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ABSTRACT:

We -describe hrere~ a precise mathematical framework for the study of

discrete-event syscems. The idea is to define a particular type of sto-

chastic process, called a geaieralized semi-Markov process, which captures

the essential dynamical structure of a discrete-event system. The paper

also attempts to give a flavor of the qualitative theory and numerical

algorithms that can be obtained as a result of viewing discrete-event

systems as GSMP's.
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1. INTRODUCTION

A fundamental obstacle to the study of discrete-event systems is the

lack of a comprehensive framework for the description and analysis of such

systems. In this paper, we attempt to give such a framework.

The idea that we shall pursue here is to define a particular type of

stochastic process, called a generalized semi-Markov process (GSMP), which

captures the essential dynamical structure of a discrete-event system. We

view the GSMP framework both as a precise "language" for describing

discrete-event systems, and as a mathematical setting within which to

analyze discrete-event processes.

We start, in Section 2, by giving an abstract description of a

discrete-event system. At this level of abstraction, some of the connec-

tions between continuous variable dynamic systems (CVDS's) and discrete-

event dynamic systems (DEDS's) become clear; this discussion is in the

spirit of HO (1987). Section 3 specializes the above abstract framework by

specifying a GSMP as a particular type of event-driven stochastic process.

The GSMP structure is then immediately applied to develop a variance reduc-

tion technique that is potentially applicable to a vast array of discrete-

event simulations.

In Section 4, the GSMP framework is specialized still further, thereby

yielding the class of time-homogeneous GSMP's. These processes can be

analyzed via Markov chain techniques. These Markov chain ideas are then

exploited in order to obtain some qualitative results pertaining to the

"long-run" behavior of discrete-event systems. Section 5 explores the

relationship between continuous-time Markov chains, semi-Markov processes,

and GSMP's.
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Section 6 returns to time-homogeneous GSMP's, this time exploring the

qualitative theory from a regenerative process point of view. A new type

of regenerative structure is described for discrete-event systems which are

scheduled by "exponentially bounded" distributions. This technique can be

applied to more general GSMP's, with some additional work, but we present

here only the current version. With the aid of regenerative process ideas,

a strong law and central limit theorem for discrete-event systems are

established. In our opinion, these results are typical of what we can

expect to hold for "well-behaved" discrete-event processes.

Finally, in Section 7, we give a flavor of the computational enhance-

ments to discrete-event simulations that are possible, by making explicit

use of the GSMP framework. Specifically, likelihood ratio tdeas for

importance sampling are briefly described.

2. THE CVDS/DEDS ANALOGY

Suppose that we wish to model the output process (s(t) : t > 0) cor-

responding to a (deterministic) continuous variable dynamic system (CVDS).

Frequently, the approach taken is to try to represent s(t) in the form

s(t) - h(x(t)), where x(t) is some suitably chosen characterization of

the "internal state" of the system. Thus, given the output process

(s(t) : 0 < s < T), we can extend the output process to the interval

(T, T+h] by computing the internal state x over the interval and setting

s(t) - h(x(t)), T < t < T + h.

The typical approach used to model a discrete-event dynamic system

(DEDS) is similar in concept. We first recall that DEDS are frequently
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used as models of systems having piece-wise constant trajectories. For

example, the trajectory of a queueing system is constant between arrival

and departure epochs of customers. As a consequence, if (S(t) : t > 0) is

the output process corresponding to a discrete-event system, it typically

takes the form

(2.1) s(t) I Sn I(A(n) < t < A(n+l))
n= 0

where we require that 0 = A(O) < A(l) < ... (M(A) represents an indica-

tor function which is one or zero depending on whether or not A occurs.)

In the representation (2.1), S represents the output state at the n'th

transition epoch, and A(n) is the instant at which the n'th transition

occurs. Then, A = A(n+1) - A(n) is the time between the n'th and

(n+l)'st transitions of (S(t) : t > 0).

To characterize the dynamics of the output process (S(t) : t > 0), we

assume the existence of a stochastic sequence X - (Xn : n > 0) which

describes the time-evolution of the internal state of the system. (We

permit X to be stochastic in order to allow the discrete-event system to

have random behavior.) We require that the (Sn A n)'s be related to the

internal state sequence X via a mapping of the form (n' A n) .

(hl(Xn), h2 (Xn)). Given the output process (S(t) : 0 < t < A(n)), we can

then extend the output process to the interval (A(n), A(n+l)] by first

computing Xn+1 * We then calculate An+ 1 W h2(Xn+1), A(n+l) - A(n) + An+1,

and set S(t) - S(A(n)) for A(n) < t < A(n+l). We complete the extension
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to (A(n), A(n+l)] by calculating Sn+i = hI(Xn+1) and setting S(A(n+l))

= S n+* This recursive approach to defining ((t) : t > 0) works,

provided that the output process is non-explosive (i.e., A(n) * a.s. as

n

The above discussion shows that both the CVDS and DEDS approaches to

modeling the output of a system are, in principle, solved, once we

characterize the internal state of the system. For a CVDS, perhaps the

most general characterization is to assume that the internal state process

x (x(t) : t > 0) satisfies a relation of the form

(2.2) x - f(x)

for some mapping f. In other words, for each t > 0, this formulation

requires specifying a mapping f(t,.) for which

(2.3) x(t) = f(t, x(s) : 0 < S < =)

must hold. The analogous condition for a DEDS is to reauire that there

exist a sequence of independent r.v.'s n (n : n > 0) and a map fn

such that

(2.4) x M f(X, n)

This is equivalent to requiring the existence of a family of (component)

mappings f +l(' ) such that
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(2.5) x 1 fn+l(Xk, Tk 0 < k < ')

The resemblance between the equations (2.2)-(2.3) and (2.4)-(2.5) should be

clear.

Of course, the non-causal nature of (2.3) creates difficulties both

mathematically and computationally. Furthermore, formulation of a model

for x directly in terms of the mappings (f(t, o) : t > 0) is often

unnatural. As a consequence, it is more typical to limit models of the

internal state process x - (x(t) : t > 0) to relations of the form

x'(t) - f(t, x(s) : 0 < s < t)
(2.6) S/t

x(O) = x0

for some prescribed family of mappings (f(t,) : t > 0) and initial

condition x0. (Note that we are now implicitly assuming that the internal

state takes values in Rd.) The model (2.6) is causally defined in

terms of the infinitesimal characteristics of the system. The "local

specification" that is implicit in asserting that x satisfies a given

differential equation is generally easier to formulate from a modeling

point of view than the "global specification" implicit In (2.3). Note that

the representation (2.6) permits x to be described by differential

equations with delay, as well as certain types of integro-differential

equations.

