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PREDICTION OF TIME-TO-GO FOR A HOMING MISSILE

USING BANG-BANG CONTROL'

David G. Hul 2 and Rodney E. Mack3

Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin

Austin, Texas

Abstract t, Switch time between a. = a._. and a. = 0 (see)

VPW Missile velocity (ft/sec)

The flight time required for a variable-speed homing mis- VT Target velocity (ft/sec)
_ine___te__-_ X Inertial X coordinate (ft)

sle to intercept a z:eio-cer'ation target in two-dimensions z Relative X coordinate (ft)
is determned by assuming that the aissile normal acce!er- y Inertial Y coordinate (ft)
ation is bang-bang, that is, maximum norm-a acceleration Relative Y coordinate (ft)
followed by zero normal acceleration where the swit-cl.-.tine 0 Missile velocity orientation (deg)
which_ yves intercept is to be determined. For those cases Target velocity orientation (deg)
where intercept does not occur in a reasonable time, the
flight time which minimizes the miss distance is used. A Subscripts
tangential acceleration profile is assumed for the missile,
that is. constant positive acceleration when thrusting, con- c Engine cutoff
stant negative acceleration when coasting, and a given en- f Final
gine burn-out time. In this way, the velocity of the missile o Initial
becomes a known function of time, and the equations of mo- p Point
tion can be solved analytically. Then, an algebraic equation 8 Switch
for the switch time for intercept or the final time for closest
approach can be derived, but it must be solved numerically. Introduction

The time-to-go algorithm is tested in a six-degree-of-
freedom simulation of a homing missile with a linear- A guidance law of current interest for bank-to-turn hom-
quadratic guidance law where the target performs two maxi- ing missiles is the linear-quadratic guidance law which con-
mum normal acceleration maneuvers. At each sample point, tains proportional navigation as a particular case (see, for
the missile velocity vector is projected onto the plane of the example, Ref. 1). In order to implement this guidance law,
line-of-sight vector and the target velocity vector, and the an algorithm for predicting time-to-to is needed. The sim-
time-to-go is calculated for a planar intercept. This time- plest time-to-go formula is range divided by closing speed
to-go is used to calculate the gains for the guidance law. and is valid for a constant-velocity missile and target on a
Results show that this time-to-go algorithm improves the collision course. This formula has been improved in Ref. 2
performance (miss distance) of the missile for several sce- by accounting for the missile longitudinal acceleration.
narios relative to the range-over-closing-speed algorithm. Unfortunately, the linear-quadratic guidance law tends

to drive the missile and the target into a homing triangle
List of Symbols in which range and closing speed become unobservable, In

Ref. 1, a linear-quadratic guidance law for dual control
A Function defined in Eq. (14) (intercept and estimation enhancement) has been proposed.
a" Missile normal acceleration (ft/sec2) This guidance rule moves the missile away from the homing
at Missile tangential acceleration (ft/sec2) triangle improving estimation but making the time-to-go
at, bl Constants defining Vm. for thrusting flight algorithm invalid.
a2, b2  Constants defining V41 for coasting flight The purpose of this study is to develop a time-to-go a]-
B Function defined in Eq. (16) gorithm which is valid for intercept geometries which differ
d Miss distance (t) greatly from the intercept triangle, such as encountered with
k Thrusting, k = 1; coasting, k = 2 dual control. This is accomplished by assuming tiat the
t Time (sec) missile normal acceleration history is maximum normal ac-
t, Initial time (see) celeration followed by zero normal acceleration (bang-bang)
t Engine cutoff time (see)and computing intercept trajectories. In addition, while the

tl Final time (see) adcmuigitrettaetre.I diin hl h
velocity of the target is assumed constant, the velocity of

'Copyright @198g by the American Institute of Aeronautics and the missile is assumed to vary. tHere, the tangential accel-
Astronautics. Inc. All rights reserved. eration is assumed a positive constant while thrusting and

