

DOT/FAA/AM-89-5

Office of Aviation Medicine Washington, D.C. 20591

"OPERATION WORKLOAD" A STUDY OF PASSENGER ENERGY EXPENDITURE DURING AN EMERGENCY EVACUATION

E. Arnold Higgins, Ph.D. James H. B. Vant, Ph.D.*

Civil Aeromedical Institute Federal Aviation Administration Oklahoma City, OK 73125

March 1989

Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

of Transportation Federal Aviation Administration

NOTICE

•

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog I	No.
DOT/FAA/AM/89/				
4. Title and Subtitle		+	5. Report Date	=
				,
EXPENDITURE DURING AN EMERG	UDY OF PASSENG ENCY EVACUATIO	ER ENERGY N	6. Performing Organizati	on Code
			8. Performing Organizati	on Report No.
7. Author's)				
E.A. Higgins, Ph.D. and Jam	es H.E. Vant,P	h.D.*	12	
FAΔ	lege	10, Work Unit No. (TRAI	5)	
Civil Aeromedical Institute	11. Contract or Grant No	· · · · · · · · · · · · · · · · · · ·		
P. 0. Box 25082	3JA			
Oklahoma City, OK 73125	0xfordshire	, UK	13. Type of Report and F	Period Covered
12. Sponsoring Agency Name and Address				
Office of Aviation Medicine				
Federal Aviation Administra	tion			
800 Independence Avenue, S.	N.		14. Sponsoring Agency C	ode
Washington, D.C. 20591				··
15. Supplementary Notes				
Research leading to prepara AM-B-87-PRS-81.D and AM-B-8	tion of this r 8-PRS-81.D	eport was perfo	rmed under task	S
16. Abstract	<u> </u>	<u></u>	<u> </u>	
YIn an earlier study at the	Civil Aeromedi	cal Institute.	workloads were	determined for
passengers during an emerge	ncv evacuation	. The evacuati	on tests were c	onducted in
an orderly manner and were	suggested as r	epresentative o	f a moderate wo	rkload. The
current study is a continua	tion and ampli	fication of tha	t study and uti	lizes
similar techniques for deter	rmining worklo	ad. In this st	udy, passengers	were
required to avoid the aircr	aft aisles and	to traverse ov	er seat backs t	o the exit in
order to simulate a maximum	effort which	might be <mark>antici</mark>	pated in an eme	rgency. Thus,
maximum workload could be e	stimated more	realistically.	This informati	on is
necessary to formulate qual	ification requ	irements for pa	ssenger protect	ive breathing
equipment. Recommended value	ues proposed i	n the first stu	dy should be mo	dified. (GC
Original recommendations are	e listed below	and are crosse	d out when chan	ge is
indicated, then followed by	the recommend	ed new value.		
1) A 20-min work prof 15 -min at 0.7 W/	lie consisting	01: • 2 min at 1 2	W/Va hady wata	h+•
1 min at 0.7 W/	(1) W/Kg body	, 2 min at 1.2 weight. 2 min	at 1 2 W/Kg hod	nu, v woight
2) The volume of the	.0) w/kg body smoke bood – t	vpe PPBE should	exceed the vol	ume that
encloses the head	and neck by 3.	0 Liters.		
3) The device should	provide 3.0 L/	min oxygen for	20 minutes.	
4) The device should	probably be ca	pable of absorb	ing 4 \$ (30) L o	f CO ₂ .
The subject population shou	ld include one	or two individ	uals who meet o	r exceed the
weight of the 95th percenti	le male.			
17. Key Words		18. Distribution Statem	ent	
Passenger Protective Breath	ing Equipment,	Document is	available to th	e public
Emergency Evacuation,		through the	National Techni	cal
Smoke/Fume Environment	Information	Service, Spring	field,	
	Virginia	22161		
19. Security Classif. (of this report)	20. Security Class	it. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassif	ied	36	
Form DOT F 1700.7 (8-72)	Paradura f		an a sharar a sur a surara	ل ــــــ
	Reproduction of con	ipierca page authorize	u	

.

.

ACKNOWLEDGMENT

This study is one of two concerned with ways in which workload might be assessed for Passenger Protective Breathing Equipment. These two workload studies formed a portion of four aviation-related projects devised and organized under the auspices of Linacre College, Oxford University. Financial support for all these events came from worldwide donations and grants made by many organizations and individuals.

Volunteers to take part in the workload tests were recruited through local radio phone-in programs and facilities provided by the personnel departments of Land Rover Limited and the local authority offices at Solihul. These tests were conducted at Birmingham Airport which furnished the aircraft, power supplies, security services, fire tender and an ambulance. The Airport Fire Service undertook on-site preparations and provided staff in support of the test program.

Drs. J.A.S. Ross and S.J. Watt, carrying out the other workload study undertaken under the auspices of Linacre College, conducted the medical screening process and monitoring of participants. First Aid support on site was drawn from the St. John's Ambulance Brigade. Pretest calibration of specific participants and the required physiological parameter measurements were carried out by the Department of Physical Education, Birmingham University.

The Air Accident Investigation Branch of the Department of Transport and the Civil Aviation Authority furnished comment and recommendations during the development of the test protocol; the latter extended their insurance coverage to include the tests. British Airways provided the Cabin Attendants who served to conduct the emergency evacuations for the four trials in this study. British Airways also fitted the escape slide, and set up the seats to the proper tension in the rear cabin of the Trident Aircraft.

Three members of the team established by Linacre College, Mr. J. McNab, Mr. M. Ellery, and Mr. J. Boath of the Offshore Fire Training Center at Montrose, took part in the event fulfilling the roles of "Controller," "Safety Officer," and "External Marshall." A further member, Mr. D.D. Dempster handled public relations matters. Mrs. H. Brunton and Mr. P. Reynolds, seconded by the C.S.V. Newcastle, handled the Mercia Radio phone-in programs and the organization of volunteers. Mrs. E.A. Higgins, with help from Mrs. J. Boath, assisted Dr. Higgins to prepare participants for the heart rate monitoring during the tests and the coding of records.

Following the data collection phase, Mrs. P. Lyne and Mr. J.T. Saldivar, Jr., were responsible for much of the data reduction and analysis.

The authors wish to express their sincere thanks to the Principal and Fellows of Linacre College for their agreement and support for these tests. In turn, gratitude is expressed to Mr. R. Taylor, M.B.E., Managing Director, Birmingham International Airport and Mr. B. Wood, his Assistant Director - Operations; all those who so generously denoted funds in support of the program, and to more than 400 people who gave their time and efforts in many ways to help to identify means by which passenger safety in aviation can be improved.

TABLE OF CONTENTS

Title																						Page
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
ACKNOWLEDGMENT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
LIST OF TABLES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	vi
LIST OF FIGURES		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		viii
INTRODUCTION .	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	1
METHODS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
RESULTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	2
DISCUSSION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
CONCLUSIONS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	8
REFERENCES	•	•		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•		•	•	8

Access	sion For	
NTIS	GRA&I	
DTIC	PAB	
Unaper	unced	
Just	"ieution	
By		
Distr	butien/	
Aval	lability (ใงฉ่อ ร
	Avail and	/sr
Dist	Special	
A-1		

LIST OF TABLES

Table <u>Number</u>	Title	Page Number
I	Calibration Data: Workload vs Heart Rate	10
II	Subject Population Data	11
III	Calibration Data: Oxygen Consumption (mL/min, STPD)	12
IV	Calibration Data: Oxygen Consumption (mL/min, STPD) per Kg Body Weight	13
v	Calibration Data: Expired Carbon Dioxide (mL/min STPD)	, 14
VI	Calibration Data: Expired Carbon Dioxide (mL/min STPD) per Kg Body Weight	, 15
VII	Maximum Minute Volumes and Tidal Volumes Measured During Workload Calibration Tests	1 16
VIII	Heart Rate Recorded During Tests	17
IX	Workloads Calculated from Evacuation Test Heart Rate Data	18
X	Evacuation Test Calculated Oxygen Consumption Expressed as mL/min, STPD, and as mL/min, STPD, per Kg Body Weight (in parentheses) in 0.5-min Intervals from Start of Test	19
XI	Evacuation Test Calculated Expired Carbon Dioxide Expressed as mL/min, STPD, and as mL/min, STPD, per Kg Body Weight (in parentheses) in 0.5-min Intervals from Start of Test	20
XII	Calculated Workload (CWL) and Workload per Body Weight (CWL/Kg), Measured Heart Rate (HR), and Percent of Predicted Maximum Heart Rate (PPMHR) for First Minute of Test	21
XIII	Mean, Standard Error, and Population Size for Subjects' Ages in Years and Weight in Kilograms (in Parentheses)	22
XIV	Mean, Standard Error, and Population Size for Heart Rate (BPM) for the First Minute of the Test	23

LIST OF TABLES (continued)

Table Number	Title	Page <u>Number</u>
XV	Mean, Standard Error, and Population Size for First Minute of Test, Workload in Watts and Workload per Unit Weight in W/Kg (in Paren- theses)	. 24
XVI	Oxygen Consumption in mL/min and Oxygen Consumption per Kg Body Weight in mL/min/Kg (in Parentheses) Based on Calibration Regression Equation for Workloads at 0.7 W/Kg, 1.2 W/Kg, and First Minute of Evacuation Trials	p- ons . 25
XVII	Carbon Dioxide in mL/min and Carbon Dioxide per Kg Body Weight in mL/min/Kg (in Parentheses) Based on Calibration Regression Equations for Workload at 0.7 W/Kg, 1.2 W/Kg, and First Minut of Evacuation Trials.	r te . 26
XVIII	Oxygen Consumption (in L) and Carbon Dioxide Production (in L) Based on Proposed 20-Min Workload Profile	. 27
XIX	Mean, Standard Error, and Population Size for Oxygen Consumption and Carbon Dioxide Productio (in Parentheses) Based on Proposed 20-Min Workload Profile	on . 28
XX	Change in Oxygen Uptake (L/Min) from Final 30- of a Workload to the First 30-s of the Next Higher Workload	s . 29

LIST OF FIGURES

Figure <u>Number</u>

Title

Page <u>Number</u>

1 Typical Seating Arrangement for the Rear Cabin of the Trident III Used During the Four Trials 3

"OPERATION WORKLOAD" - A STUDY OF PASSENGER ENERGY EXPENDITURE DURING AN EMERGENCY EVACUATION

INTRODUCTION

In an earlier study at the Civil Aeromedical Institute in Oklahoma City (1), workloads were determined by correlation with heart rate for passengers during an emergency evacuation. The evacuation tests were conducted in an orderly manner and were suggested as representative of a moderate workload. Values for a maximum effort were not measured, only estimated. The current study is a continuation and amplification of that study and utilizes similar techniques for determining workload. In this study passengers were required to avoid the aircraft aisles and to traverse over seat backs to the exit to simulate a maximum effort which might be anticipated in an emergency. Thus, maximum workload could be estimated more realistically. This information is necessary to formulate qualification requirements for passenger protective breathing equipment.

