ONREUR Report

9-1-C

AD-A209 401

-

DTIC
ELECTE P
JUN 22 1989 §

DCb

The 2nd International Conference on Vector and Parallel
Computing

J.F. Blackburn

17 January 1989

Approved for public release; distribution unlimited

Office of Naval Research European Office

89 6 20 191

L R R ———

. UNCLASSIFIED
SECLRITY CUASSEICATION OF THS PAGE

. REPORT DOCUMENTATION PAGE

“a REPORT SECLRITY ClASSIFICATION b RESTRICTIVE MARKINGS
UNCLASSIFIED
Ja StCULRITY CLASS FCATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
1o JECLASYRCAT ON DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited
A PERFQMENG ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
9-1-C
Fa NAME OF PERFORNMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Office of Naval Research (1f applicable)
European Office (ONREUR)
6 ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Box 39
FPO, NY (09510-0700
3a NAME OF FUND'NG) SPONSORING 8b OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENT.FICATION NUMBER
DRGAN:ZATION (If applizable)
3¢ ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

TTLE (Include Security Classification)

The 2nd International Conference on Vector and Parallel Computing

12 PERSONAL AUTHOR(S)
1.F. Blackburn

"la TYPE OF REPORT 13b TiME COVERED 14 OATE OF REPQRT (Year, Manth, Day) [15 PAGE COUNT
Conference FROM TO 17 January 1989 42

‘6 SUPPLENVENTARZ NOTATION

7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FELD GROUP SUB-GROUP

/7 Vector Computing > Parallel Processing; Supercomputers
{ Parallel Programming ; Vectorization Parallelization - ¢ «v) #—r

*3 ABSTRACT (Continue on reverse if necessary and-identify by block number)

~

Summaries of the presentations by invitéd.speakers to this conference; held in Bergen, Norway, are given atong

with the authors’ abstracts of the contributed and stadent scholarship papers. In all, summaries of 16 papers and the ab-
stracts of 91 other papers are included. ¢, .).)

20 DST2BLTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
E(.'] NG ASSEEDUNUMITED [saMme AS RPT O oTiC USERS UNCLASSIFIED
224 MAME OF RESPO.SIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. QFFICE SYMBOL
C.J. Fox (44-1) 409-4340 310
00 FORM 1473' 84 \MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OFf THIS PAGE
All Othe(Edl(lOnS are obsolete UNCLASS!FIED ? U.S, Government Printing Office: 1986—607.-044

Contents

Introduction e e e e e e e e e e 1

Invited Speakers’ Presentations

"The Grand Challenge of Supercomputing” L. 1
"Supercomputing as a Tool for Product Development”o L 2
"On the Suprenum System”™ . L. ..o 3
"[BM Supercomputing Trends and Directions”™3
"Paralle] Logic Programing” 4
"Domain Decomposition Algorithms and Applications (o Fluid Dynamices” 4
"Domain Dccomposition Mcthods for Paraile! Computer® . .00 00000 5
"Comparison of Supcr and Mini-Super Computers for Computational

Fluid Dynamics Calculations"5
"Images of Matrices” L 6
“Parallel Integration of Vision Models" 6
"Programing Parallcl Vision Algorithins: A Dataflow Language Approach” 7
"Seism’c Wave Propagation and Absorbing Boundary Conditions” 7
"Large-Scale Computing in Reservoir Simulation” 7
"ParaScope: A Parallel Programing Environment oL 8
"Current Directions and Future Possibilities in Computational Fluid

Dynamics” e 8
"Parallel Programingwith Ada" 9
"Neural Computing” e 9

Contributed Papers

"Supporting Distributed Matrix Operations on a Hypereube” . 00000000 L 10
Algorithms is for a Specialized Matrix Systolic Processor™ L. 10
"The CESAR Processor” . . . o . L o0 0 e 10
"A Benchmark Code for Multiprocessor Vector Supercomputers” ..o L. L. L. 10
"Divide-and-Conquer Algorithms for the Computation of the SVD

of Bidiagonal Matrices” L L 1
"Lattice QCD-As a Large Scale Scientific Computation™ 11
"On the Performance of Shared Cache for Multiprocessor Organizations” 11
“The Vectorization and Parallelization of ABAQUS 11
"Use of Processor Networks for Parallel Polynomial Root Computing” 12
"The Spectrum of Sums of Projections with Application to Parallel

Algorithms in Grid Refinement and Domain Decomposition” 12
"Block Cholesky Factorization of Large Sparsc Matrices Parallcl

Compulers” . . . o e e 12
"Lincar Programing c1 a Local Memory Multiprocessor” 13

"Parallel Procesring Techniques of the Euler Fquations on

the IBM 3090 VF Computer” ... o000 o 13
"Graphical fnterface Tor Large-Scale Numcerical Computation”0 ... (3
"Fully Vectorizable Preconditionings for Parallel Local Grid Refinement” . L L. 13
"Finitc Element Optimisation in ADA Using Automatic Differentiation” 14
"Using Symmetries and Antisymmetries to Analyze a

Parallel Multigrid Algorithm: The Elliptic Boundary Value Problem Case” . . . 14
"Parallel Implementation of the Boundary Element Method” 14
“Hypercube Implementation of a Lincar Systems Solver

Using Tensor Equivalemts™ .0 0. 000000000 oo 15
"Prospectus for the Development of a Lineur Algebra Library

for High-Performance Computers”o .. L L. 15
"Functional Languages for Scientific Software” L 135
"Coherent Parallel C"0 oo oo 16
“Chess on g Hvpercube" 000 0 0oL 16
“Local Convergence of Nonlincar Multisplitting Methods” 16
"A Parallel Computer Implementation in Finite Element Methods” 17
"Numerical Sca Modclting Using Parallel Vector Processing™ 17
"The Evolution of Parallcl Processing at CRAY Research” 17
"The MMX Parallel Operating System and its Processor 17
"The Arithmetic Mean Method for Solving Linear

Dissipative Systems on a Vector Computer” L 17
"Parallelizing an Efficient Partial Pivoting Algorithm" 18
"Parallcl Neural Nctwork Simulation Using Sparse Matrix Techniques™ 18
"Image Analysis Algorithms on Supcrcomputers”o 18
“Optimal Power Scheduling of a Large Elcctric Network

Via Nonlinear Programing on the CRAY X-MP/48" 18
"An Extension of NAG/SERC Finite Element Library

for Message Passing Multi-Processor Systems” 0oL L L 19
"An Array Processor Architecture for Neural Networks Analysis™ 0 0. L, 19
"Parallel Multigrid Solver for 3-D Anisotropic Elliptic Problems” 19
“The Use of Systolic Arrays for Finite Element Calculations” 20

"Vectorization of Arnoldi-Tchebychev Method
for Nonsymmetric Matrices” 20

"Applicat‘ons of Computational Fluid Dynamics for
External Flows Relevant to Offshore Enginecring

Employing Supercomputers”o L 20
"Aspects of Sparse Matrix Technique on a Vector Computer” 20
"A Dynamic Load Balancing Scheme to Utilize the Parallelism

in a'FE’ Structural Analysis Program” 0L 20)
"Improvements to the Black-QOil Simulator (Eclipse 100)" 21
"Parallel Implemcntation Techniques for Prolog on the DAP* 21

"Debugging Support for Parallel Programs® oo o oL 21
"Parallcl Algorithms for Solving the Triangular Sylvester

Equation on a Hypcrcube Multiprocessor” 23
"Parallel Transonic Flow Calculations” 23
"A Reconfigurable Multitransputer Network as a Tool for the

Experimentation of Parallelism in Scientific Computing” 23
“Nested Dissection Orderings for Parallel Sparse

Cholesky Factorizalion” 24
"Applying a Sequence of Planc Rotations on a

Vector-Processing Machine” L L 24
"Nonlirear Transport Calculations in 1-D MOSFETs

Using a CRAY X-MP/48 and a Sequent Balance Multiprocessor” 24
"Supercomputing in Denmark” oL oo o oo 25
"Cycle Reduction and Matrices withi a Group Structure” 25
"Evolution Algorithms in Combinatorial Optimization" 25
"Data Distribution and Communication for Parallel

Analysis of 3-D Body-ScanData" 25
"Diifusion Limited Aggregation —Model and Methods" 25
"One-Way Dissection with Pivoting on the Hypercube” . . . 0. 26
"A Quadratically Convergent Parallel Eigenvalue

Algorithm Based on Jacobi-Like Transformations” 26
"The Timing of Sort Algorithms on the Amdahl 1200 Vector Processor” 26
"Problem Paralilelism Versus Processor Parallelism” 20
"FORTRAN as a Parallel Programing Language” 26
"Optimal Absorbing Boundary Operators” 27
"A Divide and Conquer Method for the Orthogonal Eigenproblem” 27
"Continuation of Parameter-Dependent Partial Differential

SystemsonaHypercube” L Lo L 27
“The Impact of the IBM 3090 Vector Facility on the Data

Analysis for JET, The Major European Nuclear Fusion Project” 28
“Design Aspects of a Linear Algebra Package for the

SUPRENUM Machines" 28
"Implementation of Pre-Stack Depth Migration on IBM 3096" 28
"High Resolution Numerical Simulations of Incompressible A

Turbulent Flows on the IBM 3090 Vector Multiprocessor” 29
"Turbulent Air Flowin Disk Files" 29
"The IBM Parallel FORTRAN Language” 29
"Digital Reconstruction of Images from Their Projections

Using a Parallel Computer® oL L oo oo 29
“Trends in Supercomputing” L. L 30

"Concurrent Dynamic Simulation of Distillation Columns
via Wave form Relaxation” o o 30

"A Formal Model and an Empirical Mctric for

Memory Latency in Multiprocessors” oL 30
"Implementing and Tuning Multigrid on Local

Memory Parallel Computers” oo oo 30
"Efficient Parallel Implementable Algorithms for

Dctermination of Line-of-Sight Visibility" 31
"Divide and Conquer Algorithms for SIMD Architectures” 31
"Parallel Multigrid for Solving the Steady-State, Incompressible

Navicr-Stokes Equations on General 2-D Domains” 31
"Lattice Gas Simulations of Two-Dimensional Turbulence

on IBM3090/VFE" | . . 32
"Numerical Software Development for Local Memory Machines” 32
"Parallel Processing Within a Virtual Machine” . .00 oL 32
"Implementational Aspects of ADA for Vector Processing

Target Machines” . ..o L 32
"Parallel Algorithms [or Some Reservoir Engincering Problems™ 33
"An Additive Variant of the Schwarz Alternating Method for

the Case of Many Subregions” 33
"Spectral Decomposition Methods for the Numerical Solution of

Partial Differcatial Equations Using Vector and Parallel Processors” 33
"Vector and Parallel Computing for Nonlincar Network Optimization”, . . 34
"An Advanced Programing Environment for a Supercomputer”34

Student Scholarship Winners

"Efficient Parallel Programs Through Pipelincd Block
Algorithms, the QR Decomposition as an Example” 34

"An OR-Parallel Execution Model for Full Prolog” 34
"Parallcl Compact Symmetric FFT's" 34

"Vectorizing the Multiple-Shooting Mcthod lor the Solution of
Boundary-Valuc Problems and Optimal-Control Problems”35

“The 3-D Linear Hicrarchical Basis Prcconditioner” 35

"A New Parallel Algorithm for LU Decomposition™ 36

Accesion For)

NTIS CRA&I v |
DTIC TaB o
Unannounced g
Justification

By .
Oistribution [

Availability Codes

‘ Avail and/or
Dist Special

Al

*__J

THE SECOND INTERNATIONAL CONFERENCE
ON VECTOR AND PARALLEL COMPUTING

introduction

This 5-day conference was organized principally by
the IBM Bergen Scientific Center with the participation
of the Socicty for Industrial and Applied Mathematics
and the Association for Computing Machinery. Held in
Bergen, Norway, the conference was attended by 450 par-
ticipants coming mainly from Western Europe and the
United States.

The program included invited speakers, contributed
papers, and student scholarship papers. My report in-
cludes summaries of the lectures given by the invited
speakers based on notes taken during the conference and
the authors’ abstracts of the contributcd and student
scholarship papers. Thesc were given in parallcl scssions,
only half of which I could attend.

Invited Speakers’ Presentations

"The Grand Challenge ot Supercomputing”
Alan Weis, keynote speaker, IBM Data Systems Division, US, Vice Presi-
dent of Engincering and Scientific Computing.

There is an ever-changing role for supercomputers
in the modern scientific community. One important chal-
lenge is that of accelerating the absorption of supercom-
puters into the broader community of busy users —as
contrasted with computer specialists.

The predominant tools of investigation in experimen-
tal science of the past have become too costly to use. The
need is increasing for more numerical approaches to sol-
ving thesc problems. Hence there is a growing need for
supercomputers in such areas as aircraft design, weather
forecasting, and exploration in the oil industry.

Today the mainstream supercomputer, viewed by the
busy user, is expensive, hard to use, experimental, and
limited to highly specialized users. The busy user of com-
puters simply wants to solve problems in scicnce and
mathematics without the nced to become a super special-
ist in computer architecturc. The need for the main-
strcam uscr of the future is a system which is cost effective,
reliable, easy to usc, rich in software for applications, and
robust in the data management.

Why are users moving toward the supercomputer? It
is becoming widely recognized by government, industry,
and universities as a useful and more and more available
tool for solving problems requiring lots of data and very

Dr. Blackburn is the London representative for the Commerce De-
partment for industrial assessment in computer science and tele-
communications.

fast computation. The initiatives of the NSF in the US
along with various European initiatives arc helping to
bring this about. New applications requiring extensive
computation like the use of fractals for various problems
in physics and enginecring and the use of finite elements
in fuselage design in the aecronautics industry are bring-
ing about more and more demand for supercomputers.
Also, manufacturers are producing more powerful and
more robust systems than ever before, And this technol-
ogy is being put into the hands of users.

The technology transfer of the supercomputer is
through the academic and research scientists, industrial
research scientist, and the industrial and commercial end
user. This move to supercomputers is happening now be-
cause the environment for their use is better understood
and the requirements for the applications are being bet-
ter addressed. The necessary components for further ex-
tending the use of supercomputers are technological
advances and architectural developments.

The relevant technological advances in logic and
memory are related to miniaturization, price reduction,
tools, and facilitics. Significant developments relating to
miniaturization include the scanning tunneling micro-
scope, better understanding of materials at the atomic
level, and understanding the silicon surface. Improved
processing tools include E-beam and x-ray lithography.
Another important development is that of advanced fa-
cilities like super-clean rooms in which to produce com-
ponents.

Important advances in field effect transistors will
lcad to one million transistors per chip and, of perhaps
cqual importance, arc the developments in packaging,
which requires an understanding in depth of materials.
Precision in disk storage devices now permits read/write
hcads to be 10 millionths of an inch above the disk sur-
face. This disk surface must, of course, be totally flat.
Optical storage has been developed to the point where
laser-written pits can be at a spacing of five microns.

Developments in system architecture include higher
performance in both scaler and vector processors, more
parallelism for both general purposc and special purposc
computers, larger memories, and much higher bandwidth
for communication with input and output subsystems.

More mature system software is now available to per-
mit interactive computing with systems having very large
virtual memories. Management control systems arc
greatly improved and computer technology for vectoriza-
tion and parallelism is now becoming available. Data
management systems now offer greater reliability and fas-
ter access. Network connectivily is evolving toward

standard protocols like OSI. Workstations are more
thoroughly integrated into systems allowing cooperative
processing.

