RADC-TR-89-58
Final Technical Report
May 1989

=
-I
m
I
Bl
@)
M ¢
Z
<r
m
wni”
=2
J>
2

Odyssey Research Associates, Inc.

Dr. Richard 1. Kittredge

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

| -~ pTIC |

#% ELECTE gea
Junz 31989 | B

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

89 6 22 036

This repert non been reviewed by the RADC Public Affairs Division (PA)
and is releasable ro toe National Techrical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign naticns.

RADC-TR--89-58 has been reviewed and is approved for publication.

APDPROVED: 62”41%942¢5§707f Copr & ;%é;éf

MICHAEL L. Mc HALE
Project Engineer

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

JAMES W. HYDE, III -
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressce is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

=

UNCLASSIFIED

1] HIS PA
P
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution

| 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR~89~58
§ 62 NAME OF PERFORMING ORGANIZATION 6b. C()’:FICE svrhs?t 7a. NAME OF MONITORING ORGANIZATION

Jﬂﬂkﬂ
g:”"’ Research Associates, Rome Air Development Center
c.

v —— N —

6 ADORESS (City, State, and Zi* Code) 7b. ADDRESS (City, State, and 2IP Code)

301A Harris B. Detes Drive Griffiss AFB NY 13441-5700

Ithaca, NY 14850-1313
{82 NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION : f applicable)
Rome Air Development Center COES F41608-86-D-0010
3S (Chty, State, and 2 Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK JWORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. [NO. NO. JACCESSION NO.
. 62702F 5581 27 36

11. ITLE m Mmﬂcm

ACCE RATURAL LANGUAGE INTERFACE IRVESTIGATION

7T, FERSONAL AUTHORG)

IDx. Richard I. Kittredge meereeme———
13a. REPORT 13b. TIME COVERED [14. DATE OF REPORT (Year, Month, Day) 115, PAGE COUNT
Final FROM May 87 TtODec 87 | May 1989 44

16. SUPPLEMENTARY NOTATION

Subcontract issued to ORA by S’uppott Systems Associates, Inc.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse ra necessary and idmtl7y by biock number)
FIELD GROUP SUS-GROUP ACCE Prolog
12 o5 Logic Programming
Natural Language Processing
15.um(mmmﬂWMnmwn

This report provides a brief summary assessment of the strengths and weaknesses of logic pro-
gramming languages such as Prolog for supporting the requirements for natural language pro-
cessing in the Advanced Cowmand and Control Enviroument (ACCE). In order to deal as pre-
cisely as possible with ACCE requirements, this report emphasizes one of the best understood
ACCE goals: natural language access to databases. ') (_ / — -
. ctra & 4 ’l: R /)“ﬁ\“"l#wr—t'(

- i, o '7""' v
/L‘ 2 / ﬁj"" et e L SR N ol ’
L k v At AN TLiA .,
. . o« N
,’“ , : " /'/') “ f)
i',, xw/\ 5(-, ot ’.;1 S '
/\.
BUTION / AVAILABILITY OF ASSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
NCLASSIFED/UNUMITED [SAME AS RPT. [omic users |UNCLASSIFIED
378, NAME OF RESPONSIBLE INDIVIDUAL = ——"""Ti% Te.erront (include Area Code) | 22¢. OFFICE SYMBOL
[nicb.el L. Mc Hale (315) 330-2973 RADC (COES)
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

1 Prolog’s Capabilities for Supporting
ACCE Goals

This section provides a brief summary assessment of the strengths and
weaknesses of logic programming languages such as Prolog for supporting
the requirements for natural language processing in the ACCE program.

The ACCE program is oriented towards providing a powerful, flexible work-
station for battle management, to be deployed within ten years. One of the
primary features of the workstation is an intelligent, adaptive interface.
The interface will allow an operator to communicate with an integrated
set of computer systems using a combination of text (typed input), speech,
gestures and tactile (e.g., mouse, touch-screen) input. The interface must
adapt to a variety of types of user, representing quite distinct levels of ex-
pertise and needs. For each type of user and situation the interface must
not only understand natural spoken and written English input. It must
also be able to produce English output that is readily understandable by
the user in the context.

At present, the functions of the ACCE workstation are stated rather gen-
erally. The operating requirements and constraints on the use of natural
language which may be faced in particular fielded systems can only be sur-
mised (see section 1.1 below). Some of the currently foreseen functions
of the workstation include database query, expert analysis and planning
systems, battlefield simulations and projections, and even language trans-
lation.

In order to deal as precisely as possible with ACCE requirements, we
have carried out this investigation with an emphasis on one of the best-

understood ACCE needs: natural language queries to databases. The™ FoT
proper understanding of queries in a natural dialog sequence is one of the ‘*! g
most active areas of current research and development, with a variety of ., 0
techniques and implemented systems already available. More important,:tion _____ |
it remains one of the most difficult language processing problems. Signif-
icant breakthroughs are needed in several problem areas if the language

understanding goals of ACCE are to be fully met. — . tloen/
Avai}abillty Codep
. Avail endjor]

1Dist Special

a1l |

e

In the course of the last five years, the Prolog programming language has
become one of the primary tools for building natural language processing
systems. Prolog offers a number of interesting advantages, particularly
during the design and prototyping phases of system development (see sec-
tion 1.2.3 below). Moreover, as we will see below, the logic programming
paradigm is now usec for a large percentage of new approaches to natural
language processing (NLP), both in the United States and abroad. It would
therefore be impossible to gain a complete or balanced picture of the state
of the art, or the prospects for fulfilling A CCE requirements, without giving
full consideration to the fast-evolving tradition that Prolog represents.

1.1 Natural Language Requirements
for the ACCE Intelligent Interface

The ACCE program is at an early stage where technologies are being eval-
uated. We must therefore be careful to distinguish several kinds of require-
ments for natural language interface applications:

e requirements relevant to testing and evaluation of technologies (e.g.,
clarity of code, portability of prototype systems between computers
and adaptability to new problem areas);

e requirements concerning prototype design (e.g., ease and naturalness
of mapping problems statements to prototype code);

¢ requirements relevant to system development, system maintenance
and training of maintenance personnel (e.g., ease of reading code and
learning coding techniques; productivity of programmers; modularity
of programs);

e requirements relevant to performance of fielded systems (e.g., real-
time constraints on software, limitations on hardware, etc.)

Clearly, these four areas have quite different requirements. Questions of
code execution speed, for example, may be highly relevant to performance

2

in some real-time fielded systems, but hardly critical to testing, prototype
design or training. On the other hand, programming languages which foster
code perspicuity, clarity and modularity can greatly aid in system evalua-
tion, prototype design, code maintenance and training. These features may
be less relevant to performance of systems in the field.

