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Introduction.
Planar Transmission Media

Planar transmission media at millimeter wavelengths
provide a reasonably good performance and lend themselves to
mass production techniques. There are three categories under
which such lines may be placed; planar and quasi-planar (i.e.
microstrip line and its variations, and finline), dielectric guides
(dielectric slab, image ‘line, insular guide, inverted image line, etc.),
and H-guides (groove guide, trough guide, etc.) [14].

At millimeter wavelengths, the most commonly used
planar transmission lines are microstrip and microstrip-like
(inverted and suspended) lines. These lines are suitable for the
design of low-cost, mass-producible millimeter wave integrated
circuits. For microwave integrated circuits up to 110 GHz, the
main contenders are microstrip, suspended microstrip, fin line and

image line. Some examples of these lines are presented in figure
1.

Microstrip and microstrip-like transmission lines
consist mainly of a thin strip conductor on a homogeneous or
inhomogeneous dielectric substrate that is backed by a ground
plane of infinite conductivity. ¥ Many numerical and analytical
techniques exist which are used to analyze the behavior of these
media [15]. One of the simplest of these methods is the quasi-
static approach [6]). This approach, however, has a limited range
of validity, as the nature of the mode of propagation in this case is
assumed to be pure TEM, and the transmission line characteristics
are calculated from the electrostatic mutual- and self capacitances
and inductances of the structure. The quasi-static analysis is
therefore adequate for designing circuits only when the strip
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width and the substrate thickness are very small compared to the
wavelength in the dielectric material.

The full-wave approach, on the other hand, is
complete and rigorous. It takes into account the hybrid nature of
the mode of propagation, and the transmission line characteristics
are calculated by determining the propagation constant of the
device. The aforementioned hybrid modes are a superposition of
TMY and TEY fields that may, in turn, be expressed in terms of two

scalar functions,  and \, respectively.

There are several methods available for calculating the
propagation constant, including the integral equation methods,
finite difference methods, spectral domain methods [2,8,18], and
mode matching ([7,10,11,19].

Suip Condactor
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Figure 1. Some examples of planar transmission
lines: (a)microstrip line, (b)inverted

microstrip line, (c¢), (d)coplanar
waveguide, and (e)coupled microstrip
line.




Chapter 1. Mode Matching.

Mode matching is one of the most frequently used
techniques for formulating boundary value problems. Its primary
advantage is that it does not generate spurious solutions. It does,
however, have a relative convergence problem, so the accuracy of
the results should be verified carefully. It is not a very efficient
method, and not suitable for CAD packages, but it does afford an
exact solution within a logical margin of error.

Mode matching is used when the structure in question
can be identified as the junction of two or more regions, each

belonging to a separable coordinate system. For a planar
structure, rectangular cartesian coordinates, which are a separable
system, are used to describe the structure. One other

consideration in mode matching is that in each region, there must
exist a set of well-defined solutions of Maxwell's equations which
satisfy all the boundary conditions of the structure, except the
continuity conditions at the junctions between the regions. Thus,
the separation of the structure into regions must be done in a
well-defined and judicious manner such that a simple and well-
converging solution may be obtained.

The steps followed in the mode-matching procedure
are simple and straightforward. The first step is to define a
certain set of normal basis functions for each region of the device,
and to expand the unknown fields in these regions with respect to
these normal functions. For the sake of simplicity, these basis
functions will be called "modes”, although they do not satisfy the
source-free wave equation with all the boundary conditions. They
do, however, satisfy the wave equation in their respective regions,
and they will be subject to the boundary conditions of those
regions. The functional forms of these modes are already known,
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so the electric fields are now actually defined by the weight of
each mode. In this manner, the original problem reduces to that
of determining the set of modal coefficients associated with the
field expansions in the various regions. This procedure leads to an
infinite set of linear simultaneous equations for the unknown
modal coefficients. To obtain the exact solution to the problem at
hand, one must solve this infinite set of equations, a generally
impossible task. Approximation techniques, such as truncation or
iteration, must therefore be applied, and herein lies the difficulty
of mode matching. In a straightforward analysis, the number of
modes retained will determine the accuracy of the solution. More
modes would logically seem to provide a more accurate solution.
However, computation time increases as the square of the number
of modes retained. This is one important factor which necessarily
limits the number of modes which can be retained in each region.
Another source of numerical difficulties arises from the fact that
planar structures such as the microstrip have geometrical
discontinuities in the form of sharp edges. In this case, the fields
must be subjected to one more physical condition, known as the
edge condition, which states that the power of the electric and the
magnetic fields at the edges must be finite. This extra condition is
needed so ihat a unique solution to Maxwell's equations may be
obtained. In mode matching, this condition translates into a
relationship between the number of modes retained in each
region and the actual physical dimensions of the regions. This
relationship will become more clear as the analysis of the
particular device under consideration, the coplanar microstrip
line, progresses.

The mode matching technique may be extended to
include cases of continuous spectra. This work, however, will not
take such a case into consideration.




Chapter 2. Analysis of the Coupled Microstrip
Line

2.1. Parallel-plate Waveguides

Figure 2. Parallel-plate waveguide. The medium
between the plates is described by the
general dielectric constant €(x,y).

A parallel-plate waveguide (figure 2) is a rectangular
structure, so it can easily be described using rectangular
cartesian coordinates.  Without loss of generality, it can be
assumed that the metal plates of the waveguide lie parallel to the
plane of two of the axes, and that the direction of propagation lies
on one of these axes. The medium between the plates may be
homogeneous or inhomogeneous. In the case of a homogeneous
medium, finding the field distribution is elementary and the
procedure may be found in any textbook. In the latter case of an
inhomogeneous medium, the case where the medium is layered
in only one direction, parallel to the plane of the metal plates of
the waveguide, will be investigated. Assuming that the plates lie
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parallel ic the x-z plane, and that the direction of propagation is
along he z axis, TMY and TEY solutions to Maxwell's equations
may be constructed. Using untilde'd variables to denote TMY
quantities, and tilde'd variables to denote TEY quantities, the TMY
field components may be written as (see Appendix B) [13]:

2
E, = 1 0 f(xy) o k2
JOEly) oxdy

H, =jk,f(x,y) e *?

2
Ey=— [+ 2_|fxy) eI H,=0 2.1.1)
T joey)| gy’
E,=. 2 9f&Y) .ikz g, = &Y ke
wely) dy ox

where f(x,y) is the TMY scalar potential, €(y) is the y-dependent
permittivity, kZ?=w2p,e(y) is the wavenumber, and k, is the

propagation constant in the z direction (4,7,19].

For the TEY field components, the corresponding
equations are:

2.
1 9 f(x,y) o ik2

Ex =-j kz?(x,y) ¢ ik? ﬁx =-
JOH, Jxady
82
E,=0 i, =- LI RN | fxy) e (2.1.2)
JWU, oy
E,=- 3 fxy) k2 f,=- k, 9f(xy) o ikz
dy W, 9y

Here, f(x,y) is the TEY scalar potential.




In a parallel plate waveguide with the x dimension of
the waveguide very large, or for high frequencies, the potential
functions for the TMY and the TEY fields may be assumed to be a
function of y only. So, the TMY potential may be written as:

f(x,y) = y(y) (2.1.3)
and the TEY potential function may be written as:
f(x,y) = y(y) (2.1.4)

Substituting (2.1.3) into equations (2.1.1) for the TMY
fields will yield:

E, =0 H,=jk,y(y) e ?
1 2 2 ik
E,= K+ —lw(y) e H,=0 (2.1.5)
JWEy) dy
k K
EZ-— _ Z d‘g()’) e)k} HZ'—"O
wely) Y

Similarly, substituting (2.1.4) into equations (2.1.2)
for the TEY field components will yield:

-~ ., -~ _'k ~
E,=-j k,w(y)e”? H,=0
=~ o~ 1 2 d2 - ik
E,=0 H, = k™ + yy)e™* (2.1.6)
: 2
JWHg dy
~ ~ k -'
E,=0 fi =2 dVO) .k
GRTIN dy




2.2, Three-Layer Parallel-Plate Waveguide:

pec plate
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Figure 2.2.1. Three-layer parallel plate waveguide.

At this point, it would be advisable to separate the
structure into regions. For a three-layer parallel-plate waveguide
(a parallel plate waveguide with three layers of dielectric), the
structure can be separated into three regions, each region
characterized by its own dielectric. So, for the parallel-plate
waveguide in fig(2.2.1), region 1 will be that region where O<y<hy,
hy being the point where the dielectric constant of the medium
changes from €; to €. Region 2 will be that region where hi<y<hj,
h, being the point of transition from £=€, to €=€5. Similarly, region
3 will be that region for which hp<y<h, h being the height where
the top metal plate of the waveguide is situated. Each region will
be characterized by its own set of TMY and TEY potential
functions, f(y) being the TMY potential, and f(y) the TEY potential
of region i, i=1,2,3. Both the TMY and TEY scalar potentials are
solutions of the scalar Helmholtz equation:




-

2
CA0) =0
. dy (2.2.1)

a general and complete solution to the above equation being:

x(y) = & cos (Ky) + o, sinf (xy) (2.2.2)

where o, and a, are constants which depend on the boundary and
continuity conditions of the structure.