Of course, the analog to the causal representation (2.6) for a DEDS is

to assume that the internal state sequence X satisfies

(2.7) s/t xn+ l  ifn+i(ln+i, Xk : 0 < k < n)

x0 x0
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In Section 3, we describe a family of discrete-event systems in which X

has the general form given by (2.7).

A limitation of the causal models (2.6) and (2.7) is that the mathe-

matical theory available to study such unstructured systems is rather

poorly developed. Fortunately, in many applications of CVDS, it is pos-

sible to choose the internal state process x so that the dynamics are

described by a differential equation of the form

x'(t) - f(r, x(t))
(2.8) s/t

x(O) = X•

As we shall indicate shortly, the mathematical theory pertinent to (2.8) is

quite extensive.

The DEDS analog of the representation (2.8) is to require that the

internal state sequence X satisfy a recursion of the form

(2.9) s/t X 1  fn+l(Xn nn+O

X0 x0•

Such representations can often be obtained for systems satisfying (2.7),

provided that a judicious choice of state space is made. Specifically, it

is often possible to adjoin "supplementary variables" Xn to a state

descriptor Xn  satisfying (2.7), to obtain a new state sequence

Xn . (X X ) satisfying (2.9).
n n n

The mathematical power of the representation (2.9) is a consequence of

the following easily proved result.
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PROPOSITION 1. Suppose that X satisfies (2.9), and that the r.v.'s

{x0 , n : n > 1} are independent. Then, X is a Markov chain (i.e.,
P{X n+ x09 . } - P{X n+ E• Ix n}).

nPlx n+1 'tfln n~

A substantial literature on the theory of Markov chains can be applied

to the analysis of DEDS for which the internal state sequence satisfies the

conditions of Proposition 1. Similarly, the vast mathematical theory on

differential equations is directly relevant to CVDS satisfying the repre-

sentation (2.8). For example, existence theory for the differential

equation (2.8) basically yields conditions under which there exists an

output process (compatible with (2.8)) which can be defined over the entire

semi-infinite interval [0,-). The DEDS counterpart involves deriving

conditions under which (S(t) : t > 0) is non-explosive.

Much of the differential equations literature on systems satisfying

(2.8) pertains to systems obeying the stronger condition

x'(t) - f(x(t))
(2.10) s/t

x(O) = x0

This lfterat-i- typically focuses on the large-time behavior of the inter-

nal state process (x(t) : t > 0). This, in turn, is strongly related to

the study of the set {x : f(x) - 0} of equilibrium points for (2.10).

The DEDS counterpart to (2.10) requires a model formulation in which

the internal state sequence X takes the form

xl - f(X,n n1)
(2.11) s/t n n-i-I

X 0  - x0 •

The following result is easily demonstrated, and so the proof is omitted.
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PROPOSITION 2. Suppose that X satisfies (2.11). In addition, assume

that {nn : n > i is a collection of independent identically distributed

(i.i.d.) r.v.'s, independent of x0 . Then, X is a time-homogeneous Markov

chain (i.e., there exists a transition function P(x, A) such that

{X C X0, ... ' Xn} - P(Xn' *)).

As in the CVDS setting, much of the mathematical literature on Markov

chains of the form (2.11) concentrates on study of the long-run behavior of

the system. The concept of equilibrium point is now replaced by that of an

invariant probability distribution. A probability distribution x is said

to be invariant for the (time-homogeneous) Markov chain X if

(2.12) n(dy) - f (dx) P(x, dy)
E

(Z is the state space of X). In the presence of irreducibility hypothe-

ses on X, the existence of an invariant probability distribution n

typically implies that for each (measurable) subset A of E,

n-1
n-O I(Xk c A) + n(A) a.s.

as n + -, for every possible initial condition x0. The analogous CVDS

concept is that of (global) stability: there exists x such that

x(t) + i as t + -, for every possible initial condition x0. See

CODDINGTON and LEVINSON (1955) for further details.

As the above discussion suggests, most of the mathematical theory

pertaining to systems of the form (2.10) and (2.11) is qualitative in

nature. A major computational difference between CVDS and DEDS is that the
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numerical determination of equilibrium points is significantly simpler than

that of calculating invariant probability distributions. Nevertheless, it

is our view that the above analogy between CVDS and DEDS is useful in

developing -n understanding of the major theoretical issuem arising from

discrete-event systems.

3. GENERALIZED SEMI-MARKOV PROCESSES

Consider a discrete-event system in which the internal state sequence

X has the causal representation (2.7). Then, if jr - a(Xo9 ... , X ) is0n n

the a-field corresponding to the history of X up to time n, we find

that

(3.1) P{xn+ 1  .n} P( XO ... , x)

where the conditional probability appearing on the right-hand side of (3.1)

is defined by

(3.2) P(" ; x0, ... , x) P{fn+1(n n+l, Xo, ... , x n ) C .

The discrete-event system evolves in time by recursively generating Xn+I

from the conditional distribution (3.2). Once Xn+1 is obtained, Sn+1

and L n+ can be calculated by using the transformations hI and h2.

Of course, most discrete-event systems of interest have more structure

than that which we've described above. Specifically, discrete-event

systems are typically characterized by two different types of entities,

namely states and events. In a queueing network, the states generally
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correspond to queue-length vectors describing the number of customers at

each station of the network. The set of events lists the different ways in

which the queue-length vector can change as a customer completes service at

one station and moves to the next.

To mathematically describe the dynamics of this type of system, we let

S denote the (finite or countable) set of states and E denote the

(finite or countable) set of events. A state s c S is termed a physical

state, in order to distinguish such states from the state space correspond-

ing to the internal state sequence of the discrete-event system. For each

s E S, let E(s) be a non-empty finite subset of E denoting the set of

events that can trigger transitions out of state a.

EXA4PLE 1: To model an open queueing network with d stations and one

class of customers, we let S = Z x Z+ x 0.e X Z+ (d times). The vector

s - (s(1), ..., s(d)) E S will then represent the queue-lengths (including

the customer at the server) at each of the d stations. A state transi-

tion occurs via either of the following possibilities: an external arrival

event or a departure event. Thus, E(s) - {(i, 1) : I < i < d}

!J {(i, 2) : 1 < i < d, s(i) > 0}, where (i, 1) corresponds to an external

arrival to station i and (j, 2) denotes a departure from station J.

For each event e E E(s), we can associate a clock. The reading ce

on clock e can be viewed as representing (in some rough sense) the amount

of time that has passed since clock e was last activated.
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EXAMPLE I (continued): Suppose that there exists a single server at each

of the d stations; each server works at unit rate. For e = (i, 1), c

corresponds to the amount of time that has elapsed since the last external

arrival to station i. For e - (J, 2), c denotes the amount of time

that has passed since service was initiated on the customer at the server

at station J.