This year, using X-windows on a vector computer
scientists were able to observe and steer processes and
"fly" over a silicon chip for more information on chemical
bonds through changing the current applicd to the ma-
terial.

Network access and interconnection is featuring high
bandwidth, management for service through programs
and data librarics, and migration to OSI standards. Cur-
rent networks in the US, Europe, and Japan will shortly
feature specds up to 45 Mb/scc. They allow expansion as
inthe US NSF nctwork connection to Europe and Japan.

F.esent-day networks do not do 4 very good job of
nctwork management, NSF will concentrate on network
management and the usc of program librarics to help in
cross-discipline usc.

Traditionally the architecture of a computer system
influenced the algorithms used with the svstem in appli-
cations. The trend now is toward the algorithm influenc-
ing the architecture.

Among the orand challenges remaining are: getling
the supercomputer to be more widely used by the busy
user, the integration of CAD/CAE/CAM, and use in com-
putational chemistry. Government, universities, and in-
dustry need to work together to apply the required
interdisciplinary resources to meet these challenges.
And they must work together to insure that educational
necds are adequately met.

"Supercomputing as a Tool for Product
Development”
Alan Erisman, Boeing Computer Services.

As Richard Hamming said in 1962, "The purpose of
computing is insight, not numbers.” However, in much of
today’s computing the numbers are very important. The
computing requirements of such areas have data process-
ing characteristics that have long differcd from scientific
computing requirements where data is analyzed as op-
posed to processcd. FORTRAN, supercomputers, mini-
computers, and workstations dominate today’s scientific
computing; fourth-generation languages, mainframes,
and personal computers dominate data processing.

Because of this background, supcrcomputers are as-
sociated with scientific analysis; the use of today’s vector
and parallel computers requires that code be adapted to
the architectural environ.aent to use the centrol process-
ing units effectively. The proliferation of so-called ncar-
supercomputers has made vector and parallel
architecture available to a broader group of engincers
and scientists.

The usc of these analyses results in industry requires
that they be accessible to the other part of the computing
world where products are made. Manufacturing con-
siderations place design constraints on the productsto be
built, nd this changes the models which must be ana-

lyzed. Inorder to produce a product at low cost, the ana-
lysis alternatives need to include pricing data.

The separate worlds of scientific computing and data
processing will have to come together. In sophisticated
analyses made possible by the supercomputer users know
100 little about CAD/CAM, and vice versa.

Supercomputers are powerful engines which provide
opportunitics to solve problems previously intractable.
Computer systems provide powerful computing hard-
ware operating systems, compilers, and languages. Scien
tific computing provides algorithms, applications
programs, and a computing environment with, for
example, data management.

Some successes due to supcrcompulers in scicnce
have occurred in understanding molecular structure and
fluid flow under various conditions. Successes in pro-
ductsinclude the design of the Boeing 737-3000, the Ford
Taurus, and ¢nhanced oil recovery. The benefits relate
to product performance rather than to technical accom-
plishments. The supercomputer is more than a rescarch
and development tool.

The supercomputer impact on the design of the
Bocing 737-3000 had to do with the engine placement in
refation to the total acrodynamics of the entire airplane.
In products the supercomputer may benelit a design Oy
showing that a small change in design may produce a large
performance difference. This may result in significant
cconomic benefits.

We need new supercomputer models for dealing di-
rectly with product development. Thereis a close link be-
tween research and product development, and also a
greater need for the supercomputer to be used more fre-
quently by the so-called busy user who doesn’t have time
to become a computer expert. We need to deal with all
the available or obtainable data.

Therc is a potential for computers to do more in pro-
duct design. The requirement is for ever-more-powerful
supcrcomputers. This presents an opportunity and a
challenge to the computer manufacturer. New modeling
approaches are possible through better analysis and de-
sign optimization.

Parallelism in computers poses a tough challenge.
There is very little software experience with parallelism.

Librarics have an important role in supercomputing.
The performance of a vector computer is closcly tied up
with the application - c.g., dependent on the amount of
natural parailelism in thc application program. Highly
tuned libraries of application programs can have an im-
portant impact on performance. In a parallel computer
not only are the architecturc and the algorithm important
to performance but also the application.

Maodeling involves design optimization — integrated
analysis including structural design, control systems, ther-
mal design, and acrodynamics design. It may also include
artificial intelligence and symbolic computing. Manufac-
turability issues must be considered in modeling and de-

sign. The total analysis process needs to be integrated
into one application.

At present the supercomputer is involved in perfor-
mance analysis but not in CAD/CAM. Thus, the perlor-
mance analysis is not carricd through as it should be.
There is aserious need for proper integration of the wholc
process.

Integration in the computer sense involves the super-
compulcr, the work stations, graphics capability data
management, high-bandwidth communication, a com-
mon operating system, and artificial intelligence tools.
The user at his terminal is the foreground of a properly
integrated system, and all else is background.

In summary, we need morc powerful supercompu-
ters. better modeling and algorithm development, inte-
grated computcr systems, better data management, and
company organization,

"On the Suprenum System"
Ulrich Tronenberg, GMD, West Germany.

The Suprenum is a supercomputer for numerical ap-
plications. The hardwarc is a highly parallel MIMD
architecture in which nodes of processors have vector
units and local memory. It was not considercd to be a
good approach to design and optimize for a particular al-
gorithm, to design scquentially for a conventional com-
puter, or to design special purpose computation for
ceriain large-scale applications on the basis of old fa-
shioned algorithms. The idea was to design a system for
general large-scale applications.

Suprenum 1 is scheduled for completion at the end
of 1989 with a planned performance of 4 Gflops. Supre-
num 2 is a research project but will be a product at a later
date.

The node of a Suprenum will consist of 16 worker
processors (MC 68020) cach with a floating point vector
unit (Weitek) rated at 16 Mflops and local memory. A
cluster will consist of 16 nodes for a total of 256 proces-
sors. A high-performance system would consist ot 4xd
clusters extendable to 16x16 clusters.

Although a 256-processor system would have a the-
oretical maximum performance of 4 Gflops, a morce real-
istic actual performance is likcly to be 1-2 Gilops.

The system is architccturally a compromise between
full connectivity of all processors in the system and strict-
ly local connectivity. The architecture is a two-level bus-
coupled architecture.

An abstract Suprenum machine cxists which allows
hardware-independent programing. There is also a Su-
prenum FORTRAN and a concurrent Modula 1-2. The
Suprenum FORTRAN is an extended FORTRAN 77
with process handling, message passing, and array oper-
ation capability. Also, the concurrent Modula-2 is an ex-
tension of the original Modula-2. There will also be a
communication library for Grid applications. Animport-
ant tool is a dynamic map which gives a picture of all pro-
cessors at a given instant.

[

A basic numerical library of applications is planned
which will cover lincar algebra, multigrid solvers for par-
tiad differential cquations, and an ordinary differential
cquations package. Another puckage will provide full
potential equation solutions for subsonic and transonic
flow.

There was an 8-node version of Suprenum running as
of April 1987. A 32-node version is expected to be aper-
ationa! in the first quarter of 1989 and will be demon-
strated at the Hannover Fair, 5 April 1989. The system is
to be manufactured for marketing by 1990.

"IBM Supercomputing Trends and Directions”
Alec Grimison, IBM.

The base for supercomputers in 1IBM is the 3090-
600E to which can be added up to six vector processors.
The 3090 is an outstanding scalar processor. [ts vector
capacity is optimized for applications that are 60-70 per-
cent vector, The system has a large memory, and cx-
panded ranging from 256 Mb to 2Gb. It has an excellent
aggregation of input/output equipment and is a very high
performance system.

Its vir(ual store-extended architecture sofiwarc
MVS/ESA has 16 Tb addressable. It also supports
VM/XA and AIX/370. The VS FORTRAN vectorizing
compiler and parallel FORTRAN for single-job turn-
around arc available on the 3090-600E. There arc more
than 40 application packages available with the system.

The critical clements in IBM’s supercomputer strate-
gy arc:
® Abalance betwecnscalar, vector, and parallel process-

ing

e Largc memories and input/output capability to match
the system’s computing power

e Compatibility with existing systems

o High usc by balanced capability between the need for
throughput and turnaround

o Modcratc parallelism with shared global memory.
The strategy includes firm coupling:

e Connection between IBM 3090 complexces to provide
very-large-scale scientific computing

o Careful balancing of hardware, software, and systems
requirement

e High performance.

The current hardwarc allows multiple 4.5-Mb/s
channels. The need for higher data rate is foreseen and
being explored. 1BM is an active participant in the stand-
ards group, ANSI, which is drafting standards for high-
speed connection interfaces for up to 100 Mby/s.

Multiple 3090 complexes do not have shared mem-
oryin the $/370 sense. Parallel FORTRAN currently has
shared and private common arcas. Extensions to paral-
lcl FORTRAN will makc designated common blocks of

memory appear globally shared. The cffect on perfor-
mance is being explored.

An applications set of pragrams is being analyzed o
hundle situations between the extremes of obviously par-
aflel and nonparallel subscts. Also the balance between
high-communications with coinpute-ratio is under study.
There are ongoing studics at Cornelt University and 1BM
Yorktown Heights Research Center.

A hierarchical approach to processing will allow de-
composing a problem among complexes with computa-
tion time in excess of intercluster communications.

The subject of visualization in scientific computing
needs to be defined, and the extent of necd should be
determined. It may be defined as interactive display and
processing of data from an ongoing supercomputer. The
nced is to steer simulations in computationally real time,
A further needis for higher resolution color graphics, and
much higher communication bandwidth.

Further along we will evolve very high-end extended
systems architecture ESA/370 for large-scale computer
systems. Such a system will baild on the commrcial
hardwure/soltware base which will be extended. Super
scalar performance characteristics will be exploited. A
system balance will be maintained between vector, scalar,
parallelism, memory, and input/output.

IBM is wedded to the future of parallelism. We shall
optimize to high vector/parallel content as applications
cvolve. We shall optimize to user demands such as mem-
oty bandwidth for technical computing. The ESA/370
hardware and softwarc technology will be driven to its
limit. There will be some fallout for use in the commer-
cial line of computers.

IBM intends to be a major participant in providing
supercomputer solutions. We have the appropriate base
to allow for rapid cnhancement. We will continuc to em-
phasize the balaiced systems approach.

"Parallel Logic Programing"
David Warren, Manchesier University, UK.

Japan’s Fifth-Generation project has helped to high-
light logic programing as a unifying framework on which
to build advanced computcr systems, particularly for non-
numeric applications. Onc of the key features of logic
programing as a framework is that it provides a powcrful
model of computation which lends itself to parallel im-
plementation.

There are two main kinds of paraliclism in logic pro-
grams: or-parallclism ar.d and-paraliclism. Or-parallcl-
ism enables altcrnative solutions to a query to be found in
parallel. And-parallelism enables different steps toward
a single solution to a query to be performed in parallel.

The performance of computers running logic pro-
grams is measured in logic inferences per second (LIPS).
Manchester with the support of the Science and Engin-
cering Rescarch Council (SERC) is working with MCC,
Austin, Texas, toward a powerful system.

/s

The project is motivated by the cost effectiveness of
using multiprocessors and the difficulties in programing
for them. There will be wide acceptance of multiprocess-
ing only when the systems are regarded by programers as
a "black box."

Prolog was choscen because it is adequatc for real ap-
plications; it is widely known and used and is a well
adapted technology. Prolog can be considered a gener-
alization of a functional language like pure LISP.

The Japanesc institute ICOT is using dependent and-
parallefism in languages like Prolog and Concurrent Pro-
log. We at Manchester are working with or-parallelism,
as in the SRI model. Our aim is Lo run real applications
faster without changing the program.

Our system 1s called the Aurora system and is con-
stituted of Sicstus Prolog plus the SRE model + a sche-
duler. Auroraisa full Profog system with good speed und
speed ups.

In the future we expect Lo explore new applications
and the scheduling of speculative work and 1o incorpor-
ate dependent and-parallclism in an Andorra maodel
which will combine and- and or-paraliclism.

We want processors to share data rather than mem-
ory. Each datum will be identified by a virtual address.
Virtual addresses can be mapped quite flexibly onto
physical addresses. There may be multiple copics of a
particular datum and the physical location of a datum will
be transparent to the uscr. Data will simply migrate to
wherc it is needed.

A communications controller will handic local and
nonlocal memory accesses. Local communication will
allow reading of a local datum or write an unshared
datum. Nonlocal communication will allow rcading a
nonlocal datum, broadcast to nearest copy and mark as
required.

A data diffusion machine is characterized by shared
virtual memory but not shared physical memory. 1t is
scalable and data migrates automatically to minimize
remote access.

‘Domain Decomposition Algorithms and Applica-
tions to Filuid Dynamics”
Tony Chan, UCLA.

Domain decomposition is a class of methods for sol-
ving mathematical physics problems by decomposing the
physical domain into smaller subdomains and obtaining
the solution by solving smaller problems on these subdo-
mains. Motivation for this approach may be:

o The ability to usc diffcrent mathematical models and
approximation methods in different subdomains

® Usc of fast, dircct methods in subdomain
& Memory limitations of the computer
® Suitability for implementation on parallel computers.

Applications can he found in many arcas of scicntific
computing, such as computational fluid dynamices anel

(o

structural mechanics. The key ingredient in many of
these methed. s the system of equations governing the
variables on the interfaces between the subdomains which
is often solved by preconditioned iterative methods.

One question that arises is whether or not to have
overlapping subdomair-. In the view of Professor Chan
it doesn’t seem to make much difference.

In solving parual differential cquations on a domain
using cither {inde difference of finite clements the domain
is decomposed into subdomains, on cach of which the sol-
ution is simpler than on the entire domain. The subprob-
lems arc solved on the subdomains and these solutions
are picced together to arrive at a global solution on the
entire domain.

The piecing together involves solving the system of
cquations governing the variables on the interfaces be-
tween the subdomains. One approach is to estimate the
solution on the interior boundary and carry out successive
iterations until the cquations arc satisfied to an accept-
able level. Often a preconditioncr is used such as the Pre-
conditioncr Conjugate Gradient.

"Domain Decomposition Methods for Parallel Com-
puter”
Cierard Meurant, Centre d’ Etudes de [imed-Valenton, France

Domain Decomposition methods were originally de-
veloped to solve large problems on computers with small
memory or to decomposc problems on complex gecome-
tries, allowing fast methods to be uscd on the subdomains.
Today, these methods have become interesting for usc
with parallcl computers, mainly of the MIMD type.

The oldest of the domain decomposition methods is
the Schwarz Alternating Method with averlapping sub-
domains. Some new results both on convergence and ap-
plications of this method have recently been found, The
other methods are mainly related 1o the Conjugate Gra-
dient Method, as ways to derive cfficient preconditioners.
The methods are classified by the kind of problems they
cansolve or by the type of parallel computer to which they
arc best adapted.

Some methods rely on knowledge about the under-
lving partial differential cquation, usc dircet solvers on
the subdomains, and so are targeted to parallel compu-
ters with a very large number of processors. Some others
are purely algebraic methods and usc approximate sol-
vers on the subdomains, and hence are more suitable for
computers with small numbers of powerlul vector proces-
SOrS.

The procedure in any casc is to split the problem into
picces, solve the pieces in parallel on the subdomains, and
then put the pieces together to get the global solution.

