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FOREWORD

This report is composed of reprints of papers published over the course of this program.

Each paper deals with some aspect of the design and capacity of optical pattern recogni-

tion systems. Paper# 1 describes architectures and implementations for optical correlators

based on acoustooptic devices. Paper #2 analyses the capacity of optical correlators for

image recognition. The third paper describes optical correlators which use optical disks,

rather than AO cells, as spatial light modulators. Papers 4 and 5 are concerned with

optical image recognition systems based on neural network models. The optical associa-

tive memory described in these papers uses a liquid crystal spatial light modulator, thin

holographic plates and a CCD to process two dimensional images. Papers 6-9 deal with

the use of photorefractive crystals to increase the adaptability and capacity of optical im-

age processing systems. Paper 6 describes a system which uses AO cells and a bismuth

silicon oxide crystal to implement a time integrating correlator. Paper 7 explores the use

of volume holographic materials, such as photorefractive crystals, as media for storing

spatial information at high densities. Various constraints are derived for the storage and

reconstruction vi holographic information. Papers 8 and 9 describe methods for using the

dynamic nature and high storage capacity of photorefractive crystals to construct artificial.

neural networks. Paper #10 presents an analysis of optical image recognition systems

based on binary filters. Paper #11 describes an extension of correlation optical associative

memories to higher orders which results in higher storage capacity.

NTIS " .I

I'TmS'c E .. .. ... . - . . . . --

2 3

I--J

a-i



ACOUTOOPTXC ZNEOG CONBLATO3S

Sung 01 Peak, Cheol loon Park, ?a Nok, and Deaotri Paaltis

California Institute of Technology
Department or aleotrioal ZngineorIng

Pasadena, California, 91125

Two dimensional oorrelation for performing Image recognition is one of the earliest
examples of optical Information processing suggested by Vander Lust [1] and It still remains
one of the most promising application areas for thin technology. The reasons optical image
correlators have not found to this day widespread usage in pattern recognition systems fall
Into two categories: algorithmic limitations and lack of devices. Correlation-based pattern
recognition algorithms have well known limitations such as scale and rotational sensitivity.
Over the years algorithms based on optical correlation have been developed [2-5], which show
promise for overcoming some of the algorithmlc Ilitations, however they have not been put
to a real practical test because of the lack of two dimensional spatial light modulators
that are necessary for the Implementation of the classic Vander Lugt correlator.
Specifically, two separate two dimensional SLHa are needed, one for recording the input
Image and another for the reference.

Recently, there has been considerable progress In the development of spatial light
modulators which has led to several *real tine' Implementations of optical correlators using
two dimensional devices (6-8]. In this paper we report on the use of acoustooptic
devioes(iODa) which are by far the moat highly developed SLMs available. AODs however are
one dimensional ILls and in order to process two dimensional signals In an acoustooptic
image oorelator, we use a combination of temporal and spatial Integrations (9-11]. In this
paper we briefly review the prinaples of operation of •coustooptic image correlators and
then present the results of several experiments that were performed with real tine systems
that we have assembled.

In the architectures we will discuss, an AOD Is used as the transducer for the input
image that Is to be recognized. Another aspeot we will explore is ways of making the
reference Image programmable rather than being fixed on a hologram recorded on a
photographla film. We will see that time domain processing, an inherent part of the
acoustooptic image correlators, offers a very convenient way of introducing a programmable
reference and creates a set of promising algorithmio possibilities that are not realizable
with a fixed reference.

Single transduoer aeoustooptic devices are one dimensional spatial light modulators and
hence 'they can not be used to represent an input image in its entirety at one time.
Typically the space bandwidth product of the AOD is about equal to the number of resolvable
spots along only one line of the image we want to process. As a result, the strategy for
building an aeoustooptic Image correlator is process the image one line at a time using a
space Integrating optical procesor and aoouulate by temporal Integration on a two
dimensional detector array the results of the space integrating part of the system to form
the full two dmensional correlation. The basic idea will be explained with the aid of
Figure *1. The operation we wish to perform is a two dimensional correlation:

g(x',y'ls ff f(xoy)h(x+z',y+y') dxdy. (1)

The Input Image f(x,y) Is Imaged onto a TV camera that electronically scans the image and
produces a video signal. The video signal is heterodyned to the appropriate center
frequency and then applied to the piezoeleotric transducer of the AOD. Each horizontal video
lane propagates separately In the AOD and modulates the incident light. Since In our
processors the images are processed as individual lines, from now on we will denote the
Input image as f(x,nd), where n Is an integer and d is the line spacing In the vertical
direction. The optical system is a multiohannel one dimensional oorrelator that produces the
correlation between each input video line in the AOD and all the lines of the reference
Image which Is stored in the optical system. The light Incident on the two dimensional CCC
detector at the output is modulated by:

gn(z',y') u f f(x,nd)he(x',y') dx (2)

SPIE Vol 638 Hvbrid Image Processing (1986)! 25



ACOUSTO-OPTIC MULTI-CHANNEL SCROLLING

DEVICE 1-0 CORRELATOR CCD

INPUT
IMAGE

41REFERENCE 2-0
TV IMAGE CORRELATION
CAMERA

Figure 1. Two dimensional aooustooptio image aorrelator.

where xv and y' are the spatial coordinates at the output plane. Zn order to complete the
two dimensional operation, we need to shift the two dimensional pattern g (zxy') by a
distance nd In the y' direction and then sum over n (i.e. accumulate the signal $ram all the
different input lines). The required shirt and add operation can be accomplished very
conveniently by continually scrolling the photogenorated charge on the CCD during each video
frame. After the nth input horiontal line Is scanned by the TV camera and the correlation
between this nth input line and the reference is added onto the previous contents of the
CCD, the CCD is then triggered to electronically transfer the entire charge pattern
vertically by one pixel. This prooedure results In the formation of a charge pattern on the
CCD that can be expressed as follows:

g(z',y') a ; gn(z'.y'.nd) f f(znd)he(xz't,ndey') dx (3)

The above Is recognised as a sampled form of the two dimensional correlation in Sq. (1). The
two dimensional correlation is produced continuously at the frame rate of the Input TV
camera and It appears at the CCD output in the form of a standard video signal that can be
directly displayed.

Vithin this basic framework, there are several possible architectural variations
principally through choosing different Implementations for the multiohannel one dimensional
correlator. In references 13 and 14 we have described in detail two specific architectures.
in what follows we present results from the experimental demonstration of these systems.

The holographic Image correlator is shown In FiS.2. The details or the operating
princlples have been reported in reference (10]. Here we describe the experimental
apparatus. The Input image was &seed with a high resolution TV camera. The video signal
from the TV camera was heterodyned to the center frequency of the AO (50 NH), amplified
and applied to the 00. The aooustoopti• device in this experiment was a Too (Crystal
Technology * 40503) device with 35 MHz bandwidth and 70 microsecond delay. Thi was more
than adequate to aocomodate one standard video line (63 microseconds and 5 MHz). After
approximately 52.7 mioroseoonds from the start of the horisontal clock the signal In the OD
is an acoustic replica of the video Line from the Input image. At that Instant the laser
diode is triggered to produce a short pule to frees* and read-out the signal In the AOD.
The laser diode used in the experiments was ICA C860309 with peak power equal to 40
mill1vatte and pulsoewidth equal to 50 nanoseconds. The pulsovidth must be chosen equal to or
shorter than the Inverse of the. bandwidth of the video signal so that the motion of the
signal In the light diffracted by the AOD can be neglected. The video bandwidth In those
experiments was Mes or less. The light diffraoted by the AOD was Fourier transformed in
the horlsontal direction and expanded vertically to illuminate a one dimensional Fourier
transform hologram of the reference image. The light diffraoted by the hologram was imaged
vertically and transformed horisontally to produce the multiple one dimensional correlations
at the COD plane.

The hologram was fabricated In diohromated gelatinyielding efficiency 35% at the S20nm
wavelength. The Intensity of the lig'ht was detected at the CCD plane. The horlsontal clock

25 /1SWVo(6W hivWPro*cesssg(19N



from the CoD L used to trigger the driving electronics of the input TV camera and to
transfer the charge in the array downward* by one pixel. The CCD device used in the
ezperiments was a 30MY XC-37 Whose driving oleetrosios were modified to allow us to scroll

*the charge on the Cog continuously during each frame. This CCD camera bag 384 Pixels in the
horizontal direction and 491 pixels In the scrolling direction. The scrolling notion of the
CCD completes the 2- correlstio as described earlier and the full 2-D correlations between
the Image to which the TV camera Is pointed and the reference image stored on the Fourier
transform holoaram is produced at 30 franes per second and displayed on a monitor.

A photograph of the experimental apparatus Is shown in Figure 3 showing that the system
is relatively simple and compact. The laser diode is on the right and the CCD on the loft
side of the photograph In figure 3.

ooi-O a~m SysOtLawus~ MuI-0c POW* labl

Input -axis Input

M4 m o ilio riltcnt l  
l  Oscijb op

S w eep T rig g e - -to e s m
• TMIgger--

Figure 2. Holographic acoustooptic image correlator.

Figure 3. Nxperlmontal setup of the system in Figure 2.

An example of the experiments that were done with this system is shown In Figure 4. The
two faces shown at the top of Figure 4 were used as inputs. On the left band side of the
photograph the reconstruotion& of the two faes are displayed. These reontrutions were

SPIE Vol 638 Hvihd Image Proceswng (19861 / 27



obtained by pointing the TV camera to an impulse-like function and thus producing at the
output the Impulse response of the system. It is evident that the impulse response of the
system Is an edge enhanced version of the original in order to suppress the
croasorrelatlona. This was accomplished by fabricating the hologram so that higher
frequency components were enhanced. All four possible correlations and their *reas sections
are shown In Figure 4 in two dimensional display. The results show excellent disorimination
between the two taces.

The photograph shown in figure 5 is an isometric view of the autooorrelation of one of
the patterns In Figure 4. A very sharp correlation peak is obtained which Is significant
because the oorrelation produced with this system is partially incoherent. In a fully
incoherent correlator that operates on light intensity (12], the correlation peak is
typically broad and rests on top of a bias plateau. In the system we are describing in
this section, the correlation in the horzontal direction Is performed by coherent amplitude
integration, whereas in the vertical direction it is done by integrating intensity. This
incoherent integration averages out the coherent noise effects (i.q. speckle and related
phenomena) and yet, the correlation pattern that is produced Is blas free and its sharpness
In both dimensions Is characteristic of coherent correlators.

Figure 4. Experimental demonstration of Figure 5. Isometric view of the auto-
the holographic acoustooptl correlatAon of one of the
correlator. patterns in Figure A.

The results that we obtained from the system described above have convinced us that
acoustooptics can essentially solve the device limitations of optical image correlatora, at
least as far as the real time input stage is concerned. If we ask what are the limitations
of this system in terms of performing adequately In a pattern recognition application, the
answer is clearly not that the optical system does not perform correlations well enough. The
real issue now Is how to use an optical correlator to recognise images. We have come to the
conolusion that a digitally programmable reference Is a key feature that needs to be
incorporated in optical correlators in order to make their applicability to pattern
recognition practical.

The most obvious way to introduce a programmable reference to the system is Figure 2 is
by recording the Fourier transform hologram on a real time SLK rather than am photographic
film. We have investigated the use of the Litton msgnetooptio spatial light modulator E131
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& photograph ef the ezperi:;:tal apparatus Is shown In Figure G. The LED used In the
exporlmAt Is fabricated by Honeywell and It consists of 180 elemnts, each separated by 100

microns. Sach element transmits 5 miorowatte of optical power. rn the experiment we will
desorlbe, only 32 elements of the array were used. The electronic memory that Ls needed for

storing the referenoe Image was built with standard RAN chips and It was deslgned to store

binary Images consisting of 321100 pixels. The memory was Interfaced to the optical systems

through an array of 32 LBD drivers and to also to an IBM personal computer which was used to

generate the reference patterns. The AOD and the CCD were the same devices that were used in
the exporiments described earlier.

• 5 . S|S i

LIDu TE

Figure 7. Inoherent LED acoustOOptic correlator.

Figure 8. Experimental setup of the system in Figure 7.

A sample of the experimental results obtained with thin system are shown in Figure 9. The
* iput pattern (Fig. 9a) contains the word ULEDS in two places. The reference image chosen in

this case to be the word LED and shown in Figure 9b is the reference image as displayed on
the screen of the computer. The output of the optical oorrelator is shown in Figures go and
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am & spatial filter in optical correlators [E1]. The .agnot optic device (MOD) we are using
Is structured as a two dimensional array of 1281128 pixels. Each pixel can be electrically
set to one of two possible magnetization states. Hence this is a binary spatial light
modulator. A feature of the device that Is moat Interesting in terms of recording holograms
is the fact that it is a bipolar light modulator E14]. This implies that the average
amplitude transmittance of the hologran can be made zero which allows an on-axis Fourier
transform hologram to be recorded and read-out. A very simple algorithm for recording
computer generated Fourier transform holograms on this device wes described and demonstrated
In reference E14]. The real part of the Fourier transform of the reference image is examined
for each pixel. if it Is positive, the corresponding pixel of the HOD is set to one ot its
two states, and if it is negative, it is set In the opposite state. This algoritbm has
yielded excellent results in a conventional two dimensional optical oorrelator. It can be
modified for the acoustooptio correlator in Figure 2 by simply calculating the one
dimensional Fourier tranfor. of the reference image with a digital computer, then recording
on the HOD the sign of the real part of this transformed image. i preliminary experimental
result with a system similar to the one In Figure 2, with an HOD replacing the hologram, was
obtained. The results are shown in Figure 6. The Input pattern that was Imaged onto the TV
camera was the letter X shown in Figure 6a. The one dimensional Fourier transform hologram
of the letter 1, computed and then recorded on the MOD, is shown In Figure 6b. The
autocorrelation of the letter X that was produced In real time as a video signal by the CCD
and displayed on a monitor, Is shown in Figure 6c.

a bC

Figure 6. Experimental demonstration of the holographic acoustooptic correlator with a
programmable magnetooptiodevice. (a) Input. (6)Hologram. (e)Correlation
output.

LnnharoAn LII Aaoustacntid Ag.gjAL&

In this section We present results from an experimental demonstration of the incoherent
correlator that is described in detail in reference (11]. A schematic diagram of this
processor is shown in Figure 7. The basic architecture fellows from Figure 1. The difference
between this and the system discussed In the previous section Is the choice of the
multiohannel one dimensional correlator. The system in Figure 7 utilizes an array of
incoherent time integrating correlatora rather than coherent space integrating correlators.
The temporal signal modulating each of the LSD* in Figure T Is correlated against the signal
that is launched Into the acoustooptic device. These eorrelations are formed on separate
lines of the CCD at the output or the system. The reference image is stored In electronic
memory which can be read-out in parallel such that each line of the reference image can
temporally modulate a separate LED. The electronic memory Is triggered to read-out its
contents in synchronism with the horisontal clock from the CCD. is each new Input video lane
Is entered In the AOD, It Is correlated against all the lines of the reference image. As In
the previous architecture, the CCD Is triggered to scroll in synchronism with the horizontal
sync of the Input TV camera, which at the end of each video frame, results in the formation
of the full two dimensional correlation between the Input image and the reference Image
stored In the electronic memory.

30 / SPE VOL 6W NYrWhneP AXNW(1f)



2d. Theme are pietures of the same thing with the contrast of the display monitor adjusted
to display all the *rose oorrelations In figure 9o, whereas in Figure 9d only the
autooorrelation peaks are visible. The crossoorreIations in this oes are higher, when
oompared with the holographic correlator. This is because In an incoherent oorrelator, only
positive values can be directly represented. We are currently working on incorporating in
this system the capability to represent bipolar Images. This permits much greater
flezilility in choosing the reference image which in turn permits the selection of the
reference image to minimize the orosesoorrelations and obtain performance comparable with the
coherent correlator.

C lT

L=I

a b C d

Figure 9. Experimental demonstration of Incoherent LED oorrelator. (a) Input.
(b) Referinoe image. (c),(d) Correlation output.
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CAPACITY OF OPTICAL CORILELATOR.S

Jef Yu, Fai Mok, and Dem*tri Psaltis

Departmen of Electrical Engineering
Californis Institute of Technology

Pasadena, California 91125

ABST LA.C

The capacity of the Vander Lugt correlator, defined as the maximum number of separate images that can be
recognised, is estimated. The increase in capacity that results from the use of a volume hologram in place of the
commonly used planar hologram is derived. The effects of binarising the reference filter and the shift invariant
properties of the two classifying systems are also analysed.

Vander Lugt correlators have been used for a long time in optical pattern recognitionili. In the typical
implementation, shown in figure 1, the Fourier trasform of an input image is used to read out a hologram containing
the Fourier transform of a reference image. This diffracted beam is then inverse Fourier transformed to produce
the correlation between the input and reference images on the output plane. Vander Lugt correlators are typically
used as pattern recognition systems. Whether or not a peak is present at the output of the correlator determines
whether or not the input image is sufficiently close to the stored reference . Recently much work has been done on
the use of a Vander Lugt correlator to pattern classifiation 2]j3J. In this case, the correlator distinguishes whether
the input is a member of one of two classes with each class being composed of many images. Typically, a reference
filter is formed as a linear combination of the images in both classes and the presence or absence of a peak at the
correlation plane determines which class the input belongs to.

PL"C TasR04FM

FILTM CUMLATIM

FLAN

Fig. 1. Vander Lugt correlator.

In this papr, wt discuss the capacity of the Vander Lugt correlator. This is to say we estimate the maxinium
n..ter of ismqgt: tl,..t catt be stored in the reference filter before the system beginas to misclassif) iniages. This
capacity has been studied in great detail for systems without shift invariance (e.g.perceptron.s). The claz'sic results
fron pattern recognition about the capacity of a linear discriminant function do not directly apply in this case
because the VanderLusgt eorrelator is shift invariant. In this paper, we will discuss the capacity of the systen
incorporating the shift i., -siance of the Vander Lugt correlator. We will also discuss the effect on the capacity of
binarizing the reference filter and lastly we will demonstrate that by using a volume holgrant to record the fihtr,
time capacity of the system is greatly increased, as well as be becoming capable of multi-class classification.

I.Capaclty ofLinear Filters

In the most conmion p.ttern classification scheme, the inner product is performed between tht. inpit imn.,ge

YI



Ise* l

#(z, 1) composed of N pixels and a reference filter h(z, y).

V'mt u'inl

Cornpaaing the output 0 with a pre-set threshold, determines which of the two classes the input belonged to. A
s 1ndard method of forming the reference filter is aa linear combination of the images in both classes:

Ad
h(zl) = ;i,#i(z') 121

The weights wi can be chosen through a variety of training algorithms such as the perceptron learning algorithm.
It is a well known result that the capacity of such a system is [41

M = 2N 131
where N is the number of pixels in each image. In this paper, we will consider the construction of a simpler filter
in which the weights are binary.

I1 if #, e CIA"s 1 4
0 if €EClass II

In other words, the filter is formed by simply summing the images belonging to class 1, while ignoring those in
class 2. This is implemented in a Vander Lugt correlator, by multiply exposing the holgram to the images in class
I while doing nothing for the images in class 2. Classification can then be performed by detecting and thresholding
the output at the center of the correlation plane. For the remainder of the paper, we will assume that the images
#(z, y) consist of binary N pixels, each pixel being a bipolar (ie 1 or -1), independent random variable. Under
these assumptions, the capacity of the VanderLugt correlator using the peak-only detection scheme can by found
be solving the following transcendental equation[(5:

N 151

4log(M 3/N)

As N - co, the above expression asymptotically approaches

N
M= N- (61

SLogN

Thus the use of the simpler method for constructing the reference filter, results in a relatively modest loss in
capacity by a factor of 16logN

111. Capacity of Shift Invariant Filters

Becanus Vander Lugt correlators are inherently shift invariant it is possible to classify prescribed images and
their shifted versions as well. In order to implement a shift invariant classification scheme, detection at the output is
done over the entire correlation plane. As a result the detection of a peak anywhere in the output plane determines
whether the input is a member of class 1 or a shifted form of a member in class 1. Figure 2a shows a cross section
through the origin of the digital correlation of an input image with a filter containing only one image. The result ing
output shows a single correlation peak and relatively small sidelobes. When the reference is constructed by adding
3 images (figure 2b, the sidelobe structures shows a significant rise in amplitude. However, since only the single
correlation peak lies ahove the threshold, classification of the input image i6 still performed correctly. However,
when the number of reference images is increase to 6 (Fig.2c), there are now twc peaks which lie above the threshold
level. A: a result, the system can no longer decide whether the input image is a memiber of class I or a shifted
version of a menaher of cla.as 1. Therefore, we expect that the capacity of the %:;of( invariant system is smaller. For
the relatively simple method of filter construction , we can readily derive an an.Iytic capacity for the shift invari:mil
correlator.
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#(z, v) and the reference filter h(z, y)

O(z,y) = F, h(Zy )I,(Z + zsY + Y). 171
WMI S'IM

For the case where the filter is constructed by simply summing the images in class I (multiple exposure) and
assuming the same input statistics for each image, the capacity of the shift invariant Vander Lugt system is given
by the solution of the following transcendental equation 151

N4oag(M 3 N)

Asymptotically, the capacity approaches
N

16togN
Thus, the capacity is decreased by only a factor of two from that of the non shift invariant systeni.

e0 ,PEAK ONLY vs. SHIFT INVARIANCE

N NN5me - 4log(1 3/N)

30

IL.to Peak onlyMN

:54Log(M 3N)

30

5A

Number of Pixels (N)

Fig. 3. Capacity curves of the peak only and shift invariant fiterf
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This result is important since there is to our knowledge no prior extimate for the loss in capacity due to shift
invariancte. For the case considered here (the filter derived as a simple sum), the loss is very small; a factor of 2.
To verify the theoretical capacity of the correlator, 100 computer trials were averaged to determine the capacity
for various N. For each trial, two random vectors were generated to form the initial reference filter. Each image
was correlated to determine whether classification was performed correctly. If no error occured, a new random
image was added to the reference filter and correlation with all the image was done. The number of images in the
reference was increased until a misclassification occured. At this point, the capacity was said to be one less than
the number of images stored in the reference.

Figure 3 shows the capacity of both the peak only and shift invariant systems as a function of the number of
pixels, N, in the image. Experimental simulations show good agreement with theoretical predictions. It is important
to note that because the simulations were performed in the regime of small N, khe transcendental equations for the
capacity (eqs 15 and [8]) were used to plot the theoretical curves.

I.Capacity of Binary Filters

As demonstrated above, the capacity of the VanderLugt system can be very large. One potential limitation
that might prevent us from actually implementing such a large pattern classification system is the accuracy with
which the hologram can record the reference. To get a feel for the susceptibility of the system to nonlinearities and
inaccuracies, we considered the capacity of the Vander Lugt correlator when the reference filter has been binarized.

In this case, the reference filter consists of a thresholded version of the filter generated front the multiple
exposure algorithm

h(z,y) = agn [E Wi#1 (Z')] 1101
,11

Again, assuming that the input pixels consists of bipolar independent random variables, we find that the capacity
of the binary Vander Lugt correlator is asymptotically

N

There is only a further jr/2 reduction in capacity from that of the non binarised shift invariant filter.

Linear (N=256 M-3) Binary (N-256. M-3)

(a)} (h.)

Fig. 4. Digital correlations of the linear anid a binary filters

In figure (4(, a comparison is made between the linear and a binary filters. lit both cases, the input inagtem
had 256 pixels and the reference filter contained 3 images. As seen front the figure, the sidelohe level of the biiary
correlator is significantly larger than that for the linear filter. As a result, a additional inwage.% are add,.il t,, the
refeuicce filter, the binary correlator will begin to misclassify sooner. This will correspondingl) lead to a Iodkv.
caparity (theoretical and experimental) for the binary correlator. In figure 5, the capacity of both thle biumaired
and nrihinarized filers are plotted as a function of the number of pixels iii the imag'. Again, computer sinmulatiokl,
demon.ttrate a good agreement with thoretical predictions.
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Fig. 5. Capacity curves of a shift invariant and a binary filters.

Y.Cavaelt¥ of the Volume VanderLuxt Correlator

In this section, we consider the use of a volume hologram to record the reference filters in a Vander Lugt
correlator'6J. We expect that becase information is recorded in three dimensions as opposed to the two dimensions
for plane holograms, the storage capacity of the volume Vander[,ugt correlator is increased.

Let us first consider how a volume Vander Lugt correlator operates (Fig.6). Consider the correlation between
two point sources. In the recording stag e (Fig.6a), the point source generates a plane wave which interferes with
a reference wave to form a grating which is recorded in the volume hologram. Whten an input point source at the
saine position is presented to the correlator (Fig.6b), a new plane wave reads out the stored grating. The diffracted
plane wave is then focussed to form the expected correlation peak at the output. If, however, the input point source
is shifted in the direction parallel to the plane of incidence Fig.6c), the plane wave that is generated will not be
Bragg matched with the grating in the volume hologram. Consequently no diffracted wave will be produced avid
no correlation spot will be formed. In the direction perpendicular to the plane of incidence, the volume hologram,
exhibits very little Bragg sensitivity and a correlation can still be read out. As a result, shifts of the inpult in a
direction parallel to plane of incidence will not be recognized, while in the perpendicular direction the €orrelator
remains shift invariant.

For an'.arbitrary input,A(Z, At and reference image, R(x, y), it can be shown that the output of the volumle
V a n d e r L u g t c o rr e la t o r is (7 1 }, y A z ) - R ~ , y ] s n~ )1 2

where a = Tsinf/2AF and * is the correlation operator. T is the thickness of the hologram, 0 is the Bragg angle,
and F is the focal leiegth of the inverse Fourier transform lens. fit other words, the output of tihe €orrelamor conlsi.: I,
of the correlation between the input and reference apodised by a sinc function whose width is determined by the.
thickness of the volunte hologram.
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RECORDING STAGE

READOUT STAGE

ur" SHIFTED INPUT

Fig. 6. Recording and readout of a volume hologram.

To experimentally demonstrate this apodising effect, the auto correlation of an 0 was perfonned using the
volume Vander Lugt correlator. Figure 7 shows a digitally generated autocorrelation of an 0 which simulates a
standard Vander Lugt correlator with a reference 0 recorded on a plane hologram. In the volume Vander Lugt
correlator, the reference 0 was recorded on a lithium niobate crystal measuring 25x25x5nuii. The reference beans
was situated such that the plane of incidence was in the horizontal direction. Figure Sa shows the output of the
volume Vander Lugt correlator when the input 0 is positioned at the same plane as the reference 0. The output
consists of the standard correlation of the two O's multiplied by the horizontal sine function. When the input 0 is
shifted in the direction parallel to plane of incidence (Fig. 8b), the correlation shifts and only correlation structure
ta'one side of the peak is presented at the output. The smaller spot lying to the right of the primary horizontal
band corresponds to the very strong correlation peak lying in the first sidelobe of the apodizing zinc function.
Further shifts of the input as shown in figure 8c, merely reads out the correlation structure further from the peak.

Fig. 7. Digital autocorrelation of an 0.
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(a.) (b.) (c.)
Fig. 8. Experimental outputs of the volume Vander Lugt correlator.

The Bragg selectivity in the volume VanderLugt coerelator allows one to perform multi-clas categorisation of
the input images(8. In the recording stage (Fig.9a), a set or reference filters is recorded by interfering each with a
reference beam separated by the angular bandwidth of the volume hologram. When an input image is presented
to the volume Vander Lugt correlator (Fig.9b), a set of correlations is performed simultaneously and presented
spatially distributed at the output. The Bragg selectivity of the hologram guarantees that the correlation bands
will not interfere with each other. As a result, by detecting which band the correlation peak appear, determines
which of many classes the input image belongs to.

mrc'c VS.UK mthl

RECORDING STAGE

(a.)

MTTI OmLTOPLM"

rILIC COM~LA?1W4
PLA#C

READOUT STAGE

(b.)

Fig. 9. Recording and readout stage of the multi-cais calegorizat ion volume Vaidrr L., ! corraltr
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We can consider each correlation band as a seperate output channel performing a simple pattern classification
task independent of the other channels. By assuming the same input statistics for the images in each class, the
capacity of each output channel can be analytically derived. In this case, the rnuimum number of images that can
be stored was found to be equal to that of the standard VanderLugt correlator [eq.51. Asymtoically, the capacity
of each channel approaches

Nr  N N - co 113!
l6logN

The number of output channels, K, that can be stored in the volume hologram is
TL.,n

K = TLif (1:5<K_5N) 1141

where L is the actual dimension of the output detector array in the direction parallel to the plane of incidence.
Hence the total capacity of the system is

KN

M7o-u1 = N (N -. oo; 1: K: <N) 1151

Thus the effect of the using a volume hologram is that the capacity is increased by the number of output channels
the hologram can support and one to perform multi-class classification. However, one drawback is the partial loss
of shift invariance in one direction that results from the use of a volume hologram.

In conclusion, we have demonstrated that the capacity of a Vander Lugt correlator without shift invariance is
N/8LogN for the simple additive filter. By incorporating the shift invariance inherent in an optical correlator, the
capacity is only decreased by a factor 2. Furthermore, by binarising the reference filter, there is a further loss by a
factor of r/2. However, by utilising a volume holgram to record the reference filter, the capacity of the correlator
is increased by a factor that can be as high as N with a proportional loss in shift invariance.
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OPTICAL DISK BASED CORRELATION ARCHITECTURES

Demetri Psaltis, Mark A. Neifeld and Alan Yamamura

Depatmet of Electrical Engineering
California Institute of Technology

Pasadena, CA 91125

In this paper we describe and 4xperientally demonstrate optical image correlators
that are implemented using optical memory disks. Optical correlation for pattern recog-
nition [1) has long been considered a promising application for optical procesing. One of
the reasons such correlators have not been used in practical applications yet has been the
lack of suitable spatial light modulators to be used as real time input devices. Recently,
this limitation has to a large extent been removed through the development of a variety of
2-D SLM's [2] and concepts that allow the utilization of mature 1-D (acoustooptic) SLM's
(31. Attention has therefore shifted to the design of appropriate filters to perform reliable
recognition [41. In most practical applications a single filter is not sufficient to produce
reliable recognition, and the use of spatial (51 and temporal (31 multiplexing to search
through a library of filters emerges as the most straightforward solution to the problem.
The optical disk correlator architectures we describe in this paper provide an extremely
efficient method for performing this task since they combine in a single device the huge
memory required for storage of the library of reference images, the spatial light modulator
needed to represent the reference in the optical correlator, and the scanning mechanism to
temporally search through the library.