METHODS

Calibration tests were conducted on 56 volunteer subjects at the University of Birmingham Department of Physical Education using a Monarch bicycle ergometer and an Oxycon respiratory gas analyzer. After a preselection physical examination, subjects were tested while exercising on the ergometer beginning at 30 watts, with the workload increased by 20 W every 2 min until either the 150-W workload was complete or heart rate (HR) exceeded 80 percent of the individual's predicted maximum HR (calculated as 220 minus age[2]).

Subjects were fitted with adhesive chest electrodes for HR measurement during the exercise test. Prior to each test, subjects were fitted with a noseclip to assure that all air exchange was via the mouth. Expired air was measured for volume, O_2 and CO_2 content, as well as respiratory rate. This computer-assisted system reported on-line data for each 30-s period of the test. Parameters reported were:

- i) time in 0.5 min intervals:
- ii) VE (expiratory volume), BTPS, in liters/min to nearest 0.1 liter;
- iii) respiratory frequency, in breaths/min to nearest whole number;
 - iv) VT (tidal volume), BTPS, to nearest hundreth of a liter;
 - v) percent of O₂ in the expired air to nearest tenth of a percent;
- vii) VO₂, STPD (volume of O₂ used), in liters/min to nearest hundredth;

- viii) \dot{VO}_2/Kg , STPD to nearest tenth in mL/Kg;
 - ix) $\dot{V}CO_2$, STPD (volume of CO_2 expired) in liters/min to nearest hundredth;
 - x) $\dot{V}CO_2/Kg$, STPD, to nearest tenth in mL/Kg; xi) RQ (respiratory quotient), a ratio of CO_2 produced to O_2 consumed, to nearest hundredth; and,
 - xii) heart rate in beats/min in whole numbers.

In analyzing these data, the values for the low 30-W exercise level were not used. The 30-W 2-min period was considered a warm-up period for stabilization of the subject. In most instances, data collected during the last 30-s period of each 2-min workload segment were used for the statistical treatment. If data for the final 30-s period for any one workload segment appeared to be out-of-line with other data, primarily due to rounding-off error with low respiratory rates, then data for the entire last minute were used as more representative. The full-minute values were retained only if they yielded a higher correlation coefficient for the line-ofbest-fit than did the final 30-s data.

Subsequently, four evacuation trials were conducted from a Trident III aircraft, with 40 subjects seated to the rear of the rear compartment.

Of the 56 participants who were calibrated, 48 were monitored for HR, in groups of twelve during the four evacuation trials. For each evacuation trial, 28 non-instrumented subjects were included to fill the 40-passenger total. For each test, three of the 12 subjects who were monitored for heart rate were also measured for oxygen consumption via an "Oxylog" analyzer system by Dr. Ross and Dr. Watt for inclusion in separate studies (3,4).

Figure 1 shows a typical seating arrangement for the rear cabin of the Trident III aircraft during the evacuation trials. Rows 8 through 16 were left vacant, with seated subjects starting in row 17. Those subjects who were not monitored are indicated with the letter "F" (fillers); those monitored for both heart rate and the Oxylog are indicated with the letter "B"; those monitored for heart rate only are indicated with the letter "H."

Heart rate monitoring was accomplished by use of portable Marquette, Series 8500, Holter HR recorders. The first 12 calibrated subjects who reported for the evacuation tests were instrumented. Heart rate electrode skin sites were cleaned with alcohol and mild abrasion; NaCl-pumice type electrode paste was applied to the skin sites, then disposable AG/AgCl electrodes were applied. Two Electrocardiogram (EKG) electrode placements, CM-5 and a modified V-1, were monitored. The CM-5 (5) is manubrium to the 5th intercostal space, anterior axillary line. The electrode sites for the modified V-1 are below left clavicle, just lateral to the

Figure 1 Typical Seating Arrangement for the Rear Cabin of the Trident III Used During the Four Trials

mid-clavicular line to V-1. V-1 is below the left clavicle, just lateral to the mid-clavicular line to the 4th intercostal space, right sternal edge.

At the conclusion of the evacuation tests, the Holter monitor tapes were returned to the CAMI laboratory where the tapes were played on a Marquette Series 8000 T Playback Analysis System and HR values were determined for the evacuation test period.

RESULTS

Of the 48 subjects monitored for HR during the evacuation trials (12 per trial), usable data were obtained for 45 subjects. Of the three subjects for whom data were not used, two appeared to have experienced a disconnect from the recorder between the time of the hookup and evacuation trial and no data were on the tape. For the other subject, data were obtained, but were totally inconsistent with the calibration data (high HR's were recorded during calibration, very low HR's were recorded during evacuation trial). The reason for this inconsistency is not readily apparent. The subjects not included are nos. 1-12, 3-04, and 3-08.

Tables I through VII present the determinations made from the workload calibration tests for the 45 subjects for whom valid data were obtained during the evacuation trials. Table VIII contains the heart rates recorded during the evacuation trials in 0.5-min increments from the time the emergency was declared with the order to evacuate. Because all participants evacuated the craft in less than 1 minute, the heart rate assessment was made only for 2 minutes. Table IX lists the workloads calculated from heart rate based on the cali-The data in Tables X and XI present oxygen bration data. consumption and oxygen consumption per Kg, and expired carbon dioxide and carbon dioxide per Kg values calculated for the evacuation trials workload data using the relationships determined in the calibration tests. The blanks in Tables VIII through XI during the final 30-s period are not due to lost data, but are due to the HR upon which they are based being below calibration values. Because all subjects were evacuated and away from the aircraft in the first minute, and because none registered a peak heart rate during either 30-s segment of the second minute, the first minute of data will be used to represent the maximum workload experienced during these evacuation tests.

In Table XII data are presented from the first minute of the evacuation trials. When all subjects are considered, the mean workload per kg body weight is 2.029 watts per kilogram.

DISCUSSION

To better determine any differences between categories of test subjects, data were divided by the four test trials for all subjects in the group, by those wearing the Oxylog equipment and those without the Oxylogs. Because data appear to be different for the fourth trial, and the subjects from the first three trials appeared similar, the subjects from these first three trials were grouped as being representative of one population. Group IV appeared to be a very intense group determined to "be the best group, with the most rapid evacua-Tables XIII through XV list the mean, standard tion time." error and sample sizes for each subject population and the P values for statistical differences between these groups for age, and weight (Table XIII), for the first-minute evacuation test heart rate (Table XIV), and for the first-minute workload, and workload per unit weight (Table XV). Table XVI lists the oxygen consumption (mL/min) and oxygen consumption per kg body weight based on the calibration regression equations for workloads at 0.7 W/Kg (low work-load), 1.2 W/Kg (intermediate workload), and workload of the first minute of the evacuation test (high workload). Table XVII lists the production (mL/min) and carbon dioxide carbon dioxide production per kg body weight based on the calibration regression equations for workloads at 0.7 W/Kq (low workload), 1.2 W/Kg (intermediate workload) and workload of the first minute of the evacuation test (high workload). Table XVIII gives the oxygen consumption (in liters) and the carbon dioxide production (in liters) based on the proposed 20-min workload profile. Table XIX gives the means, standard errors, and sample size for the various populations of subjects, as well as the tests for significant differences between these groups for the values listed in Table XVIII.

For seven of 19 comparisons, the statistical difference when comparing group IV to the other three groups proved to be significant (Tables XIII, XIV, XV, and XIX). Their total evacuation time was much faster than those of the other three groups (33 s compared to 46 s, 41 s, and 43 s, respectively). Their exertion was probably higher, and thus workload, CO₂ production, and O₂ consumption were greater. In 10 of 19 comparisons, those wearing oxylogs showed statistically significant difference when compared to those who were not wearing oxylogs. One possible explanation for this difference is found in Table XIII. The subjects wearing oxylogs were significantly lighter in weight than those without oxylogs (a mean of 66.5 kg vs. 79.2 kg). It is also possible that those wearing oxylogs proved different from the other subjects because they were placed on the front row of those evacuating the aircraft and had to make the effort required to fold down eight rows of seats on their way to the other subjects wearing heart rate exit. None of the recorders had to accomplish this task.

Data from eight of the twelve subjects wearing the Oxylogs in this study, have been reported by Drs. John Ross and Stephen Watt (3). Their report also includes data from several subjects not covered in this report.

For those eight subjects which the two reports have in common, we were able to make the following determinations: During the brief (14 to 24 s) periods of the subjects' evacuation, they report an average O_2 uptake of about 39.6% (range = 23.7 to 53.5%) of the predicted average O_2 utilization based on heart rate. This, in itself, is not surprising for several reasons. First, during a brief rapid increase in work, the O_2 utilization is partially accounted for by utilization of stored O_2 and not just the O_2 uptake. Another possible explanation for the differences is that the higher heart rate could be psychogenically induced and not due solely to physical exertion, which would result in a higher predicted workload than is actually the case.

Then, by extending the time for both sets of data to 2 min. their reported total O_2 uptake rose to 59.8% (range = 46.5 to 75.2%) of the predicted O_2 utilization. This probably indicates that the O_2 uptake still does not equal the O_2 used within that time frame. There is also the fact that, with an abrupt increase in workload, it is not unusual to see an This is not indicative of a initial drop in O_2 uptake. decrease in workload, nor in O₂ utilization. This decrease is temporary. As evidence, a table of data (Table XX) taken from the calibration tests at the University of Birmingham This table presents the change in O_2 has been included. uptake from the final 30 s of a 2-min workload segment to the first 30 s of the next higher workload. Frequently there is a decrease, even though these are for changes of only 20 watts. This is also supported in Astrand's <u>Textbook of Work</u> Physiology (6), where it states: "The kinetics of the increase in oxygen uptake during the first minutes of an exercise, which lead to a steady state situation, have a time constant of about 30 s, or about 20 s when a giver moderate exercise is preceded by a warming-up period." Thus, one must be cautious in interpreting a drop in O₂ uptake as indicating a decline in workload, or a lessening of O_2 utilization, especially when it occurs during the first 30 s after an abrupt increase in activity level.