Domain decomposition mcthods differ in scveral
ways:

o The method of partitioning may he with or without
overlapping of subdomains and the subdomains may
be stripes or boxes over the domain.

e The method of solution on the subdomain may be
exact, approximalce, or an exact solution of an approxi-
matc problem.

o The method of construction of the problem for the in-
terfaces may be from the partial differential cquation
or algebraically from the matrix of coefficients.

Mecurant’s group has chosen a target architecture
using stripes and a supcrcomputer with a few very power-
ful processors using shared memory. With the use of
stripes as subdomains they will be looking for long vee-
tors.

The Schwarz method of solution uses a block Gauss-
Scidel method applied to the matrix of cocfficients. A
large number of itcrations is required when there is little
overlapping of subdomains but the number of iterations
drops dramatically for large overlapping,

Other methods of solution are to usc the Conjugate
Gradient method to accelerate the convergence process
on the interface, or to use the Block Jacobi method with
overlapped subdomains,

The Domain Decomposition method s especially
well suited to parallel supercomputers.

"Comparison of Super and Mini-Super Computers
for Computational Fluid Dynamics Calculations”
Wolfgang Genizsch, Fachhochschule Regensburg, West Germany.

A model benchmark has been developed to estimate
the performance of supercomputers for engineering and
scientific applications. It consists of four parts: special
kernels, basic linear algebra routines, iterative solvers for
systems of equations, and application programs.

By using about 100 kcrncls and basic lincar algebra
routines it is possible to:

o Testthe capability and the limits of the vectorizing and
parallclizing compiler

o Estimate the performance for basic operations de-
pending on vector length,

Twenty-five variants of different linear algebraic sys-
tems solvers are used to:

o Study restructuring with respect (o the special vector
and parallcl architecture

¢ Conclude basic vectorization and parallclization rules
for numerical algorithms,

In addition, five production codes from plasma
physics, Euler and Navier-Stokes Flow, Grid Generation,
and Multigrid have been included to get better insight
into more complicated constructs within more complex
programs.

The sclution of ¢quations like the Navicr-Stokes in-
volving the conservation of mass, momentum, and cnergy
involve a number of steps:

e Mcsh gencration

e Discretzation of the partial differential equations

o Dctermining a starting solution
& Modcling of turbulence
¢ i-cluding stability and convergence
& Appiving artificial viscosity
and may include
« The use of computer graphics.

Such problems involve a very large number of un-
knowns — as many as 30 to 40 at every grid point. Thus, a
30x30 grid would involve 36,000 unknowns.

The results of benchmarking of such problems de-
pend on the machine architecture, the compaler used, and
the “gorithms, Thus, benchmarks can be misused, the
choice (or omission) of optimal kernels can influence the
average machine. Often decisions are made on bench-
mark results which are not entirely indicative of perfor-
mance.

"Images of Matrices"
Cleve Moler, irdent Computers, US.

That supercomputers have been proven effective for
computation but have not yet been proven for visualiza-
tion is 2 paradox. Mathematical visualization means the
use of powertul graphics software and hardware to inves-
tigate mathematical computations.

The underlying tools for mathematical visualization
include:

e Titan, Ardent’s new graphics supercomputer with
super parallel architecture with various levels of
parallclism including pipelining and vector parallel-
1sm

e Softwure, consisting of four groups: an operating sys-
tem; compilers for various languages; graphics (Ar-
dent's Dynamic Object Rendering Environment
[DORE]); and science software, ¢.g., Math Work’s
Matrix Laboratory (MATLAB).

DORE provides a connection between computing
and graphics. It takes gecometric components to produce
realistic objects.

The classic MATLAB was developed by Moler at
Argonne National Laboratory and Stanford University.
The commercial version of MATLAB is wrilten in the
language C and is useful in two- and three-dimensional
graphics. It is also extensible.

Examples of the v of MATLAB and DORE in-
clude:

e A dynamic portrait of a vibrating L-shaped mem-
branc

e A vicw of matrix decomposition algorithms
o Surfaces defined by mapping of the complex planc

e Solutions of some model partial differential equa-
[IRLIY

—

"Parallel Integration of Vision Modeils”
James Litde, Ardificial Intelligence Laboratory, MIT.

Computer vision has developed algorithms for sev-
craf carly vision processes — such as edge detection, stere-
opsis, motion, texture, and color — that give separate cucs
to the distance from the viewer of three-dimensional sur-
faces, their shape, and their material propertics. Yet, and
not surprisingly, biological vision systems still greatly out-
perform computer vision programs. It is increasingly
clear that onc of the keys to the reliability, flexibility, and
robustness of biological vision sysiems is their ability to
integrate the different visual cues. We have developed
technique to integrate different visual cues, and have im-
plemented it with encouraging results on a paralic! super-
computer.

Whereas it is reasonable that combining the evidence
provided by multiple cues — for example, cdge detection,
stereo, and color — should provide a more reliable map of
the surfaces than any single cue alone, it is not obvious
how this integration can be accomplished. One of the
most important constraints for rccovering surfuce
propertics from cach of the individual cues is that the
physical processes underlying image formation, such as
depth and orientation and reflectance of the surfaces, arc
typically smooth. Standard regularization (Poggio and
Torre, 1984), on which many cxamples of carly paralicl
vision algorithms are based. captures this smoothness
property well.

The physical propertics of surfaces, however, are
smooth almost everywhere, but not at discontinuitics.
Reliable detection of discontinuitics is critical for a vision
system since discontinuitics are often the most important
locations in a scene. The idea is to couple different cues
to the image data (especially intensity edges) through the
discontinuities in the physical properties of the surfaces.
The goal is, of course, to use information from several
cues simultaneously to help refine the initial estimation of
surface discontinuitics, which arc typically noisy and
sparse.

How can this be done with an algorithm that is intrin-
sically parallel? We have chosen to use the machinery of
Markov Random Ficlds (MRF’s), initially suggested for
image processing by Geman and Geman (1984). We have
extended our previous work (Marroquin et al,, 1987) to
couple several of the early vision modules (depth, motion,
texture, and color) to intensity edges in the image. This
is a central point in our intcgration scheme: intensity
cdges guide the computation of discontinuitics in the
physical propertics of the surface, thereby coupling sur-
face depth, surface oricntation, motion, texture, and color
cach to the image intensity data and to cach other.

We have been using the MRF machinery with appro-
priate prior cnergics to integrate edge-intensity date with
stereo, motion, and texture information on the MIT Vi-
sion Machinc System. The system consists of a two-
camcra cye-head input device and a 16K Connection
Machine. All the carly vision algorithms —edge detec-

tion, stereco, motion, color, and texture — as well as the
MRF algorithm, currently run on the Connection Ma-
chine several hundred times faster than on a conventional
machinc.

At the same time, our intcgration algorithm achieves
a preliminary classification of the intensity edges in the
image, in terms of their physical origin. Preliminary ex-
periments suggest that recognition algorithms can use cf-
fectively the output of the intcgration scheme described
here.

These highly parallel algorithms map quite naturally
onto an architecture such as the Connection Machine,
which consists of 16K simple 1-bit processors with local
and global connection capabilitics. These algorithms also
map onto VLSI architectures of fully analog elements and
mixed analog and digital components.

"Programing Parallel Vision Algorithms: A Dataflow
Language Approach®
Linda Shapiro, University of Washingeon, Seatdle.

Computer vision requirces the processing of large vol-
umes of data and requires parallel architectures and al-
gorithms to be useful in real-time industrial applications.
The INSIGHT dataflow language was designed 1o alfow
encoding of vision algorithms at all levels of the computer
vision paradigm, INSIGHT programs, which arc rcla-
tional in nature, can be translated into a graph structure
that represents an architecture for solving a particular vi-
sion problem or 4 configuration of a reconfigurable com-
putational nctwork.

Single-processor, general purpose computers cannof
provide the computational power required for real-time
or even reasonable-time vision tasks. At the image pro-
cessing level, parallelism has been achieved to some ex-
tent by cellular array machincs, pipcline architectures,
and pyramids. In ordcr to deal with more complex vision
problems, including low-level, mid-level and high-level
algorithms and 1o provide a greater computational rc-
source, massively parallel celtular machines such as the
Connection Machine and MIMD machines like the But-
terfly have been built.

In addition, a new tri-level paraliel architecture pro-
viding a large array of simpic processors for image pro-
cessing, a medium-sized array of more powerful
processors for mid-level vision, and a small array of ex-
tremely powerful processors for high-level algorithms is
heing developed in conjunction with the DARPA Tmage
Understanding Projcct. Since most of these ncw ma-
chines are intended for defense use, they are currently
much more expensive than industry is willing Lo pay for
m.hine vision. For this reason, reconfigurable architec-
tures that have Iess processing elements, but can be rec-
onfigured to solve a variety of problems are being
proposed.

Allof these machincs nced a language in which vision
algorithms can be expressed. If the language reflects the
architecturc of the machine, then software sharing be-

tween installations with different machines will be im-
possible and much unnceessary cffort will go into develo-
ping and redeveloping paradicl afgorithms,

A morc desirable approach is to have a non-machine-
dcpendent language that can cxpress parallel algorithms
in a generic way and can be translated to code that runs
ona particular architccture or 1o a configuration of a rec-
onfigurable architecture. This was the approach in the
design of INSIGHT, a dataflow language for programing
vision algorithms. INSIGHT can be used for expressing
low-level mid-level and high-level vision algorithms, and
INSIGHT programs can be translated to code that can
run on a variety of architecturcs.

"Seismic Wave Propagation and Absorbing Bound-
ary Conditions"
Johnny Peterson, Bergen Scientific Centre, [BM, Norway.

When computing solutions to the two-dimensional
wave cquation in unbounded domains using finite dif-
fecrence discretization, an artificial boundary is intro-
duced. A boundary condition which absorbs all outward
propagating waves must then be used. Also, the finite dif-
ference operator must be replaced at the boundary with
an appropriatc boundary operator.

Approximation to boundary operators are well
known which work well for waves which are propagating
towards the boundary ncar normal incidence. However,
problems occur in cases where sources are far from the
center of the model or if the velocity field is not homo-
geneous. In such cases results are contaminated with
noise scattered back from the artilicial boundarics.

A nonlinear least squares method is proposcd for
determining an absorbing boundary operator. The oper-
ator is chosen by demanding that waves traveling within
a predeterminced cone are alternated as much as possible.
The problem is solved with a Monte Carlo-type minimi-
zation method. Storage requircments can be reduced by
reducing the grid size. Results can be obtained from the
vectorization of the method.

“Large-Scale Computing in Reservoir Simulation”
[*chard Ewing, University of Wyoning.

The objective of reservoir simulation is to understand
the complex chemical, physical, and {luid flow processes
occurring in a petroleum reservoir sufficiently well to be
able to optimize the recovery of hydrocarbon. For this,
mathematical and computational modcls must be built
capable of predicting the performance of the reservoir
undcr various usable schemes. Many of the physical phe-
nomena which govern enhanced recovery processes have
very important local character. Thercfore, the models
uscd to simulate these processes must be capable of re-
solving these critical local featurcs.

Mathematical modcls of enhanced recovery pro-
cesses involve large coupled systems of nonlinear partial
differential equations. In order to compare the results of
thcse models with physical mcasurements 1o assess

their validily and to make decisions based on these mod-
els, the partial diffcrential cquations must be discretized
and solved on computers. Field-scale hydrocarbon simu-
lations normally involve reservoirs of large size. Uni-
forms gridding on the length scale of the local
phenomena would involve systems of discrete equations
of such size as to make solution on even the largest com-
puters prohibitive. Thercefore, local grid refinement ca-
pabilitics and efficient solution processcs arc becoming
morc important in reservoir simulation as the enhanced
rccovery procedurces being used become more complex,
involving more localized phenomena in enormous prob-
lems,

Equations representing the miscible displacement of
one i.acompressible fluid by another, completely miscible
with the first are combined and lead to cquations describ-
ing multiphase and multicomponent flow in porous
media. These can be used to simulate various production
strategies in an attempt to understand and optimize hy-
drocarbon recovery.

In miscible or multicomponent flow models, the con-
nective, hyperbolic part of the equation is a linear func-
tion of the fluid velocity. The operator-splitting
technique applied to a variational method leads to a sym-
metric bilinear form. A modificd method of characteris-
tics is used to treat the time stepping. The discretization
methods used can be considered as the first stepin a New-
ton lincarization of the coupled nonlincar system. The
method is designed to linearize and formally decouplc the
equations for a scquential solution process. However, in
cases where the nonlincaritics in the partial differential
cquations are strong this lincarization process is not suf-
ficiently accurate for the desired application. In such
cases the full Newton-Raphson type of treatment can be
used.

‘ParaScope: A Parallel Programing Environment”
Ken Kennedy, Rice University.

Clearly, {uture generations of scicatific supercompu-
ters will employ multiple independent processors. What
form of programing support software should be provided
with such machines? Existing FORTRAN programs,
written for sequential machines, arc not well suited 10
parallel execution. 1f these programs are to run cfficicnt-
ly on a multiprocessing system, they must be decom-
posed into subproblems that can be executed in
parallei.

Although there hes been substantial progress in
methods for automatic transformation of sequential pro-
grams to parallel form, there is little evidence that these
methods will make it possible for the programer (o be un-
concerned about parallelism. We must thercfore assume
that parallel programs will be written by human progra-
mers in an explicit parallel notation.

Explicit parallel programing is a challenging activity
fraught with apportanity for crror. 1f programers arc to
bep ductive on the next generation of machines they will

need powerful new tools to assist in the programing pro-
cess. The ParaScope project at Rice University is
planned to provide such tools in the context of an intc-
grated programing cnvironment.

ParaScopce is bascd on a sophisticated environment
for FORTRAN programing developed over the past 5
years at Rice. In addition to the usual tools, such as ¢di-
tors, compilers, and source-level debuggers, ParaScope
will incorporate new tools specilically designed for par-
allel programing, including an cditor that interactively re-
ports potential sources of inadvertent data sharing
between parallel processes, a compiler than analyzes the
whole program to produce good paralle] code, a de-
bugger that attempts to exceute parallel programs ac-
cording to a schedule likely to recreate data sharing
crrors and performance visualization tools that help the
uscrs identify run-time bottlencceks in their programs. A
central theme in the design of the systemis the use of deep
program analysis methods, developed for automatic
transformation systems, in the programing and debugging
tools.

"Current Directions and Future Possibilities in Com-
putational Fluid Dynamics"
Anthony Jameson, Princeton University.

This paper covered a wealth of material, but the talk
moved too fasl for casy following. The speaker reviewed
mathematical modcels suitable for different flight regimes,
and current developments in the design of algorithms for
their numerical simulation. Estimates of corresponding
computational requirements of both speed and memor:
were included, and the impact of massively parallel archi-
tectures on future possibilitics for numerical simulation
of fluid flows was assessed.

The whole emphasis was on computational aerody-
namics, which requires identification of the relevant
physical phenomena and the formulation of appropriate
models. In the solution of such problems there is a role
for mathematics (including numerical analysis), com-
puter science (including how to prove a program correct),
acronautical engincering (including what is the objec-
tive).

The specific objective is to calculate the flow pattern
of the air past the acroplane. Thisinvolves calculating the
flow past the acroplanc in different flight regimes and re-
quires intcractive information. The flow pattern will in-
volve geometric complexity and must take into account
viscous effects.