The function sinf(xy) is defined as sinf(xy)=sin(xy)/x
and its usefulness will be presented later on in this analysis.

The electric and magnetic fields must conform to
certain boundary and continuity conditions. These conditions will
serve to specify the unknown variables o1, 07, and K in equation
(2.2.2). The general solution to the scalar wave equation shown
above 1s modified such that these continuity conditions can be
implemented.

Substituting x(y) into the TMY equations, and
applying the conditions of zero tangential electric field on the pec
plates will yield the general form for the potential for the TMY
modes of a three layer parallel-plate waveguide:

acos(ky1y) ;0.sy<h;
b cos[ k(hzy)] h.<v<h 2.2
= . ;hisy< 2.3
YO csinfTkyhpyy TSR )
d cos[ ky3(h-y)] ;hp<y<h




Correspondingly, substituting the appropriately
modified forms for the corresponding form for the TEY scalar
potential into the TEY field equations will yield:

asinf (ky1y) :0.<y<h,
vy = 0 costkydhry)l hy<y<h, (2.2.4)
+ ¢ sinf[ kya(hry)]
d cos[ ky3(h-y)] :h,<y<h

potentials, as well as their corresponding eigenvalues, will not be
identically equal.

The continuity conditions between the different
regions state that the tangential fields at a dielectric discontinuity
must be continuous. Applying these conditions, and solving the
resulting equations, will yield the eigenvalue equations for the
TMY and TEY y-directed eigenvalues as well as the corresponding
expansion coefficients of the scalar potentials in equations (2.2.3)
and (2.2.4). The system is underdetermined, so the four
expansion coefficients in each case will be found within a
multiplicative constant.

Following the procedure described above will yield
the TMY eigenvalue equation for the three-layer parallel-plate
waveguide:




k k k
Y tan(kyh,) + —2 tanfk (hh )} + =22 tanfk 5(h-h )]
£
! % = (2.2.5)
k k
= tan(k,hy) —2 tanfk (ho-h )] 22 tanfk +(h-hy)]
& ky2 &3
and the coefficients are:
1. k3 real
d= |
- k,3 imaginary
cosfkyy(h-hy)] ’ (2.2.6.2)
- -2-2 kygsinfkygh-hy)]  kygreal
c= 3
- 22g stanfkyib-h)]  ky3imaginary
& (2.2.6.b)
b= cos[ky3(h-hy)] lfy3 re'al
1. k3 imaginary (2.2.6.c)
= b cos[kyy(hy-hy)] + ¢ sinflkyo(hy-h )]
cos(kyihy) (2.2.6.d)

One other relationship of great importance in this
analysis is the dispersion equation. This equation links the
eigenvalues k,, ky, and k,, with the wavenumber k in a certain

medium. The dispersion equation states that:

2 2 2 2 2
kyt+ky+k, =k =0 pegly) (2.2.7)

for the TMY case, and correspondingly:

11




12

~2 2 2 2 2
kx+ky+k, =k =0 peEly) (2.2.8)

for the TEY case.

For the particular case of the three-layer parallel-
plate waveguide, it has been assumed that kxi=0, i =1, 2, and 3,

so the dispersion relations for the TMY and the TEY case
correspondingly become:

2 2 2 2
kyi+ k, =k; = 0 [eg; (2.2.9)
and

~2 2 2 2 - : '
kyi+k, =kj = 0 UeE; (2.2.10)

k, being, of course, the propagation constant of the waveguide,
and k the wavenumber. The z axis (and therefore, the direction
of the propagation constant) are parallel to the planes of the
discontinuities, and so continuity forces k, to be the same in
every region. This gives rise to a very useful relationship
between the eigenvalues in the y direction in each region. This
relationship is derived by subtracting the dispersion relation
defined in the one region from the corresponding equation in the
other region. Thus, the dispersion relationships corresponding to
two neighboring regions of the waveguide reduce to:

2 2 2
kyi- kyj= © 1€ - €) (2.2.11)
and:
~2 2 2
kyi+ kyj= @ PoE; - €) (2.2.12)




so that the y eigenvalues in each region of the waveguide are not
independent variables, but are linked through the dispersion
relation.

The TEY eigenvalue equation as well as the
coefficients for the TEY scalar potential may be derived in a
manner similar to that used in the derivation of the TMY
potential. The TEY eigenvalue equation is thus found to be:

tankyihy) | tanfkyshyhy)] | tanfkysth-hg) _

kyt ky2 Ky (2.2.13)
tan(k,ih,) ~ ~ tan[k 3(h-h
L tanicy ) 0

and the coefficients of the TEY scalar potential in the waveguide
are:

1. Eyg, real

ol
]

1. Ey3 imaginary

coslky3(h-hy)] (2.2.14.2)

cos[Ey3(h~h»] EyS real
1. ky3 imaginary (2.2.14.b)

o1
il

sinflk,3(h-hy)]  ky3real

Tl
i

sinflkyx(h-hy)] ~

— ky3zimaginary
cos[ky3(h-hy)] (2.2.14.¢)
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~_ b coslkya(hy-hy)] + ¢ sinf[kyo(hyh )]

cos( ky1hy) (2.2.14.d)

Working in the reverse order now, the eigenvalue
equation, in conjuction with the modified dispersion relation, will
yield the eigenvalues in the y-direction of the three-layer

parallel-plate waveguide. The dispersion relation will then yield
k,, the propagation constant of the waveguide in the z direction:

2 2
k,=V o HeE; - ky; (2.2.15)

for the TMY case, and

2 ~2
k,= \/03 HeE; - Ky (2.2.16)

for the TEY case.

In addition, the ky; and Eyi eigenvalues serve to
specify, within a multiplicative constant, the expansion
coefficients of the correspondin'g scalar wave equations. These
scalar wave equations, substituted into the corresponding TMY or
TEY field equations will yield the TMY or TEY electric and
magnetic field components. Since the coefficients are found only
within a multiplicative constant, only the distribution of the E
and the H fields in the waveguide can be found.

When the TMY and TEY scalar potentials were defined,
a new functional form was introduced. This form was the
function sinf(xx), which was subsequently defined as:

sinf(icx) = SID(Kx)

(2.2.17)
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From the definition of the "sinf” function as stated
above, it is evident that this function has the following
properties:

4 {sinf(xx)}=cos(xx)
dy (2.2.18)

and

;
M sinf(en)) = x
-0

y (2.2.19)

The "sinf" function is preferred over the simpler "sin" because it

offers two very important advantages.

One advantage is that sinf(xx) offers the correct
solution to the scalar Helmholtz equation for vanishing X. Using
sin, the general solution to the scalar wave equation is:

x(y) = o cos(xy) + o, sin(xy) (2.2.20)
As X approaches 0, X(y) becomes:
x(y) = oy (2.2.21)

Although this does provide a solution, it is not a general solution
to Laplace's equation.

With the "sinf" representation, however, the solution
to Laplace's equation becomes:

x(y) = ouj cos(Ky) + 0. sinf(Ky) (2.2.22)
which, for vanishing x yields:

x(y)=0; +ayy (2.2.23)




This latter form does provide a general solution to Laplace's
equation.

The second very important advantage of the "sinf"
function over the "sin" is found in the nature of the eigenvalues
K. For a purely lossless dielectric medium, X will be either real or

L LI "

imaginary. For X imaginary, the "sin” function would also be
imaginary, which fact might give rise to a complex analysis.
However, the "sinf" function remains real irrespective of whether
K is real or imaginary. This provides a distinct improvement

over the "sin".

For programming purposes, "sinf" is defined as:

16

2 2
p. . () +("2’8 |xx |<0.1
6. .
sinf(xx)=x * . ! (2.2.4)
sin(Kx) lxx|> 0.1
X X

Here, the asymptotic expression for "sinf" is used for the case
Ixx|<0.1.




