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INTRODUCTION

The standoff ranges at which an adversary can detect and/or track a surface
ship using infrared sensors are of primary importance for a ship commander to
estimate the time allowable for evasive actions against guided weaponry launched at
the ship or for the deployment of countermeasures. Algorithms presently operational
in the U. S. Navy (CSC, 1986, and STX Corp., 1988) for predicting the performance of
an airborne Forward Looking Infrared (FLIR) system operating against a surface
target require as an input the radiometric temperature difference between the target
and its natural background. The algorithms determine the range at which the
temperature difference is degraded by the atmospheric infrared transmittance to the
minimum detectable temperature difference of the sensor system. The effective
blackbody temperature of the sea background can be determined using the atmos-
pheric transmittance and radiance computer code LOWTRAN 6 (Kneizys et al., 1983)
which has been modified by Wollenweber (1988) to account for the contributions to
the background by sky reflections and emissions from a wind-ruffled sea surface.
Computer codes are presently available such as SIREOS (Burns, et al., 1980) (three-
dimensional) and SIRS (Batley, 1978) (two-dimensional), which are capable of using
several hundred individual structural elements of a ship to model its composite
infrared signature. However, these codes are quite complex and require extensive
running times, making them impractical for shipboard use in a real-time prediction
system.

A modification to the SIRS computer code has recently been developed at the
Naval Surface Weapons Center. This modification, SHIPSIG (Ostrowski and Wilson,
1985), approximates the complex structure of a ship with plane elements which
represent the ship's temperature at zero range on an average basis. For a given
viewing direction, the simplest representation of a ship consists of a single vertical
and horizontal element with the observer's orientation accounted for by appropriate
area components. The infrared signature calculations are then based on a
thermodynamic analysis of both elements individually. They are combined by scaling
the element radiance in proportion to the ship area each represents. In the present
model, the horizontal and vertical elements and ship stack correction factors applied
to the vertical element are for a guided missile, frigate-class ship. The original BASIC
version of the code has been rewritten in FORTRAN language for the HP-9020
computer. The model requires as inputs the ship's course and speed as a function of
time from a starting geographic latitude, the surface wind speed and direction,
visibility, relative humidity, air temperature, the ship's initial temperature, and the
viewing angle. Comparisons (Ostrowski and Wilson, 1985) of the SHIPSIG
calculations with the more detailed SIRS code have shown good agreement in average
ship temperatures for modeled ship courses and weather conditions. However, the
single-element model has not yet been validated using an actual target, nor has the
sensitivity of the ship temperature predictions to the meteorological input parameters
been addressed.

In this report, a case study is presented to test the model's ability to predict
the average temperature of a guided missile frigate after a 5-hour cruise at sea during
which course changes allowed solar heating of different sides of the ship. For these
measurements, a calibrated thermal imaging system (AGA Model 780 THERMN1O
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VISION) was used to make closeup measurements of the ship as it passed near the
sensor when the ship returned to harbor. In the following sections, the measurement
of the average ship temperature is discussed and compared with the model
predictions. A sensitivity analysis is also presented of the calculated average ship
temperature as a function of time to the meteorological input parameters. The
method by which the atmospheric effects are removed from the AGA measurements is
discussed in the appendix.

Aceesslor For

A-1
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MEASUREMENTS AND CALCUIATIONS OF AVERAGE
SHIP TEMPERATURE

Figure 1 shows the course of a guided missile frigate, the USS Brooke (FFG
1), cbosen to demonstrate the model, off the coast of San Diego, California, on 9 June
1988. During the 5-hour period, changes in the ship's heading allowed solar heating
of different sides of the ship. As the ship completed the course and returned to
harbor, it passed close to the AGA thermal imaging system located at an altitude of
30 m on shore about 2 km from channel buoy #6 near the entrance to the harbor. The
AGA measurements (8 to 12 gm) were made using a 2.950 field-of-view lens with an
instantaneous field of view of 0.87 mr. The response of the system was determined by
placing a blackbody of known temperature (t 0.10C for temperatures < 500 C) in front
of the lens aperture. The digitized video signal transfer function of the system then
allowed the blackbody temperature to be reproduced to within t 0.2 0C. Figure 2 is
the thermogram taken with the AGA system as the ship entered the harbor. The AGA
system's data processing software allows subtraction of the sea background radiance
surrounding the ships and provides a histogram of the temperature distribution of
the ship pixels within the chosen rectangular areas, as shown in the inset to the right
of each ship. Temperatures on the histogram (percentage of total number of pixels in
a temperature band) are shown in the color corresponding to the bar on the tem-
perature scale to the left. The mean temperature (uncorrected for atmospheric effects)
was 19.70C. Superimposed on the histogram is a Gaussian curve (represented by dots)
which best fits the temperature points. The temperature distribution approximates
the Gaussian points remarkably well.

