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COMPUTATIONAL CORROSION ANALYSIS FOR PROTECTION
OF NAVAL MATERIALS BY DESIGN

INTRODUCTION

Interest in the quantitative prediction of electric current and
potential distributions in conductive media has existed for at least five
decadesl, 2 , with some background mathematics evident over a century
ago.3 Attempts to quantify these predictions for the specific discipline
of electrochemistry are traceable back nearly as far,4 the motivation
being applications in corrosion prediction and protection, electrodepositi!I,
and battery technology. The history of this problem depicts a slow develop-
ment via analytical methods for thirty-five years until there was much more
rapid advancement using numerical methods that began in the late 1970's.
This paper describes the specific problem to be solved in terms of the
partial differintial equation describing electric fields in a conductive
medium and the boundary conditions describing the nonlinear electrode
kinetics (electrodics) Involved. Subsequently, it outlines the formulation
of the finite element scheme to solve the boundary value problem, provides a-
descriptive example, and indicates future work.

The problem considered herein is numerical prediction of the electric
potential distribution in an electrolyte due to the presence of submerged
dissimilar metals and/or externally-applied impressed currents (figure 1).
The corresponding "applied" or net current density may be deduced from the
electrochemical potential value adjacent to a wetted metal surface, using a
potentiostatic polarization curve for that particular metal/electrolyte
system. Further, depending on the proximity of other reactions, the
predicted potential state of the metal surface may be indicative of the
current density associated with metal dissolution, from which may be
calculated the metal dissolution rate using Faraday's law. The method
described herein uses existing numerical techniques to predict the
electrochemical potential for a system of general geometry, involving
several dissimilar wetted metals using physically significant analytical
expressions; it incorporates the generally nonlinear electrode kinetics
(polarization behavior) of the constituent metals; and it adheres to the
principals of charge conservation and the modern mixed potential theory of
electrode kinetics. The method is applicable to practical situations
involving galvanic corrosion, sacrificial anode, and impressed current
cathodic protection designs, electrodepositlon, and battery technology.

The finite difference, finite element, and boundary integral element
computational methods were examined. The application of each to the modeling
of electrochemical phenomena and their particular advantages were considered.
Since the finite element method was found to have more advantages, 5 it was
pursued with earnest and is the only method treated in this paper.
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ANALYSIS

DIFFERENTIAL EQUATION

The Fourier-Ohm fundamental law of conduction governs flow in a
conductive medium for any field problem. Figure 2 shows an infinitesimal
element of conducting medium for which o is the electric potential at the
center of the element. For the conducting medium, conservation of charge is
preserved in the steady state, i.e.,

aq =
xi =v.i = at= 0 , (1)

where q is the charge in the element,
a is the uniform electrical conductivity of the medium,
o is the electric potential at a point,
x is one linear dimension, and
t is time.

Considering a statement of Ohm's law, where E = -V0,

i a(-V0), (2)

which allows conservation of charge to be represented in terms of potential

V-i = V.(-dvg) = -<v2e = 0

V2. = 0, (3)

the Laplace equation. Most electrochemical problems are considered to be
quasi-steady state. It is important to note that this equation preserves
conservation of charge, whereas the familiar Poisson equation does not.
Therefore, the formulation of this method must be based on the Laplace
equation, and any applied current density must-be accounted for in the
application of the boundary conditions.

BOUNDARY CONDITIONS

Kasper4 described a number of generic boundary conditions for the
field problems represented by the Laplace equation. The three types of
boundary value problems therein described have been used by several
researchersb.7 ,I over the years to describe the electrochemical problem.
Those mathematical descriptions are too primitive to describe such problems
with real electrode metals over the general range of potentials to which
they are exposed. The general case of electrodic polarization is a
nonlinear Neumann boundary value problem and may be referred to as a fourth
boundary value problem of the theory of the potential. This represents the
general case of electrodic polarization behavior and is the primary aspect
of the method described in this paper.

