optical gain from 10* to 10° the allowable rotation
angle for the input is increased from 8 degrees to 16 degrees. Again the dynamics and
rotatxon invariance are consistent with our predictions.
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Blas-free time-integrating optical correlator using a

photorefractive crystal

Demetri Psaitis, Jeffrey Yu, and John Hong

An acoustooptic time-integrating correlator is demonstrated using a photorefractive crystal as the time-

integrating detector.

I. inlroduction

Time integration! has proved to be a powerful tech-
nique in optical signal processing and has been used in
a wide variety of architectures. A major drawback of
time-integrating processors is the buildup of bias in
addition to the signal. This occurs because the photo-
generated charge that is integrated on the detector is
proportional to the intensity of the optical signal which
makes it necessary to represent bipolar signals on a
bias. The effective system dynamic range at the out-
put is given by DR’ = DR [SBR/(1 + SBR)] where DR
is the dynamic range of the output detector and SBR is
the signal-to-bias ratio on the detector.? In most cases
of interest, the SBR is much amaller than unity and
thus the added bias significantly reduces the usable
dynamic range of the system.

The moet frequently used method for separating the
signal from the bias involves placing the signal on a
spatial carrier and then electronically filtering the out-
put of the integrator. This method of bias removal,
however, does not solve the dynamic range problem
since the processing is done after the detection of the
signal. Also, an additional constraint is placed on the
resolution of the detector, since the pixel separation
must be less than one-half of the period of the carrier
being recorded, which will result in a significant reduc-
tion in the available space-bandwidth product at the
output.

In this paper a new method for performing time-
integrating correlation is described using a photore-
fractive bismuth silicon oxide (BSO) crystal as the
time-integrating element. The correlation is formed
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on a spatial carrier in the crystal and read out with an
auxiliary beam. Since only the signal recorded on a
spatial carrier is stored in the photorefractive crystal,
the diffracted light that is detected contains the corre-
lation information without the bias. The bias doesnot
reduce the dynamic range of the output detector used
for final readout, but rather the diffraction efficiency
of the BSO crystal. In addition, the resolution of the
BSO crystal is very much higher than that of a CCD
detector, allowing the correlation of very high space-
-bandwidth signals to be formed on a carrier. Finally,
since the result of the time-integrating correlator is
read out optically, the output can be easily interfaced
with other optical systems, thus making new architec-
tural designs possible.

In Sec. II, the theory of optical recording in photore-
fractive crystal is reviewed and extended to the use of
photorefractive crystals as time-integrating elements.
The architecture and experimental results are de-
scribed in Sec. III. Dynamic range, linearity, system
limitations, and other performance aspects are dis-
cussed in Sec. IV.

N. Photorefractive Crysiais as Time-integrating Optical
Detectors

When a photorefractive BSO crystal is illuminated
by an intensity grating, electrons are excited from
traps into the conduction band. These charges mi-
grate due to diffusion and drift from an externally
applied electric field and then recombine in dark re-
gions, creating a spatially varying internal space-
—charge field. This field modifies the index of refrac-
tion in the crystal through the linear electrooptic effect
and, as a result, a holographic phase grating is recorded
in the crystal. Grating formation in photorefractive
media has been extensively studied and modeled.34
We will show heve that the photorefractive crystal zcts
as a time-integrating element.
| Let the intensity incident on the crystal be as fol-
ows:




- Io + Re{l,(x,t) exp(ikx)] fort > 0
I(x2) {0 herwise. (1
Assuming that self-diffraction effects are negligible
and that the spatial variations of I,(x,t) are small com-
pared to the grating frequency k, the intensity of the
light that is diffracted when the crystal is illuminated
by a readout beam can be shown to be®

]( !‘

Loalxt) = exp(t’/r)dt’ Ip. 2)

—-exp( t/)L

I is the intensity of the readout beam and K, is a
complex constant involving the material parameters of
the crystal, the grating frequency, and the applied
electric field. 7 is the complex time constant of the
space—charge field and is given by r = Ko/l K, is
also a complex constant that depends on the photore-
fractive material used and the experimental condi-
tions. I is the average light intensity incident on the
crystal during exposure.

If I1(x,t) is expanded into its temporal Fourier com-
ponents,

Ii(xt) = I ) $(x0) expliwt’)dw,
then the output intensity for t 3> r can be written as
follows:
K1 - I‘(x,
Io J—o (1/1' +iw

The above is recognized to be a low pass filter with
cutoff frequency 1/|r|, which is approximately equiv-
alent to the output of a sliding window integrator, with
integration time r. Thus,

2
exp(iwt)dw Ip. 3)

"(3 t) a

w(xvt) S

tl
Kl J»u- Il(x ) In- @

4 10

Hence, the output intensity can be treated as the
square of the normalized mtegratlon of the signal I;.

An interesting observation is that, if I;(x,t) were inde-
pendent of time, the output intensity depends only on
the ratio of the modulated intensity I; to the dc inten-
sity Io.
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N  Experimental Demonsiration

A schematic diagram of the experimental system is
shown in Fig. 1. The input electrical signals are mixed
with the center frequency of the acoustooptic devices
(AODs) and fed into the AODs. The first AOD is
illuminated by a collimated wave and the upshifted
diffracted order is imaged onto the second AOD, then
reimaged onto the photorefractive BSO crystal. The
second AOD is oriented such that the acoustic signal is
counterpropagating with respect to the image of the
acoustic signal from the first AOD. The undiffracted
light transmitted through the first AOD is incident at
the Bragg angle of the second AOD. The upshifted
diffracted order of the second AOD is also imaged onto
the BSO crystal. The undiffracted light is spatially
filtered before reaching the BSO crystal. In this ar-
rangement, the AODs are parallel to each other, but
the diffracted orders propagate at an angle with re-
spect to each other even though both diffracted beams
are temporally upshifted. This causes the signals
from the two AODs to interferometrically record the
correlation signal on the BSO crystal at a high spatial
frequency. Let the inputs to the AODs be v1(¢) = a(t)
exp(iwgt) and va(t) = b(t) exp(iwot), where wo/2x is the
center frequency of the AOD. The intensity incident
on the photorefractive crystal is

I(x,t) = |a(t — x/v) explivx) + b(t + x/v) exp(—iyx)?
= |a(t = x/v)? +[b(t + /o)?
+ 2 Refa(t = x/v)b*(t + x/v) exp(i2vyx)], )

where v is the acoustic velocity of the AOD and v =
wo/v. We will treat the case where |a(¢){2 and |b(¢)}2
can both be approximated as constants, as is the case
for FM signals. Then, the intensity pattern can be
separated into a dc term ]y and a signai term I(x,t)
modulating a spatial carrier cos(2yx) in the form of Eq.
(1). This intensity pattern results in the formation of
a hologram on the photorefractive crystal as described
in the previous section. The hologram is read out with
an auxiliary beam and is imaged onto a charge coupled
device (CCD) detector for readout.

If the assumption is valid that [;(x,t) has spatial
frequencies which are small compared with the carrier
frequency 2, we can use Eq. (4) to obtain an expres-
sion for the output intensity detected by the CCD:

Fig. 1. Optical setup of the photorefractive bias

removal correlator.
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Fig. 2 Output of a standard time-integrating correlator without
noise.

Fig. 3. Output of the bias removal correlator without noise.

Fig. 4. Output of the bias removal correlator with a signal-to-noise
ratio of 0 dB.
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| ik lof? +{4?
and by defining variable t, = t — x/v,

fogylx) =

tbr=z/v 2
] ale b (e, + k/v)dtll . )
fo

(32

Hence the system produces the magnitude square of
the correlation between the signals a(t) and b(t) inte-
grated over a finite interval 7.

Flint glass acoustooptic cells driven at a center fre-
quency of 70 MHz were used in the experiment. A
symmetric linear chirp signal with bandwidth Af = 5
Mhz was fed into each cell to produce the autocorrela-
tion peak. The Bragg angle of the AODs was 0.2°,
which corresponded to a grating frequency equal to 35
lines/mm in the BSO crystal. ._

The BSO crystal used in the experiment was cut in
the (110) direction and measured 15 X 15X 2mm. An
external electric field of 7 kV/cm was applied in the
{001) direction of the crystal which was also the direc-
tion of the grating vector.

The correlation was recorded on the crystal with an
argon laser at a wavelength of 514 nm with average
intensity equalto 1 uyW/cm2. The correlation was read
out with a He~Ne laser (A = 633 nm) with 150-xW/cm?
intensity. Cylindrical lenses (not shown in Fig. 1)
were used to expand the output of the AODs thereby
illuminating the full aperture of the BSO crystal and
also to focus the diffracted light onto a 1-D CCD.

The output signal-to-bias ratio of a conventional
time-integrating correlator is reduced when the levels
of the two signals are unequal and/or if there is addi-
tive noise present in the system. Both conditions were
simulated experimentally. Noise was simulated by
adding a 70-MHz signal to the input of one of the
AQODs. The output of a standard time-integrating
correlator (i.e., the correlation formed directly on the
CCD) for the noise-free case and equal amplitude sig-
nals is shown in Fig. 2. This condition provides the
maximum signal-to-bias ratio for the system. We can

Fig.5. Output of the bias removal correlator with a signal-to-noise
ratio of =10 dB.




see in Fig. 2 that there is still a strong bias term added
to the correlation peak. The correlation produced by
temporally integrating on the photorefractive crystal
is shown in Fig. 3. In this case, all the bias due to
temporal integration is removed, and any residual bias
is due entirely to dark current from the CCD. The
outputs of the bias removal correlator with input sig-
nal-to-noise ratios of 0 and —10 dB are shown in Figs. 4
and 5, respectively. Again, bias levels which appear in
the figures were entirely due to the integration of dark
current in the output detector. In practice, the detec-
tor dark current can be minimized by increasing the
intensity of the readout beam, thereby decreasing the
required integration time of the output CCD detector
and/or cooling the detector.

. Performance

The experimental results described in the previous
section show a dramatic qualitative improvement in
the correlation that is obtained when the photorefrac-
tive crystal is used instead of the CCD. In this section
we examine certain characteristics of this method
which are useful for quantitatively evaluating its per-
formance. Specifically, we examine the linearity, in-
tegration time, dynamic range, and sensitivity of the
correlator.

A. Linearity

In a conventional time-integrating correlator (co-
herent or incoherent), the output correlation is basi-
cally proportional to the signis applied to the AODs.
Nonlinearities occur only when we exceed the linear
dynamic range of the devices used, i.e., if the diffrac-
tion efficiency of the AOD exceeds several percent or
the integrating detector is driven to saturation. Inthe
photorefractive time-integrating processor, the output
intensity is a nonlinear, monotonically increasing
function of the input voltage. The nonlinearity arises
because of the square-law detection at the final read-
out stage and the recording mechanism in the photore-
fractive crystal. The nonlinear relationship is now
studied analytically and experimental verification of
the theoretical results is presented.

Letv;(t) = s(t) be a fixed reference signal and v(t) =
as(t) be an input signal of varying amplitude (0 < a <
1). Since the correlation term contains spatial fre-
quencies which are much lower than the grating fre-
quency, near the correlation peak (x = 0) the intensity
incident on the photorefractive crystal is

I(x,t) = (1 + a? + 2a coskx)js(t)>.

Using Eq. (1), the output intensity at the CCD is pro-
portional to
2 2

T .
1+a?

The modulation depth of the intensity incident on the
BSO crystal is

low

m=

1+a?
and hence

e ——

NORMAL[ZED OUTPUT INTEMSITY ¥S MOOULRTION OEPTH

2 [ L] 1 2] L] 2 - e .om

(X3 8. 0
MODWLATION DEPTR

Fig. 6. Normalized output intensity vs modulation depth.

QUTPUT INTENSITY VS INPUT VOLTRGE

Fig. 7. Theoretical plot of output intensity vs input voltage ratio.

Iy = m* = 4a%/(1 + a%). (7)

Figure 6 is a graph of the output intensity at the
correlation peak vs the modulation depth incident on
the crystal. The experimental result is in excellent
agreement with the square-law relationship predicted
by Eq. (7).

A plot of the output intensity as a function of the
amplitude of the input signal a is shown in Fig. 7. The
nonlinear relationship between the input and output
signals is generally a disadvantage since the scaling of
signals of varying amplitudes will be nonlinear. This,
however, will not cause a problem if the correlator is
used only as a signal detection device, since correlation
peaks will still be discernible and only the threshold
level need be adjusted accordingly to maximize the
probability of detection.

8. Integration Time

In a conventional time-integrating correlator, the
integration time is limited by the dark current buildup
on the output detector, typically up to several hundred
milliseconds. When the photorefractive crystal is

15 November 1985 / Vol. 24, No. 22 / APPLIED OPTICS 3863
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Fig.8. Output intensity at correlation peak vs time as a function of
different average incident intensities.

used, the integration time is determined by the rise
time of the internal space—charge field which can easily
be made much longer. The correlation can be read out
at any rate that is convenient by an auxiliary detector
array.

The integration time is approximately equal to |1,
where
2

K
7;-' . 8

Ir] =

Hence, the integration time of the bias removal cor-
relator can be controlled by varying the writing inten-
sity. This control is important since the integration
time can be matched to the length of the reference
signal thereby increasing the probability of detection
of a weak signal.

The time response of the correlation peak for differ-
ent values of average incident intensity is shown in Fig.
8. Figure 9 is a plot of intensity vs the inverse of the
experimentally observed rise time. There is excellent
agreement between the experiment and Eq. (8).

The integration time, however, has a finite range
over which it can be adjusted. The maximum integra-
tion time is limited by the thermal effects in the crys-
tal. If the rate at which carriers are generated ther-
mally becomes comparable with the rate at which they
are photogenerated, the modulation depth of trap den-
sity will be reduced. As a result, the diffraction effi-
ciency of the grating will decrease. In practice, the
minimum integration time is limited by the maximum
light intensity that is available for recording. The
integration time can be reduced to 30 msec if the
incident intensity is made equal to 18 mW/cm?. This
power level, however, is simply not practical for most
applications.

C. Dynamnic Range and Sensitivity

Since the output of the bias removal correlator is
presented without bias, the output dynamic range of
the system is essentially equal to the dynamic range of
the readout detector array. To characterize the per-
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formance of the system we need to determine how the
input signal levels are mapped to this output dynamic
range. Let the dynamic range of the photorefractive
crystal be defined as DRpgo = Mpyay/Mupin, Where my..
is the maximum modulation depth (mm, = 1), and
My 18 the minimum modulation depth for which a
diffracted signal is detectable above the output scatter
and noise level of the system.

Given two input signals v,(t) = as(t) and vo(t) = s(t),
the modulation depth of the light incident on the crys-
talis m = 2a/(a? + 1). Thus, the minimum detectable
input signal is given by Gmip ® Mmin/2 = 1/DRpso. The
useful range over which a can vary is limited by DRgso-
From api,, one can define an in;mt dynamic range
given by DRinpys ™ 1/a2nin = 4/m%pi;. The most im-
portant parameter in determining the system dynamic
range is the minimum detectable modulation depth
Mpis. Experimentally, we measured the dynamic
range to be equal to 23 dB. This corresponds to a
minimum modulation depth of 0.142. We expect that
through careful design this can be substantially im-
proved. However, all the mechanisms that determine
Mpin are not fully understood. It is believed that
besides detector noise and scattering from the crystal,
the modulation depth is limited by thermal effects in
the material and shot noise arising from the internal
currents.

Another important aspect of the correlator system is
its sensitivity or the minimum signal-to-noise ratio
that is detectable. This parameter is also determined
by the minimum detectable modulation depth, mpy;p.
Given a reference signal v,(t) = as(t) and an input
signal contaminated by additive noise, vo(t) = bs(t) +
n(t), the modulation depth of the intensity incident on
the crystal is

ma 2abs(t)? .
(a® + b a(t)? + 0,2

The reference level which maximizes m is given by g =
(% + 0,%/|s(t)|2)!72, corresponding to a modulation
depth of




b
mes ————— . — .
(b2 + 0,/ [s(e)f" )2

In practice, optimizing the refer. nce level can easily be
achieved by setting the power oi the reference equal to
the total average power of the in put signal.
Normalizing the signal and r.»ise terms such that
|s(t)}2 = 0,2 = 1 we obtain
b
m (b’ + l)l/:

Thus, the minimum input SNR : nat produces a detect-
able correlation peak at the cutput is (S/N)min =
(503D min & Mmin2.

From the experimentally mc.sured value of mmpin,
the correlator should have had « sensitivity of ~17 dB.
Howedgsr. experimental results -nowed a sensitivity of
-14 dB.

V. Conclusion

The photorefractive time-int: :rating processor that
has been described has several :..lvantageous features:
bias removal, increase in the output space~bandwidth
product, and the ability to direc:ly interface the result
of the time-integrating processor with other optical
systems. Bias-free correlation is desirable because it
allows us to increase the dynamic range and hence the
sensitivity of time-integrating j»tocessors. In the im-
plementation described in thi. paper, however, the
square-law detection at the out;ut reduces the avail-
able overall dynamic range. A definite improvement
in dynamic range can be obtained if the correlation
that is formed in the photorefra: tive crystal is interfer-
ometrically detected on the out,.ut detector. Another
limitation of the system described here is the long
integration time (several secon ls). In some applica-
tions this long integration time is desirable and could

RS —

result in extremely good sensitivity (detection of sig-
nals with very low SNR). However it is certainly
desirable to be able to decrease the integration time to
several milliseconds. This could be accomplished by
increasing the optical power of the writing beams, but
this is in general an impractical solution. Another
limitation of this technique is the relatively low dif-
fraction efficiency that is obtained with BSO crystals
(2-3%), which reduces the overall light efficiency.
Materials with higher electrooptic coefficients, such as
barium titanate, can provide better efficiency; howev-
er, the time constant obtained with this particular
material is much longer than that of BSO. New pho-
torefractive materials currently being developed show-
ing promise of a large improvement in optical sensitiv-
ity as well as higher electrooptic coefficients may
provide a substantial improvement in performance
and, specifically, reduce the total optical power that is
required.

This work is supported by the Air Force Office of
Scientific Research and the Army Research Office.
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ABSTRACT

‘Optical interconnections utilizing volume holography is described. Intrinsic cross-talk
effects that limit the number of independent interconnections are identified and analyzed
by applying coupled-wvave analysis. Sampling grids for removing the first-order cross talk

are presented resulting in a system limited by second and third order cross talk only.




INTRODUCTION

Optical interconnecting elements that exploit free propagating light waves can
potentially act as a powerful alternative to electrical wiring because free propagating
photons lack the interactive nature of electrons (1]. Optical interconnections can be
particularly useful for the optical implementation of neural computers [2] in which ea?:h
processing element is interconnected to many others (typically several thousand). As
an example, a network that is capable of processing images may consist of several
million processing elements (or “neurons”) and therefore there is a very large number
of interconnections to be specified in such a system. If the system that is utilized to
simulate all these connections is planar (e.g. electronic or an optical system that utilizes
a planar medium to specify the connectivity pattern), then the area of the device grows
in proportion to the total number of connections. As an example, let us assume that
the area required to record the strength of each interconnection is 10um?2, then the total
area required to simulate a network that is comprised of 10° connections is 10cm x 10cm.
This makes the fabrication of such a device very difficult and in the case of the optical
impl,ementa.tion, the size of the optical system becomes exceedingly large. To overcome
this shortcoming, we have previously proposed [3] a holographic optical interconnection
method for utilizing a three-dimensional storage medium which provides a much higher
storage density. In this paper, we derive the interconnection pattern having minimum

cross talk and the signal-to-noise ratio for this interconnecting configuration.

HOLOGRAPHIC INTERCONNECTIONS




To identify the fundamental cross-talk effects that limit the available number of
independent intefconnections, a global volume holographic interconnection between N
input and N output pixels is considered. The arrangement we will be using is shown
in Fig. 1. The input and output pixels are arranged in planes. A lens collimates light
from each input point and therefore the light incident on the crystal in Fig. 1 due to a
single point at the input is a plane wave whose propagation direction is determined by
the position of the pixel. Similarly, an output lens focuses each diffracted plane wave ;
to a pixel on the output plane. The interconnection between each pair of input-output
points is performed by a separate grating, with the strength of each grating determining
the weight of the connection. Each grating can be recorded with a separate exposure
which would require a total of N? exposures. We can reduce the number of required
exposures by forming N multiple holographic exposures [4] as follows. One input point is
turned on during each exposure and the desired connectivity pattern between the selected
input point and all the output points is recorded at the training plane (see Fig. 1). An
exposure of the interference pattern between the two waves is recorded and the process
is repeated for each of the N input points. If we neglect diffraction effects at the crystal
boundaries, then the interconnection pattern consists of perfect sinusoidal gratings, which
include: (1) N(N -1)/2 ;ratings that are recorded by the interference between pixels
tha.tva.re simultaneously on at the training plane during the recording, and (2) N? gratings
cox;necting input and output pixels. For convenience, the former set of N(N —1)/2 gratings
are referred to as intra-layer gratings and the latter set of N? gratings are described as

inter-layer gratings.




An independent interconnection is defined in such a way that the intensity I, of the
diffracted light wave at the output pixel p is given by
N
L =) npl, (1
tm=]
where i is the index that represents input pixels, J; is the intensity at the input pixel i,
and n,; is the diffraction efficiency of the grating generated by the interference between
the input pixel 1 and the pixel p’ at the training plane that corresponds to the output pixel
p. We have assumed in Eq. (1) that the read-out light is spatially incoherent. This means )
that the light intensity reaching each output point is a linear combination of the light
sntensities of the input pixels and therefore we have used light intensity as the variable
that describes the system. If the hologram is read-out with spatially coherent light, then
the field is the appropriate variable to use. The field is a complex quantity (has both
ampiitude and phase) and therefore the coherent case is generally more difficult to analyze

and also implement.

The cross-talk effect in volume holographic interconnections is defined as the difference
between the actual light intensity f, obtained at the pixel p and the desirable intensity
of Eq. (1). If we consider only first-order cross talk (i.e. neglecting the contribution of
multiple diffraction) we can write I, as follows.

=Y neli + 3.3 nipiti, ()

' J#i l#p
where 1,51 is the diffraction efficiency with which light is diffracted from pixel 1 to pixel p
due to a grating that was recorded by pixel 7 at the input and | at the output. Coupled-
wave analysis [5] is utilized below to evaluate those cross-talk effects. For this purpose small
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diffraction efficiency for an individual grating is assumed. Due to the assumption of amall
diffraction efficiency, the primary cross-talk effect can be evaluated by means of a first-
order coupled-wave analysis. In such an analysis, an input light wave at pixel ¢ interacts

with every grating in the volume hologram independently and without an intermediate

rediffraction. Diffracted light waves from the intra-layer gratings do not contribute to

cross-talk effects because of large phase mismatch, and therefore we only need to consider -

the first-order cross talk that results from the inter-layer gratings.

Let us consider an output pixel p. The light intensity received at p including the

first-order cross-talk effect is given by Eq. (2). The cross-talk diffraction efficiency n;p;:

calculated from coupled mode analysis is approximately [5]:

Nips1 = { njisine® (BkipjiL/27) if (2x/A)n; + Kji = np||(27/A)ns + Kjil|

0 otherwise,

where n; and n, denote unit vectors in the direction of propagation from the input pixel

t and towards the output pixel p, respectively. L is the thickness of the crystal and Ak;p;:

denotes the phase mismatch for the interaction between the grating K;; that has been

recorded for interconnecting point j to point ! and the optical wave emanating from the

input pixel ¢ and it is given by
Akipjt = [[(27/A)(n; — np) + Kjul.

) is the optical wavelength in the crystal.

FIRST ORDER CROSS TALK

The first-order cross talk can be eliminated if one can arrange input and output pixels
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so that all the N? gratings in Eq. (2), except for the grating K, yielding the signal, belong

to one of the two types of gratings defined below. The first type is characterized by the

condition that the phase mismatch given by Eq. (4) is larger than 2x/L, in which case the
diffracted light intensity is very small; for these gratings, the first-order cross-talk effect
can be neglected. The second type consists of gratings for which the diffracted light waves
do not propagate to any one of the output pixels used for the interconnection in which
case from Eq. (3) we have that #,;; = 0 and hence such gratings do not contribute any
light intensity at the pixel p through first~-order croas talk. To derive an arrangement that
will ensure that all the recorded gratings satisfy one of the two conditions stated above,
we note that the phase mismatch described by Eq. (4) is determined by the geometry of
the input and output pixels. The wave vector diagram is drawn in Fig. 2, where k; and k;

refer to the input wave vectors and ky and k; are the output wave vectors. The condition

k,‘ + Kj;
= et 0 S
Ny "] p K,'z" ( )

states that the unit vector n, is in the direction of the vectorial sum of the input vector k;
and the grating vector. This indicates that the grating K;; is a grating of the first type,
being capable of diffracting light from i to p unless it is phase misrnatched. Therefore,
once a pair (4, p) is selected it is imperative that all the remaining points (j,1) are selected
such that if Eq. (5) is satisfied then Ak;,;; is bigger than 2x /L. The degeneracy condition

that must be avoided is
Akipji = |ki + K3 — kpll| < 2x/L (6)

This condition specifies two strips on the k-space sphere as shown in Fig. 2. The two
strips are parallel circles on the wavenormal sphere. The planes in which the strips lie are

6




perpendicular to the grating vector K;;. If we select an input-output pair (s,p), then if an
additional input point j is outside the bottom strip in Fig. 2 it will not produce croes talk
to point p; if 5 is within the bottom strip then cross talk will be eliminated if an output
point is not placed at the same location as ! along the top strip. If these two criteria can be
met for all input and output pixels, then first-order cross talk is completely eliminated. The
required width of the strip in Fig.2 is determined by several factors including diffraction
due to transverse aperture of the hologram, an effect we have not considered in this paper. y
The principal factor determining the width is the angular sensitivity of diffraction from a
thick grating which is determined by the thickness of the crystal. The width of the strip
that is required to satisfy Eq. (6) can be approximated for the purposes of this simplified
exposition by 2x/Lsind, where 0 is the angle between k; and k,. This estimate is found
by determining the angular deviation of the incident and diffracted from the ideal Bragg

condition, that will make n;,;; = 0 (see Eq.(3)).