The steps involved in the process include:

® The choice of a mathematical model (this choice ran-
ges [rom a Laplace cquation for idceal fluid flow to Na-
vier-Stokes equations for complex cases)

o Analysis of the modcl chosen

¢ Decrivation of a numerical approximation to the partial
differential cquations tnvolved

e Writing of a program 1o solve the approximately cqu-
atton

o Validation of the model and the program,

The Euler equations in acrodynamics fall between
the Laplace equation and the Navier-Stokes in complex-
ity. In aerodynamic design there is normally a tradeoff
between complexity of the algorithm and thec model. The
choscn algorithm may be finite differences or finite ele-
ments. It may involve time marching or be steady state.

"Parallel Programing with Ada"
Jan Kok, Centrum Voor Wiskunden Informatica, the Netherlands.

The language Ada (ANSI/MIL-STD 1815 A, 1983)
was primarily designed for the production of large por-
tions of readablc, modular, portable, and maintainable
software for real-time applications. In the programing
area concerned with this production the differences be-
tween machines, systems, languages and language im-
plementations, expericnced when transporting and
maintaining programs, are a main cause of errors in pro-
grams.

In order to provide the means for obtaining more re-
liable software for these applications the US government
launched a significant program in the 1970’s with the re-
sult that both the specification was given of a portable en-
vironment for developing and running software, and a
high-level language was defined with properties that
should enhance the programing of rcliable and maintain-
able software. This language, Ada, offers standard and
readable language concepts for the structuring of large
programs, for the specification of the relationship be-
tween different modules of a program, for data abstrac-
tons, and for programing distributed computing with
clear tools for describing processes and the communica-
tion between these.

In this presentation the author focused on the lan-
guage as an appropriate tool for the human user. High-
level Janguages have the property that the step from
algorithms (formulated with natural language or mathe-
matical notation) to programs in thosc programing lan-
guages is small and can also be donc in the reverse
direction duc to the readability of the code.

This property comes along with a high degree of ab-
straction away from particular hardwarc or system char-
acteristics, which actually puts the burden of directly
addressing the machine possibilitics on the specific com-
pilers. In particular for parallel programing, the inten-
tionally standardized languages with clear and high-level
fcatures arc rare. The necessity for high-level features is
not generally accepted, and the suitability of possible cx-
pressive tools like those of Ada has not been extensively
investigated. Presumably many believe that such tools are
not possible with the expected diversity of parallel archi-
tectures.

With the following description of the Ada tools for
programing parallel actions and of the possibilities to ex-

ploit parallel architcctures the author intends 1o bring to
a broader forum the issue of language tools for parallel
programing. This may hopefully resultin feedback for in-
creasing the understanding about the applicability of
these tools, and also for their improvement in Ada and in
other scientific languages for which parallel programing
tools are under devclopment.

The author first reviewed the relevant Ada concepts
that can be used for parallel programing, in particular the
task concept and the related declarations and statements
that can be exploited.

Next, the possibilities were discussed for the sup-
posed and efficient mapping of Ada tasks into existing
and imaginable multiprocessor architecture. He indi-
cated some observed disadvantages of particular lan-
guage constructs and rcported experience gained in
model exercises which can be useful for the solution of
numerical problems as well.

Finally, he discussed the possibilities for implement-
ing in Ada parallel methods and for developing new meth-
ods with the help of the readable Ada features, where this
development so far has been handicapped by the lack of
high-lcvel language concepts for expressing possible al-
gorithms in actual programs.

"Neural Computing”
John Hertz, NORDITA.

Neural computing is a new concept in computing. It
is a concept biologically motivated and massively paral-
Iel. Tt has implications for both hardware and software.
It will have application in the cognitive area including as-
sociative memory, recognition, error correction, and de-
cision making.

A few key figures in the origin of ncural computing
are:

e McCullough and Pitts, 1943, for a network of binary
threshold units

e R. Rosenblatt, 1960, for learning in perceptions

o E. Cainicllo, 1961

e B. Widrow, 1962.

The things that make possible further progress today
arc:
® Progress in very-large-scale integration
e Progress in ncuroscience

® Progress in behavior of large complex systems of intct-
connecting units.

In biological systems cclls receive electrical pulses
from other cells and each pulsc raises the potential inside
the cell, depending on the strength of the synaptic con-
ncction; when the potential in a cell becomes greater than
a threshold value the cell fires a pulse of fixed strength
along the axon. This results in a raising or lowering of the
potential in a node of cells.

Formally, a neuron is a two-state system, either firing
or not firing. A neural computing system differs fun-
damentally from a conventional computer:

@ It is more massively paralicl

e It is essentially collective — no programing of individ-
ual cells

o The program is contained in the synaptic connections

e It is robust against noise and errors
® A few crrors can be tolerated.

The neural computer’s main application will be in
cognitive computation. The structure of the network is
highly important. The formulation allows a new kind of
biological modeling.

In physics terms, the dynamics of a spin system with
cnergy,

E = -1/2§JijSiSj-thiSi

e, field hi + i_;Jij Sj acting on §;

Moving toward states of lower energy.

A random mixture of plus and minus synapses is cqui-
valent to spin glass, except Jij = Jji

Many mctastable configurations, firing patterns, pro-
duce synaptic noise. To get from one pattern to another
asoft threshold is introduced — i.e., probability of firing is
increased.

Contributed Papers

As stated in my introduction to this report, the con-
tributed papers and student scholarship papers will be
summarized herein using the speakers’ own abstracts.

“Supporting Distributed Matrix Operations on a
Hypercube”
Clifford Addison et al., Chr. Michelsen Institute, Bergen, Norway.

The CMI High Level Library is a package of routines
for a message-passing multiprocessor. It was originally
designed to relicve the programer of the details of com-
munication and data handling, especially in numecrical fi-
nite diffcrence computations. We are cxtending the
library to support a gencral set of distributed data struc-
tures and operations for matrix and vector computations.

The object is to offer the programer a distributed im-
plementation of the abstract data types —"matrix" and
"vector” — that is as easy o use as the conventional single-
processor implementation for matrices and vectors in
terms of arrays. Actually the library will supply a choice
of distributed representation -by row, by column, by
block, densc or sparse —but the programer can choosc
the desired represcatation on grounds of efficiency, and

—r

then ignore the details of its implementation (or even
change the choice later if necessary).

“Algorithms is for a Specialized Matrix Systolic Pro-
cessor”

L.G. Aleksandrov ct al., Center for Informatics and Computer Technol-
ogv, Bulgaria.

The paper concerns some algorithmical aspects of o
project for developing a high-performance specialized
processor for fast matrix operations using a systolic array.
The architecture of the processor is briefly described and
implementations of different lincar algebra algorithms
exploiting the potential parallelism of the system are con-
sidered. The algorithms include solving systems of lincar
cquations by the Jordan and the Gauss methods, LU and
QR decompositions, matrix multiplication, and others.
Despite of the simplicity of the architecture and the low
technology requirements, the implementations have the
following advantages:

e The processor solves problems with arbitrarily big
sizes {limited only by the amount of memory).

o The utilization of the cells of the systolic array is very
close to one.

o Numcrically stable versions of the algorithms can be
implemented.

o The range of solvable problems is large enough to
cover important application arcas.

"The CESAR Processor"
Vidar S. Anderson, Nonwvegian Defense Rescarch Establishment, Norway.

CESAR is a parallel processor programable on vari-
ous levels. It may be attached to any 32-bit host computer
from Norsk Data through the standard DOMINO DMA
Controller and the MultiFunction Bus Memory. CESAR
has a peak performance of 320 MFLOPS and is relative-
ly compact, implemented on 13 printed circuit boards oc-
cupying about half a card crate. As an example, 1K
complex FFT’s are computed in 0.257 milliscconds on
average.

CESAR is well suited for tasks requiring intensive
computations not dependent on the data content. Some
signal processing algorithms arc typical examples.

The talk is intended Lo give an introduction to the
CESAR processor. Hardware modules as well as soft-
ware tools arc described from an application programer’s
point of view. This knowledge is necessary to understand
the refated poster "Signal processing with CESAR" by E-
A Herland.

"A Benchmark Code for Multiprocessor Vector

Supercomputers"”
David V. Andersen, National Magnetic Fusion Energy Computer Center,
California, and Ralf Gruber and Alexandre Roy, Cenire de Recherche en
Physique des Plasmas, Switzerland.

In the comparison of supcrcomputer performance
onc preferably seeks criteria that are relevant to the in-

10

tended applications. For example, large classes of prob-
lems from physics and other disciplines often result in
very large systems of linear equations. In this regard, a
program which solves such a system cfficiently can be
usced as a benchmark to make comparisons among avail-
ablc and prototypical machines. We have developed the
program PAMS (Parallelized Matrix Solver) which uses
vectorization and multitasking (simultaneously) to solve
a problem that arose in a 3-D plasma physics application.
For this problem the matrix structure is tridiagonal block-
banded with dense blocks.

The code employs a cyclic reduction procedure on
the blocks which allows one to obtain an algorithm that is
potcntially very fast on multiprocessor vector supercom-
puters. The block-banded system (with dense blocks) is
also encountered in other applications as well and there-
fore can be regarded as a good reference problem. Re-
sults from testing PAMS on the CRAY X-MP, CRAY-2,
NEC SX-2, Fujitsu VP-200, and the CDC-205 will be
presented. We also intend to present results from ETA-
10 tests if we can gain access to the prototype machine.
The value of PAMS as a benchmark for future more mass-
wely parallel computers will be discussed.

"Divide-and-Conquer Algorithms for the
Computation of the SVD of Bidiagonal Matrices"
Dr. Peter Arbenz, Institut fiir Informatik, Switzerland.

Recently the divide-and-conquer algorithm pro-
posced by Cuppen for the computation of the spectral de-
composition of symmetric tridiagonal matrices has
gaincd considerable interest due to the revision and suc-
cessful implementation of Dongarra and Sorenscn. Since
the singular value decomposition of a bidiagonal matrix
1s closcly related to the spectral decomposition of the tri-
diagonal B' B or BB' but also of

OB

B'O

there arc several possibilitics on how to apply the
dividc-and-conquer algorithm on the singular value de-

composition. In this talk we present and compare nu-
merically some old and new approaches.

“Lattice QCD-As a Large Scale Scientific
Computation”

Clive F. Balhe, et al, California Institute of Technology Concurrent Com-
pritation Project, Pasadena.

Lattice QCD (Quantum Chromo-dynamics) is one of
the most computationally intensive large-scale scientific
computations. It can thercfore be made to run efficient-
ly on any computer. As part of the Concurrent Supet-
computing Initiative at Caltech (CSIC), we have
benchmarked Lattice QCD on a large number of compu-
ters: CrayX-MP and Cray 2 (vector supercomputers);
Caltech/JPL Mark 111, Intel iPSC, and Ncube hypercubes
(MIMD shared distributed memory computers); and
BBN Buttcrfly, Sequent Balance, and Alliant FX/8

R ————

(MIMD shared memory computcers); and TMC Connce-
tion Machine 2, and AMT Distributed Array Processor
(SIMD computers). Herein we explain the computation
required for Lattice QCD, deseribe and contrast the dit-
ferent concurrent supercomputers used, and present the
results of the Lattice QCD benchmarks.

"On the Performance of Shared Cache for Multipro-
cessor Organizations”
(.M. Chaudhry and J.5. Bedi, Wayne State University, Indiana.

High-speed computers usc cache memorics to in-
crease the instruction execution rate by holding tempo-
rarily those portions of the main memory which arc
currently in use. A memory reference is a hit or a miss if
the referenced datum is present or absent in the cache,
respectively. After a miss the block containing the
desired datum is copied from the main memory Lo cache
mcmory. The hit ratio is the fraction of hits among all rcf-
crences; the miss ratio is the fraction of misscs. In order
ta function cffectively, cache memories must be carclully
designed and implemented.

This paper studies the effects of shared cache on the
performance of tightly-coupled multiprocessor systems
in which main memory is also shared by all the proces-
sors. In shared cache, cach processor is able 1o access a
single cache, sharcd among all processors. The private
cache and multicache systcms sulfer from data coherence
problem. Another problem of the private cache is that
certain shared system resources, such as operating system
routines, may be copied several times in the cache
memories when they are referenced by more than one
process. Sharcd cache allows dynamic allocation of total
cache space among the processors as compared 1o fixed
cache allocation per processor in private cache systems,

"The Vectorization and Parallelization of ABAQUS".
R. Bell, IBM, UK, and B. Karlsson, Hibbers, Karisson and Sorrenson, Inc.,
Providence, Rhode Island.

ABAQUS is afinite clement structural analysis pack-
age marketed by Hibbert, Karlsson and Sorrcnson Inc.,
of Providcnce, Rhode Island. One of its strengths is the
analysis of nonlinear problems. ABAQUS is now avail-
able in a version that has been extensively vectorized for
the IBM 3090 Vector Facility. In addition, clapscd times
have been reduced by uvsing 3090 central and expanded
storage to kecp the data arrays in storage rather than
using DASD files.

CPU speedups relative to scalar in exeess of 3.0 have
been achicved together with elapsed time reductions in
excess of 6.0. Tn addition, a two-way parallel version his
been successfully demonstrated but not yet made com-
mercially available. Many parts of the code have been
vectorized but the most signilicant CPU specdups have
come from the wavefront solver routine. This was exten-
sively restructured so as to cast the FORTRAN in aform
that would make maximum usc of the IBM VF compound
operation multiply/add.

1

This paper describes the techniques uscd in the vec-
torization work as well as the parallelization and bringing
of files in storage. Performance results are also
presented. The work was done by Hibbert, Karlsson and
Sorrenson, Inc. with the cooperation of 1BM, as part of
IBM’s worldwide program to assist vendors to enable
their packages for the IBM 3090 Vector Facility. Tech-
nical guidance on the IBM Vector Facility hardware and
software was provided by IBM UK Ltd.’s Technical Sup-
port function and also by the IBM Dallas Center.

"Use of Processor Networks for Parallel Polynomial
Root Computing”
Ph. Berger and F. Hoxha, Department Informatique ENSEEIHT, France.

Colving polynomial cquations is one of the oldest
problem in algebra. A large number of algorithms, to
computc the zeros of polynomials, have been developed.
However, the problem of improving them remains cur-
rent because the user’s requirements (in the field of sig-
nal processing, C.A.D...) become more specific. A high
precision is generally required. Furthermore, a minimal
computation time is to be wished for (real-computation
time constraint).

The use of parallel computers may be a reply of the
last request. On the one hand, in many problems curren-
tly treated, the data size is not very large, and the im-
piementation to supcrcomputers, whose peak
performance are some hundreds of Megaflops, seemed
unnecessary. On the other hand, for many users it is very
difficult to have access to such computers. In this context,
the development of methods on a processor network, like
hypercube for example, may be interesting (good
price/peak performance rate).

The object of this paper is to present some experi-
ments in concurrently computing the roots of a high-de-
grece polynomial on a nctwork of transputers. The
numerical algorithm allows determination simultaneous-
ly of all the roots of a one-variable polynomial, whose
cocfficients are real or complex numbers. A specificity
of the method is the fact that a process can be associated
with the computation of one or more roots, and then the
program is easily distributed on a set of weak-coupled
processors. The principal choices of implementation are
linked with the strategy of data communication, the com-
plexity of synchronization, and the type of network. For
this aim, several versions are generated and compared.