The clock readings for event e increase at a speed rse. Thus, the

rate at which c increases may depend on the physical state occupied by

the discrete-event system.

EXAMPLE I (continued): If each of the single servers serves at unit

rate, then rs e I for all s C S, e E E(s). On the other hand, to model

a server for which the service rate is proportional to the number of cus-

tomers in queue at the station, we would set r - r s(j) for

e = (j, 2).

We let 1 {-I} u [0, m) and assume that c e V We

adopt the convention that if c e -1, then e is currently not active.

(For example, event (J, 2) is not active when s(j) - 0.) Thus,

C(s) - {c e (e1 )E : c e  - I iff e 0 E(s)} is the set of clock

readings possible in s £ S.

We now give a rough description of the dynamics of the discrete-event

system. Suppose that at time A(n), the system has just'entered state

s C S and that the clock reading at that instant is represented by

c E C(s). Each clock e E E(s) will now compete to trigger a transition

out Ji state s. The system evolves by first probabilistically generating,
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for each event e E E(s), a "residual lifetime" r.v. which represents the

amount of time remaining until event e triggers a transition out of state

s. This residual lifetime has a distribution which depends, of course, on

the values of ce  and r se. (It may also depend on the history n in a

more complicated way.) Having generated residual lifetimes for all the

events e E E(s), the trigger event e* is simply the next event to be

scheduled by the DEDS. In other words, the trigger event is the event e

having the minimal residual lifetime. This minimal residual lifetime

therefore yields An+ 1 (i.e., the time between the n'th and (n+)'st

transitions).

A new physical state s' is now chosen stochastically; its distribu-

tion typically depends on both the previous state s and the trigger event

e*. The events e E O(s'; s; e*) E(s') - (E(s) - {e*}) have their clock

readings incremented appropriately to refect the speed r se and the

passage of time An+l* (Clocks e E Os'; s, e*) are "old" clocks that

continue to run in state s'.) Clearly, the events e e N(s'; s, e*)

E(s') - O(s'; s, e* are the "new" clocks, which will satisfy csle m 0

at time A(n+l). Thus, we have calculated the physical state and clock

readings at time A(n+1). The process can now be repeated recursively to

obtain the physical state/clock readings at A(n+2), A(n+3),

We shall now describe the time evolution of the system more pre-

cisely. Let Z = U {s} x [0, x) X C(s). The internal state sequence X
SES

will be assumed to take values in Z. Specifically, the internal state at

transition n is given by Xn = (Sn% An C n) E E. Thus, the first two
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components of X correspond to the physical state and "holding time" ofn

the system at the n'th transition. The third component C is a vectorn

denoting the state of the clocks at time A(n). Note that the mappings

hit h2 of Section 2 are given by h1(s, t, c) - a, h2(s, t, c) - t.

If x1 E Z, i> 0, the vector xn - (Xo, .*, Xn) is a possible

realization of Xn = (X0, ... , X n ). We now need to describe the condi-
n n-

tional probability (3.2) (i.e., P{Xn+ 1 £ * - xn) in more detail. To

set the stage, we assume that for all a e S, there exists an event

e C E(s) such that rse > 0. Thus, in every state, there exists at least

one clock with positive speed. We further let p(s'; x , e) be the
n

(conditional) probability that Sn+ 1 equals a', given that Xn  equals

x and the trigger event e* at transition n + 1 is e. Also, we

assume the existence of a family F(; Xn' e) of probability distribu-

tion functions such that F(0; n , e) - 0. (i.e., F(-; xn, e) corre-

sponds to a positive r.v.) The distribution F(e; xn, e) helps govern

the "residual life" of clock e, given that X n x . We require thatn n
+

for each xn , there exists at most one clock e such that F(t; x n, e)

is not continuous as a function of t. This guarantees that the trigger

event e* will be uniquely defined for each x . Set
n+1 n

Fa(X; x n, e) iF(ax; x n, e), a > 0

~a (Xx n, e) 1 1 - Fa(x; xn, e)

G(dt; x, e) - Fr (dt; x n, e) ri F (t; x n, e')

Se e'CE(s n rsn ,e

el # e
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(sn is the first component of xn). Note that G(dt; xn , e) represents

the probability, conditional on xn, that A e dt and e* . e. We
nn4-l nI-

can now rigorously define the conditional probability structure of the

internal state sequence X. For A - {s'} x [0, TI x X (--9 a 1, let
eEE

(3.3) P h1EA x n Wxn)

p(s'; I e*) • T I(ae , > -1)
e*eE(s) e' E(s')

i I(a_, > 0) f I G(dt; , e*)
e'cN(s';s ne*) - [0,T]

II IC > ce  +t • r ,
eE0(s,;s n,e*) ae ce n Sn ,e

(cn  is the clock reading vector of xn). The product of indicators over

e' g E(s')(e' E N(s'; Sn, e*)) represents the fact that clocks

e 0 E(s')(e' e N(s'; Sn, e*)) have clock readings of -1(0). The

product of indicator functions over O(s'; sn, e*) corresponds to the fact

that the "old" clocks need to be properly incremented to their new values

at A(n+l).

The conditional probability distribution (3.3) asserts that we may

generate X n+1 from Xn  in the following way. We first generate inde-

pendent r.v.'s Y (e e E(S )) from the conditional distributionse,n n

e). Then, minY /rS  : e E E(S )} and the triggerF(; n e. hnAn 1  mi{e,n S,e n
n

event e*l is the (unique) event e £ E(Sn ) which achieves the minimum

for An 1.  We then generate S from p(G; Xn, e*) Finally, we set
for * An-I n' n+1 ialw e
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-,e  -1 , e t E(Sn+1)

Cn~~ 0 ,e E N(Sn; S, e*+ )nlen+I n n+1~

C e -C + Ant * rSn e E O(Sn1 ; Sn, e*+)
n+1,e n,e n+1nI f+

We call a discrete-event system with an internal state sequence X

satisfying (3.3) a (time-inhomogeneous) generalized semi-Markov process.

The term "time-inhomogeneity" reflects the fact that the "residual life"

distributions and state transition probabilities p(s'; xn , e) can

depend explicitly on the entire history of X. For example, these proba-

bility distributions may depend explicitly on A(n) (i.e., the time of the

n'th transition); see Section 7 for further details. Furthermore, as we

shall show in Section 5, these processes do indeed extend the notion of

semi-Markov process, thereby justifying use of the term generalized

semi-Markov process. For the remainder of this paper, we will refer to

discrete-event systems satisfying (3.3) simply as generalized semi-Markov

processes.