The first architecture we will describe is shown in Fig. 1. Each reference image is
recorded as a 2-D computer generated Fourier transform hologram on the disk. The in-
put image goes through the beamsplitter, it is Fourier transformed by the lens, and it
illuminates the hologram on the disk. The reflected light contains a term proportional to
the product of the transforms of the input and reference images. The same lens retrans-
forms the reflected light and the correlation is produced. A principal issue of concern in
this architecture is the suitability of commercially available disk systems for recording and
reconstruction of holograms. We have identified a write-once disk system which is manu-
factured with glass (rather than plastic) covers of sufficient optical quality that has allowed
us to reconstruct the recorded data using coherent light. We will report the results of this
experiment at the conference. The rotation of the disk is used to perform a search through
images centered at the same radial position on the disk. An auxiliary scanning mechanism
is needed in order to position the correlator "head' in the correct radial position. As
the disk rotates the entire correlation pattern shifts in one dimension at the output as
long as the reference hologram remains in the field of view. A time-delay-and-integrate
(TDI) CCD sensor can be used to integrate this traveling correlation pattern in order to
improve sensitivity. Alternatively a 1-13 parallel read-out detector array can be used that
sequentially produces slices of the 2-D correlation pattern as it travels past the detector
array.

A straightforward modification of the system of Fig.1 is obtained by recording holo-
grams that are Fourier transforms of the reference images only in the radial dimension
since the rotation of the disks provides the necessary shift between the input and reference
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along the tracks. The light reflected from such a hologram is Fourier transformed in the
radial direction and Integrated in the orthogonal dimension onto a 1-D parallel read-out
array. The signal from the detector array is again the 2-D correlation presented as a se-
quence of I-D slices. The advantage of this architecture compared to the previous one is
that it has the same light efficiency as the TDI system without the relative complication
of the TDI sensor. Therefore the experiments we will present are with this type of system.

The above architectures require storage of the reference images in the form of computer
generated Fourier transform hologram. This provides the advantage of shift invariance
which means that we do not need to be concerned with accurate positioning within a single
track of the correlation head with respect to the data recorded on the disk. This is a very
important practical consideration; the disadvantage however is an increase by a factor of
100 or more in the space bandwidth product required to record the hologram compared to
the space bandwidth product of the image itself and an increased computational overhead
to record the disk. In addition, the smaller size of the recording results in reduced phase
uniformity requirement for the disk. In many caes it is only necessary to record the
reference images as binary patterns (61 in which case they can be directly recorded on the
disks. Gray scale images can be recorded using some form of area modulation as is done
with video disks for example.

There are two types of architecture we will discubs that allow the reference images
themselves to be stored on the disk rather than their Fourier transforms. The first is shown
in Fig. 2. The input image goes through the beamsplitter and it is Fourier transformed
by lens LI. A Fourier transform hologram of the input is recorded in a photorefractive
crystal using a reference beam that is incident from the right, as shown in the figure. Once
the hologram is recorded the input is blocked and the the disk is illuminated. L, takes
the Fourier transform of the reference image that is in te field of view of the illuminating
beam and L 2 transforms the light diffracted by the hologram to produce the correlation at
the output plane. The rotation of the disk is used to scirch through a library of images in
the radial direction and a TDI detector can be used at the output to increase sensitivity as
before. Multiple holograms could be multiplexed in the crystal to address different radial
positions on the disk or the entire head can-be scanned to address different radial positions
as before. We have not yet completed the experimental demonstration of this system but
we expect that at the conference we will present the experimental results from this system.

The final architecture we will discuss is shown in Fig. 3. The advantage of this
architecture is that it operates on the light intensity and consequently the requirement for
phase uniformity is greatly relaxed. As a result it is possible to implement this architecture
with most existing disk systems. This correlator works as follows. The reference images
are recorded on the disk and the input is imaged through a 1-D scanning device onto
the disk. The scanner can be either acoustooptic (as shown in Fig. 3) or a rotating
mirror. It provides the relative displacement in the radial direction between the input
and reference images that is necessary to calculate the correlation function. The disk
rotation provides the displacement in the orthogonal direction. The scanner translates
the input image completely accross the stored reference image each time the disk rotates
by a distance equal to a pixel of the reference. The intensity of the light reflected from
the disk at any one time is proportional to the product between the input and a shifted

2

...... mmmmm[] sis milNlNlN



version of the reference. The reflected light is collected (integrated) on a single detector
which produces as its output a temporal video signal of the 2-D correlation. This system
was experimentally demonstrated with acoustooptic scanners. Two types of acountooptic
scanners can be used: A 'flying spot* scanner In which a chirp signal propagates in the
acoustooptic device acting as a traveling lens that scans the diffracted image at a rate equal
to the acoustic velocity. This system completes a scan in a few ps, therefore a complete 2-D
correlation takes approximately a few ma. The second scanner that we have demonstrated
is a more conventional acoustooptic deflector that scans slowly but permits a higher space-
bandwidth product of the input image. A sample of experimental results obtained with
the system of Flg.3 in shown in Fig.4. Fig. 4& is a photograph of the pattern recorded
on a write-once disk (the acronym CIT) and Fig. 4b is the 2-D correlation produced by
the optical system of Fig. 3 and displayed by raster scanning the detector output on a
2-D monitor. Correlations can be produced with our experimental apparatus at rates up
to 1000, 100X100 pixel images per second. The optically calculated correlation is in good
agreement with the expected autocorrelation function of the CIT pattern. It should be
pointed out that since this system operates on intensity we can only represent positive
quantities. In order to represent bipolar input and/or reference images we need to add
biases at the input stage and subtract it from the output [3], a technique that has been
successfully used in a variety of incoherent architectures.

The number of bits that can be stored in the type of disk that we use for most of
our work (a write-once, 12 cm diameter system from SONY) is more than 5 billion: The
number of 100 x 100-pixel images that can be stored in such a disk is more than 5,000,
assuming a generous factor of 100 for loss of spacebandwidth product due to representation
(e.g. area modulation for gray scale representation). The rate at which all these images
can be interrogated for a possible match with the input is limited by one or more of the
following factors: The scanning speed of the disk (40Hz in our case), the speed of the radial
scanning mechanism, and the sensitivity and the bandwidth of the output detectors and
the electronics following them. As an example consider the system of Fig.2. At 40 Hz disk
rotation rate, we obtain 1000 image correlations per 1/40th of a second (i.e. 40,000) image
correlations per second), yielding a reasonable 4 MHz bandwidth per detector. It would be
extremely difficult to duplicate this capability electronically and it can be achieved with
ezisting optical technology. Moreover it is precisely such capability that is required for
practical pattern recognition problem.

The research reported in this paper is supported by the Army Research Office.
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Optical associative memory using Fourier transform holograms

&AV of Piek M&Wu w AbsetL. An experimental demonstration of a holographic associative
Dume Poslis, MMKA Snit memory Is presented. The system utilizes an array of classic VanderLugt
California Institute of Technology correlators to implement in parallel the inner product between an input
Department of Electrical Engineering and a set of stored reference images. Each inner product is used to read
Pasadena, California 91125 out an associated image. Theoretical analysis of the system is given, and

experimental results are shown.

Suboec tems: optical information processing; optical computing; nonlinear op-
tical signal processing; associative memories; neural networks; pattern recogni-
tion.
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CONTENTS we are concerned with the holographic memory proposed by
i. Introduction Psaltis and Farhat.1' ' 2 This memory can be thought of as a
2. Architectures compromise between the ghost and correlation peak detection
3. Experimental results memories. We discuss this point with reference to Fig. I.
4. Acknowledgments where the three possible implementations are shown. In the
S. References ghost image memory shown in Fig. 1(a), the input pattern f

is correlated against all stored memories, and the correlation
1. INTRODUCTION function is then convolved with the associated stored output

pattern. The final result is obtained by summing all of theSeveral types of optical associative memories have been pro- reconstructed images. The peak detection memory shown in
posed over the years. Ghost image type associative memory Fig. 1(b) detects the presence of the peak in the correlation
was suggested by van Heerden and was investigated by plane to determine the best match between the input and one
others, including Gabor.' in a ghost image holographic aso- of the stored input images. Once the match has been estab-
ciative memory, a hologram of a pattern A is made using the lished, only the corresponding memory is illuminated, which
pattern B as the reference. If the hologram is illuminated by eliminates the crosstalk and the distortion present in the ghost
A, then the output becomes A • A * B, where * denotes holograms. The final possibility, shown in Fig. l(c), is to
correlation and * denotes convolution. If A is a noise-like sample the correlation plane only at the origin, where autocor-
random phase object, then the output can be well approxi- relation peaks occur, using an array of pinholes (rather than to
mated by B. If the space-bandwidth product (SBP) of the actually detect the peak). The spatially sampled correlation
output images is equal to the SBP of the hologram, then this peak rather than the entire correlation plane is then convolved
type of associative memory can store only one pair of associ- with the associated stored output image. This eliminates the
tions.3 If the SBP of the hologram exceeds the SBP of the distortion present in the ghost image holograms but does not
output patterns, then the number of associations that can be entirely eliminate the crosstalk. Consequently. compared to
simultaneously stored on the same hologram is equal to the the ghost holograms, the quality of the recalled images is
ratio of the two SBPs. 3 Random phase diffusers can be used to dramatically improved in this case, however, the number of
improve the quality of the reconstructed images by making patterns that can be stored in the same hologram is reduced.
the effective bandwidth of the pattern A larger, which makes compared with the peak detection type. The crosstaik at the
the A * A closer to the ideal delta function. The diffuser also output of the system can be reduced by thresholding if the
makes A, * A2 closer to zero for the cross terms when multi- stored patterns are binary, and further improvement can be
pie associations are stored on the same hologram. Willshaw et realized for autoassociations (i.e.. the input and output stored
al." discussed optical memories quite similar to the ghost type patterns are the same) through the use of feedback.,-'u The
and also suggested using thresholding at the output for reduc- advantages of the latter type of memory are its simplicity.
ing the cross-correlation -noise" when multiple associations since no active devices are needed at the intermediate level.
me stored. and its robustness with respect to failure of components. In

A second class of associative memories can be constructed the peak detection memory, if the element that senses the
as an array of holographic correlators - 7 that compare the correlation peak of a particular stored pattern fails, the entire
input and a bank of reference patterns. If a correlation peak is memory is erased. Moreover. this type of memory (also re-
detected above threshold, the associated pattern is produced. ferred to as outer product memory) is widely used in the

More recently, following the resurgence of interest in modeling of neural networks, and it generalizes very naturally
neural network models of computation s- '0 several new to multilayered networks.
holographic memories have been proposed. ,6 In this paper In this paper we describe in detail two holographic associa-

tive memories that utilize the pinhole sampling method. Both
Invited Paper IP-107 received Jan. 29. 1957; revised manuscript received memories are constructed as an array of VanderLugt correla-
March 13. 1917; accepted for publication March 13, 1987; received by
Masaing Editor Mrch 13.1967. tor. Multiple images are multiplexed on Fourier transform
* 1*7 Society of Pholo-Opecal Insmemnnaton Engineers. holograms. A single hologram is used in the first architecture.
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OPTICAL ASSOCSAlVE MEMORY USING FOURIER TRANSFORM HOLOGRAMS
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an autoassociative memory, since the input and output pat- Output Mer
terns are the same. The second architecture utilizes two sep-
arate holograms for storing the input and output patterns and
can be either auto- or heteroassociative. The experimental
demonstration of both systems operating as autoassociative P~VOe
memories is described. Array

/MirrOr

2. ARCHITECTURES ig. 3. Schematic diagram of the holographic memory system.

To construct a two-dimensional outer product associative
memory, we need to implement the following operation: the associated memory. Finally, these products must be

summed over all of the memories to produce the final result.
'The images are stored in a conventional Fourier transform

h(x.y) = fT(x.Y. t.1,)fk.yodtd. (I) hologram, as shown in Fig. 2. All of the memories to be
stored are arranged side by side, spatially separated from each

where other. In the analysis, it is assumed that each memory is
M separated by the same distance along the x and y directions.

T(x.y. 4.7) 1 hrn(X.y)fm(4.71). (2) The Fourier spectrum of all of the memories interferes with a

m-, single tilted plane wave to simultaneously make a multiple
hologram. The amplitude distribution at the input plane is

T(x.y, k.TI) is the synaptic matrix in accordance with the outer
product storage mechanism, fm(g,'1) is the inth input memory, M
h,,(x.y) is the associated output pattern, and M is the 7 fa(t - am, -q - bin). (4)
number of memories stored. f(Q,T) is the input function to the m-i
memory. and hlx,y) is its output. In the remainder of this
paper we concern ourselves with autoassociative memories, in where am and bm are the positions of the mth image in the
which hm(x.y) = fm(X,y). To implement Eq. (I), we need a and -q directions, respectively. When we record the inter-
four-dimensional interconnection matrix that cannot be di- ference on a holographic plate at the hologram plane, the
rectly implemented optically. However, if we substitute Eq. amplitude transmittance of the hologram becomes
(2) into Eq. (1) and rearrange, we end up with the following
inner product representation: M F,(uv)expl -jlua + vb,)l +

ifii.yt f[ f(X.y)f,(t-1 (.7i)(,idk dvi rn
fl' 1I F(uv)exp{jlu(a. - (0) + vbJll

r.1

= [f ft'(. f(g.rtidg d jfm(x.y). (3) + conjugate term + dc terms . (5)

m-1 where F.(uv) is the Fourier transform of fm(x,y) and ,) is a
From Eq. (3) we deduce that the optical implementation of constant that determines the angle of incidence of the refer-
this memory can be decomposed into three steps. First, the ence beam.
inner product of the input and each memory must be formed. The system used to recall the information stored on the
This can be optically evaluated as the correlation sampled at hologram, shown in Fig. 3. is a modified VanderLugt corre-
the origin. Second, each inner product must be multiplied by lator. The input pattern is placed at plane P, and is Fourier
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amallomeid by Wens Lt. lbs transform illuminates the bolob-= Nio~
graphic memoy placed at the Fourier plane P 2. The correla- Pls e MM Ln M,, FourLer

on of the input and each memory are produced at plan P L s Ta
by le2s 2. The inner product values ae sampled by an armay sao" L t.
of pimholes at Ps. Each pinhole is positioned exactly where Array/
each of the stred imaes was cetred when the Fourier Mirror
transform hologram was recorded. Terefore, if the input is
one of the stored images centered on the optical axis, then a c '"
sharp autocorrelation peak will form at P 3 on one of the
pinholes. Light emerging from each pinhole is reflected by a
mirror placed immediately after the pinholes, and the re- VCR
flected light illuminates the hologram to form the recon- Thre
structed images of all of the memories at the output plane P4 .
The reconstruction due to light from each pinhole is the entire Kg. 4. Cloed-loop v-ron of the hokoUUpN memoey sysWm.

composite memory shifted by the position of the pinhole. At
the origin at plane P4 we obtain the superposition of all of the Eq. (9). Note that in the above equation, unless m = in'. the
memories. The strength with which each memory is repre- spectra F,(uv) will emerge on a high spatial frequency car-
sented in this superposition is proportional to the value of the rier, which means that they will be reconstructed off-axis at
inner product between the input and the corresponding mem- P4 . The total light amplitude at P4 can be written as
ory. A window is placed at P4 to select only the desired
central portion of the reconstructed holographic images. M M

We now describe the operation of this system analytically. g g(OO)(.(x + a.. - a,.,y + b. - b.n). (10)
Let f(, q) be the amplitude transmittance at plane P, in Fig. *- -
3. Then, the term of interest in the amplitude of the light
diffracted by the hologram is When we observe the light only through a window that is

centered around the optical axis and is equal in size with each

X(uv)F.(u~v)exp(jju(a. - to) + vb.11. (6) memory, only the terms m = m' survive:

mn-t M

At the correlation output plane P3 , the light amplitude is the X g.(O,0)f.(x.y). (II)
Fourier transform of Eq. (6): m-I

If f. is real,

g.(-x'. -y') - bx' - a. + (oy' - b,j, (7) M
rn-I E g.(,)fm(x,y). (12)

where g(x',y') is the correlation of f.(J,q) with f(,-q), and 0-'
x',y' are the coordinates in plane P3 . The correlation output is Comparing the result in Eq. (12) with Eq. (3), we see that the
sampled by the pinhole array located at coordinates x' = a. - optical system we described is exactly the outer product asso-

* £A, y' - b. in P3. We assume that the pinholes can be ciative memory.
adequately described mathematically as delta functions. If the input pattern is most similar to the stored image
Then, the light reflected by the mirror at plane P 3 can be f then the correlation between the input and f,,, will
written as be the strongest, and consequently [from Eq. (12)]. f,.(x.y)

will be amplified the most in the final output reconstruction.
I[ r However, there is still crosstalk, since all of the other mem-

Sg(-x',-y') * a&x' - a, + 4o,y' - bm} ories are also weakly read out. This crosstalk can be elimi-
S m-I L nated if the stored images are binary, in which case the output

can be thresholded and fed back to the input for multiple
x b(x' - a,. + k.y' - bin} iterations.' A closed-loop version of the holographic memory

is shown in Fig. 4. The light at the output is detected on a
* Mtwo-dimensional CCD. The video signal from the CCD is

S g..(0.0)8{x' - a. + o.y' - b.)• (8) electronically thresholded and fed back to the input plane of
M-I the system through an electronically addressed spatial light

The reflected light illuminates the hologram in P2 , and the modulator. The Litton magneto-optic spatial light modula-
amplitude of the light traveling from right to left in Fig. 3 tor' 7 is one candidate device that can be used for this purpose.
immediately to the left of P 2 is given by The system also can be configured with optical feedback

using an optically addressed spatial light modulator.
M M An alternative implementation of this type of associative

X Sag(0.0)F.(u.v)exp(-jlu(a. - a..) + v(b. - b',)l, memory is shown in Fig. 5. This architecture is basically an
M 1, (9) unfolded version of the system in Fig. 3. In other words.

instead of having a mirror that reflects the light back through
the same system, we have two identical optical systems. one

The light at the output plane P4 is the Fourier transform of after the other. This allows us to use two separate holograms.
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which provides added flexibility in designing th system and-,
also makes heteroassociationls possible. i ' *' The system
shown in Fig. 5 is an autoassociative memory with feedback-.
and thresholding. An input image enters the system through..." ]

the beamsplitter. as shown in the figure, and is threshoided by
an optically addressed spatial light modulator. Several de- [
vices'can be used for this purpose, such as the Hamamatsu - "
microchannel spatial light modulators° or the Hughes liquid -"

crystal light valve. 2' The optical system from plane P, to
plane P3 is a modified VansderLuagt cor'relator similar to theone used previously. The correlation patterns are sampled by

an array of pinholes at P3. and the light emerging from plane {l
P3 illuminates a second, identical system. The light reaching Pig. Co rrelaie. oulpul for la) the first and (blthe third memorie

plane P, is the superposition of all of the images that have at the input.
been stored in the multiplexed holograms. Each image is
weighted by the inner product between the pattern recorded on a thin metal plate. The diameter of each pinhole was 350

on the spatial light modulator from the previous iteration and jim. The pinhole array was then placed in contact with a

itself. Thus, the systems shown in Figs. 4 and 5 are function- mirror. A CCD camera (7) was used to detect the output of the

ally identical. As will be seen when we describe the expert- memory through the beamsplitter (6). The four patterns used

mental demonstration of the two systems, the added flexibil- as the memories in this experiment are shown in Fig. 7. The

ity of the system in Fig. 5 can significantly improve the patterns obtained a: the correlation plane (or equivalently, the

performance. plane of the pinholes) when the first and third stored patterns
were presented at the input are shown in Figs. 8(a) and 8(b).

* 3. EXPERIMENTAL RESULTS respectively. A sharp autocorrelation peak is evident in both
The experimental apparatus assembled to demonstrate the cases, and the position of these peaks coincides precisely with

memory of Fig. 3 is shown in Fig. 6. The multiplexed Fourier the position of two of the our pinholes. It is interesting to

transform hologram (item 3) was fabricated in dichromated note that the inclusion of the pinholes destroys the shift in-

gelatin. The pinhole array (3) was made by driling four holes variance of the VanderLugt correlator. if the input pattern is
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P. I. mmalwlam" preieu whm hem pi -1 wme gmewid reconstruction of the first and second holograms, respectively
and lbet mmmev tCALTEC wm Placed at tl t pae. (see Fig. 5). Note. that the reconstruction of the first holo,

gram, used for recognition in this architecture, is edge en-~hanced. This was accomplished by recording the hologram
such that the high spatial frequency portion of the spectrum

was enhanced, which ensures that the cross-correlations be-
tween the four faces are much smaller than the autocorrelation

tal peaks. The second hologram, used for read out of the stored
information, is recorded so that a faithful reconstruction is
obtained using diffuse illumination during the recording. The
partial input and the complete recalled image are shown in
Figs. 12(d) and 12(e), respectively. The noise evident in Fig.I13 B 12 ( c) i s s pe ck le , a c o ns eq ue nce o f the d i ffuse r use d to fo rm

the second hologram. Comparing Fig. 12(e) with Fig. 10, we
see that in Fig. 10 ther is still evidence of crosstalk superim-
posed on the reconstructed images, while no crosstalk is de-
tectable in Fig. 12(e). The thresholding performed by the

(e spatial light modulator, the high space-bandwidth product of
the images used, and the virtual orthogonalization of the four
memories accomplished by the high pass filtering in the first
stage combine to eliminate the crosstalk in a single pass
through the loop in the second experiment.
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Introduction

In this paper we report recent experimental results from the optical associative mem-
ory that we have described previously [1,21. This system is a single layer neural network
architecture simulating a 2-D array of approximately 105 neurons on which images can
be represented. fhis 2-D array of neurons is fully interconnected via holograms and the
system is organized as an auto-associative memory with feedback. An external image pro-
jected into the system causes one of the stored images to become a stable state of the
system. The ability of the system to recognize distorted versions (e.g. rotated, shifted,
or scaled) of a stored image depends critically on the gain of the system as the light goes
around the loop. High gain provides invariance to distortions but ultimately it also leads
to a loss in discrimination against unfamiliar images. Thus there is an optimum choice of
parameters of the system that yields optimum performance. In what follows we describe
how the parameters affect the performance of the memory and we report the performance
(in terms of discrimination vs. invariance) obtained by the experimental system.

Experimental System
A schematic diagram of the optical associative loop is shown in Fig.1 and a photo-

graph of the experimental apparatus is shown in Fig.2. This processor is comprised of
two cascaded correlators of which the first is used for calculating the degree of similarity
between the external input image and the images stored in the hologram. The second cor-
relator uses the output from the first correlator to reconstruct the same images that are
also stored in the second hologram to provide the feedback signal for the loop. The oper-
ation of this associative loop can be explained with the aid of the block diagram shown in
Fig.3a. In this example four images spatially separated and stored in the Fourier transform
holograms H, and H2 as shown in Fig.3b. When the input pattern A is presented as an
input to the system, the first correlator produces the auto-correlation pattern along with
three cross-correlations at plane P2 . The pinhole array at P2 samples these correlation
patterns at the middle of each pattern where the inner products between the input and
each of the stored images form. Each of the four beams that go through the pinholes goes
through the second correlator to reconstruct the four images stored in hologram H2 . These
reconstructed images are spatially separated and superimposed at plane P1. The stored
image which is most similar to the input pattern gives the strongest correlation signal
hence the brightest reconstructed image. The weakly read-out from the cross-correlation
can be eliminated by thresholding by the LCLV. The output of the LCLV becomes the new
input image for the loop and thus iterations take place. The stable pattern that forms as
a recirculating image in the loop is the stored image that is most similar to the original
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Input.
In the system of Fig.1 the input pattern is imaged onto the LCLV by lens Li and

through beam splitter BS5 . A collimated argon laser beam illuminates the read-out side
of the LCLV through beam splitters BS2 and BS1 . A portion of the reflected light from
the LCLV that propagates straight through BSI, in diverted by BS 2 , and it is imaged by
lens Lo onto a CCD television camera. This provides real time monitoring of the activity
of the system. The portion of the light that is reflected by BSI into the loop is Fourier
transformed by lens L, and illuminates the hologram H1 . The correlation between the
input image and each of the stored images is displayed at plane P2 . The pinhole array at
P2 has center spacings corresponding to the spatial separations of the stored images. The
remainder of the optical system from P 2 back to the neural plane P is essentially a replica
of the first half, with the hologram H 2 storing the same set of images at H1 . Fig 4 shows
an example of an experiment performed with this loop. Fig. 4a is the external input,
in this case a partially obstructed image of one of the stored patterns. Fig.4b shows the
response of the system with the external input still present, and Fig.4c shows the stable
state of the loop after the external input is removed.

One of the interesting properties of this system is its dynamics. The time for the
loop to reach a stable state depends very much on the initial conditions. Fig.5a shows
the temporal response of the loop to an input pattern. When the signal in the lower
trace becomes high, it indicates that the external input is ON. The upper trace shows the
corresponding response of the loop. The initial rise is due to the presentation of the input
whereas the second rise is due to the fact that the feedback path was closed. It is seen
that it takes about two seconds for the loop to reach a stable state whereas the rise time
of the LCLV is approximately one second in the mode we operated it. When the external
input is turned off, the loop remains latched to a stable state which is one of the stored
images. Fig.5b shows the same experiment but with input intensity reduced to one third of
the first input. The second rise of the upper trace shows that it takes approximately four
seconds for the loop to reach its stable state. After the input is turned off the loop gives
the same output intensity. This example shows that initial conditions affect the dynamics
of the loop but it does not affect its final state. We will see in the next section similar
invariances when the input is shifted and rotated.

The loop dynamics and related invariance properties can be best understood by using
a network model as shown in Fig.6. Each resolution element of the LCLV simulates a
separate neuron and with resolution of the device used being approximately 400 x 400
pixels, 160,000 neurons are simulated. Each of these neurons is globally connected and
fed back to everyone via the two holograms. The optical signal is attenuated in the loop
due'to the diffraction efficiencies of the Fourier transform holograms and the losses from
pinholes as well as lenses and beam splitters. Therefore neurons have to provide optical
gain to compensate this loss. In our system this is achieved by adding an image intensifier
at the photoconductor side of the LCLV. The microchannel plate of the image intensifier is
sensitive to a minimum incident intensity of approximately 1 nW/cm2 and it reproduces
the input with an intensity 104 times brighter (10 MW/cm 2 ). This is bright enough to drive
the LCLV. If we use a beam with intensity equal to 10 mW/cm 2 to read the LCLV then
the intensity of the output light is approximately I mW/cm 2 . Thus, the combination of the
image intensifier and the LCLV provide optical gain up to 106. Fig.7a shows the input-



output characteri tcs of the optical thresholding element which is similar to a sigmoid
function. The optical Zan can be adjusted by changing the bias voltage of the image
intensifier. Fig.7b show. the relationship between the bias voltage applied to the image
intensifier and the gain.

The dynamics of the recall process can be described by using an iteration map formed
by the gain and loss curves as shown in Fig.8. In the figure the slope of the straight line
is proportional to loop loss due to the holograms and the pinholes and it is superimposed
with the input-output response of the neurons. The intersection points of this line with the
neuron gain curve at point Q, determines the threshold level and Q2 represents a stable
point. If the initial condition of the neuron is above the threshold point 01, the signal
grows in each iteration until it arrives and latches at Q2. On the other hand, if the initial
condition is below 01 the signal will decay to sero. The number of iterations depends on
the distance of the initial condition from the threshold. This explains the dynamics of
Fig.5. Similarly, if the loop loss is low or the neuron gain is high one can expect that the
loop will converge faster to a stable state. Raising the gain also has the effect of lowering
the threshold of the system. In the following section we will see that the setting of the
gain is the key parameter that mediates the trade-off between distortion invariance and
discrimination capability of the loop.

Invariance versus Discrimination Trade-offs

In the previous section we saw that as long as the gain is high enough and the external
input is strong enough to produce an initial condition for the LCLV that is above threshold,
then the loop will converge to one of the stored stable states. Since the external input
does not affect the shape of the final state, but rather it selects which state in produced
we can build a degree of invariance in the system since a shifted, rotated or scaled version
of a stored image can cause the stored image to be recalled. The effect of such distortions
of the input image are to decrease the level of the initial condition. Therefore, by raising
the neuron gain, no matter how much we change the initial condition by rotating, shifting,
and scaling the input image, the loop can always be made to produce an image as a stable
state. But the ability to correctly recognize a stored image from a distorted input and the
discrimination capability, i.e. the ability to distinguish images from one another are two
things that compete with each other. If there is too much gain then just shining a flush
light at the input of the system causes it to lock on to one of its stable states. If the gain
is set too low then even an input that is a slightly distorted version of one of the stored
images is not recognized. There are two parameters under our control that can affect the
gain in the loop: The gain of the neurons and the size of the pinhole.