In the near future the ACCE program must by necessity focus on the first
two requirement areas. In the area of natural language, the emphasis must
be on:

e evaluation of the current leading NLP technologies followed by ac-
quisition and mastery by RADC persounel of systems incorporating
those technologies;

o establishment of realistic specifications for the natural language func-
tions of the ACCE interface on the basis of existing and emerging
technologies;

1.1.1 Specific Natural Language Capabilities

To meet its basic goals, the ACCE natural language interface must have
several specific capabilities including the following:

e the ability to handle vocabularies in excess of 1000 words, includ-
ing expressions appropriate to various command and control sublan-

guages;

e broad coverage of English syntactic constructions used in command
and control dialog exchanges;

e the ability to handle non-standard input such as idioms, elliptical
expressions, sentence fragments, and grammatical errors;

¢ the robustness necessary to process correctly in the presence of recov-
erable errors (i.e., where redundancy of information in context allows
reliable reconstitution of the intended input);

o the capability to fail “gracefully”, with sufficient feedback to the user,
when communication is not correctly received and not recoverable;

o the capacity to initiate and control “clarification dialogues” to elicit
additional information from the user in certain cases of ambiguous or
ill-formed input;

¢ the ability to control the focus of a conversation to maintain and
change topic and subtopic as necessary;

¢ speech processing capabilities that allow short sentences to be input 1
vocally, using a normal fluid rate of spr :ch; there must be a close h
integration of speech processing abilities with the syntactic, seman-
tic and pragmatic capacities of the interface (i.e., intelligent speech
processing);

o the natural language interface should also be organized in such as
way as to allow understanding and explanation using the full context
of preceding input and output; in particular, query systems should
be capable of interpreting elliptical queries or query fragments in the
context of the preceding conversation; also any short output should be
expandable or explainable, if additional information (such as knowl-
edge of definitions) is required;

¢ understanding and generation of written language will frequently oc-
cur in the context of other media (such as graphics and speech, and
even monitoring of and feedback to human sensory systems); special
consideration must therefore be given to the problem of representing
linguistic expressions in a way that can easily "communicate” with
representations of expressions ir: other media.

1.2 Prolog’s Relevance to ACCE
1.2.1 Assumptions

In this section we consider the way in which Prolog is particularly relevant
to the requirements of the ACCE program and to some specific capabilities

4

envisioned for the ACCE natural language interface.

We assume here that ACCE interfaces, including their natural language
components, must first be built in prototype form using one (or more) of
the programming languages especially suited to symbolic processing such
as Lisp or Prolog. It is likewise generally assumed that neither of these two
symbolic processing languages is necessarily required for implementation of
a fielded system.

The choice of implementation language for any given application must de-
pend on trade-offs of speed, memory requirements, need to frequently mod-
ify or update the code, and other factors. We take the position here that by
the time ACCE is ready for implementation the tradeoffs will have changed
substantially and that the current need for evaluation and prototyping is
all that can be safely considered.

We also take for granted that functional programming languages such as
Lisp will continue to play an important role in NLP. Not only is there a
substantial body of NLP experience accumulated during nearly 20 years of
NLP programming in Lisp. There is also reason to believe that some NLP
problems are more naturally treated as list processing in the functional
paradigm, just as other NLP problems seem to be more naturally treatable
in Prolog. Future programming languages for NLP may well combine strong
points of both Lisp and Prolog (cf. LOGLISP and other extensions).

1.2.2 Two reasons for Prolog’s importance

Our basic line of argument here is that Prolog is relevant for ACCE for two
main reasons:

1. Prolog has features that are inherently suited to problems of natural
language processing (NLP);

2. the rapid growth of Prolog as the language chosen to implement a
wide variety of theories and accomplish a wide variety of tasks in

NLP means simply that a very substantial part of NLP technology is
now accessible most directly within the logic programming paradigm.

Section 1.2.3 below summarizes some of the inherent features of Prolog that
relate to NLP. Section 1.2.4 gives an overview of the depth and breadth of
natural language processing applications now being carried out in Prolog.

1.2.3 Inherent Features of Prolog

Much of Prolog’s success in NLP has come since the demonstration, by
Pereira and Warren (1980) that parsing of syntactic structure can be viewed
as a problem of logical deduction. Their introduction of definite clause
grammars (DCGs) marked the real beginning of widespread usage of Prolog
in NLP. [Note, however, that some fundamental features of DCGs were
already present in Colmerauer’s Q systems (1971), used as early as 1969 in
the machine translation work of the TAUM group at Montreal University;
Q-systems provided the basis for Colmerauer’s Metamorphosis Grammars
(1978), the immediate predecessor of DCGs]

DCGs provide a very natural, simple and powerful way of carrying out
top-down, depth-first parsing on sentences. A DCG parser has no need to
deal explicitly with “backtracking” during the essentially non-deterministic
procee< of syntactic analysis. Problems of string manipulation are also han-
dled in a way that is “hidden” from the grammar writer. This means that
much of the complexity of programming an analyzer can be handled auto-
matically by the DCG (and Prolog) interpreter. The programmer can con-
centrate on providing linguistic knowledge about grammatical constituents
and properties of words in a natural declarative form.

It should be pointed out that DCGs do not require interpretation into Pro-
log programs, but only that such interpretation is both simple and natural.

Another important feature of Prolog for NLP is the ease with which logical
structures are built up and manipulated within this language. Predicate
logic has served as an important language for semantic representation in

a number of linguistic theories. Even semantic networks (which are two-
dimensional and therefore not representable directly within machines) have
a more primitive logical form. Logical structures are particularly useful for
proving correctness of answers to database queries. They also provide a
very direct way in which to express knowledge bases and inference rules
required to carry out reasoning. Logic thus provides the essential glue
linking linguistic and non-linguistic knowledge. Since Prolog is based so
directly on logic, it is no accident that expert systems and database query
systems are often much simpler when written in Prolog than in any other
language. It is even possible to consider a Prolog program as being a set of
inference rules and the Prolog interpreter as a particular inference engine,
mirroring the structure of an expert system.

A final important feature of Prolog which is useful within and beyond natu-
ral language programming is the way in which it helps encourage a top-down
decomposition of problems into subproblems.

1.2.4 Importance of Prolog Expertise within
the Natural Language Processing Community

In this section we consider some of the dimensions of experience acquired
to date in Prolog programming for NLP. The breadth and depth of this
experience built up in only a few years can be taken as an indirect indi-
cation of the power of the logic programming paradigm. More directly, it
simply means that Prolog has now become an important “lingua franca”
for expressing and exchanging expertise about NLP.

Prolog has been applied to as wide a variety of NLP problems as has any
other language. Its applications for DB query are too numerous to list here,
but include substantial projects at several major US manufacturers of com-
puter equipment. Recent applications to language generation include gener-
ation of English and French marine weather forecasts (Polguére, Bourbeau
and Kittredge, 1987). Machine translation work at IBM-Yorktown Heights
(McCord, 1986) and at New Mexico State University (Huang, 1985) has
used Prolog, and the IBM system is now fairly large. Marseille Prolog has

been used for speech analysis and VM /Prolog for morphological analysis
(Russo, 1987).

Prolog is routinely used for building and manipulating deep and surface
syntactic trees, semantic nets, and other conceptual structures.

A wide variety of linguistic models have now been implemented in Prolog.
The Second International Workshop on Natural Language Understand-
ing and Logic Programming (Vancouver) presented implementations of
Government-Binding theory (Stabler, 1987), String-Restriction Grammar
(Dowding and Hirschman, 1987), and Discourse Representation Theory.
Other theories being implemented in Prolog include Generalized Phrase
Structure Grammar, Lexical Functional Grammar (Reyle and Frey, 1983,
Koch, 1987), and Meaning-Text Theory (Iordanskaya and Polguere, 1987).