Four-layer parallel-plate waveguide

2.3.

pec plate
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Four layer parallel
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ial for the case of the four-layer

The TMY scalar potent
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The eigenvalue equation is found using the same procedure
that was described for the three-layer parallel-plate waveguide.
The TMY eigenvalue equation is therefore:

ki k.
—Ltan(k hyp) + = & 22 tanfk ,5(hy-hy)]
€

+ % tanfk,5(hxhy)] -k_Y“- * tanlly(h-hy]=
3

A tan(k,h 1) 2 tan[k,p(hy-h 1)] % tanlk 3(hs-hy)] +
81 y2 3

K5 tan(k,ihy) 22 tanfkyp(hrh )] 22 tanfk h-h ) +
€ k y2 - €4

k € k
—8Y-1- tan(kylh 1) =3 tan[ks(h5-hy)] -r‘- tanfk,,(h-hy)] +
1 y3

ky2 tan[kyz(hz—h 1)] =3 tan[ky3(h3-h2)] ta.n[k ya(h-hy)]
€r y3 (232)

The coefficients which serve to deiine the TMY scalar potential of
the waveguide are, within a multiplicative constant:

1. ; kyq real
f= :
: ; k4 iImaginary
cos[kys(h-hp] ~ T (2.3.3.a)
) kyg sinfkyu(h-hg)] ;5 kygreal
€2
e =
& kyq tan(ky4h-hp)]  ; k4 imaginary
£, (2.3.3.b)
= cos[kys(h-h3)] ; k4 real

1. ; kyq iImaginary (2.3.3.c)

18
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¢ =d cosfkysthyhy)] + e sinflkys(h5-hy)] (2.3.3.d)

£ . €
b = -d 2 k3 sink3(hzhy)] + e =2 cosfk,3(hy-hy)]
€3 €3 (2.3.3.¢)

4z b cos[kyy(ho-h )] + ¢ sinf[kyy(ho-h )]
cos(kyhy) (2.3.3.1)

The TEY scalar potential may be written as:

a cos(ky1y) 0sysh
b:SS[-k;[z'(;Zh:(i)] ' h,<y<h,
~ c sin
)= : . 1: ry (2.3.4)
005[. y3(hs-y)] h,<y<h,
+ e sinflky3(hs-y)]
f cos(k ya(h-y)] sh3<y<h

Using this expression for the potential, the eigenvalue equation is
found to be:




20

tan(Eylhl) . tan[Eyz(hz-hl)]
ky1 ky2
, tnlkysthsh) | tanfkyah-hy)
ky3 kys
tanlkyy(hshy)) |

@y § s tanfiy b rhy)

Ky, Ky3 (2.3.5)
an(l(yl v K, tanfk,o(h,-hy) [ Zf( )

kyl ky4
tan(kyh ) = ~ tan(k ya(h-h
—gl—-gkyﬁan[kﬁ(hfhl)] [ }f( 3)] +

kyl k)’4
tanfkyohrh)) = = tan(kya(h-h

[ yi( zh) ky3tan[ky3(h2'hl)] [ 1'4( el

ky2 ky4

The coefficients of the scalar potential are, within a multiplicative
constant:

~

) 1. ; kya real
f=
— 1. ; kys imaginary

cos(K ya(h-h )] (2.3.6.a)
~  cos[kya(h-hy)] ; kyqreal
e= =

1. » kys imaginary (2.3.6.b)

3 sinf[iy4(h-h Y] izy4 real

tan[ky4(h-h3)] ; kys4 imaginary (2.3.6.c)
b = d coslkyx(hs-hy)] + e sinflkya(hs-ho)] (2.3.6.d)




c=-d kyssinfkyy(hshy)] + e coslk,s(hshy)] (2.3.6.¢)

b coslkyz(h,-h ] + ¢ sinflkyo(hy-h ]

a= =
cos(kyihy) (2.3.6.1)

Thus, so far, the TMY and TEY potential functions for
the three- and four-layer parallel-plate waveguides have been
derived. Their connection with the coupled microstrip line, which
is the main subject of this paper, will become apparent shortly.
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Chapter 3. Coupled Microstrip Lines

Coupled microstrip lines are used in a number of
circuit applications, principally as directional couplers, filters, and
delay lines. Mode matching will be used to calculate the
propagation constant of such a line.

A pair of microstrip-like transmission lines as shown
in fig. (3.1) are known to have the property of a broadband
directional coupler when placed in parallel proximity to each
other. As a result of this proximity, a fraction of the power
present on the main line is coupled to the secondary line. The
power coupled is a function of the physical dimensions of the
structure and the direction of propagation of the primary power.

Figure 3.1. The coupled microstrip line.

In general, the coupled line structures shown in fig.
(3.1) support two modes, the even and the odd modes. This
induces the coupling between the two transmission lines. The
properties of the coupled structures may be described in terms of
a suitable linear combination of these even and odd modes. For
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geometrically symmetric structures, the geometrical plane of
symmetry may also be thought of as an electrical plane of
symmetry. The even mode has equal amplitude and equal phase
correspondence with respect to this plane of symmetry, in which
case this plane takes the form of an open circuit. In the even
mode case, therefore, the plane of symmetry takes the form of a
perfect magnetic wall (pmc). The odd mode, on the other hand,
has an equal amplitude 180°9-out-of-phase correspondence with
respect to the plane of symmetry, so this plane acts like a short
circuit and is simulated by a perfect electric conductor (pec) wall.
Thus, the directional coupler can be treated as a two-port
network, and the total response can be obtained by superimposing
the responses calculated for the even and odd mode excitations.
This reduces the problem to about half its original size, which is a
great advantage of symmetric structures.
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3.1. Propagation Constant

The structure shown in figure (3.1) is symmetric with
respect to a plane drawn perpendicular to the x-y and x-z planes
and placed halfway between the two metal strips. Thus, the

structure under consideration is modified to that shown in figure
(3.1.1).

top plate

.
N
RSN

Figure 3.1.1. Symmetry as applied to the
coupled microstrip line

As was mentioned earlier, the left-most boundary
becomes either a pmc or a pec wall, according to whether the
search is conducted for the odd-mode or even-mode propagation
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constant. There is no perpendicular boundary to the right of the

microstrip, so propagation in the positive x direction for large x
must take the form exp(-jkxx), such that there is an exponential

decay for x—>oo. This serves to put a lower bound on the search
for k,, since this exponential decay is observed only for the case

where ky is imaginary. The dispersion relation states that:
2 2 2 2 2
ky+tky+k, =k =0 jeE (3.1.1)

so, for kx:

2 2 2 2
ky=0 HeE-ky-k, (3.1.2)

The condition for imaginary k, yields:

2 2 2
muﬂg’ky‘kz<0 (3.1.3)

or:

2 2
kz>V o ue-ky (3.1.4)

An upper bound may also be placed on k,, since it may
never be larger than the unbounded propagation constant in the
medium with the highest relative dielectric constant. Thus:

k,< 0V pEgmax(Ey) (3.1.5)

The structure must further be separated into regions
for modal expansion. Two more bounding planes may be drawn
parallel to the plane of symmetry, at each end of the metal strip.
Also, since the structure must be bounded, a top plate must be
placed above the structure at such a distance that it does not
interfere with the computation of the propagation constant of the
actual open structure (this top plate was also included in figure
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3.1.1). The two lateral bounding planes may be thought of as
perfect magnetic conductor walls, since the tangential electric and
magnetic fields must be continuous across them. The original
structure has thus been separated into four distinct regions,
shown in figure (3.1.2).

top plate

Figure 3.1.2. The four distinct regions of the
coupled microstrip line

As was stated earlier, a set of normal modes must be
defined for each region, and the unknown fields in each must be
expanded with respect to these modes. Each region may be
thought of as a multilayered parallel-plate waveguide, consisting
of two parallel metal sheets placed at a certain distance from, and
parallel to, each other, with a layered dielectric medium between
them.  Thus, regions 1 and 4 are four-layered parallel-plate
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waveguides, region 2 is a three-layered parallel-plate waveguide,
and region 3 is a one-layered parallel-plate waveguide. This
latter case has been studied extensively in the literature, and has
not been presented here. The normal modes for the three- and
four-layered parallel-plate waveguides have been defined in
chapters 2.2 and 2.3, respectively. It now remains to establish the
equations which define the electric field components with respect
to these modes. Let it be noted that the following modal
expansions and field representations are not unique, but just
constitute one possible solution.

Using the expressions derived for the TMY and TEY
modes of the three- and four-layer parallel-plate waveguides, the
corresponding expressions for the electric and magnetic field
expansions may be derived. As shown in Appendix B, the electric
and magnetic fields in each region due to the TMY mode potentials
are given by:

g oL 2 (f txay)e S 7
yi  oxody 0z
2
Eyi= —1—(8—2 ¥ k?) fixy)e ™ Hy;=0 (3.1.6)
Yilox
E. =L az(f ey g g e H
“Y 0 oyae “ ox

and the electric and magnetic fields due to the TMY fields are:
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P j 2~ .
5 e 13 (iye™
N dz ’ ox dy
2 |-
Eyi=0 = 12 sl Gope ™ (B.17)
Z\0x
T j 2~ .
£ Aiwe™ & _ 13 Gixye™
i X 2 dy dz

A A
where yj = jog; and z = jopg[13], and subscript i=1,2,3,or 4,

correspondingly, for each region.
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The electric and magnetic potentials in each region are:

Region 1:
COs
flm(x,y) Allem(y)smf( lxmx) even (3.1.8.2)

f ~
_flm(an) Allem(y)sm ( 1""‘x) even

Region 2:
me(xvy) = \sz;l(Y){ AZmCOS[k)Qm(x'W 1)]
+B2msmf[kx2m(x -wl} (3.1.8.b)

f2m(x Y) = WYon(y) {AZmCOS[kXZm(x -W1)]
_ .t B2mSlnf[kx2m(x wl)]]
Region 3:
Fam(%:y) = W3(y) {AsnFOS[kxsm(X-W V]
+ B3mSmfIkx3m(x-w1)]} (3.1.8.¢)

_f3m(xv}') Vam(y) {A3m005[kx3m(x -wy)]
+ B3msmf[kx3m(x wl)]}

Region 4:
§am(X,¥) = W4 (y) expl-ik gxm(Xx-W9)] (3.1.8.d)

_f4m(x’Y) = WYam(y) exp[-jE4xm(X-W2)]

where yj(y) and u'}'i(y) are the TMY and TEY potential functions for
the corresponding cases of the one-, three-, and four-layer
parallel-plate waveguides.