I4.J. Thompson Regents Professor, Auociate Fellow AIAA
'Graduate Research Assistant a negative constant while coasting.
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As a first step, the analysis is carried out in two di- maximum normal acceleration followed by zero normal ac-
mensions with the hope that some insight in the three- celeration, that is, a bang-bang control. The bang-bang
dimensional problem will be achieved. The resulting time- control is used here to generate a minimum-time trajectory,
to-go algorithm is tes'.ed in a six-degree-of-freedom simula- and the flight time is used as a prediction of the time-to-go
tion by projecting the current missile velocity vector onto for linear-uadratic guidance rules.
the plane of the line of sight and the target velocity. The In the solution of the problem, it is found that a di-
optimal intercept time is computed in this plane and used rect intercept can be achieved for OZA !5 0o < 0MA (see
as the time-to-go for the linear-quadratic guidance law. Fig. 2) where OZA is the initial angle for the zero-normal-

acceleration intercept and GMA is the initial angle for the
Optimal Intercept Problem maximum-normal-acceleration intercept. For 0. > OMA,

the missile passes in front of the target during the maxi-
Shown in Fig. 1 is the geometry of the intercept problem. mum normal acceleration phase. Then, it performs a 360

The XY coordinate system represents an inertial frame, and deg turn before it goes for the intercept. When this hap-
the X axis is along the line of sight at t = 0. The constant- pens the minimum time is taken as the time to the point of
velocity target, located at Xr = X. at t= 0, is moving closest approach. A similar discussion holds for 0. < #ZA.
along a straight line which makes an angle with respect In the development of the equations, there are four
to the X axis. The missile is launched at an angle 0. relative important times: the initial time to, the final time if,
to the X axis, and the velocity direction 0(t) is changed by the engine cutoff time t,, and the switch time t. between
controlling the normal acceleration a,(t). If x = XT - XM a, = a,.. and a. = 0. It is assumed that
and y = YT-YM, the equations of motion of the engagement to < t, (10)
in relative coordinates are given by

so that a. = a... all the way if t, = t1 and a, = 0 all
x = VT cos 0 - VM cos 0 (1) the way if t, = to. In the development of the equations, the

= 1.sin o - VM sinii (2) engine cutoff time is assumed to satisfy the inequality

= a /V,'g. (3) to< < . (11)

The tangential acceleration history of the missile is as- Then, if t, < to (coasting all the way), the correct equations
sumed to be constant at. > 0 while thrusting, that is, can be obtained by setting t, = to, and if t > t1 (thrusting
for t :5 t. where t. is the known engine cutoff time, and a all the way), t, is set equal to if.
constant a,. < 0 while coasting. As a consequence, the
velocity of the missile while thrusting is given by Constant Normal Acceleration

VM = al + bit, t _< t' (4) The equations of motion (1) through (3) can be inte-

where grated for the case where a, is constant. These solutions
aI = V., b = at,_. (5) are valid for the cases where a. = an.- or an = 0.

Since the missile velocity has the general form VM
Similarly, the velocity of the missile during the coasting at + bit where k = I for thrusting and k = 2 for coasting,
phase is given by Eq. (3) can be integrated as

V~f = a2 + b2 t t tc (6) 0= , + tn (k + )(12)

where
The subscript p denotes a generic starting point; it could

a-i = Vu. + (af,.. - a,.,.)t 0 , b2 = at.. (7) be the initial point, the engine cutoff point, or the switch
point.

The prescribed initial conditions are Next, with Eq. (12), Eq. (1) can be integrated to yield

to= to., zf0 = z. , yo = Yo. ~,o = 0 (8) X = X, + A(t,a.,k,t,O,) - A(t,,a,,, k,tp, Op) (13)

where the subscript .s denotes a specific value. Intercept at where
the final point requires that A(t,a,,k,teP) = VTcos -

rj = 0, yl = o. (9) bb __o_ _o, + ,

If 00 were free, the control for the minimum-time tra- + sin [O, + L tn (: 1) (14)
jectory would be a,, = 0, that is, a straight line. On the
other hand, if 0. were prescribed, the minimum-time control Integration by parts is used to obtain the second term in
would be infinite normal acceleration to rotate the velocity Eq. (14).
vector instantaneously to the above straight-line followed Finally, Eq. (2) for y is integrated in the same way as
by zero normal acceleration. If a bound were applied to Eq. (1) and leads to
the normal acceleration, the cptimal control would become y = yp + B(ta,,k tp, O,) - B(tp,a,,,k,t ,Op) (15)

