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Abstract
The method of multiple replicates is frequently used by simulators to estimate the

steady-state mean of a stochastic simulation. One important advantage of this approach

is that it is easily adapted to a parallel computer. Unfortunately, the method of multiple

replicates is quite sensitive to contamination by initial bias.* In this paper, a new type of
sampling plan is described. It retains the replication flavor, yet attenuates the bias prob-

lem. It is shown that the new method reduces mean square error relative to conventional

multiple replicates for problems in which the9nitial transient"piecays slowly.
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Introduction
Let Y = (Y(n) : n > 0) be a real-valued stochastic sequence corresponding to the output

of a stochastic simulation. We assume that Y is ergodic, in the sense that there exists a
finite (deterministic) constant r such that

as n -- oo. The steady-state simulation Droblem concerns the question of estimating the

parameter r efficiently, and providing confidence intervals for r.
Basically, two alternative approaches for dealing with this problem have been studied

in the literature. One approach is known as the method of multinle renlicates. The idea
here is to generate m independent replicates of the process Y. Each replicate is simulated
for t time units. The advantage of this method is that it gives rise to independent ob-
servations; this significantly simplifies the problem of producing confidence intervals for
r. Furthermore, given access to a parallel computing environment, one can assign each
independent replicate to a different processor. Thus, the method of multiple replicates is
well suited to parallel computation.

A disadvantage of this approach is that each of the m independent replicates is con-
taminated by initial ias. This initial bias arises from the fact that each of the m replicates
is initiated with an initial condition that is atypical of the steady-state of the system. If
we view the first a time units of each replicate as representing an "initial transient" for the
system, this analysis suggests that ms time units of the total time simulated are contami-
nated by initial bias. If m is large, we find that the method of multiple replicates devotes
a significant amount of computation to generation of highly biased observations. This is,
of course, undesirable.

In response to this, we can consider sampling plans in which only one observation of
Y is generated. Such a strategy is known in the literature as a single relication method.
Here, only the first s time units of the simulation are significantly biased, and there is no
magnification effect by the parameter m. On the other hand, construction of confidence
intervals for r is now complicated by the fact that all the observations collected are au-
tocorrelated. Furthermore, it is now a non-trivial task to make an assignment of parallel
processors that will significantly speed up the simulation.

Note that the method of multiple replicates involves factoring a computer time budget
T into m replicates, each of length t = T/m. If we view the data of the i'th replicate as being
assigned to the 'th row of a matrix, we obtain a rectangular mxt matrix which summarizes
the data generated by the simulation. Consequently, we refer to the method of multiple

2



replicates as a rectanaular sa=nling Dlan for estimating steady-state means (see Figure 1).

Of course, a single replicate method is the special case of a rectangular scheme in which

the data corresponds to a 1 x T row vector.

In this paper, we consider these rectangular methods in greater detail. We also pro-

pose and analyze a new non-rectangular sampling scheme, which attempts to offer an

advantageous compromise between the methods of single and multiple replicates.

The organization of this paper is as follows. Section 2 provides reasonably complete

mean square error analysis of conventional rectangular sampling plans. In Section 3, the

non-rectangular plan is introduced and studied. Section 4 offers some conclusions.

2. Rectangular Sampling Plans

We start by describing the traditional method of replication for solving the steady-

state simulation problem. To simplify the discussion that follows, we will assume that in

z units of computer time, precisely z time units of the process Y can be simulated. Thus,

given a total computer time budget of size T, we can implement a rectangular sampling

plan in the following way:

1.) Choose the number m of independent replicates. (If m = 1, this is a single replication

method.)

2.) Choose the (deletion) parameter s, from the interval [0, T/m]. (The first a time units of

each replication will be deleted from the set of observations.)

3.) Generate m independent copies Y1,Y2 ,..., Y, of the process Y. Each copy is simulated

over the interval 10, T/m].