We will use Fig.3b as an example. Let fi(z,y),i = 1,2,3,4, represent the images of
the letters A, B, C, D, respectively and let the pinhole size be W. Then the reconstructed
images in the window at P can be shown to be

E[gi(,ydrct(j)ret(-$)1 * f,(x,y)

where * represents the convolution operation, g1l (z, y) is the auto-correlation of A and
gli, i $ 1, are the cross-correlations of A with B, C, D, respsctively. We see that the
images are blurred by the finite dimension of the pinholes. Decreasing W gives better
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image quality but we need to increase the gain of the neurons to compensate for the loss
due to the small pinholes. At the other limit, if the pinhole size is increased we do not need
very high gain neurons but the image quality deteriorates. In the limit when W becomes
infinitely large, the reconstructed image in the window at P becomes a superposition of
all the stored images, each equally strong, and severely blurred. Thus there is an optimum
pinhole sise and an optimum neuron gain. Fig.9 shows the minimum gain required and
maximum gain allowable for the loop to sustain a stable memory as a function of pinhole
size. Below the minimum gain the loop can not recognize any image in the sense that
once the external input is cut off the loop activity decays to zero. Above the maximum
gain the loop loses discrimination capability meaning that any input image even a flash
light will induce the loop into a stable state. This behavior is consistent with our previous
predictions. Note that the minimum gain increases when the pinhole size is increased to
more than 250 pm. This is because the reconstructed images are blurred so much that
the correlation peaks are weakened and the losses in the loop are increased. Fig.9 shows
that the optimum pinhole size in this system is in the range of 70 ism to 150 ism. We
choose 90 pm for the rest of the experiments.

Two kinds of invariances are studied; shift and rotation. The images stored in the
holograms were four faces. The invariance capability was measured by presenting to the
network one of the stored images rotated and/or shifted by varying amounts and monitor-
ing the response of the system under various gain conditions. From Fig.9, the minimum
gain for this pinhole used is 2.8 x 103 and the maximum gain is 1.2 x 105. We made
measurements under low gain (=3 x 104) and high gain (=10 ) conditions. The results
of the shift experiment are shown in Fig.10. Fig.10a shows that as the input image is
shifted away from the memory position, the loop response time becomes longer because
the correlation signal is shifted away from the pinhole. This makes the initial condition of
the loop weaker thus it takes more iterations to reach a stable state. If the input is shifted
too much then the correlation peak misses the pinholes completely thus the input is not
recognizable. However, the output intensity is shift invariant as long as the loop recognizes
the input. Fig.10b shows that the tolerance to shift can be increased by increasing the
neuron gain. But in this high gain region the loop has poor discrimination capability and
it also incorrectly recognizes a similar face as one of the stored images.

The dynamics and invariance properties under rotation of the input were also mea-
sured by using the same pinhole diameter and optical gain. The results are shown in
Fig.11. It is seen that by increasing the optical gain from 10' to 106 the allowable rotation
angle for the input is increased from 8 degrees to 16 degrees. Again the dynamics and
rotation invariance are consistent with our predictions.
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Figure 3. Operation principle of the optical hssociative loop. (a) Block diagram of the
Optical loop. (b) Example of recalling one of the stored image$ from an associative input.

A$ yi
(a). (b.(c).

Figure 4. Example of auto.,associative recalling. (a) Hail-face image input into the loop.
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Bias-free time-integrating optical correlator using a
photorefractive crystal

DemO, Pelts, Jeffey Yu, ad JoW Hog

An acowtooptic time-integrating correlator is demonstrated usn a photorefractive crystal as the time-
integrating detector.

L lalodutlnm on a spatial carrier in the crystal and read out with an
Time integration' has proved to be a powerful tech. auxiliary beam. Since only the signal recorded on a

nique in optical signal processing and has been used in spatial carrier is stored in the photorefractive crystal,
a wide variety of architecture. A major drawback of the diffracted light that is detected contains the corre-
time-integrating processors is the buildup of bias in lation information without the bias. The bias does not
addition to the signaaL This occurs because the photo- reduce the dynamic range of the output detector used
generated charge that is integrated on the detector is for final readout, but rather the diffraction efficiency
proportional to the intensity of the optical signal which of the BSO crystal. In addition, the resolution of the
makes it necessary to represent bipolar signals on a BSO crystal is very much higher than that of a CCD
bias. The effective system dynamic range at the out- detector, allowing the correlation of very high space-
put is given by DR' =DR [SBR/(1 + SBR)J where DR -bandwidth signals to be formed on a carrier. Finally,
is the dynamic range of the output detector and SBR is since the result of the time-integrating correlator is
the signal-to-bias ratio on the detector.2 Inmostcases read out optically, the output can be easily interfaced
of interest, the SBR is much smaller than unity and with other optical systems, thus making new architec-
thus the added bias significantly reduces the usable tural designs possible.
dynamic range of the system. In Sec. II, the theory of optical recording in photore-

The most frequently used method for separating the fractive crystal is reviewed and extended to the use of
signal from the bias involves placing the signal on a photorefractive crystals as time-integrating elements.
spatial carrier and then electronically filtering the out- The architecture and experimental results are de-
put of the integrator. This method of bias removal, scribed in Sec. 11L Dynamic range, linearity, system
however, does not solve the dynamic range problem limitations, and other performance aspects are dis-
since the processing is done after the detection of the cussed in Sec. IV.
signal. Also, an additional constraint is placed on the . Crystas Tl-k-ingr Opl a
resolution of the detector, since the pixel separation D toeC al

must be less than one-half of the period of the carrier
being recorded, which will result in a significant reduc- When a photorefractive BSO crystal is illuminated
tion in the available space-bandwidth product at the by an intensity grating, electrons are excited from
output. traps into the conduction band. These charges mi-

In this paper a new method for performing time- grate due to diffusion and drift from an externally
integrating correlation is described using a photore- applied electric field and then recombine in dark re-
fractive bismuth silicon oxide (BSO) crystal as the gions, creating a spatially varying internal space-
time-integrating element. The correlation is formed -charge field. This field modifies the index of refrac-

tion in the crystal through the linear electrooptic effect
and, as a result, a holographic phase grating is recorded
in the crystal. Grating formation in photorefractive

The authors am with California Institute of Technology, Depart. media has been extensively studied and modeled.3 .4

ment of Electrical Engineering, Pasadena. California 91125. We will show here that the photorefractive crystal &cts
Received 20 June 1986. as a time-integrating element.
000oeas"/as2 eoouooO/o. Let the intensity incident on the crystal be as fol-
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{ A I+ R(1(zt) ezp(ikx)j for t > 0 I EL Expw" Di .Mn
to wmvlwi. A schematic diagram of the experimental system is

shown in Fig. 1. The input electrical signals are mixed
Assuming that self-diffraction effects are ngligible with the center frequency of the acoustooptic devices
and that the spatial variations of II(x,t) are small com- (AODs) and fed into the AODs. The first AOD is
pared to the grating frequency k, the intensity of the illuminated by a collimated wave and the upehifted
light that is diffracted when the crystal is illumiated diffracted order is imaged onto the second AOD, then
by a readout beam can be shown to be5 reimaged onto the photorefractive BSO crystal The

Ee*tl)t I14(0 dt') second AOD is oriented such that the acoustic signal is
I. (z.t) e -tl , -ept I. (2) counterpropagating with respect to the image of ther '0 acoustic signal from the first AOD. The undiffracted

In is the intensity of the readout beam and KI is a light transmitted through the frst AOD is incident at

complex constant involving the material parameters of the Bragg angle of the second AOD. The upshifted
the crystal, the grating frequency, and the applied diffracted order of the second AOD is also imaged onto
electric field. r is the complex time constant of the the BSO crystal. The undiffracted light is spatialy
space-charge field and is given by r - K2/1o. K 2 is filtered before reaching the BSO crystal. In this ar-
also a complex constant that depends on the photore- rangement, the AODs are parallel to each other, but
fractive material used and the experimental condi- the diffracted orders propagate at an angle with re-
tions. 1o is the average light intensity incident on the spect to each other even though both diffracted beams
crystal during exposure. are temporally upshifted. This causes the signals

If I(x,t) is expanded into its temporal Fourier con- from the two AODs to interferometrically record the
ponents, correlation signal on the BSO crystal at a high spatial

frequency. Let the inputs to the AODs be u1(t) - a(t)
11(z't') 1-(xw) exp(iwt')dw. exp(iwot) and v2(t) - b(t) exp(iwot), where wo/2r is the

center frequency of the AOD. The intensity incident
on the photorefractive crystal is

then the output intensity for t >> r can be written as

follows: (x,t) - Ia(t - x/) exp(ikyz) + b(t + x/v) ejp(-iy x 2

Sia(t - x/vX1 +Ib(t + z/vU
A2

M( t [" 11 +'w) exp(iwt)dw 4 .  (3) + 2 Re (a(t - zlv)b*(t + xlv) exp(i2vx)j, (5)
Tio -(1/ + iw) where u is the acoustic velocity of the AOD and -r

The above is recognized to be a low pass filter with wo/v. We will treat the case where Ia(t)12 and Ib(t)j2

cutoff frequency I/Ir 1, which is approximately equiv- can both be approximated as constants, as is the case
alent to the output of a sliding window integrator, with for FM signals. Then, the intensity pattern can be
integration time r. Thus, separated into a dc term Io and a signal term 11(x,t)

t 2 modulating a spatial carrier cos(2'yx) in the form of Eq.
J~( aIg -I~ dt' I. (4 (1). This intensity pattern results in the formation of
, ,, -o tI a hologram on the photorefractive crystal as described

in the previous section. The hologram is read out with
Hence, the output intensity can be treated as the an auxiliary beam and is imaged onto a charge coupled
square of the normalized integration of the signal II. device (CCD) detector for readout.
An interesting observation is that, if I,(x,t) were inde- If the assumption is valid that 11(x,t) has spatial
pendent of time, the output intensity depends only on frequencies which are small compared with the carrier
the ratio of the modulated intensity 1 to the dc inten- frequency 2 7y, we can use Eq. (4) to obtain an expres-
sity Io. sion for the output intensity detected by the CCD:

r- * / Fig. 1. Optical setup of the photorefractive bias

. . .removal correlator.

..... 't'f
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l 1A1 Z) a It -Ila2 [ + xv) d2

r 1g41 + 142

and by defining variable h - t - x/v,

I.A(Z) i'  a(tl)b(t, + 2zlv)dtI (6)

Hence the system produces the magnitude square of
the correlation between the signals a(t) and b(t) inte-
grated over a finite interval r.

Flint glass acoustooptic cells driven at a center fre-
quency of 70 MHz were used in the experiment. A
symmetric linear chirp signal with bandwidth Af - 5
Mhz was fed into each cell to produce the autocorrela-
tion peak. The Bragg angle of the AODs was 0.20,

Fig. 2. Output of a standard time-integrating correlator without which corresponded to a grating frequency equal to 35
noise. lines/mm in the BSO crystal.

The BSO crystal used in the experiment was cut in
the (110) direction and measured 15 X 15 X 2m. An
external electric field of 7 kV/cm was applied in the
(001) direction of the crystal which was also the direc-
tion of the grating vector.

The correlation was recorded on the crystal with an
argon laser at a wavelength of 514 nm with average
intensity equal to 1 pW/cm2. The correlation was read
out with a He-Ne laser (X - 633 nm) with 150-pW/cm 2

intensity. Cylindrical lenses (not shown in Fig. I)
were used to expand the output of the AODs thereby
illuminating the full aperture of the BSO crystal and
also to focus the diffracted light onto a 1-D CCD.

The output signal-to-bias ratio of a conventional
time-integrating correlator is reduced when the levels
of the two signals are unequal and/or if there is addi-
tive noise present in the system. Both conditions were
simulated experimentally. Noise was simulated by
adding a 70-MHz signal to the input of one of the
AODs. The output of a standard time-integrating
correlator (i.e., the correlation formed directly on the

Fig. 3. Output of the bias removal correlator without noise. CCD) for the noise-free case and equal amplitude sig-
nals is shown in Fig. 2. This condition provides the
maximum signal-to-bias ratio for the system. We can

Fig. 4. Output of the bias removal correlator with a signal-to-noise Fig. 5. Output of the bias removal correlator with a signal-to-noise
ratio of 0 dB. ratio of -10 dB.
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m in Fig. 2 that there is still a strong bias term added I
to the correlation peak The correlation produced by I
temporally integrating on the photorefractive crystal
is shownin f.3. Inthiscasall the bias due to
temporal integration is removed, and any residual bias
is due entirely to dark current from the CCD. The
outputs of the bias removal correlator with input sig-
nal-to-noise ratios of 0 and -10 dB are shown in Figs. 4and 5, respectively. Again, bias levels which appear in ~
the figures were entirely due to the integration of dark 1;
current in the output detector. In practice, the detec- P
tor dark current can be minimized by increasing the
intensity of the readout beam, thereby decreasing the 1
required integration time of the output CCD detector .
and/or cooling the detector. • .... '.,,. " "

. Fig. 6. Normalized output intensity vs modulation depth.

The experimental results described in the previous
section show a dramatic qualitative improvement in
the correlation that is obtained when the photorefrac-
tive crystal is used instead of the CCD. In this section -we examine certain characteristics of this method MauwT I TITY VS IeUT VOLTAGE

which are useful for quantitatively evaluating its per-
formance. Specifically, we examine the linearity, in-
tegration time, dynamic range, and sensitivity of the
correlator.

A. Ukneul
In a conventional time-int egrating correlator (co-

herent or incoherent), the output correlation is basi-
cally proportional to the signids applied to the AODs.
Nonlinearities occur only when we exceed the linear 11
dynamic range of the devices used, i.e., if the diffrac-
tion efficiency of the AOD exceeds several percent or ... .. La " ". -- . -a
the integrating detector is driven to saturation. In the
photorefractive time-integrating processor, the output Fig. 7. Theoretical plot of output intensity vs input voltage ratio.

intensity is a nonlinear, monotonically increasing
function of the input voltage. The nonlinearity arises
because of the square-law detection at the final read-
out stage and the recording mechanism in the photore- I., c MI - 4a2/(1 + a2). (7)
fractive crystal The nonlinear relationship is now Figure 6 is a graph of the output intensity at the
studied analytically and experimental verification of Figre6tis a g h the out pt in n t th
the theoretical results is presented. correlation peak vs the modulation depth incident on

Let vi(t) - s(t) be a fixed reference signal and 2(t) the crystal The experimental result is in excellent
as(t) be an input signal of varying amplitude (0 < a < agreement with the square-law relationship predicted
1). Since the correlation term contains spatial fre- by Eq. (7).
quencies which are much lower than the grating fre- A plot of the output intensity as a function of thequency, near the correlation peak (x - 0) the intensity amplitude of the input signal a is shown in Fig.?7. The
incident on the photorefractive (rystal i n nonlinear relationship between the input and outputsignals is generally a disadvantage since the scaling of

I(x,t) - (1 + a2 + 2a coakzA0(t) 2. signals of varying amplitudes will be nonlinear. This,

Using Eq. (1), the output intensity at the CCD is pro- however, will not cause a problem if the correlator is

portional to used only as a signal detection device, since correlation

Ia 2 peaks will still be discernible and only the threshold

iT _a2 level need be adjusted accordingly to maximize the
probability of detection.

The modulation depth of the intensity incident on the B. kIgati Time
]SO crystal is 2aIn a conventional time-integrating correlator, the

M I + , integration time is limited by the dark current buildup
1 + oon the output detector, typically up to several hundred

and hence milliseconds. When the photorefractive crystal is
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Fig. 8. Output intensity at correlation peak vs time as a function of Fig. 9. Inverse of the rise time vs average incident intensity.

different average incident intensities.I
used, the integration time is determined by the rise formance of the system we need to determine how the
time of the internal space-charge field which can easily input signal levels are mapped to this output dynamic
be made much longer. The correlation can be read out range. Let the dynamic range of the photorefractive
at any rate that is convenient by an auxiliary detector crystal be defimed as DRBS - m../mi, where m.
array. is the maximum modulation depth (m.. - 1), and

The integration time is approximately equal to i, mj.n is the minimum modulation depth for which a
where diffracted signal is detectable above the output scatter

and noise level of the system.
IT1 M I0" (8) Given two input signals v1(t) - as(t) and v2(t) -8(t),

the modulation depth of the light incident on the crys-
Hence, the integration time of the bias removal cor- tl is m - 2a/(a2 + 1). Thus, the minimum detectable

relator can be controlled by varying the writing inten- input signal is given by aj - m../2 - 1/DRaso. The
sity. This control is important since the integration useful range over which a can vary is limited by DReso.
time can be matched to the length of the reference From a1 i., one can define an input dynamic range
signal thereby increasing the probability of detection given by Dlpt - 1/a2oda - 4/m min. The most im-
of a weak signal. portant parameter in determining the system dynamic

The time response of the correlation peak for differ- range is the minimum detectable modulation depth
ent values of average incident intensity is shown in Fig. mw. Experimentally, we measured the dynamic
8. Figure 9 is a plot of intensity vs the inverse of the range to be equal to 23 dB. This corresponds to a
experimentally observed rise time. There is excellent minimum modulation depth of 0.142. We expect that
agreement between the experiment and Eq. (8). through careful design this can be substantially im-

The integration time, however, has a finite range proved. However, all the mechanisms that determine
over which it can be adjusted. The maximum integra- m,i, are not fully understood. It is believed that
tion time is limited by the thermal effects in the crys- besides detector noise and scattering from the crystal,
tal If the rate at which carriers are generated ther- the modulation depth is limited by thermal effects in
mally becomes comparable with the rate at which they the material and shot noise arising from the internal
are photogenerated, the modulation depth of trap den- currents.
sity will be reduced. As a result, the diffraction effi- Another important aspect of the correlator system is
ciency of the grating will decrease. In practice, the its sensitivity or the minimum signal-to-noise ratio
minimum integration time is limited by the maximum that is detectable. This parameter is also determined
light intensity that is available for recording. The by the minimum detectable modulation depth, minn.
integration time can be reduced to 30 msec if the Given a reference signal v1(t) - as(t) and an input
incident intensity is made equal to 18 mW/cm 2. This signal contaminated by additive noise, v2(t) - bs(t) +
power level, however, is simply not practical for most n(t), the modulation depth of the intensity incident on
applications, the crystal is

C. D yrw f c R ge an ssd senst y m a b 12 .

Since the output of the bias removal correlator is (a' + b2 (tAl + 02

presented without bias, the output dynamic range of The reference level which maximizes m is given by a -

the system is essentially equal to the dynamic range of (b2 + qn2/Is(t)I 2)"/2, corresponding to a modulation
the readout detector array. To characterize the per- depth of
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b result in extremely good sensitivity (detection of sig-
02 + w.Z/I(t4:IR nals with very low SNR). However it is certainly

desirable to be able to decrease the integration time to
In practice, optimizing the refer, nce level can easily be several milliseconds. This could be accomplished by
achieved by setting the power oi i he reference equal to increasing the optical power of the writing beams, but
the total average power of the ixput signal. this is in general an impractical solution. Another

Normalizing the signal and zi-.,ise terms such that limitation of this technique is the relatively low dif-
JS(t) - 0,2 - 1 we obtain fraction efficiency that is obtained with BSO crystals

b b (2-3%), which reduces the overall light efficiency.
01 + )" Materials with higher electrooptic coefficients, such as

barium titanate, can provide better efficiency; howev-
Thus, the minimum input SNR fiat produces a detect- or, the time constant obtained with this particular
able correlation peak at the output is (S/N)i, - material is much longer than that of BSO. New pho-
(b2/0n)in a mmin2. torefractive materials currently being developed show-

From the experimentally mt,ured value of mmm, ing promise of a large improvement in optical sensitiv-
the correlator should have had L iensitivity of -17 dB. ity as well as higher electrooptic coefficients may
However, experimental results bnowed a sensitivity of provide a substantial improvement in performance
- 14 dB. and, specifically, reduce the total optical power that is

N. Canduda required.
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ABSTRACT

Optical interconnections utilizing volume holography is described. Intrinsic cross-talk

effects that limit the number of independent interconnections are identified and analyzed

by applying coupledr-wave analysis. Sampling grids for removing the first-order cross talk

are presented resulting in a system limited by second and third order cross talk only.
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INTRODUCTION

Optical interconnecting elements that exploit free propagating light waves can

potentially act as a powerful alternative to electrical wiring because free propagating

photons lack the interactive nature of electrons (1]. Optical interconnections can be

particularly useful for the optical implementation of neural computers [2] in which each

processing element is interconnected to many others (typically several thousand). As

an example, a network that is capable of processing images may consist of several

million processing elements (or "neurons") and therefore there is a very large number

of interconnections to be specified in such a system. If the system that is utilized to

simulate all these connections is planar (e.g. electronic or an optical system that utilizes

a planar medium to specify the connectivity pattern), then the area of the device grows

in proportion to the total number of connections. As an example, let us assume that

the area required to record the strength of each interconnection is 10pm 2 , then the total

area required to simulate a network that is comprised of 109 connections is 10cm x 10cm.

This makes the fabrication of such a device very difficult and in the case of the optical

implementation, the size of the optical system becomes exceedingly large. To overcome

this shortcoming, we have previously proposed [31 a holographic optical interconnection

method for utilizing a three-dimensional storage medium which provides a much higher

storage density. In this paper, we derive the interconnection pattern having minimum

cross talk and the signal-to-noise ratio for this interconnecting configuration.

HOLOGRAPHIC INTERCONNECTIONS
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To identify the fundamental cross-talk effects that limit the available number of

independent interconnections, a global volume holographic interconnection between N

input and N output pixels is considered. The arrangement we will be using is shown

in Fig. 1. The input and output pixels are arranged in planes. A lens collimates light

from each input point and therefore the light incident on the crystal in Fig. 1 due to a

single point at the input is a plane wave whose propagation direction is determined by

the position of the pixel. Similarly, an output lens focuses each diffracted plane wave

to a pixel on the output plane. The interconnection between each pair of input-output

points is performed by a separate grating, with the strength of each grating determining

the weight of the connection. Each grating can be recorded with a separate exposure

which would require a total of N2 exposures. We can reduce the number of required

exposures by forming N multiple holographic exposures [4] as follows. One input point is

turned on during each exposure and the desired connectivity pattern between the selected

input point and all the output points is recorded at the training plane (see Fig. 1). An

exposure of the interference pattern between the two waves is recorded and the process

is repeated for each of the N input points. If we neglect diffraction effects at the crystal

boundaries, then the interconnection pattern consists of perfect sinusoidal gratings, which

include: (1) N(N - 1)/2 gratings that are recorded by the interference between pixels

that are simultaneously on at the training plane during the recording, and (2) N 2 gratings

connecting input and output pixels. For convenience, the former set of N(N-1)/2 gratings

are referred to as intra-layer gratings and the latter set of N 2 gratings are described as

inter-layer gratings.
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An independent interconnection is defined in such a way that the intensity Ip of the

diffracted light wave at the output pixel p is given by

N
x= 2 ,,, (1)

i-

where i is the index that represents input pixels, Ii is the intensity at the input pixel i,

and qpi is the diffraction efficiency of the grating generated by the .interference between

the input pixel i and the pixel p at the training plane that corresponds to the output pixel

p. We have assumed in Eq. (1) that the read-out light is spatially incoherent. This means

that the light intensity reaching each output point is a linear combination of the light

inemitiee of the input pixels and therefore we have used light intensity as the variable

that describes the system. If the hologram is read-out with spatially coherent light, then

the field is the appropriate variable to use. The field is a complex quantity (has both

amplitude and phase) and therefore the coherent case is generally more difficult to analyze

and also implement.

The cross-talk effect in volume holographic interconnections is defined as the difference

between the actual light intensity Ip obtained at the pixel p and the desirable intensity

of Eq. (1). If we consider only first-order cross talk (i.e. neglecting the contribution of

multiple diffraction) we can write 4p as follows.

lp nii+ 'Uii,(2)
i joi lop i

where i/ipil is the diffraction efficiency with which light is diffracted from pixel i to pixel p

due to a grating that was recorded by pixel j at the input and I at the output. Coupled-

wave analysis [sJ is utilized below to evaluate those cross-talk effects. For this purpose small
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diffraction efficiency for an individual grating is assumed. Due to the assumption of small

diffraction efficiency, the primary cross-talk effect can be evaluated by means of a first-

order coupled-wave analysis. In such an analysis, an input light wave at pixel i interacts

with every grating in the volume hologram independently and without an intermediate

rediffraction. Diffracted light waves from the intra-layer gratings do not contribute to

cross-talk effects because of large phase mismatch, and therefore we only need to consider

the first-order cross talk that results from the inter-layer gratings.

Let us consider an output pixel p. The light intensity received at p including the

first-order cross-talk effect is given by Eq. (2). The cross-talk diffraction efficiency iipjj

calculated from coupled mode analysis is approximately (51:

v jijin 2(A k,,jL/2r) if (2r/A)ni + K l = npII(2r/A)n + KiglI (3)

'1jl -(0r otherwise,

where ni and n. denote unit vectors in the direction of propagation from the input pixel

i and towards the output pixel p, respectively. L is the thickness of the crystal and Akii

denotes the phase mismatch for the interaction between the grating Kj, that has been

recorded for interconnecting point j to point I and the optical wave emanating from the

input pixel i and it is given by

Ak = j(2r/A)(nj - np) + K,'II. (4)

A is the optical wavelength in the crystal.

FIRST ORDER CROSS TALK

The first-order cross talk can be eliminated if one can arrange input and output pixels
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so that all the N 2 gratings in Eq. (2), except for the grating Kip yielding the signal, belong

to one of the two typs of gratings defined below. The first type is characterized by the

condition that the phase mismatch given by Eq. (4) is larger than 2r/L, in which case the

diffracted light intensity is very small; for these gratings, the first-order cross-talk effect

can be neglected. The second type consists of grating. for which the diffracted light waves

do not propagate to any one of the output pixels used for the interconnection in which

case from Eq. (3) we have that tpj = 0 and hence such gratings do not contribute any

light intensity at the pixel p through first-order cross talk. To derive an arrangement that

will ensure that all the recorded gratings satisfy one of the two conditions stated above,

we note that the phase mismatch described by Eq. (4) is determined by the geometry of

the input and output pixels. The wave vector diagram is drawn in Fig. 2, where ki and k.

refer to the input wave vectors and kp and ki are the output wave vectors. The condition

n k,+ (5)

Ilk, + Kitl1

states that the unit vector np is in the direction of the vectorial sum of the input vector ki

and the grating vector. This indicates that the grating Ki. is a grating of the first type,

being capable of diffracting light from i to p unless it is phase mismatched. Therefore,

once a pair (i, p) is selected it is imperative that all the remaining points (j, 1) are selected

such that if Eq. (5) is satisfied then Akipjj is bigger than 27r/L. The degeneracy condition

that must be avoided is

Akipil = Ilki + Kit - kpjjj < 2w/L (6)

This condition specifies two strips on the k-space sphere as shown in Fig. 2. The two

strips are parallel circles on the wavenormal sphere. The planes in which the strips lie are
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perpendicular to the grating vector il. If we select an input-output pair (i,p), then if an

additional input point j is outside the bottom strip in Fig. 2 it will not produce cros talk

to point p; if j i within the bottom strip then cross talk will be eliminated if an output

point is not placed at the same location as I along the top strip. If these two criteria can be

met for all input and output pixels, then first-order cros talk is completely eliminated. The

required width of the strip in Fig.2 is determined by several factors including diffraction

due to transverse aperture of the hologram, an effect we have not considered in this paper.

The principal factor determining the width is the angular sensitivity of diffraction from a

thick grating which is determined by the thickness of the crystal. The width of the strip

that is required to satisfy Eq. (6) can be approximated for the purposes of this simplified

exposition by 2w/LsinO, where 0 is the angle between ki and kp. This estimate is found

by determining the angular deviation of the incident and diffracted from the ideal Bragg

condition, that will make ijiplj = 0 (see Eq.(3)).

In the above discussion we have specified the conditions that must be met so that each

grating implements an independent interconnection in the crystal. The remaining task is

to specify the arrangement of input and output pixels in the geometry of Fig. 1 so that the

stated conditions are satisfied. We have developed an entire family of sampling patterns

that accomplish this goal [3]. Shown in Fig. 3 is one such sampling pattern for the input

and output planes. To see why this is the case consider first the gratings connecting two

input points along the same row to two points at the same row at the output. These

gratings can never be parallel to each other (i.e. fall within the same strip) because the

horizontal (z direction in Fig.1) difference in position between the input and the output

7



locations in guaranteed to be different. If we consider two adjacent points in the same

column at the input being connected to two adjacent points in the same column at the

output, then we find that the two gratings connecting them are tilted with respect to each

other in the y - z plane (see the geometry of Fig. 1). In general, gratings connecting points

that are neither at the same row or column have gratings that are tilted with respect to

each other in all three directions. The patterns in this example are drawn on a 9 x 9 = 81

rectangular grid and only 93/2 = 27 points are utilized as input and output points in the

input and output planes, resulting in a total number of connections 93 - 729. In general, if

the number of points available on a 2-D rectangular grid is S', then the number of pixels

that are used for placement of neurons must be N < S3 /2 in order to ensure that the

first-order cross talk can be eliminated. Equivalently, if we wish to have N units in the

input or output plane, then the number of resolvable points available must be S2 
- N4/ 3 .