The measured radiance, N(meas), of the ship at a range R is related to its
actual effective blackbody radiance, N(ship), and the atmospheric emission, N(path),
along the path by

N(meas) = N(ship)T(R) + N(path) (1)

where T(R) is the atmospheric transmittance at a range R. The range to the ship was
determined to be approximately 1.7 km using the known vertical dimensions of the
ship and their angular subtense within the field of view of the AGA. LOWTRAN 6
calculations of transmittance and path emission were made to determine the tem-
perature equivalent to N(ship). In the calculations, the Navy Maritime Aerosol Model
was chosen to include the effects of aerosols. This model requires the inputs of
surface wind speeds (current and 24-h averaged), relative humidity, surface visibility,
and an air mass factor which identifies the origin of the aerosols as either marine or
continental and is allowed to range between integer values of 1 for open ocean to 10
for coastal regions. The method by which the representative aerosol parameters for
this data set were chosen is discussed in appendix A. Basically, the measured surface
wind speeds and airborne measurements of temperature, pressure, and relative
humidity are used in LOWTRAN calculations to determine the appropriate
combinations of visibility and air mass factors which allow agreement with the
horizon pixel radiance as measured by the AGA system. In the LOWTRAN

3
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Figure 1. Course of the USS Brooke (FFG 1) on 9 June 1988.

calculations, the relative humidity (72 percent), air temperature (200C), pressure
(1012.4 mb), current wind speed (2.9 m/s), 24-h averaged wind speed (2.8 m/s)
measured on the Point Loma Peninsula were used with the air mass factor (integer
value of 3) and visibility (37 kin) as selected from the horizon comparisons. These
calculations resulted in an adjusted AGA average temperature measurement of
20.50C, assuming the surface emissivity (E) of the ship was unity.

For the model calculations, the initial position of the ship was taken to be
near the entrance to San Diego harbor. The initial ship temperature, its ambient
temperature, and relative humidity throughout the course were not recorded by the
ship. These values were taken to be constants as measured at the AGA site. The
surface wind was southwesterly (252 0True), and the depression angle of viewing was
essentially broadside at 0.60. The average ship temperatures calculated for the port
and starboard sides of the ship as a function of time are shown in figure 3. The most
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USS BROOKE (FFG 1) 9 JUNE 1988
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Figure 3. Comparison of the average temperature of the port side of the USS Brooke (FFG 1)
with the adjusted AGA measurements as the ship entered San Diego harbor.

apparent features in the temperature responses are the gradual heating of the port
side and cooling of the starboard side as the ship steamed westward in the early
morning, and their abrupt cooling and heating after 1000 hours following the
southeasterly course change at 0952 hours. The magnitude of the port side average
temperature is approximately 20C greater (for an emissivity of unity) than that
measured by the AGA system as it returned to harbor near 1345 hours. If indeed the
emissivity of the ship was 0.9, as is assumed in the model, the measured average
temperature would be in better agreement (22.70C).
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SENSITIVITY TO METEOROLOGICAL PARAMETERS

The solar heating of each element is calculated according to its orientation
and time of day. The atmospheric transmission of solar energy is governed by the
humidity and visibility input parameters. Convective cooling coefficients resulting
from the prescribed motion of the ship are also calculated on the basis of empirical
relationships between the ship and wind velocities and the ambient air temperature.
While conductive cooling/heating by the seawater most certainly would affect the
ship's temperature, it is not included in the calculations. It is not possible here to
determine the myriad of combinations of the input parameters' uncertainties which
will affect the calculated ship temperature. In this section, we will examine the
response of the model (port side temperatures) to uncertainties in a single meteoro-
logical parameter under cloud free skies during daytime, while the remaining
parameters are held constant at the values used in the calculations of figure 3.