In the above discussion we have specified the conditions that must be met so that each
grating implements an independent interconnection in the crystal. The remaining task is
to specify the arrangement of input and output pixels in the geometry of Fig. 1 so that the
stated conditions are satisfied. We have developed an entire family of sampling patterns
that accomplish this goal {3]. Shown in Fig. 3 is one such sampling pattern for the input
and output planes. To see why this is the case consider first the gratings connecting two
input points along the same row to two points at the same row at the output. These
gratings can never be parallel to each other (i.e. fall within the same strip) because the

horizontal (z direction in Fig.1) difference in position between the input and the output




locations is guaranteed to be different. If we consider two adjacent points in the same
column at the input being connected to two adjacent points in the same column at the
output, then we find that the two gratings connecting them are tilted with respect to each
other in they—z pla.ne. (see the geometry of Fig. 1). In general, gratings connecting points
that are neither at the same row or column have gratings that are tilted with respect to
each other in all three directions. The patterns in this example are drawn on a 9 x 9 = 81
rectangular grid and only 9%/2 = 27 points are utilized as input and output points in the |
input and output planes, resulting in a total number of connections 9% = 729. In general, if |
the number of points available on a 2-D rectangular grid is $3, then the number of pixels
that are used for placement of neurons must be N < S3/2 in order to ensure that the
first-order cross talk can be eliminated. Equivalently, if we wish to have N units in the

input or output plane, then the number of resolvable points available must be §3 = N*4/3,
HIGHER ORDER CROSS TALK

Second-order cross-talk effects result from light waves that are first diffracted by a
grating from an input wave at pixel ¢, and then rediffracted by a second grating and is
directed to the output pixel p. Therefore, two gratings are needed. All the second-order
light waves resulting from diffraction by two intra-layer gratings or two inter-layer gratings
are negligible because in the geometry of Fig. 1 they are phase mismatched and thus they
do not contribute to second-order cross-talk effects. Therefore, the principal source of
second-order cross talk is diﬂ'.ra.ction from the inter-layer gratings followed by rediffraction

from the intra-layer gratings. Consider again an output pixel p receiving light from an input
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pixel s not directly through diffraction by the grating K;, but through the intermediate

step of diffraction first by an inter-layer grating K;; followed by rediffraction by the grating

K;p. This is depicted in a k-space diagram in Fig. 4a. Each input wave diffracts light to
all N4/3 output pixels through inter-layer gratings and at least N pixels are exactly Bragg
matched to the p-th pixel through rediffraction of the intra-layer gratings. Assuming that
the overall diffraction efficiency is small and therefore neglect the depletion of the incident
beam, we can easily calculate the second-order signal to noise ratio (SN R;), defined as the .
ratio of the intensity received at each output pixel due to the direct, first-order diffraction,

divided by the total intensity received due to double diffraction:

El'v Npilp 4
SNRy = y =Y 8 ~ . (7)
 PIH Zj#p nijngsly N

In the above equation 7, is the average diffraction efficiency for an intra-layer grating. From

Eq. (7) we see that it is desirable to minimize the strength of the intra-layer gratings to
eliminate the second-order cross talk. This can be accomplished by selecting a holographic
recording medium in which low spatial frequencies are recorded weakly. This is for instance
typical of gratings recorded in photorefractive crystals in the absence of an applied electric
field, in which case the recording is done principally by diffusion of the carriers. In this
case, gratings whose period is considerably longer than the diffusion length are not recorded
effectively. As an example, if KNbOg: Fe 300 ppm is utilized [6], the diffraction efficiency
for. .éum fringe spacing is more than three orders of magnitude larger than the diffraction
efficiency for a fringe spacing of 2.6um. Hence if the arrangements of input and output
pixels are chosen such that the spatial frequency of the inter-layer gratings is much higher
than that of the intra-layer gratings, then the effects of intra-layer gratings can potentially
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be made negligible compared to third-order cross-talk effects, which we consider next.

Third-order cross talk arises when light originating from the ¢-th pixel is diffracted
by three separate inter-layer gratings and is ultimately directed at the output pixel p. In
order to calculate the total amount of third-order cross talk we need to determine the total
number of three Bragg matched inter-layer gratings whose vectorial sum is equal to Kv.-,.
An example of this condition is depicted in Fig. 4b. The input beam in the direction of the
i-th pixel is Bragg matched to N4/3 gratings {7] and similarly, a beam diffracted towards
the I-th output pixel is Bragg matched (and therefore rediffracted by) N*/2 gratings. The

ratio of the intensities due to first and third-order diffraction is

X npils o 36
N =N¢/3 N4/ 8/3.,.2 "
36 L Disp Lojsi MiMnpsli N8/3p3

where n3 is the average diffraction efficiency of an inter-layer grating. The conclusion that

SNR3 =

(8)

we might draw from Eq.(8) is that as the network becomes larger (i.e. N increases) the
signal-to-noise-ratio deteriorates and therefore third order cross talk imposes a limit on
N. In fact, n3 = no/N? [4] where no = 1 is the diffraction efficiency obtained when only
a single grating is recorded in the crystal. Substitution into Eq.(8) reveals that SNR;
is proportional to N4/3 which implies that for large networks third order crosstalk is not

expected to be a serious concern.

CONCLUSION

We have used coupled mode analysis to derive a simple, approximate result for the
conditions that must be met in order for each grating that is recorded in a volume hologram
to implement an independent interconnection between two points in space. Since the
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number of gratings that can be stored in a volume medium is in the order of V' /A3 [8]
where V is the volume of the crystal and ) is the wavelength, the result reported here
can make possible the design of optical networks with extremely high storage density. The
effects of second and third-order diffraction were calculated and it is shown that these
effects can impose a limit on the number of units that can be interconnected with the
same crystal, since the signal to noise ratio decreases monotonically as N increases. There
are of course several other factors, beyond the basic geometric constraints treated in this .
paper, which need to be taken into consideration in order to gain a complete understanding
of the capabilities of volume holograms for implementing global interconnections. Most
significantly, the effects of the recording mechanism and the limitations it imposes on the
number of interconnections that a single hologram can implement (4] must be addressed and

combined with the results reported here. This will be the subject of a future publication.
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FIGURE CAPTIONS

Fig. 1 Nlustration of the proposed interconnection scheme between an input point ¢ and an
output point p. One grating is stored by interfering the two beams coming from
point sources ¢ and p’ after passing through a Fourier transforming lens. Point p’
is the inverted image of point p. After storing the grating, light coming from point
s is diffracted by the grating and focused on point p. Therefore, the stored grating

interconnects points ¢ and p.

Fig. 2 k-space diagram illustrating the degeneracy of the gratings that connect points (3, p)

a‘nd (j9 l)'
Fig. 3 Sampling patterns on 9 x 9 rectangular grids.

Fig. 4 Wave-vector matching diagram illustrating the mechanism through which a) second

and b) third order cross talk is introduced at each output pixel p.
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Multilayer optical learning networks

Kelvin Wagner and Demetri Psaltis

A new approach to learning in a multilayer optical neural network based on holographically interconnected
nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed
representation of a desired pattern transformation operation. The interconnections are formed in an
adaptive and self-aligning fashion as volume holographic gratings in photorefractive crystals. Parallel arrays
of globally space-integrated inner products diffracted by the interconnecting hologram illuminate arrays of
nonlinear Fabry-Perot etalons for fast thresholding of the transformed patterns. A phase conjugated
reference wave interferes with a backward propagating error signal to form holographic interference patterns
which are time integrated in the volume of a photorefractive crystal to modify slowly and learn the
appropriate self-aligning interconnections. This multilayer system performs an approximate implementa-
tion of the backpropagation learning procedure in a massively parallel high-speed nonlinear optical network.

© L Introduction

There has been considerable interest in the optics
community in recent years in the optical implementa-
tion of neural network models,!-5 and these have been
considered principally for associative memory applica-
tions.®-1% Incoherent optoelectronic implementations
of matrix vector multipliers with nonlinear electrical
feedback were used to demonstrate that imperfect an-
alog hardware worked surprisingly well in the robust
environment of a neural network.” Holographic asso-

.ciation with coherent light can be combined with opti-
cal nonlinearities within a strongly pumped phase con-
jugate mirror,3-1° or with the nonlinear thresholding
capabilities of an optical spatial light modulator, to
implement image association. Volume holograms can
be repetitively exposed to a number of Bragg angle
multiplexed connectivity patterns to produce a holo-
graphic interconnection matrix.!! These systems are
programmed to perform a fixed operation by precalcu-
lating the interconnections with an easy learning pro-
cedure, 8o that fixed points of the idealized neural
dynamics are the desired associative recall. One of the
most intriguing properties of a neural network is the
ability to learn dynamically the interconnections that
correspond to a desired behavior through an iterative
adaptation of the weight matrix through outer product
perturbations.!*5 Optical implementations of adap-
tive associative memories using optoelectronic compo-
nents and spatial light modulator technology have
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been suggested.!? A fascinating all-optical nonlinear
dynamical system for adaptive association based on a
saturating cubic nonlinearity in a phase conjugating
dynamic volume holographic resonator has been pro-
posed.!* An even more powerful learning paradigm,
sometimes called hard learning, involves either error
driven learning, reinforcement learning, or self-orga-
nizing principles.*® A hybrid electrooptical approach
to Boltzmann learning has been proposed that is based
on an incoherent optoelectronic matrix—vector multi-
plier interfaced with a microcomputer.'¢ Error driven
behavioral modification has the ability to sense system
performance and adapt the synaptic weights in a man-
ner which will compensate for some of the device im-
perfections and interconnection misprogrammings
that caused the unwanted behavior. This paper ex-
plores the match between the backpropagation error
driven multilayer learning procedure!? and optical
networks, 516 while ignoring the biological implausi-
bility of bidirectional synapses, because of the intrinsic
bidirectionality of optical interconnections. This sys-
tem is a feed forward multilayer perceptron which has
the potential of more general computationally univer-
sal behavior than single-layer associative networks.
However, it differs from the recurrent networks be-
cause all the feedback dynamics are involved in train-
ing the modifiable interconnections and not in pro-
cessing the input. We propose a new optical imple-
mentation of this multilayer learning system which
uses self-aligning volume holograms to bidirectionally
interconnect nonlinear etalons which act as the bidi-
rectional optical neurons. This architecture combines
the robustness of the distributed neural computation
and the backpropagation learning procedure with the
high speed processing of nonlinear etalons, the self-
aligning ability of phase conjugate mirrors, and the
massive storage capacity of volume holograms to pro-
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Fig. 1. Optical backward error propagation architecture with po-

larization multiplexed forward and backward waves, nonreciprocal

polarization fiitering, and self-aligning polarization switching vol-
ume hologram.

duce a powerful and flexible parallel optical processor.

One version of a single layer of this optical back-
propagation architecture is shown in Fig. 1, and the
operation is briefly described before discussing the
idealized backpropagation algorithm and the details of
this optical implementation. The learning algorithm
in this single-layer optical perceptron begins with the
repetitive presentation to the network input of the set
of training patterns in a uniformly random sequence.
Initially, the system gives rise to a sequence of output
patterns through the holographic interconnection and
output nonlinearity, which is different from the de-
sired target response sequence. An error pattern is
formed, either electronically or optically, by taking the
difference between the actual output pattern and the
targeted response. The difference pattern is sent
backward through the output neurons and into the
network using the same etalons and holographic inter-
connections, but encoding the error with an orthogonal
polarization, or a slightly different frequency, or
pulsed at a jittered time than the forward-propagating
signal. This multiplexing of the forward and back-
ward waves in orthogonal eigenmodes avoids direct
interference between these waves. Meanwhile, the
undiffracted portion of the input pattern is phase con-
jugated by an auxiliary phase conjugate mirror, which
retroreflects each component of the input wavefront
back toward the position at the input from which it
originated. The phase conjugate beam has the polar-
ization rotated or the wavelength shifted to match the
error encoding to act as a self-aligning reference beam
for the backward-propagating error wavefront. A vol-
ume hologram is recorded within the photorefractive
crystal as the interference pattern between the phase
conjugated input pattern and the backward propagat-
ing error signal. This is mathematically equivalent to
changing the holographic connectivity matrix by the
outer product of signal and error pattern vectors. The
next time that this particular input pattern is present-

5062 APPLIED OPTICS / Vol. 26, No. 23 / 1 December 1987

-connectivity for backpropagating the error.

ed to the network, it produces a diffraction pattern
that more closely resembies the desired output pat-
tern. Eventually, the hologram will learn the corre-
spondence between a set of input patterns and the
associated responses as long as the set of input patterns
is linearly separable, which implies that a holographic
interconnection exists that produces the desired pat-
tern transformation. Since the holographic reference
wave is generated by a phase conjugate mirror, as the
network learns it will also self-align as well as correct
for some of the optical imperfections present in the
system components.

When the desired pattern transformation is not lin-
early separable, as in most difficult problems of inter-
est, it is necessary to adaptively implement more com-
plex nonlinear decision surfaces.'” One way that this
can be accomplished is by stacking these single-layer
networks up to form a multilayer network of holo-
graphically interconnected nonlinear devices that is
trainable by backpropagating the error signal through
the layers. When the error pattern strikes the holo-
gram, part of it is diffracted toward the previous layer
of nonlinear devices, known as hidden units, by the
transpose of the interconnection matrix seen by the
forward-propagating patterns, which is the necesgrary

he
backpropagation algorithm also requires that the
transmission function of the hidden units to back-
ward-propagating signals be the derivative of the for-
ward mode sigmoid transfer function evaluated at the
current operating level of each device. The derivative
is peaked where the nonlinear sigmoid transfer charac-
teristic has a large differential gain, so that if the
hidden unit is operating in this region the connections
leading to it will be strongly modified by the efficiently
transmitted error signal, thereby helping that neuron
to decide that it should be either high or low on subse-
quent presentations and not between. The multiple
layers of interconnections will be continuously modi-
fied until all the patterns within the training set pro-

Ny
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Fig. 2. Two-layer network for backpropagation learning, feed for-
ward equations, backward-errot-propagation equations, and learn-
ing rule.
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duce outputs very near the flat upper or lower levels of
the nonlinear device sigmoid response, so that the
error signals are not allowed to backpropagate through
the network. When convergence is reached, the error
signals that are generated at the final layer become
very amall for all members of the training set.

. Backpropagation Leaming Procedure
In this section we briefly review the derivation of the
backward error propagation learning procedure!= to
establish the notation and encapsulate the system
characteristics that the optical architecture must in-
corporate. A schematic representation of a two-layer
network is shown in Fig. 2, which consists of an input
layer globally interconnected to a hidden layer, which
is interconnected through a second weighted commu-
nication network to an output layer. Theinterconnec-
tion strengths are modifiable, so that the system can be
trained to perform a desired pattern transformation
from the input space to the output space. The binary
signals applied to the input layer of N; neurons are
reproduced at the output of these neurons as binary
out uts, which are the inputs to the first layer, so that i;
The outputs of the first layer are mterconnect-
ed through an N, X N; weight matrix w,( to a hidden
layer consisting of N> neurons, forming presynaptic
input strengths which are linear combinations of the
outputs from the previous layer:

Ny
o = Swipofh. M

i=] .
The hidden layer of neurons performs a soft threshold-
ing operation on these presynaptic inputs, with a non-
linear sigmoid response f(s), forming the outputs of the
hidden layer which become the inputs to the second
layer:

N,
o =11 -r[Z w}s’os"]- @

iml

The outputs of the hidden layer are interconnected
through the N3 X N, weight matrix w{?, which gives
the N; presynaptic network input to the final output
layer, as a linear combination of the hidden layer out-
_puts:
Ny
s = Z wiPo®, (3)

i=

The final layer performs the same nonlinear soft
thresholding operation as the hidden layer giving the
N3 network outputs:

Ny
e -/[zwz-’o;”]- @

j=1

These outputs represent the response of the network
for a given set of inputs i;, and it is the job of the
training procedure to modify the interconnection
weight matrices so that the actual response closely
approximates the desired system response. Not all

input-output mappings are possible in a network of a
specific size, but complex problems of a cognitive na-
ture with fuzzy decision boundaries have been effi-
cientlg performed in a multilayer network of this
type.!

The desired response for the input i;(n), presented at
the input of the network on the nth machine cycle, is
given by a target vector t,(n), which differs from the
network output ox(n), so the network error vector is
given by 5,(n) = [tx(n) ~ ox(n)]. A positive definite
mean-squares error (MSE) energy functional can be
formed to characterize the systems behavior, and mini-
mizing this function for all n will improve the quality of
the behavior of the multilayer network:

+ Ny
E(m) = > [tx(n) —o,(m)%. 5)
kai
A gradient descent procedure can be employed to mod-
ify the elements of the weight matrices and push them
in the direction that improves the network perfor-
mance, as measured by the MSE energy function, on
subsequent presentations of a given pattern:

M- IE_,

This weight update rule is designed to move the
weights in a direction that rolis down the gradient of
the energy surface in an amount which is proportional
to the local slope. Ideally, the energy function should
be averaged over the entire set of training patterns, so
that the modification of the weight matrices is in the
appropriate direction to improve the system response
for the entire training set. However, a temporally
localized learning can be performed by using a small
acceleration coefficient » and modifying the weights
after individual pattern presentations. The modifica-
tion of the weights that results after cyclically present-
ing the training set in arbitrary order many times can
approximate the desired change. The gradient de-
scent is calculated by using the chain rule and repre-
senting the derivative of the energy function with re-
spect to the weight matrix elements as a product of two
parts, the backpropagatmg error and the forward-
propagating signal:

9E _ oE ™

aww) a‘yu) amr;')
The derivative of the energy with respect to the pre-
synaptic input to the mth layer is defined to be —=5{™,
which is the backpropagatmg error signal in that layer
In the final layer this term is similar to the standard
form of a least-mean-squares (LMS) error signal, as
originally derived for the single-layer Adaline:!®

(6)

- aim)ol(m)- n

aP o s ouf 'l ®

The first term is found by directly differentiating
the energy function, which yields the standard error
signal used in adaptive filters, and the second term is
found by differentiating the nonlinear response of the
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Fig. 3. Bidirectional neuron for backpropagation, its forward-
mode saturating nonlinearity, and magnified derivative.

neurons. The significance of Eq. (9) is that to trans-
late the kth component of the output error vector back
into the final layer of the network it must simply be
multiplied by a value which is locally computable with-
in the kth output neuron. Thus the network output
error function &, = (¢, ~ 0;) can be sent back through
the corresponding output layer neurons, which multi-
ply the error component by the derivative of the non-
linear sigmoid response at the current operating level
of that output neuron. The error signal which is used
to program the weights of the final layer is propngated
back through those weights by multiplying by w{?, and
all the appropriately weighted error signals converging
on the jth hidden neuron are summed to form a back-
propagating presynaptic network input. The weight-
ed sum of the error functions tranamitted in the back-
ward direction by the final layer is computed using the
same interconnection matrix seen in the forward pro-
cessing mode, but summing over the N3 output neu-
rons using the transpose of the matrix which is used for
the forward-propagating interconnection:

Ny N,

aE ) | dof? A
This represents an iterative algorithm for succesasively
computing the error function at deeper layers back
toward the beginning of the network in terms of the
error function injected back into the final layer. Al-
ternatively, this algorithm can be considered to repre-
sent a wavefront that backpropagates through the net-
work, multiplying by the weights, accumulating at the
neurons, and multiplying by the neurons backward

transmittance to compute the appropriate error to

program the previous layer. The network is highly
nonlinear in the forward-propagating direction, but
the backpropagating wavefront is computed using only
linear operations.

The neurons must, therefore, have two signal path-
ways as shown in Fig. 3. The two pathways share the
same weights on the connected layers, but the neuron
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response is a nonlinear soft thresholding for forward-
propagating signals and a multiplier that only allows a

propagating error through the neuron when
the slope of the forward mode operation is large. The
transmitted components of the backpropagating error
vector are only large when the corresponding output
neurons are operating in the steep thresholding regime
where the derivative is large, and that component was
significantly in error at the network output. Any neu-
ron that had decided that it is a one or zero by being
well above or below the threshold knee inefficiently
transmits the error back into the previous layer of the
network. From the definition of the change in the
weight matrix given in Eq. (6) and the chain rule ex-
pansion of Eq. (7) we can write the form of the weight
update rule for the mth layer according to this first-
order gradient descent procedure:

wi™(n + 1) = wi™(n) + ps{™of™. (10)

The error transmitted by the neurons back into the
previous layer of interconnections is used to modify
the weights of that layer through this outer product
update rule. The weighted interconnection w(? is
carrying the output from the jth neuron in the mth
layer o,"" to the kth neuron in the (m + 1)st layer,
which 1s simultaneously broadcasting the error func-
tion 5{™ back into the mth layer of the network. The
product of this forward-propagating signal and back-
ward-propagating error takes place within each
weighted synaptic connection as the desired weight
update contribution, completely independently of
what is taking place within all the other weighted
connections, and this is the only information needed to
update that weight, so this learning rule can be said to
be a local update rule. The training procedure for the
final layer of weights is given by an appropriate outer
product learning rule, which is a local update rule that
takes place within each weighted signal pathway, but
the problem of credit assignment of the MSE energy to
the earlier layer has been solved by nonlocally back-
propagating the error vector. This is referred to as the
backward error propagation algorithm for training
multilayer networks, and it can be further generalized
to N layer networks or networks with feed forward
interconnections, e.g., when the first layer connects
directly with the output layer as well as indirectly
through the hidden layer to the output layer. For
more details of the derivation, operation and utility of
this multilayer network training algorithm the reader
is referred to Refs. 1, 2, and 18.

. Optical implementation

The optical implementation of a backpropagation
network requires two basic bidirectional components,
the interconnection matrices, and the nonlinear units.
Volume holograms appear as the most promising can-
didate for implementation of an interconnection ma-
trix because of the large storage capacity possible with-
in the volume of a crystal and the dynamic response
possible with a photorefractive crystal. The readout




of a volume hologram can be accomplished with either
a forward-propagating beam or a backward-propaga-
tion. Spatial light modulators (SLMs) could also be
used as the interconnection element for small net-
works, but they would have to be both bidirectional
and optically addressable to be used in a backpropaga-
tion network. In this paper a new self-aligning ap-
proach to adaptively forming optical interconnections
based on phase conjugating one of the undiffracted
beams is presented. This technique uses interfero-
metric detection in the volume of a photorefractive
crystal to accomplish all the outer product multiplica-
tions necessary for weight matrix perturbation.
These N, X N; weight updates are calculated in paral-
lel by exposing the crystal with N; phase conjugated

collapeing spherical waves and N; expanding spherical-

waves simultaneously.