HIGHER ORDER CROSS TALK

Second-order cross-talk effects result from light waves that are first diffracted by a

grating from an input wave at pixel i, and then rediffracted by a second grating and is

directed to the output pixel p. Therefore, two gratings are needed. All the second-order

light waves resulting from diffraction by two intra-layer gratings or two inter-layer gratings

are negligible because in the geometry of Fig. 1 they are phase mismatched and thus they

do not contribute to second-order cross-talk effects. Therefore, the principal source of

second-order cross talk is diffraction from the inter-layer gratings followed by rediffraction

from the intra-layer gratings. Consider again an output pixel p receiving light from an input

8



pixel i not directly through diffraction by the grating Kp but through the intermediate

step of diffraction first by an inter-layer grating K,, followed by rediffraction by the grating

Kj,. This is depicted in a k-space diagram in Fig. 4a. Each input wave diffracts light to

al N 4/3 output pixels through inter-layer gratings and at least N pixels are exactly Bragg

matched to the p-th pixel through rediffraction of the intra-layer gratings. Assuming that

the overall diffraction efficiency is small and therefore neglect the depletion of the incident

beam, we can easily calculate the second-order signal to noise ratio (SNR2), defined as the

ratio of the intensity received at each output pixel due to the direct, first-order diffraction,

divided by the total intensity received due to double diffraction:

SNR2  E i "iI, PS (7)

S. In the above equation il is the average diffraction efficiency for an intra-layer grating. From

Eq. (7) we see that it is desirable to minimize the strength of the intra-layer gratings to

eliminate the second-order cross talk. This can be accomplished by selecting a holographic

recording medium in which low spatial frequencies are recorded weakly. This is for instance

typical of gratings recorded in photorefractive crystals in the absence of an applied electric

field, in which case the recording is done principally by diffusion of the carriers. In this

case, gratings whose period is considerably longer than the diffusion length are not recorded

effectively. As an example, if KNb0 3 : Fe 300 ppm is utilized [61, the diffraction efficiency

for .3Am fringe spacing is more than three orders of magnitude larger than the diffraction

efficiency for a fringe spacing of 2.6;&m. Hence if the arrangements of input and output

pixeis are chosen such that the spatial frequency of the inter-layer gratings is much higher

than that of the intra-layer gratings, then the effects of intra-layer gratings can potentially

g



be made negligible compared to third-order cross-talk effects, which we consider next.

Third-order cros talk arises when light originating from the i-th pixel is diffracted

by three separate inter-layer gratings and is ultimately directed at the output pixel p. In

order to calculate the total amount of third-order cross talk we need to determine the total

number of three Bragg matched inter-layer gratings whose vectorial sum is equal to Kip.

An example of this condition is depicted in Fig. 4b. The input beam in the direction of the

i-th pixel is Bragg matched to N413 gratings [71 and similarly, a beam diffracted towards

the 1-th output pixel is Bragg matched (and therefore rediffracted by) N 4 / 3 gratings. The

ratio of the intensities due to first and third-order diffraction is

SR qj I , 36
SNRa F1 E 4/9S43 )2 (8

38 'S lp X.,i t~?l,lpj N8/83~ (8
where F12 is the average diffraction efficiency of an inter-layer grating. The conclusion that

we might draw from Eq.(8) is that as the network becomes larger (i.e. N increases) the

signal-to-noise-ratio deteriorates and therefore third order cross talk imposes a limit on

N. In fact, 17 = IO/N2 [41 where 'lo f 1 is the diffraction efficiency obtained when only

a single grating is recorded in the crystal. Substitution into Eq.(8) reveals that SNR3

is proportional to N 4 / which implies that for large networks third order crosstalk is not

expected to be a serious concern.

CONCLUSION

We have used coupled mode analysis to derive a simple, approximate result for the

conditions that must be met in order for each grating that is recorded in a volume hologram

to implement an independent interconnection between two points in space. Since the
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number of gratings that can be stored in a volume medium in in the order of V/A5 [8]

where V in the volume of the crystal and A is the wavelength, the result reported here

can make possible the design of optical networks with extremely high storage density. The

effects of second and third-order diffraction were calculated and it is shown that these

effects can impose a limit on the number of units that can be interconnected with the

same crystal, since the signal to noise ratio decreases monotonically as N increases. There

are of course several other factors, beyond the basic geometric constraints treated in this

paper, which need to be taken into consideration in order to gain a complete understanding

of the capabilities of volume holograms for implementing global interconnections. Most

significantly, the effects of the recording mechanism and the limitations it imposes on the

number of interconnections that a single hologram can implement [41 must be addressed and

combined with the results reported here. This will be the subject of a future publication.
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FIGURE CAPTIONS

Fig. 1 Illustration of the proposed interconnection scheme between an input point i and an

output point p. One grating in stored by interfering the two beams coming from

point sources i and 1' after passing through a Fourier transforming lens. Point

is the inverted image of point p. After storing the grating, light coming from point

i is diffracted by the grating and focused on point p. Therefore, the stored grating

interconnects points i and p.

Fig. 2 k-space diagram illustrating the degeneracy of the gratings that connect points (i, p)

and ('l).

Fig. 3 Sampling patterns on 9 x 9 rectangular grids.

Fig. 4 Wave-vector matching diagram illustrating the mechanism through which a) second

and b) third order cross talk is introduced at each output pixel p.
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Mullayer optical learning networks

K.Mn WaoW aid Demeri PUSt

A new approach to larning, in a multilayer optical neural network based on holographically interconnected
nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed
represntation of a desired pattern transformation operation. The interconnections are formed in an
adaptive and self-aligning fashion a volume holographic grating. in photorefractive crystals. Paralll arrays
of globally space-integrated inner products diffracted by the interconnecting hologram illuminate arrays of
nonlinear Fabry-Perot etalona for fast thresholding of the transformed patterns. A phase conjugated
reference wave interferes with a backward propagating error signal to form holographic interference patterns
which are time integrated in the volume of a photorefractive crystal to modify slowly and learn the
appropriate self-alignin interconnections. This multilayer system performs an approximate implementa-
tion of the backpropagation learning procedure in a massively parallel high-speed nonlinear optical network.

L fhoductitm been suggested.12 A fascinating all-optical nonlinear
There has been considerable interest in the optics dynamical system for adaptive association based on a

community in recent years in the optical implementa- saturating cubic nonlinearity in a phase conjugating
tion of neural network models,' - and these have been dynamic volume holographic resonator has been pro-
considered principally for associative memory applica- posed.13 An even more powerful learning paradigm,
tions e- 15 Incoherent optoelectronic implementations sometimes called hard learning, involves either error
of matrix vector multipliers with nonlinear electrical driven learning, reinforcement learning, or self-orga-
feedback were used to demonstrate that imperfect an- nizing principles." 5 A hybrid electrooptical approach
alog hardware worked surprisingly well in the robust to Boltzmann learning has been proposed that is based
environment of a neural network. 7 Holographic asso- on an incoherent optoelectronic matrix-vector multi-
ciation with coherent light can be combined with opti- plier interfaced with a microcomputer. 14 Error driven
cal nonlinearities within a strongly pumped phase con- behavioral modification has the ability to sense system
jugate mirror,8- 0 or with the nonlinear thresholding performance and adapt the synaptic weights in a man-
capabilities of an optical spatial light modulator,6 to ner which will compensate for some of the device im-
implement image association. Volume holograms can perfections and interconnection misprogrammings
be repetitively exposed to a number of Bragg angle that caused the unwanted behavior. This paper ex-
multiplexed connectivity patterns to produce a holo- plores the match between the backpropagation error
graphic interconnection matrix." These systems are driven multilayer learning procedurel 2 and optical
programmed to perform a fixed operation by precalcu- networks, 5.16 while ignoring the biological implausi-
lating the interconnections with an easy learning pro- bility of bidirectional synapses, because of the intrinsic
cedure, so that fixed points of the idealized neural bidirectionality of optical interconnections. This sys-
dynamics are the desired associative recall. One of the tem is a feed forward multilayer perceptron which has
most intriguing properties of a neural network is the the potential of more general computationally univer-
ability to learn dynamically the interconnections that sal behavior than single-layer associative networks.
correspond to a desired behavior through an iterative However, it differs from the recurrent networks be-
adaptation of the weight matrix through outer product cause all the feedback dynamics are involved in train-
perturbations. ,4  Optical implementations of adap- ing the modifiable interconnections and not in pro-
tive associative memories using optoelectronic compo- ceasing the input. We propose a new optical imple-
nents and spatial light modulator technology have mentation of this multilayer learning system which

uses self-aligning volume holograms to bidirectionally
When this work was done both authors were with California interconnect nonlinear etalons which act as the bidi-Institute of Technology, Pasadena, California 91125; K. Wagner is rectional optical neurons. This architecture combines

now at University of Arizona, Optical Sciences Center, Tucson, the robustness of the distributed neural computation
Arizona 85721. and the backpropagation learning procedure with the

Received 28 May 1987. high speed processing of nonlinear etalons, the self-
00o3-9:5/87/2350W1-16$ 2.0o/0. aligning ability of phase conjugate mirrors, and the
O 1987 Optical Society of America. massive storage capacity of volume holograms to pro-
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X - ed to the network, it produces a diffraction pattern
MIS~ C -that more closely resembies the desired output pat-

-- - ter. Eventually, the hologram will learn the corre-
3- spondence between a set of input patterns and the

associated responses as long as the set of input patterns
is linearly separable, which implies that a holographic
interconnection exists that produces the desired pat-

B tern transformation. Since the holographic reference
."I " wave is generated by a phase conjugate mirror, as the

network learns it will also self-align as well as correct
for some of the optical imperfections present in the
system components

POLAR IZATI ,, When the desired pattern transformation is not lin-
NO rT.R ,early separable, as in most difficult problems of inter-

est, it is necessary to adaptively implement more corn-
PCM plex nonlinear decision surfaces. 17 One way that this

Fig. 1. Optical backward error propagation architecture with po- can be accomplished is by stacking these single-layer
lrization multiplexed forward and backward waves, nonreciprocal networks up to form a multilayer network of holo-
polarization filtering, and self.aligning polarization switching vol- graphically interconnected nonlinear devices that is

ure holorm trainable by backpropagating the error signal through
the layers. When the error pattern strikes the holo-
gram, part of it is diffracted toward the previous layer

duce a powerful and flexible parallel optical processor. of nonlinear devices, known as hidden units, by the
One version of a single layer of this optical back- transpose of the interconnection matrix seen by the

propagation architecture is shown in Fig. 1, and the forward-propagating patterns, which is the necessary
operation is briefly described before discussing the connectivity for backpropagating the error. The
idealized backpropagation algorithm and the details of backpropagation algorithm also requires that the
this optical implementation. The learning algorithm transmission function of the hidden units to back-
in this single-layer optical perceptron begins with the ward-propagating signals be the derivative of the for-
repetitive presentation to the network input of the set ward mode sigmoid transfer function evaluated at the
of training patterns in a uniformly random sequence. current operating level of each device. The derivative
Initially, the system gives rise to a sequence of output is peaked where the nonlinear sigmoid transfer charac-
patterns through the holographic interconnection and teristic has a large differential gain, so that if the
output nonlinearity, which is different from the de- hidden unit is operating in this region the connections
sired target response sequence. An error pattern is leading to it will be strongly modified by the efficiently
formed, either electronically or optically, by taking the transmitted error signal, thereby helping that neuron
difference between the actual output pattern and the to decide that it should be either high or low on subse-
targeted response. The difference pattern is sent quent presentations and not between. The multiple
backward through the output neurons and into the layers of interconnections will be continuously modi-
network using the same etalons and holographic inter- fled until all the patterns within the training set pro-
connections, but encoding the error with an orthogonal
polarization, or a slightly different frequency, or
pulsed at a jittered time than the forward-propagating
signal. This multiplexing of the forward and back-
ward waves in orthogonal eigenmodes avoids direct
interference between these waves. Meanwhile, the
undiffracted portion of the input pattern is phase con- N " -a
jugated by an auxiliary phase conjugate mirror, which
retroreflects each component of the input wavefront
back toward the position at the input from which it
originated. The phase conjugate beam has the polar- ZIPUT HIDD "k OUTPUT

ization rotated or the wavelength shifted to match the UNITS UWITS UNITS

error encoding to act as a self-aligning reference beam 4 .", / =o
for the backward-propagating error wavefront. A vol- ''J

ume hologram is recorded within the photorefractive
crystal as the interference pattern between the phase "
conjugated input pattern and the backward propagat-
ing error signal. This is mathematically equivalent to A = ,
changing the holographic connectivity matrix by the Fig. 2. Two-layer network for backpropagation learning, feed for.
outer product of signal and error pattern vectors. The ward equations, backward-error-propagation equations, and learn.
next time that this particular input pattern is present- ing rule.
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duce outputs very near the flat upper or lower levels of input-output mappings are possible in a network of a
the nonlinear device sigmoid response, so that the specific size, but complex problems of a cognitive na-
error sipls are not allowed to backpropagate through ture with fuzzy decision boundaries have been effi-
the networL When convergence is reached, the error ciently performed in a multilayer network of this
signals that are generated at the final layer become type.18

very small for all members of the training set. The desired response for the input ii(n), presented at
the input of the network on the nth machine cycle, is

L aga L.Uifi Proedm given by a target vector tk(n), which differs from the
In this section we briefly review the derivation of the network output ok(n), so the network error vector is

backward error propagation learning procedureI  to given by 56(n) - [tk(n) - oi,(n)]. A positive definite
establish the notation and encapsulate the system mean-squares error (MSE) energy functional can be
charcteriics that the optical architecture must in- formed to characterize the systems behavior, and mini-
corporate. A schematic representation of a two-layer mizing this function for all n will improve the quality of
network is shown in Fig. 2, which consists of an input the behavior of the multilayer network;
layer globally interconnected to a hidden layer, which A2

is interconnected through a second weighted commu- E) - I/2 1 lt,(n) -o,(.)]' .  (5)
nication network to an output layer. The interconnec- -(
tion strengths are modifiable, so that the system can be Ato
trained to perform a desired pattern transformation A gradient descent procedure can be employed to rtmd-
from the input space to the output space. The binary ify the elements of the weight matrices and push them
signals applied to the input layer of N, neurons are in the direction that improves the network perfor-
reproduced at the output of these neurons as binary mance, as measured by the MSE energy function, on
outputs, which are the inputs to the first layer, so that ii subsequent presentations of a given pattern:

0 oF ). The outputs of the first layer are interconnect-
ed through an N2 X N, weight matrix w(P to a hidden j - ,- (6)

layer consisting of N 2 neurons, forming presynaptic
input strengths which are linear combinations of the This weight update rule is designed to move the
outputs from the previous layer weights in a direction that rolls down the gradient of

the energy surface in an amount which is proportional
N, to the local slope. Ideally, the energy function should

.5" = w5Po!". (1) be averaged over the entire set of training patterns, so
that the modification of the weight matrices is in the

The hidden layer of neurons performs a soft threshold- appropriate direction to improve the system response
ing operation on these presynaptic inputs, with a non- for the entire training set. However, a temporally
linear sigmoid response ((s), forming the outputs of the localized learning can be performed by using a small
hidden layer which become the inputs to the second acceleration coefficient 17 and modifying the weights
layer after individual pattern presentations. The modifica-

I tion of the weights that results after cyclically present-
=s( f[si ([X "O( (2) ing the training set in arbitrary order many times can' ] J approximate the desired change. The gradient de-

scent is calculated by using the chain rule and repre-
The outputs of the hidden layer are interconnected senting the derivative of the energy function with re-
through the N 3 x N2 weight matrix wV), which gives spect to the weight matrix elements as a product of two
the N3 presynaptic network input to the final output parts, the backpropagating error and the forward-
layer; as a linear combination of the hidden layer out- propagating signalk
puts: Na 8E

I Xujo 2 . (3) A4 8~"~7
j-t The derivative of the energy with respect to the pre-

synaptic input to the mth layer is defined to be -6 h5 ,
The final layer performs the same nonlinear soft which is the backpropagating error signal in that layer.
thresholding operation as the hidden layer giving the In the final layer this term is similar to the standard
N3 network outputs: form of a least-mean-squares (LMS) error signal, as

[ )" originally derived for the single-layer Adaline: 9

o h - S o ' - [4i t2)'} (4 ) o
-L.- - , - (t - o)f [42k] (8)

These outputs represent the response of the network a' 0' 4(

for a given set of inputs ii, and it is the job of the The first term is found by directly differentiating
training procedure to modify the interconnection the energy function, which yields the standard error
weight matrices so that the actual response closely signal used in adaptive filters, and the second term is
approximates the desired system response. Not all found by differentiating the nonlinear response of the
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response is a nonlinear soft thresholding for forward.
propagating signals and a multiplier that only allows a
backward propagating error through the neuron when
the slope of the forward mode operation is large. The
transmitted components of the backpropagating error
vector are only large when the corresponding output
neurons are operating in the steep thresholding regime
where the derivative is large, and that component was
significantly in error at the network output. Any neu-
ron that had decided that it is a one or zero by being
well above or below the threshold knee inefficiently

a. I. . -4 . , , , transmits the error back into the previous layer of the
Fig. 3. Bidirectional neuron for beckpropaation. ita forward- network. From the definition of the change in themode nturatin non m onit frward- weight matrix given in Eq. (6) and the chain rule ex-pansion of Eq. (7) we can write the form of the weight

update rule for the mth layer according to this first-
order gradient descent procedure:

neurons. The significance of Eq. (9) is that to trans-
late the kth component of the output error vector back u4 (n + 1) - wk7'(n) + uto"". (10)
into the final layer of the network it must simply be
multiplied by a value which is locally computable with. The error transmitted by the neurons back into the
in the kth output neuron. Thus the network output previous layer of interconnections is used to modify
error function 6k m (tk - oh) can be sent back through the weights of that layer through this outer product
the corresponding output layer neurons, which multi- update rule. The weighted interconnection w , ) is
ply the error component by the derivative of the non- carryin the output from the jth neuron in the mth

linear sigmoid response at the current operating level layer o I') to the kth neuron in the (m + 1)st layer,
of that output neuron. The error signal which is used which is simultaneously broadcasting the error func-
to program the weights of the final layer is propagated tion bk, ) back into the mth layer of the network. The
back through those weights by multiplying by w), and product of this forward-propagating signal and back-
all the appropriately weighted error signals converging ward-propagating error takes place within each
on the jth hidden neuron are summed to form a back- weighted synaptic connection as the desired weight
propagating presynaptic network input. The weight- update contribution, completely independently of
ed sum of the error functions transmitted in the back- what is taking place within all the other weighted
ward direction by the final layer is computed using the connections, and this is the only information needed to
same interconnection matrix seen in the forward pro- update that weight, so this learning rule can be said to
cessing mode, but summing over the N3 output neu- be a local update rule. The training procedure for the
rons using the transpose of the matrix which is used for final layer of weights is given by an appropriate outer
the forward-propagating interconnection: product learning rule, which is a local update rule that

takes place within each weighted signal pathway, but
-, 1) - ao & the problem of credit assignment of the MSE energy to

) ao) 1 t) the earlier layer has been solved by nonlocally back-
propagating the error vector. This is referred to as the

- a backward error propagation algorithm for training
k-t - multilayer networks, and it can be further generalizedL2- J;172 Lto N layer networks or networks with feed forward

This represents an iterative algorithm for successively interconnections, e.g., when the first layer connects
computing the error function at deeper layers back directly with the output layer as well as indirectly
toward the beginning of the network in terms of the through the hidden layer to the output layer. For
error function injected back into the final layer. Al- more details of the derivation, operation and utility of
ternatively, this algorithm can be considered to repre- this multilayer network training algorithm the reader
sent a wavefront that backpropagates through the net- is referred to Refa. 1, 2, and 18.
work, multiplying by the weights, accumulating at the
neurons, and multiplying by the neurons backward 0- OPft uII1tato

transmittanc to compute the appropriate error to The optical implementation of a backpropagation
program the previous layer. The network is highly network requires two basic bidirectional components,
nonlinear in the forward-propagating direction, but the interconnection matrices, and the nonlinear units.
the backpropagating wavefront is computed using only Volume holograms appear as the most promising can-
linear operations. didate for implementation of an interconnection ma-

The neurons must, therefore, have two signal path- trix because of the large storage capacity possible with-
ways as shown in Fig. 3. The two pathways share the in the volume of a crystal and the dynamic response
same weights on the connected layers, but the neuron possible with a photorefractive crystal. The readout
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of a volume hologram can be accomplished with either ward propagating wave to obtain a saturating forward
a forward-propagating beam or a backward-propaga- nonlinearity while obtaining a derivative backward
tion. Spatial light modulators (SLMs) could also be multiplication. This can be accomplished by a pair of
used as the interconnection element for small net- photoconductors, both addressed by the same forward
works, but they would have to be both bidirectional propagating beam, where one is used to modulate the
and optically addressable to be used in a backpropaga- forward-propagating device which is biased with a
tion network. In this paper a new self-alignin ap- voltage V,, while the other is used to modulate an EO
proach to adaptively forming optical interconnctions device with a saturation voltage 2V,. The forward-
based on phase conjugating one of the undiffracted propagating modulator is used to modulate a fixed
beams is presented. This technique uses interfero- intensity pump lo so that a single half-cycle of a satu-
metric detection in the volume of a photorefractive ratingnonlinearity can be generated, lIlosin2(1-'
crystal to accomplish all the outer product multiplica- I.tJ for 1 -' < It, and 1"' - I0 otherwise The back-
tions necessary for weight matrix perturbation. ward-propagating modulator is used to multiply the
These N, X N2 weight updates are calculated in paral- backward-propagating error signal by a function Jb-'
lel by exposing the crystal with N, phase conjugated - I~ sin2(2f -1/.) for f1-1 < I..t, andb -l'- 0 other-
collapsing spherical waves and N2 expanding spherical wise, and this is of the form of the desired derivative
waves simultaneously. multiplication. Since the two functions required of a

The nonlinear units or neurons need to threshold the backpropagation neuron can also be accomplished
forward-propagating beam while transmitting the with a simpler nonlinear resonator structure, and the
backward beam only when the forward beam nonlin- response time of these nonlinear etalons can be ex-
earity is in the high slope, or undecided, regime of tremely fast compared to SLM technology, they were
operation. A special purpose, bidirectional, detector chosen for study in the architecture presented in this
modulator pair array structure could be tailored to paper
generate the desired backpropagation neuron respons-
es by utilizing the appropriate integrated electronic A. NorI*Uw Faxy-Perot F I g I Neuros
circuitry, but the individual neurons could become Nonlinear Fabry-Perot etaons2 are a promising
quite complicated with this conventional optoelec- candidate for implementing the neurons in an optical
tronic integrated circuit approach. Appropriately learning network because they can perform nonlinear
modified transmissive spatial light modulators might operations on arrays of coherent beams, which allows
be considered for backpropagation neurons, and one the outputs to be used to record and modify intercon-
possible structure of this type is illustrated in Fig. 4. nection holograms. A soft thresholding operation can
In this type of birefringent SLM, crossed polarizers are be performed on a forward-propagating beam by de-
placed on either side of an electrooptic medium which creasing the cavity detuning below the critical detun-
is optically addressed by a photoconductor. A high ing needed for bistability.20 These optical neurons
voltage is applied across a transparent conductor in cannot easily implement the idealized derivative
contact with the photoconductor on one side and a transmission required for backpropagation, but a simi-
transparent conductor on the other. To use this type of ar peaked response can be obtained by operating a
electrooptic device as a backpropagation neuron the nonlinear etalon in the probe mode21 for the backward-
induced birefingence must be doubled for the back- propagating error signal. In this mode, the Fabry-

Perot resonance is scanned by the nonlinear depen-
dence of the index on the intracavity intensity, which
varies in response to the high power forward beam

.... U'd Nonl .... e.* intensity. The weak backward-propagating probe
beam does not scan the cavity, but it is modulated by
the current state of the cavity transmission function,

-..... Tr......... which is the appropriate multiplication type of re-
sponse needed in the backward direction. The probe

I.. , ' -, mode transmission is peaked at the resonance of the
Fabry-Perot, which occurs when the sigmoid response
to the forward beam reaches the upper level The

--. peak maximum is not exactly at the region of the
highest slope of the forward beams nonlinear sigmoid

/ I -" /response, but since the forward and backward beams
have different polarizations, or different wavelengths,

:h.T..o'kl /_the resonance function can be offset to achieve a prop-
erly positioned probe beam resonance peak.

In the polarization multiplexed case this shift can be
Fig. 4. Input output relations for a special purpose bidirectional induced by including a thin birefringent sheet in the
optically addressed spatial light modulator backpropagation neu- cavity,22 or perhaps a tunable birefringence can be
ron: PC - photoconductor, EO me electrooptic, TC s transparent caused by applying a static external field to the cavity.

conductor. This type of birefringent nonlinear Fabry-Perot etalon
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Fig. 5. Nonlinear Fabry-Perot etalon siginoid response, its deriva- * aa .
tive, and the probe mode trasmission for the two polarizations wit Fig. 6. Dual-cavity nonlinear Fabry-Perot etalon with forward-

an axilary ntrcaviy brefrngece.propagating nonlinear response and backward-propagating scanned
resonance probe mode tranamisaion

and a simulation of the forward-mode sigmoid transfer
function is shown in Fig. 5 along with its derivative and ing beam while blocking the backward-propagating
the shifted probe mode response approximation to this error signal, while the other cavity is resonant to the
derivative. This device can implement the desired backward- propagating beam. The Fabry-Perot reso-
sigmoid nonlinearity of the high intensity forward- nance of the backpropagating cavity is linearly
propagating signals with a differential gain greater scanned by the 100% reflected forward-propagating
than one, although the actual gain in transmission is incident intensity, thereby producing a good approxi-
less than one. The probe mode response is not sym- mation to the desired symmetric derivative response.
metric about the peak because the Airy function reso. We expect that learning and eventual convergence can
nance is scanned by the intracavity intensity which is be achieved in a multilayer optical network with the
equal to the transmitted sigmoid response divided by forward and backward response that can be obtained
the backmirror transmittance. This asymmetry con- from these scanned resonance devices, even though the
tinues to allow signals that are above threshold to build responses do not precisely match the nominal respons-
up interconnection gratings in the previous stage cor- es of the backpropagation algorithm because of the
responding to correlated inputs, thereby partially robustness of this gradient descent learning procedure.
compensating for the slow forgetting of gratings by the
volume hplogram. However, the high level of trans- B. Description of a Sinle Layer of te Optical
mission for the probe beam when the etalon pump is ArchitSokteO
below threshold is undesirable. By decreasing the A single layer of an architecture that can perform
finesse of the cavity to the forward-propagating beam a this type of multilayer perceptron learning procedure,
trade-off can be made between the peak width and off- using polarization multiplexing of the forward-propa-
resonance transmission of the probe mode response, gating processing beam and backward-propagating
with the switching energy for the forward-propagating teaching beam, is shown in Fig. 1. The illustrated
nonlinear device characteristic, architecture is one implementation of this class of

Another possibility would be to use two closely backward-error-propagating holographic learning ma-
spaced cavities, both addressed by the same forward- chines that serves to illustrate the principles involved.
and backward-propagating resolution spots, as illus- Notice that no lenses are shown in this diagram be-
trated in Fig. 6. In this case one cavity is optimized to cause the volume hologram can perform the desired
produce a sigmoid response of the forward-propagat- weighted interconnection imaging by exposing it with
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the proper expanding image and focusing reference at the output with the phase conjugated forward-prop-
beam to form a Fresnel volume hologram. If Fourier agating beam emerging from a particular etalon from
lenses are inserted between the etalon arrays and the the input produces a self-aligning volume Fresnel ho-
volume holographic crystal, the exposed hologram will lographic interference pattern that interconnects
be a Fourier hologram with planar fringes, and the thesi two etalons for both forward- and backward-
momentum space analysis will be simplified, but the propagating beams with the exact same diffraction
processor learning and self-alining operations will be efficiency, or weight, due to the reciprocity of linear
similar, electromagnetic systems. The interference of the

