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PREDICTION OF TIME-TO-GO FOR A HOMING MISSILE
USING BANG-BANG CONTROL!

David G. Hull* and Rodney E. Mack®

Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin

Austin, Texas
Abstract ts Syitf:h time .between 8n = Opp,, 3nd 8q = 0 (sec)
VM Missile velocity (ft/sec)
The flight time required for a variable-speed homing mis- )V(T ;I‘uggt velocity (.ﬂ' fsec)
i - it R . . nertial X coordinate (ft)
sile to intercept a zero-acceleration target in two-dimensions z Relative X coordinate (ft)
is deter_xmn;e‘_i_l_)_!_assunung_gat the missile normal acceler- Y Inettial Y coordinate (ft)
ation is bang-bang, that is, maximum norma.l acceleratxon y Relative Y coordinate (ft)
followed by zero normal acceleration where the switch time 9 Missile velocity orientation (deg)
which_gives intercept is to be determined. For those cases é Target velocity orientation (deg)
where intercept does not occur in a reasonable time, the
flight time which minimizes the miss distance is used. A Subscripts
tangential acceleration profile is assumed for the missile,
that 1s. constant positive acceleration when thrusting, con- ¢ Engine cutoff
stant negative acceleration when coasting, and a given en- f Final
gine burn-out time. [n this way, the velocity of the missile o Initial
becomes a known function of time, and the equations of mo- P ;’Oin:h
] wit

tion can be solved analytically. Then, an algebraic equation
for the switch time for intercept or the final time for closest
approach can be derived, but it must be solved numerically.
The time-to-go algorithm is tested in a six-degree-of-
freedom simulation of a homing missile with a linear-
quadratic guidance law where the target performs two maxi-
mum normal acceleration maneuvers. At each sample point,
the missile velocity vector is projected onto the plane of the
line-of-sight vector and the target velocity vector, and the
time-to-go is calculated for a planar intercept. This time-
to-go is used to calculate the gains for the guidance law.
Results show that this time-to-go algorithm improves the
performance (miss distance) of the missile for several sce-
narios relative to the range-over-closing-speed algorithm.

List of Symbols
A Function defined in Eq. (14)
an Missile normal acceleration (ft/sec?)
a; Missile tangential acceleration (ft/sec?)

a1, b Constants defining Vjs for thrusting flight
az, b2 Constants defining Vi for coasting flight

B Function defined in Eq. (16)

d Miss distance (ft)

k Thrusting, k = 1; coasting, k = 2
t Time (sec)

t, Initial time (sec)

t Engine cutoff time (sec)

ty Final time (sec)
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Introduction

A guidance law of current interest for bank-to-turn hom-
ing missiles is the linear-quadratic guidance law which con-
tains proportional navigation as a particular case (see, for
example, Ref. 1). In order to implement this guidance law,
an algorithm for predicting time-to-to is nceded. The sim-
plest time-to-go formula is range divided by closing speed
and is valid for a constant-velocity missile and target on a
collision course. This formula has been improved in Ref. 2
by accounting for the missile longitudinal acceleration.

Unfortunately, the linear-quadratic guidance law tends
to drive the missile and the target into a homing triangle
in which range and closing speed become unobservable, In
Ref. 1, a linear-quadratic guidance law for dual control
(intercept and estimation enhancement) has been proposed.
This guidance rule moves the missile away from the homing
triangle improving estimation but making the time-to-go
algorithm invalid.

The purpose of this study is to develop a time-to-go al-
gorithm which is valid for intercept geometries which differ
greatly from the intercept triangle, such as encountered with
dual control. This is accomplished by assuming that the
missile normal acceleration history is maximum normal ac-
celeration followed by zero normal acceleration (bang-bang)
and computing intercept trajectories. In addition, while the
velocity of the target is assumed constant, the velocity of
the missile is assumed to vary. Here, the tangential accel-
eration is assumed a positive constant while thrusting and
a negative constant while coasting.
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As a first step, the analysis is carried out in two di-
mensions with the hope that some insight in the three-
dimensional problem will be achieved. The resulting time-
to-go algorithm is tesied in a six-degree-of-freedom simula-
tion by projecting the current missile velocity vector onto
the plane of the line of sight and the target velocity. The
optimal intercept time is computed in this plane and used
as the time-to-go for the linear-quadratic guidance law.