We conclude this section with an illustration of how we can exploit

the causal structure of DEDS satisfying (2.7) to obtain improved statisti-

cal efficiency for associated simulations. Specifically, suppose that we

wish to calculate, via simulation, an expectation of the form

a - Ef(Xo' " Xn)
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(f : E x - x E (n+1 times) + 1R). The standard approach would first

replicate the r.v. f(Xo, ..., X ) m independent times, and then form the

sample mean of the m observations.

However, an alternative estimator, based on control variates, is often

available. Suppose there exists a random d-vector X such that EX - 0.

Such a vector X is known, in the simulation literature, as a control. Then,

CMX) = f(Xo, ... Xn) - XtX

is an unbiased estimator of a for all X C d. (We adopt the convention

that all elements of Fd are written as column vectors). Since X is

at our disposal, we may choose X to minimize var C(X). The optimal

value of X is given by

(3.4) X* (ExXt)-  ExfX 0 , q, X n

To implement the method of control variates, we generate m independent

copies of the pair (f(X0, ..., X n), x). If Xm is a sample-based esti-

mate for %*, we obtain an (asymptotic) improvement over the original esti-

mator by using a sample mean of the C(X m)'s rather than f(Xo, ... , Xn)'s.

The basic idea underlying the use of control variates is that we are

"filtering out" the noise in f(Xo, ..., Xn ) due to X; this then reduces

the variance of the resulting estimator.

The key to the method of control variates is to obtain an easily

calculated control X which is highly correlated with f(X0, ... , Xn). It

turns out that the causal structure represented by (2.7) can be used to

easily obtain control variates. Suppose that the conditional distribution

(2.7) has the property that for some real-valued function g, the condi-

tional mean
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g(xn)= Eig(X+ )Ix - x+}
xn )n ~gXr+1 I n .xn

may be easily calculated. For example, if the DEDS is a GSP, the condi-

tional means E{Cn+I e1Xn x n } often have simple analytical closed-

forms.
~+ g2(n

Let Dn - g(Xn ) - g(Xn-I )  for m > 1. If Eg (X) < for n > 0,

it may be easily verified that the r.v.'s D, D2 ' " 1) are martingale

differences with respect to the sequence of a-fields (j m > 0). Con-
m

sequently, D1, ..., Dn are orthogonal mean-zero r.v.'s. Since the D i's

have mean zero, it follows that X - (D- , ... Dn)t  is a control. The

orthogonality of the D i's implies that EXXt  is a diagonal matrix. Thus,

(3.4) simplifies to

(3.5) X* ED f(Xo, ..., X 2)/ED ,
i i. 0'n)/

provided that Ef2(Xo, X ) < 0 and ED2 > 0. Hence, an advantagen i

of the martingale controls described here is that X need estimate onlymI
2n parameters in (3.5), as opposed to (n2 + 3n)/2 in (3.4).

The above discussion shows that the method of control variates is

generally applicable to DEDS in which the internal state sequence is

causally generated. In particular, martingale control variate schemes can

be applied to GSMP's.
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4. TIMK-HOMOGENIOgS GSKP'S

In this section, we examine a class of GSMP's, which also satisfy

(2.11). As shown in Proposition 2, this will guarantee that X is a time-

homogeneous Markov chain.

In many discrete-event systems, the constituent conditional probabil-

ity distributions F(O; Xn, e) and p(.; Xn, e) defining a GSMP

simplify considerably.

EXAHPLE I (continued). Suppose that customers are routed through the

queueing network via a substochastic Markovian switching matrix P. Then,

the state transition probabilities p(-; xn , e) take the form

p('; Sn, e). This means that the probability distribution of Sn+1 depends

only on the current physical state sn  and the trigger event e. Let ei

denote the i'th unit vector. The specific form of the state transition

probabilities is given by

p(s'; 8, ('l)) - 1 if s' - s + e

0 if s' - s + +ei
ei

p(s'; s, (i,2)) - i ei s(i) > 1

d1+
1 - I Pij if s' - s- e,s(i) >1j=1

Suppose that we further assume that the external arrival stream to the

i'th station is a renewal process with continuous inter-arrival distribu-

tion F i . Also, suppose that each server employs a first-come/first-serve
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queueing discipline in which the service requirements for the consecutive

customers served at the i'th station are i.i.d. with common continuous

distribution Gi.

If e - (i,l), the clock reading cn,e is the amount of time (at the

instant A(n)) that has passed since the last customer arrived externally

to station i. For e - (J,2), the clock reading c is interpreted asn,e

the amount of service requirement that has been processed on the customer

that is in service at station j at time A(n).

Assume that the service rate of the server at station i is

ri • s(i), so that the rate is proportional to the number of customers in

queue at station i. Given the above assumptions, the conditional distri-

bution F(dt; +n ,e) - F(dt; c ne e) so that the conditional proba-

bility distribution function for clock e depends on the history of X

only through c n,e * For e = (i,l), the exact form of the conditional

distribution is given by

F(t; cne, e) - Fi(t + cn e)/F(Cne)

whereas for e - (J,2),

F(t; Cn,e e) - G (t + Cn,e )/aj (cne)

Building on the above example, suppose that we have a GSMP for which

there exists a family of distributions (Fe : e c E) and a family of

state transition probabilities (p(-; s, e) : s c S, e c E(s)) such that
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(4.1) p('; xn , e) - p('; sn , e)

and

(4.2) P(t; x+ ,e) F (t + c i(c )Xn e n,e)/e(Cn,e)

If a GSMP satisfies the additional conditions (4.1)-(4.2), we refer to

the discrete-event system as a time-homogeneous GSMP. Noting that

P{Xn+ 1 C • I I = X n can be represented in the form P(x , e), we seen nn

that the internal state sequence of a time-homogeneous GSMP is a time-

homogeneous Markov chain.

The Markov structure of a time-homogeneous GSMP can be fruitfully

exploited to study the long-run behavior of the corresponding discrete-

event syste=. The following result shows that the long-run behavior of the

output process (S(t) : t > 0) can be calculated from that of the internal

state sequence X. (In order that Theorem I hold, the system need not even

be a GSMP.)

T U0O31 1. Let f be a real-valued function. Suppose that

1 n-1 aes

n j +1 ->

1 n-1 a.s

1 n-1 aos.
J. If(S j)I Aj+ 1 -> L3

where l' P2 9 13 are finite r.v.'s with 42 > 0 a.s. Then,
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t a.8,1 f(S(u))du a-> 1/12

t0

as t

The proof of this result is similar to that of Proposition 2 of GLYNN

and IGLERART (1988a) and so is omitted.