4.) Set t = LT/mJ and compute the estimator

T~,s )= 1 t

We will now consider the mean square error (MSE) of the estimator T(m, s, T). The

MSE criterion is often viewed as the most important quantitative measure of the quality

of an estimator. We start with the well known MSE decomposition formula

(2.1) MSE(F(m,sa, T)) = ir(rs(m, T) + (bias ?(m,a, T)) 2.

By usLr the independence of the replicates, we observe that

(2.2) var ?( , , T) I ar 1t ( b,

(2.3) bias ?(m, s, T) = . E EY (j)-r.
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A Rectangular Sampling Plan
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The Non-rectangular Sampling Plan
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In order to analyze the terms appearing on the right-hand sides of (2.2) and (2.3), we
will assume that Y(n) can be expressed as a real-valued functional of a time-homogeneous

Markov chain X(n), so that Y(n) = f(X(n)) for some real-valued f defined on the state space

S of X. The set S may be discrete or continuous. Continuous state space is particularly
convenient in analysis of discrete-event simulations. The generalized semi-Markov process
(GSMP) view of discrete-event systems shows that very general discrete-event simulations
may be expressed in the form Y(n) = f(X(n)) with X Markov, provided that we permit

continuous state space.

For zS, u > 1, let v(z, u) be the conditional variance defined by

V(z,U) = E{ ( Y(j) 2 X(O =x} - (E{li ()XO })2

I( = } ( j=O
Similarly, let b(z, u) be the conditional bias given by

b(z,u) =E {!Y()X(O) =z}r

Let I(.) = P{X(o)e.} be the initial distribution of X. The Markov property permits us to

re-express (2.3) as

(2.4) bias ?(m, s, T) = E,6(X(a + i), t - s),

where E.(-) denotes the expectation operator conditional on X(O) having distribution u.
To obtain a similar expression for the variance term (2.2) requires more care. We first

apply the well known variance decomposition formula

v-Y(j) =Evar Y(,)IX(e+ 11

(2.5) 3=8+1 j=e+1

+vrE1 Y~)IX(e+1)}

Clearly, we have
I t}

var E_, , Y()= lX(o + 1) = )(X() + 1) + ),
t 8+

j $Y+ +1

Plugging these expressions into (2.5) yields

(2.6t v Fr , Y(y) --EOV(X(8 + 1), t: - 8) + vwrb(X(8 + 1), t - 8),
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where var,(.) denotes the variance operator conditional on X(o) having distribution p.

Suppose that X is a positive recurrent Markov chain possessing a unique invariant

probability distribution 7. A large class of such chains has the property that under suitable

regularity conditions,

sup fEph(X(o)) - E.h(X(0))j = 0(6-a)
heM

for some a > 0, where X is some appropriately defined family of real-valued functions
h: S -, I. (See NUMMELIN (1984), p. 120, for an example of such a theorem.) Assuming
that the functions v(-, u), b(., u), b2(., U)CM for all u _> 1, we obtain the relations

(2.7) E,,v(X(e + 1),t - 8) = EV(X(O),t - 8) + 0(6-a),

(2.8) Eb(X(o + 1),t - 8) = E.b(X(O),t - 8) + 0(e-*'),

(2.9) E;.b2(X(S + 1), t - ) = Eb 2 (X(O), t - 8) + O(eC-),

where the constants implicit in each of the "big Oh" terms are independent of t.

Furthermore, for such a recurrent Markov chain, it is typically the case that the steady-
state mean r can be expressed in the form r = E.f(X(o)). As a consequence of the station-

arity of X under initial distribution r, it is evident that E.Y(n) = r for n > 0 and hence

Erb(X(O), t- ) = 0. Thus, (2.8) can be simplified to

(2.10) Ejb(X(e + 1), t - 8) = 0(6-a).

Combining (2.9) and (2.10), we obtain

(2.11) varb(X(- + 1),t - a) = E.b2 (X(O), t - 8) + O(e-al).

(Again, the constants implicit in (2.10) and (2.11) are independent of t.)

Combining (2.6), (2.7), and (2.11), we obtain the expression

Var t 8 Y(j) = E.v(X(o), t - 8) + E.b 2 (X(O), t - 8) + O(e-a.).