Optimal Intercept Problem

Shown in Fig. 1 is the geometry of the intercept problem.
The XY coordinate system represents an inertial frame, and
the X axis is along the line of sight at ¢t = 0. The constaat-
velocity target, located at X7 = X, at ¢t = 0, is moving
along a straight line which makes an angle ¢ with respect
to the X axis. The missile is launched at an angle 8, relative
to the X axis, and the velocity direction 6(t) is changed by
controlling the normal acceleration a,(t). If z = X7 - X
and y = Yr-Y)y, the equations of motion of the engagement
in relative coordinates are given by

= Vrcosé— Vycosl (1)
j = Vpsing—Vysind @)
6 = an/Viy. 3)

The tangential acceleration history of the missile is as-
sumed to be constant a,,,, > 0 while thrusting, that is,
for t < t. where t. is the known engine cutoff time, and a
constant a,,,, < 0 while coasting. As a consequence, the
velocity of the missile while thrusting is given by

Var = a1 + b2, t<t¢. (4)

where
bl = dgm. . (5)

Similarly, the velocity of the missile during the coasting
phase is given by

a = VM. ’

Vi =ay+ byt , t2>t. (6)

where

b1 = a!“. (7)

a3 = Var, + (Gtuas — ae, )te »
The prescribed initial conditions are

To=Zp, Yo=Yo,,» 0o=0,, (8)

to =1y, ,

where the subscript s denotes a specific value. Intercept at
the final point requires that

yr=0. (9)

If 6, were free, the control for the minimum-time tra-
jectory would be a, = 0, that is, a straight line. On the
other hand, if 8, were prescribed, the minimum-time control
would be infinite normal acceleration to rotate the velocity
vector instantaneously to the above straight-line followed
by zcro normal acceleration. If a bound were applied to
the normal acceleration, the cptimal control would become

I/=0,

maximum normal acceleration {ollowed by zero normal ac-
celeration, that is, a bang-bang control. The bang-bang
control is used here to generate a minimum-time trajectory,
and the flight time is used as a prediction of the time-to-go
for linear-yuadratic guidance rules.

In the solution of the problem, it is found that a di-
rect intercept can be achieved for 0z4 < 0, < Opa (see
Fig. 2} where 8z, is the initial angle for the zero-normal-
acceleration intercept and 8,4 is the initial angle for the
maximum-normal-acceleration intercept. For 6, > 0Oya,
the missile passes in front of the target during the maxi-
mum normal acceleration phase. Then, it performs a 360
deg turn before it goes for the intercept. When this hap-
pens the minimum time is taken as the time to the point of
closest approach. A similar discussion holds for 8, < 8z,4.

In the development of the equations, there are four
important times: the initial time t,, the final time ¢,
the engine cutoff time t., and the switch time ¢, between
a, = a,,,, and a, = 0. It is assumed that

to S !: S :/ (10)

so that a, = a,,,, all the way if ¢, = t; and a, = 0 all
the way if ¢, = ¢,. In the development of the equations, the
engine cutoff time is assumed to satisfy the inequality

t,<t. <ty . (11)

Then, if t. < t, (coasting all the way), the correct equations
can be obtained by setting t. = ¢,, and if ¢, > t; (thrusting
all the way), ¢, is set equal to ¢;.

Constant Normal Acceleration

The equations of motion (1) through (3) can be inte-
grated for the case where a, is constant. These solutions
are valid for the cases where a, = a,__, or a, = 0.

Since the missile velocity has the general form Vi, =
a, + byt where k£ = 1 for thrusting and k = 2 for coasting,
Eq. (3) can be integrated as

(12)

0=0,+2n (_ﬂ_')
b

ax + bgt,

The subscript p denotes a generic starting point; it could
be the initial point, the engine cutoff point, or the switch
point.