A direct measurement of O_2 uptake, assuming reliable equipment and techniques, should provide a better estimate of O_2 requirements for a specific test condition than an indirect method such as the one used for this study. If, however, it is intended to include the brief maximum exertion as a part of a longer-term profile, then there is justification to utilize an indirect measurement, especially when employing a large subject population. For a brief isolated exertion, O_2 uptake would better reflect total O_2 requirements. For a more complex workload profile with a longer time frame, in which O_2 debt could be repaid, then O_2 utilization would be needed to reflect the total O_2 requirements imposed by that brief maximum exertion.

By employing the regression equations developed for the calibration workload tests, values can be determined for each test subject for predicted O_2 consumption and CO_2 production at the low workload of 0.7 W/Kg, for the intermediate workload of 1.2 W/Kg, and for each individual's estimated 1-min workload during the evacuation trial (Tables XVI and XVII). These values can then be used to determine O_2 flow requirements and CO_2 absorption requirements for a 20-min work profile of 15 min at 0.7 W/Kg, 4 min at 1.2 W/Kg, and 1 min at a maximum workload. Of course, other scenarios can be described and other determinations made for varying times at each of the three workload levels. Results for all 45 subjects are given in Table XVIII.

If it is assumed that the total group is representative of a desired population (see Table II for description of subject population), then by applying the mean values for overall O_2 consumption and CO_2 production the requirements for the 20-min work profile described above for a 95th percentile male (100.1 Kg) would be 28.38 L of O_2 consumed and 23.36 L of CO_2 produced for the 20-min period.

In this study there were four subjects who exceeded 100 Kg in weight (No. 2-11 [106 Kg], No. 3-07 [103 Kg], No. 4-10 [103 Kg], and No. 4-11 [102 Kg]). In considering the data from these four, the 20-min profile for exercise would yield O_2 requirements of 28.43, 28.87, 28.82, and 29.41 L respectively. The average of the four is 28.88 L of O_2 required (compared to the 28.38 L predicted for the 95th percentile male). The one subject in the prior study (1) representative of the 95th percentile male had an O_2 requirement of 29.0 L. The mean CO_2 production for these four subjects in the current study was 24.63 L (with 23.36 L predicted for 95th percentile male). The prior study reported 24.7 L. These values are very comparable.

In the original study, allowances were made for the possibility of greater CO_2 production. However, the data of this study indicate that significantly higher production will not occur. The highest calculated value was for subject 4-11 and was 26.11 L. Thirty L of CO_2 absorption capacity should be adequate. Carbon dioxide absorption can be described in terms of the total amount required for the 20-min period, but for required O_2 supply, peak flow requirements must be considered. Although only two subjects exceeded 3.0 L/min O_2 consumption during peak workload (Subjects 3-01 and 4-10, Table XVI), the device should probably be capable of providing that 3.0 L at any time during its functional life. Table VII indicates that although eight individuals exceeded a maximum tidal volume of 3.0 L, the greatest value was only 3.15 L. Therefore, the earlier estimate of 3.0 L for the volume that the hood-type PPBE should exceed the enclosed head and neck for devices with a breathable air supply is supported by these data, particularly when those devices have an inboard flow of 3L O₂ per minute. However, these values are for subjects with normal inspired CO_2 levels. If the CO_2 levels are increased for significant periods of time, this maximum tidal volume could be higher.

CONCLUSIONS

Under the conditions of this study, and with the techniques used for determining O_2 consumption and CO_2 production, certain recommendations might be made concerning the respiratory requirements for passenger protective breathing devices. In considering the recommended values proposed in the earlier study (1), some modifications should be made. Original recommendations will be crossed out when a change is indicated, then this will be followed by the new value based on data from this study:

- 1) A 20-min work profile consisting of: 15 min at 0.7 W/Kg body weight 2 min at 1.2 W/Kg body weight 1 min at 1/\$ 2.0 W/Kg body weight 2 min at 1.2 W/Kg body weight.
- The volume of a hood-type PPBE should exceed the volume that encloses the head and neck by 3.0 Liters.
- 3) For a breathable-air type, the device should provide 3.0 L/min oxygen for 20 minutes.
- 4) The device should probably be capable of absorbing
 #\$ 30 L of carbon dioxide.

The subject population studied should include one or two individuals who meet or exceed the weight of the 95th percentile male.

REFERENCES

- Higgins, EA, JT Saldivar, PJ Lyne, and GE Funkhouser, "A Study of Passenger Workload as Related to Protective Breathing Requirements," Office of Aviation Medicine Report No. DOT/FAA/AM-87/2, March 1987.
- Ellestad, MH, <u>Stress Testing</u>, <u>Principles and Practice</u>, <u>Edition 3</u>, pp. 138 and 160, FA Davis Co., Philadelphia, 1986.

- 3. Ross, JAS, and SJ Watt, "Operation Workload. Oxygen Uptake and Ventilation During Simulated Escape Over the Seatbacks from a Trident Aircraft. Design for Criteria for Smoke Protection Devices." University of Aberdeen, September 1987.
- 4. Ross, JAS, SJ Watt, GD Henderson, and JHB Vant, "Ventilation and Oxygen Uptake During Escape from a Trident Aircraft." In Press, 1989.
- 5. Blackburn, H, HL Taylor, A Keys, and collaborators, "The Exercise Electrocardiogram. A Systematic Comparison of Chest Lead Configurations Employed for Monitoring During Exercise." In Physical Activity and the Heart. Karvonen, MJ, and A Barry (Eds.), Springfield, Thomas, 1966, chapter 6.
- 6. Astrand, Per-Olof and Kaare Rodahl, <u>Textbook of Work</u> Physiology, p. 303, McGraw-Hill Book Company, New York, New York, 1986.

Workload	= _!	50W	<u>70</u> W	<u>90</u> W	<u>110W</u>	<u>130W</u>	<u>150W</u>
Subject <u>Number</u>				** +	D-4- (DD		
1 01		70		Heart	Rate (BP	<u>M)</u>	1 2 2
1-01		10	90 116	100	100	140	152
1-02		04	104	144	120	142	_
1-03		94	104	126	140	199	-
1-04*	•	104	100	110	130	140	_
1-05*		102	108	110	120	140	110
1-06		100	82	92	92	100	110
1-07		108	102	114	126	146	154
1-08*		30	102	114	120	104	104
1-09		/8	84	120	100	120	140
1-10		100	108	120	130	100	140
1-11		90	98	108	114	122	152
2-01*		110	120	138	- 144	- 150	-
2-02*		110	114	125	144	152	162
2-03		90	98	108	116	152	140
2-04		110	118	128	138	152	-
2-05		112	112	126	136	-	-
2-06		86	90	102	112	128	142
2-07*		118	127	134	148	-	-
2-08		88	94	106	110	116	124
2-09		102	116	126	142	160	-
2-10		86	94	100	110	124	134
2-11		90	96	104	118	134	146
2-12		84	92	102	112	124	132
3-01*		72	78	86	90	98	102
3-02*		94	96	114	122	140	154
3-03		98	106	112	118	129	136
3-05		110	124	138	152	-	-
3-06		82	86	96	104	114	124
3-07		98	104	116	124	134	146
3-09		98	104	116	124	144	-
3-10*		102	112	120	130	144	158
3-11		92	100	112	118	132	144
3-12		102	110	114	126	134	144
4-01		112	120	124	136	158	-
4-02		100	104	116	126	138	148
4-03	•	106	118	124	134	150	164
4-04		100	112	116	130	138	146
4-05*		96	102	118	128	144	160
4-06		86	94	96	112	124	140
4-07*		92	108	116	116	128	124
4-08*		98	112	128	138	-	-
4-09		92	102	114	128	144	-
4-10	-	115	112	118	120	130	140
4-11	-	112	118	122	130	144	-
4-12	•	92	102	108	120	124	130
*Subj	jects	also	monitore	a with	the Oxylo	g.	

•

.

TABLE I Calibration Data: Workload vs Heart Rate

TABLE IISubject Population Data

Subject Number	Age (Yrs)	Weight (Kgs)	Height (Cm)
1-01	39	66	179
1-02	41	86	178
1-03	37	63	168
1-04*	27	/1	175
1-05*	22	70	175
1-06	20	/9	178
1-07	33	65	1/8
1-08-	22	/3	182
1-09	32 35	93	190
1 1 1 1	30	80	186
1 - 11	32	71	163
2-01-	38	70	166
2-02-	20	58	1/1
2-03	32	80	181
2-04	27	75	180
2-05	40	70	168
2-00	20	72	108
2-07*	35	73	1/5
2-08	29		1/3
2-09	20	00	185
2-10	30	106	183
2-11	24	106	1//
2-12	29	67	180
3-02*	24	67 60	177
3-02*	29	72	1//
3-05	27	7 J 5 C	180
3-05	34	76	10/
3-00	30	103	101
3-09	31	103	1/1
3-10*	10	56	1/1
3-11	23	71	108
3-12	23	85	100
4-01	23	81	176
4-02	30	94	170
4-03	20	69	172
4-04	26	72	173
4-05*	20	62	165
4-06	20	86	105
4-07*	24	64	183
4-08*	29	66	105
4-09	29	50 66	173
4-10	27	103	192
4-11	42	102	171
4-12	21	70	175
*Subject	s also monitored	i with the Oxylog.	± / J

TABLE III Calibration Data: Oxygen Consumption (mL/min, STPD)

Workload =	50W	70W	90W	110W	130W	150W
Subject Number						
1-01	740	1000	1330	1580	1670	1890
1-02	890	940	1190	1640	1730	-
1-03	690	900	1160	1350	1670	-
1-04*	800	1040	1180	1380	1690	-
1-05*	890	1070	1440	1650	1750	-
1-06	1240	1340	1470	1780	1880	2340
1-07	870	990	1290	-	-	-
1-08*	700	1230	1370	1670	1930	2060
1-09	1050	1230	1470	1600	1600	1970
1-10	960	1120	1390	1460	1700	1980
1-11	1050	1120	1360	1690	1780	1990
2-01*	830	1110	1230	-	-	-
2-02*	740	1130	1230	1520	1750	2060
2-03	930	1060	1440	1440	1850	1880
2-04	890	1180	1300	1510	1600	-
2-05	830	1120	1280	1380	-	-
2-06	1030	1080	1360	1390	1590	2030
2-07*	1120	1170	1350	1530	-	-
2-08	730	1130	1190	1370	1520	1820
2-09	790	890	1120	1340	1530	1070
2-10	910	1100	1330	1450	1/40	1970
2-11	1030	1200	1420	1560	1980	2040
2-12	930	1450	1390	1680	1880	2310
3-01*	1080	1130	1320	1600	1810	2120
3-02*	1040	1130	1270	1040	1000	2070
3-03	1030	1250	1250	1450	1800	2000
3-05	890	970	1160	1310	1610	1870
3-06	/90	950	1400	1740	1940	2220
3-07	1000	1230	1310	1450	1710	
3-09	1090	1220	1130	1530	1510	2050
3-10-	1130	1200	1390	1400	1600	2040
3-11	1130	1170	1260	1740	1870	2000
3-12	1140	1270	1390	1680	2320	-
4-01	1010	1260	1350	1770	1790	2120
4-02	985	1090	1500	1560	1920	2060
4-04	1000	1160	1500	1560	1920	2060
4+05*	930	880	1310	1420	1600	2220
4-06	790	1220	1070	1490	1640	1900
4-07*	890	1140	1420	1530	1600	1830
4-08*	740	1100	1350	1940	-	-
4-09	880	870	1280	1340	1770	-
4-10	950	1080	1350	1940	2080	2240
4-11	1150	1340	1460	1710	1850	-
4-12	860	1110	1300	1280	1770	1730
			a	0.0000100		

*Subjects also monitored with the Oxylog.