Bockris and Reddy9 referred to the Butler-Volmer equation for the
relationship between the electrochemical potential (overpotential) and the

2
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net current density across the metal/electrolyte interfacial double layer.
To develop this into a mathematically valid boundary condition for the
electrochemical boundary value problem, the total electrochemical potential
was used as the state variable, its value being the measured electrode
potential difference using a reference electrode, herein denoted potential
(0). This was previously discussed in full detail. 5 The experiments for
these measurements are standard potentiostatic polarization tests.10

Electrodic polarization curves for metal in electrolytes are developed
experimentally using (typically) potentiostatic polarization methods. The
curves for most metals exhibit characteristic shapes with some anomalies.
To fit experimental polarization curves to the theoretical model, it is
desirable to transform the Butler-Volmer equation into the Tafel equation,
in terms of the customary polarization parameters, for each participating
reaction. Thus,

inet = io {exp(n/) - exp (n/)}, (4)

where io  is the exchange current density,
n is the overpotential, n 0 0 - Orev, and
8 is the Tafel slope of the polarization curve, with the arrow

(*- or 4) indicating the direction of the reaction
(reduction or oxidation),

and the sign of each n and 8 must be considered.

Figure 3 shows the total applied current polarization curved summed
from the partial reactions shown in figure 4. The metal dissolution
(anodic) behavior (M) is described by

1M= M log(io0/io0M )  (5)

which is easily inverted to give current as an.explicit function of
potential, i.e.,

IM = 1 10 4M M (6)

It will be noticed that the overpotentlal (n) is assigned a subscript to
indicate which reaction and an arrow (*- or 4) to indicate which partial of
the reaction the partial current density is being calculated for, since the
total applied current density on a polarization curve is herein being
assembled as a sum of the current densities of the component partial
reactions.

The combined activation-controlled and diffusion-controlled portions of
the principal reduction (R) process (which for sea water is 02 + H20 +
4e- 4 40H-) is described by Stern and GearylI as

4
= 6Rlog(i/R 0 R) 2.3 (RT/nF) log(l - iR/iL) , (7)

R3
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which is transcendental in nature and cannot be inverted to give current as
an explicit function of potential. An expression that approximates this
combined reduction behavior (both the Tafel and the diffusion-limited
regions) in that it follows Tafel behavior for small overpotentials (q) but
is asymptotic to the diffusion-limited current density (iL) is

i 0 R10 RR

RORlO

R + [iO10 l R/ R ] R I/KR

where KR is a constant affecting the curvature at the transition from

Tafel to diffusion-limited behavior. This expression reduces to the Tafel
behavior for current densities away from iL (denominator = 1) but becomes
asymptotic to iL with decreasing potential.

Similar expressions for passivity, transpassivity, and water breakdown
have been used 5 to complete a general expression for the electrodic
polarization behavior metal-electrolyte systems. The partial current
densities from the participating reactions are then summed to arrive at a
total applied current density polarization curve and written into a boundary
current density subroutine for the computation. As an example, figure 5
shows a polarization curve synthesized using the expressions above for
elemental Fe in 3 percent NaCl solution at 250 C superimposed over the curve
for Fe under the same conditions as measured by Bennett.12

Other researchers13,14 have proposed alternate curve-fitting
procedures following the expression presented by Stern and Geary.11 These
methods require intelligent first guesses for each appropriate electro-
chemical parameter and each contributing reaction to calculate a first-trial
polarization curve. The measured and simulated polarization curves are
co-plotted to show the deviations of the simulated from the measured. The
the electrochemical parameters are then massaged by trial-and-error or
solved by numerical methods to minimize the deviations.

FORMULATION OF THE FINITE ELEMENT METHOD

The finite element method involves discretizing the electrolyte
continuum into a number of subdomains, or elements, and then formulating the
potential solution in a piecewise manner over each element using one of
several approaches to be described. The element formulations are then
summed over the entire electrolyte domain, resulting in a system of
simultaneous equations which may be solved by any of a number of methods for
a steady-state potential distribution.

The finite element method grew out of extensions of matrix structural
analysis techniques which existed for discrete-member structures (e.g.,
trusses) with a finite number of member interconnection points. Subsequent
developments involved either combining pertinent energy forms of a system or
transforming the elasticity equations into energy functionals to formulate

4
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the finite element equations. In application to electrochemical phenomena,
these methods all fail, either by misrepresentation of the electrolyte
continuum, assumption of thermodynamic equilibrium, or nonconservation of
electrical charge.

