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I. Introduction
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The effect of pressure on an equilibrium process is manifested via the

volume change of the process. In order for moderate pressure (50 to 100 atm.)

to produce a significant effect, the associated volume change must be substantial

(a 250 cm3/mole). Such large volume changes will most likely only occur for

cooperative processes involving many molecules. A most likely source of such

volume changes in biological systems are concerted structural changes in the

lipid matrix of a membrane, an example of which is the gel to liquid crystalline

transition. If such a transition is coupled, for example, to a protein function,

then pressure could greatly alter the physiological functioning of the system.

In the past year we have initiated studies of the effect of pressure on these

transition characteristics. These studies include the effect of pressure on the

thermodynamics of the transitions and the dynamics of the transitions and a

dissection of specific lipid-lipid interactions which are important in defining

these properties. Also, we have initiated Monte Carlo studies in an attempt to

describe thermodynamic and dynamic properties of these systems in some molecular
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detail.

II. The effect of Pressure on the Thermotropic Phase Behavior of Pure Lipid

Bilayers.

A new pressure cell for our differential scanning calorimeter (1) has been

designed and constructed. With this cell, the hydrostatic pressure can be

increased by helium gas up to 2000 psi and maintained constant throughout an

experiment. The aqueous dispersion of lipid is contained in the bottom of the

calorimetric cell and covered by polyethylene disc to prevent evaporation. The

data obtained with new pressure cell using dipalmitoylphosphatidylcholine

liposomes are identical to those previously obtained (2), but is of higher

quality. The precision in determining the melting temperature is ± .05°C and

the pressure dependence of the Tm on pressure is 0.025°/atm. This result is

predicted by the Clausius-Claperyon equation: dT./dp - AV/AS. No effect on the

shape of the heat capacity curve or the enthalpy change occurs.

The improved cell design was necessary to obtain the complete heat capacity

profile for mixed lipid systems which can melt over a 30 to 60 degree temperature

range. Preliminary results with mixed lipid systems indicate that pressure

greatly effects the thermodynamic behavior in the two phase-region suggesting

large pressure effects on the interaction between liquid and gel phases at the

interfacial region.

III. A Volume Perturbation, Dynamic Calorimeter

We have written a review (3) describing the theoretical basis of a dynamic
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calorimeter for measuring the relaxation kinetics of reactions and transitions

which involve volume changes. The instrument uses a stack of piezo-electric

crystals to induce small, adiabatic volume oscillations in a sample, thereby

perturbing the equilibrium. Relaxation of a system to the time-dependent

equilibrium is observed by monitoring its temperature and pressure over time.

Data collected from a sample under study are analyzed in the frequency domain

after they have been corrected for the response characteristics of the instrument

and aqueous medium of the sample. Relaxation times are obtained by normal mode

analysis using a nonlinear least-squares fitting algorithm.

This instrument has been used to study the kinetics of the main phase

transition in (i) one-component multilamellar vesicles of phosphatidylcholine,

with acyl or alkyl chains, and of phosphatidyl serine; (ii) in one-component

large unilamellar vesicles of DMPC or DPPC; and (iii) in two-component

multilamellar dispersions of DPPC and either the local anesthetic dibucaine or

the general anesthetic 1-dodecanol. The relaxations in all these systems are

characterized by a single relaxation time, which is greatly enhanced in a

neighborhood of the transition temperature (Tm). The slowest rate of relaxation

occurs at a temperature slightly higher than T,. The presence of dibucaine

reduces the level of enhancement of the relaxation time, but this effect

saturates at a nominal mole ratio of lipid to anesthetic of 150/1. The degree

of enhancement of the relaxation time depends strongly on the nature of the lipid

headgroup and the nature of the bonding of the hydrocarbon chains to glycerol.

The kinetic models of Schwarz (4) and Kanehisa and Tsong (5) for cooperative

melting are inadequate for explaining the observed relaxations.

IV. Studies on Bilayer-Bilayer and Monolayer-Monolayer Interactions
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Bilayer vesicles of phospholipids can exist in either single or

multilamellar form depending on the method of preparation. The various types

of molecular interactions that can influence the equilibrium behavior of these

systems include lipid-lipid interaction within the monolayer, interactions

between monolayers within a single bilayer and interactions between bilayers in

multilamellar systems. If one is to investigate the effect of pressure on the

thermodynamics and kinetics of phase transitions of these systems, it is

necessary to obtain estimates of the significance of these types of interactions.

This is particularly true in light of our hypothesis that it is the lipid-lipid

interactions within a monolayer that are important in coupling proteins with

lipid structural changes.

Monolayer-monolayer interactions were investigated by assessing the effect

of lathanide on the transition of DPPC vesicles. The lathanide, when added to

the outside of the vesicle, should only influence the outside monolayer, raising

its melting temperature as previously shown by NMR experiments (6). This has

been found to be true using DSC to monitor the transition. Our results are

consistent with all monolayers melting independently. That is, there is no

significant coupling across the monolayer interface.

The significance of bilayer-bilayer interactions has been probed by using

multilamellar systems to which dextran has been externally added. This procedure

produces an osmotic gradient between the external medium and the bilayer

interstitial spaces which is relieved by dehydration of the spaces thus reducing

bilayer-bilayer distance. Our results clearly show that when the distance is

reduced to less than 25 A, as described by Parsegian and coworkers (7), a

significant reduction in the enthalpy change occurs with concomitant broadening
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of the heat capacity curve. Detailed analysis of the dextran concentration

dependence, however, indicated that at distances normally assumed (i.e. in the

absence of dextran) in multilamellar structures, this interaction is small.

The above studies indicate that pressure effects on the thermotropic

behavior of DPPC liposomes will primarily be the reflection of the volume change

associated with the transition or the effect of pressure on lipid-lipid

interactions within a single monolayer.

V. Monte Carlo Studies

Monte Carlo studies to describe the equilibrium and dynamic properties of

bilayers have been initiated. The approach is similar to that previously

described by Freire and Snyder (8) and Zuckerman and Mouritson (9). Of

particular interest are results obtained for simple diffusion models where

observed diffusion is extremely sensitive to the details of lipid-lipid

interactions. The results suggest that pressure studies on lateral diffusion

in conjunction with pressure studies on the thermotropic behavior of lipid

bilayers could be very useful.
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