The nonlinear units or neurons need to threshold the
forward-propagating beam while transmitting the
backward beam only when the forward beam nonlin-
earity is in the high slope, or undecided, regime of
operation. A special purpose, bidirectional, detector
modulator pair array structure could be tailored to
generate the desired backpropagation neuron respons-
ea by utilizing the appropriate integrated electronic
circuitry, but the individual neurons could become
quite complicated with this conventional optoelec-
tronic integrated circuit approach. Appropriately
modified transmissive spatial light modulators might
be considered for backpropagation neurons, and one
possible structure of this type is illustrated in Fig. 4.
In this type of birefringent SL.M, crossed polarizers are
placed on either side of an electrooptic medium which
is optically addressed by a photoconductor. A high
voltage is applied across a transparent conductor in
contact with the photoconductor on one side and a
transparent conductor on the other. To use this type of
electrooptic device as a backpropagation neuron the
induced birefringence must be doubled for the back-
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Fig. 4. Input output relations for a special purpose bidirectional

optically addressed spatial light modulator backpropagation neu-

ron: PC = photoconductor; EQ = electrooptic; TC = transparent
conductor.

ward propagating wave to obtain a saturating forward
nonlinearity while obtaining a derivative backward
multiplication. This can be accomplished by a pair of
photoconductors, both addressed by the same forward
propagating beam, where one is used to modulate the
forward-propagating device which is biased with a
voltage V,, while the other is used to modulate an EO
device with a saturation voltage 2V,. The forward-
propagating modulator is used to modulate & fixed
intensity pump I, so that a single half-cycle of a satu-
rating nonlinearity can be generated, I7* = I, sin®(/7*~'/
L) for I7 ™! < I, and IT" = I, otherwise. The back-
ward-propagating modufnt.or is used to multiply the
backward-propagating error signal by a function /7!
= I7 8in?(27""/I,a) for I7™" < I, and IT ~'= 0 other-
wise, and this is of the form of the desired derivative
multiplication. Since the two functions required of a
backpropagation neuron can also be accomplished
with a simpler nonlinear resonator structure, and the
response time of these nonlinear etalons can be ex-
tremely fast compared to SLM technology, they were
chosen for study in the architecture presented in this

paper.

A. Nonlinear Fabry-Perot Backpropagation Neurons

Nonlinear Fabry-Perot etalons?®® are a promising
candidate for implementing the neurons in an optical
learning network because they can perform nonlinear
operations on arrays of coherent beams, which allows
the outputs to be used to record and modify intercon-
nection holograms. A soft thresholding operation can
be performed on a forward-propagating beam by de-
creasing the cavity detuning below the critical detun-
ing needed for bistability.® These optical neurons
cannot easily implement the idealized derivative
transmission required for backpropagation, but a simi-
lar peaked response can be obtained by operating a
nonlinear etalon in the probe mode?! for the backward-
propagating error signal. In this mode, the Fabry-
Perot resonance is scanned by the nonlinear depen-
dence of the index on the intracavity intensity, which
varies in response to the high power forward beam
intensity. The weak backward-propagating probe
beam does not scan the cavity, but it is modulated by
the current state of the cavity transmission function,
which is the appropriate multiplication type of re-
sponse needed in the backward direction. The probe
mode transmission is peaked at the resonance of the
Fabry-Perot, which occurs when the sigmoid response
to the forward beam reaches the upper level. The
peak maximum is not exactly at the region of the
highest slope of the forward beams nonlinear sigmoid
response, but since the forward and backward beams
have different polarizations, or different wavelengths,
the resonance function can be offset to achieve a prop-
erly positioned probe beam resonance peak.

In the polarization multiplexed case this shift can be
induced by including a thin birefringent sheet in the
cavity,2 or perhaps a tunable birefringence can be
caused by applying a static external field to the cavity.
This type of birefringent nonlinear Fabry-Perot etalon
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Fig.5. Nonlinear Fabry-Perot etalon sigmoid response, its deriva-
tive, and the probe mode transmission for the two polarizations with
an auxiliary intracavity birefringence.

and a simulation of the forward-mode sigmoid transfer
function is shown in Fig. 5 along with its derivative and
the shifted probe mode response approximation to this
derivative. This device can implement the desired
sigmoid nonlinearity of the high intensity forward-
propagating signals with a differential gain greater
than one, although the actual gain in transmission is
less than one. The probe mode response is not sym-
metric about the peak because the Airy function reso-
nance is scanned by the intracavity intensity which is
_equal to the transmitted sigmoid response divided by
the backmirror transmittance. This asymmetry con-
tinues to allow signala that are above threshold to build
up interconnection gratings in the previous stage cor-
responding to correlated inputs, thereby partially
compensating for the slow forgetting of gratings by the
volume hologram. However, the high level of trans-
mission for the probe beam when the etalon pump is
below threshold is undesirable. By decreasing the
finesse of the cavity to the forward-propagating beam a
trade-off can be made between the peak width and off-
resonance transmission of the probe mode response,
with the switching energy for the forward-propagating
nonlinear device characteristic.

Another possibility would be to use two closely
spaced cavities, both addressed by the same forward-
and backward-propagating resolution spots, as illus-
trated in Fig. 6. In this case one cavity is optimized to
produce a sigmoid response of the forward-propagat-
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ing beam while blocking the backward-propagating
error signal, while the other cavity is resonant to the
backward- propagating beam. The Fabry-Perot reso-
nance of the backpropagating cavity is linearly
scanned by the 100% reflected forward-propagating
incident intensity, thereby producing a good approxi-
mation to the desired symmetric derivative response.
We expect that learning and eventual convergence can
be achieved in a multilayer optical network with the
forward and backward response that can be obtained
from these scanned resonance devices, even though the
responses do not precisely match the nominal respons-
es of the backpropagation algorithm because of the
robustness of this gradient descent learning procedure.

B. Description of a Single Layer of the Optical
Architecture

A single layer of an architecture that can perform
this type of multilayer perceptron learning procedure,
using polarization multiplexing of the forward-propa-
gating processing beam and backward-propagating
teaching beam, is shown in Fig. 1. The illustrated
architecture is one implementation of this class of
backward-error-propagating holographic learning ma-
chines that serves to illustrate the principles involved.
Notice that no lenses are shown in this diagram be-
cause the volume hologram can perform the desired
weighted interconnection imaging by exposing it with




the proper expanding image and focusing reference
beam to form a Fresnel volume hologram. If Fourier
lenses are inserted between the etalon arrays and the
volume holographic crystal, the exposed hologram will
be a Fourier hologram with planar fringes, and the
momentum space analysis will be simplified, but the
processor learning and self-aligning operations will be

The forward-propagating pattern vector transmit-
ted by the anisotropic nonlinear etalon array on the
left-hand side of the figure is polarized ata —45° angle
and is rotated clockwise by 45° as it passes through the
nonreciprocal Faraday rotator so that it becomes hori-
zontally polarized. This aligns the forward-propagat-
ing beam with the polarizer allowing it to pass and
illuminate the polarization switching volume holo-
gram. The diffracted beam consists of a weighted
interconnection of the forward-propagating pattern
vector by the current state of the holographically rep-
resented interconnection matrix, stored as a superpo-
sition of curved and chirping space charge gratings
within the photorefractive crystal. The diffracted
beam is polarization switched by the birefringent dif-
fraction mechanism to an orthogonal polarization to
the input, and this vertical polarization state ia rotated
clockwise by 45° through the following Faraday rota-
tor so that it falls on the next etalon array with the
same —45° polarization as the forward-propagating
transmitted beam from the previous stage. The un-
diffracted beam passes straight through the volume
hologram and has its vertical polarization rotated by
45° as it passes through the Faraday rotator, so that it
falls on the phase conjugate mirror (PCM) with a po-
larization angle of 45°, the same as the counterpropa-
gating pump beams (which are not shown), producing
an identically polarized phase conjugate beam, which
is composed of an array of beams that retroreflect back
toward the etalon sources that each originated from.
This phase conjugate beam passes through the nonre-
ciprocal Faraday rotator picking up another 45° rota-
tion (instead of unwrapping the rotation as would oc-
cur with a reciprocal optical activity based rotator),
emerging vertically polarized to act as the reference
beam array for the self-aligning holographic outer
product exposure with the backward-propagating er-
ror signal. The backward-propagating error signal
emerges from the backside of the output etalon array
with a 45° polarization that is orthogonal to the for-
ward-propagating beam. This allows for the polariza-
tion filtering based separation of the reflected for-
ward-propagating beam from the transmitted back-
ward-propagating beam as well as the independent
tuning of the relative Fabry-Perot resonance position
of the forward- and backward-propagating beams.
The backward propagating error signal is rotated to a
vertical polarization by the Faraday rotator so that it
interferes in the volume hologram with the vertically
polarized phase conjugate reference beam and not with
the horizontally polarized undiffracted forward-prop-
agating signal. The interference of a backward-prop-
agating error signal emerging from a particular etalon

at the output with the phase conjugated forward-prop-
agating beam emerging from a particular etalon from
the input produces a self-aligning volume Fresnel ho-
lographic interference pattern that interconnects
thesa two etalons for both forward- and backward-
propagating beams with the exact same diffraction
efficiency, or weight, due to the reciprocity of linear
electromagnetic systems. The interference of the
backward-propagating error beam with the phase con-
jugate of the forward-propagating beam records a
Fresnel grating due to each pair of beams that is
present, perturbing the weighted interconnection ma-
trix represented by the hologram by the outer product
of the signal and error vectors and thereby pushing the
matrix toward the desired interconnection solution.
The backward-propagating beam is polarization
switched by the volume holographic diffraction mech-
anism, producing a horizontally polarized beam which
is the appropriate weighted summation of the error
signal by the transpose of the interconnection matrix
seen by the forward-propagating beam. This passes
through the polarizer and is Faraday rotated by 45° to
be incident on the etalon array with a 45° polarization
angle, orthogonal to the forward-propagating beam,
and the same as the backward-propagating beam which
emerged from the previous output layer. The undif-
fracted phase conjugate of the forward-propagating
beam needs to be blocked so that it is not confused with
the copropagating diffracted backward-error-propagat-
ing signal, and this is accomplished by the polarizer
which blocks the vertical polarization of the undesired
phase conjugate reference beam. The indicated nonre-
ciprocal polarization filtering will also remove the un-
wanted reflections from the nonlinear etalons and un-
wanted diffraction terms produced by the hologram.
The diffracted phase conjugate reference and undif-
fracted backward-error signal emerge at a different an-
gle and will not focus on the etalon; thus they can be
ignored, or they can be examined to determine interme-
diate states of the hidden neurons. Each layer is com-
pletely compatible with the previous and the following
layers so this type of learning network can be stacked up
to form a complex multilayer learning machine.

C. Requirements for the Holographic interconnection

The dynamic holographic interconnection tech-
nique described in this paper is based on the photore-
fractive effect, which is a light-induced index of refrac-
tion modulation that occurs in photoconductive
electrooptic crystals. A space charge grating image of
an interference profile is created by carriers ionized
from fixed traps into the conduction band, where the
mobile carriers redistribute under the influence of
drift, diffusion, and bulk photovoltaic effects, until
they recombine with an unoccupied trap. The redis-
tributed optically generated carriers produce a space
charge grating with a fundamental Fourier component
that may be phase shifted from the interference pro-
file. The spatial variations of the resulting space
charge pattern produce a corresponding electric field
through Poisson’s equation. This space charge field
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induces an electrooptic modulation of the local imper-
meability tensor as long as the appropriate electroop-
tic tensor coefficient is nonzero. In turn, this couples
the input field into a diffracted output field as long as
the appropriate impermeability tensor coefficient is
nonzero. The implementation presented in the previ-
ous section is based on a polarization switching diffrac-
tion mechanism for which it is required to have an off-
diagonal impermeability tensor coefficient. This
requires electrooptic tensor coefficients in the bottom
half of the reduced subscript electroopotic matrix,
which can take place in some electrooptic volume holo-
graphic materials, such as Bi,3;Si02, LiNbO;, BaTiO;,
and GaAs. Self-aligning recording combined with po-
larization switching diffraction between linear eigen-
modes requires an optically isotropic medium (or one
in which anisotropy can be eliminated through the
application of a static field), with no optical activity,
and these conditions imply that a material of symme-
try group 43m, such as some III-V semiconductors
(e.g., GaAs or InP), should be used as the photorefrac-
tive holographic medium. The efficiency of the dif-
fraction depends on the effective coupling strength
which depends on the angle of the gratings, polariza-
tion of the input wave, and momentum matching
(Bragg) condition in a rather complicated fashion.
However, use of a Fresnel hologram can produce an
averaging over all these effects for all the interconnec-
tion holograms, while in a Fourier hologram with pla-
nar fringes each grating has a different diffraction
efficiency.

The polarization switching diffraction efficiency
and the holographic storage capacity can be simulta-
neously maximized by having the input and output
beams propagating at large angles, as indicated in the
figure. The unwanted polarization switching grating
exposures due to the simultaneous presence of multi-
ple reference (or object) beams produce crosstalk of
the undiffracted forward-propagating beam, which
can be eliminated with the indicated polarization fil-
tering. The storage capacity of the volume hologram
will enforce limits on the number of nonlinear devices
that can be interconnected and on their topology be-
cause of the cone of ambiguity associated with Bragg
diffraction.? A sparse array of etalons will have to be
utilized to implement a fully global interconnection
without unwanted croastalk, which will also facilitate
the dissipation of heat generated in the nonlinear eta-
lons and thereby allow a very high speed of operation.
However, the learning operation must occur slowly for
the backpropagation algorithm to converge properly,
and this is well matched with most photorefractive
crystal volume holograms, because the crystal re-
sponse times are slow, and the perturbation of an exist-
ing space-charge grating by a single outer product ex-
posure is very small.

It is necessary to be able to both selectively erase
holographic gratings, thus decreasing the connection
strength between particular ¢talons, as well as to
strengthen individual gratings thereby increasing the
corresponding elements of the interconnection matrix.
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Selective erasure can be accomplished by using a phase
encoded backward-propagating error signal, where a
phase angle of 0 is used to represent all positive error
signals, and a phase angle of x is used to represent all
negative error signals. Fresnel gratings that are built
up with a phase angle of 0 can have the corresponding
interconnection decreased selectively by shifting the
recording interference profile by r, as demonstrated in
Sec. V, and by Huignard for Fourier holograms.2¢ Al-
ternatively, selective interconnection erasure might be
accomplished by strengthening interconnection grat-
ings when the applied bias field is in one direction,
causing the resuiting space charge grating to shift away
from the optical intensity profile in the direction of the
E field by approximately »/2, while decreasing inter-
connection gratings when the bias field is reversed,
producing a canceling space charger grating with a
phase shift of —x/2. Another approach to decreasing
interconnection strength would be to rely on the simui-
taneous erasure of all the gratings by the optical read-
out and thermal effects, thereby inserting a forgetting
term in the dynamical equation for the holographically
represented interconnection matrix. This approach
requires continuous reinforcement to avoid forgetting
everything that has been learned. Once learning has
been completed a mechanism of fixing the hologram
could be used to make the interconnections perma-
nent.?

A scheme must be devised to implement negative
interconnection stengths, or else all the signals must be
placed on an appropriate bias. An attractive possi-
bility for the implementation of bipolar weights is to
use the phase shift of each grating to represent its sign
and count on destructive interference within each non-
linear etalon to subtract the positively and negatively
weighted diffracted components. This approach is
sensitive to the phase response of the etalons, so it is
necessary to minimize (or to compensate for) nonlinear
phase shifts produced by the etalons and to avoid
phase sensitive switching behavior in the etalons.?

V. Selif-Aligning Bidirectional Volume Holographic
Interconnections

The preliminary analysis of a bidirectional optical
interconnection system begins with an explanation of
the recording of a hologram by using a phase conjugat-
ed referencebeam. The 1-D system used in this analy-
sis is presented in Fig. 7 and consists of two lines
(planes) of optical neurons which need to be intercon-
nected by a volume hologram. The phase conjugate
mirror is used to conjugate the expanding waves emit-
ted from one plane of neurons and retroreflect them
back toward the sources from which they emerged, and
either direction can be the one chosen to be conjugat-
ed. The field emitted by a line of J neurons, separated
by D, with an aperture profile h(xo,y,), and propagat-
ing at an off-axis angle with spatial frequency « is a
linear combination of off-axis spherically expanding
waves propagating toward the right. The undiffract-
ed field that passes straight through the volume holo-
gram (in the undepleted pump approximation) and
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strikes the phase conjugate mirror (PCM) is simple in
the Fraunhofer regime of the individual apertures,
which for an aperture profile width of d is valid for z >
xd?/), (2> 1 mm for a 10-um aperture) and is always

L —

valid for Gaussian apertures:
i 2r 2,
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In this expression the neural activity pattern vector a;
is represented as a spatially multiplexed array of eta-
lon output fields which will be used for learning, but
the intensities la;|? are a more likely representation of
the neuron outputs that will be used for subsequent
nonlinear processing.

Each source produces an off-axis expanding spheri-
cal wave with a linear phase factor given by the source
position. The Fourier transform of a source aperture
is given by H(u,v) and its size and position shift with
the propagation distance z,. The distance between
the input plane of neurons and the front size of the
volume hologram is z,, the thickness of the hologram is
L, the index of refraction of the photorefractive medi-
um is ny, and the distance from the hologram to the

This equation represents a left propagating quadrati-
cally curved superposition of waves that are focusing
toward the J source neurons. The profiles of these
focusing beams are given by the transform of the indi- -
vidual source apertures H(u + o’,v) that are scaled and
shifted with the z coordinate within the holographic
medium.

Similarly, the backpropagating error field emitted
by a line of K neurons separated by I in the second
layer can be described as a superimposition of spheri-
cally expanding waves. The separation between the
output neurons and a plane z within the hologram is z
= 2, + nyz, which is a reversed coordinate from that
used for the forward-propagating wave:

T -
Blp(l -—2 .
B(z.y.z,t) = exp(=i2xvt) ‘.M.)‘ ] I Z bz, = kD' \y,) exp(i2xax,) expli(x/Az)}[(x, = x)* + (v, = ¥)}ldx,dy,

2% -
exXM|i—2
~ exp(=i2ent) —i—) 2 LS by exp(i2rkD/a) explitx/A3) (s ~ kD) + Y (=
ixz =

LA A
= +a,n.) (13)

phase conjugate mirror is z.; thus the total optical path
length between the neurons and the PCM is 2, = 2z +
nol + z.. This wavefront is phase conjugated by the
PCM, which retroreflects each expanding spherical
wavefront back toward its point of origin. The result-
ing field within the holographic crystal is dependent on
the z coordinate, and since both writing waves are
incident on the hologram from the right, z is defined to
be zero at the right edge of the crystal and increased to
L at the left edge. The phase conjugated reference
wave within the hologram is moet easily expressed in
terms of the optical path length between the input
neurons and a given plane within the hologram, z’ = z,
+ (L = z)n,.

ex| -i-lez’)
. = exn(mi ‘( .o
A*(x.y2,t) = exp(—i2xvt) - ,Z.] exp(~i2xjDa)

X expi—i(x/A\z')[(x = jD)? + y*))

=D, )\,
XH‘( v +a, Az') (12)

3 Veluma Holagram

B P

ﬂ} Sel¢ Aligning Recarding n-
a

]

Fig. 7. Self-aligning bidirectional dynamic volume holographic in-
terconnection using a phase conjugated reference
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Fig. 8. Diffracted spot produced by a high diffraction efficiency
lensiess Fresnel volume hologram recorded in LiNbO; and an expo-
sure which shows just the peak.

This backpropagating error vector b, produces a wave-
front that interferes with the retroreflected phase con-
jugate wavefronts due to the forward-propagating
sources in the first layer within the volume hologram.
This records a self-aligning interference pattern that
modulates the index of refraction within the holo-
graphic medium. The modulation term can be ex-
preased as a curved and chirping fringe pattern within
the overlap region of the diffracting wavefronts in the
crystal. The repetitive presentation of training pat-
terns and bipolar error patterns to the front and back
of the single layer being described will result in the
time integration of successive outer product connectiv-
ity patterns:

(a)

't
T(xy2.t) « L R(A*(x.y2.)B*(xy2.t))dt )

'ZZ[E“"W’;(M]T:PE”[ t(flh’,‘.’l...,'{;__)ﬂ.(g_;_ig*_m%’_)]

— P2 - ab\?
xzw.(z_;i{z,ﬂ“ 1’:} A, G "’? +"+qu+1;0')})- 19

This expression represents a superposition of KJ fam-
iliea of elliptical fringes within the volume of the holo-
gram with each pair of sources at the foci of a set of
elliptical shefls, and z, = zp + nol + z, is the total
distance between the etalon planes. This time-inte-
grated interference pattern will be transformed into a
proportional index modulation with a possible phase
shift through the photorefractive effect.

For the chirped and curved volume Fresnel phase
bolograms being analyzed here a momentum space
analysis is inappropriate, since spatial frequency and Out of Plane Bregs Sansitivity
fringe tilt are spatially varying, resulting in a poorly
defined perturbation momentum vector; thus an ex-
plicit integration of the diffracted field produced at
each z-plane should be carried out instead. After the
hologram is recorded, it is reilluminated by a weighted ot
superposition of expanding spherical waves which are .
diffracted by all the index modulations that are
present. This analysis can be carried out for either
forward- or backward-propagating waves in an identi-
cal manner, but we only consider illumination with a
forward-propagating wave here. When the volume
hologram is illuminated by the diffracted wavefront
from a new imput neural activity pattern a’j, the dif-
fracted field at each plane z will contain a matched T I T T T I T R LT P
term, which will produce focusing wavefronts propa-  Fig.9. Positional sensitivity of the Fresnel volume hologram: (a)
gating toward the output neurons and a number of out of the primary interaction plane; (b) in the interaction plane.

Froe-3100ua
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unwanted crosstalk terms. Combining the results of
Eqs. (12) and (13) we can derive an expression for the
hologrmm field produced at each plane of the volume

Dizyat) = A'(xy.2.8) f R[A* (xy.2.4)B*(x,y.2.4)]dt

2r
i—7

« T(z,y.2) exp(—i2=»t) ﬂ-—) Z‘r exp(i2xjDa) expli(x/\2)[(z ~ DY + y’llﬂ( ta, :;,)

= oxp(~iZunt) a,,zz E aj(t)by(t)de’
| exp{ - i ZT' z
' X ———=—L explizral(” =)D + kD')} explilx\2){(* - /)D* = 2Dx(j = /)]} expl—itx/A2)((x — kDY + ¥7Hi
4 P

«{x—kD y =D oD, Y.
X H ( ¥ +a,xz-)H( v +a, )H ( v +a,v) (15)

With the approximations that the last two terms ap-
proximately overlap so that the product is equal to a
constant, and the paraxial approximation, the diffract-
ed field can be propagated to the plane of output
neurons from any diffracting plane within the volume
hologram. This is assuming the undepleted pump
approximation, which is a reasonable approximation
for diffraction efficiency <10%. Each plane of infini-.
tesimal thickness produces an appropriate focusing
contribution, with the appropriate focal length, mag-
nification, and phase to produce a focal spot with pro-
file h(x; ~ kD’ — (j - j)D(z/2’),y1). We need to sum
up all the contribution throughout the thickness L of
the hologram to obtain a Bragg selection condition,
which will require j = , so that focal spots are only
produced at each of the K output neurons:

In this equation a number of simplifications have been
made, but the neglected terms will lead to an increase
in the Bragg selectivity. All the phase factors have
been lumped into the term exp(i¢). The integration
over z produces a sinc function of (j — j/), which is
analogous to the thick hologram Bragg condition for
these elliptical fringes. As long as the separations
between the input neurons D, and output neurons I,
are large enough for a given hologram thickness L and
recording geometry, zp,21,&, We can assume perfect
Bragg selectivity, and, therefore, j = j’. This would be
the normal Bragg condition if Fourier lenses were in-
serted in the processor, and its results in a positional
selectivity in the plane of the lines of neurons which
effectively eliminates all the unwanted shift-invariant
crosstalk terms that are present with a thin holograph-

ic grating.

exp(i-z—'-z' ’ .
L
ez yt) « L [ - A ] ] D(z,y,2,t) expi(x/A2)[(z; ~ x)? + (v, -y)*)ldxdy}t

iz

« exp(~i2xst) exp(~i2Zxaz,) expliv,) Z o} Z z ] aj(¢)by(t)dt’

L (x,-m G-ppZ up[ iaD( = ) ]dx

= exp(~i21»t) exp(—i2xax,) expliy’) Z a; Z z L' aj(¢)by(t)de
I i &

xh(xl-kD’—(j-j’)Dz
0

2\ | gine| L2 2V = 1)
+n (2o + Ln)?

« exp(—i2x»t) exp(~i2rax,) exp(iy) Z a; z [ ] a ,(t’)b,,(t’)dt’] h(x, =AD" y). (16)
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For a hologram thickness nol = 1 em, placed 1 em
off-axis and 10 cm from input and output neural pianes
we can separate the etalons by D » 100 um, (at the
fourth zero of the sinc), allowing 100 to be packed per
centimeter. However, for a 90° diffraction angle, as
illustrated in Fig. 6, we can bring the etalons to within
D = 10 um of each other allowing a linear packing
density of 1000 etalons/cm. When 2-D arrays of neu-
rons are to be interconnected additional constraints’
must be imposed on their topology to achieve the ap-
propriate selectivity of the diffracted orders, and only
a spare selection of a 2-D array of etalons may be
utilized, containing between 10¢ and 10° etalons/in.2.2
An appropriate topology for the utilized etalons can be
derived by considering the interconnection to be space
variant in the interaction plane and space invariant in
the orthogonal dimension. In the case of a Fresnel
volume hologram there is some space-variant widening
of the impulse response in the direction orthogonal to
the interaction plane, which is not present with Fouri-
er holograms.