Workload =	50W	70W	90W	110W	130W	150W
Subject						
Number						
1 01	11 7	15 0	~~ ~			
1-01	11.2	15.2	20.2	23.9	25.4	28.7
1-02	10.3	11.0	13.8	19.0	20.1	-
1-03	10.9	14.3	18.4	21.5	26.4	-
1-04*	11.3	14.6	16.7	19.5	23.8	-
1-05*	12.7	15.3	20.5	23.6	25.0	-
1-06	15.7	16.9	18.7	22.6	23.8	29.6
1-07	13.4	15.3	19.8	-	-	-
1-08*	9.6	16.9	18.8	22.9	26.5	28.3
1-09	11.3	13.3	15.8	17.2	17.2	21.2
1-10	11.2	13.0	16.2	17.0	19.8	23.0
1-11	14.8	15.8	19.2	23.8	25.1	28.0
2-01*	11.9	15.8	17.5	-	-	-
2-02*	12.8	19.5	21.1	26.2	30.1	35.6
2-03	11.6	13.2	18.0	18.0	23.1	23.6
2-04	11.9	15.8	17.3	20.1	21.3	-
2-05	11.9	16.0	18.2	19.6	-	-
2-06	14.3	15.0	18.9	19.3	22.1	28.2
2-07*	15.3	16.0	18.4	21.0	-	-
2-08	10.3	15.9	16.8	19.3	21.4	25.6
2-09	11.9	13.5	16.9	20.3	23.2	-
2-10	9.9	12.0	14.4	15.7	18.9	21.4
2-11	9.7	11.3	13.4	14.7	18.7	19.3
2-12	10.5	16.3	15.6	18.9	21.1	25.9
3-01*	16.1	16.8	19.7	23.9	27.0	31.7
3-02*	15.3	16.5	18.7	24.0	23.5	30.4
3-03	14.1	17.1	17.1	19.8	25.4	27.4
3-05	15.8	17.4	23.3	26.0	-	_
3-06	10.3	12.5	15.3	17.2	21.1	24.5
3-07	9.7	12.0	13.6	16.9	18.8	21.5
3-09	12.7	14.1	15.2	16.8	19.8	-
3-10*	15.4	17.7	20.2	27.3	27.0	36.6
3-11	16.0	16.9	19.5	19.7	22.5	28.8
3-12	13.4	13.7	14.9	20.4	22.0	23.5
4-01	14.1	15.7	17.2	20.7	28.6	-
4-02	10.8	13.4	14.4	18.8	19.1	22.6
4-03	14.2	15.8	21.7	21.0	25.8	29 5
4-04	13.9	16.2	20.8	21.6	26 7	28.6
4-05*	15.0	14.2	21.1	22.8	25 9	20.0
4-06	9.2	14.2	12.5	17.4	19 0	22.0
4-07*	14.0	17.9	22.2	23 9	25 0	22.1 20 c
4-08*	11.2	16.7	20.4	29 4		
4-09	13.3	13.1	19.3	20.2	26.8	_
4-10	9.2	10.5	13 1	18 9	20.0	21 0
4-11	11.3	13.2	14 3	16 8	18 1	-1.0
4-12	12.3	15.8	18 6	18 3	10.1 NE N	24 0
					کے والا ہے	64.0

TABLE IVCalibration Data: Oxygen Consumption (mL/min, STPD)per Kg Body Weight

*Subjects also monitored with the Oxylog.

TABLE V

Calibration Data: Expired Carbon Dioxide (mL/min, STPD)

Workload	= <u>50W</u>	70W	90W	-	110W	130W	150W
Subject Number							
1-01	560	750	1050		1320	1440	1670
1-02	830	720	1010		1440	1640	-
1-03	560	690	1040		1200	1570	-
1-04*	650	860	1120		1370	1720	-
1-05*	720	920	1380		1690	1900	-
1-06	860	980	1120		1360	1520	1830
1-07	780	970	1370		-	-	
1-08*	580	960	1190		1460	1850	2100
1-09	770	980	1230		1290	1370	1670
1-10	690	870	1130		1260	1510	1830
1-11	800	890	1160		1520	1570	1840
2-01*	660	990	1190		-	-	-
2-02*	580	900	1150		1510	1820	2120
2-03	770	940	1290		1350	1750	1840
2-04	830	1030	1190		1420	1560	-
2-05	720	940	1240		1200	-	-
2-06	730	850	1050		1200	1440	1850
2-07*	760	900	1100		1200	-	-
2-08	660	1070	1160		1390	1660	1890
2-09	680	780	950		1220	1520	-
2-10	820	99 0	1240		1340	1720	2070
2-11	840	103Ú	1250		1440	1940	2180
$\frac{1}{2-12}$	710	1140	1180		1440	1650	2110
3-01*	730	850	970		1200	1450	1740
3-02*	830	950	1220		1530	1650	2070
3-03	830	1110	1130		1400	1790	2020
3-05	730	910	1250		1490	-	-
3-06	710	740	890		1100	1410	1590
3-07	780	1060	1230		1590	1870	2090
3-09	970	1110	1340		1500	1830	-
3-10*	710	820	1080		1490	1600	2100
3-11	820	910	1140		1200	1420	1820
3-12	960	890	1070		1410	1700	1780
4-01	880	1100	1220		1560	1910	-
4-02	780	1050	1160		1620	1770	2210
4-03	830	880	1390		1340	1660	1990
4-04	750	970	1280		1360	1680	1920
4-05*	890	690	1080		1260	1600	2060
4-06	710	1030	910		1380	1620	2000
4-07*	710	900	1350		1440	1630	1800
4-08*	570	740	1040		1530	-	-
4-09	700	740	1170		1190	1700	-
4-10	890	800	870		1440	1680	1900
4-11	1000	1100	1290		1570	1820	-
4-12	700	950	1070		1170	1580	1660
*Sub	jects also	monitored	with	the	Oxylog.		

		-		-		
Workload Subject	= <u>50W</u>	70W	90W	110W	130W	150W
Number						
1-01	8.5	11.4	15.9	20.0	21 8	25 3
1-02	9.7	8.4	11.7	16.7	19.1	-
1-03	8.9	11.0	16.5	19.0	24 9	-
1-04*	9.2	12.1	15.8	19.3	24.2	_
1-05*	10.3	13.1	19.7	24.1	27.1	-
1-06	10.9	12.4	14.2	17.2	19.2	23 2
1~07	12.0	14.9	21.1	-	-	-
1-08*	7.9	13.2	16.3	20.0	25.3	28.8
1-09	8.3	10.5	13.2	13.9	14.7	18.0
1-10	8.0	10.1	13.1	14.7	17.6	21.3
1-11	11.3	12.5	16.3	21.4	22.1	25.9
2-01*	9.4	14.1	17.0		-	-
2-02*	10.0	15.5	19.8	26.0	31.4	36.6
2-03	9.6	11.8	16.1	16.9	21.9	23.0
2-04	11.1	13.7	15.9	18.9	20.8	_
2-05	10.3	13.4	17.7	17.1	-	-
2-06	10.1	11.8	14.6	16.7	20.0	25.7
2-07*	10.4	12.3	15.1	16.4	-	-
2-08	9.3	15.1	16.3	19.6	23.4	26.6
2-09	10.3	11.8	14.4	18.5	23.0	-
2-10	10.1	12.2	15.3	16.5	21.3	25.6
2-11	7.9	9.7	11.8	13.6	18.3	20.6
2-12	8.0	12.8	13.3	16.2	18.5	23.7
3-01*	10.9	12.7	14.5	17.9	21.6	26.0
3-02*	12.2	14.0	17.9	22.5	24.3	30.4
3-03	11.4	15.2	15.5	19.2	24.5	27.7
3-05	13.0	16.3	22.3	26.6	-	-
3-06	9.3	9.7	11.7	14.5	18.6	20.9
3-07	7.6	10.3	11.9	15.4	18.2	20.3
3-09	11.3	12.9	15.6	17.4	21.3	-
3-10*	12.7	14.6	19.3	26.6	28.6	37.5
3-11	11.5	12.8	16.1	16.9	20.0	25.6
3-12	11.3	10.5	12.6	16.6	20.0	20.9
4-01	10.9	13.6	15.1	19.3	23.6	-
4-02	8.3	11.2	12.3	17.2	18.8	23.5
4-03	12.0	12.8	20.1	19.4	24.1	28.8
4-04	10.4	13.5	17.8	18.9	23.3	26.7
4-05*	14.4	11.1	17.4	20.3	25.8	33.2
4-06	8.3	12.0	10.6	16.0	18.3	23.3
4-07*	11.1	14.1	21.1	22.5	25.5	28.1
4-08*	8.6	11.2	15.8	23.2	-	-
4-09	10.6	11.2	17.7	18.0	25.8	-
4-10	8.6	7.8	8.4	14.0	16.3	18.4
4 - 1 1	9.7	10.7	12.5	15.2	17.7	-
4-12	10.0	13.6	15.3	16.7	22.6	23.7

TABLE VICalibration Data: Expired Carbon Dioxide (mL/min, STPD)per Kg Body Weight

*Subjects also monitored with the Oxylog.