The size of natural language systems now being implemented in Prolog
rivals that of systems iz any other progrmming languages. The Darpa-
supported Pundit system at Unisys, using Quintus Prolog, and the work at
Yorktown Heights by McCord (1986), using VM/Prolog are just two exam-
ples. Several large projects are now underway in France and elsewhere in
- Europe within the Esprit program. In Japan, where Prolog was chosen for
the machine language of the 5th Generation Computer project, dedicated
hardware is being prepared which should allow systems to reach a new level
of complexity and performance.

At least eight commercial Prologs have been used to write NLP systems on
large or mid-size computers:

BIM Prolog (Belgian)
C-Prolog

DEC Prolog-10,20
Hewlett-Packard Prolog
M-Prolog

Prolog II (French)
Quintus Prolog
VM/Prolog

These are available on a wide variety of machines from micros to main-
frames. Most major US computer manufacturers either market Prolog
products (IBM,DEC,Symbolics[Prolog board],Hewlett-Packard) or else mar-
ket machines for which a commercial Prolog is available (Sun, CDC). In
addition, a number of foreign companies (e.g., Belgian BIM) either market
their own Prologs or have them in the works.

In addition to the Japanese dedication to Prolog hardware in the 5th Gen-
eration Computing project, Japanese researchers have been active Prolog
users and have recently begun to extend Prolog in new directions. For ex-
ample, work by Ueda (1987) on guarded Horn clauses is aimed at adapting
Prolog for parallel computer architectures.

Because Prolog originated in France and Britain, there is considerable Pro-
log expertise in Europe. French industry in particular is quite advanced in
the use of Prolog for expert systems and NL interfaces (CGE-Marcoussis,
Dassault, IBM-Paris). Three Soviet bloc countries, Hungary, Czechoslo-
vakia and Poland, have been quite active in developing and using Prolog.
Some early innovations in making modular programs occurred in Hungary,
leading to the M-Prolog language which is marketed by Logicware in North
America.

1.3 Some Current Limitations of Prolog

Prolog has not, in the short tradition up till now, been oriented towards
efficient processing in real-time situations. Initial problems of control in
general and constraining search in particular are only now being addressed
on a broad scale by the logic programming community. Moreover, it is only
recently that the design of hardware has been substantially influenced by
the needs of logic programming, particularly in the context of the Japanese
5th Generation Project.

A number of efforts are underway to extend or modify Prolog to improve

the control problem. Several Prologs now allow modular communicating
programs which limit rule application. A more substantial extension is the
work on Meta-Prolog by Bowen (1985) at Syracuse University which will
allow more flexible proof of propositions with respect to “theories” and
“subtheories”. Part of the control problem recedes with the advent of par-
allel architectures and the invention of new Prolog programming strategies
to deal with them (e.g., guarded Horn clauses). Now that Prolog is firmly
entrenched in North America, US hardware manufacturers (Motorola, TI)
are seriously involved in the race to “put Prolog on a chip”.

1.4 Conclusions

The preceding sections have summarized some of the strengths and weak-
nesses of logic programming languages such as Prolog for natural language
programming of the kind envisioned in the ACCE intelligent interface. We
have shown that much of the current work in NLP is based on Prolog. This
is undoubtedly due in part to the ease with which (essentially declarative)
knowledge of language can be expressed in logical form. It is also due to the
way in which such problems as backtracking during analysis can be “hid-
den” from the system developer, thus cutting down on the complexity of
the programming task. A further advantage is in the way in which Prolog
encourages a top-down decomposition of the problems involved in language
analysis.

It must be conceded that the experience with Prolog as a programming
language for NLP is rather new, particularly in the U.S., where the tradition
is scarcely five years old (compared to the Lisp tradition in NLP which is
roughly 20 years old). Very large NLP systems are only now being written
in Prolog, because “industrial-strength” implementations, with powerful
development environments, have become available only in the past year.
We should therefore expect to see a quantum jump in the average size
of systems. Within two or three years, the appearance of new machine
architectures more favorable to logic programming should also lead to a
marked improvement in system performance.

10

One final point must be stressed. The success of the natural language
functions in the intelligent ACCE interface does not depend crucially on the
choice of language for prototyping and system building. It depends much
more on the state of the underlying technologies, whatever the language
they happen to be implemented in. It so happens that more and more
interesting technologies are being implemented in Prolog.

11

2 Study of Chat-80 Technology

2.1 Introduction

This section deals with a study of the Chat-80 database query interface from
the point of view of its technology for natural language processing (NLP).
Particular attention was paid to the appropriateness of this technology for
meeting the specific NLP requirements for language understanding in the
ACCE program (see section 1).

Chat-80 represents a doctoral thesis work by Fernando Pereira (1983), and
was originally written in DEC Prolog-10. It has been made available as a
public domain program for several versions of Prolog which share the now
standard Edinburgh syntax. The study of Chat reported in this section
relied mostly on the Quintus Prolog version running on a VAX at RADC
under VMS and on the (essentially identical) Quintus version running on
Odyssey’s Sun-3 under UNIX. There were apparently slight differences be-
tween the grammars of Chat-80 in the version discussed by Pereira and in
the public release version (see discussion in 2.2.1 below).

Chat-80 was one of the first non-trivial NLP systems ever programmed in
Prolog. At the time of publication the Chat analyzer was one of the largest
to make use of the Definite Clause Grammar (DCG) formalism (Pereira
and Warren, 1980), which simplifies the writing of computer grammars in
Prolog. DCG rules are interpreted into pure Prolog for execution with other
parts of the system written in Prolog. This made practicable for the first
time a unified treatment of query analysis, query interpretation, database
representation and query response, all through the use of programming in
logic.

Chat-80 also introduced the so-called Extraposition Grammar formalism
(see below). This allowed additional convenience in the grammatical book-
keeping required in processing certain semantically non-compositional con-
structions such as relative clauses.

The availability of Chat-80 as a part of the program examples package for

12

commercial Prologs has helped confirm Chat as an important milestone in
NLP programming. Section 2.2 below gives examples of Chat’s coverage
of an important subset of English query constructions (interrogatives and,
in principle, imperatives). In addition to being able to answer complex
queries within this subset, Chat is also clear and elegant in its construction
and modularity, and therefore relatively easy to adapt to similar domains
(see section 2.6 below).

Despite its advantages, Chat remains primarily an initial reference point in
the attempt to develop truly robust and powerful NL interfaces. Notwith-
standing the importance of its core grammar, its grammatical coverage of
English is still quite limited. Moreover, its inability to link the sentences
of a dialog, as well as its separation of syntactic and semantic processing,
would hinder its usage in any similar form as a component of the ACCE
interface (section 2.4 below). These limitations can hardly be taken as crit-
icisms, since Chat set a new standard in 1983, and it is only now that query
systems are beginning to show substantially new capabilities. Instead, the
technology contained in Chat should be viewed as an important stepping
stone towards ACCE program goals.

2.2 Language Processing Capabilities
and Limitations of Chat-80

Chat-80 is oriented towards answering queries about a geographical database
of countries, cities, rivers, oceans and continents, and their properties and
inter-relations. All of the countries and continents of the world are rep-
resented, as well as a selection of the more important capital cities and
rivers.