The resulting field incident on the spatially multi-
plexed output neurons is found to be proportional to
the desired matrix vector product of the input activity
patterna; " with the time-integrated outer product of the
sequence 'of forward and backward waves, The inten-
sity at the output neural plane is given by the modulus
squared of the field, and this intensity will be detected
by the neurons and used for subsequent nonlinear

processing.

This is a fully self-aligning dynamic volume holo-
graphic global interconnection scheme which works
reciprocally for forward and backward waves as re-
quired by the backpropagatlon algorithm. This inter-
connection technique requires no lenses, because the
Fresnel hologram accomplishes the imaging operation.

V. Experimental investigation of Freanel Volume
Hologram Inlerconnections

Volume Fresnel holograms were recorded in photor-
efractive crystals as the interference pattern between
expanding and collapsing spherical waves to test their
capabilities as lensless interconnection elements.
When this volume hologram was reilluminated by one
or more of an array of expanding reference beams, the
collapsing spherical object waves were reproduced,
which focused to an array of amall spots at the output
plane. First, a single input point was interconnected
to a single output point using an expanding wave inter-
fered with a collapeing wave in the volume of a LiINbQ3
crystal, and the interference pattern was time integrat-
ed for several minutes to build up a reasonably high
diffraction efficiency grating. A magnified image of
the diffracted focal spot which was produced at the
output plane when the crystal was reilluminated by the
expanding reference beam is shown in Fig. 8. A good
focused spot is produced, but when the film is overex-
posed a large amount of sidelobe structure becomes
apparent. A large amount of fanning of the diffracted
light is produced in the plane of the crystal ¢ axis due to
the recording of additional gratings in the crystal be-
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tween the reference beam and scattered object beam.
A vertical line appears at the output plane which is due
to the Bragg matched diffraction of the reference beam
by the gratings formed between the acattered reference
with the object beam, and this line is actually a small
part of a large circle of confusion which passes through
the reference source and the object virtual source.
These fanning components built up over a longer time
scale than the desired focusing diffracted light and
were not visible with short holographic exposures.
The weak additional spot is a multiple reflection arti-
fact. A measurement of the Bragg positional sensitiv-
ity in and out of the principal interaction plane is
shown in Fig. 9. In the plane a good approximation to
a sinc function with 21-um width is obtained, which is
near the expected width for this experimental geome-
try.

The measurement was obtained by translating the
Fresnel volume hologram and measuring the resulting
diffraction efficiency. However, when the hologram
was rotated in the plane, and any residual translation
was compensated, a diffraction efficiency was mea-
sured that was essentially independent of angle, as
expected for these angularly diverse volume holo-
grama. Out of the interaction plane the Fresnel holo-
gram diffraction efficiency was quite insensitive to the
hologram position. However, the position of the dif-
fracted focused spot translated acroes the detector
array as the hologram was moved, indicating that the
holographic interconnection was space invariant in
this dimension. A Fresnel hologram that is thick in
relation to the separation between planes produces a
vertically widening impulse response as the out-of-
plane offset is increased due to different offset magni-
fications at different hologram depths. This feature
needs to be considered when selecting a 2-D neuron
array topology for use with the Fresnel hologram inter-
connection scheme.

An optical neural network interconnection pattern
requires many point sources to be imaged to many
other virtual sources, and the Fresnel hologram was
tested in this application by using lenslet arrays for the
optical sources. A line array of real sources produced
by a 1-D lenslet array was interconnected to a 2-D
array of virtual sources that was produced by imaging
the focal plane of a lenslet array through and beyond
the volume hologram. In this N — N2 interconnection
experiment approximately fifty sources were intercon-
nected with a 50 X 50 array of output focal spots,
thereby implementing more than 10% holographic in-
terconnection lenses. A small portion of the diffracted
output plane produced by this hologmm when it was
illuminated by the object wave is shown in Fig. 10.
This looks almost identical to the image of the lenslet
array produced by the object beam, and no fanning
artifacts like those shown in Fig. 8 are visible. This is
because the diffraction efficiency of each interconnec-
tion hologram is extremely small in this case, and the
weak fanning artifacts produced by different sources
do not add up constructively.

Adaptive holographic interconnection networks




N . y K A -~ hY -
Fig. 10. Diffracted output produced by an N — N? leusless holo-
graphic interconnecton.

must be able to represent bipolar weights and to de-
crease interconnection strengths, so selective erasure
was examined as one possible technique that can be
used for both these purposes. To show that Fresnel
gratings could be selectively erased, Bi;2Si02 was used
as the holographic recording medium so that photovol-
taic effects could be eliminated, and faster response
times could be obtained. A piezoelectric mirror was
used to phase modulate an object beam with a » phase
shift increment. Interconnection gratings were built
up with one phase, then the object phase was shifted,
and the diffraction efficiency of the reference beam
into the object focal spot was measured as the holo-
gram was erased and rewritten with a » phase shift.
Because different wavelength probe beams cannot be
used to measure the diffraction efficiency of Fresnel
holograms, the object beam and diffracted beam were
alternatively chopped in a nonoverlapping fashion to
measure the diffraction efficiency seen by the refer-
ence beam as a function of time. An example of this
type of selective erasure process is shown in Fig. 11(b),
and it is to be compared with the incoherent erasure
that was obtained by blocking the reference beam as
shown in Fig. 11(a). The selective erasure was much
faster than the incoherent erasure process, or the writ-
ing process after the previous grating was erased, be-
cause the incoherent erasure and phase shifted writing
are cooperating processes during selective erasure,
while they are competing processes when writing the
hologram. The phase could be repetitively shifted by
= as shown in Fig. 11(c), and a succession of out-of-
phase gratings can be written and erased. Other grat-
ings within the crystal were not erased any faster with
this phase shifted reference approach than they were
normally by incoherent erasure, which demonstrates
that selective erasure of the Fresnel hologram is occur-
ring throughout the volume of the crystal.
Polarization switching diffraction can be demon-
strated in Bi,;Si0s by writing a grating in the 110
direction.?” The propagating eigenmodes are circular
without an applied field, because of optical activity,
and the right mode can be coupled to the left mode

Fig. 11. Erasure processes in Bi);SiOy: (a) incoberent erasure

process; (b) selective erasure process using a r phase shifted refer-

ence and the phase shift signal; (c) repetitive x phase shift writing
and erasure (1 s/div).

through the off diagonal tensor components of a pho-
torefractively induced pertubation grating. Right cir-
cularly polarized expanding spherical reference waves
were interfered with right circularly polarized focusing
object beams to record polarization switching Fresnel
volume holograms in a properly rotated Bi;28iO5 crys-
tal. The diffracted field focused to the object beam
focal spot, and the polarization state was analyzed with
a properly rotated quarterwave plate and polarizer,
and it was found to be very nearly orthogonal to the
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polarization of the input object beam. The orthogo-
nality of these modes can be improved by careful align-
ment of the crystal axes with respect to the principal
interaction plane, but perfect orthogonality is proba-
bly impossible with a Fresnel hologram because of the
angular diversity of the birefringent gratings. When
99% of the object beam can be filtered with this polar-
ization filtering scheme, a 5% diffraction efficiency
hologram results in a 20% feedthrough of the undif-
fracted light measured with respect to the diffracted
polarization switched light. This suppression ratio of
the undiffracted beam must be improved if the polar-
ization multiplexed architecture is to be used for a
backpropagation network, so that the undiffracted
phase conjugate reference will not corrupt the diffract-
ed backpropagating error.

VI. System Requirements

A complete two-layer system, illustrated in Fig. 12,
requires a high speed method of entering data for
pattern transformation processing and another means
of introducing the hackward-propagating error signals
for the learning phase. Probably the best approach to
high speed data entry at the back end of the system isa
sparse parallel laser diode array or a fiber-optic input
array, demagnified onto the first layer nonlinear etalon
array which is operated in the bistable regime. In this
manner the subth:reshold coherent bias beams trans-
mitted by each addressed device can be modulated by
the data signals, thereby using the input nonlinear
Fabry-Perot etalon array as a high speed incoherent to
coherent converter with memory. At the final layer of
the system error signals need to be computed and
injected back into the system with the appropriate
polarization or wavelength and the phase shift or tim-
ing needed to represent the sign of the error. The
system can be designed with either optical or electronic
error detection and generation circuitry at the output
to introduce the backpropagating error. Optical sub-
traction techniques can be considered for an optical
approach to teaching the system. Image subtraction
using a phase oon]ugated Michelson interferometer?®
appearsto be a promising approach for this apphcatxon
since it produces subtracted fields with the appropri-
ate phase shift to represent the sign of the error, with-
out the accurate phase adjustments required by other

Paralle!
Input LD
Array

PCH

interferometric approaches to image subtraction. Al-
ternatively, since the computational load required at
the output is relatively minor, optical detectors can be
combined with electronic subtraction from the target
vector to generate the bipolar error vector, which can
be applied to a spatial light modulator at the output to
introduce the backpropagating error. When the num-
ber of outputs of the pattern transformation procedure
is <1000, they can be arrayed in a linear format which
allows the utilization of high speed linear detector
arrays for output, and the utilization of linear spatial
light modulators, to introduce the backward-propa-
gating error signals,

The fan-out capability of each layer is determined
by the gain of the nonlinear devices, the holographic
diffraction efficiency, and the polarization component
throughput, and it will dictate an information collaps-
ing network architecture. For example, if the product
of optical efficiencies is only 3%, a network with 30,000-
bit input pattern vectors might be processed by 1000
hidden units that communicate with thirty output de-
vices, which simplifies the error generation process at
the output. The ability of the system to process large
amounts of data in parallel at a very high speed is
limited by the electronic addressing of the input array,
and the output photodetector array readout time, and
not by the intervening optical system, because of the
extremely fast response achievable with nonlinear eta-
lons and the almost instantaneous optical interconnec-
tion delay. The optical power requirements of the
system are primarily dictated by the first layer of non-
linear etalons, since there are many more in this layer
than in the succeeding layers for a collapsing network.
The first-layer etalons are not bidirectional and can be
optimized to have a low switching energy. Bistable
nonlinear etalons have been operated with a 3-pJ
switching energy at a rate of ~100 MHz,2 which leads
to a power requirement of 0.4-mW/etalon or 12 W for
30,000 input etalons. Only a portion of this power is
dissipated within the nonlinear etalons, and a heat
dissipation requirement of only a few watts per cm?
should be achievable with forced air or liquid cooling
techniques. Most of this power is supplied by a high
power coherent pump beam that is used to bias each
bistable device just below the bistable loop, and ~10%,
or 40 kW, is required per laser or fiber-optic input to

Vo lume
Hologram

Detector

LFPIm‘ging Vlc!or
Lens

Fig.12. Complete system for two-layer backpropagation optical learning including massively parallel input laser array and electronic error
detection at the output. LD = Inser diode (or fiber optics), NLFP = nonlinear Fabry-Perot, PCM = phase conjugate mirror, BEP SLM = spa-
tial light modulator for backward-propagating error.
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the network. The backpropagating neurons will re-
quire more optical power because the dual functions of
the bidirectional cavities conflict with the require-
ments for a low power device. Since there are not as
many hidden and output devices as input devices the
systems power requirements are primarily dictated by
the size of the input array.

The forward-propagating signal can be a narrow
pulse since the response of GaAs nonlinear Fabry-
Perot etalon is determined by the peak power incident.
In this case the backward-propagating error signal can
be either pulsed or cw. In the pulsed mode the PCM
would need to have practically instantaneous re-
sponse, such as a nonlinear optical semiconductor
might provide, and the forward- and backward-propa-
gating pulses could be time jittered so they do not
overlap in the volume hologram, but the phase conju-
gate reference and the backward-propagating error
pulse would overlap within the crystal, thereby expos-
ing a hologram. Alternatively, the backward-propagat-
ing error signal could be a low power cw beam that
would not have a high enocugh peak power to nonlinear-
ly modify the index within the Fabry-Perot etalons,
and the forward-propagating pulse could be turned
into a quasi cw phase conjugated reference by using a
photorefractive crystal-based PCM which has a slow
integrated response. The Fabry-Perot etalons would
need to have a slow relaxation time of the nonlinearly
shifted index (this requires long carrier life times and
should lead to lower etalon switching energies); thus
the probe beam would have the appropriate response
for most of the interval between pulses of the forward
beams. In this case the holographic exposure would
be due to the time integral of the cw waves in the
volume hologram, and the orthogonally polarized and
pulsed forward-propagating beam would not contrib-
ute significantly to the hologram exposure.

V. Conclusion

The 3-D storage capacity of volume holograms al-
lows the construction of huge globally interconnected
multilayer optical networks which are well beyond the
projected capabilities of alternative technologies.
The optical system seems well matched to the bidirec-
tional requirements of a backpropagation learning sys-
tem because of the intrinsically reciprocal nature of
optical interconnections. Error driven learning oper-
ations, such as backpropagation, should be able to
compensate for many of the technological flaws inher-
ent to an optical implementation by adaptively sensing
the misbehavior of the system and driving it in the
appropriate direction necessary to overcome its imper-
fections. The nonideal optical implementation of a
backpropagation network may actually have improved
performance over that of an idealized digital simula-
tion because noise will always be present in the system,
helping it to avoid shallow local minima, and pushing
the interconnection matrix away from solution bound-
aries. Imperfections of the holographic interconnec-
tion will help the system perform symmetry breaking,
which the idealized model cannot perform spontane-

ously. The simultaneous self-aligning and learning of
the optical system make this approach to muitilayer
optical neural processing experimentally feasible and
allow the implementation of complicated systems that
could not be completely specified a priori but can be
learned and modified as the desired processing opera-
tion slowly changes. The slow learning of the holo-
graphic crystals combined with the extremely high
speed processing of the nonlinear etalons gives this
system an enormous throughput potential and the ca-
pability for solving complicated cognitive problems.

The authors would like to acknowledge the numer-
ous contributions to this work made by David Brady as
v(;ell as useful discussions with Jeff Yu and Hyatt

ibbs.

The work reported here was partially supported by
DARPA, the Army Research Office, and the Air Force
Office of Scientific Research. :

References

1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Internal Representations by Error Propagation,” in Paralle!
Distributed Processing, Vol. 1, D. E. Rumelhart and J. L.
McClelland, Eds. (MIT Press, Cambridge, MA, 1986), Chap. 8.

2. D.B. Parker, “Learning Logic,” Invention Report S81-64, File 1,
Office of Technology Licensing, Stanford U. (Oct. 1982).

3. J.J. Hopfield, “Neurons with Graded Response have Collective
Computational Properties like those of Two-State Neurons,”
Proc. Natl. Acad. Sci. USA 81, 3088 (1984).

4. S.Grossberg, Studies of Mind and Brain (Reidel, Boston, 1982).

5. T. Kohonen, Self-Organization and Associative Memory
(Springer-Verlag, Berlin, 1984).

6. Y.S. Abu-Mostafa and D. Psaltis, “Optical Neural Computers,”
Sci. Am. 256, 88 (1987).

7. D. Psaltis and N. H. Farhat, “Optical Information Processing
Based on an Associative Memory Model of Neural Nets with
Thresholding and Feedback,” Opt. Lett 10, 98 (1985).

8. D. Z. Anderson, “Coherent Optical Eigenstate Memory,” Opt.
Lett. 11, 56 (1986).

9. B. H. Soffer, G. J. Dunning, Y. Owechko, and E. Marom, “Asso-
ciative Holographic Memory with Feedback Using Phase-Con-
jugate Mirrors,” Opt. Lett. 11, 118 (1986).

10. A. Yariv and S. Kwong, “Associative Memories Based on Mes-
aage-Bearing Optical Modes in Phase Conjugate Resonators,”
Opt. Lett. 11, 186 (1986).

11. T. Jannson et al., “The Interconnectability of Neuro-Optic
Processors,” Proc. Soc. Photo-Opt. Instrum. Eng. 698, 157
(1986).

12. A. D. Fisher et al., “Implementation of Adaptive Associative
Optical Computing Elements,” Proc. Soc. Photo-Opt. Instrum.
Eng. 525, 196 (1986).

13. M. Cohen, “Design of a New Medium for Volume Holographic
Information Processing,” Appl. Opt. 25, 2288 (1986).

14. N. Farhat, “Architectures for Opto-Electronic Analogs of Self-
Organizing Neural Networks,” in Technical Digest of Topical
Meeting on Optical Computing (Optical Society of America,
Washington, DC, 1987), p. 125.

15. K. Wagner and D. Psaltis, “Multilayer Optical Learning
Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 16 (1987).

16. K. Wagner and D. Psaltis, “Multilayer Optical Learning
Networks,” in Technical Digest, Topical Meeting on Optical
Computing (Optical Society of America, Washington, DC,
1987), p. 133.

17. D. Psaltis and C. Park, *Nonlinear Discriminant Functions and
Associative Memories in Proceedings, Conference on Neural

1 December 1987 / Vol. 26, No. 23 / APPLIED OPTICS 5075




‘

Networks for Computing, Snowbird, UT, APS Conf. Proc. 151
{19886).

18. T. J. Sejnowski and C. R. Rosenberg, “NETtalk: a Parallel-
Network that Learns to Read Aloud,” John Hopkins U., JHU/
EECS-86/01 (1986).

18. B. Widrow and M. E. Holf, “Adaptive Switching Circuits,” IRE
Wescon Conv. Rec. 4, 96 (1960).

20. H. M. Gibbs, Optical Bistability: Controlling Light with Light
(Academic, New York, 1985).

21. H. M. Gibbs, et al., “Optical Modulation by Optical Tuning of a
Cavity,” Appl. Phys. Lett. 34, 511 (1979).

22. A. W. Lohmann, “Polarization and Optical Logie,” Appl. Opt.
28, 1594 (1966).

23. D. Psaltis et al., “Optical Neural Nets Implemented with Vol-
ume Holograma,” in Technical Digest Topical Meeting on Opti-
cal Computing (Optical Society of America, Washington, DC,
1987).

24. J. P. Huignard et al., “Coherent Selective Erasure of Superim-

posed Volume Holograms in LiNbO,,” Appl. Phys. Lett. 28, 256
(1975).

25. D. L. Stabler et ai., “Multiplier Storage and Erasure of Fixed
Holograms in Fe-Doped LiNbOs,” Appl. Phys. Lett. 26, 182
(1975).

28. J. D. Cresser and P. Meystre, “The Role of Phases in the Tra-
sient Dynamics of Nonlinear Interferometers,” in Optical Bista-
bitity, C. M. Bowden Ed. (Plenum, New York, 1880).

27. A.Merrakchi, R. V, Johnson, and A. Tanguay, Jr., “Polarization
Properties of Photorefractive Diffraction in Electrooptic and
Optically Active Sillenite Crystals (Bragg Regime),” J. Opt. Soc.
Am. B. 3, 321 (1986).

28. A. E. Chiou and P. Yeh, “Parallel Image Subtraction Using a
Phase Conjugate Michelson Interferometer,” Qpt. Lett. 11, 306
(1986).

29. J. L. Jewell et al., “3pJ 82MHz Optical Logic Gates in a Room
Temperature GaAs-AlGaAs Multiple Quantum Well Etalon,”
Appl. Phys. Lett. 46, 918 (1985).

507¢ APPLIED OPTICS / Vol. 26,N0. 23 / 1 D.c.nbor 1987

e ——————ee e




Reprinted Applied Vol. 27 1762, May 1, 1988
&WOINM&WM“A:&?MND#. u'pom’i'-in

of the copyright owner.

Adaptive optical networks using photorefractive crystals

'Demetri Psaltis, David Brady, and Kelvin Wagner

The capabilities of photorefractive crystals as media for holographic interconnections in neural networks are
examined. Limitaticns on the density of interconnections and the number of holographic associations which
can be stored in photorefractive crystals are derived. Optical architectures for implementing various neural

‘L Introduction

Learning is the most distinctive feature of a neural-
computer and in many respects it is this aspect that

gives neural computation an advantage over alterna-
tive computational strategies. A neural computer is
trained to produce the appropriate response to a class
of inputs by being presented with a sufficient number
of examples during the learning phase. The presenta-
tion of these examples causes the strength of the con-
nections between neurons that comprise the network
to be modified according to the specifics of the learning
algonthm A successful learning procedure will result '
in a trained network that responds correctly when it is
‘presented with the examples it has seen previously and

also other inputs that are in some sense similar to the’

known patterns. When we consider a physical realiza-

tion of a neural network model, we have two options in

-incorporating learning capability. The first is to build

a network with fixed but initially programmable con-
‘nections. An auxiliary, conventional computer can
then be used to learn the correct values of the connec-
tion strengths and once learning has been completed
the network can be programmed by the computer.
While this approach may be reasonable for some appli-
cations, a system with continuously modifiable con-
nections presents a much more powerful alternative.

In this paper we consider the optical implementa--

.tion of learning networks using volume holographic

interconnections in photorefractive crystals. The use
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schemes are described. Experimental results are presented for one of these architectures.

e
*

.of volume holograms permits the storage of a very large

number of interconnections per unit volume,! where-

-as the use of photorefractive crystals permits the dy-

namic modification of these connections, thus allowing
the implementation of learning algorithms.>-? We
first briefly review the major types of learning algo-

rithms that are being used in neural network models.

We then estimate the maximum number of holograph-

ic gratings that can simultaneously exist in a photore-

fractive crystal. Since in an optical implementation
each grating corresponds to a separate interconnection

between two neurons, this estimate gives us the density
of connections that are achievable with volume holo-

grams. The next topic that we address is how the

modulation depth of each grating (or equivalently the

strength of each connection) can be controlled through

the implementation of learning algorithms. Two re-

lated issues are investigated: the optical architectures

which implement different learning algorithms and

the reconciliation of physical mechanisms that are in-

volved in the recording of holograms in photorefractive
crystals with the dynamics of the learning procedures

in neural networks. :

L. Leaming Algorithms

For the purposes of this discussion it is convenient to-
separate the wide range of learning algorithms that
have been discussed in the literature into three catego-¢
ries: prescribed learning, error driven learning, and’
self-organization. We will draw the distinction among
these with the aid of Fig. 1, where a general network is
drawn with the vector x(k) as its input and y(k) the
output at the kth iteration (or time interval). The
vector z(k) is used to represent the activity of the
internal units and w;;(k) is the connection strength
between the ith and the jth units. Let x™) m =
1... M, be a set of specified input vectors and let y‘™
be the responses which the network must produce for
each of these input vectors.




x(k):> . :> y(k)'

Fig. 1. General neural network architecture.

A prescribed learning algorithm calculates the
strength of each weight simply as a function of the
vectors x™ and y(m:

w;= fﬁ[‘(ﬂl).’(ﬂ)] m=1,. M. )

This type of procedure is relatively simple (easy learn- '

ing). It is perhaps the most sensible approach in a
single layer network. The widely used outer product
algorithm!%1! js an example of this type of learning
algorithm, as are some schemes which utilize the pseu-
doinverse.!®-13 Despite its simplicity, prescribed
learning is limited in several important respects.
First, while prescribed learning is well understood for
single layer systems, the existing algorithms for two
layers are largely localized representations; each input
x(™ activates a single internal neuron.!+'¢ Moreover,

the entire learning procedure usually has to be com-*

pleted a priori. Thislast limitation is not encountered
in the simplest form of prescribed learning, the outer
product rule:

M
w; - 2 ximyim), 2)

me]
In this case new memories may be programmed by
simply adding the outer products of new samples to the
weight matrix. Note that once the interconnection

matrix has been determined by a prescribed learning

algorithm, it may be expressed in the form of a sum of
at most N outer products, where N is the total number
of neurons in each layer. Since volume holograms
_record interconnection matrices represented by sums
of outer products in a very natural way, matrices which
can be expressed in this form are particularly simple to
implement in optics.!7-20
Error driven learning is distinguished by the fact
that the output of the system, y(k), is monitored and
compared to the desired response y™). An incremen-
tal change is then made to the interconnection weights
to reduce the error:

Aw;(k) = £,1x™ w, (k),y™). @

The change Aw;; is calculated from the vectors x(™ and
y'™ and the current setting of the weight matrix w,,(k)
(from which the state of the entire network can be
calculated). The perceptron?! and adaline2? algo-

rithms are examples of error driven learning for single*

layer networks. Interest in such learning algorithms
has been renewed recently by the development of pro-
cedures suitable for multilayered networks.2-2¢ Error
driven algorithms (hard learning) are more difficult to
implement than prescribed learning since they require
a large number of iterations before errors can be re-
duced to sufficiently low levels. In multilayered sys-

tems, however, this type of learning can provide a:
effective mechanism for matching the availabie re
sources (connections and neurons) to the requirement
of the problem. In optical realizations error drive:
algorithms are more difficult to implement than pre
scribed approaches due to the need for dynamicall .
modifiable interconnections and the incorporation ¢
an optical system that monitors the performance an:
causes the necessary changes in the weights.?® Whil
this problem could be avoided by performing learnin °
off line in computer simulations and recording th

.optimized interconnection matrix as in prescribe

learning, this approach has the disadvantage that onc
again the matrix is fixed a priori, thus preventing th
network from being adaptive. In subsequent section
we will consider a relatively simple form of Eq. (3) i
which Aw;;j(k) depends only on locally available info
mation, i.e., 2; in one layer and z; in an adjacent laye:

Aw (k) = flz 4w, (R),y"™ x ™)z \w , (k),y"™ x™], (

The perceptron and the backward error propagatic
algorithms both fall in this subcategory if we allow ti
neuronal activity z; to include error signals, i.e., if eac
neuron has distinct signal and error outputs which a
separated temporally or spatially. Anexample of suc
a neuron implemented in optics is given below in co:
junction with an optical back error propagation sy
tem. ’

In the case of self-organizing learning algorithms +
require not that the specified inputs produce a partic
lar response but rather that they satisfy a gener
restriction, often imposed by the structure of the ne
work itself. Since there is no a priori expected r
sponse, the learning rule for self-organizing systems
simply -

Aw; (k) = fij["")vwn(k)l'

This type of learning procedure can be useful, |
example, at intermediate levels of a network where t
purpose is not to elicit an external response but rath
to generate appropriate internal representations of t
information that is presented as input to the netwo:
There is a broad range of self-organizing algorithn
the simplest of which is probably lateral inhibition
enforce grandmother cell representations.!%2? T
objective of the learning procedure is to have ea
distinct pattern in an input set of neurons activat
single neuron in a second set. In the architect:
shown in Fig. 2 this is accomplished via inhibitc
connections between the neurons in the second s
Once a particular neuron in the second layer is parti
ly turned on for a specific pattern it prevents 1
connections to the other neurons in the second set fr«
assuming values that will result in activity at m.
than one neuron. The details of the dynamics of st
procedures can be quite complex (e.g., see Ref. 28),
_can corresponding optical implementations. An :
vantageous feature of optics in connection with s«
organization is that global training signals, such
fixed lateral inhibition between all the neurons i
given layer, can easily be broadcast with optical bea)
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Fig. 22 Two-layer network with lateral inhibition. Connections
ending with an open circle are inhibitory.