. ... ....... ... ....... .... ... .. . . m m ua n u n oa m I



where where 26 + )
2  

0o >_ 0ZA, a. < 0. Then, the e uationspf.knotion are inte-B(i, a,,k t,O) VTsin4o t - 4. . grated by Euler interation for a, =a.. over the entire

{(rajectory. At the point where z= 0, the ueo-f yiis
• {si , +-i({nvestiga ted to determine whether an intercept can occur.

-4cos [ I, + en . (16) If the missile passes behind the target (y1 > 0),an intercept+ can be achieved, and if the missile passes ahead of the target
(y. < 0), no intercept is possible.. Should the missile turn
have a- ;Xiiiti ;iough' radius that z1 $ 0 after a reasonable

Zero-Normal-Acceleration Intercept time, an intercept is deemed possible.

In this section, the zero-normal-acceleration intercept Intercept Trajectories
(straight-line intercept O= OZA) is derived. It is the dividing
line between the a, 2: 0 (0. < OZA) intercepts and a, < For an intercept, the switch time is assumed to satisfy
0 (0o ? OZA) intercepts. For the time being, the cutoff the inequality t. < t, < If because i, = i. is the zero-
time, which is known, is assumed to satisfy the inequality normal-acceleration intercept, and t0 = 11 is the maximum-
constraint t. < t, < if. normal-acceleration intercept. There are four possible con-

If a. = 0, Eqs. (12), (13) and (15) can be applied at t, figurations for an intercept trajectory depending on the
and If and the results combined to yield value of the known engine cutoff time, that is, t, < t.,

to <_ te S to, t < 4 < if, t' > If. The equations forO1 = 0o (17) t, 5 t. can be obtained from those for t. < , < to by set-
Xf = xo + A(t ,0,1,to,O.) - A(to,O,l,to, Oo) ting tC = t., and the equations for f, 2_ tI can be obtained

+A(tI,O,2,C,O.) - A(tf,O,2, t,,00 ) (18) from those for to < f, < ti by setting t, = ff. Hence, only
yf = y. + B(t,, 0, 1, to, 0.) - B(t, 0,1, t., 0) two sets of equations need to be derived.

+B(t,, 0,2, tf, 0.) - B(tl, 0,2, t, 0o) (19) to<te<ts

For intercept, x! = yf = 0 so that Eqs. (17) through (19)
involve two unknowns: I and Go E OzA. These equations For this case, Eqs. (12), (13), and (15) can be applied
can be solved for cos OZA and sin OzAas at tC and to and combined to yield

coO5zA =v . tf+Z. Or O + 0t, (a.z O0 = O° + !,In (' ) (22)COOA= ka+a¢/'bi \+61

(20)sin 9A ,,,t g4, z. --- x,+ A(It,,a,,°, ,0) - A(to, a,,,1,to, Oo)sin OZA = {o + , in -. ]r.+[o*+%(,t-1 (Z-
+A(t., a., 2,f., o) - A(t,, ., 2, te, 0,) (23)

which, in turn, can be squared and added to obtain the = Yo + B(4, a., 1,f,0.) - B(t.,a,, to,0.)
single equation for ti  +B(t., a, 2, t, 9,) - B(to,1, I, , 8 ) (24)

fvtcm4 u,+z. ,2Ies44blQe.)l(_,.)+l,+(',-_,)l(,i)) + Along the straight-line part (a. = 0), Eqs. (12), (13), and
(21) (15) become

v,..., ,,+,. ,2 O = 9. (25)
xf = z. + A(tf,0,2,t.,.)- A(t.,0,2,t.,,) (26)