For a suppressed z-dependence, the equations for the
electric and magnetic field components yield, for each region:




REGION 1
Electric Field Components:

1 M d\Vlm()’)
J0£1(y) m=1 dy

M,
inf ~
-3, 2, Win) oo Kixa) At

m=1

Elx=

1
1xm)Sm (klxmx) Alm

CoSs
_]O.El(y) E (k +k1xm)\V1m(y)SInf(klxmx) Alm

E1y=

Ml d
v 1 Vim(Y) cos
Ey,=- K1xe) A
z i€ (y) met dy sinf

M, o
Z \Vlm(Y)( ) c;lo:(k]xmx) Aim

(3.1.9.2)
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Magnetic Field Components:

M,
. coSs
1x=sz z Wl“‘(y)smf( lxmx) Ain
m=1

M, .

1 Ay 1 cos

. dm { ~ (klxmx)Alm
JOH G m=1 y \"klxm

(3.1.9.b)

sinf ~
Hyy=—— 2 (k +k1m>w1m<y) s K1) Ay
J(’)u() m=1

Z V()

m=1

1

1
xm) sin (klxmx) Alm

dy _
) 2 Yim(Y) smf(klx Y.

WL 0m=1 dy
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REGION 2

Electric Field Components:

M,
sz: 3 1 2 dwczlm(y) {-A2mk2xm5in[(k2xm(x'w ])]
J0)€2(y) m=1 y
+ BszOS[(kzxm(x-w 1)]} +
M, o _ 5
22, Vo) (Azn€osKoxm(x-wy)]
m=1

+ §2n§inﬂ(E2xm(x-w o1}

E2y=

M,
LS K2k W) ( AgnooSl(an(x-w1)]

jmz(Y) m=1
+ B, sinfl(K gy m(x-w 1) (3.1.10.a)

k M; g (y)
Egp=-——n . Wg"‘ Y { Appp COS[(K gy m(X-W ]
wez(Y) m=1 y
+ Bosinfl(koxm(X-w)l } -
M, . o B
Y Won®) { Ak g rsinl(K g m(x-w 1))

m=1

+ B oSl (Ko xm(x-w 1)
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Magnetic Field Components:
M,
Hyy=jkz 2, Win) { Aggcoslkoxm(x-w )]
m=1]
+ B, sinflk,, (x-w )] }+
1 %2 d‘l’Zm(y)
ij m=] dy

+ §2msinﬂ§2xm(x-w B

{ ~AonK 25 0C0S[Ka g m(X-W1)]
(3.1.10.b)

1 M" 2 ~2 ~ ~ ~
Hyy=—— 3, &Ko Wam¥){ AgrcosKppm(x-wy)]
JO G m=1

+ B ppsinflkyx-w) )

M,
Hy= Y Vo {-AgnKognsSinkogm(x-w1)]

m=1

+ Bocoslky m(x-wi] } -
k, Mzz dyo(y)
opgme1 QY
om
+ B sinflky o m(x-w1)] }

{ 'R 2mE2xmcos[E2xm(x'w 1)]

The equations for region 3 are identical to those for
region 2 with subscript "2" substituted by subscript "3".

REGION 4
Electric field components:
M,
1 dyam(y) . :
= > Y ik g xPl-K axn(X-W ) A -
JOELY) p Oy

M, - - —
jkzz Yam(y) expl-jkaxm(X-w2)] Asm

m=1




Eqy =

M,
! 5, & K g Wan(y) Xpl-iK axm(x- W) Asgn

JOELY) 2

E,=. 2 %:d""“"‘(y) expl-iK axr(X-W)] Agm +
4z 0eLy) 2 dy PL-JK4xm 4m

My _ _ _ _
Z ‘lf4m()') jk4xmexp[('jk4xm()('W9]A4m

m=1

Magnetic field components:

M,
H4x = jkz Z \V4m(y) exp[k?ixm(x'w.ﬁ]A;tmﬁ'

m=1

Y d
1 Z Venly) i K axnexpl-iKaxm(x-W )} A dm
J(DUO m=1 dy

M,

Hey=—— 3 (koK) Wam(y )expl-K ax(x-w ) Asm
JORo 57

M,
2= D, Vam(y) FKaxafXPlJKaxm(X-WD]A 4 -

m=1

k, M dwan(y) ~ ~
2y SVImlY) expl-K asm(x-WDIA4m

In the above equations,
at M; modes for the fields in region 1,

region 2, etc.
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(3.1.11.a)

(3.1.11.b)

the sums have been truncated
M, modes for those in

For the solution of this system of equations to be




35

unique, these equations must form a square matrix, which means
that :

2M2+2M3=M1+M4 (3112)

The relationship in eq. (3.1.12) ensures that the
system of equations will have a unique solution. It does not,
however, eusure convergence of the system. This is because one
very important geometrical factor has not been considered yet.
All planar structures have discontinuities in the form of sharp
edges. It was noted earlier in this chapter that these
discontinuities must conform to the edge condition, that is, the
power of the electric and magnetic fields at these points must be
finite. This condition was found to be adequately met when the
number of modes retained in each region were such that:

M1=M4= h

M; Mjz h-h; (3.1.13)
and

M1=M4= h

M; Mj; h-hy (3.1.14)

Thus, the edge condition will yield a relationship
between the number of modes which should be retained in each
region, and their relative dimensions.

Matching the tangential fields at the interface x=w]
and O<y<h3 yields:




1y(X=W1) = E2y(x=wl) -

Toc (y) 2 (k +k1xm)W1m(y) (klxmwl)Alm
1

J(Daz(y) Z (k +k1Xm)\Vlm(Y)A2m

E{x=w)) = Eox=w) <

M

kz 1 d\l’lm()') COS

- . KixmWDA
0)81(}'),,,21 dy smf( 1xmW DA 1m

~ 1 \cos =
2 \Vlm()”( klxm) n(klxmwl)Alm—

M M
k : d\Vzm()’) ;~ D
2 = ) ym(y)B2
Gy uZl e

Hymw) = Hayomwy =

z (k '*'klxm)‘VIm(Y) (klxmw I)A Im
J(Oiiom_
M,

LS (4R pemWan(y) A2
J(Duom_

(3.1.15.a)

(3.1.15.b)

(3.1.15.¢c)




Hy(x=w)) = Hp,(x=w1) &

-k
2 Wlm(y)( lxm)sm (k Ixmwl)Alm

(kyxmw J)Alm"'

k, Z ! dyin(y)sind
®poyy dy  ©OS

M,
S Vany)Ban L ¥ SYOIT,
m=1 Opo iy dy

(3.1.15.d)
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Matching tangential electric and magnetic fields at
x=w9 for O<y<hj yields:

Ezy(x=W» = E4y(x=W7) ==
M,

j(DEl 2()’) Z (k:+k§xnl)w2m(Y) { AZmCOS[k 2xm(w rW 1)]
m=]

. (3.1.16.2)
+B ypsinflk pym(Wo-w ] } =

M,
1 2 2
- z (kK gxmWam(Y)A
Jm84(}’)m=1 v 8 4x \V4m 4m

- Eyx=wy) = Egfx=w) &

k, % dYny)

oy = dy
+B o psinflk o (wWow ] }-

{ AZmCOS[kam(WZ'W 1)]

(3.1.16.b)
M,

> W2 { -A 2K 2xmSIK 2xm(W - W )]
m=1
+B2mcos[K2xm(Wrw1)] }=

M,

k AWan(y) Mo o o
z 4m .
Agm+ Y, Vam(y)ikaxmAs
w84(y)mz="1 y ™ Z‘, AR

sz(X=W2) = H4y(X=W7) <~
M,

7 ~2 - —_ —_~
LS (kKo Wam(y) A 2cos R 2am(wo-w )]
qu‘Om:]

~ ~ (3.1.16.c)
+Bonsinflkoxm(Worwy)] } =
1 M, 2 ~2 - ~
—— Y (kKaxm)Wam(y)Aam
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sz(X=W2) = H4Z(X=W» L

M,
Z Yor(Y) {-Azmkgxmsm[khm(wfw V]
m=1
;Bzmcosmzxm(wz'wl)] }- (3.1.16.d)
k 1 40 _ ~
.z 2 dwzm(y){AzchS[khm(WTW )
+B oSinflK gx(Wo-w ] }=
M Mg .~
4 . kz ) d m A
- Z W4m()’).]k4xmA4m+ Z W4 (y)A4m
m=1 ®Ho p=1 dy

The equations forrwx=\bav‘1 and x=wp with h3éysht41wa;ém
identical to the corresponding equations for 0<y<h3 with the
subscript "3" substituted for subscript "2".