A fourth approach to formulation of the element properties in the
finite element method is the method of weighted residuals (MWR). This
approach is more generalized in that it avoids those assumptions. This
approach employs successive approximations by trial functions over the
subdomain of the element of electrolyte. The special case of the MWR
wherein the finite element interpolation functions are used for the
weighting functions is the Galerkin method, formulated rigorously in
reference 5 for the special case of the electrochemical problem. In this
formulation, the important constraint of conservation of charge is
introduced.

The set of equations formulated for the electrochemical problem shares
two difficulties with that developed using the variational approach. First,
the applied current density boundary condition (ip) is a function of the
local solution (0) itself. This situation requires an iteration of
solutions until the boundary conditions (in) and the final solution
{} are consistent according to polarization curve(s) of the electrode
material(s). Secondly, the nature of electrochemical boundary conditions,
that is, specified current densities, not specified potentials, gives a
mathematically singular conductivity matrix for the electrolyte. Each of
these apparent deficiencies may be overcome by performing a (pseudo-)
transient solution 5 out to a long time period arriving at steady-state.
It should be pointed out that this is not real time, simulating any effects
of time on the state of the system. It is only performed to allow updating
of the nonlinear electrodic boundary conditions (ip = i,(O)) and to use
a transient solution scheme to solve the statically singular matrix.

The governing Laplace equation (3) may be subject to the Dirichlet
boundary condition, i.e.,

0 = oB = constant, on surface Sl, (9)

and the natural (Neumann) surface flux boundary condition, i.e.,

a! n + a -n +-a -n +-I = 0,
xx ax Yyay y zz z z p

on surface S2 , (10)

where nx, ny, and nz are the direction cosines of the vector normal to
the surface S2 , and ip is the polarization current density. For no
polarization current (i =O), the boundary condition prescribes S2 as an
insulated surface and equation (10) reduces to the homogeneous natural
boundary condition. The desired solution (potential distribution) is that
which satisfies the field (Laplace) equation subject to the Sl and S2
boundary conditions.

5
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The potential may be approximated within element (e) using the
interpolation functions (Ni) for the element, i.e.,

e  8(e) = I N1(e) O(e) = [N] (e) [0(e) , and

j=l

a. [aN] (e)

where 0(e) is the approximate potential at any point within an element,
Ni , are the interpolation functions defined over the element, and
{0 }(e) is the vector of undetermined nodal values of the potential for
all nodes of the element (e). The use of the element interpolation functions
as the weighting functions is the special case of the MWR known as the
Galerkin method.

Galerkin's criterion to minimize the residual (R) of a partial

differential equation (P.D.E.) is

fNi(P.O.E.)dV = 0, (12)

and as applied to the expanded Laplace differential equation is

Ni a 2 + a+ + )dV(e) R = 0. (13)1 ax 2  ay2  az2

V e)

To introduce the surface current density boundary condition (equation (10)),
equation (13) is integrated by parts to reduce its order to that of equation
(10) so that the S2 boundary condition may be introduced. Performing this
integration and incorporating the assumption that electrolyte conductivity
is (oxx = ayy = azz = a), the governing equation becomes5

j ax ax ay ay az aZ- dxdydz

V e)

(e a(e)n A(e) ny+ a (e) N. dS (e) = 0. (14)
+ f(e) (ax 5 ay y az z / 2s2

where dV(e) = dx dy dz and dy dz = n-dS 2 . The second term allows
introduction of the natural (surface current density) boundary condition of
equation (10). Incorporating this, summing over all elements (e) of the
electrolyte domain, and using the definitions of equation (11) results in

6
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[[aN aN aN,
e {e)(e) a. [,] {0 (e)a- + [j] {,}(e)y- dxdydz
e e)

+ j ip Ni dS2 (e) = 0 , (15)

s(e)

which is a set of equations, one for each point in the electrolyte domain.
Herein, the polarization flux has been introduced as an integral part of the
P.D.E., rather than a load, preserving conservation of charge. Introduction
of the fixed potential (Dirichlet) boundary condition (equation (9)) on
surface S1 , if appropriate, is accomplished upon assembly of the element
equations, by constraints on appropriate rows and columns of the equation
matrices.