The forward-propagating pattern vector transmit- backward-propagating error beam with the phase con-
ted by the anisotropic nonlinear etalon array on the jugate of the forward-propagating beam records a
left-hand side of the figure is polarized at a -45 angle Fresnel grating due to each pair of beams that is
and is rotated clockwise by 450 as it passes through the present, perturbing the weighted interconnection ma-
nonreciprocal Faraday rotator so that it becomes hon- tnix represented by the hologram by the outer product
zontally polarized. This aligns the forward-propagat- of the signal and error vectors and thereby pushing the
ing beam with the polarizer allowing it to pass and matrix toward the desired interconnection solution.
illuminate the polarization switching volume holo- The backward-propagating beam is polarization
gram. The diffracted beam consists of a weighted switched by the volume holographic diffraction mech-
interconnection of the forward-propagating pattern anism, producing a horizontally polarized beam which
vector by the current state of the holographically rep- is the appropriate weighted summation of the error
resented interconnection matrix, stored as a superpo- signal by the transpose of the interconnection matrix
sition of curved and chirping space charge gratings seen by the forward-propagating beam. This passes
within the photorefractive crystal. The diffracted through the polarizer and is Faraday rotated by 45 to
beam is polarization switched by the birefringent dif- be incident on the etalon array with a 45' polarization
fraction mechanism to an orthogonal polarization to angle, orthogonal to the forward-propagating beam,
the input, and this vertical polarization state is rotated and the same as the backward-propagating beam which
clockwise by 450 through the following Faraday rota- emerged from the previous output layer. The undif-
tor so that it falls on the next etalon array with the fracted phase conjugate of the forward-propagating
same -45 polarization as the forward-propagating beam needs to be blocked so that it is not confused with
transmitted beam from the previous stage. The un- the copropagating diffracted backward-error-propagat-
diffracted beam passes straight through the volume ing signal, and this is accomplished by the polarizer
hologram and has its vertical polarization rotated by which blocks the vertical polarization of the undesired
45 ° as it passes through the Faraday rotator, so that it phase conjugate reference beam. The indicated nonre-
falls on the phase conjugate mirror (PCM) with a po- ciprocal polarization filtering will also remove the un-
larization angle of 45o, the same as the counterpropa- wanted reflections from the nonlinear etalons and un-
gating pump beams (which are not shown), producing wanted diffraction terms produced by the hologram
an identically polarized phase conjugate beam, which The diffracted phase conjugate reference and undif-
is composed of an array of beams that retroreflect back fracted backward-error signal emerge at a different an-
toward the etalon sources that each originated from. gle and will not focus on the etalon; thus they can Le
This phase conjugate beam passes through the nonre- ignored, or they can be examined to determine interme-
ciprocal Faraday rotator picking up another 450 rota- diate states of the hidden neurons. Each layer is com-
tion (instead of unwrapping the rotation as would oc- pletely compatible with the previous and the following
cur with a reciprocal optical activity based rotator), layers so this type of learning netw3rk can be stacked up
emerging vertically polarized to act as the reference to form a complex multilayer learning machine.
beam array for the self-aligning holographic outer
product exposure with the backward-p-opagating er- C. Recreirnent for Dhe Hokbraqkh c
ror signal The backward-propagating error signal The dynamic holographic interconnection tech-
emerges from the backside of the output etalon array nique described in this paper is based on the photore-
with a 45 polarization that is orthogonal to the for- fractive effect, which is a light-induced index of refrac-
ward-propagating beam. This allows for the polariza- tion modulation that occurs in photoconductive
tion filtering based separation of the reflected for- electrooptic crystals. A space charge grating image of
ward-propagating beam from the transmitted back- an interference profile is created by carriers ionized
ward-propagating beam as well as the independent from fixed traps into the conduction band, where the
tuning of the relative Fabry-Perot resonance position mobile carriers redistribute under the influence of
of the forward- and backward-propagating beams. drift, diffusion, and bulk photovoltaic effects, until
The backward propagating error signal is rotated to a they recombine with an unoccupied trap. The redis-
vertical polarization by the Faraday rotator so that it tributed optically generated carriers produce a space
interferes in the volume hologram with the vertically charge grating with a fundamental Fourier component
polarized phase conjugate reference beam and not with that may be phase shifted from the interference pro-
the horizontally polarized undiffracted forward-prop- file. The spatial variations of the resulting space
agating signal. The interference of a backward-prop- charge pattern produce a corresponding electric field
agating error signal emerging from a particular etalon through Poisson's equation. This space charge Field
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induces an electrooptic modulation of the local imper- Selective erasure can be accomplished by using a phase
meability tensor as long as the appropriate electroop- encoded backward-propagating error signal, where a
tic tensor coefficient is nonzero. In turn, this couples phase angle of 0 is used to represent all positive error
the input field into a diffracted output field as long as signals, and a phase angle of v is used to represent all
the appropriate impermeability tensor coefficient is negative error signals. Fresnel gratings that are built
nonzero. The implementation presented in the previ. up with a phase angle of 0 can have the corresponding
ous section is based on a polarization switching diffrac- interconnection decreased selectively by shifting the
tion mechanism for which it is required to have an off- recording interference profile by r, as demonstrated in
diagonal impermeability tensor coefficient. This Sec. V, and by Huignard for Fourier holograms. 24 Al-
requires electrooptic tensor coefficients in the bottom ternatively, selective interconnection erasure might be
half of the reduced subscript electroopotic matrix, accomplished by strengthening interconnection grat-
which can take place in some electrooptic volume holo- ings when the applied bias field is in one direction,
graphic materials, such as Bi1 2SiOn LiNbO3 , BaTiO3, causing the resulting space charge grating to shift away
and GaAs. Self-aligning recording combined with po- from the optical intensity profile in the direction of the
larization switching diffraction between linear eigen- E field by approximately i/2, while decreasing inter-
modes requires an optically isotropic medium (or one connection gratings when the bias field is reversed,
in which anisotropy can be eliminated through the producing a canceling space charger grating with a
application of a static field), with no optical activity, phase shift of -r/2. Another approach to decreasing
and these conditions imply that a material of symme- interconnection strength would be to rely on the simul-
try group 43m, such as some Il-V semiconductors taneous erasure of all the gratings by the optical read-
(e.g., GaAs or InP), should be used as the photorefrac- out and thermal effects, thereby inserting a forgetting
tive holographic medium. The efficiency of the dif- term in the dynamical equation for the holographically
fraction depends on the effective coupling strength represented interconnection matrix. This approach
which depends on the angle of the gratings, polariza- requires continuous reinforcement to avoid forgetting
tion of the input wave, and momentum matching everything that has been learned. Once learning has
(Bragg) condition in a rather complicated fashion. been completed a mechanism of fixing the hologram
However, use of a Fresnel hologram can produce an could be used to make the interconnections perrna-
averaging over all these effects for all the interconnec. nent.25
tion holograms, while in a Fourier hologram with pla- A scheme must be devised to implement negative
nar fringes each grating has a different diffraction interconnection stengths, or else all the signals must be
efficiency. placed on an appropriate bias. An attractive possi-

The polarization switching diffraction efficiency bility for the implementation of bipolar weights is to
and the holographic storage capacity can be simulta- use the phase shift of each grating to represent its sign
neously maximized by having the input and output and count on destructive interference within each non-
beams propagating at large angles, as indicated in the linear etalon to subtract the positively and negatively
figure. The unwanted polarization switching grating weighted diffracted components. This approach is
exposures due to the simultaneous presence of multi- sensitive to the phase response of the etalons, so it is
ple reference (or object) beams produce croestalk of necessary to minimize (or to compensate for) nonlinear
the undiffracted forward-propagating beam, which phase shifts produced by the etalons and to avoid
can be eliminated with the indicated polarization 61l- phase sensitive switching behavior in the etalons.26

tering. The storage capacity of the volume hologram
will enforce limits on the number of nonlinear devices iV. W'd-B1d tlngdoti VoNH p
that can be interconnected and on their topology be- ,
cause of the cone of ambiguity associated with Bragg The preliminary analysis of a bidirectional optical
diffraction.23 A sparse array of etalons will have to be interconnection system begins with an explanation of
utilized to implement a fully global interconnection the recording of a hologram by using a phase conjugat-
without unwanted crosstalk, which will also facilitate ed reference beam. The 1-D system used in this analy-
the dissipation of heat generated in the nonlinear eta- sis is presented in Fig. 7 and consists of two lines
Ions and thereby allow a very high speed of operation. (planes) of optical neurons which need to be intercon-
However, the learning operation must occur slowly for nected by a volume hologram. The phase conjugate
the backpropagation algorithm to converge properly, mirror is used to conjugate the expanding waves emit-
and this is well matched with most photorefractive ted from one plane of neurons and retroreflect them
crystal volume holograms, because the crystal re- back toward the sources from which they emerged, and
sponse times are slow, and the perturbation of an exist- either direction can be the one chosen to be conjugat-
ing space-charge grating by a single outer product ex- ed. The field emitted by a line of J neurons, separated
posure is very small, by D, with an aperture profile h(xo,yo), and propagat-

It is necessary to be able to both selectively erase ing at an off-axis angle with spatial frequency a is a
holographic gratings, thus decreasing the connection linear combination of off-axis spherically expanding
strength between particular etalons, as well as to waves propagating toward the right. The undiffract-
strengthen individual gratings thereby increasing the ed field that passes straight through the volume holo-
corresponding elements of the interconnection matrix, gram (in the undepleted pump approximation) and
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strike the phase conjugate mirror (PCM) is simple in
the Fraunhofer regime of the individual apertures,
which for an aperture profile width of d is valid for z >>
wd2/X (z ) I mm for a 10-om aperture) and is always
valid for Gaussian apertures:

A('YX.,t) - ezp(-i2wvt) i~s fJ f ajh(x0 - jDyj') exp(i 2 saz 0 ezp4(-As.)[(z - ')2 + (ya - y')91dxody 0

M 0p(-i21r9) - J j *zp(i2sjDa) expliiozgo)[(z- iD)2 + y/1'"z - (11)

In this expression the neural activity pattern vector a,
is represented as a spatially multiplexed array of eta- This equation represents a left propagating quadrati-
Ion output fields which will be used for learning, but cally curved superposition of waves that are focusing
the intensities Ia12 are a more likely representation of toward the J source neurons. The profiles of these
the neuron outputs that will be used for subsequent focusing beams are given by the transform of the indi-
nonlinear processing. vidual source apertures H(u + a',v) that are scaled and

Each source produces an off-axis expanding spheri- shifted with the z coordinate within the holographic
cal wave with a linear phase factor given by the source medium.
position. The Fourier transform of a source aperture Similarly, the backpropagating error field emitted
is given by H(u,v) and its size and position shift with by a line of K neurons separated by 1Y in the second
the propagation distance z,. The distance between layer can be described as a superimposition of spheri-
the input plane of neurons and the front size of the cally expanding waves. The separation between the
volume hologram is zo, the thickness of the hologram is output neurons and a plane z within the hologram is i
L, the index of refraction of the photorefractive medi- - z, + noz, which is a reversed coordinate from that
um is no, and the distance from the hologram to the used for the forward-propagating wave:

B(xy,z,t) - exp(-i2rt) i* J J bh(xl - kJy 1) exp(i2ax1 ) expli(1ir)[(z, - z) + (y, - y)JIdzxdy

- exp(-i2wrt) b,, expG2.WD) e / ( + 9U (- + a, )

phase conjugate mirror is z,; thus the total optical path
length between the neurons and the PCM is z, - zo +
not, + z,. This wavefront is phase conjugated by the
PCM, which retroreflects each expanding spherical
wavefront back toward its point of origin. The result- VOW.
ing field within the holographic crystal is dependent on "-
the z coordinate, and since both writing waves are Z
incident on the hologram from the right, z is defined to
be zero at the right edge of the crystal and increased to
L at the left edge. The phase conjugated reference
wave within the hologram is most easily expressed in
terms of the optical path length between the input i
neurons and a given plane within the hologram, z' - ze
+ (L - z)ne.

A(x,y,z,t) - exp(-i21rt) c -i a) ezp(-i2rjDa)
J

X ezp4-i(w/Xz')J(x - jD)' + y2 I

X H4 '1 -jD + a, Z (12) Fig. 7. Self-aligning bidirectional dynamic volume holographic in-1 z'/ terconnection using a phase conjugated reference
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ft & Diffracted spot produced by a high diffraction efficiency
lansless Freel volume hologram recorded in UiNbO3 and an expo-

sure which shows just the peak.

This backpropagting error vector bk produces a wave-
front that interferes with the retroreflocted phase con- (a)
jugate wavefronta due to the forward-propagating
sources in the first layer within the volume hologram
This records a self-aligning interference pattern that
modulates the index of refraction within the holo-
graphic medium. The modulation term can be ex-
pressed as a curved and chirping fringe pattern within
the overlap region of the diffracting wavefronts in the
crystal The repetitive presentation of training pat-
terns and bipolar error patterns to the front and back
of the single layer being described will result in the
time integration of successive outer product connectiv.
ity patterns-

T7U.Y,0~z a fA*(x~yz eB*lzxyz )]de" (b)

[f~ ~ ;(1)e~]- i [- x + a, . -jD +y

++ XD + WiD ')h• (14)

This expression represents a superposition of KJ fam-
ilis of elliptical fringes within the volume of the holo-
gram with each pair of sources at the foci of a set of
elliptical shells, and zt - zo + noL + zx is the total
distance between the etalon planes. This time-inte-
grated interference pattern will be transformed into a
proportional index modulation with a possible phase
shift through the photorefractive effect.

For the chirped and curved volume Fremnel phase
holograms being analyzed here a momentum space
analysis is inappropriate, since spatial frequency and &..., ..
fringe tilt are spatially varying, resulting in a poorly (a .
defined perturbation momentum vector, thus an ex-
plicit integration of the diffracted field produced at
each z-plane should be carried out instead. After the
hologram is recorded, it is reilluminated by a weighted
superposition of expanding spherical waves which are. . . . .
diffracted by all the index modulations that are
present. This analysi can be carried out for either " '" "',..

forward- or backward-propagating waves in an identi- (b)
cal manner, but we only consider illumination with a
forward-propagating wave here. When the volume
hologram is illuminated by the diffracted wavefront
from a new input neural activity pattern a'?, the dif-
fracted field at each plane z will contain a matched -.8 -'. -'* -. * ..

term, which will produce focusing wavefronts propa- Fig. 9. Positional sensitivity of the Fresnel volume hologram: (a)
gating toward the output neurons and a number of out of the primary interaction plane; (b) in the interaction plane.
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unwanted croestalk terms. Combining the eult. of
Eqs. (12) and (13) we can derive an expression for the
difirated field produced at each plane of the volume
hologrm

D(zy,ozt) - A(z.yszt) f[A*(zz)B*(z.yzet')ldt'

- "Xzy) zp(-i2ivrt -j xp (i2(j/D) u -(i.z')j(z - iD) + I ( + a,

- ezp-i~s~) ~ ~a. ~ a;(t')b;(t)dt'
p jh

x W X ezi2raj(j'-j)D + W1 eiqi(r/')[(j4- )) -2-iO ( kD) 91 1

XHI (- W+ a, 4)H ( + a, .:H+, (15)

With the approximations that the last two terms ap-
proximately overlap so that the product is equal to a In this equation a number of simplifications have been
constant, and the paraxial approximation, the diffract- made, but the neglected terms will lead to an increase
ed field can be propagated to the plane of output in the Bragg selectivity. All the phase factors have
neurons from any diffracting plane within the volume been lumped into the term exp(i). The integration
hologram. This is assuming the undepleted pump over z produces a sinc function of ( - j'), which is
approximation, which is a reasonable approximation analogous to the thick hologram Bragg condition for
for diffraction efficiency _510%. Each plane of infini- these elliptical fringes. As long as the separations
tesimal thickness produces an appropriate focusing between the input neurons D, and output neurons D',
contribution, with the appropriate focal length, mag- are large enough for a given hologram thickness L and
nification, and phase to produce a focal spot with pro- recording geometry, zo0zia, we can assume perfect
file h(xi - kW - ' - j')D(z/z'),y). We need to sum Bragg selectivity, and, therefore, j - j'. This would be
up all the contribution throughout the thickness L of the normal Bragg condition if Fourier lenses were in-
the hologram to obtain a Bragg selection condition, serted in the processor, and its results in a positional
which will require j - j1, so that focal spots are only selectivity in the plane of the lines of neurons which
produced at each of the K output neurons: effectively eliminates all the unwanted shift-invariant

croestalk terms that are present with a thin holograph-
ic grating.

e(xjy 1't) 4i D(zyzt) @z*(i-/Ai)(z 1 - X)2 + (y, - y)glddy

+; (z

Xh x-kD'(i-j)D Z L sine rn~2,DQ -')']

a ezp(-i2rvt) ezp(-i2razj) exp(ip) 1'. a [ (t')bh(t')dt']I h(x1 -QD'y). (16)
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For a hologram thickness noL - I cm, placed I cm tween the reference beam and scattered object beam.
off-axis and 10 cm from input and output neural planes A vertical line appears at the output plane which is due
we can separate the etalons by D fe 100 Wm, (at the to the Bragg matched diffraction of the reference beam
fourth zero of the sinc), allowing 100 to be packed per by the gratings formed between the scattered reference
cendmeter. However, for a 900 diffraction angle, as with the object beam, and this line is actually a small
illustrated in Fig. 6, we can bring the etalons to within part of a large circle of confusion which passes through
D m 10 pnm of each other allowing a linear packing the reference source and the object virtual source.
density of 1000 etalons/cn. When 2-D arrays of neu- These fanning components built up over a longer time
rons are to be interconnected additional constraints scale than the desired focusing diffracted light and
must be imposed on their topolog to achieve the ap- were not visible with short holographic exposures.
propriate selectivity of the diffracted orders, and only The weak additional spot is a multiple reflection arti-
a spare selection of a 2-D array of etalons may be fact. A measurement of the Bragg positional sensitiv-
utilized, containing between 10' and 105 etalons/in.2,2 ity in and out of the principal interaction plane is
An appropriate topology for the utilized etalons can be shown in Fig. 9. In the plane a good approximation to
derived by considering the interconnection to be space a sinc function with 21-pi width is obtained, which is
variant in the interaction plane and space invariant in near the expected width for this experimental geome-
the orthogonal dimension. In the case of a Fresnel try.
volume hologram there is some space-variant widening The measurement was obtained by translating the
of the impulse response in the direction orthogonal to Freenel volume hologram and measuring the resulting
the interaction plane, which is not present with Fouri- diffraction efficiency. However, when the hologram
er holograms, was rotated in the plane, and any residual translation

The resulting field incident on the spatially multi- was compensated, a diffraction efficiency was mea-
plexed output neurons is found to be proportional to sured that was essentially independent of angle, as
the desired matrix vector product of the input activity expected for these angularly diverse volume holo-
pattern a. with the time-integrated outer product of the grams. Out of the interaction plane the Fresnel holo-
sequence of forward and backward waves. The inten- gram diffraction efficiency was quite insensitive to the
sity at the output neural plane is given by the modulus hologram position. However, the position of the dif-
squared of the field, and this intensity will be detected fracted focused spot translated across the detector
by the neurons and used for subsequent nonlinear array as the hologram was moved, indicating that the
processing. holographic interconnection was space invariant in

This is a fully self-aligning dynamic volume holo- this dimension. A Fresnel hologram that is thick in
graphic global interconnection scheme which works relation to the separation between planes produces a
reciprocally for forward and backward waves as re- vertically widening impulse response as the out-of-
quired by the backpropagation algorithm. This inter- plane offset is increased due to different offset magni-
connection tecinique requires no lenses, because the fications at different hologram depths. This feature
Fresnel hologram accomplishes the imaging operation needs to be considered when selecting a 2-D neuron

array topology for use with the Fresnel hologram inter-
V. Mii f kwIUg0I of r-re"M Vokow connection scheme.
Hologram keCn -- Plons An optical neural network interconnection pattern

Volume Fresnel holograms were recorded in photor- requires many point sources to be imaged to many
efractive crystals as the interference pattern between other virtual sources, and the Fresnel hologram was
expanding and collapsing spherical waves to test their tested in this application by using lenslet arrays for the
capabilities as lensless interconnection elements. optical sources. A line array of real sources produced
When this volume hologram was reilluminated by one by a 1-D lenslet array was interconnected to a 2-D
or more of an array of expanding reference beams, the array of virtual sources that was produced by imaging
collapsing spherical object waves were reproduced, the focal plane of a lenslet array through and beyond
which focused to an array of small spots at the output the volume hologram. In this N - N 2 interconnection
plane. First, a single input point was interconnected experiment approximately fifty sources were intercon-
to a single output point using an expanding wave inter- nected with a 50 X 50 array of output focal spots,
fered with a collapsing wave in the volume of a LiNbO8  thereby implementing more than 10' holographic in-
crystal, and the interference pattern was time integrat- terconnection lenses. A small portion of the diffracted
ed for several minutes to build up a reasonably high output plane produced by this hologram when it was
diffraction efficiency grating. A magnified image of illuminated by the object wave is shown in Fig. 10.
the diffracted focal spot which was produced at the This looks almost identical to the image of the lenslet
output plane when the crystal was reilluminated by the array produced by the object beam, and no fanning
expanding reference beam is shown in Fig. 8. A good artifacts like those shown in Fig. 8 are visible. This is
focused spot is produced, but when the film is overex- because the diffraction efficiency of each interconnec-
posed a large amount of sidelobe structure becomes tion hologram is extremely small in this case, and the
apparent. A large amount of fanning of the diffracted weak fanning artifacts produced by different sources
light is produced in the plane of the crystal c axis due to do not add up constructively.
the recording of additional gratings in the crystal be Adaptive holographic interconnection networks
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(a)

Fig. 1. D inracted output produced by an N- N2 lam holo-
graphic interconnecton.

must be able to represent bipolar weights and to de-
crease interconnection strengths, so selective erasure
was examined as one possible technique that can be
used for both these purpose& To show that Fresnel
gratings could be selectively erased, Bi12SiO2 0 was used
as the holographic recording medium so that photovol-
taic effects could be eliminated, and faster response (b)
times could be obtained. A piezoelectric mirror was
used to phase modulate an object beam with a r phase
shift increment. Interconnection gratings were built
up with one phase, then the object phase was shifted,
and the diffraction efficiency of the reference beam
into the object focal spot was measured as the holo-
gram was erased and rewritten with a r phase shift.
Because different wavelength probe beams cannot be
used to measure the diffraction efficiency of Fresnel
holograms, the object beam and diffracted beam were
alternatively chopped in a nonoverlapping fashion to
measure the diffraction efficiency seen by the refer-
ence beam as a function of time. An example of this
type of selective erasure process is shown in Fig. 11(b),
and it is to be compared with the incoherent erasure
that was obtained by blocking the reference beam as
shown in Fig. 11(a). The selective erasure was much
faster than the incoherent erasure process, or the writ-
ing process after the previous grating was erased, be- (c)
cause the incoherent erasure and phase shifted writing Fig. 11. Erasure processes in BiuMSiOw (a) incoherent erasure
are cooperating processes during selective erasure, process; (b) selective erasure process using a r phase shifted refer.
while they are competing processes when writing the ence and the phase shift signal; (c) repetitive r phase shift writng
hologram. The phase could be repetitively shifted by and erasure (I s/div).
r as shown in Fig. 11(c), and a succession of out-of-
phase gratings can be written and erased. Other grat-
inp within the crystal were not erased any faster with through the off diagonal tensor components of a pho-
thi phase shifted reference approach than they were torefractively induced pertubation grating. Right cir-
normally by incoherent erasure, which demonstrates cularly polarized expanding spherical reference waves
that selective erasure of the Fresnel hologram is occur- were interfered with right circularly polarized focusing
ring throughout the volume of the crystal object beams to record polarization switching Fresnel

Polarization switching diffraction can be demon- volume holograms in a properly rotated Bi12SiO20 crys-
strated in Bi1 2SiO 20 by writing a grating in the 110 tal. The diffracted field focused to the object beam
direction.27 The propagating eigenmodes are circular focal spot, and the polarization state was analyzed with
without an applied field, because of optical activity, a properly rotated quarterwave plate and polarizer,
and the right mode can be coupled to the left mode and it was found to be very nearly orthogonal to the
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polarization of the input object beam. The orthogo- interferometric approaches to image subtraction. Al-
nality of these modes can be improved by carefuil align- ternatively, since the computational load required at
ment of the crystal axes with respect to the principal the output is relatively minor, optical detectors can be
interaction plane, but perfect orthogonality is proba- combined with electronic subtraction from the target
bly impossible with a Frusnel hologram because of the vector to generate the bipolar error vector, which can
angular diversity of the birefringent gratings. When be applied to a spatial light modulator at the output to
99% of the object beam can be filtered with this polar- introduce the backpropagating error. When the num-
ization filtering scheme, a 5% diffraction efficiency ber of outputs of the pattern transformation procedure
hologram results in a 20% feedthrough of the undif- is <1000, they can be arrayed in a linear format which
fracted light measured with respect to the diffracted allows the utilization of high speed linear detector
polarization switched light. This suppression ratio of arrays for output, and the utilization of linear spatial
the undiffracted beam must be improved if the polar- light modulators, to introduce the backward-props-
ization multiplexed architecture is to be used for a gating error signals.
backpropagation network, so that the undiffracted The fan-out capability of each layer is determined
phase conjugate reference will not corrupt the diffract- by the gain of the nonlinear devices, the holographic
ed backpropagating error. diffraction efficiency, and the polarization component

throughput, and it will dictate an information collaps-
VL Syst"fe 1e1IhmnuI ins network architecture. For example, if the product

A complete two-layer system, illustrated in Fig. 12, of optical efficiencies is only 3%, a network with 30,000-
requires a high speed method of entering data for bit input pattern vectors might be processed by 1000
pattern transformation processing and another means hidden units that communicate with thirty output de-
of introducing the backward-propagating error signals vices, which simplifies the error generation process at
for the learning phase. Probably the best approach to the output. The ability of the system to process large
high speed data entry at the back end of the system is a amounts of data in parallel at a very high speed is
sparse parallel laser diode array or a fiber-optic input limited by the electronic addressing of the input array,
array, demagnified onto the first layer nonlinear etalon and the output photodetector array readout time, and
array which is operated in the bistable regime. In this not by the intervening optical system, because of the
manner the subthreshold coherent bias beams trans- extremely fast response achievable with nonlinear eta-
mitted by each addressed device can be modulated by Ions and the almost instantaneous optical interconnec-
the data signals, thereby using the input nonlinear tion delay. The optical power requirements of the
Fabry-Perot etalon array as a high speed incoherent to system are primarily dictated by the first layer of non-
coherent converter with memory. At the final layer of linear etalons, since there are many more in this layer
the system error signals need to be computed and than in the succeeding layers for a collapsing network.
injected back into the system with the appropriate The frst-layer etalons are not bidirectional and can be
polarization or wavelength and the phase shift or tim- optimized to have a low switching energy. Bistable
ing needed to represent the sign of the error. The nonlinear etalons have been operated with a 3-pJ
system can be designed with either optical or electronic switching energy at a rate of -100 MHz, 3 which leads
error detection and generation circuitry at the output to a power requirement of 0.4-mW/etalon or 12 W for
to introduce the backpropagating error. Optical sub- 30,000 input etalona. Only a portion of this power is
traction techniques can be considered for an optical dissipated within the nonlinear etalons, and a heat
approach to teaching the system. Image subtraction dissipation requirement of only a few watts per cm 2

using a phase conjugated Michelson interferometer 2s  should be achievable with forced air or liquid cooling
appears to be a promising approach for this application techniques. Most of this power is supplied by a high
since it produces subtracted fields with the appropri- power coherent pump beam that is used to bias each
ate phase shift to represent the sign of the error, with- bistable device just below the bistable loop, and -10%,
out the accurate phase adjustments required by other or 40 #&W, is required per laser or fiber-optic input to

Paral lal Vo I ume PCM
Input LD Hologramaerray 14LFP N0F

0 No 0 mIgF ilmaging l " I/e ,

Ig l 4:t~Lens
Lens

PCM

Fig. 12. Complete system for two-layer backpropagation optical learning including massively parallel input laser array and electronic error
detection at the output. LD - laser diode (or fiber optics), NLFP - nonlinear Fabry-Perot, PCM . phase conjugate mirror, BEP SLM = spa-

tial light modulator for backward-propagating error.
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the network. The bsckpropegating neurons will re- oualy. The simultaneous self-aligning and learning of
quire more optical power because the dual functions of the optical system make this approach to multilayer
the bidirectional cavities conflict with the require- optical neural processing experimentally feasible and
ments for a low power device. Since there are not as allow the implementation of complicated systems that
many hidden and output devices as input devices the could not be completely specified a prion but can be
systenm power requirements are primarily dictated by learned and modified as the desired processing opera-
the size of the input array. tion slowly changes. The slow leaning of the halo-

The forward-propagating signal can be a narrow graphic crystals combined with the extremely high
puke since the response of GaAs nonlinear Fabry- speed processing of the nonlinear etalons gives this
Perot etalon is determined by the peak power incident. system an enormous throughput potential and the ca-
In this case the backward-propagating error signal can pability for solving complicated cognitive problems.
be either pulsed or cw. In the pulsed mode the PCM The authors would like to acknowledge the numer-
would need to have practically instantaneous re-
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Adaptive optical networks using photorefractive crystals

DmNs PsaUs, David Brady, ard Kein WaGner

The capabilities of photarractive crystals as media for holographic interconnections in neural networks are
omined. Limitations on the density of interconnections and the number of holographic aaaociationa which
can be stored in photorefractive crystals are derived. Optical architectures for implementing various neural
schemes are described. Experimental results are presented for one of these architectures.

L mhem g of volume holograms pe-imits the storage of a very large
Learning is the most distinctive feature of a neural number of interconnections per unit volume, 1-4 where-

computer and in many respects it is this aspect that as the use of photorefractive crystals permits the dy-
gives neural computation an advantage over alterna- namic modification of these connections, thus allowing
tive computational strategies. A neural computer is the implementation of learning algorithms. - 9  We
trained to produce the appropriate response to a class first briefly review the major types of learning algo-
of inputs by being presented with a sufficient number rithms that are being used in neural network models.
of examples during the learning phase. The presenta. We then estimate the maximum number of holograph-
tion of these examples causes the strength of the con- ic gratings that can simultaneously exist in a photore-
nections between neurons that comprise the network fractive crystal. Since in an optical implementation
to be modified according to the specifics of the learning, each grating corresponds to a separate interconnection
algorithm. A successful learning procedure will result between two neurons, this estimate gives us the density
in a trained network that responds correctly when it is of connections that are achievable with volume holo-
presented with the examples it has seen previously and grams. The next topic that we address is how the
also other inputs that are in some sense similar to the' modulation depth of each grating (or equivalently the
known patterns. When we consider a physical realiza- strength of each connection) can be controlled through
tion of a neural network model, we have two options in.- the implementation of learning algorithms. Two re-

* incorporating learning capability. The first is to build lated issues are investigated: the optical architectures
a network with fixed but initially programmable con- which implement different learning algorithms and
nections. An auxiliary, conventional computer can the reconciliation of physical mechanisms that are in-
then be used to learn the correct values of the connec- volved in the recording of holograms in photorefractive
tion strengths and once learning has been completed crystals with the dynamics of the learning procedures
the network can be programmed by the computer. in neural networks.
While this approach may be reasonable for some appli-
cations, a system with continuously modifiable con- L Ll"hig Alg o
nections presents a much more powerful alternative. For the purposes of this discussion it is convenient to

In this paper we consider the optical implementa-, separate the wide range of learning algorithms that
, tion of learning networks using volume holographic have been discussed in the literature into three catego-,-
interconnections in photorefractive crystals. The use ries: prescribed learning, error driven learning, and'

self-organization. We will draw the distinction among
these with the aid of Fig. 1, where a general network is
drawn with the vector x(k) as its input and y(k) the
output at the kth iteration (or time interval). The
vector z(k) is used to represent the activity of the

The authors are with California Institute of Technology, Pasade. internal units and wij(k) is the connection strength
ns. California 91125. between the ith and the jth units. Let z(m), m -

Received 24 July 1987. 1 ... M, be a set of specified input vectors and let y(-)
0003-43/88/091752402.00/0. be the responses which the network must produce for
o L968 Optical Society of America. each of these input vectors.