As stated earlier, the orthogonality of the modal

expansion functions vy;n(y) and \Ifim(y) take the form:

1
_[ . VYim(Y)V¥in(y)dy for m#n
over one region€&;(y) (3.1.17)
and:
Vi Vin(¥)d for m#n
jover one regionwm(wwm(y) y T (3.1.18)

So, orthogonality can be utilized here to reduce the
complexity of the continuity equations. By multiplying each
equation by the appropriate orthogonal function, and integrating
over the appropriate region (from O to hj), the equations for
(0<y<h3 may be rewritten as:




M2 2 e cos
z (kz+k 1xm)] Imng; f(k 1xm™ DA 1m

m=1

2.2 e2
= (kz+k1xn)12nnA2n

M,
h2 cos
2 Timngi¢® 1xm% DA 1m

My
h2 cos
I K 1xmW I)A 1m™
mz=l [ -k lxm) sin

Mz
h2 h2 =
—2 L3mn® 2m- 14nnB
h2 sinf ~
2 (k +kum)12m,f“‘ K1xenW DA 1m
m=1
2 ~2  n2-~
= (kz+k2xn)14nnA2n

M,
e [-k
Z Ilmr( lxm)sm (klmeI)Alm

d —_
sin o KixmW DA 1=
(Oj.lom_
M,
k, 2 ~
I2nnBZm -—= 214mnA2m
w 0 =1
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(3.1.18.a)

(3.1.18.b)

(3.1.18.¢)

(3.1.18.d)
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2 2 e2
(kz+k 2xn)I2nn{ A2ncos[k2xn(w W l)]
+anSinﬂk2xn(W2-W1)] } = (3.1.18.¢)
Z (kz+k4xm)11mnA4m
m=1
k, M2 o
- —z I3mn {Achos[k2xm(W2’w l)]+B2msmﬂk2xm(W2'w 1)] }-
m—l
I4nn{ 'K2ni2xnsm[i2xn(wfw 1)]‘*'§ 2nCOS[E2xn(W rW l)] }= (3.1.18.1)
M M
kK,  h2 2o~ o~
225 DimoAan+ Y DK axmAdn
mm:l m=1
2 ~2  n2 ~ ~ ~ |~
(k Ak 2xn) Lann{ A2nc0sTK 2xn(Wo-W DI+ B 2nsinfTk oxn(Wo-w ] } = (3.1.18.8)

M, 2
2 ~ h2 ~
2 (kz+k4xm)12mnA4m

m=]

Iifm (-A K oo SIn[K (W W D]+B 208K pse W W )] )

k,
wDl+Bomsinflkaxm(Wzwy)] }=  (3.1.18.h)
‘Duo =1
e ~
2 Ilmn]k4xmA 4m +"'— Z I3mnA4m
Ho -
where:




. o3
?tlnn='0 (I)Wlm(y)\l’m(y)dy J’ Vam(Y)Vin(y)dy
. SERE
Iei:nn= _\me(y)\lfm(y)dy
0 e(y)
C M1 dyim(y) hs 1 dym(y)
ei m
. )y = [ Vin(y)dy
3mn Jo =y) dy VinlY)dy 0 ey) dy in

e _IhS 1 dim)

= in(y)d
4mn 0 z-:(y) dy Vinly)ay

"1
e —
_ISmn—jo YOy = f—wmw)wn(y)dy

by dy B dy
. jol Vin® o ("L Wen®

mi= ) ey dy T hey  dy

CoP 1 dyn(y) - B3 q \v4m(y)
= "Ly = | Vin()dy
lmn Jo 8()’) dy m( y= dy in

. phs hy
Ilzlrlnn ‘Vlm(Y)\Vm(Y)dy wm(y)wm(y)d y

cPr 1 dyin(y) -
Ihl = im ( )d
3mn b =y dy VYinlY)Qay

N3 _
Illimn= 0 \Vim(y)‘yin(y)d y

h _ . h . _
Igmnzd . Vim(Y)Vin(y)dy = IO Yam(Y)Wan(y)dy

h h
h [ 1 dvim(¥)- 1 dym(y) - (y)d
I6m1’1"-0 ey) dy Vin(y)dy = 0ey) dy Yanly)ay
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where i=2,3, for regions 2 and 3, correspondingly. Thus, an
identical set of equations as those derived for h<y<h3 may be

derived for the case h3<ysh. For this case, it is sufficient to
substitute i=3 1instead of 2 in the superscript in the
orthogonalization integrals, and substitute 3 for 2 in the subscript
of the remaining functions.

By developing the above equations further, the final
form of the set of eigenvalue equations is derived for Osy<h3:

k, Y1) 12 cos oy Igznliz cos
- 2 Ilmn (klxm 1) (k +klx Z SEER (klx l) Alm+
sinf e2 |sinf
® m=1 p=1 (k +k2xp)12pp

M, 1 2
c ~ S inf ~ ~ ~ ~
Z I ( =~ )S?I? (K yxmW 1)'*_'—”12ﬂ y (k 1xm 1)k2xnc°t[k2xn(w2'wl)] Almr
m=1 “Rlxm (kz+k2xn)

Ma (k2+k2 w 1 0

z 28 4x 12211 Ay =0 (3.1.19.a)
2 ~2 sinf[k (W -W )]

m=1 (kzlka ) 2xm\W 2" W1

“K1xm \sin (ko+ lxm) cos (Coskoyn(Wo-wy)]
z Il““‘ ( )cos(kl"’“w 1)+Tz_—smf( IxmW g, 7sinflk,, (W2 W] A
(kz+k2xn)
M, M, e2 .h2
K, 2 sinf ~ T4pnl2 sinf ~ ~

wl—loz Igmn (klxmwl) -(k +klx Z__g__"j;_; co (klxm 1) Alm'

m=l P! (k+Kaxplapp
My 1 2412

(g tKaxm) ez 1 40 (3.1.19.b)

1 . T
m=1 (k:+k§x11) mnSlnf[kZJ(n(WTwl)]
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M 2.2
v (kz+kyym) e2 cos
- 1mng; (klxmw I)Alm+
2,2 sinf
m=1 (kz+k2xn)

% [ o

Imn 2 Os[kz,m(wz-w1)]+jk4meinﬂ§2xn(W2-W D] A4
m=1 \ (kz+Kaxp) j

M, M, (€2 ;h2

kz 2 ~2 I 2 . ~ ~
S B Y, —temime g2 G wpw 1A=
(')UOm=1 =1 2 ~ h2

P (kz+k2xp)l4pp

(3.1.19.¢c)

5 2
“24:‘ (kz+Kixm) 02 sinf
~ —2 g 2mn.oo
m= (kz+k2xn)

(Elxmw l)xlm'

LN PP I Ll b ~ h2 \
- —JPrlmP sinfTk oxp(W2-W D]-1) pypsinflk oy (W 2-w ) fAd,m'

2 .2 2
m=1 p=1 (k z+k2xp)l ;pp

& n2 (k2+Ejm) ~ ~ ~
2 Do, ———37008[K W W] 43K g xrSInflK oW W )] YA 4ry=0

m=1 (kK50

(3.1.19.d)

As before, substituting the corresponding variables for
region 3 will yield the corresponding equations for h3<y<h.

The above set of equations may be expressed as a
homogeneous matrix equation [A]x=0, where [A] is the matrix of

the coefficients of A,p, A;pm, Agp, and Asm X is the vector

containing A, Aim, A4m. andAg,,. This homogeneous equation

has a nontrivial solution only for the case det(A)=0. The
coefficients of the matrix [A] have only one unknown variable, k,.

so solving the equation det(A)=0 yields the solution for the
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propagation constant. By substituting this value of k, back into
the set of equations [A]x=0, an underdetermined system is

derived for determining the coefficients Ay, Ajm, Ajp,andAg, of
the electric and magnetic fields of the structure.