Following are some sample queries (with answers) which Chat can parse,
interpret and answer correctly. [Upper case letters are used here for read-
ability]

1. "What is the largest country in Asia?"
("the Soviet Union")

13

2. “What is the maximum area of a country in Asia?"
(8347 ksqmiles")

3. "Do -all continents corntain countries?"
(nnou)

4. "Which continent does not contain a country?"
(“Antarctica")

5. "What sea does the Rhone drain into?"
("the Mediterranean")

6. "What is the total area of countries in Asia?"
(18924 ksqmiles")

7. "What is the capital of Zaire?"
("Kinshasa")

8. "What countries does the continent which contains Zaire contain?"
("Algeria",....,"Zimbabwe")

9. "What are the continents no country in which contains more than
two cities whose population exceeds 1 million?"
("[Africa,Antarctica,Australial")

10. "Does any country contain two rivers?"
(nyesu)

Following are some queries which are not correctly processed by (the public
release version of) Chat-80, but which one might expect to be processed
given the domain. The reasons for failure to process correctly are quite
various and are indicated below:

14

11. "What is the largest country in Asia and what is its capital?"
("I don’t understand", i.e., no conjoined questions are parsed)

12. “What are the countries whose rivers drain
into the Mediterranean?"
("next question" : semantic failure probably due to ambiguity
of implicit quantifier om "rivers"-- all or at least one?)

13. "Is France or Germany in Asia?"
(failure to parse or interpret due to ambiguity)

i4. "Is France in Europe or Asia?"
(failure to parse or interpret due to ambiguity)

15. "Which is larger, France or Germany?" (failure to parse)

16. "What is the total area of Asia?"
("nothing satisfies your question":
failure to correctly interpret due to usage of '"total’’
in this context, despite correct reply to (6) above)

17. “What are all the cities in Asia?"
(strange incorrect reply due to usage of "all the’’)

18. "What is the distance from Rome to Paris?"
(failure to parse: data on distances not in database,
so syntax and semantics of verbs with two prepositions
“from ... to ...’ not covered in Chat)

19. "the largest country in Africa?"

(failure to parse, because questions must be
complete interrogative sentences)

15

2.2.1 Chat’s strong points

On the positive side, it can be said that Chat’s coverage of English is suf-
ficient so that most simple well-formed questions which could be asked of
the database can indeed be answered in at least one possible paraphrase
form. The ability to correctly answer questions such as (9), which require
substantial grammatical and semantic manipulation, was in fact quite im-
pressive at the time of Chat’s publication. Even five years after Chat, some
laboratory prototypes of NI query systems still have difficulties on some of
the queries (11)-(19).

According to Pereira (1983), Chat-80 can also handle a number of impera-
tive and declarative sentence types. In the context of the original database,
one would like to have imperatives such as:

"List the rivers in Asia!" or
“"Show me all the cities in Europe which are in countries
through which the Danube flows."

Unfortunately, the public release version of Chat could not successfully
parse any of the imperatives or declaratives indicated in the thesis version.
It appears that some modifications were made before the public release
occurred, and that these rendered inactive that part of the grammar. In the
Charisma system (section 2.6), treatment of some imperatives was restored
through the addition of postprocessing rules.

2.2.2 Linguistic limitations of Chat

On the negative side, at least from the point of view of the ACCE program,
it must be said that Chat has several serious kinds of limitations. First,
its coverage of the English grammar is not “dense” in the sense that many
of the paraphrases of a correctly processed question fail to be parsed or

16

interpreted correctly. Moreover, users receive little feedback as to what
led to the failure: the choice of failure message gives only implicitly the
level (syntactic parsing, semantic interpretation, etc.) on which the failure
occurred. The coverage also fails to be dense lexically: Chat’s vocabulary
is quite limited, giving few lexical alternatives for formulating equivalent
questions (i.e., making semantic paraphrases).

Second, the coverage of English is indeed limited in some general ways.
One surprising but easily repaired deficiency is the inability to take noun
phrases and other sentence fragments followed by question marks as queries
(cf. sentence 19 above). In continuous dialog, users of such commercial
systems as INTELLECT (which is based on older technology than Chat)
are allowed to use certain types of sentence fragments. Chat also does not
allow the use of pronouns to refer to entities named in previous queries or
replies, an almost essential need for dialog systems:

"What is the smallest country in Europe?" ("San Marino")
"What is its area?"

Some more subtle deficiencies of Chat can also be observed. For example,
the reply to (10) is not particularly helpful. A better reply would be:

"Yes, France and India."
(according to the incomplete database)

Likewise, the reply to (3) forces a second question (4) to identify the ques-
tionable continent. A more “collaborative” response than (3) would be
“No, Antarctica doesn’t.”

17

2.3 Some Design Characteristics of Chat-80

Fernando Pereira (1983) goes into some detail, in chapter 6, about Chat’s
general design limitations. He shows how extraposition grammars en-
counter serious difficulties in providing a general treatment of conjunction.
Although Chat allows limited kinds of and-conjunction, including between
relative clauses, each grammatical category must have its own conjunction
rules. There are no meta-grammatical rules which apply to conjunction be-
tween any two constitutents of the same category (see Dahl and McCord,
1983).

Pereira also mentions the fact that top-down parsing, such as Chat provides,
is inherently poor at providing analysis of sentence fragements, and in error
recovery. At the same time, it is usually more efficient than bottom-up
parsing for analyzing well-formed sentences.

Two other areas already earmarked for improvement in 1983 were the use
of dictionary information in semantic interpretation and scoping and the
resolution of anaphoric reference in (for example) pronouns.

2.4 Chat’s Capabilities with respect to Specific
ACCE Goals

It may be instructive to compare Chat’s capabilities, as it is now configured,
with the NLP processing goals of the ACCE intelligent interface (see section
1). It is conceivable that a database query system substantially like Chat
could accomplish useful work in the map domain (see section 2.6 below).
But to meet most of the general processing goals within the context of
language understanding, substantially new systems must be designed.

Chat’s vocabulary is limited to a few dozen words except for some three
hundred proper names of countries, cities and rivers included for reference
to database objects. The only verbs found in Chat were border, contain, do,
drain, ezceed, flow, rise, have and be. There are no problems in principle
with expanding the vocabulary to the 1000-word range. But the amount

18

of lexical information associated with each word needs to be expanded
substantially if words are to be allowed in all reasonable (grammatical)
combinations which are meaningful for the domain. Chat is not necessarily
optimally organized to accommodate lexicons or grammars which are large
and complex.

As noted above, Chat cannot link successive sentences in dialog. There is no
facility for interpreting anaphoric pronouns. Likewise, it cannot properly
parse or interpret sentence fragments. It cannot initiate or control dialog
in the way needed for clarification of misconceptions. The grammar is too
limited to permit much ambiguity, and there is no mechanism for resolving
any ambiguity that might arise in an expanded grammar. Although there
is no control of conversational focus, the syntactic and logical representa-
tions used in Chat are sufficiently rich to provide a useful foundation for
adding this and other conversational abilities. However a large part of a
truly conversational system should be its facilities for generating replies to
queries. Chat clearly has no facilities for generating full sentences much
less extended texts.