To examine the long-run behavior of the Markov chain X, we study the

question of existence of invariant probability distributions for X.

THEORM 2. Let X be the Markov chain corresponding to a time-

homogeneous GSMP with the following properties:

I) IsI < -

ii) F is continuous with Fe (0) - 0, for all e E E

iii) r > 0 for all s E S, e E E(s)

iv) F (c) < I for all e e E, c< DC

v) For all E > O, e E E, there exists K such that

Fe (K+c)/e (c) < e uniformly in c.

Then, X has an invariant probability distribution n.

For the proof, see the appendix. Suppose that F e(.) has a density

f (e). Then the hazard rate function h (.) is defined via h (t)e e e

" fe(t)/Fe(t) (Oe(t) - I - Fe(t)). Condition v) is satisfied if

the hazard rate function is bounded below by a positive constant (i.e.,

inf{he(t) : t > 0) > 0). It is also satisfied by any finite-mean dis-

tribution which is new better than used in expectation (see BARLOW and

PROSCEAN (1975) for a discussion of such distributions).
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Hypotheses i) and v) of Theorem 2 guarantee that the Markov chain X

spends a large fraction of time in compact subsets of E; this, in turn,

guarantees the type of "positive recurrence" needed to obtain the existence

of invariant probability measures. The proof also demands that the transi-

tion function of X be continuous in a certain sense; conditions ii)-iv)

yield the required continuity.

Let P (e)(E ()) denote the probability (expectation) on the path

space of X under which X0 has distribution 4.

THWOREM 3. Let X be the Markov chain corresponding to a time-homogene-

ous GSMP with the following properties:

i) tsI < -,

ii) f t F (dt) < -, e e E,
[0, e

iii) For all s, s' C S, E e E(s) with p(s'; s, e) > 0, there
exists e' E N(s'; s, e) such that rs.,e' > 0.

Then, if X has an invariant probability distribution n, E.MIf(s 0) 0 1 < =.

For the proof of Theorem 3, see the appendix. The point of Theorem 3

is that it gives sufficient conditions for the finiteness of E-0 and

E If(s 0) I1 . Such moment conditions are necessary in order to apply the

ergodic theorem. The following result is an immediate consequence of

Birkhoff's ergodic theorem and Theorem I. (We need the continuity of the

Fe(.)'s in order to guarantee that PU I > 0vX0 . x} - I for all x C Z.

This ensures that E n{tA I } > 0 a.s.).
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PROPOSITION 3. Let X be the Markov chain corresponding to a time-

homogeneous GSMP. Suppose that there exists an invariant probability

distribution n for X such that E.Al < - and E( S0) 1 < -. We

further assume that Fe () is continuous for all e C E. Then,

S t E {f(S 0l)AII.V

f f(S(u)) du - y(j{  P% a.s.

as t -, where j is the invariant a-field corresponding to X.

Theorems 1 to 3, together with Proposition 3, give conditions under

which a discrete-event system "settles down" to a steady-state. It should

be emphasized that the results merely assert existence of a steady-state

and say nothing about uniqueness. In particular, under the conditions

given above, it is quite possible for the system to have multiple

steady-state distributions. The particular steady-state distribution

governing the discrete-event system then depends on the initial state X0.

Related results on existence of invariant probability measures for

time-homogeneous GSMP's appear in KON1G, MATTES, and NAWROTZKI (1967),

(1974) and WHITT (1980). The latter paper also gives conditions under

which the invariant probability distribution n is continuous in the

state-transition probabilities D(s'; s, e) and distributions

(F e : EE).

In Section 6, we return to this steady-state theme. The regenerative

machinery used there establishes both existence and uniqueness results (but

under different conditions than those discussed here).
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5. COWTINUOUS-TIME ?iARKOV CHAINS AND SmUf-MARKV PROCESSES

Our objective here is to briefly indicate some of the connections

between continuous-time Markov chains, semi-Markov processes, and GSMP's.

Basically, any time-homogeneous GSMP in which all the event distribu-

tions Fe (.) are exponential is a continuous time Markov chain. More

precisely, consider a time-homogeneous GSMP for which

F e(dt) - X(e) exp(-X(e)t)dt

(X(e) > 0) for all e e E. Then, the conditional probability distribu-

tions defined by (4.2) take the form

(5.1) F(t; X n, e) - exp(-X(e)t)

for t > 0, e e E. Note that the conditional distribution (5.1) is inde-
+

pendent of the history x . As a consequence, it is clear that the condi-
n

tional distribution G(dt; x, e) depends on x only through s

i.e., G(dt; xn ,e) - G(dt; s, e). (Recall that in Section 4,

G(dt; x n e) simplified only to the form G(dt; x, e).) The specific

form of G(dt; s, e) for s e S, e e E(s), is given by the formula

G(dt; s, e) - p(s, e) G(dt; s)

where
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G(dt; s) - q(s) exp(-q(s)t)dt

q(s) - I %(e) • r
eEE(s) s e

p(s,e) = X(e) r rs,e/q(s).

Hence, it follows that

(5.2) P{Sn+1  A' n+ E dt n x n

2 P{S - s' le*i e, A e dt X 'x)
eCE(s) n4-1 n+14-1 n n

n

SP{e* =M e, Ed1 cdtjX mX

- . p(s'; s n , e) G(dt; sn, e)
eEE(s )

n

= p(s'; s ) G(dt; s )n n

where p(s'; s) I p(s'; s, e) p(s, e). It easily follows from
ecE(s)

(5.2) that (Sn  n > 0) is a Markov chain on state space S and that the

A 's are conditionally independent given (S : n > 0), wheren n

P{An+1 E dtrIS m : m > 0} - G(dt; Sn•

A well-known characterization of continuous time Markov chains then implies

that (S(t) t > 0) is the (minimal) Markov process corresponding to the

generator Q - (Q(sl, s2) S19 s2 E S), where
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Q(s I ,  s 2 )  = P(S 1; 8 1)  q(s ) 1 s I  s 2

Q(sI, s2) - -q(s1 ) s- s2

We have therefore calculated the generator of the continuous-time Markov

chain associated with a time-homogeneous GSMP in which all clocks are

exponential.

Perhaps the most important characteristic of a continuous-time Markov

chain is that its long-run behavior may be easily calculated. Specifi-

cally, if the internal state sequence X has an invariant probability

distribution n, then the "induced" distribution !(s) - R((s} x [0,-) x

C(s)) can be determined as the probability solution of the system of

linear equations WtR - it, where R(s, s') - p(s'; s). By contrast,

the full set (2.12) of equations for n typically involves solving an

integral equation.