8. Interconnection Capabliities of Volume Holograms
The basic architecture for optical implementation of
a neural computer is shown in Fig. 3. The figure
presents a single stage of what may be a multilayered
system. The nonlinear processing elements (i.e., the
neurons) are arranged in planes. We have included a
training plane for reasons which will become clear
below. Neurons in one plane are interconnected with
the neurons in tie same or other planes via the third
dimension. The strength of the interconnections is
determined by the information which is holographical-
ly stored in light sensitive media placed in the space

.separating the neural planes. Volume, rather than.

thin, holograms are specified in Fig. 3 due to the much
greater storage capacity of volume holograms and the
availability of excellent real-time volume media. Pho-
torefractive crystals are particularly attractive as holo-
graphic media in this application because it is possible
to record information in these crystals in real time at
very high density without degrading the photorefrac-
tive sensitivity. In this section we discuss the factors
that determine the maximum number of connections
that can be specified by a photorefractive crystal witha
given set of physical characteristics. There are three
distinct factors that need to be considered: geometric
limitations arising from the basic principles of volume
holography, limitations rising from the physics of pho-
torefractive recording, and limitations due to the
learning algorithms.

The Fourier lenses in Fig. 3 transform the spatial
position of each neuron into a spatial frequency associ-
ated with light emitted by or incident on that neuron.
An interconnection between the ith neuron in the in-
put plane and the jth neuron in the output plane is
formed by interfering light emitted by the input neu-
ron with light emitted by the jth neuron in the training
plane. The image of the jth training neuron lies at the
position of the jth neuron in the output plane. The
interference of the training signal and the input cre-
ates a grating in the recording medium of the form

Ax;; = A,A; exp(K;; - 1), ®

where A; and A; are the amplitudes of the fields emit-
ted by the ith and jth neurons, respectively. K;; is
equal to k; — k; where k; and k; are the spatial frequen-
cies at which the corresponding amplitudes propagate
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Fig. 3. Optical neural computer architecture.

inthe volume medium. This grating diffracts aninput
beam at spatial frequency k, into an output beam at
spatial frequency ks if these two beams satisfy the
Bragg constraint that

k -k =K, ™
This constraint is obviously satisfied if k, = k;and ks =
k;. In general this solution is not unique. However,
Psaltis et al.23 have shown that by placing the neurons
on the input and output planes on appropriate fractal
grids of dimension 3/2 it is possible to insure that only
the ith input neuron and the jth output neuron may be
coupled by a grating with wave vector K;;. Inthis case,
recording a hologram between light from the ith input
neuron and the jth training neuron increases the con-
nection strength between the ith input and the jth
output without directly affecting the connections be-
tween other neurons. If instead of one neuron, pat-
terns of neurons are active on the fractal grids of the
input and training planes, the hologram recorded in
the volume, i.e., Eq. (6) summed over all active pairs of
neurons, is the outer product of the pattern on the
input plane and the pattern on the training plane.
Exposing the hologram with a series of M pattern
yields the sum of outer products described by Eq. (2).
Note that the architecture shown in Fig. 3 is similar to
a joint Fourier transform correlator. The use of vol-
ume, rather than thin, holograms and fractal grids
destroys the shift invariance of the correlator, making
this architecture a totally shift-variant arbitrarily in-
terconnectable system.

A basic geometrical limitation on the density of in-
terconnections achievable through volume holograms
is due to the finite volume V of any real crystal. The
refractive index n(r) of such a crystal under periodic
boundary conditions may be represented in the form

S
n(r) = z n, exp(k, - r), ®

2r 2x 2x
k= [r,(t:)! + r,(z; + ,'(L—, ]
»=0,£1,£2..., (9)

where n, is the amplitude of the Fourier component at
spatial frequency k, and L; is the length of the crystal
in the i direction. Since the maximum spatial fre-
quency which may be Bragg matched to diffract light
at wavelength X is 2k, where kg = 2x/A, the sum in Eq.
(8) is finite in holographic applications. The number
of spatial frequencies in thesum is S = V/A3. Psaltis et
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al.23 demonstrated that S is sufficient to fully and
independently interconnect neural planes which are

.limited to fractal dimension 3/2. Thus in this previous
work the issue of these geometric limitations was fully
resolved in the condition that processing nodes in the
input and output planes must be appropriately ar-
ranged on fractal grids. Other geometric limitations
arise due to finite numerical apertures and the physics
of holographic recording mechanisms. These factors
may be shown to contribute a scaling factor to S which
is independent of Vand A\. For Valemiand A =1
um, V/A3 is equal to 1012, In interconnecting neurons
arranged on fractal planes, even though the recording
geometry typically allows access to only 1% of grating
wave vector space, we still may achieve 109 intercon-
nections per cm3.

We now address the question of whether this large
number of gratings can be supported in a photorefrac-
tive crystal, i.e., do photorefractive crystals have the
capability of simultaneously storing 1010 gratings each
with sufficient diffraction efficiancy? In this paper we
answer this question based on simple arguments in the
context of a neural architecture. The conclusions we
reach are the same as those we arrive at through a more
thorough examination of the problem. Photorefrac-
tive holograms are produced in electrooptic crystal via
the modulation of the index of refraction by the space

charge field created by an optically driven inhomogen- -

eous charge distribution. A neural network architec-
ture implemented in volume holograms performs a
transformation of the form

E; in expUk; - ¥) exp(ig;) + c.c. = 2 n;; expUy;))
}

X exp(UK,; - 1)
X E; oy 0xp(k; - 1)
X explj¢)) + c.c. (10)

between the field amplitude, E; 5y exp(jk; - r), of the
Jjth neuron and the field amplitude, E; i, exp(k; - r),
incident on the input of the ith neuron. c.c. denotes
the complex conjugate of the preceding term. ¢; and
¢; are the phases of the field amplitudes corresponding
to the ith and jth neurons. y;; is the phase of the
grating which connects the ith and jth neurons. The
field amplitude diffraction efficiencies »;; are propor-

tional to the component of the space charge density in.

the crystal at spatial frequency K;; = k; — k;2® The
total space charge density due to N stored gratings is
constrained at every point in the crystal to be less than
the acceptor trap density. This implies that

ﬁ{z Z n;; exp(iv;;) exp()'K,j . r)} < g 1)
L J

where g is the maximum diffraction efficiency for the
field amplitude when only one grating is recorded. If
¥i; is an independent uniformly distributed random
variable on (—=,x), with high probability the right-
hand side of Eq. (11) will not exceed a few times its

given by

\

standard deviation, yN72n;, where n, is the rms value of
;. 'This fact allows us to find a simple limit for m

m~ o, (12)

N

2

Note that, although we have assumed that the sums in
Eq. (11) are over a set of incoherent sinusoids, this does
not imply that the sum in Eq. (10} is incoherent. To
illustrate this point imagine that y,;; = ¢; — ¢;. In this
case the terms in Eq. (10) add coherently. However if
¢; and ¢; are independent random variables the sums’
in Eq. (11) still add incoherently. Thus a random
phase term in the transmittance at each neuron causes .
the charge densities stored in the crystal to add inco-
herently but does not necessarily destroy the coher- -
ence of the optical system.

The holographic transformation described above
can be used to implement neural architectures which
map an activity pattern described by the outputs {x} of
the neurons on one neural plane to the outputs {y;} of
the next neural plane. In a coherent optical system x;
is represented by E; .. exp(j¢;) and w;; is represented
by nij exp(j¥ij). Since most simple optical nonlineari-
ties are based on absorption the transformation be-
tween {x;} and [yi] typically takes the form

2
’i"(lﬁww ) a3
i

where f is a thresholding function implemented in the .
neural plane. This functional form might be avoided

‘using interferometric detection. In an incoherent op- - )

tical system x; is represented by |E; 2 and w;; is
represented by n?. The transformation between ix;
and {y;| takes the form

yi= /(Z w‘-,-xj) . (14}
i

In either case the function f must provide sufficient

‘gain G to regenerate the signal power of the system

after each layer. If we assume that each layer contains
VN neurons, the relationship between the power inci-
dent on a single neuron, I;,, and the power output by a
single neuron, I, for a coherent system with Vi = ¢ —
®jis

2

Iin =K

N
z 1 0 XPUV)E; o €3pUd))
J

Loy

- N"flout E G .
coberent

(15)

From Eq. (12) we find

G '5:70' . _ (16)

For an incoherent system the corresponding relation-
ship is

N 1 .
Iy=x Z Wl = Wl = z—=—  a7)
In this case Eq. (12) yields
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G : -— (18)

Note that 1/G is the total diffraction efficiency of the
volume hologram. Since this must be less than 1 we
know that G > 1. ng is determined by the physical
properties of the crystal, including the maximum
charge density available for grating storage, the thick-
ness of the crystal, and its electrooptic, coefficients.
For amall 5, we may estimate ng as

2x
9™ A Y L,

where L is the length of the crystal along the optical
axis. ForA¢= 105 A=10¥m,and L =~ 10~2m, 9o =
0(1). This means that in coherent systems relatively
little gain [i.e., G = 0(1)] is needed to recall a large
number of sinusoidal gratings stored in a photorefrac-
tivecrystal. Of course as we attempt tostore arbitrari-
ly many gratings other limits arise, but at least over a
finite bandwidth of the electrooptic response of the
crystal coherent systems should have no difficulty in
achieving interconnection densities of the order of
those implied by the geometrical constraints. Inco-
herent systems, on the other hand, are unable to take
advantage of holographic phase matching and are thus
less efficient.®*® To achieve N = 1019, for example, we
must supply a gain of G = 105 in each neural plane.
Examples of how G may be obtained optically include
various combinations of image intensifiers and spatial
ight modulators and multiwave mixing in nonlinear
materials. For example, an optically addressed spa-
tial light modulator such as the Hughes liquid crystal
light valve is sensitive to ~10 uW/cm?2. If the read-out
bgsam has an intensity of 1 W/cm? we achieve a gain of
10°.

The choice between coherent and incoherent imple-
mentations of optical neural networks offers advan-
tages and disadvantages on both sides. The incoher-
ent system is easier to implement but requires the large
gain described above and offers only unipolar activities
and interconnection strengths. The coherent imple-

mentation offers bipolar activities and interconnec- -

tions but requires rigid phase stability in the optical
system over potentially very long learning cycles.
This stability is not difficult to achieve in prescribed
learning architectures, but may be more difficult to
achieve in adaptive systems. In addition, coherent
systems generally square the signal incident on the
nonlinearity, unless interferometric detection is used.
Interferometric detection is difficuit to implement in a
complex optical system. Although the incoherent sys-
tem is straightforward to implement, this simplicity
comes at a cost of requiring biasing to compensate for
unipolar values and external gain. The coherent sys-
tem is more elegant in that these additional mecha-
nisms are not necessary, but it is more sensitive to
specific design issues. One way of making coherent
implementations more robust might be to include
adaptive optics, such as phase conjugate devices, to
compensate for phase instabilities. Although these
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devices might also be needed in adaptive incoherent
systems to detect the phase of a grating to correctly
update the associated interconnection, in the incoher-
ent case it is only necessary to detect the current state
of the phase. Inthe coherent case it is generally neces-
sary to continuously track the phase.

(V. Lsaming Architectures

We now turr to the question of how we can specify
the strength of each interconnection. There is a nice
compatibility between simple (multiplicative) Heb-
bian learning and holography; the strength of the con-
nection between two neurons can be modified by re-
cording a hologram with light from the two neurons.
It is not possible, however, to record multiple holo-
grams in a single crystal independently. Thus far we
have shown that the space charge in a photorefractive
crystal may be arranged to achieve a very large number
of independent interconnections. The task that re-
mains is to find a means of using optical beams from
outside the crystal to correctly arrange the 3-D charge
distribution. In particular, we must find means to
address the full 3-D bandwidth of the crystal from 2-D
neural planes. To successfully implement learning
with photorefractive crystals the nonlinear dynamics
that govern the multiple exposure of holograms in a
photorefractive medium must be reconciled with the
nonlinear equations that describe the iterative proce-
dures of learning algorithms. It is extremely difficult
to fully characterize analytically the ability of an opti-
cal system to simulate a particular learning algorithm,
We will have to rely heavily on experiment in the
search for the optimum match between nonlinear op-
tics and learning procedures for neural networks. In
this section we describe learning architectures which
are relatively simple to implement experimentally and
which can be used to evaluate the capability of photo-
refractive crys.4is to store information in the form of
connectivity patterns in a neural computer.

The first learning algorithm we consider is the pre-
scribed sum of outer products of Eq. (2). As wesawin
the previous section, a sum of this sort may be imple-
mented as a series of exposures of a volume hologram.
In a photorefractive crystal, the exposure of a new
hologram partially erases previously recorded holo-
grams. This places an upper limit on the maximum
number of holograms that can be recorded and thus
the number of associations M that can be stored in the
crystal. The limit is found by determining the mini-
mum tolerable diffraction efficiency for each associa-
tion and solving for the number of exposures that will
yield this efficiency. Let A, be the amplitude of the
mth hologram recorded. After a total of M exposures,

AA{I,,(._)](Z _) as)

where Aq is ‘he saturation amplitude of a hologram
recorded in the photorefractive crystal, ¢, is the expo-
sure time for the mth hologram, r, and r, are, respec-
tively, the characteristic time constants for recording
and erasing a hologram in the crystal. We allow for the




case that 7, » 7, in light of limited evidence that this
may be the case in some crystals.3 Ionic conductivity
is one mechaniam leading to multiple time constants.
We can use several different criteria for selecting the
exposureschedulet,. Forexample, if werequire A, =
Amg4; for all m we obtain

[1 - __"1)] ,,p(;"'ﬂ) - [1 - “,(:.""_*‘)] . (20)
7, Te T

If 7, = 7., the solution to Eq. (20) in the boundary

condition ¢; > 7. is

m
ta ™7, ln(;an) m>l, 21
which yields
Apn=Ay= —:—l'i . (22)

For the case 7, # 7, we define p,, such that ¢, = pp7e.
Since, from Eq. (19), limpy—insA; = 0, Eq. (20) may be
satisfied only if limy-vinttm = 0. Thus for some my > 1,
Pmy < 1and tp; < 7. Then, from Eq. (20),

4 [
my my
t"'oﬂ -~ "'lo (1 + PM}" (23)
1+-=2
7'
or
P
Pmgt1 ™ ITM:; . 24
By induction, for m > my
P ™ —‘——1'——7 . (26)
(m—mg) +——
Pmg

As m grows large with my fixed, Eq. (25) can be shown
to yield '

p s (26)

[ (27)
m

The. value of m for which the approximation holds
increases with the r¢ :io r./r~. In the case r, = 7, for
example, 7,/3t; = 0.82 and 7./10t,p = 0.95. Inany case,
for M >» mg for some my satisfying the constraints
pisceding Eq. (23),

A, =Ay= A‘{l - exp( ;;' )] (28)

for all m. Solving for M with A, << Ap we find a limit
for M given by

MaTe (29)
Ty Apy

This result agrees well with what we might expect
intuitively. The number of exposures allowed in-
creases in proportion with the ratio 7./, (if we erase
slowly we can store more holograms) and the ratio of
the maximum possible and minimum detectable grat-
ing amplitudes.

in " »
u - (¥ -] 9 " e ! s
Fig. 4. Optical architecture for backward error propagation learn-
ing.

The second architecture we will discuss is capable of
implementing the backward error propagation algo-
rithm?-2* in a multilayered network. The architec-
ture, shown in Fig. 4, is a variation on a system we .
described previously.58 The system as shown has two
layers but an arbitrary number of layers can be imple-
mented as a straightforward extension. An input
training pattern is placed at plane N;. The pattern is
then interconnected to the intermediate (hidden) lay-
er N, via the volume hologram H;. A 2-D spatial light

.modulator placed at N; performs a soft thresholding

operation on the light incident on it, simulating the
action of a 2-D array of neurons, and relays the light to
the next stage. Hologram H, interconnects N, to the
output plane N, where a spatial light modulator per-
forms the final thresholding and produces a 2-D pat-
tern representing the response of the network to the
particular input pattern. This output pattern is com-
pared to the desired output and the appropriate error
image is generated (either optically or with the aid of
an image detector and rerecording) on the spatial light
modulator Ny. The undiffracted beams from N; and
N are recorded on spatial light modulators at N3 and
Ng, respectively. The signals stored at N3, Ny, and Ns
are then illuminated from the right so that light propa-
gates back toward the left. - The backpropagation al-
gorithm demands a change in the interconnection ma-
trix stored in H; given by

Awff = ~ar,f ()0, (30)

where « is a constant, ¢; is the error signal at the ith
neuron in N, z" is the input diffracted onto the ith
neuron in N4 from Na,f(x) is the derivative of the
thresholding function f(x) which operates on the input
to each neuron in the forward pass, and x{* is the
output of the jth neuron in No. Each neuron in Ny is
illuminated from the right by the error signal ¢; and the
backward transmittance of each neuron is proportion-
al to the derivative of the forward output evaluated at
the level of the forward propagating signal. As we
have described above, the hologram recorded in H, is
the outer product of the activity patterns incident
from Ny and Ns. Thus the change made in the holo- -
graphic interconnections stored in H; is proportional
to the change described by Eq. (30).

The change in the interconnection matrix stored in
Hj required under the backpropagation algorithm is

Aufl) = =Y arfPuPri), (31
where 19, is the activity on mthinputon Ny. The error
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signal applied to N produces a diffracted signal at the
{th neuron in N3 which is proportional to

-3 . 2)

We assume that, during the correction cycle for Hy, N
isinactive. Once again, if the backward transmittance
of the /th neuron is proportional to f(x}"), the change
made to the hologram by the signals propagating back
from N; and Nj; is proportional to the change pre-
scribed in Eq. (31).

A key element in this architecture is the assumption
that the spatial light modulators at N, and N, may
have transmittances which may be switched between a
function f(x)/x for the forward propagating signal and

f(x) for the backpropagating signal. In both cases x-

represents the forward propagating signal. We have
previously described how nonlinear etalon switches
might be used in this application.’® Electrooptic spa-
tial light modulators might also be used.?

We have performed an experiment to show how a
single layer of error driven learning might be imple-
mented. This experiment is shown schematically in
Fig. 5. Inthis case, the stored vectors x™ correspond
to 2-D patterns recorded on a liquid crystal li¥ht valve
from a video monitor. The output vectors y'™ corre-
spond to the single bit output of the detector D. An
input vector is imaged onto a photorefractive crystal
via two separate paths. The strength of the grating
between the image of the input along one path and the
image along the other path is read out by light propa-
gating along the path of one of the write beams in the
orthogonal polarization, i.e., while the write beam inci-
dent on the detector is linearly polarized, the other
write beam is circularly polarized. The polarizer P
blocks the linearly polarized beam and one component
of the diffracted circularly polarized beam, passing
only the orthogonally polarized diffracted beam. This
allows readout of the grating as it is being recorded.
The diffracted light is imaged onto the detector D.
This system classifies input patterns presented to it
into two classes according to whether the output of the
detector when the pattern is presented is high or low.
If during training a pattern we would like to classify as
high yields a low response, the hologram is reinforced
by exposing the crystal to the interference of the two
beams, each carrying the image of that pattern. This
exposure continues until the diffracted output in-
creases by a fixed amount. If a pattern which should
be classified as low is found during training to yield a
diffracted output that is too high, the hologram dif-
fracting that pattern is erased by a fixed amount by
exposing the crystal with only one of the imaging
beams. (One beam is blocked by the shutter SH). An
experimental learning curve showing the diffracted
intensities for each learning cycle for four training
patterns in a system implemented ur’ng an Fe-doped
LiNbOj crystal is shown in Fig. 6. The system classi-
fies the patterns 0 and 2 as highand 1 and 3 as low. At
first all patterns are low. The first two learning cycles
are intended to drive the outputs of 0 and 2 above
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Fig.5. Simple photorefractive learning system: PB is a polarizing
beam splitter; L1 and .2 are imaging lenses; WP is a quarterwave
plate; SH ia a shutter; P is a polarizer; D is a detector; M is a mirror.
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Fig. 6. Experimental learning curves.

threshold. However, they have the undesired effect of
also driving pattern 3 above threshold. Thus in the
third learning cycle 3 is erased. In this particular erase
cycle the erasure was too severe. Note that pattern2is
erased in this cycle, even though there is no overlap
between this pattern and pattern 3. The reason for
this is that the two images of pattern 3 are in focus only
over a limited region of the crystal volume. Qutside of
this region the unfocused image may erase the holo-
gram formed by pattern 2. In the subsequent two
cycles patterns 0 and 2 are again reinforced. This has
the unwanted effect of driving both patterns 1 and 3
just above threshold. Inthe final two cycles patterns 1
and 3 are erased until both are below threshold. At
this point all patterns are correctly classified and
learning stops.

In this experiment the photorefractive crystal acts
as a 2-D modulator. The diffraction efficiency be-
tween the two imaging paths is high where the patterns
0and 2 overlap and low where patterns 3 and 1 overlap.
As mentioned above, a problem arises in the fact that
the overlap is well defined only in the image plane,
meaning the crystal must be thinner than the depth of
focus of the images. To utilize the full capacity of
photorefractive volume holograms it will be necessary
to move beyond this implementation to architectures
utilizing the full 3-D capacity of the crystal as dis-
cussed above. Nevertheless, this experiment demon-
strates in a rudimentary way how learning in photore-
fractive crystals may proceed.




V. Conclusion

Photorefractive crystals represent a promising in-
terconnection technology for optical neural comput-
ers. The ease of dynamic holographic modification of

interconnections in these crystals allows the imple-.

mentation of a large class of outer product learning
networks. The density of interconnections which may
be implemented in these crystals is limited by physical
and geometrical constrainta to the range of from 108 to
1010 per cm3. To achieve these limits consideration
must be given to the exposure schedule of the crystal.
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Abstract

Generalised Fourier correlators imposing finite system space-bandwidth products are de-
scribed and a class of binary filters is proposed. In pattern classification and signal registration
applications it is shown that for a class of signals the binary filters yield the same asymptotic
performance as the matched filter. It is hence adduced that a dynamic range of a single bit in
the filter suffices for classification purposes. The effects of statistical side-lobe fluctuations and
a finite system space-bandwidth product are included in the analysis. It is demonstrated that
performance improves in a natural fashion with increase in the system space-bandwidth product
for both the binary filter and the matched filter.

1 INTRODUCTION

Matched filters are commonly used in diverse applications in communication systems, signal pro-
cessing, and pattern classification, where the task is typically the recognition of a particular signal
or pattern immersed in noise. The principal theoretical argument supporting the use of Matched
Filters is the classical result: Among the class of all linear filters, matched filters maximise a (suit-
ably defined) signal- to-noise ratio [1]. Practical implementations of matched filters—and linear,
shift-invariant systems, in general—are much facilitated by the fundamental Fourier convolution
theorem wherein convolutions (or correlations) in one domain are transformed into products in
the Fourier domain. As a consequence, relatively simple analog implementations such as optical
Fourier-plane correlators 2], and digital implementations using algorithms such as the Fast Fourier
Transform [3] abound.