Next, with Eq. (12), Eq. (1) can be integrated to yield

z =1z, + A(t,aq,k,1,,0,) = A(t,, an, k.85, 6,) (13)
where
A(t,an k,t,,0,) = Vrcosgt - ’-“75-141 .
{eos [0, + 52 n (2252))]
+32 sin [0,, +&tn (;‘-.lfr‘.l&)]} (14)

Integration by parts is used to obtain the second term in
Eq. (14).

Finaily, Eq. (2) for y is integrated in the same way as
Eq. (1) and lcads to

y=yp+ Blt,a,k t,,0,) - B(t,, an, k,t,0,) (15)
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where

Bt.as.k t,,8,) = Vrsingt- = ﬁ',:—i:,"
{sin [6, + 32 ¢n (2that)]

aatbaty

—%‘:-COS {0' + %: {n (°h+5t‘p)]} (16)

Zero-Normal-Acceleration Intercept

In this <ection, the zero-normal-acceleration intercept
(straight-line intercept 0 = 02,) is derived. It is the dividing
line between the a, > 0 (8, < 0z4) intercepts and a, <
0 (0, > 824) intercepts. For the time being, the cutoff
time, which is known, is assumed to satisfy the inequality
constraint ¢, < ¢, < {;.

If an = 0, Eqs. (12), (13) and (15) can be applied at ¢,
and ty and the results combined to yield

8 = 46, 17

o + AL, 0,1,¢,,0,) — A(t,,0,1,t,,0,)
+A(t;,0,2,t,0,) ~ A(t;,0,2,¢.,0,) (18)

¥o + B(t.,0,1,t,,0,) — B(t,,0,1,t,,0,)
+B(t;,0,2,¢.,0,) - B(t;,0,2,t.,06,) (19)

%y

y

For intercept, z7 = y; = 0 so that Eqs. (17) through (19)
involve two unknowns: t; and 9, = 0z,. These equations
can be solved for cos 8z, and sinfz4 as

- Vycosd ty+2o
cosfza = [o1+ ¥4 (te~to)l(te—to) +{oa+ Toalts— o))ty —tc)
(20)
sinfz4 Vrtind t/+ve

(os 44 (ba~to)i{tc—to)+{aa+ Foa{ty=te)l{t, =t}

which, in turn, can be squared and added to obtain the
single equation for ¢

Vrcand ty+zo 1 +
{81+ b1 (te~to)|(te=to) +{aa+ ghalty=te)l(ty—tc)

(21

Vysind t/+y, 2 = 1
l:*}.l(‘c"a)l('c“o)ﬂli"’fh(‘l“t"(‘l"e) -

Once t; is known, 0z, follows from Eqs. (20). If t. > ¢,,
the proper equations can be obtained from Eqs. (20) and
(21) by setting t, = t;. On the other hand, for ¢, < ¢,, set
t = t,.

Maximum-Normal-Acceleration Intercept

The maximum-normal-acceleration intercept is the di-
viding line between intercept trajectories and closest-point-
of-approach trajectories. It is possible to determine this
trajectory by applying Egs. (12), (13), and (15). However,
a system of two equations in two unknowns results, and
while it can be solved efficiently with careful coding, a sim-
pler approach is used to determine whether an intercept is
possible.

Once 0z, is known, the actual §, can be compared with
0z4 to dct.crmme the sign™of an: 0, < 0z4, an 2 0 or

0, 2 0z4, a5 < 0. Then, the equations of motion are inte-
graled by Euler integration for 8n = 4, OVer the enme
me _point where z; = 0, the value of y; is
investigated to determine whether an intercept can occur.
If the missile passes behmd the target (y; > 0), an intercept
can be achieved, and if the missile passes ahead of the target
(ys < 0), no intercept is possible. Should the missile turn
have a small enough radius that z; # 0 after a reasonable
time, an intercept is deemed possible.