Accordingly, we shall present the resolution algo-
rithm in its mathematic:! context; afterwards, the crite-
rions which have led us to claborate different versions;
and finally, numerical results and performances related
to physical problems, problems drawn from literature,
and randomly generated problems (polynomials of de-
gree < 64). We shall conclude on the efficiency of such a
configuration in the field of numerical resolution of poly-
nomial cquations.

"The Spectrum of Sums of Projections with Applica-
tion to Parallel Algorithms in Grid Refinement and
Domain Decomposition”

Petter Bjorsiad and Jan Mandel, University of Bergen, Norway.

Knowledge of the spectrum of sums of orthogonal
projections can be used to estimate the rate of conver-
gence of iterative methods based on additive formulations
of the underlying problem. These methods are interes-
ting for use in a parallel processing environment.

We give a precise characterization in the case of two
projects, and show how the theory applies to both domain
decomposition methods and to algorithms for grid refine-
ment.

Numerical results form an Alliant FX/8 system will
be presented.

"Block Cholesky Factorization of Large Sparse Ma-
trices Parallel Computers"
Jon Braekhus, Veritas SESAM Systems, Norway.

A parallel block Cholesky solver is developed based
on the secondary storage block Cholesky solver of
SESAM. The new solver is also a secondary storage sof-
ver, bul is prepared to take advantage of large memory.
The solver consists of Cholesky decomposition and back
substitution.

The solver performs first a symbolic factorization on
block level to determine what block operation will take
place. Then the dependencies between the block oper-
ations are found. This enables easy changing of the sc-
quence to distribute the tasks and thereby of studying the
load balance.

This new solver is tested on shared memory multipro-
cessors: Cray-XMP, Alliant FX, and VAX. Differences
due to hardware and operating systems are studied.

The experiments on this solver includes variation of
several parameters, the most important being:

o Block size (hercby setting typical vector length, work
per processor and file storage requirements)

¢ Sequence of block operations done in parallel (this will
affect memory usage, I/O and load balancing)

@ The available amount of primary memory compared to
bandwidth

The results for block approach is compared to the re-
sults obtained for non-blocked system by Alan George ct
al.

The tests include several of the matrices from the
Harwell Boeing "Sparse Matrix Test Collection" and two
rcal SESAM analyses. The performance is compared to
the sequential Cholesky solver of SESAM and a gencral
sequcntial sparsc matrix solver.

SESAM is also prepared for parallel execution on
network connected computers on a higher level. This is
presented by Anders Hvidsten.

12

"Linear Programing on a Local Memory
Multiprocessor”
Richard Chamberiain, Intel Scientific Computers. Wilts, UK.
Minimizing a lincar function subject to lincar equal-
ities and inequalities can be a time consuming problem
when the number of variable is large. The standard
method to solve thesc problems is the simplex method.
This paper investigates the use of a local memory
multiprocessor to solve linear programing problems. The
distribution of the data, the communications require-
ment, the need for duplicated work and the potential of
using vector processors at cach node are discussed. Nu-
merical results on the Intel iPSC and the vector extended
iPSC-VX are presented.

"Parallel Processing Techniques of the Euler Equa-
tions on the IBM 3090 VF Computer”
S.M. Chang, IBM Corporation, et al., US.

The purpose of this presentation is to discuss paral-
lel processing techniques on fluid applications with the
use of the IBM 3090 computer with Vector Facility.
Through the introduction of a Clebsch transformation of
the velocity ficld, an equivalent sct of the Euler cquations
is obtained for solving steady, three-demensional, trans-
onic flows. The resulting equations arc solved by the fi-
nite clement method employing a block-structure
relaxation scheme.

The solution domain is subdivided into blocks, and
the equations are solved in an uncoupled form for each
block with appropriate Dirichlet and Neumann-type
boundary conditions. In this study, IBM’s Multitasking
Facility (MTF) is applied to distribute block processing
across multiple processors. MTF is a VS FORTRAN fa-
cility which provides the capability to exploit the IBM’s
MVS/Extended Architecture (MVS/XA) operating sys-
tem to allow a single program to use more than one pro-
cessor simultaneously.

The results of two cases using the IBM 3090-200 will
be presented on the solution of Euler equations for the
wing-body problem. The first case consists of 24 blocks
with 8,700 nodes and the second problem consists of 40
blocks with 120,000 nodes. Solutions will be reviewed in
terms of computational speed and the level of paraliclism
achicved within the computitions.,

"Graphical Interface tor Large-Scale Numerical
Computation”
Jeremy Cook, Chr. Michelsen Institute, Bergen, Norway.

It is well known that large-scale numerical computa-
tion generates indigestible amounts of output data. De-
velopment of such applications is therefore tedious and
time consuming. As an aid to rapid development of this
type of numerical application, a system is now available
to help the programer build a user interface for his appli-
cation in a comparatively short time.

A reasonable interface would consist of one or more
graphics windows which display the output data from the

back end processor. With a multiprocessor machine it
should be possible to display output from iadividual pro-
cessors or from the whole machine. There should also be
a control pancl where the user is able to enter filc namcs
for input and output data as well as controlling the flow
of data and selecting which rcsults to display by easy-to-
us¢ menu options.

It would typically require 5-25 mandays, depending
on the level of complexity, to develop such a user inter-
face for a parallel application with a graphics workstation
at the front end. The goal for the system described is to
cnable the user to build a basic interface within a window-
ing environment in the course of the working day. With
such an interactive graphics interface the numerical ap-
plication will be developed much faster than normally at-
tainable. The increase in productivity is difficult to
measure but is estimated to be of order 5, or greater.

The pilot system, initially aimed at users with SUN-
workstation/Hypercube combinations, is implemented
for X-windows and the SunView windowing environ-
ment. The user interface is built by specifying the layowt
and function of each window in a configuration file. It is
also necessary for the user to write a simpic graphics func-
tion which will display the data in the best form for inter-
pretation,

This work is part of a CMI project to build a uscr
fricndly environment for large-scale numerical computa-
Lion.

"Fully Vectorizable Preconditionings for Parallel
Local Grid Refinement”
J.C. Diaz et al., The University of Tulsa, Oklahoma.

Manytime-dependent problems involve both general
phenomena as well as significantly localized phenomena.
These are often critical to the overall behavior of the
physical processes and are usually dynamic in nature. For
large-scale physical modeling, it is frequently impossible
to use a uniform grid, in the numerical procedure, which
is sufficiently fine to resolve the local phenomena without
yielding an cxtremely large number of unknowns.

Use of dynamic grid refincment has been shown to
be a practical method to approach thesc large problems.
A coarse grid is placed over the domain and finer grids
arc used in those subregions where localized phenomena
appear. In general, scveral levels of refinement might be
nccessary to achicve a given minimization of the error in
the solution. Tree-like data structures permitting the cf-
ficient control of the placement and/or removal of the fine
grids have been discussed by several authors.

In particular, a method permitting the placement or
removal of overlapping grids has been shown to be effec-
tive when dealing with systems of hyperbolic conser-
vation laws. Becausc of the nature of the data structure,
grids at the same level in the tree are completely inde-
pendent from each other and can be solved in parallel.
This inherent coarse grain parallelism makes this method

13

cven more attractive for utilization in the modeling of
large-scale problems.

QOur maininterest is in transport-dominated diffusion
problems which, in general, require the usc of implicit-in-
tume discretization schemes. As a consequence, large,
sparsc, nonsymmetric systems of lincar equations have to
be solved in order to advance the solution for cach inde-
pendent grid.

To further exploit the capabilities of today’s parallel
vector-computers, it is imperative to have a scheme for
solving the sparse nonsymmetric lincar systems which can
be fully vectorized. In this way, parallelism is achieved
through the distributivi of the grids among the parallcl
processes available, and also by making use of the vector
opeiations for each parallel process. We use a conjugate-
gradient-type method with preconditioning to solve the
sparse nonsymmetric lincar system arising from the dis-
cretization of the physical model.

The main obstacles for complete vectorization have
been the preconditioning calculation, and the application
step within the iteration. For the matrices obtained using
the above point discretization operators, the existing pre-
conditioners usually require a block-recursive procedure
which prevents vectorization.

Preconditionings based on nested-incomplete-fac-
torization and approximate inverses have been proposed
by some authors. At the innermost level of incomplete-
factorization the approximate inverse of a tridiagonal ma-
trix is calculated. Preconditioning schemes for
nonsymmtric problems using the Frobenius norm minimi-
zation for the determination of the approximate inverse,
arc discussed herein, We derive a formulation of this pre-
conditioner which can be fully vectorized.

The application of this preconditioner, requires only
matrix-vector and vector-vector products. It can be vee-
torized in full if appropriate data structures are used to
present the sparsc matrices.

Numerical experiments indicate that, for a class of
nonsymmetric problems, application is up to 504 faster
than existing methods, such as ILU.

Calculation of the preconditioning is somewhat more
cxpensive, but the faster application and the reduced
number of iterations nceessary to minimize the error
more than compensate for this drawback. Somc new the-
orctical results concerning the propertics of the approxi-
mate tridiagonal inverse have been obtained and will be
presented.

Numerical results {or some samplc transport-domi-
nated diffusion problems to illustrate the performance of
the overall parallel method using vector-parallel architec-
turcs, will also be presented.

"Finite Element Optimisation in ADA Using Auto-
matic Differentiation”
I.C.W. Dixon and M. Mohseninia, The Hatfield Polytechnic, UK.

In an carlicr paper Dixon and Mohseninia (1987), the
autl. rs described an implementation of Rall’s (1981)

automatic differentiation approach in ADA using the
concepts of new data types and overwritten operators. In
that paper, the approach was combined with the Trun-
cated Newton optimization algorithm (Dembo and Stei-
gaug, 1985), and tested on a number of simple test
problems.

The automatic differentiation approach has now
been extended o generate sparse Hessian matrices. The
finite clement optimization approach to nonlincar partial
differential equations has becn used to generate nonli-
near oplimization problems with large dimension, and re-
sults of applying the algorithm to such problems will be
presented.

"Using Symmetries and Antisymmetries to Analyze
a Parallel Multigrid Algorithm: The Elliptic Bound-
ary Value Problem Case"
Craig C. Douglas and Bany F. Smith, US.

We cxploit symmetry and antisymmetry properties ol
a class of elliptic partial differential cquations to prove
when a particular parallel multilevel algorithm is a direct
mcthod rather than the usual iterative method. No
smoothing is required for this result. Examples arc
presented, including variable coclficient ones. A connee-
tion between our algorithm und domain decomposition is
established, even though this algorithm is more gencral
and different. We also analyze the parallel algorithm
when it is iterative. We show how to increase processor
utilization in this case. Wec analyze Hackbusch’s so-
called "robust multigrid" algorithm for some model prob-
lems and show that our parallel algorithm uses much less
computer time with, at most, the same amount of storage.

"Parallel implementation of the Boundary Element
Method"
J.B. Drake et al., Oak Ridge [.aboratory, Tennessec.

In this paper the implementation of the boundary ele-
ment method (BEM) on a hypercube is considered. A
program solving the threc-dimensional Laplace equation
for the electric field of an electroplating cellis described.
The BEM is specifically adapted to this application,
which requires the solution of nonlincar boundary con-
ditions. As a consequence, the matrices associated with
the prescribed Dirichlet values and the prescribed Neu-
mann values are formed scparatcly and stored. A
siep of the algorithm is thus required to combine and re-
arrange the system of equations into the standard form
AX=B.

The matrix 4 is dense and nonsymmetric, and recent
advances in the art of solving dense lincar systems
on hypercubes arc laken into account in the dewel-
opment of the algorithm. Estimates of the arithmetic
complexity at each step of the algorithm and model for
the communication costs are used to study the parallel
performance of the BEM is particularly well suited for
parallel solution and can be implemented efficiently on
a hypercube.

14

"Hypercube Implementation of a Linear Systems
Solver Using Tensor Equivalents”
Lisctre de Pillis et al,, Chr. Michelsen Institute, Norway.

A new stationary iterative method for the solution to
special fincar systems developed by Dr. John de Pillis is
implemented on an Intel iPSC-VX Hypercube. The
mcthod finds the solution vector x for the invertible n xn
lincar system Ax = (I- B)x = fwhere 4 has real spectrum.

The solution method converges quickly becausce,
through the use of tensor products, an equivalent systcm
with a better spectrum is generated. The Jacobi iteration
matrix b is replaced by the equivalent iteration matrix
with a smaller spectral radius. A good approximation to
the spectral boundaries of a is a requirement for this al-
gorithm. A method for finding these spectral parame-
ters in parallel is discussed. The parallel algorithm for
finding the vector x partitions 4 row-wise among all the
processors in order to keep memory load to a minimum
and to avoid duplicate computations. The algorithm has
been fine-tuncd in order to take full advantage of the vee-
tor hardware on the hypercube and to further reduce run-
t.c. Example problems and timings will be presented.

"Prospectus for the Development of a Linear Alge-
bra Library for High-Performance Computers"
James Demmel et al., Courant Institute, New York.

We propose to design and implement a transportable
lincar algebra library in FORTRAN 77 for efficient use
on a wide range of high-performance computers. The
production of such a library for the most commonly en-
countered problems of linear algebra would have scveral
benefits:

1. It would facilitate the development of scientific
codcs on high-performance computers, This area was re-
cently identified by the Computational Science and En-
gincering Initiative of the National Science Foundation as
in scrious need of development. The large and growing
varicty of machine architecture puts a hcavy burden on
the scicntific programer to use cach machine efficiently,
since speed is the major reason to usc high-performance
computcrs. The availability of a highly efficient library for
standard lincar algebra problems on cach major machine
would free the programer (o work on more intcresting
parts of the code.

2. It would increase the portability of scientific codes
between different computing environments. Programs
written Jargely interms of calls to a standard library would
require less work to tune to the new computer architec-
ture, since the library routines would already be tuned.

3. It would improve the utilization of a scarce re-
source. By making cflicient, statc-of-the-art codes avail-
ablc cven to beginning users, more efficient use could be
madc of expensive supercomputer cycles.

4. It would provide tools to aid performance cvalu-
ation of computers. A national study has identified the
cvaluation of supercomputer performance as an area in
need of development and standardization.

To realize these bencfits, the new library must satis-
fv scveral criteria. First, the library must be highly ¢ffi-
cient, or at least "tunable” to high cfficiency, on cach
machine. Otherwisc it will not be uscful for benchmark-
ing nor will it improve utilization, and users will continue
to write their own (not necessarily better) algorithms,
Sccond, the uscr interface must be uniform across ma-
chings. Otherwise much of the convenieace of port-
ability would be lost. Third, the programs must be widcly
available.

The success of the NETLIB facility has demon-
strated how uscful and important it is for these codes to
be available easily, and preferably on line. We proposc
to distribute the new library in a similar way, for no cost
or a nominal cost only. In addition, the programs must be
well documented, in the style of the LINPACK manual.
To achieve these goals, we propose a lincar algebra li-
brary, based on the successful EISPACK and LINPACK
libraries, with the following further developments:

e Integratior of the two scts of algorithms into a unificd
library, with a svstematic design

e Incorporation of recent algorithmic improvements

e Restructuring of the algorithms to make as much use
as possible of the Basic Lincar Algebra subprograms
(BLAS). Usc of the BLAS is the basis of our approach
to achicving cfficiency, and is discussed at greater
length in section 2.2.