The solution of equation (15) for the vector of nodal potentials
requires user input of conductivity (o), current density boundary conditions
(ip = ip(e)), fixed potential boundary conditions (0 = OB = constant),
when applicable, and, of course, the discretized geometry of the continuum.
The interpolation functions are predefined for a particular element type
(e.g., linear, parabolic, cubic, etc., functions of position within the
element) and geometry. The method proceeds using a first approximation of
potential distribution {0}, which is then recalculated as a solution to
the boundary value problem with the updated surface fluxes ip until the
solution changes less than a prescribed tolerance upon recalculation. The
result is a vector of nodal potentials {0) from which may be calculated
interior potentials using the interpolation functions. Current fluxes may
be calculated secondarily from the conductivity and the gradients of
potential.

To enhance this matrix equation with an iterative capability to update
the boundary fluxes (i ) consistent with the adjacent potential values
(e), a pseudo-transient solution scheme is used with time as a dummy
iteration parameter. In this scheme, a term analogous to a heat storage
term is added to equation (15). With generalization of the second term,

e p c N dV] {0}(e) [+ f [aN] aNi d] (0 (e)f a x ax + "- V{(e

V( e )  v(e) N(

Herein, the first term is the storage matrix [M], the second term is the
conductivity matrix [K], and the third is the flux vector (Q). With the
Galerkin approximation given for a point in (pseudo-) time (equation (16)),
what remains to be developed is a scheme to iterate to a solution using
pseudo-time as the iteration parameter. 7
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The central finite difference (or Lee's) operation is one method of
progressing in time allowing determination of the nodal potential
distribution (0) in terms of the potential history {t),
{ot~at}, the mass [M] and conductivity [K] matrices, and the flux
vector {Q}, all of which are evaluated at time t. This allows solution
of these equations without iteration.

It should be noted at this point that the "operator" matrix, which
includes the first two terms of equation (16), must be non-singular in order
for the solution to be performed; that is, either [M] of [K] must be
non-zero. If no Dirichlet (fixed potential) boundary conditions are present
(as generally true for electrochemical problems), then [K] is singular
relative to a reference potential level; the particular polarization
behavior that provides for a unique solution is not manifested in [K] (or
[M]), so the polarization condition does not overcome any possible
singularity in the operator matrix. Since [K] is usually singular in
electrochemical problems, a non-singular [M] matrix must be introduced, so
that the effective operator matrix becomes:

-i [M] = [-- f N T p c N dV(e)], (17)
~()

with the mass density (p), the specific capacity (or capacitivity, c), and
the time step (At) being non-zero.

In equation (16), the currert density boundary conditions are
incorporated in the right-hand side as a flux vector IQ). The components
of the flux,

{Q) = {Ql, -. - Qi, --. QE), i = l(1)E, (18)

are calculated individually for each element surface on a metal boundary of
the electrolyte, according to the relationship developed in Reference 5, and
the appropriate polarization parameters determined for each element's
metal/electrolyte system.

Much of the previous discussion regarding formulation of the finite
element analysis of electrochemical phenomena has referred to the inter-
polation functions [N] which describe the relationship between the potential
at any poin) ithin an element o(e) and the potentials at ' - nodes of the
element (el(e) (equations (11)). Indeed, these interpolat ,j functions
are used as the weighting functions in the Galerkin weighted residual
approach to generating the finite element equations. The choice of element
type (i.e., geometrical shape and interpolation function) is extremely
problem-dependent, both to model the geometry of the problem and to
accommodate the accuracy of the expected solution. Reference 5 depicts a
number of finite element types derived thus far and tabulates the
interpolation functions for them.

8
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DESCRIPTIVE EXAMPLE: SHIPBOARD SEA WATER TANK

The preceding sections have described the development, formulation, and
implementation of a method for electrochemical analysis using the finite
element method. This section will briefly describe an example of the
application of this method, with correlation to the measured solution to the
problem (the problem and solution are detailed in reference 15).

STATEMENT OF THE PROBLEM

On most seagoing ships there are sea chest cavities and internal sea
water tanks that are subject to the corrosive effects of sea water on the
wetted metallic surfaces. Cathodic protection of these cavities is usually
afforded by an array of zinc sacrificial anodes attached to their inside
surfaces, the amount and locations of zincs chosen by design tradition,
experience, and rules-of-thumb rather than by rigorous design.