Repeating the variance decomposition (2.6) under var.(.), we find that

-- E Y() = E.v(X(o), t - 8) + ESb 2(X(O),t-a)
j-.+1

and hence
I I

(2.12) var E - Y( j ) = var.j- Y( j ) + O(e-=}"
8jW+1 t $m+1
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To simplify (2.12), we again use the fact that X is stationary under initial distribution

r. Set Y(n) = Y(n) - r,
"= Eyo(o) 2 + 2 E E.Y (o) Y(k)

k=1

27 =kE Y () Y.(k).
Ak=1

Under appropriate suamability hypotheses (see, for example, p. 172 of BILLINGSLEY

(1968)), we can use the stationarity to write1 2
(21) v -8_ E ()- t - 8 (t - S)2  t -8 k~ts t-8

Note that

(2.14) Er"Y (0) Y(k) 1: s if (z)i" l£EY(k)l• - (dz),

where E,(.) is the expectation operator conditional on X(o) = z. We now observe that

E. Y(k) = E.f(X(k)) - E,f(X(O)). Appropriate regularity hypotheses on X permit us to assert

that

(2.15) sup IEJf(X(k)) - Erf(X(O))I I O(e- k)

naS

for some f > 0. (See p. 122 of NUMMELIN (1984) for a typical such result.) Substituting

this relation in (2.14) yields

E.Y.(O)Y.(k) = O(C-1k).

We may therefore conclude that

(2.16) j (1- ENY,(O)Y.(k) =

for 0 < #' < P. Substitution of (2.16) into (2.13) shows that

1 *r-' U.

(2.17) , jwL; ') =j-, )2 + O(e,''-)).8J=e+1

Combining (2.1), (2.2), (2.4), (2.10), (2.12), and (2.17), we obtain the important rela-

tionship

(2.18) MSE(f(m, ., T)) - + 8 + 10(e-1,(,_o )m ,t- (t-2/ m

where the implicit constants appearing in the "big OH" terms are independent of m,s, and

T.
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To gain further insight into (2.18), we consider the typical situation, in which the

deletion point a is small relative to the length t of each replicate. Furthermore, in order to

simplify the discussion, we assume that mt = T (exactly). Then,
I a2 a2  a2 rn (2m a2

(2.19) m+-= T 0-8-+ O, and

1 207 -

(2.20) +n'-.2 TM (t 8,)2 W r+ i_

Combining (2.18) through (2.20), we obtain the approximation

(2.21) MSE(F(m,a, T)) w T- +a 2  M.

Viewing a and m as design parameters for the simulation, we see that (2.21) suggests

that the deletion parameter a should be small. On the other hand, if s is chosen too small,

difficulties can arise in the "big Oh" terms appearing in (2.18). This recommendation

corresponds to intuition.
As for the number of replications m, m should be chosen small (for example, a single

replicate method should be considered) whenever 2
8 > 7. For reasonable values of s, this

inequality will typically be valid. Thus, mean square error favors using a small number of

replicates. This differs from the conclusion reached by KELTON (1986) in his analysis of
"replication splitting" schemes for simulation of autoregressive sequences. The arguments

there show that using a large number of replicates can reduce the variance of the steady-

state estimator when the autoregressive sequence is positively correlated (i.e. 7 > o).
In our current setting, we judge our estimators via mean square error (as opposed to

variance). Since our error criterion explicitly considers the loss in estimator efficiency due

to bias (variance does not measure bias), it is not surprising that our conclusions differ.

Of course, if a is small (i.e. bias is not a major problem), (2.21) supports using a large

number of replicates when q > 0,

To illustrate the above points, we calculate the mean square error of ?(m, s, T) when

m = TP(0 _ p < 1) and s = 7"(O < q < 1-p), in which case t = T', where r = 1-p. We find that
U2  U2  '7

(2.22) MSE(F(m,a, T)) = - 17 + - (T2P+2-3).