Figure 4 shows the response of the ca!culated ship temperature's diffcring
ambient air temperatures of 180C, 19°C, and 20 0 C. While the shapes of the response
curves do not appear to be sensitive, their magnitudes differ by amounts equivalent
to the uncertainties.

Figure 5 shows the sensitivity to the visibility input. The temperature
response of the ship before 1100 hours is quite different for a 5-km visibility as
compared to 25 and 40 kin, and the magnitude of the response at the time of the first
course change is approximately 40C less. The reason for the slightly higher tem-
perature at 25 km visibility over that at 40 km is not understood.
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Figure 4. Calculated ship's temperature versus local time for different ambient air temperatures.
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Figure 5. Calculated ship's temperature versus local time for different surface visibilities.

The insensitivity of the response to differing values of relative humidity (50,
70, and 90 percent), shown in figure 6, is related to the solar insolation properties of
the atmosphere, which are primarily determined by the absorption and scattering
properties of aerosols rather than water vapor absorptions at the shorter
wavelengths.

Figures 7 and 8 show the responses to surface winds of 2, 7, and 14 m/s for
directions differing by 900 (2. 2°T as measured on shore and 342°0T). While variation
in wind speeds result in 1°C to 2°C differences in temperature, there is little dif-
ference between the responses for the two directions.

The look angle (depression below horizontal) is apt to be the most accurately
defined input parameter. However, the temperature response is quite sensitive to
changes in this parameter. The responses to look angles of 0°, 20, and 5° are shown
in figure 9. In this example, the increase in ship's temperature after 1000 hours with
increasing look angle is a result of the increased aspect area contributed by the
horizontal element, which was more exposed to the sun than the vertical element.
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Figure 6. Calculated ship's temperature versus local time for different
relative humidities.
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Figure 7. Calculated ship's temperature versus local time for different surface
wind speed and wind direction of 2520T.
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Figure S. Calculated ship's temperature versus local time for different surface wind
speeds and wind direction of 3420T.
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Figure 9. Calculated ship's temperature versus local time for different look angles.
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DISCUSSION AND RECOMMENDATIONS

This preliminary evaluation of the ship temperature model shows promise that
it responds well to the differing solar heating conditions. Allowing for the uncertain-
tie- in the meteorological parameters surrounding the ship throughout its course and
the approximations inherent in the model itself, the relatively small difference be-
tween the modeled and measured average temperatures of the ship as it entered
harbor is gratifying.

The most critical input parameters to the model have been shown to be the
ambient (as well as the initial) air temperature of the ship and surface visibility.
The ship's course and speed and the wind are also critical factors and need to be ac-
curately accounted for on board the ship. Further measurements need to be per-
formed with "ground-truth" measurements of the radiometric temperature of selected
portions of the ship to test the accuracy by which the AGA measurements can be
adjusted to retrieve the actual ship's temperature. A further test of the model should
include operational FLIR systems to test its use in performance prediction codes.
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APPENDIX A
SELECTION OF ATMOSPHERIC AEROSOL MODEL FOR AGA

TEMPERATURE ADJUSTMENTS

For this study, a Piper Navajo aircraft, equipped with Rosemount temperature and
pressure probes and an EG&G dewpoint sensor, made a vertical spiral over the ocean to
obtain the profile of temperature, relative humidity, and pressure which are required inputs
to the LOWTRAN 6 computer code. The vertical profiles of temperature and relative
humidity, which were measured at 1330 PST on 9 June 1988, approximately 9 km off the
coast of San Diego, California, are shown in figure A-1. The profiles extending up to an
altitude of 2700 m were divided into 33 layers as allowed by LOWTRAN 6. The lower layers
of the profiles are also divided into sublayers containing the same amount of absorbing and
scattering material and the temperature as the original layer. This artificial layering has
been found necessary to remove the anomalous dip which occurs when aerosols are included
in the LOWTRAN 6 radiance calculations for zenith angles close to 900.