In short, a library would become a central part of the
infrastructure of a growing high-performance scientific
programing cavironment, much as conventional li-
braries for serial machincs are cssential to conventional
scientific computing,

"Functional Languages for Scientific Software"
Lennart Edblom, Institute of Information Processing, Unéversiy of
Umea, Sweden.

During the past few years a number of different par-
allel computers have appearcd. They all try to exploit
parallclism onc way or another. The architectures of
these computcrs arc however widcly differing, and there
is no common language or language features for program-
ing parallel computcers.

We examinc some of the problems associated with
programing current parallel computer architectures. Re-
gardless of whether you are using a multiprocessor with
distributed memory or a vector compuler, you must be
aware of the overall organization, and also many ol the
particular details of the computer system to use it clhi-
cicntly. We also examine some aspects of the languages
currently used for programing parallel computers, and
find that they are quite inadequate to express parallclism
in a machine-independent but probiem-oricnted style.

Our conclusion is that these problems are best solved
by introducing radically ncw architectures and languagcs.
We propose data flow architectures and functional lan-
guages as a possible solution. Onc property of functional

15

languages is that there is no inherent sequentiality in the
language. Concurrcncy is implicit in a functional pro-
gram, and both regular and irregular parallclism, both
operator-level and process-level parallelism are cqually
well represented. Similarly, data flow architectures have
no concept of control flow. Aninstruction is ready for ex-
ccution when it~ nperand has arrived, thus highly concur-
rent computation is possible.

We have chosen scientific softwarce as our application
area, in particular linear algebra. We show how some
well-known linear algebra problems may be coded in a
functional language. The examples include matrix multi-
plication, gaussian elimination and Cholesky factoriza-
tion. Functional languages are found to have several
advaniagces, e.g., that the functions are¢ formulated on a
high level and are amenable to program transformation.
Furthermore, a compiler can easily extract a suitable gain
of parallelism.

We will continue to investigate how a functional lan-
guage for the development and coding of scicntific soft-
ware should be designed. There are several remaining
problems, ¢.g. the efficient handling of arrays, but the
potential advantages are more than enough to motivate
continued research.

"Coherent Parallel C"
Edward W. Felten et al, California Instinuie of Technology,
Pasadena.

Coherent Parallel C (CPC) is an extension of C for
parallelism. The extensions are not simply parallel for
loops; instead, a data parallel programing model is
adopted. This means that one has an entire process for
each data object. An example of an "object" is one mesh
point in a finite element solver. How the processes are
actually distributed on a parallel machine is transpar-
ent — the user is to imagine that an entire processor in a
distributed-memory environment is dedicated to each
process. This simplifies programing trcmendously: com-
plexif statements associated with domain boundaries dis-
appear; problems which do not exactly match the
machine size and irrcgular boundaries are all handled
transparently.

The usual communication calls are not scen at all at
the user level. Variables of other proccsses (which may
or may not be on another processor) are merely accessed
(global memory). The first pass of the CPC compiler
schedules the necessary communications in an efficient,
loosely synchronous marner. Processes in CPC are insu-
lated from onc another and interact in a deterministic
manner. This allows tractable debugging. Standard C
I/O is provided, with simple extensions for parallelism.

Naturally, some performance must be sacrificed for
programing case. Linear and near-linear speedups still
occur, although with a lower level of absolute perfor-
mance. Results and performance models will be given.
CP< is not specific to distributed memory machines. At
the v rlcvel, one secs only processes and knows nothing

_—

of domain boundaries, processor numbers, ete. Im-
plemcntation of this language on other architcctures is
natural — there seem 1o be no fundamental problems with
CPC on sharcd-memory parallel computers or fine-
grained SIMD computcrs.

"Chess on a Hypercube"
Edward W. Felten et al,, California Instivute of Technology,
Pasadena.

We have implemented computer chess on an
NCUBE Hypercube. The program follows the strategy
of currently successful scquential chess programs:
searching of an alpha-beta pruned game tree, iterative
decpening, transposition and history tables, specialized
endgame evaluators, and so on. The scarch tree is de-
composcd into the hypercube using a recursive version of
the principal-variation-splitting algorithm. Roughly
speaking, subtrees are searched by teams of processors in
a sclf-scheduled manner. Scarch times for related sub-
trees vary widely (up to a factor of 100), so dynamic rec-
onfiguration of processors s necessary to concentrate on
"hot spols” in the tree.

An intercsting feature is the global transposition
table. For this data structure the hypercube is used as o
shared-memory machine. Multiple writes to the same lo-
cation arc resolved using a priority system which decides
which entry is of more value to the program. Implemen-
tation of the transposition table as "smart" shared mem-
ory is crucial to the performance of the program.

The program has played in several tournaments, fac-
ing both computers and people. Most recently it scored
2-2 in the North American Computer Chess Champion-
ship.

“Locat Convergence of Nonlinear Multisplitting
Methods"
Dr. Frommer, Universitdt Karlsruhe, West Germany.

Multisplitting mcthods for the solution of a system of
lincar cquations Ax = b arc based on several splittings of
the cocfficient matrix 4. In a parallel-computing cnviron-
ment each processor performs iterations corresponding
to one of the splittings, and the final iterate is obtained by
combining the individual itcrates in an 2ppropriate man-
ner.

In a systematic way we now extend the idea of solving
a nonlincar system of equations F(x)0. Thesc nonlincar
multisplittings are based on several nonlinear splittings of
the function F and the corresponding calculations can
again be performed in parallel. Each processor would
now have to calculate the exact solution of an individua)
nonlincar system belonging to "his" nonlinear multisplit-
ting. Although these individual systems are usually much
less involved than the original system, the exact solutions
will in general not be available.

Therefore, we consider important variants where the
exact solutions of the individual systems arc approxi-

16

mated by some standard mcthod such as Newton’s
mcthod.

We present a local convergence analysis of the
nonlincar multisplitting methods and their variants. In
particular we will show that these methods converge
lincarly and that the speed of convergence is deter-
mincd by an induced lincar multisplitting of the Jaco-
bian of F. 1t will also turn out that the speed of
convergence is not affected if the individual systems are
solved cxactly or only approximatcly via Newton’s
mcthod. We include some numerical experiments to il-
lustrate our results.

"A Parallel Computer Implementation in Finite
Element Methods"
Robert E. Fulton et al, Georgia Institute of Technology, Atlanta.

The paper reports on the development and im-
plementation of parallel processing software for finite
element solutions. A paralicl FEM equation solver has
been developed and tested for several static and dynamic
analysis demonstration problems. It has also been incor-
porated in the production finite element system FENRIS,
with applications to crash dynamic test problems. Paral-
lel processing methods for transient analysis have been
studied using implicit and explicit numerical integration
schemes, Parallel software has been implemented on sev-
cral multiprocessor machines, including shared memory
and local mecmory computer architectures. The results
show that a parallel processing approach can significant-
ly reduce execution time for large-scale finite element
problcms.

"Numerical Sea Modeiling Using Parallel Vector
Processing"

G. Furnes et al, Bergen Scientific Centre, IBM, and Institute of Marine
Rescarch, Norway.

Three-dimensional hydrodynamic equations for
tides and wind-induced flow in a sea region are
solved numerically using two different computational
techniques; first by using a single-processor computer
and then on a parallel computer with a number of
processors.

The mode! equations arc solved explicitly on a finite
diffcrence staggered grid in the horizontal space domain.
fn the vertical domain both expansion in terms of eigen-
fuctions and finite differcncc box schemes arc con-
sidered. In the time domain we used forward time
stepping. The parallel processing scheme described in
this paper consists roughly of dividing the sea area into a
number of subdomains determined by the number of pro-
cessors available.

Experiments with different horizontal resolutions in
the "functional model” and the "grid box model" are per-
formed, and the relative parallel cfficiency will be dis-
cussed.

“The Evolution of Parallel Processing at CRAY
Research”
Muark Furtney, CRAY Researcly, Mendora Heighes, Minnesota.

In 1983, CRAY Rescarch introduced, the N-M1/2,
and the Lace of supercomputing has never been the same
since. Since that time, 4-CPU and 8-CPU machines have
beenintroduced. This talk bricfly describes the hardware
organization which promotes these first commercially
suceessful multiprocessor supercomputers but concen
trates on the evolution of the support software which has
grown to deliver hardware performance to users. The
first effort (now termed Macrotasking) provided a library
of FORTRAN:-callable routines which implemented a sct
of synchronization primitives with which users could cre-
ate and control multiple tasks within a single program.
This library soon became a defacto industry standard, but
it did not fulfill all the nced of the supercomputing uscr
community.

Microtasking evolved from Macrotasking, and its
very low overhead synchronization allowed new levels of
parallelism to be profitably exploited. The design of
Microtasking will be covered in some detail, including o
discussion of why it works so well for both batch- and
dedicated-mode computing, and why it has gotten so
popular. The next step in the cvolution of paralicl pro-
cessing software (termed Autotasking) will then be de-
scribed again including a discussion of software design
issucs, considerations, tradeoffs, and decisions.

"The MMX Parailel Operating System and its
Processor”
Eran Gabber, Tel Aviv University, Isracl.

MMX (Multiprocessor Multitasking e Xccutive) is a
small yet powerful operating system for shared memory
multiprocessors. The MMX paralicl processor is a small
shared bus multiprocessor assembled from several Na-
tional Semiconductor processor boards. Together,
MMX and its parallel processor provide a flexible and
power(ul testbed for parallel software development.

This paper describes MMX structure, services and
performance. Parallel programing methods using MM X
are sketched along with timing and specdup measurce-
ments of several parallel programs. The paper concludes
with a bricf description of future research directions.

"The Arithmetic Mean Method for Solving Linear

Dissipative Systems on a Vector Computer"
Itio Galtigani and Valeria Ruggiero, Universitics of Bologna and Ier-
rara, laly.

This paper is concerncd with the implementation on
a parallel computer with a few vector processors of the
arithmetic mean method for solving dissipative system of
the form

du(t) + AV()=bt>0
dt

V() =g

17

where the matrix 4 +A47 is symmctric positive definite.
For example, such systems arise in solving the initial-
boundary value problem for the diffusion-convection
equation on a rectangular domain by the method of lines.

In this case, 4 is a large and sparse with a nonrandom
sparsity pattern. In this note we make the assumption that
the matrix 4 can be expressed as A = Ay +A42, where Ak
(or PAPT, with 2 a permutation matrix) is a matrix of
stmple structure (for example, triangular or tridiagonal).
Then, it is possible to solve the system with the arithmetic
mean method. The consistency and the stability of this
method have been analysed.

The method is well suitable for parallel implementa-
tion on a multiprocessor system that can cxecute concur-
rentl, different tasks on a few vector processors with
shared central memory, such as the CRAY X-MP/48. A
high-level paraliclism among independent tasks s offered
by the Cray multitasking. An implementation on CRAY
X-MP/48, using microtasking directives, of the method
has been developed when A is a block-tridiagonal matrix
and cach square block submatrix on the diagonal of A is
a tridiagonal matrix. A dctailed description of this im-
plementation is given and the results of some computa-
tional cxperiments carried out on test block-tridiagonal
matrices are reported.

"Parallelizing an Efficient Partial Pivoting Algorithm”
John R. Gilbert, Corneli University, New York.

A sparse matrix can be factored by Gaussian elimi-
nation with partial pivoting in time proportional to the
numbecr of nonzero arithmetic operations, using an algo-
rithm of Gilbert and Peierls. A sequential implementa-
tion of that algorithm is quite efficient in practice.

We obtain a shared-memory parallel version of the
algorithm by using two idcas: Elimination trees arc uscd
to identify parts of the factorization that can be per-
formed independently in parallel, and the graph-the-
oretic structure prediction step in the original algorithm
is modified to allow pipelining of consecutive columns.
We present results from an experimental implementation
on an Alliant FX/8 multiprocessor.

"Parallel Neural Network Simulation Using Sparse
Matrix Techniques"
Jeremy Cook et al., Chr. Michelsen Institute, Norway.

Neural computing is an emerging concept in artificial
intelligence. This new way of programing attempts to
simulate the way in which the brain processes informa-
tion. The massive parallelism of the brain makes human
perception much taster than pattern recognition algo-
rithms on conventional computers. Neural networks arc
a natural framework in which to implement applications
such as data bases, character rccognition, speech recog-
nition, and syntax checking.

Rcal neural computcers capable of significant compu-
tation do not exist yet, but today’s conventional parallel
comy ‘crs arc a good testbed on which to simulate ncu-

ral computers and experiment with neural algorithms.
This papcr reports on the usc of a message-passing multi-
processor to simulate a ncural computer.

Simulating a ncural network cfficiently on a multi-
processor is related to parallel sparse matrix computa-
tion. Onec basic itcration of the network is cssentially a
matrix-vector multiplication, with addition replaced by
cvaluation of a nonlincar threshold function that models
the response of a ncuron. The network is sparse; most
pairs of neurons arc not connected at any given time.
Communication and load-balancing issues are similar to
those in numerical sparse matrix computation. However.,
a learning network must also periodically modify its con-
nection weights (that is, the matrix values), vr even its con-
ncctivity (that is, the matrix structure).

We shall describe experiments with a neural network
simulation on the InteliPSC hypercube machine. Theim-
plementation is bascd on a combination of standard
sparsc matrix technology and dynamic restructuring of
the network during the course of the computation.

"Image Analysis Algorithms on Supercomputers”
Fred Godtlichsen et al., The Nomegian Instinate of Technology, Norvay

Iterated Conditional Modes and Simulated Annceal-
ing are two standard statistical techniques for image im-
provement in image analysis. They may, however, be very
time consuming.

The algorithms arc applicd in medical diagnosis.

This paper gives implementation and cxamples
tested on vector and parallel computers.

The algorithms are developed on a CRAY X-MP/28.
We also plan to run them on VAXE600, Apollo dn580 and
Alliant FX/6. Spcedup-factors and execution times are
given and discussed.

"Optimal Power Scheduling of a Large Electric Net-
work Via Nonlinear Programing on the CRAY X-
MP/48"

L.. Grandineewi and D. Conforti, Universita della Calabria, laly.

A problem of great practical interest, related to the
production, transmission and distribution of electric ¢n-
crgy in a network, is taken into consideration and the op-
timal management policy for the system is formulated as
a nonlinear mathematical program. This program is
characterized by large-scale dimension and highly nonli-
near constraints; the need for a "rcal-time” numerical sol-
ution is an additional distinctive aspect of it.

A number of mathematically sound nonlincar op-
timization algorithms, which usc gradient inforration of
the objective and constraint functions, is selected with o
special attention to those particularly suitable for a
proper matching to the resources offered by a vector
supcrcomputer.

Analysis of numcrica! results suggests that the com-
putation performed ona CRAY X-MP/48, provides a sat-
isfactorily ¢fficicnt solution of the proposed problem, in
spilc of its severc computational characteristics.

18

"An Extension of NAG/SERC Finite Element Library
for Message Passing Multi-Processor Systems"
C. Greenough and C.J. Hunt, Rutherford Appleton Laboratory, UK.

During a time when concurrent computing hardware
is developing quickly and software costs are escalating it
is important to develop programing methodologies that
usc a signilicant amount of existing serial softwarc on
these systems.

In this paper we present a number of extensions to
the serial version of the NAG/SERC Finite Elcment Li-
brary which will enable the users of the serial Library to
makc use of the many emerging message passing concur-
rent systems.

Under the basic requirement that the use of existing
scrial user programs should be maximized and that the
general philosophy of program should not change, a num-
ber of extension have been developed to aid users in ex-
ploiting multiprocessor systems.