Once it is known, OZA follows from Eqs. (20). If t . I, 1! = y, + B(ti,,0,1,t,,) - B(,0,2,t,0.) (27)
the proper equations can be obtained from Eqs. (20) and
(21) by setting t, = tf. On the other hand, for f, S to, set Because of Eqs. (14) and (16), the explicit forms of Eqs.
tC = to. (26) and (27) are given by

Mazimum-Normal-Acceleration Intercept 2 + {Vrcos - 102 + b2(I -11)] cos0,}(tj - t.X28)
yf = y. + {VTsin 0 - [a2 + b26(t 1 - t,)]sin#,)(if - t.)(29)

The maximum-normal-acceleration intercept is the di-
viding line between intercept trajectories and closest-point- The solution process is to vary t, until z/ and y.areboth zero. This is accompished by stting z n
of-approach trajectories. It is possible to determine this btzr Th is macyicalo e. -se ig x=.O -and.
trajectory by applying Eqs. (12), (13), and (15). However, solvingEq.(28)analytically for ij. Eq. (27) is a quadratic
a system of two equations in two unknowns results, and equation and has two roots. The correct root is the smallest
while it can be solved efficientlv with careful coding. a sim- value of tiwliih is lrger than . ThenAhe..jolution for.
pier approach is used to determine whether an intercept is if is substituted into Eq. (29) where, because to is guessed,
possible. : 0. Hence, t, is varied until yt = 0. In this way, it is

Once OZA is known, the actual 0. can be compared with only necessary to solve one equation in one unknown.
OZA t i~inethe iign-of a.: 00 < OzA, 0, > 0 or

3



2. Given an._ and 0o, determine whether or not an in-

If the engine cutoff time is between the switch time and tercept can occur.
the final time, E.qs. (12), (13), and (15) lead to

3. If an intercept is possible, calculate the switch time

0'=9' , .,.+at (a, +bit, (30) for z;= = 0.

, (a,+ bit.) 4. If an intercept is not possible, calculate the final time

for closest point of approach.
,c=f zo + A(t., a., 1, to, 0o) - A(to, a., 1, to, 8o)

+A(tc, 0, 1, t, 0,.) - A(t,, 0,1, t, 0,) (31) Some results have been obtained for the following condi-
ye = yo + B(t., a., 1, to, Oo) - B(t° ant 1 tog o) tions:

+B(t, 0,1, t., 0.) - B(., 0,1, t, 0.) (32) 11T = 500 ft/sec, 0 :_ : _ 180 deg, Vt. = 1,000 ft/sec

For the coast, the corresponding equations are at._ = 25 g's, al. = -10 g's, to = 0 see,
: o = 5,000 ft, l. = 0 ft, t = 2.6 sec,

Of (33) a,.. = 100 g's, -70 < 0o < 70 deg (41)

z/= zX + A(t 1 , 0, 2, t., Or) - A(tc, 0, 2.4, ) (34)

yf =Py + B(t,0,2, t,, 0,) - B(t,, O,2, t,,0) (35) which are typical of a conceptual bank-to-turn missile en-
gagement. The limit on 0. is representative of the field of

The explicit forms of Eqs. (34) and (35) are similar view of a passive seeker. Trajectories are presented in Figs.
to those of Eqs. (28) and (29). Hence, the same solution 3 through 7 for different values of to primarily to illustrate
process can be used. that the computation process is valid.

The time-to-go algorithm has been tested in a six-
Closest-Point-of-Approach Trajectories degree-of-freedom simulation of a bank-to-turn missile. The

missile velocity vector is projected onto the plane of the line
For a. = an,., over the entire trajectory and for to < of sight vector and the target velocity vector; the time-to-go

t, < tf, Eqs. (12), (13), and (15) can be applied at t, and is calculated in this plane; and the result used as the time-
if and combined to obtain to-go for three-dimensional flight. Miss distance results are

shown in Table 1 for a number of engagement senerios. The
of =, + Itn (2+2') , G = Ge + tn (- ) (36) results labeled Case I are for the case where time-to-go is

calculated as range divided by closing speed. The results
x/=Zo + A(t=,a,, 1, ,0o) - A(to, a,, 1,to,9°) labeled Case II are for the case where bang-bang trajecto-ries are used to calculate time-to-go. In six engagements,