RELATIVE HUMIDITY (/)

0 10 20 30 40 50 60 70 80 90 100

3000

2400

W 1800 -

< 600. . .. . REL HUM

12 0 0  

>

0 I I

10 15 20 25 30
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Figure A-1. Profiles of air temperature and relative humidity measured with altitude on 9 June 1988 off the
coast of San Diego.

A-1



The LOWTRAN 6 aerosol model chosen for the calculations is the Navy Maritime
Aerosol Model. This model is the sum of three lognormal size distributions and, in addition
to the surface wind speeds (current and 24-h averaged) and relative humidity, requires the
input of an air mass factor which identifies the origin of the aerosols as either marine or
continental and is allowed to range between integer values of I for open ocean to 10 for
coastal regions. Also, when an observed surface visibility is available as an input, the model
is adjusted so that the calculated visibility at a wavelength of 0.55 Am is the same as the
observed value. The air mass factor is defined in terms of atmospheric radon content or an
air mass trajectory analysis to determine the time the air mass has been over land. As
neither of these techniques was available, an alternate method was used to select an ap-
propriate air mass factor. Near the time the meteorological parameters were obtained,
measurements of IR (8 to 12 jAm) horizon radiances were made with the calibrated AGA
thermal imaging system. For these measurements, the scanner was located at an elevation of
30 m on the Point Loma peninsula and was directed in a southerly direction over the ocean
such that approximately half of the field of view was above and half below the horizon. The
measured radiance scene is shown in figure A-2. The data processing software of the AGA
system allows the effective blackbody temperature of each pixel in the scene to be displayed
on the computer terminal screen, and, in this case, the horizontal cursor is situated on the
pixel corresponding to the maximum temperature (16.50C or 3.23 mW/cm2 sr) in the scene
which is taken to coincide with the infrared horizon. The temperatures of the different
colors in the scene are also identified by the color bars displayed on the left which cor-
respond to the midpoints of the temperatures printed above and below each bar. Using the
current and 24-h averaged wind speeds (Vc = 2.9 m/s and V= 2.8 m/s) measured on shore
and the vertical profiles of meteorological parameters measured by the aircraft, LOWTRAN
6 calculations were made to agree with the maximum pixel radiance in the scene using
nonunique combinations of air mass factors and visibilities. (Note that these calculations
were made using a modified current wind speed component, A3 = 1 0 (0.06V, -2.8), which is
different from the value published in LOWTRAN 6. This modification was found to be
necessary to match previously published measurements of IR sky radiances and near-surface
aerosol size distributions (Hughes, 1987) using the model). As the AGA scanner could not be
accurately plumbed, the zenith angle of the infrared horizon was taken be 0.0 10 less than the
angle for which the LOWTRAN calculations indicated the refracted ray path first hit the
earth. In this case, the zenith angle corresponding to maximum radiance is 90.170.

In figure A-3, the solid line represents the locus of points which allows the
LOWTRAN calculations to match the measured horizon pixel radiance with the different
combinations of air mass factors and visibilities. At the time of the measurements, Los
Coronados coastal islands off San Diego were barely visible to the naked eye at ranges
between 25 and 35 km. In the figure, the integer values of 3 and 4 correspond to visibilities
close to these ranges of 23 and 37 km respectively. The range to the ship was determined to
be approximately 1.7 km using the known vertical dimensions of the ship and their angular
subtense within the field of view of the AGA. The relative humidity (72 percent), air tem-
perature (200C), and pressure (1012.4 mb) measured at the AGA location were used in
LOWTRAN 6 calculations of transmittance and path emission to determine the temperature
equivalent to N(ship). Figure A-4 shows the adjusted temperature dependence on visibility
and air mass (AM) factor. Conveniently, both of the combinations of air mass factor and
visibility (AM = 3, visibility = 37 km, and AM = 4, visibility = 23 km) result in the same
adjusted ship's temperature of 20.50C for a surface emissivity of unity. Had the ship's
emissivity been 0.9, as is assumed in SHIPSIG, the adjusted temperature would be 22.70C.
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