After solving for the coefficients of the fields in
regions 1 and 4, the remaining electric and magnetic field
coefficients are determined by:

Ml(kZ k2 & Iei
- Ky 1 cos
Anm z y elpmsinf(klxpwl)Alp

P=1 (k- kxym) I2mm (3.1.20.2)

M ei
B. = l_Ié_Lm_( klxp) Sm(klxpwl)Alp

1mm Ci 1
p-IIme
M, ei f ~
k. §° I4pms"‘ (K 1xpW DA |
(’JUOp 1
k, M 2-~2 inf ~2 G I;mlz I n
Y (k Kayp)  (Kixpw) 2 p2 1p
mu0p=1 Ihl k X
ailk -Kiy) (3.1.20.b)
2
M .2
~ k -k I sinf ~
Aim’_‘z( ; ;yp) j?m ' (k1xpW1)A1p
P! (k"Kiym) Lamm (3.1.20.c)




hi
~ k.M I1 cos
Binl':‘;zz-:;un‘ Sinf(klxpwl)Alp'
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The coefficients determined through the matrix
equation are determined within a multiplicative constant, so in
fact the electric and magnetic field distribution in each region, if

not their true amplitude, may be derived.




3.2, Characteristic Impedance

Theoretically, three different expressions may be used
to calculate the characteristic impedance of any device. When
applied to the coupled microstrip line, these three expressions
define the relationship between the characteristic impedance of
the coupled microstrip line, the time-averaged power flow in the
strip, the complex voltage of the strip calculated at the center of
the strip, and the current of the strip.

The power-voltage relationship gives the characteristic
impedance of the coupled microstrip line as a function of the
time-averaged power flow in the strip, Payg, and the complex
voltage V of the strip, calculated at the center of the strip. In the
case of the coupled microstrip line, the characteristic impedance
would then be:

*

\A%

Zo=
Pavg (3.2.1)

The power-current relationship gives the
characteristic impedance of the coupled microstrip line as a
function of P,yg, and the complex current I on the strip, and is

given by:
P
=_ave
Zo=—,
1 (3.2.2)
The voltage-current relationship gives the
characteristic impedance of the coupled microstrip line as a

function of the complex voltage, V, and the complex current, I, of
the strip, and is given by:

47




48

I (3.2.3)

Although experiments have shown the power-current
calculation to be more valid in the case of the microstrip line, all
“three calculations will be presented in this work.

~ The power, P,,, is calculated using the Poynting vector,
which is defined as:

=%Re.”‘ {ExH"az}dxdy
S

Using the rectangular compoents of the electric and magnetic
fields, the Poynting vector may be written as:

P=%Re [ [ .- 1 dxdy
S

Using the relationships in (3.1.8) through (3.1.11) to
express the fields in terms of the scalar potential functions in each
region, a Poynting vector may be calculated for each region of the
coupled microstrip line.

The power in region 1 is thus calculated as:




-

1 h Wy « *
P1=—2—RCJ;) dy":) dx (ElyHlx_Elely)
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M M, “Rixm I2 - -
k yn)lgm( )I (Oawl;klxm’o’klxn’O)AlmAln*’
CO H0 m=1n=1 1 1
M, I ‘

2 K v X2
(D}l() Z(k k m)I5mmIl (O’wl’klxm’o’klxva)Alm+

I,
Z(kz klym)ISmmI (0,w1,k1xm,0, klxva)A

M, M,
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where the functions I;-I; are defined as:

Jul

I;(1L,ul,a,b,c,d)= 1cos[a-(x—b)]~cos[c'(x—-d)]-dx
J1

LUl

I,(1l,ul,a,b,c,d)=| sinfla:(x-b)]-sinf{c-(x-d)]-dx
JIi

Jul

I3(1l,ul,a,b,c,d)= . cosfla-(x-b)]sinf[c (x~d)]-dx

and the other parameters have been defined in section 3.1.

The power in regions 2 and 3 are calculated as:

-k yn)I nm( ) (0 Wl’klxm’o klxnvo)AlmAln
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1 h
Pi=—ReI
2 0

w2 * *
d y dx(EixH iy—Ein ix)
w1
R
> D KPR ) T INT L=
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k - . .
-(F}f(; Z (kz"kizyn ) I grilmfl'NTz:nm'*'

m=1

Mi
k 2 .2 . .
=2 (k) I INT B

m=1
% M
2 42 i i
=2 D Kk G INT 4,

where i=2 or 3, for region 2 or 3, correspondingly. The functions

INT1 through 1NT4 are defined as:

i 2 -
INT 1 =—AimKixmA in]3(W 1, W2, Kixn, W1, Kixms W) +
BimAinl1 (W1, Wo,Kixm Wi, Kixn, W) -
) - )
AimKixmBinl2(W 1. W2, Kixm, Wi, Kixns W1+

BimBinIs(W 1, W2,Kixm W1, Kixn,W1)

INTn= AimAinl 1 (W 1, W2, Kixm, W1, Kixn, W)+

>
oo}

im inI3(wl’WZ’kixm’wlvkixn’wl)'*'

w:
p-

inl3(W 1, Wo,Kixn, W1, KixmsW1)+

1xnvwl)

im

k
k

o

imBinI2(Wl’W2’ ixm>W1,
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i
INT&nn= AimAinl1 (W) ’Wz’kixmvw 1-Kixn, W1)+
B imAinI3(W 1 ’W2’kixnvw 1 ’kixm9w 1)+
AimBinl3(W 1, W2, Kixm Wi, Kixn, Wi+

BimBinl2a(W1,W2,Kixm, Wi.Kixn, W1)

kxxnIB(W 1 ’W2’kixm’wl’kixnvw 1)+
(W 1’W2’k1xm’W1,klme 1)

-A;
A;
B l\lxnIZ(wl W2’kixm’wl’kixnvwl)+
B.

mA;
mBinl
A -
é IB(W1’w2’k1xn’wl’k1xm’wl)

The power in region 4 is:

oo

= 1 h * *
P4=5Rej() dy wzdx (E4X'H4y—E4y'H4x)

M M,
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= Z Z(l‘z k4yn)16mn{ ______4er }A4mA4n—

03 H0 m=1n=1 ktixm'*‘k4xn
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k 2 72 \h 1 72
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1 2
Y 2 (k2 k4ym)12mm Adm*
2k4xm

m=1

M; M,
2 Z(kz k4yn)I3nm{

qumlnl

}A4mA'4n

4xn

The total power in the device is equal to the sum of
the powers calculated for each region of the line. It still remains,
however, for the voltage across the strip to be calculated. In this
case, the assumption 1is made that this voltage may be




approximated by the voltage at one point, the center point, of the
strip. Thus, the voltage may be defined as:

h;
V= -J’ Epy ) ™2 dy
0 2

where:
W+ W2 1 M 2 2
B2 sk LS (k4G vy
JOE(Y) m=1
{Achos[kZX,,,(w/2)]+Bstinf[k2xm(w/2)]}
Integrating from O to hy yields:
M,
__1 2 .2 . _
V= —j—m (k“=k2ym){A 2mC0s[koxm(W/2)]+B ysinflkoym(W/2)]}
m=1

A . B .
{ ESlnf(k 2ym1h 1 )+E;s“1f[k2ym2(h2—hl)]+

C D
-—-—2——{ 1 _Cos[kamZ(hZ-hl)] }+‘8—300$[k2ym3(h3—h2)]}
82k2ym2
where A, B, C, and D are the expansion coefficients defined in egs.
(2.2.6.a-2.2.6.d) for the TMY potential for the three-layer parallel-
plate waveguide.
The current, I, on the strip is calculated from the

transverse magnetic field on the strip. For a strip of zero
thickness, the current I is given by:
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I=J‘ . H transverse d5=
strip
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Wa Wi .
I sz(y=h3)-dx +J‘ H3y(y=h3)-dx =
WI w2

M,
D {7k d LA oy SINE(K gy W)+2B g Sinf2(K g W/2)]+
m=1
1 <o - - - -
- d[Ayp(1-cos(kyyW))=Bopsinf(k,,-w)}-
J oo
M;
Y {ikycoslksym (h-h3)]-[A 3 sinf(kgmw)+
m=1}

-c08[k3ym (h=h3)]:

) 1
2:B3p,sinf (k3xm-w/2)+jmu
[Asm(1-COS(KaxmW))~Bamsinf(K3xm'w)1}

The equations are now all in place to complete the

analysis of the three-layered coupled microstrip line through the
calculation of the propagation constant and the characteristic

impedance of the line.




Chapter 4. Numerical Results

The formulas derived for the calculation of the
propagation constant and the characteristic impedance of the
coupled microstrip line were implemented in Fortran 77. The
Fortran program was run in double precision on the VAX or in
single precision on the CRAY, with the same results. Some
characteristic results are presented in this chapter.