The implementation of the system transfer function for the matched filter, however, requires
a large dynamic range. A question of considerable theoretical and practical import is the deter-
mination of minimal complexity filters which have minimal dynamic range requirements, and for
which good classification performance still attains (vis-i-vis the matched filter). The issue here is
to determine the critical information needed for classification, and to discard redundant informa-
tion. In this paper we propose a class of low complexity binary filters which are a step toward the
resolution of this question. These filters encode information in the phase of the Fourier transform
of the desired signal and require a dynamic range of just one bit.

*Currently with the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA 19104
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Our principal theoretical result concerning the binary filters is the following: For statistically
uncorrelated pattern classes the binary filters provide the same asymptotic classification performance
as the matched filter. In fact, the binary filters provide classification performance comparable to
(though bounded above by) the matched filter over all ranges.

These binary filters are of considerable practical importance. The requirement of a large
dynamic range for the filter (corresponding to the many bits required to represent each sample point)
is obviated, and just a single representation bit is utilised per sample point. The resultant decrease
in required memory storage paves the way for low cost, low complexity systems—both digital
and analog—which retain good classification performance. Of particular interest in optical flter
implementations is the recent availability of a two-dimensional binary spatial light modulator—the
magneto-optic device. We have demonstrated good classification in experimental optical correlators
with our binary filters implemented uasing these devices [4}.

In the next section we define a general family of bounded space-bandwidth product Fourier
correlators, and formally prescribe the matched filter and the binary filter in this context. We also
outline the signal statistics that we utilise, and set up a performance measure which incorporates
information about both the correlation peak, and the side-lobe energy for all the pattern classes.
In section 3 we analyse the performance of the matched filter and the binary filter in a two-
class pattern recognition problem where the patterns belong to well-defined statistical classes,
and are noise-free. We obtain analytical results for the performance measure as a function of
the system space-bandwidth product in the two cases. In section 4 we investigate the attrition in
classification performance in both systems when the input patterns are corrupted by additive noise.
Sections 5 and 6 are devoted to numerical solutions and discussions of the comparative classification
performance of the matched filter and the proposed binary filter: We demonstrate the monotonic
improvement in performance in both systems as the system space-bandwidth product is increased,
and show the asymptotic merging of the performance curves for the binary filter and the matched
filter.

Notation: Let w be some fixed (but arbitrary) positive quantity. To each real-valued function,
f, of a real variable we associate its finite-domain Fourier transform F, formally defined by

Fu(u) = '/_': f(z) e dz . )

We will use the terminology “space” for the variable z—the domain of the input signals—and
“frequency” for the variable u—thg domain of the associated Fourier transform.

2 FOURIER CORRELATORS

2.1 Bounded Space-Bandwidth Systems

The conventional Fourier correlator of equation correlator is shift invariant and admits signals of
infinite space-bandwidth product (SBP) without loes of informatioa. In this paper we will analyse
the effect on classification performance of imposing a finite system space-bandwidth product. In
pa ticular, we consider shift variant Fourier correlators which process inputs through windows
(-w,w) in space, and (-v, v) in frequency: For a given signal, f(z), and reference, A(z), the
output, g(z), of the bounded space-bandwidth correlator is given by

9(z) = Y Fo(u) B (u)e*™** dy .
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We define the system space-bandwidth product, which we denote by p, to be the product of the
width of the spatial and frequency windows: p = 4wy,

We coasider two representative pattern classes, C; and C;. The input signals are real valued
functions, f(z), which are sample realisations (drawn from some underlying probability distribu-
tion) of one of the two pattern classes . We will denote by f;(z) the input conditioned upon
being drawn from pattern class C;. For fixed system space-bandwidth product, p, we compare the
following two classifiers for different choices of reference signal, h(z).

M;tch«i Filter: The reference signal, A(z), is chosen matched to the sample realisation, fi(z),
of class C;. The correlation output, g}‘(z), for the matched filter conditioned upon class C; at the
inpui is given by

92) = /" Fuj(u) Fuz(u) M2 du . @)

If w = v = 00, we have the classical matched filter. For finite p a correlation peak is still produced
for class C;. (Classification performance, however, deteriorates as p decreases.) Note that the
matched filter above, in general, requires exponential dynamic range.

Binary Filter: The reference signal, A(z), is chosen such that

H(u) = sgn{R {F,i(u)}} = { _i gggﬁig:;i E g

The filter hence takes on values -1 and +1 only at each frequency, so that we have a dynamic range

. of one bit. The correlation output, g7 (z), of the binary filter conditioned upon class C; at the input
is given by .

B@) = [ R (R {Fua(w)}}e*™ du. 3)

Note that the binary filter tracks the phase of F,, ;(u), so that we can expect a correlation peak for
class C;, but not for class C;.

In figure 1 we demonstrate two correlations of a random one-dimensional input sequence; in
figure £(a) the correlation was accomplished using a matched filter, while in figure }(b) the corre-
lation was performed using a binary filter. As seen, the correlation peaks and side-lobe fluctuation
levels are essentially indistinguishable in the two cases.

2.2 Performance Measure

In characterising the classification performance of the two filters, we concentrate on two key mea-
sures: The strength of the correlation peak, and the side-lobe structure. For specific sample
realisations not much can be said about the size of the side-lobes; however, if signal statistics are
known we can extract peak and side-lobe information from a consideration of the ensemble. In the
next section we describe a specific statistical structure for the two signal classes from which we can
obtain quantitative estimates of filter performance.

For j = 1,2 let g;j(z) denote filter output conditioned upon class C; being present at the
input. Define

Hj
]

sup{[E{g;(2)}i} ,
n:p{Var{g,’(z)}} .
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We define the performance coefficient p by

p= gEl -Ilz)' ] (4)
h+m
The term in the numerator measures the relative size of correlation peaks for the two classes, while
the term in the denominator factors in the average energy in the side-lobes. The coefficient, p,
hence is an indicator of how well the filter discriminates class C; from class C;.

We denote by p* and p*, respectively, the performance coefficient for the matched filter and
the binary filter. We shall take system performance to be a monotonically increasing function of
the coefficient p, with the system with the largest p realising the best performance.

Note that the form of the coefficient p is similar to a signal- to-noise ratio, the “signal”
corresponding to class C; and the “noise” to class C;. (In fact, when the output variable g(z) is
Gaussian, and the a priori probabilities of the two classes are the same, it turns out that the form
of the Bhattacharyya coefficient (5] is identical to equation 4 for p). From classical communication
theory we have that for correlational-systems which are linear functionals of the input signal, the
peak signal-to-noise ratio for a signal immersed in white noise is obtained for the matched filter.
Hence we expect the classification performance of the binary filter to be bounded by that of the
matched filter.

2.3 Signal Statistics

In order to facilitate analysis we assume a specific statistical structure for the ensemble os signals
in the two classes. We assume that the signals f;(z) and fa2(z) corresponding to the two classes C,
and C; are sample realisations of mutually independent, white random processes with

E{f{(z)} = O,
E{fi@)fi(»)} = djé(z-v). (5

The signal classes have been restricted to be stationary and white in order to effect some
simplicity in the ensuing analysis. The stationarity constraint can be relaxed to allow of correlation
functions of the form r;j(z)é(z — y); the analysis for this case is essentially the same as for the case
we consider. With the added constraint that the process be Gaussian, one or both constraints can
be relaxed to encompass general correlation functions of the form r;(z,y).

From equation 1 the real and imaginary parts of F,, j(u) are given by

R{F.;(u)} = [ fi(z) cos 2xuz dz ,
Q{F;u)} = f' f;(z) sin 2xuz de . (6)
iyl
The random processes f;(z) are independent and zero mean. By virtue of the Central Limit
Theorem then, it can be readily seen to follow that R {F, 1(u)}, S {F,1(u)}, R{F,a(u)}, and

Q {F,,2(u)} are mutually independent Gaussian random processes with zero meaa. Some algebraic
maanipulation readily yields the following:

E{R{F.j(w)}S{F.it)}} = o0, (7
E{R{F, (v} R{F;1)}} = olwlsincw(u-1)+sinc2u(u+1)], (8)
E{S{F;(u)}S{F,()}} = olwsinc2uw(u~t)-sinc2uw(u+1t)]. (9)
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We also require the first and second moments of the random processes sgn{R { F. j(u)}} and
{R {F,,j(u)}]. Define r, : R? - {=1,1] by

sinc 2w(y ~ t) + sinc 2%o(u 4 t)
(1 + sinc dwu)!/3(1 + sinc dwit)}/3 °
Note that from equation 8 it follows that for each w and ¢, r,(u,t) is just the correlation coefficient

of the random variables R {F, j(u)} and R{F, ;(t)}. The following results can be readily shown
(cf. [6], for uutance) '

ro(tu,t) = (10)

Ebg{® (R = 0, ' (11)

E(R {Fus(}} = @m : (12)

Efsga(® {F ()} ogaiR (BN = 2ea~ro(ut), (13)
BR(FusH REGON) = 222 [(14+ sine o)1 + sime ot} /3(1 = (a2

+ (sinc2w(u — t) + sinc 2w(u + 1)) sin“r“,(u,t)] . (14)

3 TWO-CLASS DISCRIMINATION

3.1 The Matched Filter

Our consideration of the matched filter as a correlational system described by equation 2 differs
somewhat from the classical deterministic matched filter [1] in the inclusion of a finite system space-
bandwidth and the representation of both input and reference signals as members of a statistical
class. The performance coefficient. that we derive hence reflects the relative correlation peaks,
and the “noisy” side-lobe fluctuations averaged over the ensemble as a function of p (the system
SBP).

We estimate the parameters, u; and 7;, in equation 4 in turn for the two classes using the
results tabulated in section 2.3.

Ciua Cit The system output is given by
9@ = [ (R{Fua(WIP + (8 {Faa(w)P) = du.
A simple computation yields:

b = 4dwvo?, (15)
m = 64wl /0‘(1-1)(sinc4uvt)’dt. (16)
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Class C3: The system output is given by

#i(z) = [_: Foa(u) Fuy(u) eI gy 17

The correlation peak and average side-lobe energy can again be simply estimated:
uz = 0. (18)

1
m = 32wl L (1 - t)(sinc dwwt)? dt . (19)
Defining a as a function of the space-bandwidth product p by |
1
a(p) = [ (1- t)(sinepe)*at, (20)
the performance coefficient of equation 4 is hence given by
- a}/o} 21

P = Tl + 2] @)

| Asymptotic results: The above expression can be readily evaluated for extreme values of the
system space-bandwidth pioduct. For very low space-bandwidth products a(p) approaches 1/2, so

that
- ci"éaz’ 0
a— -t .
P 1+ 20}/03 up

For very high space-bandwidth products, on the other hand, a(p) asymptotically approaches the

value 1/2p, so that 212
poi/o;

The asymptotic results correspond well with intuition. For very low space- bandwidth prod-
ucts we expect a low processing gain for the system as not much correlation matching can be
obtained. For high space-bandwidth products on the other hand, the use of uncorrelated signals at
the input yields large processing gains increasing linearly with the space-bandwidth product.

It is instructive to compare the performance measure given by equation 21 with the classical
matched filter result for the signal-to-noise ratio (SNR) of a deterministic signal immersed in white
noise. The processing gain of a classical system (defined to be the ratio of the output SNR to the
input SNR) is given essentially by the signal space-bandwidth product (1]. If we define 03 /03 to be
a measure of the inpu¢ SNR for the statistical case under consideration, then the processing gain of
our system, in the limit of large p and small input SNR, is given by 1/2a(p) = p, which is precisely
the classical result. (The additional input SNR dependent term present in the denominator of
equation 21 arises because the statistical side-lobe fluctuations are also taken into account in our
performance measure; this term will not be significant for low input SNR scenarics.) In fine, the
presence of a finite system space-bandwidth product manifests itself in a loss of processing gain;
the larger the space-bandwidth product, the more the processing gain realised by the system.

3.2 The Binary Filter

The system output conditioned upon class C; being present at the input is given by equation 3.
We again estimate the parameters, u; and o;, for the two classes in turn.
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Class C;: The output of the system with f1(z) at the input is given by substitution in equation 3:
A= [ R{Fa@HA™du+i [ 3R R (Fua@)} ™ du.. (22

From equations 7 and 12 it then follows that

H = mp{lE{g‘(z)}l} C; / (1 + sincpt)!/2dt, (23)

where, as before, p is the space-bandwidth product 4ww.
Now, in equation 22 set

h@ = [ R(Fa@N e,
b(e) = [ S{Ra(w}e®{Fa)} ™™ du.

Then
7 (2) = ki(z) + ika(z) .

Clearly, k;(z) and k;(z) are uncorrelated complex random processes with k3(z) being zero meaa.

Hence
Var (g} (2)} = E {|k1(2)I*} + E {{k2(2)I*} = [E {kr(2)}1* .
Using equation 9 and equations 12-14 we obtain after some algebraic manipulation that
Var (@} = L2 [* [ [uine (Bn =0} sin™ ryalan ) - 301 + sincpu)?
X (1+sincpt) (1 = /1 =1, (u,8)2)] cos 2x(u - t)vz dudt . (24)

Note that r,(vu,vt) = r,/(u,t), which can be verified by direct substitution in the defining
equation 10 with p = dwwv.

No analytic expression is available in general for ;; = sup_ {VargP(z)}, and we have to
resort to numerical evaluation for specified parameters p, o7, and 03. (Note that in general, the
supremum does not occur at z = (.)

Class C3: From equation 3, the output for class C; is given by
v .
@)= [ Fuaw)sen(R{Fua(u)}} ¥ du

Again having recourse to section 2.3, we can show that

s = sup{|E{g(z)}l} =0, (25)
Var {g3(z)} = ﬂﬁ /-ll /.11 sinc {g(u -)} sin~! rp/a(tyt) cos 2x(u — t)vz dudt. (26)

Again, no analytic expression can be found for m; = sup, {Varg3(z)}, in general, and we must
resort to numerical evaluation.
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Define fo, /1, and 5; as functions of the space- bandwidth product p by
3
Al = [+ simcpprad (@)
Bi(p) = su j ' / " sinc {2(u = 1)} sin" ry q(u,t) cos 2x(u - tyvzdudt (28)
'p 1 /-1 2 p/alth s

fi(p) = sup [_ : [ . {ainc {g(u - 1)} sin= rppe(u,t) - %(1 + sinc pu)*/? |
x (1+sincpt)*/31-(1- VALK t)z)‘“}} cos 2x(u — t)vz dudt . (29)

Combining the results of equations 23-26, and using the defining equations 27-29 we obtain the
performance coefficient, p*, of the binary filter to be

P 260(p) 03/o3
" Bp) +Ba(p)oi/af

We will return to a comparative analysis of the expressions 21 and 30 in section 5.

(30)

4 CLASSIFICATION IN ADDITIVE NOISE

In practice, the issue of system robustness in the face of signal degradations, and noise becomes
important. We illustrate how noisy signals result in performance attrition in the two correlator
systems.

We consider the case where the input signal f(z) is contaminated by an additive noise term
n(z). (We assume that the reference signal, h(z), being known a priori can hence be represented
in a reasonably accurate and noise-free manuner). We take n(z) to be an independent noise process
which is additive and white with

E{n(z)} = 0,
E{n(z)n(y)} = oié(z-1).

The input signal term is then f;(z) + n(z), and the reference signal term (matched to class Cy) is
h(z).
4.1 The Matched Filter

Tat g¥,(z) denote the (naisy) correlation output of the system when the input signal is a noisy
r-slisation of class Cj, viz., fj(z) + n(z). Then
. 4

9@ = [ R @™ dut [ N Faaw) e du
= gl@)+a,

where the first term, g}'(z), is the noise-free system response of equation 2 and the second term,
g, is the additive noise term in the output correlation. The noise term independent of the signal
term, and is zero mean with peak variance at the origin

Var {g¥(0)} = 2p’0ioa(p),
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identical in form to equation 19. Hence, using equations 15-20 we have
pin = sup{|E{gha()H} = 4;,
Mma = sup{Var {g}l.(s)}} = 2p'0} a(p) (29} + 07) ,
ma = sup{Var{gfa(2)}} = 2P’} a(p) (¢ + 07) -

The performance coefficient p¥ for the matched filter when input noise is present is hence

given by ,
[.& .
P: = Sﬂlln = Han 22 = (;,,+2’=,)3, (31)
where a(p) is as defined in equation 20.
A comparison of equations 21 and 31 shows that the presence of additive input noise is
equivalent to an additive increase in the variance (or spread) of class C; by exactly twice the spread
of the noise.

Q

4.2 The Binary Filter

Tracing through an analognus analysis yields the performance coefficient p2 for the binary filter
when the input is degraded by additive noise. In general, however, it turns out that the form of p2
is not conducive to a convenient representation as in equation 30 for the noise-free case; specifically,
in equation 29, the functional 83(p) has to be replaced by a more complicated supremum taken
over the sum of two integrals, the coefficient of one being o3, and of the other being 02. (The
supremum is now a function of not only the space-bandwidth product p, but also of the signal and
noise variances.) Using sup {A+ B} < sup {A} +sup {B}, we can arrive at the following convenient
lower bound estimate for p2 for the sake of comparison:

260(p) 3755y
Br(p) + Ba(p) ;g:’f;,"r

with the functionals Sa(p), S1(p), and B1(p) given by equations 27-29.

On comparing equations 30 and 32 we see that the effect of additive noise is to create a
larger effective spread for class C; just as in the case of the matched filter. In both cases, the noise
effectively reduces the ability of the system to pick out class C; by increasing side-lobe energy, and
at the same time increasing the correlation spread of class C;.

PR 2

(32)

5 NUMERICAL SOLUTIONS AND DISCUSSION

Let o2 denote the ratio 03/03 + 203. We will refer to o2 as the class spread ratio; in essence o3
is astatistical measure of the relative strengths of "signal” (class C,) and "noise”(class (3, and
additive noise) at the input of the correlational system. Recapitulating the expressions for the
performance coefficients for easy reference, we have

M ol
P = Tap)+da(p)o?’
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p = 2hp)e
Ai(p) + Ba(p) o?’
where the functionals a(p), So(p), S1(p), and 53(p) are defined, respectively, in equation 20 and
equations 27-29.

A numerically generated family of performance curves for the two systems is depicted in
figures 2 and 3. In each figure the performance coefficient, p, is plotted as a function of the class
spread ratio, o3, and the family of curves is generated by varying the space-bandwidth parameter
p between 8 and 256. In order to facilitate comparison between the matched filter and the binary
filter, for values of p = 8, and p = 256, the corresponding performance curves of the two systems
are extracted from figures 2 and 3, and plotted on the same graph in figures 4 and 5.

It can be immediately seen from the figures that, all other things being held constant,
the performance coefficient p is a monotonically increasing function of the system space-bandwidth
product for both filtration systems. This is clearly in accordance with our expectations as increasing
the system space-bandwidth product is equivalent to increasing the size of the windows in the space
and frequency domains, so that a greater degree of correlution matching can be obtained.

Now, when the class spread ratio, o3, is large, we have a situation where the noise power,
a3, and the class C; spread, o3, are both much smaller than the class C; spread, o3. This can be
viewed as essentially saying that patterns of class C; can take on values from a much wider set than
can patterns of class C; and the ncise patterns. The probability of significant cross-correlation in
any particular case is then quite small, so that we expect good classification performance for large
values of o. This intuitive expectation is echoed in figures 2-5, where we see that for the matched
filter and the binary filter, the performance coefficient p is a monotonically increasing function of
the class spread ratio, 03, for each performance curve (corresponding to fixed p).

For the matched filter, a close examination of the asymptotes and the slope near the origin
of each performance curve reveals that *large p” behaviour holds for relatively small values of the
system space-bandwidth product (as small as p=8). The asymptote of the performance curve for the
matched filter is approximately p/2, and the graph near the origin is a straight line with positive
slope p.

Though p® is always bounded from above by p™, for large class spread ratios the performance
curve of the binary filter approaches the same asymptote, p/2, as the matched filter, so that their
performance is virtually identical. An examination of their relative performance for each p in the
range considered indicates that when the class spread ratio is unity (i.e., the two classes have the
same variance), we have p® ~ 2p4/3.

6 CONCLUSION

These numerical simulations, coupled with the prior success of experimental systems utilising binary
filters [4], tend to bolster the intuitive notion that the phase of the Fourier Transform contains most
of the information content in the signal. The significance of the results lies in the demonstration
that, for classification purposes, most of the information content in the signal can be extracted
with filters of low complexity. Specifically, the binary filters of this paper require only a single
bit dynamic range but provide classification performance comparable to the matched filter which
is much more prodiguous in its dynamic range requirements. While the success of these schemes
is very encouraging, some questions remain: We have demonstrated binary correlator structures
based on heuristic algorithms; however, it is not immediately obvious whether we can specify
optimum binary correlator structures for a given problem. As a specific instance, we can obtain
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filters which maximally separate pattern classes in that the filter is orthogonal to all unwaated
patterns, while yielding a significant correlation only if the desired pattern is present. It is not
clear, however, whether an algorithm can be specified which yields the binary filter which is the
. best approximation to any such maximally separating filter.
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Abstract— The properties of higher order memories are described. The non-redundant, up to Nth order polynomial
expansion of N-dimensional binary vectors is shown to yield onhogonal feature vectors. The properties of expansions
that contain only a single order are investigated in detail and the use of the sum of outer product algorithm for
training higher order memories is analyzed. Optical implementations of quadratic associative memories are described
using volume holograms for the general case and planar holograms for shift invariant memories.

1. INTRODUCTION

An associative memory can be thought of as a system
that stores a prescribed set of vector pairs (x™, y™) for
m=1,..., Mand also produces y™ as its output when
x™ becomes its input. We denote by N and N, the di-
mensionalities of the input and output vectors, respec-
tively. When the output vectors are stored as binary
Ng-tuples, the associative memory can be implemented
as an array of discriminant functions, each dichoto-
mizing the input vectors into two classes. This type of
associative memory is shown schematically in Figure
1. In evaluating the effectiveness of a particular asso-
ciative memory we are concerned with its ability to
store a large number of associations (capacity), the ease
with which the parameters of the memory can be set
to realize the prescribed mappings (learning), and how
it responds to inputs that are not members of its training
set (generalization). In this paper we discuss a class of
associative memories known as higher order memories
that have been recently investigated by a number of
separate research groups (Baldi & Venkatesh, 1987;
Chen et al., 1986; Giles & Maxwell, 1987; Maxwell,
Giles, Lee, & Chen, 1986; Newman, 1987; Poggio,
1975; Psaltis & Park, 1986; Sejnowski, 1986). Our mo-
tivation for investigating these memories was the in-

* Funded by the Air Force Office of Scientific Research, the Army
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crease in storage capacity that results from e increase
in the number of independent parameters or degrees
of freedom that is needed to describe a higher order
associative mapping. The relationship between the de-
grees of freedom of a memory and its ability to store
associations (Abu-Mostafa & Psaltis, 1985) is funda-
mental to this work and we state it in the following
subsection as a theorem.

1.1 Degrees of Freedom and Storage Capacity

Let D be the number of independent variables (de-
grees of freedom) we have under our control to specify
input-output mappings and let each parameter have
K separate levels or values that it can assume. We define
the storage capacity C to be the maximum number of
arbitrary associations that can be stored and recalled
without error.

Theorem 1.
Dlog, X
No ¢}

Proof: The number of different states of memory is given
by K” and the total number of outputs that a given set
of M input patterns can be mapped to is 2%, If the
number of mappings were larger than the number of
distinct states of the memory, then mappings would
exist that are not implementable. Requiring that all
mappings can be done leads to the relationship of the
theorem.

The equality in (1) is achieved by Boolean circuits
such as programmable logic arrays and an extreme case
of a higher order memory we will discuss later. When
the equality holds, resetting any one bit in any one of

Cx<
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FIGURE 1. (a) Discririnant function; (b) Associative memory constructed as an anay of discriminant functions.

the parameters of the memory gives a different map-
ping. Such a memory cannot learn from the training
set to respond in some desirable way to inputs that it
has never seen before. The only way to get generalization
when C = D log; K/N, is to impose on it the overall
structure of the memory before learning begins. One
of the appealing features of neural architectures is the
considerable redundancy in the degrees of freedom that
is typically available. Therefore, there is hope that while
a memory leamns specific input-output correspon-
dences it can also discover the underlying structure that
may exist in the problem and learn to respond correctly
for a set of inputs much larger than the training set.
Moreover, the same redundancy is responsible for the
error tolerance that is evident in many neural archi-
tectures. Higher order memories are generally redun-
dant and they can provide us with a methodology for
selecting the degree of redundancy along with the num-
ber of degrees of freedom and the associated capacity
to store random probiems.