We turn now to semi-Markov processes. Consider a time-homogeneous

GSMP in which N(s'; s, e) - E(s') for all s', s E S, e c E(s). In this

case, for n > 1, Cn e - 0 for e e E(Sn), so that

F(dt; Xn, e) - F e(dt) a.s.

for n > 1. As a result, G(dt; Xn, e) - G(dt; Sn, e) a.s. for n > 1,

so that G(dt; X , dt, depends on the

history of X only through S n . Then, for n> 1,
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(5.3) P{A e dt, S n+1 X n

I G(dt; S , e) p(s'; s n, e)
eEE(S n

- p(s', S ) F(dt; Sn, s')

where

G(dt; s, e) - P{r - 1 Y C dt} I P{r '1Y > t)s,e e e'cE(s) s,e e

e'e

(Y has distribution Fe())

p(s'; s) " G(-; s, e) p(s'; s, e)
eF E(s)

F(dt; s, s') - r G(dt; s, e) p(s'; s, e)/p(s';s)

It follows easily from (5.3) that (Sn : n > 0) is a Markov chain on state

space S (having transition probabilities p(s'; s)) and that the A'sn

are conditionally independent r.v.'s given (Sn : n > 0), where

P{A n+ E dtIS : m > 0 - F(dt; Sn, Sn+. )

By definition, (S(t) : t > 0) is therefore a semi-Markov process. As in

the continuous-time Markov chain context, the probability W(s)

- I({s} x [0,-) x C(s)) can be calculated as the solution to a suitable

system of linear equations (see CINLAR (1975)). Thus, the analytical

theory for the steady-state of both continuous-time Markov chains and
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semi-Markov processes is considerably simpler than that encountered for

GSMP's.

We take the view that continuous-time Markov chains and semi-Markov

processes play the same role within the DEDS area that linear systems play

in the development of CVDS. This is because the full analytical theory of

both areas can only be brought to bear in the specialized settings

mentioned above.

6. REGENERATIVE GSHP'S

We shall now show that an important class of time-homogeneous GSMP's

can be treated as regenerative stochastic processes. Although the results

to be described here are far from the most general possible, they are

intended to give a flavor of what can be expected in general.

We will consider GSMP's in which the distributions F (*) havee

certain special characteristics. Suppose that a distribution F satisfy-

ing F(O) - 0 has a density f such that the associated hazard rate

h(t) = f(t)/(l - F(t)) is bounded above and below by finite positive

constants (i.e., inf{h(t) : t > 0} > 0, sup{h(t) : t > O} < -). The

distribution F is then said to be exponentially bounded. (We use this

term because for every exponentially bounded distribution, there exist
positive constants X1' X2 such that exp(-<t) 1 1 - F(t) < exp(-X 2t).)

The tail distribution function of a positive r.v. can be represented

in terms of its hazard rate:
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t

1 - F(t) - exp(- f h(s)ds)
0

Hence, if F is an exponentially bounded distribution with 0 < a < h(t)

< 0 ,

(6.1) F(dt) - h(t)(1 - F(t)dt

> a exp(-Pt)dt

> 6 • P exp(-Pt)dt

where 6 - a/P. We will now exploit the above inequality to develop a

regenerative structure for GSMP's.

The idea is that under (6.1), we can write

(6.2) F(dt) = 6 a P exp(-Ot)dt + (1-6) O(dt)

where Q(dt) is a probability distribution function. Thus, F(dt) is, with

probability 6, exponential with parameter P. Hence, with positive prob-

ability, an exponentially bounded clock acts like a memoryless exponential

clock. This, in turn, leads to regeneration.

To be more specific, suppose that F (9) is exponentially boundede

for all e e E. Let a(e), P(e) be the lower and upper bounds on the
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associated hazard function h (0). Then, for each s c S, we have thee

inequality

(6.3) P{S, M s , e* = e, A e dtCX0 M (s, t, c)}

> c(s)p(s'; s, e) q(s) exp(q(s)t)dt

where

e(s) - a(e)/P(e)
ecE(s)

p(s'; s, e) - p(s'; s, e) O(e)r s e Q'(s)

(s) (e)rs,e
ecE(s)

By writing the inequality (6.3) as an equality (in the same fashion as

(6.2) was obtained from (6.1)), we see that if So - s, then with probabil-

ity C(s), (sit AI) is independent of X0. This may appear to suggest

that the discrete-event system regenerates with probability E(s) every

time a fixed stated s C S is 'ht. Unfortunately, this reasoning is

invalid, since ($29 A2) may still depend on Co. Therefore, we need to

work harder to obtain regeneration.

Assume that the GSMP satisfies:

(6.4) For every e e E, there exists s E S such that e E E(s) and

r > 0.
s,e

(6.5) For every s, s' C S, there exists e, al, e' *'*, en

such that

30



n
p(s 1 ; s, e)r s,e P(Si ei )rssei=2 S i-l'i-I

p(s'; Sn en ) r- > 0
Sr,en

Condition (6.5) may be viewed as an irreducibility hypothesis on the GSMP.

Under assumptions (6.4) and (6.5), there exists, for every s, s' e S,

a sequence e, Sl, e1, .. *, ' n en such that the GSMP moves from s

to s' with positive probability through the intermediate states

S1, ..., an, using the successive trigger events e, el, *, en"

In fact, if we set iO - s, sn+ s ', and - e, we have the

inequality

(6.6) P{S, ANsi, e* e Ai E dti1 1 < i < n+-X = (s, t, c)}

n11C(si) P(i+1; s e i )  ( i ) exp(- si ti+l di+1
i=0

In fact, conditions (6.4) and (6.5) allow us to further choose the path so

that each e e E(0) appears in the set {e0' ... , en ). We make this

choice of path for the following reason. Note that given So, ... , Sn+1,
,e , the clock vector Cn+j is a function only of C0 ,

11' "'' n The right-hand side of (6.6) shows that with probability

,n <G <Wf+j; s'g ), the r.v.'s *1, *., A may be
i~o i k'% 1  i'+O 1,i-

taken as independent exponential r.v.'s. Now, with our choice of path, we

can guarantee that for each e e E(S +l), e E N(si; Si-l' ei- 1) for
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some i (1 < i < n+l). Then, C ie . 0 and it follows that Cn+l,e is a

function purely of the r.v.'s A1+1, ... , A n+ observed along the path.