Assuming that p + q < 1/2, (so that the "big oh" term is small) we find that relation (2.17)

confirms the previous discussion. Both p and q should be chosen small, in accordance with

our previous recommendations.

3. A Non-Rectangular Sampling Plan

The idea behind the sampling plan to be described in this section is that we try

to avoid expending a significant fraction of the computer time budget on generation of
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highly biased observations. As discussed in the Introduction, the initial bias problem is
of particular concern when the method of multiple replicates is used, since the amount of
contaminated data is proportional to the number of replicates. On the other hand, the
method of multiple replicates enjoys several significant advantages: ease of construction
of confidence intervals and development of parallel simulation schemes. Our goal here is
to develop a method that has a multiple replicate flavor and yet avoids the initial bias
difficulties that are associated with conventional multiple replicate methods.

As in Section 2, we assume that the output sequence Y takes the form Y(n) = f(X(n))

for some time-homogeneous Markov chain X, and real-valued function f. The following
algorithm employs one simulation of length s to generate an initial condition which is
reasonably typical of the steady-state. This initial condition is then used to generate m
conditionally independent replicates (each of length t) from the output sequence Y. Thus,
the effort to generate a "good" initial condition is amortized over the m replicates. In
terms of observations generated, this sampling plan is non-rectangular (see Figure 2).

The non-rectangular sampling plan can be summarized as follows.
1.) Given the computer time budget T, choose the number m of (conditionally independent)

replicates, and the deletion parameter s (0:5 s < T).

2.) Generate one copy Yo of the sequence Y to time s.
3.) Using the initial condition Xo(s) (Xo is the Markov chain corresponding to Yo), generate

m copies Y,..., Ym of Y to time t - 1, where t f(T - e)/ml.
4.) Compute the estimator

j=

We now turn to computing the mean square error of f(m, s, T). As in Section 2,

(3.1) MSE(k(m, s, T)) = var '(m,oT) + (bias ik(m, a, T))2 .

Using the fact that Y,(.)-Y(. + e) (R_ denotes equality in distribution), we find that

bias k(m, s, T) = Epb(X(o), t).

From (2.8), it therefore follows that

(3.2) bias i'(m, a, T) = O(e-a).

To handle the variance term appearing on the right-hand side of (3.1), we again use the
variance decomposition method:

(3.3) var k(m, , T) = var E(f'(m, a, T)JXo(,)) + Evar(f(m, s, T)IXo(a)}.

9



It is easily seen (use the fact that Yi,...,Ym are independent and identically distributed,

conditional on Xo(a)) that

(3.4) E(flm,s,T)IXo(s)) = b(Xo(.),t) a.,

(3.5) var{w>(m,o,T)iXo(.)) = -v(Xo(s),t) &.

Combining (3.3) through (3.5), we get

(3.6) var f(m, a, T) = -E, v(X(o), t) + var,.b(X(o), t).

As in Section 2, we obtain

(3.7) var f(m, s, T) = -LEv(X(O), t) + E.b2 (X(O), t) + O(C-**)
m

(use (2.7), (2.8), and (2.9)). Recall that
|-1

var , Y(j) = E.v(X(o), t) + Eb 2 (X(o), t).
j=0

(see Section 2). Plugging into (3.7), we get

(3.8) var f(m,s,T) = Ivarl 1 .y(j)+ E,.b2(X(O),t).

The first term on the right-hand side of (3.8) was analyzed in (2.17). For the second term,

note that

b(Z't) = -b(z) - ,(.~)-
t k=t

where

b(z) = (E.Y(k) -,).
k=O

From (2.15), it is evident that

(3.9) sup Ib(Z,t) - -b(z)I =
ass t

Consequently, we obtain the inequality

(3.10) b(X(0), t) < lb(X(0)) +
-t

Since E.Y(k) = r, the expectations E.b(X(O),t) and E.b(X(O)) both vanish. From (3.10),

we therefore get

E,b2 (X(O), t)5 - E,,b2 (X(O)) + O(e-t)E,,b(X(O))l +

10



A similarly derived lower bound yields the formula

(3.11) Ef.62 (X(O), t) = -E.bV(X(O)) +O(et).