4.1. Convergence Criteria

The exact electric and magnetic field representation
for each region of.the waveguide described in this thesis was
given by an infinite sum of expansion functions, which were
characteristic for each region of the device. Due to subsequent
truncation of each infinite sum, the propagation constant which
was derived for this structure was not exact, and the error
present in the calculation not exactly known. However, as was
presented in chapter 2, care was taken so that the relative
number of expansion functions retained for each region was such
that the truncation of the infinite series would lead to a
convergent system. The accuracy of the results was determined
via convergence plots, such as those shown in figs. (4.1.1) and
(4.1.2). In these plots, the normalized propagation constant was
plotted against the number of modes, My, retained in region 2 for
the calculation of that particular value for the propagation
constant. As M, increases, the value of the normalized
propagation constant converges to a particular value. So, after
setting a certain error bracket as acceptable, the minimum Mj
required to calculate the propagation constant within that error
bracket is found from the convergence plots, and the
corresponding normalized propagation constant is accepted as the
solution.
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This test cannot, however, be conducted for each data
point, as the time taken to do this would be prohibitive. The
procedure followed is to calculate the smallest M5 which satisfies
the convergence conditions at the extreme data points. These
points in this particular case would be smalles and largest
structure size, and lowest and highest frequency. It is safe to
accept that this M, will then satisfy the same convergence criteria
for any other point within the boundaries set by these extreme
po‘ints.

The error bracket for the convergence plots are 0.5%
for the propagation constant, and 1.5% for the characteristic
impedance.

3.8 T T T =T
o 37F -
&
=
36 -
35 -
3.4 L . o
33 1 1 /] 1
0 2 4 6 8 10
# modes

Figure 4.1.1. Convergence plot of the even mode
propagation constant versus the number of modes retained in
region 2.

Another important numerical consideration, which has
been touched only briefly so far, is the height at which the top
plate must be placed, such that it does not perturb the solution. It
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was suggested in [19] that placing the top plate at a height double
the height at which the metal strips are placed, would be enough
to ensure an unperturbed solution. This is the height used for all
the calculations. The same program was run for greater heights,
but it was deduced that this only added unnecessarily to the
computation time, without producing more accurate results.

38 T T T T

37F -

kz/k0

36 -
3-5 = -
34F - -

33F ¢ -

[ )
[}

-

32

[\
=3
-

# modes

Figure 4.1.2. Convergence plot of the odd mode
propagation constant versus the number of modes retained in
region 2.




4.2. Program Verification

The accuracy of the programs was verified by
selecting the permittivities of the dielectrics and the geometry of
the structure such that it would be reduced to structures for
which results were available.  Both the propagation constant
calculation and the characteristic impedance calculations for the
single-layer, coupled microstrip line were verified against the
results obtained by ([2]. The calculation of the propagation
constant for the single-line case was achieved by placing the
striplines at a sufficiently large distance from each other. The
results obtained for this case for the single-layer case were
verified against-[2], and for the multiple-layer case against [19 (p.
57)]. The calculation of the propagation constant for the three-
layer coupled microstrip line was verified with [19 (p. 57)].

A comparison of the mode-matching technique versus
the spectral-domain technique was achieved through the
cooperation of Mr.Yu-De Lin, whose analysis may be found in [18].
The two different programs were run for the same coupled
microstrip line, and the results are presented in the graphs in fig.
4.2.1. The results obtained from the mode matching method agree
quite well with those obtained through application of the spectral-
domain technique.
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Figure 4.2.1. Propagation constant and characteristic
impedance (power-current relationship) verification for the

coupled microstrip line.




4.3. Results-Design Charts

The program was run for several cases of coupled
microstrip lines. Each graph shows a family of curves, calculated
for a specific microstrip width and dielectric layering, but for
different strip separations, or for a variable dielectric constant in
the conducting layer. In each case, for wider strip separation, the
results converge to the case of a single microstrip line. Also, in
the case of a variable dielectric constant value in the conducting
layer, the results converge to the single-layer solution when the
dielectric constant of the conducting layer approaches the value of
the dielectric constant of the insulating layers.

Many curves were graphed versus a normalized
frequency, where the normalization took the form 2nh3/Ag, where Ay
is the free-space wavelength, The characteristic impedances,
however,which are calculated using the power-voltage, Zyp=V.V*/P,
and the power-current, Zg=P/L.I*, expressions, exhibit discontinuities
at regular intervals, which seem to correspond approximately to the
frequency where hz=nA4/4, where n=1,23,etc., and A4 is the free-
space wavelength in a medium of relative dielectric constant equal to
the relative dielectric constants of the layered medium. This
behavior is more evident where the characteristic impedance is
plotted against h3/A4. As the relative dielectric constant of the
middle layer is increased with respect to the outer layers, this
discontinuity becomes more pronounced, as may be witnessed in figs.
4.3.2(b), and (c). This behavior seems to signify the "turning on" of
higher-order modes, which introduce a numerical instability around
that region of frequencies. In figs. 4.3.6(b), and (c), the characteristic
impedances are plotted over a wider range of normalized
frequencies, and the almost ‘"periodic" behavior of these
discontinuities is more evident. The calculation of Z; using Zp=V/I

does not exhibit any discontinuous behavior.
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4.3.1. Coupled microstrip line design charts for

£,=€5=2.5, £,=3.9, and w=3.03mm.

17 T T 025w ]
even mode 05w
o s=w
3
~16F -
15 -
odd mode
14 L 1
0 1 2 3

Figure 4.3.1(a).

Normalized Frequency

k,/ko versus 2mhs/A,.

300 T -T
even mode 025W
S 05w
200 F S=w
100
odd mode s=W
0.5w
0.25w
0 A i
0 1 2

Normalized Frequency

Figure 4.3.1(b). Z=P/II* versus 2xhs/Ay.
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Figure 4.3.1(c). Zy=VV*/P versus 2rnhj/A,.
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Figure 4.3.4. Zy=V/l versus 2rhs;/A,.
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4.3.2. Coupled microstrip line design charts for

€£,=€4=10, €,=11, 12, and 13, and w=12.7mm.
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Figure 4.3.2(a). k,/kq versus 2zmhs/A,.
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Figure 4.3.2(b). Zy=P/II* versus 2rnhj/A,.
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Figure 4.3.2(c) Zo=VV*/P versus 2rnhj3/A,.
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Figure 4.3.2(d) Zy=V/lI versus 2rnh3/A,.
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4.3.3. Coupled microstrip design charts for
€,=€;=11.5, €,==12.9, and w=1.4mm.
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Figure 4.3.3(a). k,/kqg versus.2rmh3/Ag.
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Figure 4.3.3(b). Zy=P/II* versus 2rhj3/Aq.
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Figure 4.3.3(c). Zp=VV*/P versus 2rh3/Aq.
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Figure 4.3.3(c).

Zo=VV*/P versus 2mhs/Ag.
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4.3.4. Coupled microstrip design

€1=83=3.5, €2==4.9, and w=3.03mm.
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Figure 4.3.4(a). k,/kqo versus h3/A,.
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Figure 4.3.4(b),. Zy=P/II* versus hsz/A,.
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Figure 4.3.4(c). Zy=VV*/P versus hj/Ag.
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Figure 4.3.4(d). Zy=V/1 versus hz/A4.




4.3.5. Coupled microstrip line design charts

£1=€3=3.5, €,=4.9, w=1.4.
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Figure 4.3.5(a). k,/ky versus hs/)q.
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Figure 4.3.5(b). Zy=P/II* versus h3/A,.
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Figure 4.3.5(c). Zo=VV*/P versus hj/Aq.
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Figure 4.3.5(d). Z¢=V/I versus h3/Ar,.
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4.3.6. Observation of the behavior of the
discontinuities in the characteristic impedance
calculation over a wide range of frequencies.
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Figure 4.3.6(a). k;/kqg versus 2mhs3/A,.
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Figure 4.3.6(b). Zy=P/I1* versus 2mh3/A,.
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Figure 4.3.6(c). Zy=VV*/P versus 2mh3/Ag.
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Figure 4.3.6(d). Zy=V/I versus 2rnhs3/A,.




Chapter 5. Conclusions

In this thesis, it was shown how a quasi-planar
structure like the coupled microstrip line on a layered dielectric
substrate, could be analyzed using a variation of the mode
matching technique.

Mode matching is a powerful tool for analyzing planar
and even quasi-planar structures. The results obtained through
mode matching have a high degree of accuracy, especially the
propagation constant. This technique, however, is unsuitable for
CAD packages, as it is Very inefficient. It is also susceptible to
numerical errors, as the system which is solved to calculate the
field coefficients is defined by a singular matrix. It should be
noted, as a matter of fact, that this singularity condition has
actually been imposed on the matrix, in order to solve for the
propagation constant.

The behavior of the even and odd mode propagation
constants of the coupled microstrip line on a layered substrate
does not differ from that of its single substrate counterpart,
except for a slight increase of k,/k, with an increase in the
conducting layer dielectric constant with respect to the insulating
layer dielectric constants, as can be seen in fig. 4.3.2(a). As far as
the impedance is concerned, it does not seem to change noticeably
with the change in dielectric constants. The change becomes more
noticeable, however, at higher frequencies. The effect of the
discontinuity becomes much more noticeable for a higher
conducting layer dielectric constant. Its position does not change
much, however, as the values used for the dielectric constants
were of the same order of magnitude.