Intercept Trajectories

For an intercept, the switch time is assumed to satisfy
the inequality t, < t, < t; because {, = {, is the zero-
normal-acceleration intercept, and ¢, = ¢; is the maximum-
normal-acceleration intercept. There are four possible con-
figurations for an intercept trajectory depending on the
value of the known engine cutoff time, that is, ¢, < ¢,
to <t <t,t, <t <ty t; 2 ty;. The equations for
t. < t, can be obtained from those for ¢, < ¢, < ¢, by set-
ting t. = ¢,, and the equations for ¢, > t; can be obtained
from those for ¢, < (. < t; by setting ¢. = t;. Hence, only
two sets of equations necd to be derived.

to<tc<ts

For this case, Egs. (12), (13), and (15) can be applied
at t, and t, and combined to yield

0= 0+ fatn (23hk) | 0. =0, + fatn (22ht) (22)

Zo = To+ Allerans 1yt0r00) — Altoyan, 1, 10, 0o)
Aty 8 2,60 0c) ~ Ate, 2,8, 0c)  (23)

Yo + B(teran, 1,£0,0,) = Blto, ans 1, b, 6,)
+B(ts an 2,26, 8,) = Bteran,2,1.,6.) (24)

Ys

Along the straight-line part (a, = 0), Eqgs. (12), (13), and
(15) become

9, = 6, (25)

Il b 79 + A(t;,O, 2. t" og) - A(tnoy 2' ‘n 0,) (26)
yl Y + B(‘!v oa lvtn ol) - B(tn 0| 2a tn 0-) (27)

Because of Eqs. (14) and (16), the explicit forms of Eqs.
(26) and (27) are given by

Ty =z, + {Vrcosé —{az + 16a(ty — 1,)] cos 8, }(ty — £,X28)
yr = ys+ {Vrsing — (a2 + {b5(t; — t,)]sin 0, }(t; —¢,)(29)

The solution process is to vary t, until z; and y; are
both zero. This is _accomplished by setting z; = 0 and
so‘vmg Eq. (28) analytically for t;. Eq. (27)is a quadrauc
equation and has two roots. The correct root is the smallest
value of ¢, "which is larger than f,,_Then, the solution for .
ty is substituted into Eq. (29) where, because ¢, is guessed,
¥s # 0. Hence, ¢, is varied until y; = 0. In this way, it is
only necessary to solve one equation in one unknown.
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ts<te<ts

If the engine cutoff time is between the switch time and
the final time, Egs. (12), (13), and (15) lead to

_ _ Gn ay + b,
0.=0,, 6,=0,+ b, in (———-a‘ ry blto) (30)

I, =2, + Aty Gn, 1, 1o, 0,) — A(lo, a4, 1,¢0,85)
+A(t.,0,1,t,,8,) - A(t,,0,1,¢,,0,) (31)

Ye=Yo + B(lsy@n,1,t0,8,) — B(ts,Gn, 1,20,8,)
+B(t.,0,1,¢,,0,) - B(,,0,1,¢,,8,) (32)

For the coast, the corresponding equations are

) (33)
zy=1z. + A(ty,0,2,1.,0.) — A(t,0,2.¢,0.) (34)
Yr=9Yc + B(tl10s27 tcv 0:) - B(‘C|0121tn oc) (35)

The explicit forms of Eqs. (34) and (35) are similar
to those of Eqs. (28) and (29). Hence, the same solution
process can be used.

Closest-Point-of-Approach Trajectories

For e, = a,,,, over the entire trajectory and for t, <
t. < ty, Eqs. (12), (13), and (15) can be applied at ¢. and
t; and combined to obtain

0y =6.+3tn (ZHEL) | 0, =06, + atn (L) (36)

Ty =2, + Aty ny 1,25,0,) — A(to, 80, 1,2,,8,)
+A(24,8n,2,8,0.) — AL, 84,2,2.,8.) (37)

Yr=y%+ B(t,, an, 1,1, 9,) - B(ta- an, 1,15, oo)
+B(ty,an,2,2,0.) — B(lc,@n,2,t,0.) (38)

The equations for the case where ¢, < ¢, are obtained from
Egs. (36) through (38) by setting t. = t,. Similarly, for
te >ty sett, =ty

The point of closed approach is obtained by minimizing
the performance index

d* =z} +y}. (39)
This is accomplished by solving the algebraic equation
ad?
5;/- =0 (40)

by bisection. The derivative in (40) can be taken analyti-
cally. To verify that the solution is a minimum, the second
derivative 3*d? 9t} is checked.