The paper will address two areas: the programing
philosophy and the implementation of the finite clement
method. A discussion of the method used for domain de-
composition, clement and system matrix assembly and li-
ncar algebra in relation to processor usage will be given.

These extensions have been designed for a general
multi-processor system and have initially implemented on
a hypercube architecture and some results using the ex-
tended system will be given. Some indication of future
work will given particularly in the use of transputer sys-
tems.

"An Array Processor Architecture for Neural Net-
works Analysis”

Anne Guenn et al, Institute National Polytechinique de Grenoble,
france.

In the last few vears, neural networks analysis has de-
veloped astonishingly. According to this approach, the
study of cxisting functions in the nervous system demands
some powerful simulation tools. It is obvious that some
processes usually are computed with effectiveness (per-
ception for example) in the nervous system, the same are
controlled with difficulty by actual processors.

The nervous system organization is different, is to-
tally opposite the computer principles in von Neuman’s
classical processing architecture. At the very lirst level,
the nervous system is composed of highly interconnected
neural networks. So the two main characteristics are, on
onc hand, a great number of simple cells (neurons), on
the other hand, a great degree of interconnection be-
tween these cells. So this structure requires power more
for communication control than for computation in cach
cell. Taking inspiration from the ncrvous system organ-
ization, the so-called "ncuromimetic” architectures pro-
vide an optimal combination of power and spced. With
the improvement of VLSI technology, it is quite casy to
implement opcrative cells, but the challenge is to control
their full interconnection.

An alternative to these problems is to build a caleu-
lator according to the suitable architecture, which must
provide a good compromisce between a general-puiposce
and a dedicated computcer in the class of parallel proces-
sors. That is to say, our aim is not to implement in VLSI
a structure of neural networks dircctly, but it is to create
an cfficient arithmetic configuration for simufation of
“ncuromimetic” networks. We propose an array proces-
sor architecture with a very simplc interconncction net-
work between the processing slices (processing element
with associated memorics). In fact, this intcrconnection
nctwork must be clementary, because for neural network
analysis, both scalar and vector processing abilities are re-
quired together. These algorithms compute upon well-
structured data flows in relation with a big amount of data
memorized in all the processing slices.

Tobe efficient, both for scalar and vector processing,
the arithmetic structure must be reconfigurable. So we
chose the simplest arithmetic array: a one-way lincar
array which is efficient for matrix and vector multiphca-
tions (basic operations in neural networks). For vectar
processing, the arithmetic configuration is a pipeline
chain of processing slices. For scalar computations, we
only break the lincar array. So cach processing clement
in a parallel and autonomous way computes the complete
scalar cquations in relation with its memory.

Atlast, in this article, we describe a calculator named
"CRASY," which has reconfigurable architecture. The
processor CRASY, as a prototype, is composed of only
two slices, each is able to perform 20 Mflops. The per-
formance of the calculator is dircctly proportional with
the number of processing slices. This modular architee-
turc is very uscful for the extending the processor. s
casy to build a N-slice processor able to perform 20xN
Mflops. We plan to usc CRASY's computational power
in the simulation of learning neural networks models
which constitute a new and cfficient way of adaptive in-
formation processing.

"Parallel Multigrid Solver for 3-D Anisotropic
Elliptic Problems"”
Ut Gartel, Center for Comgpiter Scicnce, West Germany.

The efficicncy of multigrids in solving clliptic partial
differential equations depends essentially on the ability of
the "smoothing operator” to reduce high-frequency error
components. Whereas for isotropic 3-D problems, point-
wisc relaxation has reasonable smoothing propertics, for
anisotropic cascs linc or even plane relaxation has to be
used.

A parallcl (MIMD, local memory) multigrid pro-
gram for solving 3-D problems with arbitrary anisotropics
will be presented. Parallel line relaxation is based on
rcduction method, parallel plane relaxation is im-
plemented by using suitable 2-D multigrid methods. Nu-
mcrical results, especially concerning the performance
will be represented and discussed.

19

Highest possible portability was one major goalin the
program design. This is achieved by mcans of a general
and flexible library of "communication routines” which do
both the mapping and the communication. Machine-de-
pendent language constructs are completely hidden in-
side the library routines. This way, the program can be
used on different parallel and even sequential machines
by simply adapting the communication routines,

“The Use of Systolic Arrays for Finite Element
Calculations”
Dr. Linda J. Hayes, University of Texas at Austin.

Systolic arrays arc a network of very simple proces-
sors which operate in parallel and are usually designed to
be sp.ccial-purpose systems. One characterization of sys-
tolic arrays is their asynchronous operation. The results
are passed between processors as data tokens and cach
input travels through an array of cells before a final result
is returned to memory.

A systolic array design will be presented for doing fi-
nitc clement calculations. In this array each processor is
extremely simple and there is one processor allocated for
cach node in the finite grid. A single systolic array design
will be used not only to generate the finite element equa-
tions but to maintain them at either an clement or a glo-
bal Ievel and also to solve the resulting linear systems of
cquations. Each processor maintains one row of the cocf-
ficicnt matrix cither in elemeat or global form.

Connectivity and data flow between processors is
dictatcd by the connectivity of nodes in the finite element
grid. The Hypercube was used to simulate the systolic
array design, and results are presented for several test
cascs.

"Vectorization of Arnoldi-Tchebychev Method for
Nonsymmetric Matrices"
F. Chatelin ee al., 1IBM Scicnufic Center, France.

The vectorization of the Arnoldi-Tchebychev proce-
dure for solving nonsymmetric eigenvalue problems is
discussed. The procedure is based on the iterative Arnol-
di method in conjunction with the Tchebychev accelera-
tion technique. New criteria are established to identify
the optimal Tchebychev ellipse of the eigenspectrum,

A simple method has been developed to determine
the parameters of the optimal ellipse passing through two
eigenvalucs in a complex plane relative to a reference of
complcx cigenvalue. The algorithm is fast, reliable, and
docs not require a scarc for all possible cllipscs which
enclose the spectrum. The procedure is applicable to
nonsymmetric lincar systems as well.

"Applications ot Computational Fluid Dynamics tor
External Flows Relevant to Offshore Engineering
Employing Supercomputers"
M. Bercovier et al., The Hebrew University, Isracl.

The application of computational fluid dynamics has
been Mown to enhance the design process for offshore

_*

structures. Duc to the geometrical complexity of such
structures, the numerical models are frequently compre-
hensive three-dimensional models which entail the use of
supercomputer capacity in order to ensure solutions with-
in the tight project schedules required by the offshore in-
dustry.

The present paper deals with the numerical solutions
to the incompressible Navicr Stokes equations for exter-
nal, wind-induced flows. Thesc flows are of significance
in terms of environmental, safety, and loading aspects for
offshore structures.

The program used in this study solves the Navier
Stokes and continuity equations using the finite clement
method (FEM). The FEM has certain advantages in the
gencration of the mesh for the complex geometrics and
boundary conditions nccessary for the above applica-
tions.

The flow fields obtained using the methods are dis-
played together with a brief discussion on the relevant tur-
bulence models. The development time for obtaining the
results both in terms of manhours and computational ef-
fort is also discussed and compared with alternative ex-
perimental methods.

“Aspects of Sparse Matrix Technique on a Vector
Computer'
Niels Houbak, Lab. for Energitcknik, Denmark.

Sparse Matrix Technique is most profitable when
rows only contain few non-zeros (i.e., short vector length)
whereas the advantages of the vectorcomputers are most
evident for long vectors. This, as well as the normally not
vectorizeable overhead in the sparse codes, gives rise o
the impression that sparse codes vectorize poorly.

In many applications though —e¢.g., solving stiff sys-
tems of ODE’s — it is often the case that many (almost)
identical matrices have to be factorized in the same run.
Exploiting the fact that the structurc of the LU-factors
only need to be computed once (or only a few time) one
can dramatically reduce the overhead and increase the
vectorizeability of all the factorizations but the first. In-
creasing the storage requirements, one may even reduce
the overhead for the third and the following factoriza-
tions.

The various aspects hereof will be illustrated by runs
made on a CRAY-XMP and on an Amdahl/VP1100.

"A Dynamic Load Balancing Scheme to Utilize the
Parallelism in a 'FE’ Structural Analysis Program"
Anders Hvidsten, University of Bergen, Norway.

The structural analysis program SESAM supporting
a multilevel substructuring techniques is being paral-
lelized. The paraliei version of this program is designed
to run on different computer architectures, including
both a distributed net of computers and sharcd memory
multiprocessors.

The approach taken is to view all user-defined sub-
structurcs in a structural model as subtasks. The actual

20

subtasks to be performed are factorization and computa-
tion of Schur complements when traversing in the hicr-
archy towards the top, and back substitution when
traversing downward in the hicrarchy alter equation sol-
ving. Thesc subtasks arc organized in a shared pool of
work. Dynamic scheduling of subtasks in distributed and
nonuniform sets of computers is investigated, and differ-
ent objective functions are proposed for achieving good
load balancing.

The pool of work is implemented in terms of a shared
mailbox. This shared mailbox is the only way processes
arc allowed to communicate with cach other. Function-
ality and performance of various communication utility
packages used to implement interprocess mailboxes are
analyzed.

The analysis is supported with examples from two
parallel cnvironments: (1) a distributed net including
Sun3/’s and Alliant FX/8 connected via an Ethernct, and
(2) a Cray XMP with two processors.

“Improvements to the Black-Oil Simulator (Eclipse
100)"
Oddvar Gjerde, IBM Oslo, Norway.

Parallelization of a black oil simulator based on iso-
lated geologic structures in the lincar solver has been pro-
posed by Kaarstad et al.

Firstly, we have succeeded in making parallclized
scctions to take into account the possible number of
phases present in each reservoir. In the previous im-
plementation if one reservoir had three phases present,
then all reservoirs were treated as three-phase. In
the new implementation, we can utilize the fact that
if any rescrvoir has only two phases present, it will be
trcated as such. This will reduce the number of equations
to be solved for the two-phase case by factor of four-
ninths.

The latest implementation has taken the abovc
mentioned proposals a step further. In order to sim-
plify this by the need to add minimum code, we have
renumbered not only the cells in each reservoir, as
was the case in the above mentioned report, but also
the planes so that cach reservoir has its own plane
count, similar to the pointers for the cells. This
means that by pointing to the first and last plancs in
each reservoir, much of the code remains as before ex-
cept for the length of the vectors. Thus it is not necessary
1o change existing pointers from vectors to two-dimen-
sional arrays.

Furthcrmore, we have extended this method to the
routincs which construct the lincar cquations using the
samc approach.

Lastly, we are also adding new parameters to define
reservoir boundaries in a more gencral way, so that they
do not nced to consist of a single box delineated by verti-
cal and horizontal plancs.

“Paraliel implementation Techniques for Prolog on
the DAP"
P. Kacsuk, Computcr Research and Innovation Center, Hungary.

The main results of a rescarch on the parallel im-
plementation of Prolog on the distributed array proces-
sor (DAP)is described. Though many projects arc under
way to implement Prolong on MIMD computers, there
have so far been no proposals for implementing Prolong
on SIMD machincs.

The underlying project proved four different ap-
proaches to be viable for implementing Prolog on the
DAP.

1. Basically scquential implementation mode where
only certain parts of the Prolog interpreter work in par-
allel. Anexample for the parallel subactivities is the undo
mechanism during backtracking.

2. Applying a sct-oricnted interpretation mechan-
ism, wherc a mixed depth-first/breath-first scarch strate-
gy is adopted. In this strategy the multiple-fact branches
of a conventional Prolog scarch-tree are considered as
generating binding scts rather than search non-determin-
ism.

3. SIMD machincs such as the DAP arc cfficient at
data-parallel rather than task-parallel problems, cnab-
ling them to work efficiently with large, homogencous
data structures. Arrays are the most obvious seftware
rcalization of the SIMD aggregate of processing cle-
ments. Extending Prolong with arrays enables Prolog to
be used efficiently in applications with a large number
part.

4. A ccllular-dataflow model for exceuting logic pro-
grams was success{ully implemented on the DAP. The
close rclationship between celiular automatas and DAP
made it possible to implement the model in a straightfor-
ward and elegant way.

The implementation of a Prolog variantfor the DAP,
called DAP Prolog, is based on the above techniques.
DAP Prolog is an extension of ordinary Prolog with ho-
mogeneous data structurcs.

DAP Prolog = Prolog + Scts + Arrays

The papcr summarizes the main fcatures of DAP
Prolog and gives a detailed description of the parallel im-
plementation techniques mentioned above.

“Debugging Support for Parallel Programs”
David W. Krumme et al, Tufts Universiry, Medford, Massachusetis.
The first question in debugging is "What is my pro-
gram doing?" Allthat is neceded {or a large portion of the
dcbugging process is to answer basic questions regarding,
the flow of cxceution and the values ol variables. On a
multiprocessor with hundreds or thousands of computa-
tionaal nodes, cxtracting and utilizing this information
poscs special problems. Indecd, the difficuitics of de-
bugging programs on large mutiprocessors arc a major
impediment to the cxploitation of the computational
power that these machines offcr.

21

This paper describes some specific debugging sup-
port tools for application programs developed as a part
of a general research effort in parallel program environ-
ments of Tufts University. These tools are implemented
on a 64-processor NCUBE hypercube.

In contrast to interactive debuggers which allow the
programer to probe for specific state information, we arc
concerned here with tools that provide a general overall
picture of an execution, without relying on the programer
to determine what to probe for. We perceive a gap be-
tween the basic initial condition of total ignorance on the
part of the programer and the situation when the pro-
gramer knows enough about what is happening in an ex-
ecution to probe intelligently for particular values. We
see reat utility in tools that allow a rapid progression
from the former condition to the latier,

There arc three problems to solve in developing a de-
bugging tool of this sort: deciding what basic facts should
be conveyed to the programer; providing instrumentation
to collect the relevant data; and creating a user interface
to present it efficiently. Our instrumentation is em-
bedded in a custom operating system called SIMPLEX
that we have designed and implemented on our machinc:
it is capable of measuring any quantity of interest, and in
response to polling from a host monitor process it sends
out requested data. The user interface, called SEE-
CUBE, solves the problem of presenting large quantitics
of information to the user through carcfully designed
color graphics displays.

We distinguish between execution data that can be
extracted automatically for an arbitrary program and that
which depends on advance planning by the programer.
Expcricnce has confirmed our belief that a tool that docs
not require special action by the programer has import-
ant advantages over one that does. For example, in onc
casc a programer noticed in a general display involving a
supposedly fully debugged program that a troublesome
interaction between nodes was occurring that was never
suspected of being possible, and hence that would never
have been probed for. When coordination among pro-
cessors is organized around message transmissions or
other coarse-grained events with operating system invol-
vement, these events provide the basis for such automati-
cally selected execution data.

Message transmissions are easily measured and they
are significant to the programer since the program has
been necessarily organized around them.

Our general status lisplay uscs the following auto-
matically collected items:

e The computational state of each processor which is
color coded to represent one of: computing, waiting
to rcad a message, waiting to write a message, inactive,
and stopped due to fault

@ The number of available input messages at each pro-
cessor, represented as a single color-coded spot on the
disnlay

—>

@ The number of messages queued in the operating sys-
tem for output to a neighboring node, represented as
a color-coded spot

o The traffic (number of messages transmitted between
pollings) over cach communication channcel, coded
into the colour of the line segment used to represent
the chanacl.