The impedance curves seem to be relatively flat
between singularities. @ The discontinuities themselves follow a

72




73

very consistent pattern which seems to be dictated by the
relationship  used to calculate the impedance (power-voltage, or
power-current). Irrespective of the relationship used to calculate
Z,, however, the first singularity occurs at the same normalized
frequency, h3/A4=0.25. This seems to be indicative of a cutoff
frequency, above which higher order modes start propagating,
and around which the calculations of the characteristic impedance
become numerically unstable. It is not practical, in any case, to
fabricate microstrip devices of the order of magnitude of A,/4, so
only the portion of the curve before the discontinuity occurs is
significant.




Appendix A. Notation

A consistent notation scheme is used throughout the
text where subscripts and superscripts are used to denote region,
direction, dielectric, mode number, mode type, or to differentiate
between two similar functions.

[} " ”

A variable "z" may take the form Z,pm where "a
would be the cartesian coordinate (x, y, or z), "b" would be a
region number (1, 2, 3, or 4), and "m" would be the mode number.

"o

A function "f§" may take the form fb¢, .. where "a

” ” " "

would be a function number, "m", and "n" would be mode
numbers, and "c" would be the region number: c=2 means the
inner product was performed with respect to a normal mode of
region 2, and c¢=3 means the inner product was performed with
respect to a normal mode of region 3. Superscript "b" is used only
in the orthogonalization integrals: b=e means the inner product
was performed with respect to a TM mode, and b=h means the

inner product was performed with respect to a TE mode.

The following general notation was used to build the
desired variables:

Symbol Interpretation
£ permittivity
U permeability
k propagation constagt
E electric field
H magnetic field

A tilde over any of the above variables would denote
TE quantities, whereas no tilde would denote TM quantities.
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Appendix B. Derivation of Field Equations

A wave is a field that is a function of both time and
space. Electric and magnetic fields that vary in time and space
are governed by physical laws which are expressed in four
equations, known as Maxwell's equations. For a wave travelling
in a medium characterized by a certain permittivity, €, and a
certain permeability, u, These equations are:

oH
E=-u——~
VX ”at .
VxH=e—aa—lt)—+J
V.bp=p
V.B=0

(B.1)

The electromagnetic field equations above are
expressed in terms of six quantities:

E, the electric intensity (in volts per meter)

H, the magnetic intensity (in amperes per meter)

D, the electric flux density (in coulombs per meter)

B, the magnetic flux density (in coulombs per square meter)
J, the electric current density (in amperes per square meter)
p, the electric charge density (in coulombs per square meter)
The boldface script is used to denote complex quantities.

The ultimate sources of an electromagnetic field are
the current J, and the charge p.
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The continuity equation, which is based on the
principle of conservation of charge, is implicit in equations (B.1),
and simply states that:

V.j=-92
dt (B.2)

Maxwell's equations are complemented by the so-
called constitutive relationships, which incorporate the
characteristics of the medium in which the field exists. These
equations define the electric flux density, D, the magnetic flux
density, B, and the current density, J, with respect to the electric,
E, and magnetic, H, intensities.

D=D(E,H)
B=B(E.H)
J=J(E,H) (B.3)

Maxwell's equations along with the constitutive
relationships serve to fully describe a wave travelling in a known
medium.

In a source free, linear medium, the constitutive
relationships take the form:

D=¢E
B=pH
=0 (B.4)

Here, € and | are constants, where € is the capacitivity
or permittivity, and W is the permeabillity of the medium. Using
€g and Mgto denote the corresponding variables in vacuum, for a
perfect dielectric (0=0), one has £€=g,€p, where €, is the dielectric
constant, or the relative capacitivity, of the medium, and pH=yg for
most linear matter.
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The present analysis will be concerned only with
source free, linear problems, where the wave has a steady-state
sinusoidal time dependence. In this case, the complex field
equations read:

~-VxE=z(w)H
VxH=§((o)E
V.D=0
V.B=0 (B.5)

A A
where y(®)=jwe, and z(W)=jW}g in nonmagnetic material.

The above representation of the field equations gives
rise to the definition of the parameter k, the wavenumber of the
medium. The wavenumber is defined as:

k =V —y(0) z(®) (B.6)

The physical meaning of the wavenumber is that 1/k
is the velocity of propagation of an electromagnetic disturbance in

an open space filled with perfect dielectric material with
permittivity € and permeabillity p,.

Taking the curl of equations (B.S5), and using the above
representation of k, the complex wave equations become:

VxVXE-k'E=0
VxVxH-k'H=0 (B.7)

In these equations, it is implicit that:

V.E=0 and V.H=0 (B.8)
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so that a simplified form for the vector wave equations may be
derived:

V2E+k2E=0 (B.9)
and:
V2H+k2H=O (B.10)

The geometry of planar structures allows us to work
with rectangular cartesian coordinates. In this case, the
rectangular components of E and H satisfy the complex scalar
wave equation:

2
V'E,+k E,=0
1=X,y,zZ

2 2

To construct a pliable solution to the above equations,
the field is expressed as a magnetic vector potential A and an
electric vector potential F, as shown below:

=-VxF+éVxVxA
y

E= VXA+LVxVxF
z (B.12)

These expressions for E and H give rise to a very
useful classification of the solutions of the wave equation. In this
classification, axial uniformity (the cross-sectional shapes of the
waveguide do not vary in the direction of propagation) is
assumed. In addition, this classification is for fields conforming to
the homogeneous vector Helmholtz equations (source free
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problem). Propagation is assumed to be in the z direction, and the
z dependence is assumed to be of the form exp(+ifz). The

Helmholtz equation is separable, so a solution of scalar Helmholtz
equation of the form f(z)g(x,y) is sought.

Under this classification, the vector magnetic and
electric potentials, A and F respectively, may be assumed to be
directed along one coordinate only.

Choosing A=u,y where y is a scalar wave potential (a
solution of the scalar Helmholtz equation), will yield an
electromagnetic field given by:

2
Ex=71; _Q—'Z+k2 T4 H,=0
¥y \ox
2
Ey:}\_ﬁ_\l’_ Hy:@l
yaxay oz
2
1 dy oy
EZ=7 sz-__
yaxaz dy

(B.13)

This choice of a magnetic vector potential will yield
Trunsverse Electric to x (TEX) modes. The main characteristic of
these modes is that E;=0 and H;#0. All TEX field components may
be derived from the axial component H; of the magnetic field. All
field components may be derived from the axial component H; of

the magnetic field.

Similarly, choosing F = uyx vy will yield an

electromagnetic field given by :
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2
E,=0 =L+’ |y
Z \0x
~ 2
= d ~ 129
E,=-2¥ H==22Y
% Y77 Ox dy
~ 2~
= _ oy S _1 dy
Ez=— Hz=:'
dy 7 0x 0z

(B.14)

This choice of an electric vector potential will yield
Transverse Magnetic to x (TMX) or E modes. The main
characteristics of these modes are that :

All TMZX field components may be derived from the axial
component Hj; of the magnetic field.

The third group in this classification are the TEM
modes, or the transverse electromagnetic waves. The waves
belonging to this classification have no E, or H; component. In
this case, the electric field may be found from the gradient of a
scalar function w(x,y), which is a function of the transverse
components only, and is a solution of the two-dimensional Laplace
equation. True TEM waves, however, will be found to occur in
very few cases (i.e., free-space, parallel-plate waveguide, etc.). In
addition, true TE and TM modes will usually not be sufficient to
satisfy all the boundary conditions of most structures. In such
cases, however, linear combinations of TE and TM modes will
provide a complete and general solution.

As might be anticipated, TEX and TMX are not the only
existing TE and TM solutions to a specific problem. By assuming
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the magnetic vector potential to have the form A=uyy, the
following equations for the fields wil be derived:

2
1 dy Yy
E,=— H,=-=-
: X y 0x dy dz
1" .2
Eyzr —_£+k \l’ H)’:O
y \0dx
1 az\u Yy
E.=— H,= =+
‘ y 0y oz ox

(B.16)

This choice of A will yield Transverse Electric to y (TEY) modes,
whose main characteristics are that Ey;eO and Hy=0.

Similarly, taking F=uy y will yield:

~ 2~
= _ oy ~ _1 dy
Ex=—- Hxy==
X 0z 7 Ox 0y
2
E,=0 Hy= X —a—E+k2\\y
Z \dx /
F__y n 13y
0z ‘ 7 0y 0z

(B.18)

This choice of electric vector potential will yield Transverse
Magnetic to y (TMY) modes, whose main characteristics are that
i Ey=0 and Hy#0.

Similar cases may be derived for TEZ and TMZ.
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