+A( ,, 2,1, 0,) -A(t, a,, 2, t,, Oe) (37) the bang-bang formula allows the missile to hit the target

yj = Y0 + B(te, a., 1, to, 00) - B(t., a., 1, to, 0o) (within 10 ft) when the range-over-closing-speed formula

+B(tf,a., 2,t , 0 ) - B(te, a.,2,tc, 9c) (38) allowed a miss. Only once does the reverse happen. In all
other engagements both formulas generate a hit or a miss

The equations for the case where t, < to are obtained from simultaneously. Overall, the bang-bang formula (Case II)
Eqs. (36) through (38) by setting te = to. Similarly, for provides better results.
t, > if, set t, = ti .

The point of closed approach is obtained by minimizing Discussion and Conclusions
the performance index

= X + Y2 (39) A method for predicting time-to-go for homing missiles
f I using a linear-quadratic guidance rule has been developed.

This is accomplished by solving the algebraic equation It is based on minimum-time trajectories for senerios when
intercepts are possible and on minimum-miss-distance tra-

- 0 (40) jectories when intercept trajectories are not po.sible in a
reasonable time. The missile velocity is variable in that
the tangential acceleration has a known positive value when

by bisection. The derivative in (40) can be taken analyti- thrusting and a known negative value when coasting and the
cally. To verify that the solution is a minimum, the second engine cutoff time is known. On the other hand, the target
derivative O2d 2 /Mt is checked. velocity is assumed constant.

In general, the optimal trajectories are composed of con-
Numerical R s stant normal acceleration segments. For an intercept trajec-

tory the control is maximum normal acceleration followed
The algorithm followed in computing a trajectory is the by zero normal acceleration. For a minimum-miss trajec-

following: tory, the control is maximum normal acceleration all the

1. Given VT, .), V, at... at,,, to, xo, yo, and i., com- way. Numerical results for the time-to-go algorithm have

pute OZA. This determines whether a. > 0 or a, < 0. been presented to verify the computational procedure. Also,

4C
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the time-to-go algorithm has been tested in a six-degree-of- Y.
freedom simulation. In general, the proposed time-to-go al-
gorithm produces better miss distances than those obtained
fromn the range-over-closing-speed method.
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Table 1: Simulation Results Closest point
of approach

Off-. Case I CaseU 11
Boresight Launch Aspect- Miss Miss- teep

Angle Range Angle Distance fDistanceInecp
(deg) (ft) (deg) (ft) (ft) ]-Intercept

o 7000 0 10.158 0.219
0 0 30 0.695 0.268 Intercept

0 7000 60 1.205 0.532 V

0 7000 90, 1.318 0.823 m
0 7000 120 2.560 0.342 - ZA x
0 7000 150 0.734 3.199
0 7000 180 0.352 1.521
0 3000 0 0.995 0.218
0 3000 30 1.685 0.306 F ig. 2 Typical Trajectories

0 3000 60 1.401 1.497
0 3000 90 2.524 2.563
0 3000 120 13.52 5.354
0 3000 150 4.219 11.82- 4000- nta isl
0 3000 180 0.585 4.562 3000, Position 8020

140 7000 0 359.2 1159. 20004 e01 o Target Path

40 7000 30 259.7 1112.1000-0
40 7000 60 0.164 0.638 fl
40 7000 90 0,922 0.532 Y6 00 4000500t0010 :
40 7000 120 1.944 0.758 1o 30O0H 90-0 006007O

40 7000 150 1.016 0.672 11
40 7000 180 0.358 1.609 20-ea2-5 00

40 3000 0 2104. 4.084 -3000- 1-0
40 3000 30 2695. 0.640 .4000

40 3000 60 2809. 0.198 x (ft)
3000 90 2519. 0.317 Cls01

to 3000 120 1867. 0.490 Cloest

40 3000 150 687.3 787.5 Apoc

to0 3000 180 245 396.0

Fig. 3 Trajectorics for 0 0 deg
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