This information produces a dense, continuously va-
rying display on a 13-inch monitor that we have found
gives both an casily comprehended overall status display
and enough dectail to isolate interesting events. For
example, the overall amount and balance of communica-
tion activity is perceived through the apparent "hotness’
of the communication links, communications bottle-
necks show up as noticeable color spots representing
backed-up input or output messages, and overall load bal-
ancing is apparent from the colors that show whether
nodes arc computing or waiting,.

Our first cflorts with programer-planned data have
been as follows. The program may contain statements of
the form "state(x)" tc set a processor’s state variable Lo x
which is simply an integral value between 0 an 255, with
the purpose of declaring dynamically that the program is
cntering condition or state x. Although the programer is
frec to invent arbitrary mcanings for thesc values, we
gencerally expect them to encode the phases or steps of al-
gorithms,

The operating systcm and the monitor process col-
lect these values along with the other data, and the dis-
play presents them along with all the other information
described above. (The programer may define encodings
and color schemes to be used in displaying these values.)
For example, conjugate gradient algorithms consist of
iterations of three basic routines: matrix vector multi-
plies, inner products, and convergence checking (which
may be done frequently).

State variables could be used to let the programer
know which routine is being cxecuted in each processor,
and to show the gencral timing relationship among the
routines.

A further use of state variables would be this: Allow
the programer to define, at exccution-time, a target value
for the state variables, where execution on each node is
stopped when the node sets its state variable to the target
value. Or the programer might specify that execution on
all nodes is to be stopped when any one of some chosen
set of nodes reaches the target value.

By applying a debugger 1o the stopped program, the
programer might interrogate closely for particular values,
and then continue execution, perhaps with diffcrent tar-
gets. This rescmbles the use of breakpoints in a sequen-
tial program, except that it does not rely on the explicit
selection of locations in the programs which may vary duc
to the execution of different blocks of code on different
Processors.

22

In the above example, exceution could be halted on
cach processor after the matrix vector multiply was com-
plcted so that the programer could check the results by
probing with a debugger, or execution could be halted the
first time any node reached the convergence checking to
sce how far along the other nodes were.

These debugging tools, except for the target value
idea, have been implemented on our hypercube muitipro-
cessor and we are currently experimenting with them.
The software, including supporting software, should be
ready for distribution to other sites in carly 1988. We
would like to obtain feedback from applications progra-
mers so that we might cvaluate and refine the tools.

"Parallel Algorithms for Solving the Triangular
Syivester Equation on a Hypercube Multiprocessor"
Bo Kagstrom et al., Institute of Information Processing, Sweden.

There are several problems one has to attack when
designing algorithms for a multiprocessor architecture.
Among these are the choice of granularity of parallelism
and the scheduling method of computations. That is, onc
has to decide the grain-size of the computation to be car-
ried out on each processor and their data-dependencies,
how these grains of computation (processes) arc to be
identified, and how the processes are to be scheduled
among the processors. In this talk we consider hypercube
architectures with a host, local memory, and message pas-
sing, and no shared memory.

Message-passing parallel algorithms are develop-
ed for solving the triangular Sylvester equation
AX + XB = C, where the unknown X 1s m x n and A4, B,
C are given m x m, n x n, and /m x n matrices, respective-
ly, with real entries and 4, B are upper triangular. The
problem of transforming A and B to upper trianglar form
will not be emphasized in this talk.

We discuss the inherent parallelism of the triangular
Sylvester equation and introduce the concept of data de-
pendency. In a "coarse grained" view the computation of
X canbe done in threc different ways: X can be computed
column-wise, row-wise, or block-wise, leading to three
different algorithms.

The scquential algorithms are used in some modified
forms to build parallel algorithms. In order to make the
algorithms as efficient as possible for differcnt values of
m and n and the number of processors, p, we study differ-
ent partionings and mappings. The matrices A, B and C
are partioned by columns, rows, and blocks. The map-
ping methods used are block and wrap. A thcoretical
analysis of the parallel algorithms in terms of arithmetic
and communication costs is presented.

We provide details in C programs that implement the
algorithms on a hypercube simulator and which should
run with little modification on real hypercube architec-
tures (e.g., the Intel iPSC). The performance of the vari-
ous algorithms for different values of m, n and the number
of processors p is demonstrated in terms of parallel spee-
dup and efficiency, processor utilization, and communi-

cations costs. Results from real hypercube implementa-
tions will also be reported (ongoing work).

"Parallel Transonic Flow Calculations”
Choi-Hong Lai, Queen Mary College, UK.

Transonic flow calculations using a domain decom-
position technique are discussed and their performance
on an array processor is investigatcd. The emphasis of
this paper is on the mapping strategy, namely “sliccd map-
ping,” for transonic flow calculations. Advantages of
using the sliced mapping for this application are dis-
cussed as compared with crinkled mapping.

First, the transonic small perturbation cquation is in-
vestigated. Particular attention is paid to the various iter-
ation methods within the mixed subsonic and supersonic
region. A modified Gauss-Scidel iteration is applied to
the above region which shows a good improvement over
a parallel AF2 technique. Another technique that has
been used is (o use a linearised discrete operator of the
TSP equation which shows its advantages as comparced
with the use of the nonlincar discrete operator for low
mach number such as0.7. Sccond, the technigue isgener-
alized to transonic Eulcr cquations.

"A Reconfigurable Multitransputer Network as a
Tool for the Experimentation of Parallefism in Scien-
tific Computing”

Picrre Leca and Alain Cosnuau, ONERA, France.

This paper preseats the studies done at ONERA
using the transputer as a building block for experimenta-
tions in the field of scientific multiprocessing.

The architecture of a reconfigurable multiTrans-
puter network, built with standard INMOS modules, is
first described and the main hardware features of the
building blocks (T800, C004) are given:

Sixteen T800 Transputers, accessing 32 KB of local
memory, are connected together in a double ring configu-
ration using two hardware bidircctional links per trans-
putcr. The two other bidircctional links are connected to
the IMS C004 32-way crossbar switch. The control of this
switch is programed via a hardware link of a dedicated
T212 Transputer, in such a way that the topology of the
16-transputer network is dynamically reconligurable by
software. '

Duc to the C004 switch, this system may be, for in-
stance, configured as a linear array, a double ring, a two-
dimensional torus, or as more complex nctworks if cach
bidircectional link is split into two one-directional links,
and may be programed horizontally or vertically using the
OCCAM language, whose characteristics arc bricfly de-
scribed.

The description of different types of algorithms, with
the OCCAM translation and their rclative performances,
that have been implemented on this multiprocessor is
given. It concerns:

(1) Systolic algorithms, 1-D or 2-D systolic algo-
rithms, such as convolution, matrix by vector, or matrix by

23

matrix products. Moreover, the dynamic switch allows
the chaining of two distinct systolic algorithms.

(i1) Coordinating computations, this system may be
seen as a set of processors that coordinate their activitics
by exchanging data via the hardwarc links. Linear recur-
rences that appear in "Gauss-Seidel™-like algorithms
match perfectly with this architecture.

In the [uture this multitransputer architecture will
be seen as o target of a software tool that automati-
cally detects a potential parallelism between FOR-
TRAN instructions at loops level. We will give some
indications about the possibility to automatically gener-
ate a parallel code and a network configuration for this
architecture.

"Nested Dissection Orderings for Parallel Sparse
Cholesky Factorization"
John Lewis, Boeing Computer Services Co., US.

The time required to factor a sparse symmetric ma-
trix on a parallel computer is strongly affected by
symmetric rcorderings of the matrix. The data depend-
encies that restrict parallelism in the factorization are
given by the elimination tree induced by the order-
ing. Thus, ong standard measure of (and a lower bound
on) parallel completion time is the depth of the elimina-
tion tree. In previous work — UL ~— we have found nested
dissection orderings for general sparse matrices that ap-
pear to be better orderings for parallel factorization than
the best parallel versions of the best standard sequential
orderings. The nested dissection orderings, have less
decep climination trees than the parallelized scquential
order-ings, and their sequential measures of complexity
arc essentially equivalent to those of the sequential order-
ings.

The orderings in U1 are based on the Fiduccia-Mat-
theyses graph partioning heuristic. We have observed
that this heuristic is quite sensitive to a number of im-
plementation parameters, making it difficult to create a
generally effective ordering algorithm. In addition the
graph partitioning heuristic is sequential and is quite ex-
pensive. In this work we explore severa! alternative ap-
proaches to finding nested disscction orderings of similar
quality. Our goal is a cheaper and morc robust ordering
method.

Our approaches include:

o Parallcl implementation of variants of the Kernighan-
Lin and Fiduccia-Mattheyses graph partioning aigo-
rithms

¢ Graph partioning by simulated anncaling

o Variants of the George & Liu automatic nested dissec-
tion procedure.

The performance of these ordering heuristics is com-
parcd on a sct of sparse matrices obtained from actual ap-
plications.

“

"Applying a Sequence of Plane Rotations on a Vec-
tor-processing Machine”
Jeremy Du Croz et al, Numerical Algorihms Group Lid., UK.

When cigenvalues and cigenvectors, or singular
values and singular vectors, are computed by means of the
QR algorithm, a substantial amount of time is spent in ap-
plying sequences on plane rotations 1o the rows or col-
umns of 4 matrix. Indeed, if we consider just the last step
in computing the singular value decompaosition, namely
computing the singular values and vectors of a bidiagonal
matrix, the computing time is dominated by the time spent
in applying plane rotations to update the matrices of left
and right singular, it is therefore desirable to perform the
planc rotations as efficiently as possible.

The Level 1 BLAS routine, SROT, can be faster than
in-linc FORTRAN code, bul, cspecially on a machine
with vector-registers, it gives only a limited speedup be-
cause it takes no advantage of the chaining between suc-
cessive rotations. Much better performance can in
principle be obtained by a routine of larger granularity
(similar to that of the Level 2 BLAS) which applies se-
quences of plane rotations. Such a routine has been in-
cluded in Mark 13 of the NAG Library. It can apply
sequences of plane rotations to cither the rows or col-
umns of a rectangular matrix in any of the orders

(1,2),(1,3),(1,4),...,(1,n)

(1,n),(2,n),(3,n),...,(n-1,n)

(1,2),(2,3),(3,4),...,(n-1,n)

(n-1,n),...,(3,4),(2,3),(1,2)

In order to achieve optimal use of vector-registers, it
is necessary to code the routine in assembly language. We
shall demonstrate the speed obtainable with such an as-
sembly language version, and the speedup which it con-
fers on NAG Library routines for computing eigenvectors
and singular vectors.

We shall propose a specification for the routine, and
recommend that efficient implementations be provided
by manufactures in the same spirit as for the BLAS.

"Nonlinear Transport Calculations in 1-D MOSFETs
Using a CRAY X-MP/48 and a Sequent Balance
Multiprocessor”

JA. Mcinnes and S.A. Mogstad, University of Strathclyde, UK.

The electrical conductance in a disordered system
may be stated in terms of a sct of nonlincar equa-
tions. In macroscopic systems the nonlinear effects are
often negligible or sclf-averaging and the appropriate
cquations lincariscd. Inthe case of submicron 1-D MOS-
FET’s nonlinear effects must be retained in the formal-
ism.

Algorithms for solving the correspondence nonlingar
equations arc devceloped on both a CRAY X-MP/48 and
a Scquent Balance muitiprocessor. The computed mag-
netic ficld dependence of clectron transport in submicron
MOSFET’s for varying applied gate voltage is comparcd
with experimental obscrvations.

24

"Supercomputing in Denmark”
Bjarne Stig Anderson et al., The Supercomputer Group, The Danish
Compuring Centre for Research and F.ducation, Denmark.

Three major university computing centres, RECKU
{Copenhagen), RECAU (Aarhus), and NEUCC (Lyng-
by) have united to form one supercomputer centre for
Denmark, called in English the Danish Computing
Centre for Research and Education, abbreviated to
UNI*C.

A major event for thc Danish scientific com-
munity was the recent installation of the Amdahl VP
1100 at UNI*C. This supercomputer is intended for
joint technological research carried out by the Dan-
ish universitics, research institutes, and industrial
companics. Besides the Amdahl VP UNI*C has IBM
3081, Sperry 1100/92, CDC Cyber, Alliant, and several
Ve Ses.

The Amdahl VP 1100 has one CPU with a peak per-
formancc of 286 Mflop/s. The vector and scalar instruc-
tions can run simultancously. The 30 Gbyte disk storage
is supplemented with IBM 3420 tape drives. Thisis in ad-
dition to the Jarge core of 128 Mbytes. The lessons of the
first vear will be described, including experience with the
national network being established to conncect all univer-
sity uscrs in Denmark to the computer. The network uses
a 2-Mbit/s trunk.

The NAG library has been implemented and spe-
cialized, and the basic sub-routines (BLLAS) have been
adapted for the Amdah]l VP. Many uscr programs have
heen converted, and these have demonstrated the excel-
lent performance of the vectorizing FORTRAN com-
piler. Also, the very large memory, 128 Mbytes,
contributes to much shorter program elapsc times, ¢.g.,
by moving temporary data sets into main memory. Exam-
ples will be given and explained.

"Cycle Reduction and Matrices with a Group

Structure”
tans Munthe-Kaas, Norwegian Instinute of Technology Section for Nu-
merical Mathematics.

Cyclic reduction is a variant of Gaussian climina-
tion for solving special systems of linear equations, It
has been successfully applied in fast Poison solvers,
in dircct paraliel methods for solving tridiagonal equa-
tions and as a parallel preconditioner for iterative meth-
ods.

In the talk we will show that cyclic reduction may be
described in the language of group connected with the
matrix graph. This may be done in many different ways,
giving risc to different algorithms. We investigate gencr-
alizations of the standard algorithms and show that the
generalized algorithms perform better than the standard
oncs in solving simplc tridiagonal systems on Cray X-MP.
Furthermore we will implement and compare different
parallel preconditioners for iterative methods, based on
cyclic reduction-like schemes.

“Evolution Algorithms in Combinatorial Optimiza-
tion”

1. Muhlenbein ct al., Gesellschaft fiir Mathematk und Oatenverarher.
wing mbll, West Germany.

Evolution algorithms for combinatorial optimization
were proposed in the 1970°s. They did not have a major
influence. With the availability of parallc! computers,
these algorithms will become more important.

In this paper we discuss the dynamics of three differ-
et classes of evolution algorithms: network algorithms
derived from the replicator cquation, Darwinian algo-
rithms, and genetic algorithms inheriting genctic infor-
mation.

We present a new genetic algorithm which relics on
intelligent evolution of individuals, With this algorithm,
we have computed the best solution of the famous travel-
ing salcsman problem. The algorithm is inherenty par-
allel and shows a superlinear speedup in multiprocessor
systems.

‘Data Distribution and Communication for Parallel
Analysis of 3-D Body-Scan Data"
M.G. Norman et al., University of Edinburgh, UK.

It is widely anticipated that the flexibility of MINMD
architectures will allow efficient paralicl implementation
of middle- and high-level vision applications. Intruth. the
problems of achieving high levels of processor utilization
while keeping communications overheads low, mean that
middle- and high-level vision applications can only be im-
plemented efficiently on MIMD parallel architectures
with great difficulty.

This paper describes an attempt to implement low-
and middle-level vision algorithms on the MIMD archi-
tecture of the Meiko Computing Surface. The image
being processed was the three-dimensional data pro-
duced by medical magne