It is important to keep in mind that (1) holds for
arbitrary mappings. If the input and output vectors are
restricted in some way that happens to be matched to
the architecture of a particular associative memory then
it may be possible to overcome this limit. However,
selecting the architecture of the associative memory
such that it optimally implements only a subset of all
possible associations is basically equivalent to choosing
the architecture so that it generalizes in a desirable way.
For instance suppose that we design an associative
memory so that it is shift invariant (i.c., the output is
insensitive to a change in the position of the input)
(Maxwell e al., 1986; Psaltis & Hong, 1987). Then this
system will respond predictably to all the shifted ver-
sions of the patterns that were used to train it. We can
equivalently think of this system as having a larger stor-
age capacity than the limit of (1) over the set of shift
invariant mappings. If we can identify a priori the types
of generalization we wish the memory to exhibit, and
we can find ways to impose these on the architecture,
then this is certainly a sensible thing to do. Higher order
memories can also provide a convenient framework
within which this can be accomplished.

The penalty we must pay for the increase in the stor-
age capacity that is afforded by the increase in the de-
grees of freedom in a higher order associative memory
is increase in implementation complexity. The com-
puter that implements a higher order memory must

have sufficient storage capacity to store a very large
number of parameters. Moreover it must be capable of
addressing the stored information with a high degree
of parallelism in order to produce an output quickly.
We will discuss in this paper optical implementations
of second order memories and we will show a remark-
able compatibility between the computational require-

ments of these memories and the ability of optics to -

store information in three dimensions.

1.2 Linear Discriminant Functions and Associative
Memories

We will consider as a precursor the most familiar
associative memories that are constructed as arrays of
linear discriminant functions (Kohonen, 1984). A lin-
ear discriminant function is a mapping from the sample
space X, a subset of R", to 1 or ~1.

y = sga{w'-x + wo}
=sgn{wg + wix; + woxa+ * -« + wyxy} (2)

where sgn is the signum function, w is a weighting vector
and wy is a threshold value. In this case the capacity is
upperbounded by (N + 1)log: K according to our def-
inition of capacity. In this relatively simple case the
exact capacity is known to be equal to C = N + |
assuming the input points are in general position and
K = oo (Cover, 1965). An associative memory is con-
structed by simply forming an array of linear discrim-
inant functions each mapping the same input to a dif-
ferent binary variable. Several algorithms exist for
training such memories including the perceptron,
Widrow-Hoff, sum of outer products, pseudoinverse,
and simplex methods (Duda & Hart, 1973; Hopfield,
1982; Kohonen, 1984; Venkatesh & Psaltis, in press).
This memory can be thought of as the first order of the
broader class of higher order memories that contain
not only a linear expansion of the input vector but also
quadratic and higher order terms. We will see in Section
3 that the learning methods that are applicable to the
linear memories generalize directly to the higher order
memories. First, however, we will describe the prop-
erties of the mappings that are implementable with
higher order memories in Section 2. Finally, in Section
4 we will describe optical implementations of quadratic
optical memories (Psaltis, Park, & Hong, 1986).
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2. PROPERTIES OF HIGHER
ORDER MEMORIES

A $-function is defined 10 be a fixed mapping of the
input vector x t0 an L-dimensional vector z followed
by a linear discriminant function.

y = sgn{w’-2(x) + wp}

= m(W'|2| + W’zZz + oo 4 W’LZL + Wo} (3)

where 2(x) = (2)(x), 2xAx), ..., Zz(x)), 7 is an L di-
mensional weighting vector and 2(x) is an L dimen-
sional vector derived from x. The storage capacity in
this case is equal to the capacity of the second layer L
+ | (Cover, 1965) if the samples z are in general position
whereas the upper bound on the capacity from (1) is
(L + 1)log: K. The inefficiency in this case is log, K bits,
the same as for the linear discriminant function even
though the capacity can be raised arbitrarily by in-
creasing L. It is not known what the exact relationship
between L and K is, that is, we do not know whether
for higher dimensions we need better resolution for the
values of the weights to be capable of implementing a
fixed fraction of the linear mappings. Recently, Mok
and Psaltis (personal communication) have found the
asymptotic (large N) statistical capacity tobe C = N
for a linear discriminant function with binary weights.
This result implies that even for large N, for the vast
majority of linear dichotomies, a large number of levels
is not required. Therefore a $-function is an effective
and straightforward method for increasing the capacity
of an associative memory without loss in efficiency.

A higher order associative memory is an array of -
functions with the mappings z(x) being polynomial ex-
pansions of the vector x. The schematic diagram of a
higher order associative memory is shown in Figure 2.
When the polynomial expansion is of the rth order in
x then the output vector y is given by

y=sgn{Wixx ..., 0+ W '(x...,x)
F o +WHx X))+ Wix+weol (4)

where /= 1, ..., Ny, Wtisa k-linear symmetric map-
ping and W, is equivalent to W' in (2). According to
3)

n " ny
Z)(X) = Xp(yXpa(i)* * X (3)
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wherej=1,2,...,L,a(j/)E {1,2,..., N}, such
thnaﬂtbe,amdisﬁnct.andn.,nz,...,n,-o, 1.
Then L is (%*") (Cover, 1965), and hence the capacity
bound is (V**) + 1)loga X as before. For example, if 7
= 2, the function becomes quadratic and has the form
v = x*Wix + W)x + wy and the number of non-
redundant terms in the quadratic expansion is L = (V
+ 1XN + 2)/2.

The components of the vector z are binary-valued
if x is binary. In this case, the samples cannot be as-
sumed to be in general position since there are at most
N + 2 binary vectors in N dimensional space which lie
in general position. We will evaluate the effectiveness
of higher order mappings in producing representations
z(x) that are separable by the second layer of weights
by calculating the Hamming distance between z vectors
given the Hamming distance between the corresponding -
x vectors. We expect that if the Hamming distance be-
tween two binary vectors is large then they are easy to
distinguish from one another.

2.1 Complete Polynomial Expansion of Binary
Vectors
There are at most 2¥ non-redundant terms in any

polynomial expansion (4) of a binary vector x in N
dimensions. First, we will consider the following Nth
order expansion (or equivalently bit production) for the
bipo’l;ar vectors x in N dimensional binary space {1,
et
z=2x)

= (1, Xy, Xz, 00 ey XNy X1 X2, 200, X1 X2° ¢ 2 XN).  (6)
If we apply a linear discriminant function to the new
vectors z, then the capacity becomes 2* which is equal
to the total number of possible input vectors (Psaltis &
Park, 1986). In other words this memory is capable of
performing any mapping of N binary variables to any
binary output vector y. Of course the number of weights
that are needed to implement this memory grows to
2" times No, the number of bits at the output. In what
follows we show that in this extreme case the vectors z
become orthogonal to each other.

Theorem 2. If we expand binary vectors x™ (m = |, 2,
..o, 2Min X5 = {1, =1}" 10 2" dimensional binary

1

N
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vectors 2™ according to (6), where N is the dimen-
sionality of the original feature vectors, then (a) (2™,
™) = 2¥8,,,m, Where (-, *) is an inner product, (b)
Ziz2r=0,(c) Zm 7z =2%; ,and T, 2" = 0.
Example: Tabl: ' is for the case of N = 3, Note the
orthogonaliiv and the numbers of 1s and —1s in the
new vectors and the set of each component of them
except the first vector and the set of the first compo-
nents.

Proof: (a) Let us consider any two different binary vec-
tors in the binary space of {1, ~1}" whose Hamming
distance is n (1 < n < N). When they are expanded to
two 2¥ dimensional binary vectors, the number of kth
order terms that have opposite signs in the two expan-
sions is

(=) GXe3)
+(" ”"’)+ e )

S\Nk-5

Notice that two polynomials have different values if,
and only if, they have an odd number of terms whose
signs are opposite. The Hamming distance between the
two fully expanded (up to order 2") vectors can be cal-
culated by adding the number of terms that have dif-
ferent signs over all the orders of the expansion:

a7+ 00 )
(6K ; “6"”)

D. Psaltis. C. H. Park, and J. Hong

4 e
N-n
- 237
{=odd j=0
= QN1 ®)

The fact that the Hamming distance is 2V~! for any
two expanded vectors (for any n) proves that all of the
2" vectors become orthogonal and that (™, z™)
= 2¥8 0, my- (D) Just think of the cases where one of the
two vectorsis (1, 1, ..., 1). Then, all the other vectors
z have equal number of 1s and —1s because their Ham-
ming distances are all 2V~ from the (1, 1, . . ., 1) vector.
(c) See Duda and Hart (1973, p. 109).

Slepian has discussed this orthogonalization property
as a method for designing orthogonal codes and has
given a different proof for it (Slepian, 1956). The proof
presented here is useful for characterizing higher order
memories because it allows us to trace the contribution
of each order of the expansion to the orthogonalization
and immediately derive results about the properties of
quadratic and cubic memories. The output vector y is

b
yi=sgn{W;-z} = sgn{ T Wz} 9)
=l
where/=1,..., Noand W,is a 2" dimensional weight-
ing row vector. The matrix W; that can implement the
x™ — y™ mapping for m = 1 to 2" can be formed in
this case simply as the sum of outer products of y™ and
™

zll
Wy= % yrzl. (10)
me| .

2.2 Expansions of a Single Order

The orthogonalization property of the full expansion
is interesting because it shows that higher order mem-
ories provide a complete framework that takes us from
the simplest “neuron,” the linear discriminant func-
tion, to the full capability of a Boolean iook-up table.
Higher order memories can indeed provide a valuable
tool for designing digital programmabie logic arrays.
In this paper, however, we are interested in associative
memories that are capable of accepting inputs with

TABLE 1
X4 Xg X3 1 Xy Xa Xs XyXg XaXs XXy X1XgXy
1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 1 -1 1 -1 ~1 -1
1 -1 1 1 1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1 ~1 1 -1 1
-1 1 1 1 -1 1 1 -1 1 -1 -1
-1 1 -1 1 -1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1 1 -1 ~1 1
-1 -1 -1 1 -1 -1 -1 1 1 1 -1
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large N (c.g., if N = 10° then 2¥ ~ 10°®) in which case
counsidering a full expansion of the input data is com-
pletely out of the question. In such cases we are realiy
interested in an expansion that contains a large enough
number of terms to provide the capacity needed to learn
the problem at hand. In this subsection we analyze the
properties of partial expansions that include all the
terms of one order.

We will first consider the memory consisting of all
the terms of a quadratic expansion with binary input
vectors.

y=sgn{Z ? Wi XiX;}

L
= sgn{ 2 whkz}. (11)
k=1

The number of non-redundant terms in a quadratic
expansion of a binary vector is L = MN — 1)/2. Let
two input vectors have a Hamming distance n. The
angle betwezn these two vectors is given by the relation
cos 6; = 1 — (2n/N). The angle 8, between the corre-
sponding z(x) vectors can be readily calculated since
we know their Hamming distance from the proof of
Theorem 2(a):

_ 4n(N ~ n)
NN - 1)
=~ 1 —4dp+4p*=(1 — 20 (12)

cosf, =1

where p = n/N. §; and 0, are plotted versus p in Figure
3a. For p < .5, 8, is always larger than 8,. Specifically
for p € 1, 8, = V2 X 8,. We see therefore that the
quadratic mapping not only expands the dimensionality
which provides capacity but also spreads the input
samples apart, a generally desirable property. For p
> .5 the quadratically expanded vectors are closer to
cach other than the original vectors and in the extreme
case n = N, 6, becomes zero. This insensitivity of the
quadratic mapping to a change in sign of all the bits is
a property that is shared by all even order expansions.
Next we consider a cubic memory

Yi=sgn{X 2 2 WiuXiX;Xe}

i J k

L
= 5&0{ Z w’lnzn} (13)

n=1
where L = (§) + N. In Figure 3b we plot 6;, the angle
between two cubically expanded binary vectors as a
function of p. For convenience, 4, is also plotted in the
same figure. In this case §; increases faster with p for
p<.S5. Forp<l,0,=YV3 X4, Atp == .4 the cubic
expansion gives essentially perfectly orthogonal vectors
while for p > .5, 6; remains smaller than 8, and in the
limit p = 1, 8; = x. Thus the cubic memory discrim-

inates between a vector and its complement.
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The basic trends that are evident in the quadratic
and cubic memories generalize to any order 7. The
number of independent terms in the rth order expan-
sion of a binary vector is () which is maximum for r
a3 Nf2. Again this is not of practical importance be-
cause the number of terms in a full expansion of this
sort is prohibitively large. What is of interest however
is the effectiveness with which relatively small order
expansions can orthogonalize a set of input vectors.
The angle 6, between two vectors that have been ex-
panded to the rth order is given by the following rela-
tion:

_ ) = 2 Ticoga OXY7
4]

We can obtain a simpler expression for the interesting

case r € ;V and for small p, 8, =~ V?xo,.

Proposition 3. For r € N,

cos 8, = (1 - 2p)". (15)
Moreover, for small p,

8, ~ Vg, (16)

cos 8, (14)

where 6, =~ 2Vp.

Proof: For a small r, we can make the approximations
) = N/, ) = r/it, and 057 = (N = nY~/(r
— i)l. Then, cos 8, is approximated as follows:

r!
cos b, ~ 1—2 i-zo':“ TP
=(1-2p)
because of these relationships:
T+ ZT =(-p+py=1,

i=odd imeven

> - =~(1-p-p)=~(1-2p).

i=odd {=even

o1 — py™

When p € I, cos 8, which is approximately |
- #2/2!, is approximated by | — 2rp directly from (14)
or from (15). Therefore, it is followed by (16) that 8,
= 2Vr;.

We plot 8, versus p for selected orders in Figure 4
using (15). It is evident that increasing r results in better
separated feature vectors. Polynomial mappings act as
an effective mechanism for increasing the dimensional-
ity of the space in which inputs are classified because
they guarantee a very even distribution of the samples
in this new space.

3. TRAINING OF HIGHER
ORDER MEMORIES

Once the initial polynomial mapping has deen se-
lected, the rest of the system in a higher order memory
is simply a linear discriminant function. As such it can
be trained by any of the existing methods for training
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FIGURE 3. (a) The angie between linearly and quadratically expanded vectors as a function of the hamming distance at the input;
(b) The angle between linearly and cubically expanded vectors as a function of the hamming distance at the input.

linear discriminant functions. For instance the pseu- driven algorithms such as the perceptron or adaline
doinverse (Kohonen, 1984; Venkatesh & Psaitis, in can be used to iteratively train the memory by repeat-
press) can be used to calculate the set of weights that edly presenting the input vectors to the system, mon-
will map a set of L-dimensional expanded vectors 2™ itoring the output to obtain an error signal, and mod-
to the associated output vectors y™. Alternar - ely, error ifying the weights so as to gradually decrease the error.
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FIGURE 4. The angle between sxpanded vectors for selected orders.

The relative ease with which higher order memories
can be trained is a very important advantageous feature
of this approach. A higher order memory is basicaily
a multilayered network where the first layer is selected
a priori. In terms of capacity alone, there is no advan-
tage whatsoever in having multiple layers with modi-
fiable weights. From Theorem 1 we know that at best
the capacity is determined by the number of modifiable
weights. For a higher order memory we get the full ad-
vantage of the available degrees of freedom whereas if
we put the same number of weights in multiple layers
the resulting degeneracies will decrease the capacity.
The relative advantage of trainable multiple layers is
the potential for generalization that emerges through
the learning process. The generalization properties of
higher order memories on the other hand are mostly
determined by the choice of the terms used in the poly-
nomial expansion in the fixed first layer. Thus the gen-
eralization properties of these memories as described
in this paper are imposed a priori by the designer of
the system.

The sum of outer products algorithm that has been
used extensively for training linear associative memories
can also be used for training the higher order memories
and this algorithm generalizes to the higher order case
in particularly interesting ways. In addition, this par-
ticular learning algorithm is p:edominantly used for
the holographic optical implementations that are de-
scribed in the following section. Therefore we will dis-
cuss in some detail the properties of higher order mem-
ories that are trained using this rule.

3.1 The Outer Product Rule

Let us consider associative memories constructed as
an expansion of the r-order only with input samples in
an N dimensional binary space and r = 1.

n=sgn{ T Wy p%xXp %} (17)
iy oJr

where | <y, j2,...,J, < N, 1 <! < Ny. The number
of independent terms L in the rth order expar:sion is
(¥*5!) which for r € N can be approximated bv N'/r!
The expression for the weights of the rth orc-: ex-
pansion using the sum of outer products algoritiun is

(Chen et al., 1986; Psaltis & Park, 1986)

M
Wia--s = 2 YPXRXEe o x]! (18)
me=t
where M is the number of vectors stored in the memory,
y™ is an output vector associated with an input vector
x™ as before. With the above expression for the weight
tensor (17) can be rewritten as follows

M N
yi=sgn{ T y™Z x'x) + wi). (19)

m=) J=1
The above equation suggests an alternate implemen-
tation for higher order memories that are trained using
the outer product rule. This is shown schematically in
Figure 5. The inner products between the input vector
and all the stored vectors x™ are formed first, then raised
to the rth power, and the signal from the mth unit is
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connected to the output through interconnective
weights y". If y™ = x™ then the memory is autoasso-
ciative, and in this case the output can be fed back to
the input resulting in a system whose stable states are
programmed to be the vectors x™. This becomes a direct
extension of the Hopfield network (Anderson, 1983;
Hopfield, 1982; Nakano, 1972) to the higher order case.
Assuming that x = x" is one of the stored vectors, y,
becomes

N
yo=sga{Nyl + Z yI"Z xPx]Y + wi}
mevn j=1
= sgn{N"y7 + ni(x")} (20)

where the first term is the desired signal term and n; is
a noise term. The threshold weight is set to zero.

The expectation value of n,(x”") is zero if the bits that
comprise the stored binary input and output vectors
are drawn randomly and independently having equal
probability of being +1 or —1. If this is the case then

E(z xf'xm = 2 6“')
a’ uw’
E(Z xPx™)= Z Smme @n

where §; is the Kronecker deita function. The variance
of n, is calculated as follows:

E(nf)
=EZT Ty T 2 xpxpee

men m’én ViV, SRR T TR
XPXRXR e« o Xpxxg e e o X XX 0 XE)

=EHZ Z Z XQxfeecxpxnxgece
PN fijacccde 928

XOXAXRe  cXEX5 X5 - *X3). (22)

In the above we used the facts that different stored vec-
tors are uncorrelated (i.c., for m * m’) and yf = 1.
Then, the variance becomes (M — 1)XN, ), where
Q(N, 1) is the number of possible permutations such
that

S00p <8, =) (23)
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FIGURE 5. Outer product, rth order sssociative memory.
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where the set of variables {i;,"..., i, 4, ..., &} spans

all the combinations produced by the set of variables
{Jts«sJes Sty - . ., 5} The variance can be calculated
exactly for the cases r = 1, 2, and 3 and it is (M — 1)N,
(M - 1)Y3N? - 2N) and (M — IXISN® ~ 30N?
+ 16N), respectively. For the general case we will derive
lower and upper bounds which for large N provide us
with a good estimate of the variance for any order r.
Proposition 4: The total number of permutations, Q(N,
r), for which (23) holds, satisfies the following relation-
ship:

2 2r - 4y
P(N,r)(—zz,—'r)!—'+(4' (n,r—l)if:zr(—r-:)z—)!-
< O(N, r)sN’%:—)'! 24)

where P(m, n) = mi/(m — n)!.
Proof: The number of ways of making r pairs of 2r
items is (2r — 1X2r = 3)- « - (3X1) = (2nY/2'r). The
items that we are concerned with are the variables i;,
t; and each of these variables can take one of N values.
We can only select the values of half these variables (V*
possibilities) and for each of these choices we can create
r pairs. Hence the upperbound is N'(2r)!/2'7!. This is
an upper bound because we have overcounted for dif-
ferent pairings of variables that have the same value.
The initial lower bound is derived if each pair has a
different value from all others, which climinates the
possibility of overcounting. The number of possible
ways to satisfy (23) with the variables in any two pairs
not taking the same values is P(N, rX(2r)!/2'r!. This is
an underestimate because all pairs that contain vari-
ables taking the same value should be counted once.
We can thus improve the lower bound by counting the
number of ways these degenerate pairings occur and
adding them into the previous bound. For exampie
when two pairs out of 7 have the same values with (%)
choices, there are (X)NP(N — 1, r = 2)2r — 42" ¥r
— 2)! possible permutations where (2r — 4)//2"¥r
— 2)! is the number of ways of making r — 2 pairs of
2r — 4 items. Therefore, (¥, 7) is lower bounded by
PN, Q2 2'rt + (PN, r — 1X2r — 4)1/27Xr -~ 2)1,
since NP(N—1,r—=2)= P(N,r- 1).
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We can get a very good approximation to the SNR
using the approximations of M — | a M and Q(N, r)
=~ N'(2r)/2'r! which are very nearly true for the in-
teresting case r € N:

—_ N
{MN’(2r)!/2’r!}'”

N 271}
[M n

For example, the linear memory, r = 1, has a SVR
=~ (N/M)'7, the quadratic memory, r = 2, a SNR of
N/(3M)"? and the cubic memory, 7 = 3, a SNR of (N*/
15M)'2. We can obtain an estimate for the capacity of
an rth order memory by equating the signal to noise
ratios of the linear and rth order memories and solving
for M,, the number of stored vectors that will yield the
equality. For 7, small compared to N, we obtain

M, 2

M, N~ (2r)! 26)
Comparing its value with the capacity M, of a linear
memory we can obtain the relationship between the
capacities, that is, M,/M, = N™1271/(2r).. For example
M; of a quadratic memory is M, N/3 and M; of a cubic
memory is M, N%/15.

The diagonal terms in a high order memory

Wi, 4. . .j, can be defined as those of which all the in-
dexes j are not different. We form the weight tensor

SNR =

25%)

with zero diagonal as follows:

Woa - -4

_ [ZmyTx]xge - - xp if js are all different, an
0 otherwise.

When the input is one of the stored vectors x” and the
weight tensor has zero diagonal, the output y; becomes

yi=sgn{ T Wy Xhxhe s xi+wl)
diffevent

= sgn{P(N, r)y!

+ 2y T xpxpe-
men different j

XPxqxhe e xD+ wil (28)

where the first term is a signal term and the second a
noise term as before. The variance of the noise term is

easily shown to be (M — 1)P(N, r)r! using (21). There-
fore, the SNR becomes
P(N, r)
= (5]~ (0w o

which can be approximated as (N’/Mr!)'” for r < N.
Chen and his coworkers (1986) introduced an energy
function (Cohen & Grossberg, 1983; Hopfield, 1982)
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for the rth order autoassociative memory with feedback
and outer products as follows:

M
E ==3 (x" x)y™* (30)
m=|

where -, + ) denotes an inner product of two vectors.
The change in the energy due to a change éx in the
state of the network was shown by Chen e al. (1986)
to be decreasing for odd r.

AE, m E,(x + 6x) — E,(x)
-—(r+ )T T Wyp...
!

Jie e cdr
X Xj\Xp* * 2%, = R, (31)

where

R=33 ( " 1) e oo sy o2

m 2\ J
The first term in (31) is always nonpositive because of
the specification of the update rule: éx; 2 0if 3,.. .,
X Wy e X3 X5 * *X;, 2 0 and vice versa. Chen et al.
(1986) showed that the second term is also nonpositive
by showing that R, is an increasing function of r for r
odd and R, > 0.

For r even it is possible to prove the autoassociative
memory converges only for asynchronous updating
even though in simulations even order autoassociative
memories consistently converge as'well. The fact that
the energy is not always decreasing when r is even may
actually be helpful for getting out of local minima and
settling in the programmed stable state which are global
minima in a region of the energy surface. A descent
procedure that is always decreasing in energy cannot
escape local minima since there is no mechanism for
climbing out of them. As an example, consider a qua-
dratic memory, that is, r = 2 (even), whose energy
function is given by

E; = =2 Waxixx (33)
ik

AEz = ~3 z W,‘,*ijka)q -3 z W,-,kx,,ax,ax,
ik ik
- 3 Wudxdxdx,. (34)
ik

The first term is nonincreasing but the second and third
terms can be increasing. If the vector x is very close to
one of the stored vectors x” then the first term becomes
dominant and the energy will be very likely to be non-
increasing causing the system to settle at x = x". If x
is not close to any of the stored vectors, then all three
terms in the above equations are on the average com-
parable to each other and since two of them are not
nondecreasing the energy function may be increasing
and it is possible to escape from local minima.
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FIGURE 6. Holographic recording and reconstruction. (s) Re-
cording, (b) reconstruction.

4. OPTICAL IMPLEMENTATIONS OF
QUADRATIC ASSOCIATIVE MEMORIES

The outer product quadratic associative memories
described in the previous section require three basic
components for their impiementation: interconnective
weights, a square-law device, and a threshold nonlin-
carity. In this section, we present a variety of optical
implementations using either planar or volume holo-

VOLUME
MEDIUM

D. Psaltis, C. H. Park, and J. Hong

grams to provide the interconnection pathways and op-
tical or electro-optical devices to provide the required
nonlinearities.