One of the major deficiencies of Chat (and of most other NLP systems of the
same vintage) is the inability to handle ill-formed queries. Mis-spellings,
grammatical errors or semantically imprecise queries invariably lead to error
messages or (in some cases) to the system’s ignoring the input entirely.
There is no attempt to “make sense” of an ill-formed query. (But note the
addition of spelling correction in the Charisma system, derived from Chat).
Such lack of robustness is typical of many research systems, but not to be
tolerated in supposedly “user-friendly” environments. INTELLECT and
other commercial database interfaces do rather well on this score, even to
the point of correctly answering queries which have been typed in with the
words in backwards order. But this feat seems entirely due to the limited
possibilities for interpreting queries in specific databases. This is not a
feature which will successfully “scale upwards” with a larger grammar and
more complex domain.

19

2.5 Swuccessors to Chat-80

Since early 1983, when Chat was published, a number of successor sys-
tems have been written. Some of these incorporated extensions or new
approaches to problems met by Chat. We mention some of these to in-
dicate the directions which have been taken in research. However, these
extensions were not always tested in large systems or even integrated into
systems which had all the capabilities of Chat. There is now a significant
opportunity to combine some of these extensions and improvements in a
new unified and “streamlined” system.

2.5.1 ORBIS

Within several months of the publication of Pereira’s Chat-80, the ORBIS
system was programmed by Colmerauer and Kittredge (1983) to demon-
strate three features not available in Chat. First, ORBIS allowed queries
to a database of astronomical objects (planets and their satellites) to be
posed either in English or in French. A single dialog control component
and database was used, along with parallel English and French grammar
modules. The dialog component applied both grammars to the first sen-
tence by the user (which could be in either language). The language whose
grammar succeeded in parsing the question was then used by the system
for creating replies. The dialog control was made possible by using the
“freeze” predicate in Marseille Prolog II, which delays evaluation under
certain conditions.

The bilingual feature of ORBIS suggests a way of introducing multiple-
domain processing in future ACCE interfaces. Specialized sublanguage
grammais (of English) could be run in parallel, controlled from a single
dialog component, to try to fit the user’s query to the proper domain.

A second innovation of ORBIS was its kind of feedback to the user. Any
attempt to type a query which used words or structures outside the system’s
lexicon and grammar would trigger a message such as:

20

‘‘Your sentence, which begins with ‘What is the ...?,
should continue with one of the words:
‘diameter’, ‘mass’, ‘distance’."

The dialog component applied the grammar to generate all the word pos-
sibilities known to the system at the point where the user’s query went
astray. Although this would prove computationally expensive for systems
with large grammars, such an approach might provide user friendliness for
some systems where the number of words or grammatical categories is lim-
ited.

A third feature of ORBIS was its integration of syntactic and semantic pro-
cessing within the same rules. Chat-80 separated the rules for computing
syntactic structure from the rules for semantic interpretation, allowing for
separate feedback and diagnostics from each processing stage. The inte-
grated approach used by ORBIS and other more recent systems has three
advantages: (1) it reduces the number of rules and (2) enforces the con-
sisteacy of semantic coverage and syntactic coverage within the system.
Furthermore, and perhaps most important, (3) this approach saves fruit-
less syntactic processing in cases where the semantic component of the rules
cannot make sense of the syntactic analysis (see also Porto and Fulgueiras,
1984).

2.5.2 Modifier Structure Grammars

As indicated by Pereira in 1983, one of the serious drawbacks of the ex-
traposition grammar approach was its inability to allow general treatment
of conjunction. The processing of conjoined phrases by computer gram-
mars has always been a major stumbling block. As early as the LUNAR
system of Woods et al. (1972), considerable effort was put into assigning
the proper scope to and-conjunction. When the ATN analyzer encountered
an occurrence of and, all normal processing was halted. Special routines
(SYSCONJ) were applied (see Woods, 1973), working out on both sides

21

from the conjunction until matching structures were identified.

Other builders of large grammars, including Sager (1981) at NYU using
the string parser now also in use at Unisys, met the same problems and
have likewise been forced into extraordinary efforts. Some researchers have
even claimed that the problem of correctly scoping conjunctions is equal
to the sum of all other problems in sentence analysis. This may be an
exaggeration as far as syntax of database queries is concerned; the problem
is far more frequent and difficult in expository scientific text. Nevertheless,
correct conjunction scoping has remained a major challenge for sentence
analyzers used in most interfaces.

One of the first improvements in treating conjunctions was given in Dahl
and McCord (1983). Within their Modifier Structure Grammars (MSGs) it
became possible to handle coordination metagrammatically, writing rules
which applied across the board to conjoined expressions, independent of
the particular (identical) grammatical categories conjoined.

Another important improvement introduced with MSGs was a flexible way
of writing the semantic effect of syntactic constituent combinations within
the syntactic parsing rule. This feature was later developed by McCord in
his Modular Logic Grammars (see 2.5.5 below).

2.5.3 Gapping Grammars

Dahl and Abramson (1984) developed a different approach to handling
problems such as extraposition and conjunction. Their Gapping Grammars
(GGs) allowed the manipulation of more than one displaced element in
arbitrary order. Pereira’s extraposition grammars had been subject to a
limitation on order called the “bracketing constraint”, which corresponded
to the ordering constraint in Woods’ use of a HOLD list for ATNs.

2.5.4 SPH and INTERIX at French CGE Corp.

Alain Polguere (1984) built an analyzer for French, based on extraposition
grammars and using the slot grammar method of McCord (1982). This
was one of the first systems to interleave semantic structure building (in-
cluding compositional treatment of quantifiers) with syntactic processing.
More recently this systemr: has been used by Stephan Guez as the basic sen-
tence analyzer for his INTERIX system, a UNIX consultant expert system
completed in 1987 at the French Compagnie Générale de L'’Electricité.

2.5.5 Modular Logic Grammars

Michael McCord (1985,1986) has introduced the Modular Logic Grammar
(MLG) formalism in the context of an experimental machine translation
system (called LMT) being developed in VM/Prolog at IBM’s Watson Re-
search Center. MLGs are syntactically similar to DCGs, but with distinc-
tions between strong and weak non-terminals, to help separate grammatical
categories with semantic import from those which are used as auxiliaries
during treatment of non-compositional structures. There are also logical
terminals, used to build up pieces of semantic representation. Compiled
MLG rules may apply in single-pass mode, where calls to semantics are in-
terleaved with application of syntactic rules, giving only semantic (logical)
forms as the output. Or they may apply in two-pass mode to build first a
syntactic structure which is passed to the semantic interpreter.

MLGs allow special treatment of coordination and bracketing (i.e., the use
of parenthetical-type structures) through metarules in the rule compiler.
MLGs also help to hide a certain amount of rule complexity from the gram-
mar builder.

2.6 Porting Chat-80 to the Map Domain

One of the tasks involved in evaluating Chat has been the collaborative
RADC effort to modify the Chat-80 system for a domain of map informa-

23

tion (see McHale and Huntley, 1987). Although this new domain involves
geographical knowledge, this knowledge is more “local” in that elementary
objects are airstrips, towns, roads, railroads, power lines, map quadrants,
etc.