Numerical Results

The algorithm followed in computing a trajectory is the
following:

1. Given VT: o, V.\lov By s Ftpmia Loy oy Yoo and t., com-
pute 0z4. This determines whether a, > 0 or a, < 0.

2. Given a,,,, and 0,, determine whether or not an in-
tercept can occur.

3. If an intercept is possible, calculate the switch time
forzy =y, =0.

4. If an intercept is not possible, calculate the final time
for closest point of approach.

Some results have been obtained for the following condi-
tions:

Vr =500 ft/sec, 0<¢ < 180deg, Vi, = 1,000 ft/sec

@ppee =25 8's, a,, = —10¢g's, ¢, =0 sec,
z,=25,000ft, y,=0ft, t. = 2.6 sec,
Gpp.. =100 g's, —70 <0, <70 deg (41)

which are typical of a conceptual bank-to-turn missile en-
gagement. The limit on 0, is representative of the field of
view of a passive seeker. Trajectories are presented in Figs.
3 through 7 for different values of ¢ primarily to illustrate
that the computation process is valid.

The time-to-go algorithm has been tested in a six-
degree-of-freedom simulation of a bank-to-turn missile. The
missile velocity vector is projected onto the plane of the line
of sight vector and the target velocity vector; the time-to-go
is calculated in this plane; and the result used as the time-
to-go for three-dimensional flight. Miss distance results are
shown in Table 1 for a number of engagement senerios. The
results labeled Case | are for the case where time-to-go is
calculated as range divided by closing speed. The resuits
labeled Case II are for the case where bang-bang trajecto-
ries are used to calculate time-to-go. In six engagements,
the bang-bang formula allows the missile to hit the target
(within 10 ft) when the range-over-closing-speed formula
allowed a miss. Only once does the reverse happen. In all
other engagements both formulas generate a hit or a miss
simultaneously. Overall, the bang-bang formula (Case II)
provides better results.

Discussion and Conclusions

A method for predicting time-to-go for homing missiles
using a linear-quadratic guidance rule has been developed.
It is based on minimum-time trajectories for senerios when
intercepts are possible and on minimum-miss-distance tra-
jectories when intercept trajectories are not possible in a
reasonable time. The missile velocity is variable in that
the tangential acceleration has a known positive value when
thrusting and a known negative value when coasting and the
engine cutoff time is known. On the other hand, the target
vclocity is assumed constant.

In general, the optimal trajectories are composed of con-
stant normal acceleration segments. For an intercept trajec-
tory the control is maximum normal acceleration followed
by zero normal acceleration. For a minimum-miss trajec-
tory, the control is maximum normal acceleration all the
way. Numerical results for the time-to-go algorithm have
been presented to verify the computational procedure. Also,
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the time-to-go algorithm has been tested in a six-degree-of-
freedom simulation. In general, the proposed time-to-go al-
gorithm produces better miss distances than those obtained
from the range-over-closing-speed method.
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Table 1: Simuiation Results

Off- Case I Case 11
Boresight | Launch { Aspect- Miss Mizss
Angle Range | Angle | Distance { Distance
(deg) (®) (deg) (ft) (®)

0 7000 0 0.156 0.219

0 7000 30 0.695 0.266

0 7000 60 1.205 0.532

0 7000 90 1.318 0.823

0 7000 120 2.560 0.342

0 7000 150 0.734 3.199

0 7000 180 0.352 1.521

0 3000 0 0.995 0.218

0 3000 30 1.685 0.306

0 3000 60 1.401 1.497

0 3000 90 2.524 2.563

0 3000 120 13.52 5.354

0 3000 150 4.219 11.82

0 3000 180 0.585 4.562
40 7000 0 359.2 1159.
40 7000 30 259.7 1112.
10 7000 60 0.164 0.636
40 7000 90 0.922 0.532
10 7000 120 1.944 0.758
40 7000 150 1.016 0.672
40 7000 180 0.358 1.609
10 3000 0 2104. 4.084
10 3000 30 2695. 0.640
40 3000 60 2809. 0.198
10 3000 90 2519. 0.347
10 3000 120 1867. 0.490
40 3000 150 687.3 781.5
10 3000 180 224.5 396.0
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