One such tank on a class of seagoing ships (figure 6) experienced
internal fouling with visible paint chips and calcareous deposits lining the
tank bottom after only several months of service. Further inspection
revealed that the zinc anodes in the tank were in virtually new condition,
whereas the zincs in other cavities showed signs of significant dissolution.

This evidence founded speculation that perhaps the amount of zinc used
was excessive for the protection it was required to afford, especially in
light of the common belief that Monel does not have a galvanic effect on
steel as detrimental as might be inferred from their relative open-circuit
corrosion potentials. The peeled paint could have been caused by poor
application procedures and/or by the presence of significant cathodic
reaction (02 + 2H20 + 4e- 4 40H-) at the interface between the paint and
the substrate metal. The products of this reaction can couple with those of
the carbon dioxide system in sea water (CO2 +H 20 + 2H

+ + C01 2 )
and with the calcium ions in sea water (Ca 2 + 2OH- + 2H+ + CO 24
2H20 + CaCO 3(ppt)) to form calcareous deposits, often an indication of
excessive cathodic oxygen reduction reaction. The lack of zinc degradation
indicates a low degree of oxidation (dissolution) reaction on the zinc
surface, perhaps explained by an overly-large anode/cathode area ratio.

APPROACH

The overprotection hypothesis was evaluated by a coordinated test and
analysis program. The electrochemical potentials at representative locations
throughout the tank were measured over a three-day period while the tank was
flooded with sea water;15 these potentials were then related back to the
materials' polarization curves to ascertain the electrochemical state
throughout the tank. Analytically, the computational electrochemical
analysis method developed herein was applied to draw a correlation with the
measurement test and predict the effects of candidate corrective measures.

MATERIAL MEASUREMENTS

The electrochemical behaviors of the components in sea water under
these particular conditions (temperature, exposure time, velocity, etc.)

9
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were completely described by their potentiostatic polarization curves
developed under those conditions for the constituent metals in this system:
steel (painted and unpainted), nickel-aluminum bronze, Monel, and zinc.
These tests were performed in a laboratory using a digital potentiostat and
a standard ASTM polarization cell with fresh sea water of conductivity 0.035
mho/cm at 150C, after several days' pre-exposure. The polarization curves
developed from the first two of these tests are shown in figures 7 and B as
potential (o, mV vs. a Ag-AgCl reference electrode) versus applied current
density (i, mA/cm 2).

ANALYSIS

A finite element galvanic analysis was performed using the theory and
the development of this computational method described herein. A finite
element model of a repeated section of the cavity (electrolyte) was modeled
as an axisymmetric conductive medium. Border element faces were given
applied current density boundary conditions, which varied as a function of
potential according to the measure polarization curves. The problem was
solved with a pseudo-transient iterative solution to update the nonlinear
polarization function to correspond to the interim distribution of
potentials. Convergence occurred when the residuals in the numerical
solution reduced to less than a prescribed 10 mV tolerance throughout (i.e.,.
steady state). The finite element analysis used the MARC finite element
computer program,16 heat option, modified for electroconductive analysis.
The analysis was performed on a VAX 11/782 computer at the Naval Underwater
Systems Center with a run time of approximately two and one-half hours.

RESULTS AND RECOMMENDATIONS

The steady-state potential distribution resulting from this analysis
with the material properties of figures 7 and 8 is shown in figure 9 as
isopotential contour lines over the electrolyte region (in mV vs. AgAgCl).
A further analysis was made with a reduced number of zinc anodes -- two
versus the five in existence. The results of the analysis with the final
choice of anode location is given in figure 10.

The potentlostatic polarization curves developed for the constituent
materials of this problem showed familiar behavior. The shape of the
polarization curve for painted steel is atypical, but reasonable; the
high-resistance paint layer allows polarization of the surfaces with
extremely low applied current densities. This implies that painted and
unpainted steels behave as different metals in this electrolyte. These
curves allow a determination of electrochemical state from the potentials
measured in the field test.