Since holographic techniques are used to implement
the required interconnections, we will first briefly dis-
cuss holography (Collier, Burkhardt, & Lin, 1971) and
in particular the distinction between the use of planar
versus volume holograms. The holographic process is
shown schematically in Figure 6. In the recording step
(Figure 6a) the interference between the reference plane
wave that is created by collimating the light from a
point source using a lens and the wave originating from
the object “A” is recorded on a planar light sensitive
medium such as a photographic plate. When the de-
veloped plate is illuminated with the same reference
wave, the field that is diffracted by the recorded inter-
ference pattern gives a virtual image of the original ob-
ject which can be converted to a real image with a lens.
The reconstruction of the hologram is thus equivalent
to interconnecting the single point from which the plane
wave reference is derived to all the points that comprise
the reconstructed image. The weight of each intercon-
nection is specified by the interference pattern stored
in the hologram.

Volume holograms are prepared and used in the
same manner except that whereas a planar hologram
records the interference pattern as a two dimensional
pattern on a plane, a volume hologram records the in-
terference pattern throughout the volume of a three
dimensional medium. The disparity in the dimen-
sionalities of the two storage formats results in marked
differences in the capabilities of the two processes. This
difference is explained with the aid of Figures 7a and

A REFERENCE WAVE

~0—(@

D!VELOPED IECONSTRUCTION

-

ﬂ!CON.TIUCTION

FIGURE 7. Holographic iMerconnections using (a) pianer versus (b) volume holograms.
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Tb where the reconstruction of both a planar and a
volume hologram are shown. Each hologram is pre-
pared 1o store the two images “A” and “O” by double
exposure with each image being associated with a ref-
crence plane wave that is incident on the hologram at
a difierent angle. Each reference plane wave is generated
by a separate point source and thus the reconstruction
of a hologram with the two reference waves is equivalent
to interconnecting multiple input points to all the points
on the plane of the reconstructed image. In the case of
the planar hologram, however, when either one of the
reference waves is incident both images are recon-
structed. This implies that we cannot in this case in-
dependently specify how each of the input points is
connected to the output. In contrast, because of the
interaction of the fields in the third dimension (Kogel-
nik, 1969) the volume hologram is able to resolve the
differences in the angle of incidence of the reference
beam and upon reconstruction when the reference for
“A” illuminates the medium, only “A” is reconstructed
and similarly for the second pattern. When both input
points are on simultaneously then each is intercon-
nected to the output independently according to the
way it was specified by the recording of the two holo-
grams. Thus volume holograms provide more flexibility
for implementing arbitrary interconnections which
translates to efficient three dimensional storage of the
interconnective weights needed to specify the quadratic
memory.

Another way in which we can draw the distinction
between planar and volume holograms is in terms of
the degrees of freedom. The implementation of a qua-
dratic memory whose input word size is NV bits requires
approximately N3 interconnections for the three di-
mensional interconnection tensor. The number of de-
grees of freedom of the planar hologram of area A4 is
upper bounded by 4/6* while that of a volume holo-
gram is limited to ¥/5°, where V is the volume of the
crystal and § is the minimum detail that can be recorded
in any one dimension (Psaltis, Yu, Gu, & Lee, 1987
Van Heerden, 1963). Equating the degrees of freedom
that are required to do the job to those that are available,
the crystal volume is determined to be at least V
= N33 whereas a planar hologram to do the same job
would require a hologram of area 4 = N33, For com-
parison, a network with N = 10’ can in principle be
implemented using a cubic crystal with the length of
each side being /, = N5 = | cm, but a square planar
hologram is required to have the length of each side be
atleast /, = N32§ = 0.33 m at § = 10 um. Thus, the
volume hologram offers a more compact means of im-
plementing large memory systems.

4.1 Volume Hologram Systems

There are several schemes for fully utilizing the in-
terconnective capability of volume holograms (Psaltis

e -
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FIGURE 8. Optical interconnections using volume holograms.
(a) Recording spparatus; (b) N— N* mapping; (c) N’ — N map-
ping.

et al, 1987; Psaltis, Brady, & Wagner, in press). For
the implementation of quadratic memories we use vol-
ume holograms to fully interconnect a 2-D pattern to
a 1-D pattern (N2 — N mappings) and also the reverse
(N~ N?), The geometry for recording the weights for
both cases is shown in Figure 8a and the reconstruction
geometries are illustrated in Figures 8b and 8c. The
circles represent the resolvable spots at the various
planes in the system. The waves emanating from each
point at the input planes are transformed into plane
waves by the Fourier transform lenses L, and L; and
interfere within the crystal, creating volume gratings.

The weights are loaded into the volume hologram
with multiple holographic exposures in the system of
Figure 8a. In the following subsections we will describe
several specific procedures for doing so. For the N —
N? mapping (Figure 8b) in reading out the stored in-
formation, a single source in the input array recon-
structs one of the N 2-D images consisting of N2 pixels
that it is associated with. The rest of the images, which
belong to the other input points, are not read out be-
cause of the angular discrimination of volume holo-
grams. The counterpart to this scheme, shown in Figure
8¢, implements an arbitrary N? = N mapping. This
setup is basically the same as that of Figure 8b except
that the roles of the input planes have been interchanged
or equivalently the direction in which light propagates
has been reversed.
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4.1.1 N2~ N Schemes. First, we consider a method
by which the full three dimensional interconnection
tensor is implemented directly with a volume hologram.
Recall that if the weight tensor is trained using the sum
of outer products then it is given by

M
we = 2 yI'x'xP, 35)

where x" represents the mth input memory vector and
yT represents the associated output vector. Such a
memory is accessed by first creating an outer product
of the input vector and multiplying it with wy as fol-
lows:

N N
Vi=sgn{2 T wuXXe}. (36)
J=t k=l

The volume hologram is prepared using the setup
in Figure 8a, First, the outer product matrix of the mth
memory input vector, xJ*x%, is formed on an elec-
tronically addressed spatial light modulator (SLM)
(Warde & Fisher, 1987). Another one-dimensional SLM
whose transmittance represents the mth output vector
y is placed in the other input plane, and the two SLMs
are illuminated by coherent light. The transmitted
waves are then Fourier transformed by lenses L, and
L, to interfere within the crystal volume to create index
gratings. This procedure is repeated for all Af associated
input-output pairs so that a sum of M holograms is
created in the crystal. For the quadratic outer product
memory whose capacity is fully expended, this involves
on the order of N%/log N exposures.

We will now describe another method for recording
the weight vector in the volume hologram that involves
fewer exposures and can also be used not only for the
outer product scheme but for recording any given
weight tensor as well. The same basic recording archi-
tecture of Figure 8a is used in this case also. In the first
exposure, the top light source in the linear array is
turned on while the SLM is programmed with the ma-
trix wy 4, where wy,, is the interconnection tensor. When
the SLM is illuminated with light coherent with that
of the point source, the crystal records the mutual in-
terference pattern as a hologram of the image wy with
a reference beam that is the plane wave generated from
the top light source. In the next step, the second source
is turned on while the SLM is programmed with the
matrix wyu. In this manner the connectivity for all the
points in the linear array at the input are sequentially
specified and the memory training is completed when
all N exposures have been made. The disadvantage of
this method relative to the outer product recording is
the need to precalculate electronically the weight tensor
but it has the advantage of fewer exposures (N versus
N3/log N) and greater flexibility in choosing the training
method.

o
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The architecture in Figure 8¢ is used to access the
data stored in the hologram by either one of the re-
cording methods described above. The electronically
addressed 2-D SLM is placed at the input plane and it
is programmed with the outer product matrix x;x; of
the input vector. The light from the N? input points is
interconnected with the N output points via the re-
corded wy interconnect kernel. A linear array of N
photodetectors is positioned to sampie the output
points.

It is important to restate at this juncture that this
particular implementation achieves the quadratic in-
terconnections by first transforming the N input fea-
tures (i.c., the N elements of the input vector x)) into
a set of N2 features via the outer product operation.
The result is that although the interconnections are
quadratic with respect to the N original feature points,
they are linear with respect to the N? transformed fea-
tures. This allows the application of error driven learn-
ing algorithms for linear networks such as the 4daline
(Widrow & Hoff, 1960) where the interconnections are
developed by an iterative training process. The opera-
tion of such a learning scheme is illustrated in Figure
9 which is the same basic architecture as Figure 8c with
feedback from the output back into one of the input
ports. Each iteration consists of a reading and a writing
phase. During the reading phase, the interconnections
present in the crystal are interrogated with a particular
item to be memorized by illuminating the 2-D SLM
which contains the outer product matrix x”x™ and the
output is formed on the detector array. In the subse-
quent writing phase, the error pattern generated by
subtracting the actual output from the desired output
pattern is loaded into the 1-D SLM and both SLMs
(the 2-D SLM still contains x™x™) are illuminated with
coherent light, forming a set of gratings in addition to
the previously recorded gratings. The procedure is it-
cratively repeated for each item to be memorized until
the output error is sufficiently small. This algorithm is
a descent procedure designed to minimize the mean

squared cost ¢ = Ai! MK, ZE. wexlxD

— y™} by iteratively updating the interconnection
values.

4.1.2 N~ N? Schemes. The N~ N? mapping capa-
bility of the volume hologram which is the inverse of
that required for the architectures just described can
be used also to implement quadratic memories and
can be generalized for higher order memories. The basic
idea behind this scheme is illustrated in Figure 10 which
shows the interconnection between the ith and jth neu-
rons whose weight wy is a linear combination of all of
the inputs and is described by
N
w; = 2 v‘t‘:,,,*xk. (37)
k=)
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FIGURE 9. Optical systam for performing error driven leaming in a higher order memory.

The overall result is, of course, recognized to be the
equation describing the quadratic memory, but the no-
tion of an input dependent weight suggests the imple-
mentation shown in Figure 11. The system is basically
an optical vector matrix multiplier (Goodman, Dias,
& Woody, 1978) in which the matrix is created on an
optically addressed SLM by multiplying the input vec-
tor with the three-dimensional tensor stored in a vol-
ume hologram. The input vector is represented by a
one dimensional array of light sources. The portion of
the system on the left side of the SLM is the vector
matrix multiplier and it works as follows. Light from
each input point is imaged horizontally but spread out
vertically so that each source illuminates a narrow, ver-
tical area on the 2-D SLM. The reflectance of the SLM
corresponds to the matrix of weights wy in (37). The
reflected light from the SLM travels back towards the
input and a portion of it is reflected by a beam splitter
and then imaged horizontally but focused vertically
onto a 1-D output detector array. The output from the
detector array represents the matrix vector product be-

FIGURE 10. Quadratic mappings implemented as nonlinesr in-
terconnections,

tween the input vector and the matrix represented by
the 2-D reflectance of the SLM. The matrix of weights,
in this case, is not fixed but rather computed from the
input via a volume hologram by exposing the righthand
side of the SLM as shown in the figure. The optical
system to the right of the 2-D SLM in Figure 11 is the
same as the N~ N? system of Figure 8b. The volume
hologram which has been prepared to perform the ap-
propriate dimension increasing operation (N~ N?),
transforms the light distribution given by its one di-
mensional array of sources into the input dependent
matrix of weights given by (37). This system is func-
tionally equivalent to the previous system except it does
not require the use of a 2-D electronically addressed
input SLM. The 1-D devices utilized in this architecture
are easier and faster to use in practice. Inustead a 2-D
optically addressed SLM is needed which in practice
is simpler to use compared to electronically addressed
devices (requires less electronics), typically has more
pixels, and is potentially much higher speed. A disad-
vantage of this method, however, is that it does not lend
itself for the direct implementation of the simple outer
product training method without the use of an elec-
tronically addressed 2-D SLM. )

The N — N? mapping technique can be used in
conjunction with its inverse, the N2 — N mapping, to
implement the quadratic outer product memory using
two volume holograms, a 1-D electronically addressed
SLM, and an optically addressed 2-D SLM. Shown in
Figure 12 is a schematic diagram of such a system. The
first hologram is prepared with the multiple exposure
scheme discussed earlier (Figure 8a) where for each ex-
posure, a memory vector in the one-dimensional input
am‘;'_and one point in the two-dimensional (VA_I
X VM) input training array are turned on simulta-
neously. The second hologram is prepared by a similar
procedure except thal the associated output vectors are
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FiGURE 11. Optical architecture for the implementation of the nonlinear interconnactions of Figure 10.

recorded in correspondence to each point in the two
dimensional training plane. After the holograms are
thus prepared, an input vector is loaded into the one-
dimensional input array and the correlations between
it and the M memory vectors are displayed in the output
plane (Athale, Szu, & Friedlander, 1986; Owechko,
Dunning, Marom, & Soffer, 1987, Pack & Psaltis,
1987). An optically addressed SLM can be used to pro-
duce an amplitude distribution which is the square of
the incident correlation amplitudes. The processed light
then illuminates the second hologram which serves as
an M — N interconnection, each correlation peak in
the SLM plane reading out its corresponding memory
vector and forming a weighted sum of the stored mem-
ories on the one dimensional output detector array. This
is a direct optical implementation of the system shown
in block diagram form in Figure 5§ with the 2-D SLM
performing the square law nonlinearity at the middle
plane and the two-volume holograms providing the in-
terconnections to the input and output.

4.2 Planar Hologram Systems

While not having the extra dimension to directly
implement the three dimensional interconnection ten-
sor for general quadratic memories, planar holograms
can nevertheless implement the outer product quadratic
memory in a way similar to the one used in the system

AT

just described. The planar holographic system is shown
in Figure 13. Here, the information is stored in the two
multichannel 1-D Fourier transform (FT) holograms,
the first of which contains the 1-D FTs of the M mem-
ory input vectors and the other, the FTs of the associated
output vectors (Psaltis & Hong, 1987). The first part
of the system is a multichannel correlator which cor-
relates the input against each of the M memory vectors.
At the correlation plane, the M correlation functions
stacked up vertically are sampled at x = Q with a slit
to obtain the required inner products which are then
squared by the SLM. Each resulting point source of
light is then collimated horizontally and imaged ver-
tically onto the second hologram to illuminate that
portion which contains the corresponding output vec-
tor. The final stage computes the FT of the light dis-
tribution just following the second hologram to produce
the weighted sum of the vectors at the output detector
array,. It is interesting to note that if the SLM is removed
from the correlation plane, this system reduces to the
linear outer product memory.

Notice that in this system if the input pattern shifts
horizontally then the correlation peak also shifts in the
correlation plane and it is blocked by the slit that is
placed there. Therefore shifted versions of the input
vector are not recognized, as expected. Shift invariance
where the shifted versions of the memory vectors are
recognized and their associated outputs, shifted by the

T
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HOLOGRAM 2

FIGURE 12. Opiical higher order associative memory implemented with volume holograms.
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FIGURE 13. Optical impiementation of the outer product higher order memory.

same amount as the input, are retrieved can be built
into this system by simply lengthening the input SLM
and the output detector array to accommodate the shifts
and removing the slit in the correlation plane. The re-
sulting system treats each of the 2N — 1 shifted versions
of the memory vectors as a new memory and as a resuit,
the incieased capacity of the quadratic memory over
the linear one (by a factor of N) is expended to provide
invariant operation.

REFERENCES

Abu-Mostafa, Y., & Psaltis, D. (1985). Computation power of par-
allelism in optical architectures. In IEEE Computer Society
Workshop on Computer Architecture for Pattern Analysis and Im-
age Database Management (p. 42). Silver Spring, MD: IEEE
Computer Society Press.

Anderson, J. A. (1983). Cognitive and psychological computation with
neural models. /[EEE Transactions on Systems, Man, and Cyber-
netics, SMC-13, 799.

Athale, R. A, Szu, H. H., & Friedlander, C. B. (1986). Optical im-
plementation of associative memory with controlled nonlinearity
in the correlation domain. Optics Letters, 11(7), 482.

Baldi, P., & Venkatesh, S. S. (1987). Number of stable points for spin-
glasses and neural networks of higher orders. Physics Review Let-
ters, 58(9), 913.

Chen, H. H,, Lee, Y. C,, Maxwell, T,, Sun, G. Z,, Lee, H. Y., & Giles,
C. L. (1986). High order correlation modei for associative memory.
In J. Denker (Ed.), AIP Conference Proceedings (p. 86). New York:
American Institute of Physics.

Cohen, M., & Grossberg, S. (1983). Absolute stability of global pattern
formation and parallel memory storage by competitive neural
networks. /EEE Transactions on Systems, Man, and Cybernetics,
SMC-13, 815.

Collier, R. J., Burkhardt, C. B., & Lin, L. H. (1971). Optical holog-
raphy. New York: Academic Press.

Cover, T. M. (1965). Geometrical and statistical properties of systems
of linear inequalities with applications in pattern recognition.
IEEE Transactions on Electronic Computers, EC-14, 326.

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis.
New York: Wiley.

Giles, C. L., & Maxwell, T. (1987). Learning and generalization in
higher order networks. Applied Optics, 26(23), 4972.

Goodman, J. W,, Dias, R. A., & Woody, L. M. (1978). Fully parallel,
high speed incoherent optical method for performing discrete
Fourier transforms. Optics Letters, 2(1), 1.

Hopfield, J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the National
Academy of Sciences of the United States of America, 19, 2554.

Kogelnik, H. (1969). Coupied theory for thick hologram gratings.
Bell Systems Technical Journal, 48, 2909.

Kohonen, T. (1984). Self-organization and associative memory. New
York: Springer Verlag.

Maxwell, T, Giles, C. L., Lee, Y. C., & Chen, H. H. (1986). Noalinear -
dynamics of artificial neural systems. In J, Denker (Ed.), A/P
Conference Proceedings (p. 299). New York: American Institute
of Physics.

Nakano, K. (1972). Association—A model of associative memory.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-1,
380-388.

Newman, C. M. (1987, November). Memory capacity in symmetric
neural networks: Rigorous bounds. Paper presented at the [EEE
Conference on “Neural Information Processing Systems—Natural
and Synthetic,” Denver, CO,

Owechko, Y., Dunning, G. J., Marom, E., & Sofler, B. H. (1987).
Holographic associative memory with nonlincarities in the cor-
relation domain. 4Applied Optics. 26(10), 1900.

Paek, E. G., & Pualtis, D. (1987). Optical associative memory using
Fourier transform holograms. Opiical Engineering, 26(5), 428.

Poggio, T. (1975). On optimal nonlinear associative recall, Biological
Cybernetics, 19, 201.

Psaltis, D., Brady, D., & Wagner, K. (in press). Adaptive optical net-
works using photorefractive crystals. Applied Opuics.

Psaltis, D., & Hong, J. (1987). Shift-invariant optical associative
memories. Optical Engineering, 26(1), 10.

Psaltis, D., & Park, C. H. (1986). Nonlinear discriminant functions
and associative memories. In J. Denker (Ed.), AIP Conference
Proceedings (p. 370). New York: American Institute of Physics.

Psaitis, D., Park, C. H., & Hong, J. (1986). Quadratic optical associative
memori:s. Journal of the Optical Society of America—A. ¥13),
3.

Psaltis, D., Yu, J., Gu, X. G., & Lee, H. (1987). Optical neural nets
implemented with volume holograms. In Proceedings of OSA
Second Topical Meeting on Optical Computing (p. 129). Incline
Village, NV: Optical Society of America.

Sejnowski, T. (1986). High-order Boitzmann machines. In J. Denker
(Ed.), AIP Conference Proceedings (p. 398). New York: American
Institute of Physics.

Slepian, D. (1956). A class of binary signaling alphabets. Bel/ Sysiems
Technical Journal, 35, 203.

Van Heerden, P. J. (1963). Theory of optical information storage in
solids. Applied Optics, 24), 393.

Venkatesh, S. S., & Psaltis, D. (in press). Linear and logarithmic ca-
pacities of associative memories. JEEE Transactions on Infor-
mation Theory.

Warde, C., & Fisher, A. D. (1987). Spatial light modulators: Appli-
cations and functional capabilities. In J. L. Homer (Ed.), Optical
signal processing (p. 477). San Diego: Academic Press.

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. JRE
Wescon Convention Record, Pr. 4, 96.




LIST OF PUBLICATIONS

FIRST PHASE

{1] D. Psaltis, "Two-dimensional optical processing using one-dimensional input devnces R
IEEE Proc., 72, 962(1984).

[2] D. Psaltis, "Optical image correlation using acoustooptic and charge-coupled devices”,
Appl. Opt., 21, 491(1982).

(3] D. Psaltis, E. Paek, S. Venkatesh, ”Acoustooptic/CCD image processor , Proc. Int.
Opt. Conf., 204(1983).

{4] D. Psaltis, "Incoherent electoroptic image correlator”, Opt. Eng., 23, 698(1984).

[5] D. Psaltis, E. Paek, and S. Venkatesh, “Optical Image Correlation with a Binary
Spatial Light Modulator”, Opt. Eng. , 23, 698(1984).

[6] D. Psaltis, F. Mok and E. G. Paek, “On the Use of the Litton Magneto-Optic Device
in Optical Processors”, SPIE Proc., 465, (1984).

[7] Kelvin Wagner and D. Psaltis, “Real Time Computation of Moments with Acousto-
optics”, SPIE Proc., 352-19, (1982).

{8] Yaser Abu-Mostafa and D. Psaltis , “Recognitive Aspects of Moment Invariants”,
IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-8, 698(1984).

[9) Yaser Abu-Mostafa and D. Psaltis, “Image Normalization by Complex Moments”,
IEEE Conf. Computer Vision and Pattern Recognition, p. 114, June 1983.

(10] Y. Shi, D. Psaltis, A. Marrakchi, and A. Tanguay, “Photorefractive Incoherent to
Coherent Optical Converter”, Appl. Opt., 22, 3665(1983).

[11) A. Marrakchi, A.R. Tanguary, Jr., J. Yu, and D. Psaltis, “Physical Characterization
of the Photorefractive Incoherent to Coherent Optical Converter”, Opt. Eng., 24,
124(1985).

[12] D. Psaltis and Jeff Yu, “Photorefractive Incoherent to Coherent Optical Conversion”,
SPIE Proc., 465-01, (1984).

[13] A. Marrakchi, A. Tanguay, J. Yu, and D. Psaltis, “Photorefractive Incoherent to
Coherent Converter: Materials Issues” SPIE Proc., 465-12, (1984).

(14] M. Haney and D. Psaltis, “Measurement of the Temporal Coherence Properties of
Pulsed Single-Mode Laser Diodes” Appl. Opt., 24, 1926(1985).

[15] N. Farhat, D. Psaltis, A. Prata, and E. G. Paek, “Optical Implementation of the

- Hopfield Model”, Appl. Opt., 24, 1469(1985).

SECOND PHASE

(16] D. Psaltis, J. Yu, and J. Hong, "Bias-free time-integrating optical correlator using a




photorefractive crystal”, Appl. Opt., 24, 3860(1985).

(17] E. G. Paek, C. H. Park, F. Mok, and D. Psaltis, "Acoustooptic image correlators”,
SPIE Proc. 638-05, (1986).

[18) E. G. Paek and D. Psaltis, “Optical Associative Memory using Fourier Transform
Holograms”, Opt. Eng., 26, 428(1987).

{19] D. Psaltis, C. H. Park, and J. Hong, "Higher order associative memories and their
optical implementations”, Neural Networks, 1, 149(1988).

[20] Ken Hsu, David Brady, and Demetri Psaltis, Ezperimental demonstrations of optical
neural computers, Proc. IEEE conf. on Neural Information Processing Systems,
Denver, November 1987.

[21] S. Hudson and D. Psaltis, "Optical network that learns to perform motion compen-
sation in radar imaging”, SPIE Proc., 882, 154(1988).

(22] K. Wagner and D. Psaltis, "Multilayer optical learning networks”, Appl. Opt., 26,
5061(1987).

(23] D. Psaltis, D. Brady, X. G. Gu, and K. Hsu, "Optical implementation of neural
computers”, Optical Processing and Computing, H. Arsenault, ed., Academic
Press, (New York)1989.

(24] K. Hsu and D. Psaltis, "Invariance and discrimination properties of the optical asso-
ciative loop”, Proc. IEEE conf on Neural Networks, San Diego, July 1988.

[25] D. Psaltis, D. Brady, and K. Wagner, "Adaptive optical networks using photorefractive
crystals”, Appl. Opt., 27, 1752(1988).

[26] H. Lee, X. G. Gu, and D. Psaltis, ”Volume holographic interconnections with maximal
capacity and minimal cross talk”, To appear in J. Appl. Phys., (1989).

(27) D. Psaltis, M. Neifeld, and A. Yamamura, "Optical disk based correlation architec-
tures”, to appear in Opt. Let., (1989).

(28] D. Psaltis, A. Yamamura, and M. Neifeld, "Parallel readout of optical disks”, Opticai
Computing, 1989 Technical Digest Series, 9 (Optical Society of America, Washington,
D.C. 1989).




F TLMED
(- 89

EI\IDl