To allow reference to the new ojectsin this different domain, it was neces-
sary to add new nouns and special noun phrase types to the lexicon. In
addition, new verbs and adjectives were needed to allow for expressing ap-
propriate queries about the new domain. There also had to be a totally new
semantic type hierarchy for the purposes of computing semantic compati-
bility of verbs and adjectives with their noun phrase arguments. In order
to avoid major restructuring of the program during evaluation, no changes
were made to the syntactic and semantic rules themselves, although certain
special rules were added (see McHale and Huntley).

2.7 Summary and Conclusions

An investigation of Chat-80 from the point of view of extendability has
shown that the overall system structure is quite amenable to making ad-
justments at the level of domain classes and vocabulary. A first experiment
in adding prepositional complements to verbs in Chat proved easy thanks
to the readability and modularity of the Prolog code.

Experiments in porting Chat to a new domain were also successful. Chat’s
grammatical coverage of English proved to be good enough for many queries
needed in the map domain. Simple substitution of vocabulary (using a
new hierarchy of semantic types) was sufficient, along with new database
entries, to get started. Special problems then revolved around syntactic pe-
culiarities encountered in the new domain (e.g., “type-2 obstruction”), or
the addition of user-friendly features (spelling checker, help file)} which did
not interact with the complex syntactic and semantic rules. The resulting
Charisma system (McHale and Huntley, 1987) was generally successful at
giving responses to queries transposed to the map domain. Chat’s read-
ability and modularity greatly aided all these adjustments.

24

More ambitious changes were also initiated in Charisma. Experiments were
conducted in adding imperatives, single noun phrase queries, and posses-
sives and in improving the treatment of queries of the type What is (proper
noun)?. Although it is generally possible to avoid modifying the syntactic
core of Chat by making “post hoc” additions that graft onto existing rule
sets, one gets the impression that the two-stage syntactic/semantic pro-
cessing is too complexly stated to invite revision in its present form. Most
of the same power of Chat’s treatment of quantifiers and other difficult
semantic problems could now be preserved in a version which would inte-
grate syntactic and semantic processing in the same rules. Moreover, much
of the complexity of these rules could be “hidden” from the grammar writer
more successfully using recent techniques developed by McCord and others.
Such a “streamlined” reformulation of Chat technology would facilitate the
scaling up to larger domains.

The more serious systematic limitations in Chat identified in section 2.2
above have confirmed the impression gained from reviewing the NLP lit-
erature that much more remains to be done to meet the long-range needs
of NL interfaces in the ACCE program. For the most part, the missing
features (such as control of focus, anaphoric reference resolution and other
dialog problems) are the subject of on-going research in a number of uni-
versity and industrial laboratories. Experimental dialog systems are being
developed in Prolog, Lisp and other languages. Progress depends not so
much on the choice of programming tools, but rather on improving the
basic linguistic data and representations, and on schemes for manipulating
and co-ordinating various kinds of knowledge. Some early results from this
research can now be added fairly easily to Prolog interfaces dealing with
specific domains, such as the map domain of Charisma. The cumulated
experience from several such applications is needed to foster the evolution
of general domain-independent approaches needed for interfaces which can
easily handle multiple, constantly changing application domains.

25

3 Strategies for Achieving ACCE Goals
through Logic Programming

This section is devoted to outlining some strategies for promoting natural
language processing technology that is specifically related to the goals of
the ACCE intelligent interface. We assume here the logic programming
paradigm as represented by the programming language Prolog. We fur-
ther assume, as in the earlier sections, an emphasis on the goals of natural
language understanding as needed for database query systems. For a dis-
cussion of Prolog and its relevance for ACCE goals in NLP, particularly in
natural language understanding for interfaces, see section 1.

The separate options discussed in the sections below take as their common
starting point the Chat-80 system of Fernando Pereira (1983) and its suc-
cessors, discussed in section 2. These systems and approaches represent a
fertile pool of NLP technology that is already available in the logic pro-
gramming paradigm. The evaluation and testing of this technology with
respect to ACCE database query goals is facilitated by Prolog’s ready-made
facilities for expressing relational databases, top-down parsers, and logical
mechanisms for constructing and evaluating semantic representations. Still
it should be stressed that the interest of this technology goes beyond the
logic programming paradigm.

3.1 Integrating Syntax and Semantics

In order to build larger and more robust query systems than Chat, it is nec-
essary to ensure a better integration of syntactic and semantic processing.
The Chat-80 grammar covers a rather small, but crucial part of English
syntax. The main emphasis is on interrogative structures containing sim-
ple sentences (not conjoined). Within the simple sentences, however, noun
phrase syntax may be rather complex. Quantifier expressions and relative
clauses may be (recursively) embedded, giving some strings whose syntactic
and semantic analyses are not easily inter-related, such as the noun phrase
in example (9), section 2.2:

26

the continents no country in which contains more than two cities
whose population exzceeds 1 million

The meaning of such an expression cannot be derived in a simple way from
its syntactic structure and the meaning of its parts. In other words, the
semantics of such an expression is not directly compositional. Pereira’s
approach to semantics in Chat is to derive a semantic representation for
a whole (query) sentence from a previously computed syntactic structure.
This has the advantage of keeping syntax and semantics more compart-
mentalized, and makes each individual rule a bit simpler. Syntactic rules
might be debugged more directly. It also allows syntactically well-formed
sentences to be recognized even when their meaning is not computable.
This can give some feedback to a user about the source of ill-formedness,
even if it may tend to slow down the total throughput of a system.

The approach often taken in successor systems to Chat is to interleave
syntax and semantics in the same rule. One advantage of this approach is
that it makes clearer the relationship between semantics and syntax in the
system. It helps guarantee that when rules are changed, both aspects of
the rule are considered at the same time. As the size of a system grows,
this can become an important design principle. But most important, the
interleaving approach ensures that syntactic/semantic rules are as efficient
as possible. Putting semantic tests and logical structure building actions
on each syntactic rule cuts down on unnecessary syntactic computation by
blocking further processing when semantic well-formedness is not satisfied.

It is noteworthy that McCord’s recent work (1986) on Modular Logic Gram-
mars for large analyzers uses interleaving rules. In fact his interleaved rules
can run in two modes: (1) interleaved calls to semantics or (2) sep-
arated computations. In applications such as machine translation where
deep syntactic structure is often sufficient for language transfer, the se-
mantic computation can be delayed or suppressed. In applications such as
database query, where semantic computation is essential for proving that
the reply is indeed a valid response, the tandem incremental computation
of syntax and semantics can flag semantic ill-formedness at the earliest
possible moment.

27

The trade-offs between interleaved and separated semantics in large sys-
tems are not yet well understood, despite the general arguments outlined
above. It is therefore important to consider rewriting Chat, or its deriva-
tive system Charisma, in a form which uses interleaved rules. This may
require some modifications in the approach to quantifiers and other seman-
tically complex constructions, but should make the resulting system easier
to extend in scope and expand in size. In addition, this rewriting should
help to understand the generality of the scoping rules and other non-trivial
semantic rules which lie at the heart of the semantic computation problem.

3.2 Grammatical Extensions

The grammatical coverage of Chat will be easier to extend following the
rewriting process mentioned above. New domains such as the map domain
inevitably require additions to the grammar as well as new lexical entries.
Some of the query structures needed in Charisma, but which could not be
added in a general way (without reconsidering the design of other rules)
were:

How far is Hudson Falls from Utica?