1782 APPLIED OPTICS / Vol. 27, No. 9 / 1 May 1988



tems, however, this type of learning can provide at
effective mechanism for matching the availabe re

x00 > y(k) sources (connections and neurons) to the requirement
---- of the problem. In optical realizations error drivej

algorithms are more difficult to implement than pre

1. Genwal warn! xutwork archtu. scribed approaches due to the need for dynamical-
modifiable interconnections and the incorporation o
an optical system that monitors the performance an,

A prescribed learning algorithm calculates the causes the necessary changes in the weights.2 Whil
strength of each weight simply as a function of the this problem could be avoided by performing learnin
vectors x( ) and y(m): off line in computer simulations and recording th

optimized interconnection matrix as in prescribe
-=. M. (1) learning, this approach has the disadvantage that onc

This type of procedure is relatively simple (easy learn- again the matrix is fixed a priori, thus preventing th
ing). It is perhaps the most sensible approach in a network from being adaptive. In subsequent section
single layer network. The widely used outer product we will consider a relatively simple form of Eq. (3) i
algorithm 10 11 is an example of this type of learning which Awij(k) depends only on locally available infoi
algorithm, as are some schemes which utilize the pseu- mation, i.e., zi in one layer and zi in an adjacent layei
doinverse. 1 -13  Despite its simplicity, prescribed i'<k)-
learning is limited in several important respects.
First, while prescribed learning is well understood for The perceptron and the backward error propagati
single layer systems, the existing algorithms for two algorithms both fall in this subcategory if we allow ti
layers are largely localized representations; each input neuronal activity zi to include error signals, i.e., if ea(
x(n ) activates a single internal neuron." - 1 Moreover, neuron has distinct signal and error outputs which a
the entire learning procedure usually has to be com-* separated temporally or spatially. Anexampleofsw
pleted a priori. This last limitation is not encountered a neuron implemented in optics is given below in co,
in the simplest form of prescribed learning, the outer junction with an optical back error propagation sy
product rule: tem.

M In the case of self-organizing learning algorithmsv
- '9y'. (2) require not that the specified inputs produce a partic

M-1 lar response but rather that they satisfy a gener
In this case new memories may be programmed by restriction, often imposed by the structure of the ne
simply adding the outer products of new samples tothe work itself. Since there is no a priori expected r
weight matrix. Note that once the interconnection sponse, the learning rule for self-organizing systems
matrix has been determined by a prescribed learning simply
algorithm, it may be expressed in the form of a sum of 4(x[')w(kfl.
at most N outer products, where N is the total number
of neurons in each layer. Since volume holograms This type of learning procedure can be useful, I
record interconnection matrices represented by sums example, at intermediate levels of a network where t
of outer products in a very natural way, matrices which purpose is not to elicit an external response but rath
can be expressed in this form are particularly simple to to generate appropriate internal representations of t
implement in optics. 17-20  information that is presented as input to the netwoi

Error driven learning is distinguished by the fact There is a broad range of self-organizing algorithn
that the output of the system, y(k), is monitored and the simplest of which is probably lateral inhibition
compared to the desired response y(m). An incremen- enforce grandmother cell representations.=0. T
tal change is then made to the interconnection weights objective of the learning procedure is to have ea
to reduce the error. distinct pattern in an input set of neurons activatt

(k) (3) single neuron in a second set. In the architecti
shown in Fig. 2 this is accomplished via inhibit(

The change Awq is calculated from the vectors x(m) and connections between the neurons in the second s
y(-) and the current setting of the weight matrix wr(k) Once a particular neuron in the second layer is parti
(from which the state of the entire network can be ly turned on for a specific pattern it prevents
calculated). The perceptron2 and adaline,2 algo- connections to the other neurons in the second set fr,
rithms are examples of error driven learning for single' assuming values that will result in activity at m'
layer networks. Interest in such learning algorithms than one neuron. The details of the dynamics of st
has been renewed recently by the development of pro- procedures can be quite complex (e.g., see Ref. 28),
cedures suitable for multilayered networks.2' Error can corresponding optical implementations. An
driven algorithms (hard learning) are more difficult to vantageous feature of optics in connection with s(
implement than prescribed learning since they require organization is that global training signals, such
a large number of iterations before errors can be re- fixed lateral inhibition between all the neurons i,
duced to sufficiently low levels. In multilayered sys- given layer, can easily be broadcast with optical beai
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Fig. 3. Optical neura computer architecture.

in the volume medium. This grating diffracts an input
Ftu 2. Two-larer network with lateral inhibition Connections beam at spatial frequency k. into an output beam at

Sendims wth an oti circle era inhibitory, spatial frequency kp if these two beams satisfy the
Bragg constraint that

a. ircm nl m I Capabils d Vo no Hoogrma k- k- rX (7)
The basic architecture for optical implementation of This constraint is obviously satisfied if k. - k and kLe -

a neural computer is shown in Fig. 3. The figure kj. In general this solution is not unique. However,
presents a single stage of what may be a multilayered Psaltis et al.U have shown that by placing the neurons
system The nonlinear processing elements (i.e., the on the input and output planes on appropriate fractal
neurons) are arranged in planes. We have included a grids of dimension 3/2 it is possible to insure that only
training plane for reasons which will become clear the ith input neuron and the jth output neuron may be
below. Neurons in one plane are interconnected with coupled by a grating with wave vector Kq. In this case,
the neurons in the same or other planes via the third recording a hologram between light from the ith input
dimension. The strength of the interconnections is neuron nd the jth training neuron increases the con-
determined by the information which is holographal- nection strength between the ith input and the jth
ly stored in light sensitive media placed in the space output without directly affecting the connections be-

* separating the neural planes. Volume, rather than, tween other neurons. If instead of one neuron, pat-
thin, holograms are specified in Fig. 3 due to the much terns of neurons are active on the fractal grids of the
greater storage capacity of volume holograms and the input and training planes, the hologram recorded in
availability of excellent real-time volume media. Pho- the volume, i.e., Eq. (6) summed over all active pairs of
torefractive crystals are particularly attractive as holo- neurons, is the outer product of the pattern on the
graphic media in this application because it is possible input plane and the pattern on the training plane.
to record information in these crystals in real time at Exposing the hologram with a series of M pattern
very high density without degrading the photorefrac- yields the sum of outer products described by Eq. (2).
tive sensitivity. In this section we discuss the factors Note that the architecture shown in Fig. 3 is similar to
that determine the maximum number of connections a joint Fourier transform correlator. The use of vol-
that can be specified by a photorefractive crystal with a ume, rather than thin, holograms and fractal grids
given set of physical characteristics. There are three destroys the shift invariance of the correlator, making
distinct factors that need to be considered: geometric this architecture a totally shift-variant arbitrarily in-
limitations arising from the basic principles of volume terconnectable system.
holography, limitations rising from the physics of pho- A basic geometrical limitation on the density of in-
torefractive recording, and limitations due to the terconnections achievable through volume holograms
learning algorithms, is due to the fimite volume V of any real crystal. The

The Fourier lenses in Fig. 3 transform the spatial refractive index n(r) of such a crystal under periodic
position of each neuron into a spatial frequency associ- boundary conditions may be represented in the form
ated with light emitted by or incident on that neuron.
An interconnection between the ith neuron in the in- S
put plane and the jth neuron in the output plane is n(r) - (8)
formed by interfering light emitted by the input neu-
ron with light emitted by thejth neuron in the training k.- + +
plane. The image of the jth training neuron lies at the LL L, \L,/j
position of the jth neuron in the output plane. The ,, - 0,*-,2.... (9)
interference of the training signal and the input cre-
ates a grating in the recording medium of the form where n, is the amplitude of the Fourier component at

.( spatial frequency k, and Li is the length of the crystal
in the & direction. Since the maximu 'n spatial fre-

where A, and Aj are the amplitudes of the fields emit- quency which may be Bragg matched to diffract light
ted by the ith and jth neurons, respectively. Kij is at wavelength X is 2ko, where ko = 2,/X, the sum in Eq.
equal to k, - kj where k and ki are the spatial frequen- (8) is finite in holographic applications. The number
cies at which the corresponding amplitudes propagate of spatial frequencies in the sum is S V/X . Psaltis et
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al.U demonstrated that S is sufficient to fully and standard deviation, 4/10,l, where il is the rms value of
independently interconnect neural planes which are iqj. This fact allows us to find a simple limit for ,7
limited to fractal dimension 3/2. Thus in this previous given by
work the issue of these geometric limitations was fully (12)
resolved in the condition that processing nodes in the
input and output planes must be appropriately ar-
ranged on fractal grids. Other geometric limitations
arise due to finite numerical apertures and the physics Note that, although we have assumed that the sums in
of holographic recording mechanisms. These factors Eq. (11) are over a set of incoherent sinusoids, this does
may be shown to contribute a scaling factor to S which not imply tlt the sum in Eq. (10) is incoherent. To
is independent of V and X. For V - 1 cm3 and X - 1 illustrate this point imagine that Oq - 0- j. In this
gm, V/Xa is equal to 1012. In interconnecting neurons case the terms in Eq. (10) add coherently. However if
arranged on fractal planes, even though the recording (i and oj are independent random variables the sums
geometry typically allows access to only 1% of grating in Eq. (11) still add incoherently. Thus a random
wave vector space, we still may achieve 1010 intercon- phase term in the transmittance at each neuron causes.
nections per cm 3 . the charge densities stored in the crystal to add inco-

We now address the question of whether this large herently but does not necessarily destroy the coher-
number of gratings can be supported in a photorefrac- ence of the optical system.
tive crystal, i.e., do photorefractive crystals have the The holographic transformation described above
capability of simultaneously storing 1010 gratings each can be used to implement neural architectures which
with sufficient diffraction efficiency? In this paper we map an activity pattern described by the outputs IxA} of
answer this question based on simple arguments in the the neurons on one neural plane to the outputs Ly,4 of
context of a neural architecture. The conclusions we the next neural plane. In a coherent optical system x,
reach are the same as those we arrive at through a more is represented by Ej, ot exp(j~j) and wij is represented
thorough examination of the problem. Photorefrac- by iiij exp('qi). Since most simple optical nonlineari-
tive holograms are produced in electrooptic crystal via ties are based on absorption the transformation be-
the modulation of the index of refraction by the space tween (XJI and b'd typically takes the form
charge field created by an optically driven inhomogen- / 2)eos charge distribution. A neural network architec- y= wijx, . (13)
ture implemented in volume holograms performs a
transformation of the form where f is a thresholding function implemented in the.

neural plane. This functional form might be avoided
E, i. exp(jk1 - r) exp(ji) + c.c. q1 exp(jW'ij) using interferometric detection. In an incoherent op-

tical system x, is represented by JEj ,12 and wij is

X eOX(M,. r) represented by 'i7, The transformation between JxjJ
and LYd takes the form

X E , • (14)

X expu~j) + c.C. (10) i Y
between the field amplitude, Ej ot exp(jkj • r), of the In either case the function f must provide sufficient

gain G to regenerate the signal power of the systemjth neuron and the field amplitude, E1 im exp(jk •, after each layer. If we assume that each layer contains |
incident on the input of the ith neuron. c.c. denotes afteronchere betwe e the poer ini
the complex conjugate of the preceding term. 0j and dn neurons, the relationship between the power inci-

0i are the phases of the field amplitudes corresponding single neuron, I , a the poer wit by a
to the ith and jth neurons. Oij is the phase of the single neuron, lu, for a coherent system with O i -

grating which connects the ith and jth neurons. The ' is2
field amplitude diffraction efficiencies , are propor- -' 2E .
tional to the component of the space charge density in . ezp~iV.i)E, , exp(j4,)
the crystal at spatial frequency Ki, - k, - kJ.29 The I
total space charge density due to N stored gratings is (15)
constrained at every point in the crystal to be less than
the acceptor trap density. This implies that From Eq. (12) we find

iiii exp(i0j) e .pQXI, r) < 40, (I1 G " (16)

For an incoherent system the corresponding relation-
where o is the maximum diffraction efficiency for the ship is
field amplitude when only one grating is recorded. If
/ii is an independent uniformly distributed random go, - o utIEII = " (17)

variable on (-rr), with high probability the right- i

hand side of Eq. (11) will not exceed a few times its In this case Eq. (12) yields
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(18) devices might also be needed in adaptive incoherent
2" systems to detect the phase of a grating to correctly

update the associated interconnection, in the incoher-
Note that 11G is the total diffraction efficiency of the ent case it is only necessary to detect the current state
volume hologram. Since this must be less than 1 we of the phase. In the coherent case it is generally neces-
know that G > 1. io is determined by the physical sary to continuously track the phase.
properties of the crystal, including the maximum
charge density available for grating storage, the thick- . A
ness of the crystal, and its electroopticcoefficients. We now ture to the question of how we can specify
For small T1 we may estimate ijo as the strength of each interconnection. There is a nice

2- -compatibility between simple (multiplicative) Heb-
40- bian learning and holography; the strength of the con-

nection between two neurons can be modified by re-
where L is the length of the crystal along the optical cording a hologram with light from the two neurons.
axis. For Ae - 10-r, A - 10-6 m, and L - 10 - 2 m, 1o M It is not possible, however, to record multiple holo-
0(1). This means that in coherent systems relatively grains in a single crystal independently. Thus far we
little gain [i.e., G - 0(1)] is needed to recall a large have shown that the space charge in a photorefractive
number of sinusoidal gratings stored in a photorefrac- crystal may be arranged to achieve a very large number
tivecrystal. Of course as we attempt to store arbitrari- of independent interconnections. The task that re-
ly many gratings other limits arise, but at least over a mains is to find a means of using optical beams from
finite bandwidth of the electrooptic response of the outside the crystal to correctly arrange the 3-D charge
crystal coherent systems should have no difficulty in distribution. In particular, we must find means to
achieving interconnection densities of the order of address the full 3-D bandwidth of the crystal from 2-D
those implied by the geometrical constraints. Inco- neural planes. To successfully implement learning
herent systems, on the other hand, are unable to take with photorefractive crystals the nonlinear dynamics
advantage of holographic phase matching and are thus that govern the multiple exposure of holograms in a
less efficient.3° To achieve N = 1010, for example, we photorefractive medium must be reconciled with the
must supply a gain of G - 10 in each neural plane. nonlinear equations that describe the iterative proce-
Examples of how G may be obtained optically include dures of learning algorithms. It is extremely difficult
various combinations of image intensifierp and spatial to fully characterize analytically the ability of an opti-
ight modulators and multiwave mixing in nonlinear cal system to simulate a particular learning algorithm.
materials. For example, an optically addressed spa- We will have to rely heavily on experiment in the
tial light modulator such as the Hughes liquid crystal search for the optimum match between nonlinear op-
light valve is sensitive to -10 MW/cm 2. If the read-out tics and learning procedures for neural networks. In
beam has an intensity of 1 W/cm 2 we achieve a gain of this section we describe learning architectures which
105.  are relatively simple to implement experimentally and

The choice between coherent and incoherent imple- which can be used to evaluate the capability of photo-
mentations of optical neural networks offers advan- refractive cryisads to store information in the form of
tages and disadvantages on both sides. The incoher- connectivity patterns in a neural computer.
ent system is easier to implement but requires the large The first learning algorithm we consider is the pre-
gain described above and offers only unipolar activities scribed sum of outer products of Eq. (2). As we saw in
and interconnection strengths. The coherent imple- the previous section, a sum of this sort may be imple-
mentation offers bipolar activities and interconnec-, mented as a series of exposures of a volume hologram.
tions but requires rigid phase stability in the optical In a photorefractive crystal, the exposure of a new
system over potentially very long learning cycles, hologram partially erases previously recorded holo-
This stability is not difficult to achieve in prescribed grams. This places an upper limit on the maximum
learning architectures, but may be more difficult to number of holograms that can be recorded and thus
achieve in adaptive systems. In addition, coherent the number of associations M that can be stored in the
systems generally square the signal incident on the crystal. The limit is found by determining the mini-
nonlinearity, unless interferometric detection is used. mum tolerable diffraction efficiency for each associa-
Interferometric detection is difficult to implement in a tion and solving for the number of exposures that will
complex optical system. Although the incoherent sys- yield this efficiency. Let A, be the amplitude of the
tem is straightforward to implement, this simplicity mth hologram recorded. After a total of M exposures,
comes at a cost of requiring biasing to compensate for I-t\./
unipolar values and external gain. The coherent sys- ATm - eSIexp(- f (19)
ten is more elegant in that these additional mecha- e4 /.1 -0r

nisms are not necessary, but it is more sensitive to where A0 is ',he saturation amplitude of a hologram
specific design issues. One way of making coherent recorded in the photorefractive crystal, tm is the expo-
implementations more robust might be to include sure time for the mth hologram, Tr and r, are, respec-
adaptive optics, such as phase conjugate devices, to tively, the characteristic time constants for recording
compensate for phase instabilities. Although these and erasing a hologram in the crystal. We allow for the
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case that r. & rI in light of limited evidence that this
may be the case in some crystals31 Ionic conductivity
is one mechanism leading to multiple time constants.
We can use several different criteria for selecting the
exposure schedule t.. For example, ifwe require Am - > 1 a o - L4 I 'a

A.+, for all m we obtain Fig. 4. Optical architecture for backward error propagation leam-

I {-) 1-5t'+[ (20)Tr,/ ", 

If 7, - r., the solution to Eq. (20) in the boundary
condition t >> r,. is The second architecture we will discuss is capable -if

implementing the backward error propagation algo-
r.- , ) m > 1, (21) rithm23A' in a multilayered network. The architec-

ture, shown in Fig. 4, is a variation on a system we.
which yields described previously.6 - The system as shown has two

A( layers but an arbitrary number of layers can be imple-
Am- A, . mented as a straightforward extension. An input

training pattern is placed at plane N1 . The pattern is
For the case 7r 0 r, we defime pm such that t. - pt.re. then interconnected to the intermediate (hidden) lay-
Since, from Eq. (19), limM-.iAI = 0, Eq. (20) may be er N 2 via the volume hologram H1. A 2-D spatial light
satisfied only if limm-.itm -0. Thus for some mi > 1, modulator placed at N2 performs a soft thresholding
p.% << 1 and t., << T, Then, from Eq. (20), operation on the light incident on it, simulating the

t-..= P/ p action of a 2-D array of neurons, and relays the light to
t, , 1+ f'23) the next stage. Hologram H2 interconnects N2 to the

+ - -- output plane N 4 where a spatial light modulator per-
7. forms the final thresholding and produces a 2-D pat-

or tern representing the response of the network to the
P- particular input pattern. This output pattern is com-

(24) pared to the desired output and the appropriate error
'-' =1 + pimage is generated (either optically or with the aid of

By induction, for m > m an image detector and rerecording) on the spatial light
1 modulator N 4. The undiffracted beams from N and

P" (26) N2 are recorded on spatial light modulators at N3 and
(m - m0) + N5, respectively. The signals stored at N3, N 4, and NP" are then illuminated from the right so that light propa-

As m grows large with mo fixed, Eq. (25) can be shown gates back toward the left. The backpropagation al-
to yield gorithm demands a change in the interconnection ma-

1 (26) trix stored in H2 given by
mA -acf(z?')zq- (30)

!-. (27) where a is a constant, e, is the error signal at the ithm neuron in N 4, x4 is the input diffracted onto the ith

The. value of m for which the approximation holds neuron in N 4 from N2,f(x) is the derivative of the
increases with the r jo r,/e.. In the case r, - r , for thresholding function (x) which operates on the input
example, t/3t3 = 0.82 and -r./lOtio -0.95. In any case, to each neuron in the forward pass, and z9 t is the
for M >> mo for some m0 satisfying the constraints output of the jth neuron in N 2. Each neuron in N 4 is
pi ceding Eq. (23), illuminated from the right by the error signal a, and the

backward transmittance of each neuron is proportion-
A, - Am 1 - ex (28) al to the derivative of the forward output evaluated at

the level of the forward propagating signal. As we
for all m. Solving for M with A. << A0 we find a limit have described above, the hologram recorded in H2 is
for M given by the outer product of the activity patterns incident

from N4 and N5. Thus the change made in the holo-
M- . 9) graphic interconnections stored in H2 is proportional

, A, to the change described by Eq. (30).
This result agrees well with what we might expect The change in the interconnection matrix stored in
intuitively. The number of exposures allowed in- Hi required under the backpropagation algorithm is
creases in proportion with the ratio -r/r, (if we erase
slowly we can store more holograms) and the ratio of (31 ) - ") fx (31)
the maximum possible and minimum detectable grat-
ing amplitudes. where x, is the activity on mth input on N1. The error
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signal applied to N 4 produces a diffracted signal at the lae P IP rU k

Ith neuron in N2 whichis proportional to Co

- PZ 4 e 2x). (32) ±U1 x esp"

We assume that, during the correction cycle for H, N5 f! ,
is inactive. Once again, if the backward transmittance
of the lth neuron is proportional to f(xl), the changemade to the hologram by the signals propagating back Li.5 Simple photorefractive learning systenm PB is a polarizing

mde tbeam splitter, L1 and .2 are imaging lenses; WP is a quarterwave
lrom N 2 and N3 is proportional to the change pre- plate;SHisashutterPisapolarizer;DisadetectorMisamnror.
scribed in Eq. (31).

A key element in this architecture is the assumption
that the spatial light modulators at N2 and N 4 may
have transmittances which may be switched between a m
function f(x)/x for the forward propagating signal and 6 F] L1
P(x) for the backpropagating signal. In both cases x o , 2 3

represents the forward propagating signal. We have
previously described how nonlinear etalon switches
might be used in this application."' Electrooptic spa-
tial light modulators might also be used.8

We have performed an experiment to show how a [ / -
single layer of error driven learning might be imple- 3
mented. This experiment is shown schematically in ____._'" _".._.'--_" _

Fig. 5. In this case, the stored vectors x(m) correspond
to 2-D patterns recorded on a liquid crystal light valve ecal o a 0 e
from a video monitor. The output vectors ykm) corre-
spond to the single bit output of the detector D. An 3 1 3
input vector is imaged onto a photorefractive crystal Fig. 6. Experimental learning curves.
via two separate paths. The strength of the grating
between the image of the input along one path and the
image along the other path is read out by light propa-
gating along the path of one of the write beams in the threshold. However, they have the undesired effect of
orthogonal polarization, i.e., while the write beaminci- also driving pattern 3 above threshold. Thus in the
dent on the detector is linearly polarized, the other third learning cycle 3 is erased. In this particular erase
write beam is circularly polarized. The polarizer P cycle the erasure was too severe. Note that pattern 2 is
blocks the linearly polarized beam and one component erased in this cycle, even though there is no overlap
of the diffracted circularly polarized beam, passing between this pattern and pattern 3. The reason for
only the orthogonally polarized diffracted beam. This this is that the two images of pattern 3 are in focus only
allows readout of the grating as it is being recorded. over a limited region of the crystal volume. Outside of
The diffracted light is imaged onto the detector D. this region the unfocused image may erase the holo-
This system classifies input patterns presented to it gram formed by pattern 2. In the subsequent two
into two classes according to whether the output of the cycles patterns 0 and 2 are again reinforced. This has
detector when the pattern is presented is high or low. the unwanted effect of driving both patterns 1 and 3
If during training a pattern we would like to classify as just above threshold. In the final two cycles patterns 1
high yields a low response, the hologram is reinforced and 3 are erased until both are below threshold. At
by exposing the crystal to the interference of the two this point all patterns are correctly classified and
beams, each carrying the image of that pattern. This learning stops.
exposure continues until the diffracted output in- In this experiment the photorefractive crystal acts
creases by a fixed amount. If a pattern which should as a 2-D modulator. The diffraction efficiency be-
be classified as low is found during training to yield a tween the two imaging paths is high where the patterns
diffracted output that is too high, the hologram dif- 0 and 2 overlap and low where patterns 3 and 1 overlap.
fracting that pattern is erased by a fixed amount by As mentioned above, a problem arises in the fact that
exposing the crystal with only one of the imaging the overlap is well defined only in the image plane,
beams. (One beam is blocked by the shutter SH). An meaning the crystal must be thinner than the depth of
experimental learning curve showing the diffracted focus of the images. To utilize the full capacity of
intensities for each learning cycle for four training photorefractive volume holograms it will be necessary
patterns in a system implemented ur'.ig an Fe-doped to move beyond this implementation to architectures
LiNbO3 crystal is shown in Fig. 6. The system classi- utilizing the full 3-D capacity of the crystal as dis-
fies the patterns 0 and 2 as high and 1 and 3 as low. At cussed above. Nevertheless, this experiment demon-
first all patterns are low. The first two learning cycles strates in a rudimentary way how learning in photore-
are intended to drive the outputs of 0 and 2 above fractive crystals may proceed.
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Abtract

Generalised Fourier correlators impouing finite system space-bandwidth products are de-
scribed and a clam of binary filters is proposed. In pattern classification and signal registration
applications it is shown that for a class of signals the binary filters yield the same asymptotic
performance an the matched filter. It is hence adduced that a dynamic range of a single bit in
the filter suffices for classification purposes. The effects of statistical side-lobe fluctuations and
a finite system space-bandwidth product are included in the analysis. It is demonstrated that
performance improves in a natural fashion with increase in the system space-bandwidth product
for both the binary filter and the matched filter.

1 INTRODUCTION

Matched filters are commonly used in diverse applications in communication systems, signal pro-
cessing, and pattern classification, where the task is typically the recognition of a particular signal
or pattern immersed in noise. The principal theoretical argument supporting the use of Matched
Filters is the classical result: Among the class of all linear filters, matched filters maximise a (suit-
ably defined) signal- to-noise ratio (1]. Practical implementations of matched filters-and linear,
shift-invariant systems, in general-are much facilitated by the fundamental Fourier convolution
theorem wherein convolutions (or correlations) in one domain are transformed into products in
the Fourier domain. As a consequence, relatively simple analog implementations such as optical
Fourier-plane correlators (21, and digital implementations using algorithms such as the Fast Fourier
Transform [31 abound.

The implementation of the system transfer function for the matched filter, however, requires
a large dynamic range. A question of considerable theoretical and practical import is the deter-
mination of minimal complexity filters which have minimal dynamic range requirements, and for
which good classification performance still attains (vis-k.vis the matched filter). The issue here is
to determine the critical information needed for classification, and to discard redundant informa-
tion. In this paper we propose a class of low complexity binary filters which are a step toward the
resolution of this question. These filters encode information in the phase of the Fourier transform
of the desired signal and require a dynamic range of just one bit.

*Currently with the Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA 19104
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Our principal theoretical result concerning the binary filters is the following: For statisticoly
uncofrreed pattern clwo te binary Jilters provide the same asymptotic clsification performance
as the matched filter. In fact, the binary filters provide classification performance comparable to
(though bounded above by) the matched filter over all ranges.

These binary filters an of considerable practical importance. The requirement of a large
dynamic range for the filter (corresponding to the many bits required to represent each sample point)
is obviated, and just a single representation bit is utilised per sample point. The resultant decrease
in required memory storage paves the way for low cost, low complexity systems-both digital
and analog-which retain good classification performance. Of particular interest in optical filter
implementtions is the recent availability of a two-dimensional binary spatial light modulator-the
magneto-optic device. We have demonstrated good classification in experimental optical correlators
with our binary filters implemented using these devices [4].

In the next section we define a general family of bounded space-bandwidth product Fourier
correlators, and formally prescribe the matched filter and the binary filter in this context. We also
outline the signal statistics that we utilise, and set up a performance measure which incorporates
information about both the correlation peak, and the side-lobe energy for all the pattern classes.
In section 3 we analyse the performance of the matched filter and the binary filter in a two-
class pattern recognition problem where the patterns belong to well-defined statistical classes,
and are noise-free. We obtain analytical results for the performance measure as a function of
the system space-bandwidth product in the two cases. In section 4 we invcstigate the attrition in
classification performance in both systems when the input patterns are corrupted by additive noise.
Sections 5 and 6 are devoted to numerical solutions and discussions of the comparative classification
performance of the matched filter and the proposed binary filter: We demonstrate the monotonic
improvement in performance in both systems as the system space-bandwidth product is increased,
and show the asymptotic merging of the performance curves for the binary filter and the matched
filter.

Notation: Let w be some fixed (but arbitrary) positive quantity. To each real-valued function,
f, of a real variable we associate its finite-domain Fourier trmnaform F,, formally defined by

F.(u) = if (s) e-i2wuz dx (1)

We will use the terminology "space" for the variable z-the domain of the input signals-and
"frequency" for the variable u-the domain of the associated Fourier transform.

2 FOURIER CORRELATORS

2.1 Bounded Space-Bandwidth Systems

The conventional Fourier correlator of equation correlator is shift invariant and admits signals of
infinite space-bandwidth product (SBP) without loss of information. In this paper we will analyse
the effect on classification performance of imposing a finite system space-bandwidth product. In
pa .ticular, we consider shift variant Fourier correlators which process inputs through windows
(-W, W) in space, and (-P, Y) in frequency: For a given signal, f(z), and reference, h(z), the
output, g(z), of the bounded space-bandwidth correlator is given by

g(z) =., ( ,( 8 du
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We define the systm pasce-&endwidth product, which we denote by p, to be the product of the
width of the spatial and frequency windows: p = 4w1,.

We consider two representative pattern classes, C1 and C2. The input signals are real valued
functions, f(z), which are sample realizations (drawn from some underlying probability distribu-
tion) of one of the two pattern classes . We will denote by fj(z) the input conditioned upon
being drawn from pattern class C,. For fixed system space-bandwidth product, p, we compare the
following two classfiers for different choices of reference signal, h(z).

Matched FUte': The reference signal, h(:), is chosen matched to the sample realisation, fl(z),
of das C1. The correlation output, g9(x), for the matched filter conditioned upon class C, at the
input is given by

Of W = .W ' ,). (2)

If w = Y = co, we have the classical matched filter. For finite p a correlation peak is still produced
for class C1. (Classification performance, however, deteriorates as p decreases.) Note that the
matched filter above, in general, requires exponential dynamic range.