Maximum	Minute	e Vol	umes and	Tidal '	Volu	mes Me	asured
	During	Wor	kload Cal	ibrati	on T	ests	
			Maximum			Max	imum
Subject		M	inute Volu	ume		Tidal	Volume
Number			(Liters/m	in)		(Lit	ers)
1-01			44.3			2.	63
1-02			41.9			2.	41
1-03			40.4			2.	02
1-04*			44.2			2.	10
1-05*			57.7			2.	06
1-06			40.9			2.	16
1-07			44.0			3.	14
1-08*			50.1			1.	73
1-09			45.8			3.	04
1-10			43.2			2.	16
1-11			50.9			1.	83
2-01*			35.1			1.	86
2-02*			58.2			1.	75
2-03			51.5			2.	22
2-04			50.4			1.	80
2-05			47.7			3.	15
2-06			43.5			2.	15
2-07*			36.0			1.	56
2-08			59.1			3.	12
2-09			47.7			2.	51
2-10			54.8			2.	61
2-11			59.1			3.	12
2-12			53.9			2.	45
3-01*			45.3			1.9	97
3-02*			57.4			2.	10
3-03			55.6			2.5	57
3-05			40.5			2.	03
3-06			38.0			2.8	36
3-07			54.3			2.	69
3-09			46.5			1.9	9 4
3-10*			55.9			1.	46
3-11			48.3			1.	58
3-12			44.2			2.	71
4-01			44.8			2.3	24
4-02			58.3			3.	07
4-03			53.8			2.0	00
4-04			47.5			2.	18
4-05*			53.3			1.8	R4
4-06			55.2			3.	10
4-07*			51.4			1.1	79
4-08*			32.0			3	01
4-09			45 6			2.1	29
4-10			48 1			2 1	88
4-11			47 K			1 (36
4-12			45 3			2	16
*Sut	piects	also	monitored	l with	the	Oxvlo	±

TABLE VII Volumes and Tidal Volumes Measured

TABLE VIIIHeart Rate Data Recorded During Tests

		Heart	Rate	BPM) in 0.5-	-min
Subject		Interv	als fr	om S	<u>Start of</u>	Test
Number		0.0-0.5	0.5-1.	. 0	1.0 - 1.5	1.5-2.0
1-01		144	162		112	8 <u>0</u>
1-02		150	156		134	118
1-03		148	132		92	82
1-04*		138	128		108	88
1-05*		150	128		100	80
1-06		124	110		62	
1-07		162	160		130	100
1-08*		142	134		102	80
1-09		128	118		86	72
1-10		132	146		132	82
1-11		120	138		112	80
2-01*		160	159		144	126
2-02*		164	154		132	122
2-03		122	134		92	68
2-04		140	152		128	112
2-05		130	122		102	-
2-06		140	110		82	74
2-07*		164	158		122	118
2-08		146	134		110	90
2-09		144	146		98	72
2-10		146	138		112	94
2-11		150	158		110	62
2-12		150	158		110	64
3-01*		134	130		94	6 6
3-02*		146	132		100	86
3-03		110	116		100	-
3-05		128	130		100	82
3-06		146	110		80	-
3-07		160	166		148	128
3-09		154	174		148	132
3-10*		138	148		112	96
3-11		134	114		84	80
3-12		146	140		130	-
4-01		170	168		120	88
4 -02		170	178		154	136
4-03		162	158		110	86
4-04		160	158		120	98
4-05*		142	148		130	100
4-06		148	158		128	118
4-07*		166	162		154	138
4-08*		170	154		122	110
4-09		166	152		138	124
4-10		162	156		150	120
4-11		156	156		142	130
4-12		152	140		114	110
*Subjects	also	monitored	with	the	Oxylog.	

TABLE IX Workloads Calculated from Evacuation Test Heart Rate Data

		Calculate	d Worl	kload	(Watts	;) in 0.5
Subject		min Inte	rvals	from	Start	of Test
Number		0.0-0.5	0.5-1	<u>.0 1</u>	.0-1.5	1.5-2.0
1		170	207			
1-01		1/3	207		114	55
1-02		165	183		117	68
1-03		140	114		49	33
1-04*		105	89		59	29
1-05*		152	107		50	9
1-06		200	156		6	-
1-07		111	109		76	43
1-08*		131	118		66	31
1-09		203	173		76	34
1-10		116	145		116	14
1-11		123	167		103	25
2-01*		123	122		100	75
2-02*		152	135		95	77
2-03		116	139		57	11
2-04		111	134		88	57
2-05		100	81		35	-
2-06		152	100		51	38
2-07*		147	134		60	52
2-08		211	178		110	54
2-09		111	114		46	9
2-10		178	162		108	71
2-11		161	174		92	10
2-12		186	202		105	12
3-01*		251	238		121	29
3-02*		141	119		68	46
3-03		83	99		56	-
3-05		76	79		36	10
3-06		205	121		51	-
3-07		182	195		157	116
3-09		156	191		145	116
3-10*		119	137		72	43
3-11		134	96		37	30
3-12		158	144		120	-
4-01		164	160		71	12
4-02		195	211		164	128
4-03		152	145		60	18
4-04		179	175		92	44
4-05*		127	136		108	62
4-06		173	192		136	117
4-07*		213	204		185	148
4-08*		155	131		84	67
4-09		167	145		124	102
4-10		222	204		187	98
4-11		171	171		134	103
4-12		203	171		103	
*Subjects	also	monitored	with	the	Oxylog.	

TABLE X

Evacuation Test Calculated Oxygen Consumption Expressed as mL/min, STPD, and as mL/min, STPD, per Kg Body Weight (in parentheses) in 0.5-min Intervals from Start of Test

Subject <u>Number</u>	0.0	-0.5	0.5-1.0	1.0-1.5	1.5-2.0
		(2502 (20 4)	1500 (00 0)	
1-01	2204	(33.5)	2393 (39.4)	1529 (23.2)	853 (12.9)
1-02	21/1	(25,2)	2303 (27.7)	1599 (10.0)	1010 (11.8)
1-04*	1277	(27.9)	1445 (22.7) 1207 (17.1)	000 (10.5)	40/ (/.4) 571 (01)
1-04*	2072	(13, 3)	1207 (17.1) 1556 (22.3)	900(12.0)	J/1 (0.1) 120 (6.1)
1-05*	2013	(29.7)	2260 (22.3)	500 (12.5) 677 (9.6)	429 (0.1)
1-08	2/30	(34.0)	1460 (20.7)	1113 (17 1)	767 (11 9)
1-09*	1901	(22.7)	1730 (22.4)	1046 (14.4)	596 (91)
1-08	2346	(20.2)	2096 (22.5)	1286 (13.8)	936 (10 1)
1-10	1597	(23.1)	1871 (21.9)	1587 (18 6)	585 (6.9)
1 - 10	1729	(24 4)	2169 (30.6)	1528 (21 6)	747 (10.6)
2-01*	1587	(23.3)	1577 (22 3)	1357 (19 3)	1107 (15.8)
2-02*	2055	(22.5)	1843 (31.8)	1343(23,2)	110, (19.0) 1118 (19.3)
2-03	1596	(20, 0)	1830(22.9)	996 (12.4)	528 (6.5)
2-04	1480	(19.8)	1681(22.4)	1279(17.1)	1007 (13.5)
2-05	1334	(19.0)	1162 (16.6)	745 (10.8)	
2-06	1901	(26.4)	1413 (19.6)	954 (13.2)	832 (11.5)
2-07*	1765	(24.3)	1673 (23.0)	1152 (15.8)	1095 (15.0)
2-08	2372	(33.3)	2051 (28.8)	1390 (19.5)	846 (11.9)
2-09	1337	(20.2)	1366 (20.7)	709 (10.7)	352 (5.3)
2-10	2235	(24.3)	2067 (22.5)	1501 (16.3)	1113 (12.1)
2-11	2194	(20.7)	2334 (22.1)	1452 (13.7)	570 (5.3)
2-12	2648	(29.6)	2842 (31.8)	1667 (18.7)	541 (6.1)
3-01*	3132	(46.8)	2993 (44.7)	1736 (25.9)	747 (11.1)
3-02*	1864	(27.3)	1646 (24.1)	1142 (16.7)	924 (13.5)
3-03	1306	(17.8)	1464 (20.0)	1041 (14.2)	
3-05	1114	(19.9)	1145 (20.5)	706 (12.6)	441 (7.9)
3-06	2411	(31.6)	1508 (19.8)	755 (9.9)	- ~
3-07	2592	(25.1)	2751 (26.6)	2286 (22.1)	1784 (17.3)
3-09	1841	(21.4)	2098 (24.4)	1760 (20.4)	1547 (18.0)
3-10*	1560	(27.8)	1763 (31.4)	912 (18.4)	701 (12.5)
3-11	1740	(24.5)	1427 (20.1)	942 (13.3)	884 (12.5)
3-12	2100	(24.8)	1963 (23.1)	1727 (20.3)	
4-01	2585	(31.8)	2530 (31.2)	1297 (16.0)	480 (6.0)
4-02	2576	(27.4)	2749 (29.3)	2241 (23.9)	1852 (19.7)
4-03	2009	(29.1)	1935 (28.1)	1039 (15.1)	597 (8.6)
4-04	2396	(33.2)	2352 (32.6)	1446 (20.1)	922 (12.8)
4-05*	1658	(26.7)	1757 (28.3)	1448 (23.3)	941 (15.1)
4-06	2106	(24.5)	2302 (26.8)	1724 (20.1)	1527 (17.8)
4-07*	2429	(37.8)	2348 (36.6)	2176 (33.9)	1841 (28.7)
4-08*	2726	(49.2)	2264 (42.1)	1360 (28.4)	1032 (23.5)
4-09	2094	(31.8)	1847 (28.0)	1611 (24.4)	1363 (20.6)
4-10	3446	(33.6)	3172 (31.0)	2912 (28.4)	1555 (15.2)
4-11	2219	(21.7)	2219 (21.7)	1891 (18.5)	1617 (15.9)
4-12	2270	(32.4)	1982 (28.3)	1369 (19.5)	1279 (18.2)

*Subjects also monitored with the Oxylog.