(queries using scalar adjectives)

What is the distance from Utica to Albany?
(queries on nouns with prepositional complements)

How much larger is Albany then Uticaf
(queries on measurable scalar comparatives)

Does any ratlroad cross the Schroon River?
(special semantics of new verbs)

One of the significant problems faced in a realistic implementation of the
map domain is the heuristic definition of certain vague concepts (in order to
give them a “working” meaning. These heuristic definitions need to interact
with the more general semantic functions needed for quantifiers, relative
clauses and conjunctions (to cite just three hard problems). A certain

28

amount of experimentation is needed to determine the ways in which the

semantics of specific terms can interact with general semantic rules. The
Q choice of terms used in a given domain can even impose limits or choice
h metrics on the overall semantic approach used.

Some of the vague terms requiring precise definitions that arose in deter-
mining the scope of Charisma were (vague term in italics):

Does Albany lie between Burlington and New York?
(how close to a straight line between Burlington
and New York must Albany be?)

Does route 9 pass near to Albany?
(fuzzy definition for near)

How close is Vermont to Philadelphia?
(measuring between points and areas)

What are some of the towns in Oneida County?”
(fuzzy quantifier some in this context:

how many towns should be named?

should they all be listed if there aren’t many?)

In cases such as spatial relations there should be consistent heuristic defini-
tions for entire classes of words. Other vague terms will be rather specific
to one word or a small class. In general these semantic definitions will not
be verifiable directly in the database but rather through logical formulas.
The point is that these formulas must be designed to interact correctly with
the standard logical expressions which will not change from one application
to another.

3.3 Dialog Capabilities

As the examples and discussion of section 2 indicate, there are many prob-
lems, and even dimensions of problems, which must be addressed in building
dialog systems of the type needed for the ACCE program. Dialog control

29

and interpretation requires having access to both the syntax and the se-
mantics of previous queries during the analysis of new queries. This in
itself is an argument in favor of recasting Chat so that closer coordination
is obtained between syntactic and semantic processing.

Because the number of dialog problems is large and because the general
solution to these problems is not necessarily at hand, even in research sys-
tems, it is important for ACCE planning to assess in detail the specific
dialog functions that are required in concrete systems. Some of the ques-
tions to be asked are:

e what sort of linguistic differences will there be between dialogs using
typed input and those with spoken input?

e how detailed will system responses need to be?
is there a need for multiple-sentence replies?

o what sorts of sentence fragments could be used as input, and how can
these be ambiguous in particular contexts?

e to what extent will queries be answered by graphic displays or other
non-linguistic feedback?

e to what extent will pronouns and other anaphoric expressions be used
in the dialogs? what will be the typical and maximal scope of these
expressions in referring to previous queries or replies in the current

conversation, and in referring to objects or relations displayed graph-
ically?

A series of simulation exercises using realistic data can help to identify
specific problems and their relative frequency and other measures of im-
portance. This should lead to an identification of the priorities within dia-
log handling. Study of commercial systems which have engineered ways to
handle certain cases of anaphora and sentence fragments can help to iden-
tify potential needs. But care is needed in extrapolating the capabilities
of current commercial systems towards semantically more robust systems.

30

Commercial systems often rely heavily on the semantic and pragmatic re-
strictions imposed by specific database predicates, and not on generalizable
linguistic representations. In particular, the interplay between language
and graphics in ACCE will require much better communication between
the two data structures than is now possible in commercial database query
systems. The representation of linguistic and non-linguistic knowledge must
be richer by far to allow, for example, a pronoun in a query to be interpreted
as referring to a highlighted object in the graphical reply to a preceding
query.

Among the possible problems which should be high on the list of priorities
we expect: pronouns and other deictic expressions, sentence fragments used
as queries, and the problem of handling ill-formedness in the presence of
solutions to these problems. Despite the difficulty of discourse problems,
it is advisable to survey this terrain as early as possible to visualise future
constraints on the general interface problem. In particular, we would urge
that some initial work on fragments and pronominal anaphora be carried
out on Charisma or a similar system derived from Chat. It would also be
advisable to look at dialog forms needed for future spoken input as well as
the forms currently needed for typed input.

3.4 Integrated Interface Requirements:
Speech and Graphics

A multi-media interface of the kind needed by the ACCE program puts a
number of design constraints on each module. In particular, the represen-
tations used for linguistic meanings must communicate with those used for
graphical entities. This constitutes a new requirement over and above a NL
query system as conceived in Chat, which assumes a “stand-alone” system.

The Charisma extension to Chat has adjusted the domain towards one in
which graphical output can serve as the response to queries. In the light
of this experience, two further extensions become possible, (1) the addition
spoken input, and (2) the co-ordination of spoken input with mouse input.

31

First, in a restricted domain such as the Charisma map domain or the orig-
inal Chat geographic database domain it is possible to add spoken input as
an option. For the most part, the vocabulary and grammar of queries is re-
stricted enough to allow word recognition using existing commercial speech
recognizer. However, two problems must be solved. First, existing rec-
ognizers based on individual word recognition (e.g., Votan VPC 2000) can
make too many recognition errors, even within a vocabulary of 50-100 words
to be useful directly. However, these may give satisfactory performance if
their output can be filtered through grammatical and semantic contextual
constraints which then make possible error recovery strategies. Recogniz-
ers allowing in-built finite state grammars (e.g., Verbex, ITT) might allow
some grammatical constraints to be stated, but have no capability for stat-
ing the context-sensitive restrictions on a grammar of the power used by
Chat. Error recovery procedures which add context-sensitivity to word-
based recognition do exist (e.g., Dreizin,1986) and can be adapted to en-
hance finite-state grammar recognizers. But one additional problem occurs:
current recognizers cannot cope with the large branching factor presented
by proper names in queries. Particularly in the case of foreign place names,
the word templates will be insufficiently reliable. And since usually there
are hundreds of possible place names at particular points in map queries,
this area of recognition appears difficult.

In order to successfully add speech input to a system like Charisma it would
be possible to circumvent the place-name problem in the following way. In
the context of map displays on which place names are already indicated,
it would be possible to speak the query using deictic place adverbs (e.g.,
here,there) co-ordinated with clicking of a mouse or other input device on
the portion of the map containing a name or other location label. Not
only would this give more reliable input (no more need to pronounce and
perhaps mispronounce foreign place names), but the mouse input would
confirm certain aspects of the syntactic structure of the query.

3.5 Recommendations

Among the strategies proposed above, there seem to be some ordering con-
straints. The problem of co-ordinating syntactic and semantic processing
through a single set of rules appears to take priority. In the process of re-
casting the syntax/semantics interaction, certain additional problems posed
by dialog can be taken into consideration. Once a rebuilt system is run-
ning, additional grammatical structures can be added and specific dialog
capabilities tested. In order to set up a program for incremental improve-
ment of dialog processing, however, it is important to collect dialogs from
simulated man/machine interactions with a realistic problem set.

In case specific domain simulations from command and control are not
available in the near future, the map domain should be taken as an object of
serious simulation study. Man-machine interactions in this domain appear
to present many of the interesting natural language problems that should
arise in command and control. Perhaps the additional element required,
and which is absent in Chat, is some model of the speaker and his goals.
Before adding this additional dimension to interface design, it would be
advisable to have a solid basis in the processing of more “objective” queries.
The approaches of Chat and its successor systems, adapted to domains such
as Charisma’s map domain, provide an excellent starting point from which
to build.