The measured electrochemical potentials inside the tank are consistent
with intuitive qualitative predictions, based on the metals and the amounts
present. Potentials on the cathodic side for Monel (on the order of -600 mV
vs. Ag-AgCl) are clearly prevalent in the left-hand (smaller diameter)
portion of the cavity. In the large diameter portion of the tank, the
potentials are nearer the corrosion potential of the zinc (on the order of

10
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-850 to -900 mV vs. Ag-AgCl), indicating a large degree of polarization from
the corrosion potential of the painted steel. The overprotection hypothesis
was enforced by these results.

Similar results were obtained computationally from the finite element
analysis. Figure 9 indicates lower potentials throughout, suggesting a
greater influence of the zinc anodes when compared with the measured
potentials shown in figure 11. The results of the reduced-zinc finite
element analysis show a significant elevation in potential throughout the
tank (except in the immediate region of the remaining two zinc anodes),
indicating a lesser cathodic polarization. These results show, however,
that the two zinc anodes would still afford adequate protection to the metal
components of this cavity. Reduction of the cathodic protection from five
to two zinc anodes would reduce the degree of overprotection; therefore,
less calcareous deposit formation and a reduced probability of paint
blistering would be expected.

The results of the potential measurements and computational analysis
confirmed the hypothesis of overprotection. Further finite element analysis
led to the conclusion that reduction of zinc anodes from five to two,
located at the new positions, would reduce the degree of overprotection
while still affording adequate cathodic protection. This recommendation was
made to the appropriate ship authority. Subsequent communication with
Carson17 suggested the use of plain carbon steel sacrificial anodes for
this system. Investigation of this candidate solution is being pursued
along with various zinc anode configurations. Steel's closer free-potential
proximity to the constituent metals of this system and its higher degree of
anodic polarizability would reduce significantly the degree of polarization
of the protected metals, and, thus, the degree of the cathodic reactions
which could cause calcareous deposits and paint delamination. It would have
to be verified, however, that plain steel "anodes" would be sufficiently
more active than the other metals to provide adequate protection.

CONCLUSIONS AND FUTURE WORK

There are several conclusions that may be drawn from the investigations
and developments described in this paper. Previous methods used to determine
the corrosion state of a galvanic system or to design a system to mitigate
corrosion (e.g., material selection, geometric configuration, or cathodic
protection) have not been able to accurately predict electrochemical states
of galvanic systems of general systems; a numerical method was required to
treat general geometries. None of the earlier methods incorporated the
electrodic behaviors of the metal/electrolyte systems, primarily because
analytical solutions could not accept this highly nonlinear type of boundary
condition (fourth kind) in the Laplace equation problem wherein the surface
current densities are dependent on the solution (potential distribution)
itself. The electrodic polarization boundary condition was required as the
true nonlinear relationship between current density and electrochemical
potential (i=i(0)) as measured in the laboratory potentlostatic polarization
curve experiment.

11
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Computational corrosion element analysis described herein is a useful
tool for a-priori prediction of current and potential distributions
resulting from a system of dissimilar metals immersed in an electrolyte.
The boundary value problem for galvanic analysis may be formed exactly and
the boundary conditions are legitimately embodied in the electrodic
polarization behavior of the metal/electrolyte system, as represented by the
polarization curve, and this formulation imposes the necessary and realistic
constraint of conservation of charge on the electrolyte. The accuracy
limitations of galvanic analysis as developed herein are really only of
degree; the closeness of approximation is chosen by the analyst, based on
time and funding constraints.

Work has begun in microscopic corrosion analysis 18 ,19 and in using
the potential distribution and the electrodic parameters to perform a
secondary calculation of the rate of partial reaction of interest, such as
the metal dissolution rate. This is then to be used to redefine the
electrode shape and electrolyte chemistry in localized corrosion problems.
Work will be directed toward streamlining the reduction of potentiostatic
polarization data to derive a set of electrodic parameters. A combination
of the finite element and boundary element methods may be warranted, to take
advantage of the modeling flexibility of the FEM while adding the infinite
domain capability of the BEM. A compromise would be the addition of an
"infinite element" type to the finite element method, an improvement that
has already begun in the structural FEM.

It has been shown that the proven methods of numerical analysis may be
successfully applied to the galvanic corrosion prediction problem. This
capability depends on an understanding of the principles of electrochemistry
and the numerical analysis method employed, translation of electrodic
polarization behavior into boundary conditions, and the art and experience
involved in the geometric and pseudo-transient modeling of these problems.

12
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