Let b = E.b 2 (X(O)). To simplify the following discussion, assume t = (T- a)/m (exactly).

Combining (2.13), (3.8), and (3.11), we obtain the important relationship

(3.12) MSE(Y(m, s, T)) = t - + (.-) + O(et2) + 

where - = min(f, #I) and the (implicit) constants in the "big oh" terms are independent of

m,a, and T. Expressing t in terms of m,a, and T, we get
ar2 a.2 Gr2 8 1 8 2)

(3.13)+ +0

(3.14) m 2 = +  , and

(3.15) (M 1)±rm 1m + M(M- 1) O (1

assuming that a is small relative to T. Combining (3.12) through (3.15), we obtain the

approximation
a2 a2a mq m(n - 1)b

(3.16) MSE(i'(m, a, T)) o 7 + T W n- +  T

We now compare the mean square error of our non-rectangular sampling plan with that

of a rectangular plan having the same computer time budget T, number of replications

m, and deletion parameter a. Comparing (3.16) to (2.21), we see that MSE(k(m,8,T)) <

MSE(?(m, a, T)) when
'2ma 2_ a2 8 + b(m2 - m).

We shall shortly show that b > a2. Thus, k'(m, s, T) beats ?(m, a, T) when am >_ a + M 2. This

will typically occur when s is large relative to m. Thus, we can expect fk(m, 8,T) to have

smaller MSE than F(m, a, T) whenever a must be chosen relatively large, in order to remove

initial bias.

We can illustrate this point when m:- Tv (0 : p < 1) and a = T9 (0 < q < 1). Then, if

p + q < 1/2,

(3.17) MSE(t(m,7,T)) = . + - 7 - + b+O .

Comparing (3.17) to (2.22), we find that MSE(f(m, s, T)) < MSE(F(m,,a, T)) when p < q,

as was suggested above.
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We conclude this section by showing b > a2. We first observe that b(z) solves Poisson's

b(z) - E.b(X(i)) = f.(z),

where f.(z) = f(z) - r. Additionally, E,b(X(O)) = 0. Then,

n - I n +-

Sl(x(k)) = E Dh, + 6(X(O)) - b(X(n + 1))
k---- k---1

where Dk = b(X(k)) - E(b(X(k))IX(k - 1)) are martingale differences. Note that if X(0)Zr, we

can apply the martingale central limit theorem (see p. 205 of BILLINGSLEY (1968)) to

conclude that

n-1
(3.18) n- 1/2 E f,(X(k)) fi AN(O, 1)

k=0

where A2
= ED2. (The function b(.) is bounded under (2.15).) If the left-hand side of (3.18)

is appropriately uniformly integrable, then

,-i

(3.19) n-,, fo(x(k)) - A2

k=O

as n - oo. But n-1 n-1

- ,. = W. Var Y().
k--O J--O

From (2.17) and (3.19), it follows that A2 = END2 = o2. But D, is orthogonal to b(X(0)),

being a martingale difference, and hence

Eib(X()) 2 = E IrO + E,(E{b(X(1))IX(0)) 2).

Since b = E.b(X(O)) 2 , it is evident that b > a2 .

4. Conclusions

The non-rectangular sampling plan introduced in this paper has a lower mean square
error than that of the corresponding rectangular plan that involves an equivalent amount of

computer time, when the "initial transient" decays slowly. This, of course, is precisely the

setting in which the method of multiple replicates exhibits its poorest behavior (relative to

a single replicate method). Thus, the non-rectangular plan described here is most beneficial

in precisely those problems for which multiple replicates is typically most ineffective.

It should be clear that the replication component of this non-rectangular plan is well-

suited to parallel computation. However, the generation of the initial condition Xo() is

12



not easily adapted to the parallel setting. This aspect of the sampling plan described here

deserves further attention.

Finally, it should be mentioned that a great deal of empirical work remains to be done

in understanding the advantages and limitations of this non-rectangular method, when

applied to "real world" problems.
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