33

4 REFERENCES

Bates,Madeleine and Weischedel,R. (1987) Evaluating Natural
Language Interfaces (manual for tutorial at 25th Annual
Meeting of the ACL, Stanford).

Bowen,Kenneth (1985) Meta-Level Programming and Knowledge
Representation. Tech.Rep. CIS-85-1, School of Computer
and Information Science, Syracuse University.

Bowen,Kenneth and Weinberg,T. (1985) A Meta-Level Extension
of Prolog. in Proceedings of the 1985 Symposium on
Logic Programming, eds.Cohen,J., and Conery,J., IEEE
Computer Society Press, Washington D.C., pp. 48-53.

Colmerauer,Alain (1971) ‘‘Les systémes-Q: un formalisme
pour analyser et synthetiser des phrases sur ordinateur’’,
Internal Report, TAUM Group, Universite de Montreal.

Colmerauer,Alain (1978) ‘‘Metamorphosis Grammars’’, in L.Bolc,
ed., Lecture Notes in Computer Science, vol.63,pp.133-189,
Springer Verlag.

Colmerauer,Alain and Kittredge,R. (1983) ORBIS (bilingual
English-French database query system demonstrated at
IJCAI-83 conference)

Dahl,Deborah (1986) °‘Focussing and Reference Resolution
in Pundit’’, Proceedings of AAAI-86 (Fifth National
Conference on Artificial Intelligence), pp.1083-1088.

Dahl,Veronica and Abramson,H. (1984) ‘‘On Gapping Grammars’’,

Proceedings of the Second International Logic Programming
Conference, Uppsala, pp.77-88.

34

Dahl,Veronica and McCord,M. (1983) ¢‘Treating Co~Ordination in
Logic Grammars’’, American Journal of Computational
Linguistics, vol.9, pp.69-91.

Dahl,Veronica and Saint-Dizier,P.,eds. (1985) Natural Language
Understanding and Logic Programming (Proceedings of the First
Int’]1 Workshop on Natural Language Understanding and Logic
Programming, Rennes). North-Holland.

Dowding,John and Hirschman,L. (1987) ‘‘A Dynamic Translator for
Rule Pruning in Restriction Grammar’’ in Saint-Dizier(ed.)

Dreizin,Felix, Kittredge,R. and Korelsky,T. (1986) ‘‘Semantic
Techniques for Error Recovery: An Application to Fire Control
Dialogs’’ Proc. Military Speech Tech Conference, Arlington.

Grosz,Barbara, Appelt,D., Martin,P. and Pereira,F. (1987)
‘‘“TEAM: An Experiment in the Design of Transportable
Natural-Language Inter-faces’’, Artificial Intelligence 32,
pp.173-243.

Hirschman,Lynette (1987) f‘Conjunction in Meta-Restriction
Grammar’’, Journal of Logic Programming.

Huang,X-M. (1987) ‘‘Machine Translation in SDCG Formalism’’,
in Nirenburg,S.(ed.)

Iordanskaya,Lidiya and Polguédre,A. (1987) Generation of
Reports on the Activity of an Operating System Using
Conceptual Communicative Representations. Technical memo,
Odyssey Research Associates, Montreal.

Koch,Gregers (1987) ‘‘Computational Logico-Semantic Induction’’,
in Saint Dizier,ed.

35

Matsumoto,Y. (1987) ‘‘A Parallel Parsing System for Natural
Language Analysis’’, New Generation Computing, 5:63-78,
Springer-Verlag.

Matsumoto,Y., Tanaka,H., and Kiyono,M. (1986) ‘‘BUP:
A Bottom-Up Parsing System for Natural Languages’’,
in van Caneghem,M and Warren,D.,eds.

McCord,Michael (1982) ‘‘Using Slots and Modifiers in Logic
Grammars for Natural Language’’, Artificial Intelligence,
vol.18, pp.327-367.

McCord,Michael (1985) f‘Modular Logic Grammars’’, Proceedings
of the 23rd Annual Meeting of the Association for
Computational Linguistics,Chicago.

McCord,Michael (1986) ‘‘Design of a Prolog-Based Machine
Translation System’’, Proceedings of the Third
International Logic Programming Conference, Springer-
Verlag, Lecture Notes in Computer Science.

McHale,Michael and Huntley,M. (1987) ¢‘Charisma’’
Internal Report, RADC.

Nirenburg,Sergei,ed. (1987) Machine Translation:
Theoretical and Methodological Issues. Cambridge University
Press, Studies in Natural Language Processing.

Pereira,Fernando (1983) Logic for Natural Language Analysis.
Technical Note 275, SRI International.

Pereira,F. and Warren,D.H.D. (1980) ‘‘Definite Clause Grammars
f>r Language Analysis - A Survey of the Formalism and a
Comparison with Transition Networks’’, Artificial
Intelligence, vol.13, pp.231-278.

Pereira,Fernando and Warren,D.H.D. (1983) f‘Parsing as
Deduction’’, Proc. 21st Annual Meeting of the Assoc.for
Computational Linguistics, pp.137-144.

Polguére,Alain (1984) Programmation logique des interfaces
langue naturelle [Logic programming of NL interfaces].
Internal report, Marcoussis Laboratories, Research Centre
of the General Electric Company [of France] (CRCGE).

Polgueére,Alain, Bourbeau,L. and Kittredge,R. (1987) RAREAS-~2:
Bilingual Synthesis of English and French Marine Weather
Forecasts. Technical memo, Odyssey Research Associates,
Montreal.

Porto,Antonio and Filgueiras,M. (1984) ‘‘Natural Language
Semantics: A Logic Programming Approach’’, Proceedings
of the IEEE International Symposium on Logic Programming,
Atlantic City.

Reyle,Uve and Frey,W. (1983) ¢‘A Prolog Implementation of
Lexical Functional Grammar’’, Proc. IJCAI-83, pp.693-695.

Russo,Marina (1987) ‘‘A Rule-Based System for the
Morphologic and Morpho-Syntactic Analysis of the
Italian Language’’ in Saint-Dizier(ed.)

Sager,Naomi (1981) Natural Language Information Processing,
Addison-Wesley.

Saint-Dizier,P.,ed. (1987) Proceedings of the Second
International Workshop on Natural Language
Understanding and Logic Programming,

Simon Fraser University.

Stabler,Edward (1987) ‘‘Parsing with Explicit
Representations of Syntactic Constraints’’

37

in Saint-Dizier (ed.).
Ueda, Kazunori (1987) Guarded Horn Clauses. MIT Press

van Caneghem,M. and Warren,D.H.D. (1986) Logic Programming
and Its Applications. Ablex.

Walker,A.,ed., McCord,M., Sowa,J. and Wilson,W. (1987)
Knowledge Systems and Prolog. Addison-Wesley.

Woods,William, Kaplan,R. and Nash-Webber,B. (1972) The
Lunar Sciences Natural Language Information System:
Final Report. report 3438, Bolt, Beranek and Newman Inc.

Woods,William (1973) ‘‘An Experimental Parsing System
for Transition Network Grammars’?’, in R.Rustin,ed.,
Natural Language Processing. Algorithmics Press.