TABLE XI

Evacuation Test Calculated Expired Carbon Dioxide Expressed as mL/min, STPD, and as mL/min, STPD, per Kg Body Weight (in parentheses) in 0.5-min Intervals from Start of Test

Subject

Number	0.0-0.5	0.5-1.0	1.0-1.5	1.5-2.0
1 01	1054 (20 5)	2220 (25 3)	1289 (19 5)	624 (9.5)
1-01	1954 (29.5)	2336 (33.3) 2216 (25.8)	1444 (16 8)	871 (10.2)
1-02	2000 (23.4)	1316(20.9)	493 (7.9)	291 (4.7)
1-03	1045 (20.1)	1310(20.9) 1131(15.9)	733 (10.4)	336 (4.8)
1-04*	1343 (10.3)	1588(22,7)	696 (9.9)	54 (0.8)
1-05	2232 (32.7)	1815(22.9)	377 (4.8)	
1-07	1645 (25.4)	1615(24.9)	1129 (17.4)	642 (9.9)
1-08*	1823 (24.9)	1628 (22.2)	845 (11.5)	318 (4.3)
1-09	2062 (22.1)	1816 (19.5)	1022 (11.0)	678 (7.3)
1-10	1392 (16.2)	1713 (19.9)	1392 (16.2)	263 (3.0)
1-11	1546 (21.8)	2024 (28.5)	1329 (18.7)	482 (6.8)
2-01*	1649 (23.6)	1636 (23.4)	1344 (19.2)	1013 (4.5)
2-02*	2150 (37.1)	1888 (32.6)	1269 (21.9)	991 (17.1)
2-03	1503 (18.8)	1760 (22.0)	842 (10.5)	327 (4.1)
2-04	1400 (18.7)	1613 (21.5)	1188 (15.8)	901 (12.0)
2-05	1199 (17.1)	1034 (14.8)	634 (9.1)	
2-06	1745 (24.3)	1187 (16.5)	660 (9.2)	521 (7.2)
2-07*	1499 (20.5)	1400 (19.2)	838 (11.5)	777 (10.6)
2-08	2597 (36.6)	2213 (31.2)	1421 (20.0)	769 (10.9)
2-09	1253 (35.1)	1284 (29.8)	564 (18.8)	1/1 (9.8)
2-10	2315 (18.5)	2120 (18.9)	1461 (8.6)	1010 (3.0)
2-11	2285 (21.6)	2464 (23.3)	1337 (12.6)	210 (1.9)
2-12	2452 (27.6)	2652 (29.8)	1434 (10.2)	207 (3.0)
3-01*	2684 (40.1)	2552 (38.1)	1369 (20.5)	439 (0.0)
3-02*	1879 (27.7)	1609(23.7)	981 (14.5)	/11 (10.5)
3-03	1179 (16.1)	1368 (18.7)	501 (11.7) 510 /03)	178(3.2)
3-05	1043 (18.6)	1082 (19.3) 1072 (16.7)	519 (9.3)	
3-06	2000 (27.2)	12/2 (10.7)	2197 (21 4)	1650 (16.1)
3-07	2331 (24.7)	2/04 (20.3)	1930 (22.5)	1624 (18.9)
3-09	2040 (23.5) 1563 (28 0)	1813(32.4)	912 (16.3)	510 (9.1)
3-10-	1505 (20.0) 1539 (21.7)	1181 (16.6)	625 (8,8)	559 (7.9)
3-12	1930(21.7) 1871(22.0)	1733 (20.4)	1498 (17.6)	
4-01	2266 (28.1)	2216 (27.5)	1095 (13.6)	351 (4.4)
4-02	2758 (29.3)	2981 (31.6)	2325 (24.7)	1822 (19.3)
4-03	1940 (28.0)	1858 (26.9)	864 (12.5)	372 (5.4)
4-04	2236 (31.1)	2190 (30.4)	1235 (17.2)	682 (9.5)
4-05*	1601 (25.9)	1714 (27.7)	1363 (22.0)	788 (12.7)
4-06	2181 (25.1)	2417 (27.8)	1722 (19.9)	1486 (17.2)
4-07*	2670 (41.7)	2563 (40.1)	2337 (36.5)	1896 (29.6)
4-08*	2767 (32.9)	2385 (27.0)	1638 (15.7)	1367 (11.6)
4-09	2043 (28.0)	1774 (24.3)	1517 (20.8)	1247 (17.1)
4-10	3024 (29.4)	2753 (26.8)	2497 (24.3)	1157 (11.3)
4-11	2211 (21.5)	2211 (21.5)	1820 (17.7)	1493 (14.5)
4-12	2187 (31.2)	1877 (26.7)	1217 (17.4)	1120 (16.0)

*Subjects also monitored with the Oxylog.

TABLE XII

(CWL/KG), Med	Isuled Healt Rai	Le (HR), a	ind Percent	or Predicted
<u>Maximum H</u>	leart Rate (PPM)	(IR) FOF F1	rst Minute	of Test
Subject	(Wishta)			
	(Walls)	$\frac{(W/KG)}{2000}$	(BPM)	PPMHR
1-01	190	2.8/9	153	84.5
1-02	107	2.023	153	85.5
1-04*	127	2.010	140	/6.5
1-04*	120	1.300	133	68.9 70 0
1-05	170	1.000	139	70.2
1-07	110	2.200	117	60.3 0C 1
1-09*	125	1.092	101	86.1
1-00	100	2 022	100	69.7 65 A
1-09	100	2.022	123	00.4 7E 1
1-10	145	2 042	139	(5.1
2-01*	100	2.042	129	r8.0 07.6
2-01*	123	2 171	150	87.0 70 F
2-02*	199	2.4/4	109	79.5
2-03	120	1 6 2 2	128	08.1 75 C
2-04	125	1.000	140	/5.6
2-05	126	1.295	120	70.0
2-00	141	1.750	125	04.4
2-09	141	1.925	101	87.0
2-08	110	2.739	140	/3.3
2-09	170	2 000	140	72.5
2-10	160	2.099	142	/6.8
2-11	100	1.580	154	81.9
2-12	194	2.100	100	78.0
3-02*	120	3.049	132	72.5
3-02	130	1.912	112	70.9
3-05	70	1 240	120	59.2
3-05	163	1.J40 0 1/15	129	69.0
3-07	100	1 930	163	09.4
3-09	109	2 017	103	09.0
3-10*	179	2.017	142	70.0
3-11	120	2.200	145	70.8
3-12	151	1.020	147	75 6
4-01	162	2 000	140	72.0 05 0
4-02	203	2.000	174	03.0
4-03	149	2.100	160	92.0
4-04	177	2.152	150	00.0
4-05*	130	2.438	1/5	02.0 72 F
4-06	193	2.121 2 122	140	72.5
4-07*	209	3 258	155	01.0
4-08*	143	2.250	162	
4-00°	156	2.10/	102	04.0 03 7
<u>4</u> -10	10 10	2.304	150	0J.2 07 A
4-11	220	2.107	159	02.4 07 C
π−⊥⊥ Λ_10	107	1.0/0	100	8/.6
<u><u><u>4</u>-16</u> <u>Moan</u></u>	16/	2.0/1	140	13.4
reall g r	100	2.029	140	10.4
Xquhierte	also monitorod	UIU/2 Lwith tha	2.3 Ovvlog	1.20
ວແມ່ງຮັບປອ	areo monitoreo		UXVIUU.	

Calculated Workload (CWL) and Workload per Body Weight (CWL/Kg), Measured Heart Rate (HR), and Percent of Predicted

		5	•	•
		All Subjects	Without Oxylogs	With Oxylogs
Trial 1	Mean	31.5 (74.8)	34.4 (76.1)	23.7 (71.3)
	S.E.	1.96 (2.97)	1.67 (4.04)	1.67 (0.88)
	N	11	8	3
Trial 2	Mean	29.8 (75.9)	29.4 (78.9)	31.0 (67.0)
	S.E.	1.91 (3.54)	2.02 (4.10)	5.57 (4.58)
	N	12	9	3
Trial 3	Mean	29.1 (74.1)	30.1 (78.6)	26.7 (63.7)
	S.E.	2.17 (4.54)	2.12 (5.56)	5.93 (3.84)
	N	10	7	3
Trial 4	Mean	27.2 (77.9)	28.1 (82.6)	24.3 (64.0)
	S.E.	1.85 (4.31)	2.30 (4.81)	2.60 (1.16)
	N	12	9	3
Trials	Mean	30.2 (75.0)	31.3 (77.9)	27.1 (67.3)
1+2+3	S.E.	1.14 (2.06)	1.17 (2.50)	2.62 (2.07)
	N	33	2 4	9
A11	Mean	29.4 (75.8)	30.4 (79.2)	26.4 (66.5)
	S.E.	0.98 (1.88)	1.07 (2.23)	2.05 (1.61)
	N	45	33	12

TABLE XIII Mean, Standard Error, and Population Size for Subjects' Ages in Years and Weight in Kilograms (in Parentheses)

Test for Determination of Statistical Differences Between Categories of Test Subjects Expressed as P Values.

					A Sub	ll jects		Subj With Oxyl	jects nout logs	Su Ox	bjects With ylogs	
Aci	ros	ss I	Runs									
Trial	1	VS	Trial	2	56.2	(81.3)	7.8*	(63.8)	27.	7 (40.6)	
Trial	1	vs	Trial	3	43.4	(89.8	i)	14.1	(72.5)	65.	0(11.1)	
Trial	1	vs	Trial	4	12.7	(56.2)	4.3#	(32.0)	84.	4 (0.7)	#
Trial	2	vs	Trial	3	80.5	(75.2)	73.9	(96.1)	62.	5(60.6)	
Trial	2	vs	Trial	4	33.3	(72.3)	67.3	(57.0)	33.	7 (56.3)	
Trial	3	vs	Trail	4	50.5	(54.9	j –	52.7	(59.8)	73.	7 (94.0)	
			Withi	Ĺn	Runs (With v	s.	Withou	it Oxyl	ogs)		
			T1	ria	al 1		(D.1#	(27.6)			
			Tr	1 8	al 2		87	.6	(8.3)	*		
			Tı	ria	al 3		59	9.8	(5.9)	*		
			Tr	-ia	al 4		30).6	(0.4)	ŧ		
			Tı	cia	als 1+2	+3	15	5.5	(0.3)	#		
			Al	1	Runs		8	8.4*	(0.0)	#		
r	+ (0.05	5 < P <	< 0	. 10		_		、 <i>,</i>			
ŧ	F	> <	0.05									

TABLE XIV Mean, Standard Error, and Population Size for Heart Rate (BPM) for the First Minute of the Test

		All Subjects	Without Oxylogs	With Oxylogs
Trial 1	Mean	138.6	139.4	136.7
	S.E. N	3.99 11	5.54	1.86 3
Trial 2	Mean	145.0	140.0	160.0
	S.E.	3.82	3.77	0.58
	N	12	9	3
Trial 3	Mean	137.8	137.7	138.0
	S.E.	5.15	7.44	3.22
	N	10	7	3
Trial 4	Mean	158.8	159.4	157.0
	S.E.	2.42	2.73	6.03
	N	12	9	3
Trials	Mean	140.7	139.1	144.93
1+2+3	S.E.	2.47	3.04	3.92
	N	33	24	9
All	Mean	145.5	144.7	147.9
	S.E.	2.36	2,81	3.54
	N	45	33	12

Test for Determination of Statistical Differences Between Categories of Test Subjects Expressed as P Values.