Since the A 's are independent r.v.'s with positive probability, it

follows that C n+1 is then independent of C0 (with probability
11n  E(W ) (~ ei ) ) .
iWO S i+1 i

For each s e S, let Z(s) . [In ( e)

and L(s) be the length of the path constructed above (i.e., the number of

states visited). We've shown that if Sm - s, then with probability Z(s):

1) (S M+i, AM+i), 1 < i < L(s), are independent r.v.'s (S n+i  is the

i'th state on the path constructed for state s, and AM+i  is a

corresponding exponential r.v.), independent of X,

2) Cm+L(s) is independent of X.

1) and 2) imply that (Xm+L(s)+k : k > 0) is independent of Xm, so that

the sequence (Sm+L(s)+k A m+L(s)+k) : k > 0) is then automatically

independent of X . Combining this with 1), we conclude that with proba-

mmbility Z(S m) , U(Sm+k, A m+k ) k > 1) is independent of X m . Fix a

state s E S. We have just shown that there exists a random subsequence

T(1), T(2), ... of hitting times of s for which the "cycles"

(((S A ) : T(n) < j < T(n+l)) : n > 1} are i.i.d. The random subse-

quence of regeneration times is obtained from the original hitting time

sequence by flipping a coin having probability of success Z(s). If the

coin flip is successful, then the next L(s) (S, A)-tuples are generated

using the algorithm described above. This, in turn, gives rise to the

desired regenerative structure. We have thus established the following

result.
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THEO3M 4. Consider a time-homogeneous GSMP satisfying (6.4) and (6.5),

for which F e() is exponentially bounded for all e E E. If there

exists s e S such that S - s infinitely often, (S(t) : t > 0) is a

regenerative process.

An interesting feature of the above regenerative construction is that

while the r.v.'s ((S n+k, Amk) k > 1) are independent of X m, it is

not true that (Xm+ .  k > 1) is independent of X m . Thus, while the

output process (S(t) t > 0) is regenerative, the internal state

sequence may not be regenerative. A similar situation arises when we

consider the regenerative structure of a continuous-time Markov chain from

a GSMP viewpoint. It is well known that the consecutive times at which the

chain hits a fixed state constitute regeneration times for the associated

(S, A) sequence. On the other hand, the full vector Cn of clock read-

ings does not regenerate at such hitting times. In particular, assuming

all speeds are unity, the differences between clock readings are preserved

from one transition of the full clock sequence to the next. This preserva-

tion of memory holds even at transition times to a fixed (physical) state.

Thus, the full clock vector does not typically regenerate, even when the

GSMP is a continuous-time Markov chain.

Suppose 1St < and fix s' E S. From (6.6), it follows that

(6.7) P{T(s') > L I X0 . (s, t, c)} > E

for all (s, t, c) E Z, where e - min{E(s) : s E S}, L - max{L(s) : s £ S),

T(s') - min{n > 1 5 - s'1. A standard "geometric trials" argument then
3n
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proves that s' is visited infinitely often, yielding the following

corollary.

COROLLARY 1. Consider a time-homogeneous GSMP satisfying (6.4) and

(6.5), for which F (o) is exponentially bounded for all e e E. Ife

ISI < -, then (S(t) : t > 0) is a regenerative process.

A regenerataive process is, in some sense, a stochastic process gener-

alization of a sequence of i.i.d. r.v.'s. As a result, we should expect

behavior similar to that typical of an i.i.d. sequence; this behavior

includes strong laws and central limit theorems.

THEOREM 5. Consider a time-homogeneous GSMP satisfying (6.4) and (6.5),

for which Fe () is exponentially bounded for all e E E. If ISf < -,

there exist finite (deterministic) constants r(f), a(f) such that for

every initial distribution 4,

t
1. f f(S(u))du * r(f) P a.s.0

t

t1/2(j. f f(S(u))du - r(f)) -> a(f) N(0,1) P - weakly
0

as t-*.

The proof of Theorem 5 may be found in the appendix. An important

feature of Theorem 5 is that the steady-state limit constants r(f) and

a(f) are independent of A. (Compare with Proposition 3.) Note also that
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if we view f(S(t)) as the rate at which cost accrues at time t, then the

total cost C(t) of running the GSMP up to time t has a distribution

which may be approximated (in distribution) -

C(t) z N(r(f)t, a2(f)t)

The central limit theorem of Theorem 5 also has important implications for

steady-state simulations of discrete-event systems, since virtually all

steady-state confidence interval methodologies (see Chapter 3 of BRATLEY,

FOX, and SCHRAGE (1987)) are based on such a result.

The main point of this section is that regenerative ideas can be

applied to discrete-event systems. The construction of the associated

regeneration times is typically more complicated than that for simpler

processes, such as continuous-time Markov chains. Whenever regenerative

structure is present, we can expect results similar to Theorem 5. In

addition to the regenerative structure identified here, HAAS and SMEDLER

(1987a),(1987b) have identified regeneration (of a different character) in

a number of other GSMP contexts. Thus, we view the laws of large numbers

and central limit theorems described here as being typical of a large class

of discrete-event systems.

7. LIKELIBOOD R.IIOS FOR GSNP'S

Let A c S and suppose that we wish to calculate P{S(A) < t}, where

S(A) - inf{t > 0 : S(t) C A). Typically, this probability needs to be

numerically calculated; simulation is generally the most popular numerical

approach,

35



In many situations, we expect that P{S(A) < t} is small. For

example, if A is the set of "failed states" of a discrete-event reliabil-

ity system, then P{S(A) < t} will be small if the system is reliable.

Unfortunately, naive simulation is highly inefficient for such problems;

many replications will be necessary in order for the system to experience a

reasonable number of failures.

A powerful technique that can be used in such situations is importance

sampling. The idea is to simulate the system so as to bias it toward

failure; the estimator must then be altered so as to compensate for the

"biased dynamics." The adjustment factor needed is called a likelihood

ratio.

Consider a GSMP of the type described in Section 3. The probability

distributions that govern the dynamics of the system are the conditional

distributions p(*; Xn, e) and F(; n , e). Let P(-) denote the

probability distribution of the internal state sequence X under these

conditional distributions, and let E(*) be the corresponding expectation

operator.

To perform importance sampling, we need to specify the alternative

conditional distributions that will appropriately bias the dynamics of the

system. For Xno e, let 2(0; xn , e) and F(; xn, e) be condi-

tional distributions having the propetty that there exist functions

q(@; Xno e) and f(-; Xn, e) such that

36



(7.1) p(; xn , e) x , e) e)

(7.2) F(dt; x n, e) f('; Xn, e) F(dt; xn, e).

Let P), E() denote the probability distribution and expectation

operator corresponding to the conditional distributions z(.; Xn , e) and

F('; xn, e). The following result is a straightforward generalization

of the likelihood ratio ideas in GLYNN and IGLERART (1988b).