Binary Filter. The reference signal, h(z), is chosen such that

Hw(u) = sg{t { F, 1(u)}} { 1 if R{FW,I(u)} < 0

The filter hence takes on values -1 and +1 only at each frequency, so that we have a dynamic range
of one bit. The correlation output, y7(z), of the binary filter conditioned upon class Ci at the input
is given by

F.(U) = LF()sgnR 1F.,,(v)}} e2 a d. (3)

Note that the binary filter tracks the phase of F,,, (u), so that we can expect a correlation peak for
class Ct, but not for class C2 .

In figure 1 we demonstrate two correlations of a random one-dimensional input sequence; in
figure L(a) the correlation was accomplished using a matched filter, while in figure 1(b) the corre-
lation was performed using a binary filter. As seen, the correlation peaks and side-lobe fluctuation
levels are essentially indistinguishable in the two caes.

2.2 Performance Measure

In characterising the classification performance of the two filters, we concentrate on two key mea-
sures: The strength of the correlation peak, and the side-lobe structure. For specific sample
realisations not much can be said about the size of the side-lobes; however, if signal statistics are
known we can extract peak and side-lobe information from a consideration of the ensemble. In the
next section we describe a specific statistical structure for the two signal classes from which we can
obtain quantitative estimates of filter performance.

For j = 1, 2 let gj(z) denote filter output conditioned upon class Cj being present at the
input. Define

7i = sup{ g,(z)}l},
T = sup{Vr{g,(z)}}.

' " I -limimm ~i
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We deine the pserformnce ceffieset p by

(01 - 02) .4
h +112

The term in the numerator measures the relative size of correlation peaks for the two classes, while
the term in the denominator factors in the average energy in the side-lobes. The coefficient, p,
hence is an indicator of how well thefliter discriminates das C, from class C2 .

We denote by p* and pP, respectively, the performance coefficient for the matched filter and
the binary filter. We shall take system performance to be a monotonically increasing function of
the coelficient p, with the system with the largest p realising the best performance.

Note that the form of the coefficient p is similar to a signal- to-noise ratio, the "signal"
corresponding to class C, and the "noise" to class C2. (In fact, when the output variable g(Z) is
Gaussian, and the a priori probabilities of the two classes are the same, it turns out that the form
of the Bhattacharyya coefficient (51 is identical to equation 4 for p). From classical communication
theory we have that for correlational-systems which are linear functionals of the input signal, the
peak signal-to-noise ratio for a signal immersed in white noise is obtained for the matched filter.
Hence we expect the classification performance of the binary filter to be bounded by that of the
matched filter.

2.3 Signal Statistics

In order to facilitate analysis we assume a specific statistical structure for the ensemble os signals
in the two classes. We assume that the signals fi(z) and f 2(z) corresponding to the two classes C,
and C2 are sample realisations of mutually independent, white random processes with

1{8h(-)) = 0,
EfM()f(Y)) = O6(- Y). (5)

The signal classes have been restricted to be stationary and white in order to effect some
simplicity in the ensuing analysis. The stationarity constraint can be relaxed to allow of correlation
functions of the form ri(z)6(z - y); the analysis for this case is essentially the same as for the case
we consider. With the added constraint that the process be Gaussian, one or both constraints can
be relaxed to encompass general correlation functions of the form r,(z, y).

From equation 1 the real and imaginary parts of F,,(u) are given by

f = jfj() cos2rudz,

{F."Au)} = f ,(z) sin 2iz dz. (6)

The random processes fi(z) are independent and zero mean. By virtue of the Central Limit
Theorem then, it can be readily seen to follow that R {F,,(u)}, ! {F,,i(u)}, R {F,,, 2(u)}, and
0k {F.,,2(u)) are mutually independent Gaussian random processes with zero mean. Some algebraic
manipulation readily yields the following:

E{R{,F(u)}Of{ .{F ))} = 0, (7)
E{RF.(u)}RF,(t))}= uw[&inc2w(u- t) + sinc2w(u + t)], (8)
E{ I{F,,j(u)) {F~,j(t)}} -- w[inc2w(u- t) - sinc2w(u + t)j. (9)
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We also require the first and second morents of the random processes sp{ {Fj(u)}) and
IR {.A,(v))Io=. n , : ? -. [-1,1] by

r2W(V - t) + sinc 2W( + t) (10)
(tt) -- (I + sinc 4W)1/ 2 (l + siac 4Wt)11 (

Note that from equation 8 it follows that for each s and t, r.,(, t) is just the correlation coefficient
of the random variables R {Fj(u)) and I {Fj(t)). The following results can be readily shown
(d. [61, for instance).

E[sgn{{A(u)}}] = , (11)

E{ljt {FP.(U))I} V1 + sinc 4wu, (.2)

E[sgn{R{(F~(u)))sgn{ {Fw(t)})] = s&in ' r.(u, t), (13)r

E{l {F 4(u))I IR{Fq,,(t))I} = L [(1 + SinC4WU)1/ 2 (1 + inc4wt)/2(l - r"(Ut)2),/2

+ (sinc 2w( - t) + sinc W(u + t)) sin-' r(u, t)] (14)

3 TWO-CLASS DISCRIMINATION

3.1 The Matched Filter

Our consideration of the matched filter as a correlational system described by equation 2 differs
somewhat from the classical deterministic matched filter [1] in the inclusion of a finite system space-
bandwidth and the representation of both input and reference signals as members of a statistical
class. The performance coefficient. that we derive hence reflects the relative correlation peaks,
and the "noisy" side-lobe fluctuations averaged over the ensemble as a function of p (the system
SBP).

We estimate the parameters, pu and %, in equation 4 in turn for the two classes using the
results tabulated in section 2.3.

Class C1: The system output is given by

= ([= {F.,,€u)}j 2 + [){~ 1 u}2 i~de

A .simple computation yields:

." = 4W.?, (1)

-h = ( - t)(sinc4wvt)2 dt. (16)

LM'
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Clwa C2: The system output is given by

02 (2) M Lf F, 2(u) P.,(u)e "dU (17)

The correlation pea and average side-lobe energy can agin be simply estimated:

/32 = 0. (18)

3 nj2V24j0(1 _ t)(snC 4Wa4)2 dt (19)

Defining a as a function of the space-bandwidth product p by
a.p) =j(i- t)(Sincp* 2 d, (20)

the performance coefficient of equation 4 is hence given by

WI2 - ,V2 ](2 1)(I +
Asymptotic veadtr. The above expression can be readily evaluated for extreme values of the

system space-bandwidth pioduct. For very low space-bandwidth products a(p) approaches 1/2, so
that 2 2PU ai 1 asl - 0

-1+2 1/ 2

For very high space-bandwidth products, on the other hand, a(p) asymptotically approaches the
value 1/ 2p, so that

P* ".-.1+ 2us/u2 as p -" 00

The asymptotic results correspond well with intuition. For very low space- bandwidth prod-
ucts we expect a low processing gain for the system as not much correlation matching can be
obtained. For high space-bandwidth products on the other hand, the use of uncorrelated signals at
the input yields large processing gains increasing linearly with the space-bandwidth product.

It is instructive to compare the performance measure given by equation 21 with the classical
matched filter result for the signal-to-noise ratio (SNR) of a deterministic signal immersed in white
noise. The procesng gain of a classical system (defined to be the ratio of the output SNR. to the
input SNR) is given essentially by the signal space-bandwidth product [1]. If we define O2/2 to be
a measure of the inpui SNR for the statistical case under consideration, then the processing gain of
our system, in the limit of large p and small input SNR, is given by l/2a(p) m p, which is precisely
the classical result. (The additional input SNR dependent term present in the denominator of
equation 21 arises because the statistical side-lobe fluctuations are also taken into account in our
performance measure; this term will not be significant for low input SNR. scenarios.) In fine, the
presence of a finite system space-bandwidth product manifests itself in a lass of processing gain;
the larger the space-bandwidth product, the more the processing gain realised by the system.

3.2 The Binary Filter

The system output conditioned upon class Ci being present at the input is given by equation 3.
We again estimate the parameters, #j and a,, for the two classes in turn.
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Class Cst The output of the system with fi(z) at the input is given by substitution in equation 3:

Or(3 ~f F.,i(u)}lI F u+ i f F.,,z(u)} sg{R {F.,I(u)) e 2 du.. (22)

From equations 7 and 12 it then folows that

;= sup { g()I} 1 j(1 + sinc pt) 1/2 d, .(23)

where, as before, p is the space-bandwidth product 4wYn.
Now, in equation 22 set

k,(Z) = lit {F.,I(u)}l ei2' , du,

k(W = 'I {F.,,(u)} sp{R {F., 1(u)}} Ci2W. dU.

Then
j(z) = k1(w) + ik2(X).

Clearly, kj(z) and k2(z) are uncorrelated complex random processes with k2(z) being zero mean.
Hence

Var {s(z)} =- {lk(z)l 2} + E {Ik 2(z)12} - IlE {k1(Z)}) 2.

Using equation 9 and equations 12-14 we obtain after some algebraic manipulation that

Var {gf (z)) "~ ~ L [sinC{( & - t)) sin 1' rp/4(U,t0 - 1(1 + sinc pU) 112

X (1 + Sincpg)1/ 2(l _ /1I - ?p/4(U, t)2)J coo 2ir(u - t)&vz du dt . (24)

Note that r,,(u, it) = rpl4(u,t), which can be verified by direct substitution in the defining
equation 10 with p = 4wY.

No analytic expression is available in general for rh = sup. {Var g~(z)}, and we have to
resort to numerical evaluation for specified parameters p, O?, and a2. (Note that in general, the
supremum does not occur at z = 0.)

Class C2: From equation 3, the output for class C2 is given by

9214) V F.,(U) sgn{R {F.,1(u)}} ei'ru du.

Again having recourse to section 2.3, we can show that

= sup{IE{ge(z)}} =0, (25)

Var(g ) = f j sa{uin{ - e)} sin - r,/4(u, t) cos 2r(u - t)Pz du dt. (26)

Again, no analytic expression can be found for Yp = sup, {Var g2(z)), in general, and we must
resort to numerical evaluation.
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Define Po, P, and j62 as functions of the space- bandwidth product p by

46(p) = I( + hincpt)1/ .dtI (27)

#) s$up sinc {-(u - 9)} sin-' r,/4(u,t) cos 2r(- t)vzdud , (28)

C)= '. L'L {sinc{ (v- O)} ,in-4 r,1 4(u.t) - !(1 + sincpu) /2

x (1 + sincpt)1{1 - (1 - r,/4(U,t)2)1/21} coo 2r(u - t)vz du.dt (29)

Combining the results of equations 23-26, and using the defining equations 27-29 we obtain the
performance coefficient, ps, of the binary filter to be

01 =W + "() 01/CF

We will return to a comparative analysis of the expressions 21 and 30 in section 5.

4 CLASSIFICATION IN ADDITIVE NOISE

In practice, the issue of system robustnes in the face of signal degradations, and noise becomes
important. We illustrate how noisy signals result in performance attrition in the two correlator
systems.

. We consider the cue where the input signal f(z) is contaminated by an additive noise term
n(x). (We assume that the reference signal, h(z), being known a priori can hence be represented
in a reasonably accurate and noise-free manner). We take n(x) to be an independent noise process
which is additive and white with

E= 0,
E {n(z) n(y)} = 16(x -y).

The input signal term is then fj(x) + n(z), and the reference signal term (matched to class CI) is
h (Z).

4.1 The Matched Filter

e t gi,,,(z) denote the (noisy) correlation output of the system when the input signal is a noisy
disation of class C,, viz., f (t) + n(z). Then

gFj(z) &1 (u du + &~(u) .P, 1(u) ei2'uz d

where the first term, g'j(z), is the noise-free system response of equation 2 and the second term,
g , is the additive noise term in the output correlation. The noise term independent of the signal
term, and is zero mean with peak variance at the origin

Var {,(0)) = 2p2 uoV2a(p),
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identical in form to equation 19. Hence, usng equations 15-20 we have

/8h., = sup {gJz{.(z)}I} = p
VA4 = -p{Var{gL' (zf=2}} - ,1 ov '(p) (042 +0.2).

a= up {Var {g(z)}} - 290? a ) (o + o ).

The performance coefficient pm for the matched filter when input noise is present is hence
given by

,- + +2a(p) (i + -J2v (31)

where a(p) is as defined in equation 20.
A comparison of equations 21 and 31 shows that the presence of additive input noise is

equivalent to an additive increase in the variance (or spread) of class C2 by exactly twice the spread
of the noise.

4.2 The Binary Filter

Tracing through an analogous analysis yields the performance coefficient p, for the binary filter
when the input is degraded by additive noise. In general, however, it turns out that the form of p,
is not conducive to a convenient representation as in equation 30 for the noise-free case; specifically,
in equation 29, the functional #2(p) has to be replaced by a more complicated supremum taken
over the sum of two integrals, the coefficient of one being a2, and of the other being o.. (The
suprtmum is now a function of not only the space-bandwidth product p, but also of the signal and
noise variances.) Using sup {A+ } sup {A}+sup {B}, we can arrive at the following convenient
lower bound estimate for p. for the sake of comparison:

2t0o(p)pa : >-. , ( ~) 32)
(32

PA1P) + 02(P) vJY;1-T

with the functionals Po(p), 01(p), and 0(p) given by equations 27-29.
On comparing equations 30 and 32 we see that the effect of additive noise is to create a

larger effective spread for class C2 just as in the case of the matched filter. In both cases, the noise
effectively reduces the ability of the system to pick out class C1 by increasing side-lobe energy, and
at the same time increasing the correlation spread of class C2 .

5 NUMERICAL SOLUTIONS AND DISCUSSION

Let a r3 denote the ratio ao /of + 2tr . We will refer to a2 as the clas pread ratio; in essence o
is astatistical measure of the relative strengths of "signal" (eas CI) and "noise"(cas C3, and
additive noise) at the input of the correlational system. Recapitulating the expressions for the
performance coefficients for easy reference, we have

2o(p) + 4a(p)a 2 ,
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2 Poa(p) a2~

where the functionals a(p), Ao(p), 01(p), and #2(p) are defined, respectively, in equation 20 and
equations 27-29.

A numerically generated family of performance curves for the two systems is depicted in
figures 2 and 3. In each figure the performance coefficient, p, is plotted as a function of the class
spread ratio, a2 , and the family of curves is generated by varying the space-bandwidth parameter
p between 8 and 256. In order to facilitate comparison between the matched filter and the binary
filter, for values of p = 8, and p = 256, the corresponding performance curves of the two systems
are extracted from figures 2 and 3, and plotted on the same graph in figures 4 and 5.

It can be immediately seen from the figures that, all other things being held constant,
the performance coefficient p is a monotonically increasing function of the system spaoe-bandwidth
product for both filtration systems. This is clearly in accordance with our expectations as increasing
the system space-bandwidth product is equivalent to increasing the size of the windows in the space
and frequency domains, so that a greater degree of correlation matching can be obtained.

Now, when the class spread ratio, a2, is large, we have a situation where the noise power,
0~, and the class C2 spread, a, are both much smaller than the class C, spread, a?. This can be

viewed as essentially saying that patterns of class C, can take on values from a much wider set than
can patterns of class C2 and the noise patterns. The probability of significant cross-correlation in
any particular case is then quite small, so that we expect good classification performance for large
values of a. This intuitive expectation is echoed in figures 2-5, where we see that for the matched
filter and the binary filter, the performance coefficient p is a monotonically increasing function of
the class spread ratio, a2, for each performance curve (corresponding to fixed p).

For the matched filter, a close examination of the asymptotes and the slope near the origin
of each performance curve reveals that "large p" behaviour holds for relatively small values of the
system space-bandwidth product (as small as p=8). The asymptote of the performance curve for the
matched filter is approximately p/2, and the graph near the origin is a straight line with positive
slope p.

Though p3 is always bounded from above by p", for large class spread ratios the performance
curve of the binary filter approaches the same asymptote, p/ 2 , as the matched filter, so that their
performance is virtually identical. An examination of their relative performance for each p in the
range considered indicates that when the class spread ratio is unity (i.e., the two classes have the
same variance), we have p8 A 2pm/3.

6 CONCLUSION

These numerical simulation;;, coupled with the prior success of experimental systems utilising binary
filters [4], tend to bolster the intuitive notion that the phase of the Fourier Transform contains most
of the information content in the signal. The significance of the results lies in the demonstration
that, for classification purposes, most of the information content in the signal can be extracted
with filters of low complexity. Specifically, the binary filters of this paper require only a single
bit dynamic range but provide classification performance comparable to the matched filter which
is much more prodiguous in its dynamic range requirements. While the success of these schemes
is very encouraging, some questions remain: We have demonstrated binary correlator structures
based on heuristic algorithms; however, it is not immediately obvious whether we can specify
optimum binary correlator structures for a given problem. As a specific instance, we can obtain



flter which maUY separate Patrn class in that the filter is orthoonal to all unwanted

patterns, while yielding signifcant correlation only if the desired pattern is present. It is not
clear, however, whether an algorithm can be specified which yields the binary Alter which is the
bet approximation to any such maximally separating filter.
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Higher Order Associative Memories
and Their Optical Implementations*
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(ReMved and aceWed 22 December 1987)

Abstract-The properties of higher order memories are described. The non-redundant, up to Nth order polynomial
expansion of N-dimensional binary vectors is shown to yield orthogonal feature vectors. The properties of expansions
that contain only a single order are investigated in detail and the use of the sum of outer product algorithm for
training higher order memores is analyzed. Optical implementations of quadratic associative memories are described
using volume holograms for the general case and planar holograms for shift invariant memories.

1. INTRODUCTION crease in storage capacity that results from %he increase

An associative memory can be thought of as a system in the number of independent parameters or degrees

that stores a prescribed set of vector pairs (x", ym) for of freedom that is needed to describe a higher order

m = 1 .. .. ,M and also produces y as its output when associative mapping. The relationship between the de-

x" becomes its input. We denote by N and No the di- grees of freedom of a memory and its ability to store

mensionalities of the input ad output v r associations (Abu-Mostafa & Psaltis 1985) is funda-

tively. When the output vectors are stored as bi mental to this work and we state it in the following

Ng-tuples, the associative memory can be implemented subsection as a theorem.

as an array of discriminant functions, each dichoto- 1.1 Degrees of Freedom and Storage Capacity
mizing the input vectors into two classes. This type of
associative memory is shown schematically in figure Let D be the number of independent variables (de-
1. In evaluating the effectiveness of a particular asso- grees of freedom) we have under our control to specify
ciative memory we are concerned with its ability to input-output mappings and let each parameter have
store a large number ofassociations (capacity), the ease Kseparate levels or values that it can assume. We define
with which the parameters of the memory can be set the storage capacity C to be the maximum number of
to realize the prescribed mappings (learning), and how arbitrary associations that can be stored and recalled
it responds to inputs that are not members of its training without error.
set (generalization). In this paper we discuss a class of
associative memories known as higher order memories D log2K
that have been recently investigated by a number of C - N (1)
separate research groups (Baldi & Venkatesh, 1987; No
Chen at aL. 1986; Giles & Maxwell, 1987; Maxwell, ProofThe numberofdiferent states ofmemory is given
Giles, Lee, & Chen, 1986; Newman, 1987; Poggio, by KD and the total number of outputs that a given set
1975; Psaltis & Park, 1986; Sejnowski, 1986). Our mo- of M input patterns can be mapped to is 2NM. If the
tivation for investigating these memories was the in- number of mappings were larger than the number of

distinct states of the memory, then mappings would
exist that are not implementable. Requiring that all

Au by t A Frce Ode ofScientic Reearch, the Army mappings can be done leads to the relationship of the
sarwch 001 md l=A fee f d M ed Rarvc ots Apcy. theorem.
t Dk Hong is mw with the RockwSU SC ouCxe t The equality in (1) is achieved by Boolean circuits

Ou"s CA 91360.
Reques for reprthou d be sent to De9e3ri 1'0 . such as programmable logic arrays and an extreme case

went of ElectriWa Enpnaine , Califoria Iuitu of TechnoI, of a higher order memory we will discuss later. When
Paade, CA 91125. the equality holds, resetting any one bit in any one of

149
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the prameters of the memory gives a different map- have sufcient storage cty to store a very la~e
ping. Such a memory cannot learn from the training number of paramete. Moreover it must be capable of
set to respond in some desirable way to inputs that it addressing the stored information with a high degree
has n seen before. The only way to get generalization of parallelism in order to produce an output quickly.
when C - D log2K/No is to impose on it the overall We will discuss in this paper optical implementations
structure of the memory before learning begins. One of second order memories and we will show a remark-
of the appealing features of neural architectures is the able compatibility between the computational require-
considerableredundancy in the degrees of freedom that ments of these memories and the ability of optics to
is typically available. Therefore, there is hope that while store information in three dimensions.
a memory learns specific input-output correspon-
dences it can also discover the underlying structure that
may exist in the problem and learn to respond correctly 1.2 Linear Discriminant Functions and Associative
for a set of inputs much lar than the training set. Memories
Moreover, the same redundancy is responsible for the
error tolerance that is evident in many neural archi- We will consider as a precursor the most familiar
tectures. Higher order memories are generally redun- associative memories that are constructed as arrays of
dant and they can provide us with a methodology for linear discriminant functions (Kohonen, 1984). A lin-
selecting the degree of redundancy along with the num- ear discriminant function is a mapping from the sample
ber of degrees of freedom and the associated capacity space X, a subset of Rv, to I or - 1.
to store random problem.

It is important to keep in mind that (1) holds for Y - sgn{ .X + WO}
arbitrary mappings. If the input and output vectors are - sgn~wo + wx, + 2x, + • • -+ WNXN) (2)
restricted in some way that happens to be matched to
the architecture of a particular associative memory then where sgn is the signum function, w is a weighting vector
it may be possible to overcome this limit However, and we is a threshold value. In this case the capacity is
selecting the architecture of the associative memory upperbounded by (N + l)iog2K according to our def-
such that it optimally implements only a subset of all inition of capacity. In this relatively simple case the
possible associations is basically equivalent to choosing exact capacity is known to be equal to C = N + I
the architecture so that it generalizes in a desirable way. assuming the input points are in general position and
For instance suppose that we design an associative K - oo (Cover, 1965). An associative memory is con-
memory so that it is shift invariant (i.e., the output is structed by simply forming an array of linear discrim-
insensitive to a change in the position of the input) inant functions each mapping the same input to a dif-
(Maxwelletat, 1986; Psaltis& Hong, 1987). Then this ferent binary variable. Several algorithms exist for
system will respond predictably to all the shifted ver- training such memories including the perceptron,
sions of the patterns that were used to train it We can Widrow-Hoff, sum of outer products, pseudoinverse,
equivalently think ofthissystem as havingalarg rstor- and simplex methods (Duda & Hart, 1973; Hopfield,
age capacity than the limit of (1) over the set of shift 1982; Kohonen, 1984; Venkatesh & Psaltis, in press).
invariant mappins. If we can identify a priori the types This memory can be thought of as the first order of the
of generalization we wish the memory to exhibit, and broader class of higher order memories that contain
we can find ways to impose these on the architecture, not only a linear expansion of the input vector but also
then this is certainly a sensible thing to do. Higher order quadratic and higher order terms. We will see in Section
memories can also provide a convenient framework 3 that the learning methods that are applicable to the
within which this can be accompished. linear memories generalize directly to the higher order

The penalty we must pay for the increase in the stor- memories. First, however, we will describe the prop.
age capacity that is afforded by the increase in the de- erties of the mappings that are implementable with
grees of freedom in a higher order associative memory higher order memories in Section 2. Finally, in Section
is increase in implementation complexity. The com- 4 we will describe optical implementations of quadratic
puter that implements a higher order memory must optical memories (Psaltis, Park, & Hong, 1986).
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. PROPM OF I HIGHER wherej - l, 2,...,. p(j) r {1,2, ... ,N),uch
ORDER MEMORIES that aflhe j are distinct and n,, n2 ... , n, - O, 1.

A 4-function is defined to be afixed mapping of the Then L is ('+') (Cover 1965), and ence the capacity

input vector x to an L-iensional vector z followed bound is ((4+') + l)iomK as before. For example, if r

by a linear diacriminant finction, - 2, the function becomes quadratic and has the form
Y - x Wfx + W)x + wto and the number of non-

y -sn{w", a(x) * 'e} redundant terms in the quadratic expansion is L - (N

= s{W'tZ2 + w 2 + -' -+ , +LZL+ WO) (3) + IXN+ 2)/2.
The components of the vector z are biary-valued

where Z(x) - (,(x), za(),... z(x) w' is an L di- if x is binary. In this case, the samples cannot be a-
mensional weighting vector and z(x) is an L dimen- sumed to be in general position since there are at mos
sional vector derived from x. The storage capacity in N + 2 binary vectors in N dimensional space which lie
this case is equal to the capacity of the second layer L in general position. We will evaluate the effectiveness
+ I (Cove; 1965) if the samples z are in general position of higher order mappings in producing epresentations
whereas the upper bound on the capacity from (1) is z(x) that are separable by the second layer of weights
(L + I)log2K. Tbe inefficiency in this case is log2 Kbits, by calculating the Hamming distance between z vectors
the same as for the linear discriminant function even given the Hamming distance between the corresponding.
though the capacity can be raised arbitrarily by in- x vectors. We expect that if the Hamming distance be-
creasing L. It is not known what the exact relationship tween two binary vectors is large then they are easy to
between L and K is, that is, we do not know whether distinguish from one another.
for higher dimensions we need better resolution for the
values of the weights to be capable of implementing a 2.1 Complete Polynomial Expansoim of Blary

fixed fraction of the linear mappings. Recently, Mok Vectors

and Psaltis (personal communication) have found the There are at most 2 non-redundant terms in any
asymptotic (large N) statistical capacity to be C = N polynomial expansion (4) of a binary vector x in N
for a linear discriminant function with binary weights. dimensions. First, we will consider the following Nth
This result implies that even for large N, for the vast order expansion (or equivalently bit production) for the
majority of linear dichotomies, a large number of levels bipolar vectors x in N dimensional binary space { ,
is not required. Therefore a *-function is an effective -1 }:
and straightforward method for increasing the capacity z = )
of an associative memory without los in efficiency.

Ahigherorderassociativememoryisanarrayof',- (l, xi.x.... x, xx. .... x, X 2 "XNY. (6)
functions with the mappings z(x) being polynomial ex- If we apply a linear discriminant function to the new
pansions of the vector x. The schematic diagram of a vectors z, then the capacity becomes 2 which is equal
higher order associative memory is shown in Figure 2. to the total number of possible input vectors (Psaltis &
When the polynomial expansion is of the rth order in Park, 1986). In other words this memory is capable of
x then the output vector y is given by performing any mapping of N binary variables to any
y - sgn{W(x, x,..., x) + (, x) binary output vector y. Of course the number of weights

x.......that are needed to implement this memory grows to

+ ... +W2(x,x)+ Wx+ wlo} (4) 2 timesNo, the number of bits at the outputInwhat
follows we show that in this extreme case the vectors z

where- I, . . ., No, W is a k-linear symmetric map- become orthogonal to each other.
ping and W' is equivalent to w' in (2). According to
(3) Theorem 2. If we expand binary vectors x" (m - 1, 2,

z(x) =-,()X,(). ••x (5) ... , 2v) in Xv f {1, - l}" to 20 dimensional binary

IN

FIGUre 2. H1ghr oider maodesie nie mo.
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vectoe z accaording to (6), where Nis the dimen- +
ionsality of the original feature vectors, then (a) <e,, n ' n)x'> - .... where <.. , i an iner product, (b) i - -2

X , z) - , (c) z"' - jj, and Z. z? = 0. I-ai j--
Exampe: Table' I afor the cae of N - 3. Note the -2' 1. (8)
orthogonalir, and the numbers of Is and -is in the
new vectors and the set of each component of them The fact that the Hamming distance is 2m- ' for any
except the first vector and the set of the first compo- two expanded vectors (for any n) proves that all of the
nents. 21' vectors become orthogonal and that (x"', z"2>

Proof (a) Let us consider any two different binary vec- - 2 6n,,n. (b) Just think of the cases where one of the
tocs in the binary space of { , -1 )" whose Hamming two vectors is (, I, .... , 1). Then, all the other vectors
distance is n (I s n - N). When they are expanded to z have equal number of Is and - Is because their Ham-
two 2 dimensional binary vectors, the number of kth ming distances are all 21" from the (1, 1,..., 1) vecto.
order terms that have opposite signs in the two expan- (c) See Duda and Hart (1973, p. 109).
sion is Slepian has discussed this orthosonalization property

as a method for designing orthogonal codes and has
(nN-) + (n(N- n) given a different proof for it (Slepian, 1956). The proof

I\I k- ) \3k - 3 presented here is useful for characterizing higher order

memories because it allows us to trace the contribution
+n ) + ._ (7) of each order of the expansion to the orthogonalization

P k 5)and immediately derive results about the properties of

Notice that two polynomials have different values if, quadratic and cubic memories. The output vector y is
and only if, they have an odd number of terms whose
signs are opposite. The Hamming distance between the y" sgn(W,-z} = sgn{ Wz,} (9)
two fully expanded (up to order 2' ) vectors can be cal- ,-I
culated by adding the number of terms that haew dif- where I - 1,..... No and W is a 2  dimensional weight-
ferent signs over all the orders of the expansion: ing row vector. The matrix W, that can implement the

(n)( NN-)N- x' - y' mapping for m = I to 2N can be formed in
1" 0) + (n)( n) this case simply as the sum of outer products ofy'" and

0 / 1 -':

(7)(2-) + o1} -
+ N n + N 0 W,- Z y''z7'. (10)

2.2 Expmlonm d a Single Order

"I% n ) +(N- n
+ I o) -n ( 2) The orthogonaklization property of the full expansion

is interesting because it shows that higher order mem-
" (n (I -nories provide a complete framework that takes us from

S N n - 4) the simplest "neuron," the linear discriminant func-

" (In\IN n \ n N -,, tion, to the full capability of a Boolean look-up table.
+ N- n-1) + N - n - 31 Higher order memories can indeed provide a valuable

tool for designing digital programmable logic arrays.
+ )N n ""In this paper, however, we are interested in associative

memories that are capable of accepting inputs with

TAEU 1

X1  X X3 X1  X2  X3 Xj13 X3 X6X IXNX 3

1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 -1 1 -1 -1 -1
1 -1 1 1 1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1 -1 1 -1 1

-1 1 1 1 -1 1 1 -1 1 -1 -1
-1 1 -1 1 -1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1 1 -1 -1 1
-1 -1 -1 1 -1 -1 -1 1 1 1 -1



I h Or Ansiadw A*morI 153

large N (e.g., if N - 103 then 2 N -- 10") in which case The basic trends that are evident in the quadratic
cosidering a full expansion of the input data is corn- and cubic memories generalize to any order r. The
pietely out of the question. In such cases we are really number of independent terms in the rth order expan-
interested in an expansion that contains a large enough sion of a binary vector is (.) which is maximum for r
number of trms to provide the capacity needed to learn ow N/2. Again this is not of practical importance be-
the problem at hand. In this subsection we analyze the cause the number of terms in a full expansion of this
properties of partial expansions that include all the sort is prohibitively large. What is of interest however
terms of one order is the effectiveness with which relatively small order

We will first consider the memory consisting of all expansions can orthogonalize a set of input vectors.
the terms of a quadratic expansion with binary input The angle 9, between two vectors that have been ex-
vectors, panded to the rth order is given by the following rela-

y,- sgn{Z 2 wlxxj} tion:i J (6) - E - .m (TX V-")
Cos Or = (N) (14)

= Sign{ 2 WuZil. (1) We can obtain a simpler expression for the interesting
k-I case r 4 N and for small p0,, - X 61.