						Subjects	Subjects
					A11	Without	With
					Subjects	Oxylogs	Oxylogs
Acı	os	s Ru	ins				
Trial	1	vs.	Trial	2	26.0	92.9	0.0#
Trial	1	vs.	Trial	3	90.6	86.0	74.1
Trial	1	vs.	Trial	4	0.0#	0.6#	3.2#
Trial	2	vs.	Trial	3	27.6	78.4	0.0#
Trial	2	vs.	Trial	4	0.6#	0.1#	64.3
Trial	3	vs.	Trail	4	0.1#	1.2#	5.0#
			Withir	ı F	Runs (With	vs. Without (Dxylogs)
					Trial 1	65.7	
					Trial 2	0.0#	
					Trial 3	95.9	
					Trial 4	72.7	
					Trials 1+2	+3 25.1	
					All Runs	47.8	
1	* 0	0.05	< P <(Σ.:	10		
ŧ	ŧ P	· < ().05				

23

TABLE XV Mean, Standard Error, and Population Size for First Minute of Test, Workload in Watts and Workload per Unit Weight in W/Kg (in Parentheses)

		All Subjects	Without Oxylogs	With Oxylogs
Trial 1	Mean	145.0 (1.94)	155.4 (2.06)	117.3 (1.64)
	S.E. N	9.76 (0.12) 11	10.93 (0.14) 8	10.27 (0.14) 3
Trial 2	Mean	143.0 (1.89)	145.3 (1.84)	136.0 (2.05)
	S.E.	9.37 (0.12)	12.43 (0.14)	6.56 (0.22)
	N	12	9	3
Trial 3	Mean	146.4 (1.99)	137.3 (1.72)	167.7 (2.62)
	S.E.	15.61 (0.21)	16.20 (0.12)	38.67 (0.53)
	N	10	7	3
Trial 4	Mean	174.8 (2.28)	179.3 (2.20)	161.3 (2.52)
	S.E.	8.19 (0.11)	8.04 (0.09)	24.04 (0.37)
	N	12	9	3
Trials	Mean	144.7 (1.94)	146.3 (1.88)	140.3 (2.10)
1+2+3	S.E.	6.46 (0.09)	7.38 (0.08)	13.82 (0.22)
	N	33	24	9
A11	Mean	152.7 (2.03)	155.3 (1.96)	145.6 (2.21)
	S.E.	5.55 (0.07)	6.30 (0.07)	11.75 (0.19)
<u></u> <u></u> <u></u>	<u>N</u>	45	33	12

Test for Determination of Statistical Differences Between Categories of Test Subjects Expressed as P Values.

								Sub	jects	Subj	ects
					[A	A11			nout	Wi	th
					Sub	ects	ects Oxyl			Oxyl	ogs
Aci	0	ss I	Runs							<u> </u>	
Trial	1	vs	Trial	2	88.2	(78.2)	e	51.8	(30.2)	20.1	(13.2)
Trial	1	VS	Trial	3	94.5	(85.9)		37.0	(8.8)*	27.7	(9.1)*
Trial	1	vs	Trial	4	3.0#	(5.6)	*	9.9*	(41.1)	16.8	(3.9)#
Trial	2	vs	Trial	3	85.1	(70.8)	-	70.3	(52.4)	46.3	(33.4)
Trial	2	vs	Trial	4	1.8#	(2.9)	#	3.5#	(5.0)#	37.0	(29.2)
Trial	3	vs	Trail	4	12.3	(23.7)		3.6#	(0.5) #	89.6	(87.5)
			With:	in	Runs (W	lith vs	. W	lithou	it Oxylo	gs)	•
			T	ria	al 1		3.	2#	(7.0)*		
			Tı	ria	al 2		52.	5	(44.2)		
			T	ria	al 3		48.	7	(12.6)		
			Tı	ria	al 4		49.	4	(43.2)		
			T	ria	als 1+2+	-3	70.	7	(34.5)		
			A	11	Runs		46.	6	(23.8)		
1	r (0.05	5 < P ·	< 0 .	. 10				. ,		
ŧ	ŧ 1	2 <	0.05								

TABLE XVI

Colibrot	iy were	gnt in mu/m	11n/Kg (1	n Parenthe	eses) Bas	ed on
Calibrat	ion Re	egression E	quations	for Workl	oads at	0.7 W/Kg,
1.	2 W/K	J, and Firs	<u>st Minute</u>	of Evacua	ition Tri	als
Subject	Val	lues at	Val	ues at	Val	ues at
Number	0.7	W/Kg	1.2	W/Kg	1-Min	Evac Test
					· ••• • • • • • • • • • • • • • • • • •	
1-01	750	(11.36)	1129	(17.11)	2404	136 421
1-02	920	(10.70)	1431	(16.64)	2273	(26, 42)
1-03	599	(9.51)	984	(15, 62)	1599	(20.43)
1-04*	797	(11,23)	1170	(16 48)	1200	(23.37)
1-05*	889	(12, 70)	1293	(10.10)	1005	(10.20)
1-06	1196	(12.70)	1620	(10.47)	1020	(26.07)
1-07	801	(12, 12)	1124	(20.31)	2498	(31.52)
1-09*	051	(12.52)	124	(1/.45)	1467	(22.57)
1-09	1104	(11.07)	1341	(18.37)	1830	(25.07)
1-09	1044	(12.84)	1583	(17.02)	2212	(23.78)
1-10	1044	(12.14)	1470	(17.09)	1746	(20.30)
1-11	1001	(14.10)	1351	(19.03)	1952	(27.49)
2-01*	849	(12.13)	1192	(17.03)	1574	(22.49)
2-02*	668	(11.52)	1031	(17.78)	1958	(33.76)
2-03	982	(12.28)	1391	(17.39)	1719	(21.49)
2-04	977	(13.03)	1299	(17.32)	1586	(21, 15)
2-05	877	(12.53)	1188	(16.97)	1250	(17 86)
2-06	944	(13, 11)	1281	(17,79)	1655	(27.00)
2-07*	1086	(14.88)	1350	(18 49)	1730	(22.33)
2-08	808	(11, 38)	1146	(16, 14)	1/30	(23.70)
2-09	706	(10, 70)	1026	(10.14)	1250	(31.10)
2-10	852	(10,70)	1020	(15.00)	1356	(20.53)
2 10	1256	(10.52)	1222	(15.09)	1896	(23.41)
2-11	1147	(11.85)	1829	(1/.25)	2272	(21.43)
2-12	114/	(12.89)	1688	(18.97)	2733	(30.71)
3-01*	937	(13.99)	1293	(19.30)	3073	(45.87)
3-02*	940	(13.82)	1275	(18.75)	1748	(25.71)
3-03	988	(13.53)	1350	(18.49)	1380	(18.90)
3-05	737	(13.16)	1024	(18.29)	1137	(20.30)
3-06	774	(10.18)	1182	(15.55)	1953	(25.70)
3-07	1246	(12.10)	1878	(18.23)	2668	(25, 90)
3-09	1136	(13.21)	1451	(16.87)	1970	(22.91)
3-10*	657	(11.73)	972	(17.36)	1659	(29, 63)
3-11	1050	(14.79)	1339	(18.86)	1586	(22, 34)
3-12	1138	(13.39)	1552	(18, 26)	2035	(22,04)
4-01	1106	(13.65)	1656	(20.44)	2000	(21 51)
4-02	1185	(12.61)	1693	(18 01)	2552	(31,31)
4-03	912	(13, 22)	1292	(10.01)	2000	(20.30)
4-04	989	(13, 22)	1202	(10.30)	1979	(28.58)
4-05*	729	(13.74)	1071	(19,17)	2370	(32.92)
4-05	042	(11.70)	1071	(17.27)	1/11	(27.50)
4-07*	543 015	(10.97)	1386	(16, 12)	2212	(25.72)
4 004	910	(14.30)	1202	(18.78)	2385	(37.27)
4-08*	629	(9.53)	1265	(19.17)	2499	(37.86)
4-09	730	(11.06)	1102	(16.70)	1971	(29.86)
4-10	1163	(11.29)	1961	(19.04)	3527	(34.24)
4-11	1337	(13.11)	1784	(17.49)	2214	(21.71)
4-12	880	(12.57)	1196	(17.09)	2126	(30.37)
*Subjects	; also	monitored	with Oxy	logs.		