THEORIEM 6. Consider a GSMP with conditional distributions p(.; x, e),

('; xn, e), F(dt; X n, e), F(dt; X e) satisfying (7.1)-(7.2).

Let T be a stopping time relative to the internal state sequence X

(i.e., I(T - n) is a function of Xn) , and let Y - f(X0, .., XT) be

real-valued. Then,

E YI(T < ) - E YI(T < -)LT

(the equality should be interpreted as: if one expectation exists, then

both do and they are equal), where

TLT . 11 X(A X,_; ei- q(si X_ ,
i-i

and

+ r

et; n e) - f(rs,et; Xn, e) F (rse 't; , e')/P(rse ,t; x e).

e'CE(s)

37



Theorem 6 is the key to importance sampling for GSMP's. Rather than

replicate copies of the r.v. YI(T < -) under P to estimate

a = E YI(T < -), we can replicate copies of YI(T < -)LT under P to

estimate a. By choosing P appropriately, significant improvements in

computational efficiency over conventional simulation can be achieved.

Likelihood ratio ideas can also be applied to parameter optimization

of discrete-event systems. Specifically, likelihood ratio methods can be

used to obtain an efficient means of estimating the gradient of the objec-

tive function via simulation (see GLYNN (1987)). This, in turn, can be

used to develop a simulation-oriented gradient-based algorithm for optimiz-

ing discrete-event processes.

The likelihood ratio methods described here are but two examples of

how the GSMP structure of a discrete-event system can be used to obtain

computational enhancements to numerical algorithms for discrete-event

systems.

8. APPENDIX

Proof of Theorem 2. We first show that X is weakly continuous on the

stre space Z, i.e., if xn, x E Z and xn - x as n + , then P(x n'

-> P(x, ) as n + , where -> denotes weak convergence. (Recall that

P(x, ") - P{X n 1 C Xn - x} is the transition function of X.)

Let (V(e, c e) e E) be a collection of independent r.v.'s having

marginal distributions specified by
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P{V(e, e ) > 0I -e (t + C e )IF e(Ce)

Then, under (4.1) and (4.2), the conditional probability distribution

G(- x e) G(-; x, e), where

G(u; (s,t,c), e) -Ef(V(e', c e 0) e' £ E(s))

and f(v(e') e' E E(s)) -I( min v(e')/r s, < u,
eleE(s)

argmin v(e')/r ,-e).
e'eE(s). s,e

By conditions ii) and iii), it is evident that F (t+c)/F e(c) is

continuous in c at every t. Hence, (V(e, c;) :e E E)

0> (Ve, c) e e E) whenever (c ' : e E E) + (c :e C E). Since fe e e

is continuous at (V(e, c e e E E) (we use ii)-iv) here), it follows

that G(*; x', e) => G(-; x, e) whenever x' + x. Thus, the distributions

of the trigger event e* and A are (weakly) continuous in x - (s, t, c).

Consequently, the distribution of X 1 M(S 1 9 A, C1I) is (weakly) continuous

in X (s, t, c), thereby proving the required continuity of X.

The second step involves showing that for every E > 0, there exists a

compact subset r' of Z such that P(x,, r) > 1 - e uniformly in x £ E.

Let r - min{r se: a e S, e e E~s)). Select K, using condition v), so

that F e(rK + 05Ie (c) < LEfE I uniformly in e and c. Put

r - {x - (s, tc) E t' ce < K, e e E) and observe that
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P(x, rc) < P{V(e, c e)/rs, e > K}
e :E(s)

F e(rK + c)/Fe(c) < e
eEE(s)

Let P n(x, ") be the n-step transition function of X (i.e.,

Pn( x , ) P{X n C X0  x}). Then, for some fixed x E E, set

n-I
n(  1 T Pj(x, .
n n .

Observe that An(1) > 1 - e for all n, so that In : n > 1} is tight.

Prohorov's theorem asserts the existence of a subsequence n' and a

probability n on Z such that n , -> n. A standard argument (see, for

example, KARR (1975)) then uses the weak continuity of X to prove that t

is, in fact, invariant for X.

Proof of Theorem 3. We first note that since IS < -, f is bounded and

it suffices to prove only that EnA I < -. By the stationarity of X under

n, this is equivalent to showing that E A2 < -. This will follow if we

can prove that E{A21X I - x} is uniformly bounded in x.

For s, a', e E E(s), let

M(s'; s, e) - min V(e', O)/rs,
e'N(s';s,e) a 'e

m(s'; s, e) - EM(s'; s, e)
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Clearly, m(s'; s, e) < t F (dt)/r, where r is the minimum over
eeE [0,W) e

the speeds rs, e, of condition iii). To finish the proof, note that

C 0 for e E N(SI; S0, e*) and hence E{A 2 1  - x} < Em(ST; S0 ,
,e 1 11 x m(S;S'e

I f t Fe(dt)/r.
ecE [0,.)

Proof of Theorem 5. We need to verify the hypotheses of the regenerative

strong law of large numbers and central limit theorem (see SMITH (1955)).

Fix s' E S, and let T be the first m > L(s') such that the next L(s')

states to be visited (after m) form the specified path for s'. (We will

base our regenerations on visits to s'.)

Since ISI < -, f is bounded so that it suffices to verify that the

moment

E{I Z i)11x0 - x}
i-i

is bounded in x. We first note that there exists L such that

sup P{ > LIX 0 . x} < I
x

(use (6.7)). Since the tail of T is then geometrically dominated, this

implies that E{TPjX 0 - x] is bounded in x, for all P > 0. Now
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E{( I AIX o - x1
i~ 1

E I~T2  max A x}
1< i<T

< E 11/2I4x 0  x) Eli/2{ max A4 - x11 <i<T

< E 1/2{-C4 IXo x) E 1/2t T 4lx x
< E'12{14Ai - x} - x'i=I

so we need only show the second factor above is bounded in x. But

_ E 1 2 LX 0 ax) P 1{>ijX o -x )
i-i

Again, since the tail of T is geometrically dominated, it suffices to

prove that E{A8 IX0 = x} is bounded in x. But for x - (s, t, c), we

can select e E E(s) so that r > 0. Then,

,e
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S(1- F (c + r t/))dt

E(Ai X0 - x <S 1-F c)
0 1-Fe (ce

e+r t 1/8

f nex( e s,e he(u)du)dt

0 c

e

< f exp(-a(e) r s , e t 8 )dt
0

Since ISl < -, it is evident that E{A(X0 8 x} is bounded in x, from

which it follows that E{A8Xo x) is bounded in x.
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