The number of non-redundant terms in a quadratic Proposition 3: For r 4 N,
expansion of a binary vector is L = N(N - 1)/2. Let
two input vectors have a Hamming distance n. The os 0 , (I - 2p)'. (15)
angle between these two vectors is given by the relation Moreover, for small p,
cos 91 - I - (2nlN). The angle 02 between the corre-
sponding z(x) vectors can be readily calculated since a, rO, (16)
we know their Hamming distance from the proof of where , -A 2V1r.
Theorem 2(a): Proof- For a small r, we can make the approximations

( ,) P N'/r!, (1) - n/i!, and (N' ) m (N - n)-'/(r

4n(N - n) - i)!. Then, cos 0, is approximated as follows:N(N - 1) r!

I - 4p + 4p2 = (1 -2p) 2  (12) cos0, 18 - 2 P I(! - 0) -*

where p - /N. 02 and 0, are plotted versus p in Figure (I - 2p)r
3a. For p < .5,02 is always larger than 9,. Specifically
for p 4 1, 02 - f2 X 9,. We see therefore that the because of these relationships:
quadratic mapping not only expands the dimensionality I + I =(I - 0 + ) = 1,
which provides capacity but also spreads the input !
samples apart, a generally desirable property. For p
> .5 the quadratically expanded vectors are closer to - = - p-p)' -(I - 2pY.
each other than the original vectors and in the extreme iodd i-eve

case n - N, 02 becomes zero. This insensitivity of the When p 4 1, Cos 9r, which is approximately I
quadratic mapping to a change in sign of all the bits is - 0,/2!, is approximated by I - 2rp directly from (14)
a property that is shared by all even order expansions. or from (15). Therefore, it is followed by (16) that 9,
Next we consider a cubic memory _ 2vrp.

We plot 0, versus p for selected orders in Figure 4
vi { , , , Wj kXXXk} using (15). It is evident that increasing r results in better

Li separated feature vectors. Polynomial mappings act as
= .an effective mechanism for increasing the dimensional-

S{( ity of the space in which inputs are classified because
(- they guarantee a very even distribution of the samples

where L =() + N. In Figure 3b we plot 03 , the angle in this new space.
between two cubically expanded binary vectors as a
function of p. For convenience, 0 is also plotted in the 3 T OF HIGHER
same figure. In this case increases faster with p for ORDER MEMORIES
p < .5. For p 4 1, 03-= 3 X 01. At p n .4 the cubic
expansion gives essentially perfectly orthogonal vectors Once the initial polynomial mapping has s)een se-
while for p> .5, 3 remains smaller than 9, and in the lected, the rest of the system in a higher order memory
limit p - 1, 03 - 1. Thus the cubic memory discrim- is simply a linear discriminant function. As such it can
inates between a vector and its complement. be trained by any of the existing methods for training
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linear discriminant functions. For instance the pseu- driven algorithms such as the perceptron or adaline
doinverse (Kohonen, 1984; Venkatesh & Psaltis, in can be used to iteratively train the memory by repeat-
press) can be used to calculate the set of weights that edly presenting the input vectors to the system, mon-
will map a set of L-dimensional expanded vectors z" itoring the output to obtain an error signal, and mod-
to the associated output vectors y". Aiternat ! ely, error ifying the weights so as to gradually decrease the error.
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The relative ease with which higher order memories 3.1 The Outer Product Rule
can be trained is a very important advantageous feature
of this approach. A higher order memory is basically Let us consider associative memories constructed as
a multilayered network where the first layer is selected an expN msion ofthe r-order only with input samples in
a priori. In terms of capacity alone, there is no advan- a1 N dimensional binary space and r I.
tage whatsoever in having multiple layers with modi- Y, = - I w . . .j., XXj. •X .x. (17)
fiable weights. From Theorem I we know that at best ,..
the capacity is determined by the number of modifiable
weights. For a higher order memory we get the full ad- where 1 ji, j2.... , j, N, 1 -- I r No. The number
vantage of the available degrees of freedom whereas if of independent terms L in the rth order expasion is
we put the same number of weights in multiple layers (N',)which for r 4 Ncan be approximated by '/r!
the resulting degeneracies will decrease the capacity. The expression for the weights of the rth or ex-
The relative advantage of trainable multiple layers is pansion using the sum of outer products algoritun is
the potential for generalization that emerges through (Chen et al., 1986; Psaltis & Park, 1986)
the learning process. The generalization properties of
higher order memories on the other hand are mostly W.A...J, E Y yrxxj" .. "xT ( 8 )
determined by the choice ofthe terms used in the poly- M-1
nomial expansion in the fixed first layer. Thus te where M is the number of vectors stored in the memory,
eralization properties of these memories as described y' is an output vector associated with an input vector
in this paper are imposed a priori by the designer of xM as before. With the above expression for the weight
the system. tensor (17) can be rewritten as follows

The sum of outer products algorithm that has been
used extensively for training linear associative memories M N

can also be used for training the higher order memories Y- sg{ y '(ZNxI'xj)'+ w?)}. (19)
and this algorithm generalizes to the higher order case m-1 1-I

in particularly interesting ways. In addition, this par- The above equation suggests an alternate implemen-
ticular learning algorithm is p:edominantly used for tation for higher order memories that are trained using
the holographic optical implementations that are de- the outer product rule. This is shown schematically in
scribed in the following section. Therefore we will dis- Figure 5. The inner products between the input vector
cuss in some detail the properties of higher order mem- and all the stored vectors x" are formed first, then raised
ories that are trained using this rule. to the rth power, and the signal from the mth unit is
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IGURE . Ouler pmrdud rmt ordw -n mmmory.

connected to the output through interconnective where the set of variables {it,' .... i, t, ... ,}spans

weights Y?. If y" - x" then the memory is autoasso- all the combinations produced by the set of variables
ciative, and in this case the output can be fed back to {j(, .... tj,, st, ... , r). The variance can be calculated
the input resulting in a system whose stable states are exactly for the cases r - 1, 2, and 3 and it is (M - I)N,
programmed to be the vectors xe. This becomes a direct (M - IX3N - 2N) and (M - IXISN 3 - 30N 2

extension of the Hopfield network (Anderson, 1983; + 16N), respectively. For the general case we will derive
Hopfield, 1982; Nakano, 1972) to the higher order case. lower and upper bounds which for lage N provide us
Assuming that x = xis one of the stored vectors, Yi with a good estimate of the variance for any order r.
becomes Proposition 4: The total number of permutations, Q(N,

N r), for which (23) holds, satisfies the following relation-
= - sgn{Nryr + Z yj'(Z x7'x")' + w?} ship:

M001 J-1 (2r)! + 2r\p (2r- 4)!
sgn{N'y7 + nl(x")} (20) r 2rr + 4  (n, r - 1) 2

where the first term is the desired signal term and n, is (2r)!
a noise term. The threshold weight is set to zero. < Q(N, r) < N 2"r! (24)

The expectation value of nl(x') is zero if the bits that 2'r!

comprise the stored binary input and output vectors where P(m, n) - m!/(m - )!.
are drawn randomly and independently having equal Proof- The number of ways of making r pairs of 2r
probability ofbeing +I or-1. Ifthis is the case then items is (2r - 1X2r - 3) . (3X1) = (2r)!/2'r!. The

items that we are concerned with are the variables ij,
E( u= tj and each of these variables can take one of N values.

We can only select the values of half these variables (N'

E x7'x"') = ,,, (21) possibilities)and foreach of these choiceswe can create
OMNI r pairs. Hence the upperbound is N'(2r)!/2"r!. This is

an upper bound because we have overcounted for dif-where 6is the Kronecker delta function. The variance ferent pairings of variables that have the same value.
of nt is calculated as follows: The initial lower bound is derived if each pair has a

E(n?) different value from all others, which eliminates the
possibility of overcounting. The number of possible

- E( Z. yi"y?' I E X31 X" ways to satisfy (23) with the variables in any two pairs
fl,, J, M jib -- , ,, .-. not taking the same values is P(N, rX2r)!I2"r!. This is

xix ,x....xx , ' -x'X,,1 .... X) an underestimate because all pairs that contain vari-ables taking the same value should be counted once.
- E( Y. , . x'xg... xj,xsx''.. We can thus improve the lower bound by counting the

M J,-2 . ,..- 4 number of ways these degenerate pairings occur and
x., xxl x, .. . (22) adding them into the previous bound. For example

when two pairs out of r have the same values with (4
In the above we used the facts that different stored vec- choices, there are (24)NP(N - 1, r - 2 X2r - 4)!/2'r
tor are uncorrelated (i.e., for m *i m') and yj I. - 2) possible permutations where (2r - 4)!/2"=r
Then, the variance becomes (M - I)Q(N, r), where - 2)! is the number of ways of making r - 2 pairs of
Q(N, r) is the number of possible permutations such 2r - 4 items. Therefore, Q(N, r) is lower bounded by
that P(N, r)2r)12'r! + (2%)P(N, r - I X2r - 4)!/2'-(r - 2)!,

*i,, Ai2. ..64 1 (23) since NP(N - 1, r - 2) - P(N, r - 1).
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We can get a very good approximation to the SNR for the rth order autoussociative memory with feedback
usng the approximations of M - I m M and Q(N, r) and outer products as follows:
m N'(2r)!/2'rl which are very nearly true for the in-
tmDgc r 4 N - - (x', x>"' (30)

Nr M-1

SNR {MN,(2r)l/2'r!}'1 where (, >) denotes an inner product of two vectors.

1Y 2'rl 1 1The change in the energy due to a change 6x in the
- - ) (25) state of the network was shown by Chen et al. (1986)
M(F2-r)lj to be decreasing for odd r.

For example, the linear memory, r - 1, has a MNR AE, E,(x + 6x) - E(x)
a (NIM)n, the quadratic memory, r - 2, a SNR of

N/(3M)' 4* and the cubic memory, r- 3, a SNR of (N3/ -- (r + 1) Sx W, j... j,
15M)12. We can obtain an estimate for the capacity of ' .j
an rth order memory by equaing the signal to noise X xjxh • .x, - R, (31)
ratios of the linear and rth order memories and solving
for M,, the number of stored vectors that will yield the where
equality. For r, small compared to N, we obtain " . +

M, 'rl R- Z (X, >'+'-J(x"
, 6x>J. (32)

M, N (2r) (26) !-2 J

The fist term in (31) is always nonpositive because of
Comparing its value with the capacity M, of a lintear the specification of the update rule: 6x,; 0 if Zj,...j,
memory we can obtain the relationship between the X Wo,... .. j, xA. xj, ; 0 and vice versa. Chen et al.
capacfs, that is MM, = N '32ar!/(2r). For example (1986) showed that the second term is also nonpositive
M2 of a quadratic memory is M N/3 and M3 of a cubic by showing that R, is an increasing function of r for r
memory is MN 2/15. odd andR, > 0.

The diagonal terms in a high order memory For r even it is possible to prove the autoasociative
Wu,j,...j, can be defined as those of which all the in- Frree ti osbet rv h uosoitv
dexe . ar cnobe denWe the wihtl then-r memory converges only for asynchronous updating
dexes j are not differen We form the weight tensor even though in simulations even order autoussociative
with zero diagonal as follows: memories consistently converge as well. The fact that

wo'. the energy is not always decreasing when r is even may
actually be helpful for getting out of local minima and

=f "x, x7. .• • xT, ifjs are all different, settling in the programmed stable state which are global
to otherwise. (27) minima in a region of the energy surface. A descent

procedure that is always decreasing in energy cannot
When the input is one of the stored vectors x" and the escape local minima since there is no mechanism for
weight tensor has zero diagonal, the output y, becomes climbing out of them. As an example, consider a qua-

dratic memory, that is, r - 2 (even), whose energy
yslP( WU. . .jx .... Xj, + w0}  functionisgivenby

duhmtj E2-Z WUkXijXk (33)
- sg(P(N, r)yf Uk

+ Z YI ..x ... AE2 - -3 2 Wkxjxkx, - 3 2 WyJxx, 6x5x,
,MoVn dS ntj Uk Li

xZx •xj .x + w?) (28) - Z w# ,xjiXJ&Xc. (34)

where the first term is a signal term and the second a The first term is nonincreasing but the second and third
noise term as before. The variance of the noise term is terms can be increasing. If the vector x is very close to
easily shown to be (M - I)P(N, r)rf using (2 1). Thee- one of the stored vectors Y then the first term becomes
fore, the SNR becomes dominant and the energy will be very likely to be non-

1 1, ,2 (IN)/ ,I'2 increasing causing the system to settle at x- x. Ifx
SNR . -I )r = IM (29) is not close to any of the stored vectors, then all three

(M - r J . 1terms in the above equations are on the average con-

which can be approximated as (N'/Mr!)"2 for r 4 N. parable to each other and since two of them are not
Chen and his coworkers (1986) introduced an energy nondecreasing the energy function may be increasing

function (Cohen & Grosberg, 1983; Hopfield, 1982) and it is possible to escape from local minima.
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111011 WAVE grams to provide the interconnection pathways and op-
tical or electro-optical devices to provide the required
nonlinearities.

Since holographic techniques are used to implement
the required interconnections, we will first briefly dis-

PHOTOGRAPHIC cuss holography (Collier, Burkhardt, & Lin, 197 1) and
PtAT in particular the distinction between the use of planar

versus volume holograms. The holographic process is
shown schematically in Figure 6. In the recording step

I (Figure 6a) the interference between the reference plane
wave that is created by collimating the light from a
point source using a lens and the wave originating from

494EACEA WAVE the object "A" is recorded on a planar light sensitive
medium such as a photographic plate. When the de-
veloped plate is illuminated with the same reference
wave, the field that is diffracted by the recorded inter-

ne kTUCE ference pattern gives a virtual image of the original ob-.-

ject which can be converted to a real image with a lens.b.-- OEMOPI

PLATE The reconstruction of the hologram is thus equivalent
to interconnecting the single point from which the plane

(b) wave reference is derived to all the points that comprise
ME S, Wogaphic mrondtid recoealndmn. (a) Re- the reconstructed image. The weight of each intercon-

wing. (b) 10115L nection is specified by the interference pattern stored
in the hologram.

4. OPTICAL IMPLEMENTATIONS OF Volume holograms are prepared and used in the

QUADRATIC ASSOCIATIVE MEMORIES same manner except that whereas a planar hologram
records the interference pattern as a two dimensional

The outer product quadratic associative memories pattern on a plane, a volume hologram records the in-
described in the previous section require three basic terference pattern throughout the volume of a three
components for their implementation: interconnective dimensional medium. The disparity in the dimen-
weights, a square-law device, and a threshold nonlin- sionalities of the two storage formats results in marked
earity. In this section, we present a variety of optical differences in the capabilities ofthe two processes. This
implementations using either planar or volume holo- difference is explained with the aid of Figures 7a and

REFERENCE FOR A A RE ERENCE WAVE

P4OTOGRAPHIC OEVELOPED RCONSTUCTION
PLATE PLATE PLANE

(a)

REFERENCE FOR A REFERENCE FOR A

0 VOLUME R-- ON-R- CI ON
PLANE

(b)

RPM 7. ulomphls I . l usin (a) plaW vmus (b) volum gm
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7b where the reconstruction of both a planar and a N4 Wm

volume hologram are shown. Each hologram is pro- VOL HOLO
pared to store the two images"A"and "0" by double
expoure with each image being associated with a ref-
erence plane wave that is incident on the hologram at
a diremt angle. Each refnce plane wave is generated t
by a separate point source and thus the reconstruction 0
ofa hologram with the two reference waves is equivalent N Nos

to int erc-necting multiple input points to all the points (a)
on the plane of the reconstructed image. In the case of VOtAU HOLOGRM
the planar hologram, howeve, when either one of the L2 L3 N2 oreUy
reference waves is incident both images are recon- N vows
structed. This implies that we cannot in this case in-
dependently specify how each of the input points is
connected to the output. In contrast, because of the o
interaction of the fields in the third dimension (Kogel- (b)
nik, 1969) the volume hologram is able to resolve the
differences in the angle of incidence of the reference
beam and upon reconstruction when the reference for N2 1 NpUTS N
"A" illuminates the medium, only "A" is reconstructed L L3 3::
and similarly for the second pattern. When both input .
points are on simultaneously then each is intercon- 0
nected to the output independently according to the
way it was specified by the recording of the two holo-
grams. Thus volume holograms provide more flexibility (C)
for implementing arbitrary interconnections which 5. L C using vohilfie olsgrmmns.
translates to efficient three dimensional storage of the (Q)Recodng apparats(b)N'2_.Npmappg;(c)N',.N map-
interconnective weights needed to specify the quadratic 04n.
memory.

Another way in which we can draw the distinction et al., 1987; Psaltis, Brady, & Wagner, in press). For
between planar and volume holograms is in terms of the implementation of quadratic memories we use vol-
the degrees of freedom. The implementation of a qua- ume holograms to fully interconnect a 2-D pattern to
dratic memory whose input word size is Nbits requires a I-D pattern (N2 

.-* N mappings) and also the r
approximately N3 interconnections for the three di- (N -+ N2). The geometry for recording the weights for
mensional interconnection tensor. The number of de- both cases is shown in Figure 8a and the reconstruction
grees of freedom of the planar hologram of area A is geometries are illustrated in Figures 8b and 8c. The
upper bounded by A/6 2 while that of a volume holo- circles represent the resolvable spots at the various
gram is limited to V/ 3, where V is the volume of the planes in the system. The waves emanating from each
crystal and 6 is the minimum detail that can be recorded point at the input planes are transformed into plane
in any one dimension (Psaltis, Yu, Gu, & Lee, 1987; waves by the Fourier transform lenses L, and L2 and
Van Heerden, 1963). Equating the degrees of freedom interfere within the crystal, creating volume gratings.
that are required to do the job to those that are available, The weights are loaded into the volume hologram
the crystal volume is determined to be at least V with multiple holographic exposures in the system of
= N363 whereas a planar hologram to do the same job Figure Sa. In the following subsections we will describe
would require a hologram of area A = N352. For com- several specific procedures for doing so. For the N
parison, a network with N - 10V can in principle be N2 mapping (Figure 8b) in reading out the stored in-
implemented using a cubic crystal with the length of formation, a single source in the input array recon-
each side being 1.- N6 - 1 cm, but a square planar structs one of the N 2-D images consisting of N2 pixels
hologram is required to have the length of each side be that it is associated with. The rest of the images which
at least P _ N3 ,26 - 0.33 m at 6 - 10 Jim. Thus, the belong to the other input points, are not read out be-
volume hologram offers a more compact means of im- cause of the angular discrimination of volume holo-
plementing large memory systems. grams. The counterpart to this scheme, shown in Figure

8c, implements an arbitrary N2 '- N mapping. This

4.1 Volume Hologram Systems setup is basically the same as that of Figure 8b except
that the roles ofthe input planes have been interchanged

There are several schemes for fully utilizing the in- or equivalently the direction in which light propagates
terconnective capability of volume holograms (Psalt has been reversed.
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4.1.1 N2 - N Schemes. First, we consider a method The architecture in Figure 8c is used to access the
by which the full three dimensional interconnection data stored in the hologram by either one of the re-
tensor is implemented directly with a volume hologram, cording methods described above. The electronically
Recall that if the weight tensor is trained using the sum addressed 2-D SLM is placed at the input plane and it
of outer products then it is given by is programmed with the outer product matrix xkxj of

the input vector. The light from the N 2 input points is
A4 interconnected with the N output points via the re-

- yix "xZ', (35) corded wyk interconnect kernel A linear array of N

photodetectors is positioned to sample the output
where x' represents the rnth input memory vector and points.
y' represents the associated output vector. Such a It is important to restate at this juncture that this

memory is accessed by first creating an outer product particular implementation achieves the quadratic in-
of the input vector and multiplying it with wyk as fol- terconnections by first transforming the N input fea-

lows: tures (i.e., the N elements of the input vector x) into

N N a set of N 2 features via the outer product operation.

yi = sgn{ 2; 2 wtXxjx,}. (36) The result is that although the interconnections are
J-I k-I quadratic with respect to the N original feature points,

they are linear with respect to the N 2 transformed fea-
The volume hologram is prepared using the setup tures. This allows the application of error driven learn-

in Fure a. Finr, the outer product matrix of the rth ing algorithms for linear networks such as the Adaline
memory input vector, x~x', is formed on an eec- (Widrow & Hoff, 1960) where the interconnections are
tronically addressed spatial light modulator (SLM) developed by an iterative training process. The opera-
(Warde & Fahre, 1987). Another one-dimensional SLM tion of such a learning scheme is illustrated in Figure
whose transmittance represents the mth output vector 9 which is the same basic architecture as Figure 8c with
y7' is placed in the other input plane, and the two SLMs feedback from the output back into one of the input
are illuminated by coherent light. The transmitted ports. Each iteration consists of a reading and a writing
waves are then Fourier transformed by leases L, and phase. During the reading phase, the interconnections
L2 to interfere within the crystal volume to create index present in the crystal are interrogated with a particular
gratings. This procedure is repeated for all M associated item to be memorized by illuminating the 2-D SLM
input-output pairs so that a sum of M holograms is which contains the outer product matrix x-x and the
created in the crystal. For the quadratic outer product output is formed on the detector array. In the subse-
memory whose capacity is fully expended, this involves quent writing phase, the error pattern generated by
on the order of N2/log N exposures, subtracting the actual output from the desired output

We will now describe another method for recording pattern is loaded into the I-D SLM and both SLMs
the weight vector in the volume hologram that involves (the 2-D SLM still contains x" are illuminated with
fewer exposures and can also be used not only for the coherent light, forming a set of gratings in addition to
outer product scheme but for recording any given the previously recorded gratings. The procedure is it-
weight tensor as well. The same basic recording archi- eratively repeated for each item to be memorized until
tectumre of Figure 8a is used in this case also. In the first the output error is sufficiently small. This algorithm is
exposure, the top light source in the linear array is a descent procedure designed to minimize the mean
turned on while the SLM is programmed with the ma- I
trix w .where wt, is the interconnection tensor. When squared cost e I X-I [Z ., -1 W(4 Xj-x'k

the SLM is illuminated with light coherent with that - y'] 2 by iteratively updating the interconnection
of the point source, the crystal records the mutual in- values.
terference pattern as a hologram of the image wi, with
a reference beam that is the plane wave generated from 4.1.2 N - N2 Schemes. The N - N 2 mapping capa-

the top light source. In the next step, the second source bility of the volume hologram which is the inverse of
is turned on while the SLM is programmed with the that required for the architectures just described can
matrix wk. In this manner the connectivity for all the be used also to implement quadratic memories and
points in the linear array at the input are sequentially can be generalized for higher order memories. The basic
specified and the memory training is completed when idea behind this scheme is illustrated in Figure 10 which
all N exposures have been made. The disadvantage of shows the interconnection between the ith andjth neu-
this method relative to the outer product recording is rons whose weight wu is a linear combination of all of
the need to precalculate electronically the weight tensor the inputs and is described by
but it has the advantage of fewer exposures (N versus N

N2 /lo N) and greater flexibility in choosing the training wi- Z )Ukx,. (37)
method. k-)
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The overall result is, of course, recognized to be the tween the input vector and the matrix represented by
equation describing the quadratic memory, but the no- the 2-D reflectance of the SLM. The matrix of weights,
tion of an input dependent weight suggests the imple- in this case, is not fixed but rather computed from the
mentation shown in Figure 1I. The system is basically input via a volume hologram by exposing the righthand
an optical vector matrix multiplier (Goodman, Dias, side of the SLM as shown in the figure. The optical
& Woody, 1978) in which the matrix is created on an system to the right of the 2-D SLM in Figure I I is the
optically addressed SLM by multiplying the input vec- same as the N - N 2 system of Figure 8b. The volume
tor with the three-dimensional tensor stored in a vol- hologram which has been prepared to perform the ap-
ume hologram. The input vector is represented by a propriate dimension increasing operation (N ,- N2),
one dimensional array of light sources. The portion of transforms the fight distribution given by its one di-
the system on the left side of the SLM is the vector mensional array of sources into the input dependent
matrix multiplier and it works as follows. Light from matrix of weights given by (37). This system is func-
each input point is imaged horizontally but spread out tionally equivalent to the previous system except it does
vertically so that each source illuminates a narrow, ver- not require the use of a 2-D electronically addressed
tical area on the 2-D SLM. The reflectance of the SLM input SLM. The I-D devices utilized in this architecture
corresponds to the matrix of weights wy in (37). The are easier and faster to use in practice. Instead a 2-D
reflected light from the SLM travels back towards the optically addressed SLM is needed which in practice
input and a portion of it is reflected by a beam splitter is simpler to use compared to electronically addressed
and then imaged horizontally but focused vertically devices (requires less electronics), typically has more
onto i I-D output detector array. The output from the pixels, and is potentially much higher speed. A disad-
detector array represents the matrix vector product be- vantage of this method, however, is that it does not lend

itself for the direct implementation of the simple outer
product training method without the use of an elec-

WEGHT ironically addressed 2-D SLM.
ith-MU-- t NEURON The N - N 2 mapping technique can be used in

& N conjunction with its inverse, the N2 - N mapping, to
implement the quadratic outer product memory using
two volume holograms, a I -D electronically addressed

" WRI WISLM, and an optically addressed 2-D SLM. Shown in
Figulre 12 is a schematic diagram of such a system. The
first hologram is prepared with the multiple exposure

NEURON N. scheme discussed earlier (Figure 8a) where for each ex-
NEURON""posure, a memory vector in the one-dimensional input

NEURON 2 t arra-and one point in the two-dimensional (FM
X M) input training array are turned on simulta-

FIU 10. Quadralt mop" p a no IeJIIW kn neously. The second hologram is prepared by a similar
umanneedne. procedure except thli the Associated output vectors are
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recorded in correspondence to each point in the two just described. The planar holographic system is shown
dimensional training plane. After the holograms are in Figure 13. Here, the information is stored in the two
thus prepared, an input vector is loaded into the one- multichannel I-D Fourier transform (FT) holograms,
dimensional input array and the correlations between the first of which contains the I-D FTs of the M mem-
it and the M memory vectors are displayed in the output ory input vectors and the other, the FTs of the associated
plane (Athale, Szu, & Friedlander, 1986; Owechko, output vectors (Psaltis & Hong, 1987). The first part
Dunning, Marom, & Soffer, 1987; Pack & Psaltis, of the system is a multichannel correlator which cor-
1987). An optically addressed SLM can be used to pro- relates the input against each of the M memory vectors.
duce an amplitude distribution which is the square of At the correlation plane, the M correlation functions
the incident correlation amplitudes. The processed light stacked up vertically are sampled at x - 0 with a slit
then illuminates the second hologram which serves as to obtain the required inner products which are then
an M - N interconnection, each correlation peak in squared by the SLM. Each resulting point source of
the SLM plane reading out its corresponding memory light is then collimated horizontally and imaged ver-
vector and forming a weighted sum of the stored mem- tically onto the second hologram to illuminate that
ories on the one dimensional output detector array. This portion which contains the corresponding output vec-
is a direct optical implementation of the system shown tor. The final stage computes the FT of the light dis-
in block diagram form in Figure 5 with the 2-D SLM tribution just following the second hologram to produce
performing the square law nonlinearity at the middle the weighted sum of the vectors at the output detector
plane and the two-volume holograms providing the in- array. It is interesting to note that if the SLM is removed
terconnections to the input and output. from the correlation plane, this system reduces to the

linear outer product memory.

4.2 Plar Heoa Systems Notice that in this system if the input pattern shifts
horizontally then the correlation peak also shifts in the

While not having the extra dimension to directly correlation plane and it is blocked by the slit that is
implement the three dimensional interconnection ten- placed there. Therefore shifted versions of the input
sor for general quadratic memories, planar holograms vector are not recognized, as expected. Shift invariance
can nevertheless implement the outer product quadratic where the shifted versions of the memory vectors are
memory in a way similar to the one used in the system recognized and their associated outputs, shifted by the

X1  Y2

X2  
0 I lY3

VOLUME [1 2 VOLUME

HOLOGRAM 1 HOLOGRAM 2

FIGURE 12. Oploft higher coder ausomde msmwy inplemsil with vokune hologrms.
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