Oxygen Consumption in mL/min and Oxygen Consumption per Kg Body Weight in mL/min/Kg (in Parentheses) Based on

|--|

Carbon Dioxide in mL/min and Carbon Dioxide per Kg Body Weight in mL/min/Kg (in Parentheses) Based on Calibration Regression Equations for Workloads at 0.7 W/Kg, 1.2 W/Kg, and First Minute of Evacuation Trials

Number 0.7 W/Kg 1.2 W/Kg 1-min 1-01 523 (7.92) 893 (13.53) 2129 1-02 781 (9.08) 1284 (14.93) 2115 1-03 432 (6.86) 835 (13.25) 1478 1-04* 616 (8.68) 1078 (15.18) 1237 1-05* 680 (9.71) 1227 (17.53) 1945 1-06 846 (10.71) 1228 (15.54) 2002 1-07 687 (10.57) 1161 (17.86) 1635	Evac Test (32.26) (24.59) (23.46) (17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-01 523 (7.92) 893 (13.53) 2129 $1-02$ 781 (9.08) 1284 (14.93) 2115 $1-03$ 432 (6.86) 835 (13.25) 1478 $1-04*$ 616 (8.68) 1078 (15.18) 1237 $1-05*$ 680 (9.71) 1227 (17.53) 1945 $1-06$ 846 (10.71) 1228 (15.54) 2002 $1-07$ 687 (10.57) 1161 (17.86) 1635	(32.26) (24.59) (23.46) (17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-01523(7.92)893(13.53)21291-02781(9.08)1284(14.93)21151-03432(6.86)835(13.25)14781-04*616(8.68)1078(15.18)12371-05*680(9.71)1227(17.53)19451-06846(10.71)1228(15.54)20021-07687(10.57)1161(17.86)1635	(32.26) (24.59) (23.46) (17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-02781(9.08)1284(14.93)21151-03432(6.86)835(13.25)14781-04*616(8.68)1078(15.18)12371-05*680(9.71)1227(17.53)19451-06846(10.71)1228(15.54)20021-07687(10.57)1161(17.86)1635	(24.59) (23.46) (17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-03432(6.86)835(13.25)14781-04*616(8.68)1078(15.18)12371-05*680(9.71)1227(17.53)19451-06846(10.71)1228(15.54)20021-07687(10.57)1161(17.86)1635	(23.46) (17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-04*616(8.68)1078(15.18)12371-05*680(9.71)1227(17.53)19451-06846(10.71)1228(15.54)20021-07687(10.57)1161(17.86)1635	<pre>(17.42) (27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)</pre>
1-05*680(9.71)1227(17.53)19451-06846(10.71)1228(15.54)20021-07687(10.57)1161(17.86)1635	(27.83) (25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-06846 (10.71)1228 (15.54)20021-07687 (10.57)1161 (17.86)1635	(25.34) (25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
1-07 687 (10.57) 1161 (17.86) 1635	(25.15) (23.68) (20.82) (18.09) (25.17) (23.57)
	(23.68) (20.82) (18.09) (25.17) (23.57)
1-08* 617 (8.45) 1173 (16.07) 1729	(20.82) (18.09) (25.17) (23.57)
1-09 929 (9.99) 1314 (14.13) 1936	(18.09) (25.17) (23.57)
1-10 768 (8.93) 1245 (14.48) 1556	(25.17) (23.57)
1-11 755 (10.63) 1135 (15.99) 1787	(23.57)
2-01* 666 (9.51) 1131 (16.16) 1650	
2-02* 433 (7.47) 882 (15.21) 2028	(34.97)
2-03 830 (10.38) 1278 (15.98) 1636	(20.45)
2-04 865 (11.53) 1206 (16.08) 1510	(20.13)
2-05 757 (10.81) 1061 (15.16) 1122	(16.03)
2-06 650 (9.03) 1039 (14.43) 1471	(20.43)
2-07* 769 (10.53) 1050 (14.38) 1452	(19.89)
2-08 724 (10.20) 1132 (15.94) 2412	(33.97)
2-09 562 (8.52) 913 (13.83) 1274	(19.30)
2-10 834 (10.30) 1322 (16.32) 2216	(27.36)
2-11 1087 (10.25) 1817 (17.14) 2382	(22.47)
2-12 898 (10.09) 1462 (16.43) 2554	(28.70)
3-01* 622 (9.28) 955 (14.25) 2625	(39.18)
3-02* 737 (10.84) 1155 (16.99) 1746	(25.68)
3-03 798 (10.93) 1235 (16.92) 1271	(17.41)
3-05 558 (9.96) 924 (16.50) 1069	(19.09)
3-06 626 (8.24) 987 (12.99) 1671	(21.99)
3-07 1066 (10.35) 1763 (17.12) 2633	(25.56)
3-09 1037 (12.06) 1492 (17.35) 2243	(26.08)
3-10* 455 (8.13) 844 (15.07) 1691	(30.20)
3-11 748 (10.54) 1078 (15.18) 1361	(19.17)
3-12 911 (10.72) 1321 (15.54) 1800	(21.18)
4-01 923 (11.40) 1429 (17.64) 2250	(27.78)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(30.45)
4-03 722 (10.46) 1130 (16.38) 1900	(27.54)
4-04 751 (10.43) 1166 (16.19) 2214	(30.75)
4-05* 550 (8.87) 936 (15.10) 1659	(26.76)
4-06 /81 (9.08) 1306 (15.19) 2283	(20.55)
4-0/* 6/1 (10.48) 1052 (16.44) 2624	(41.00)
4-08* 42/ (6.4/) 954 (14.45) 19/6	(29.94)
4-09 559 (8.47) 965 (14.62) 1910	(28,94)
4-10 7/1 (7.49) 1553 (15.08) 3087	(29.97)
4-11 114 / (11.25) 1683 (16.50) 2198	(21.55)
4-12 693 (9.90) 1031 (14./3) 2026	(28.94)

Subjects also monitored with Oxylog.

TABLE XVIII

Oxygen Consumption (in Liters) and Carbon Dioxide Production (in Liters) Based on Proposed 20-Min Workload Profile

Subject		Carbon Dioxide
Number	Oxygen Consumption	Production
1-01	18 17	13 55
1-02	21.80	18 97
1-03	14.52	11 30
1-04*	17 93	14 79
1-05*	20 33	17 05
1-05	20.00	19 60
1-07	18 02	16 59
1-08*	19.02	15 68
1-09	26.45	21 13
1-10	20.40	19 06
1-10	23.25	17 65
2-01*	19 08	16 16
2-01*	16 10	12 05
2-02	22 01	19 20
2-03		19.20
2-04	10 16	16 70
2-05	20 04	15 20
2-00	20.24	17 10
2-07*	10 01	17 00
2-00	16.91	13 36
2-09	10.05	20 01
2-10	20 43	20.01
2-11	20.45	23.90
2-12	20.03	15 79
3-01*	22.50	17 42
3-02	20.35	19 19
3-05	16 20	13 14
3-05	10.29	15.14
3-07		25 68
3-09	20.07	23.00
3-10*	15 40	11 89
3-11	22 69	16.89
3-12	25 31	20.75
J-12 4-01	25.31	20.75
4-02	23.77	23.46
4-02	20.79	17 25
4 - 0 4	20.75	18 14
4-05*	16 93	13 65
4-06	21 90	19 22
4-07*	20.92	15 90
4=08*	16 99	12 20
4-09	17 33	14 16
4-10	28 82	20.86
4-11	29.02	26.00
4-12	20,11	16 55
* Subjects	also monitored with Oxvlogs.	

TABLE XIX

Mean, Standard Error, and Population Size for Oxygen Consumption and Carbon Dioxide Production (in Parentheses) Based on Proposed 20-Min Workload Profile

		All		Wit	hout	With		
		Sub	jects	Оху	logs	Оху	logs	
Trial 1	Mean	20.89	(16.76)	21.44	(17.11)	19.41	(15.84)	
	S.E.	1.14	(0.85)	1.52	(1.15)	0.75	(0.66)	
	N		11		8		3	
Trial 2	Mean	20.98	(17.92)	21.47	(18.85)	19.53	(15.13)	
	S.E.	1.09	(1.08)	1.30	(1.23)	2.13	(1.57)	
	N		12		9		3	
Trial 3	Mean	21.65	(17.85)	22.55	(19.06)	19.55	(15.03)	
	S.E.	1.32	(1.40)	1.63	(1.73	2.11	(1.64)	
	N		10		7		3	
Trial 4	Mean	22.41	(18.38)	23.79	(19.75)	18.28	(14.25)	
	S.E.	1.29	(1.21)	1.40	(1.25)	1.32	(1.39)	
	N		12		9		3	
Trials	Mean	21.15	(17.51)	21.78	(18.33)	19.50	(15.33)	
1+2+3	S.E.	0.66	(0.63)	0.82	(0.77)	0.89	(0.69)	
	N		33		24		9	
A11	Mean	21.49	(17.74)	22.32	(18.72)	19.19	(15.06)	
	S.E.	0.59	(0.56)	0.71	(0.65)	0.73	(0.61)	
	N		45		33		12	

Test for Determination of Statistical Differences Between Categories of Test Subjects Expressed as P Values.

					A Sub	ll jects	Su Wi Ox	ubjects thout ylogs	Subj Wi Oxyl	ects th ogs
Acı	08	ss I	Runs							
Trial	1	vs	Trial	2	95.3	(41.1)	99.2	(32.0)	96.3	(69.6)
Trial	1	vs	Trial	3	66.5	(51.1)	62.5	(36.5)	95.5	(67.0)
Trial	1	vs	Trial	4	38.9	(28.4)	27.3	(14.0)	49.6	(36.2)
Trial	2	vs	Trial	3	70.1	(96.9)	61.1	(92.2)	99.3	(97.0)
Trial	2	vs	Trial	4	40.5	(83.6)	24.4	(61.7)	64.3	(69.6)
Trial	3	vs	Trail	4	68.6	(77.5)	57.1	(75.4)	63.7	(73.7)
			With	in	Runs (With vs	. With	out Oxylo	gs)	
			T	ria	al 1		26.1	(36.3)		
			TI	ria	al 2		45.4	(9.3)*		
			T	ria	al 3		29.2	(13.0)		
			Tı	ria	1 4		1.7#	(1.5)#		
			T	ria	als 1+2	+3	6.8*	(0.7)#		
			A	11	Runs		0.0#	(0.0)#		
ť	r (0.0	5 < P ·	< 0 .	.10					
#	ŧ 1	> <	0.05							

TABLE XX											
Change	in	Oxyge	n Upta	ake (L/Mi	n)	from	Final	30-s	of	а
Workload	to	the	First	30-s	of	the	Next	Highe	r Wol	cklo	bad

Number	30W - 50W	50W - 70W	70W - 90W	90W -110W	110W-130W	<u>130W-150W</u>
1-01	15	05	05	11	21	08
1-02	0.00	-,28	+.26	+.22	19	-
1-03	+.12	+.08	+.22	+.05	+.11	-
1-04	0.00	04	+.15	+.24	+.12	-
1-05	+.14	+.03	+.21	12	14	07
1-06	11	22	+.33	22	03	+.09
1-07	10	+.17	+.26	+.11	-	-
1-08	02	+.17	09	09	+.07	10
1-09	+.27	02	0.00	21	02	+.34
1-10	09	08	+.15	+.15	+.11	+.19
1-11	+.18	18	02	+.01	31	02
2-01	+.09	03	13	04	-	-
2-02	+.02	+,21	0.00	+.34	+.18	01
2-03	+.14	03	+.12	22	+.20	15
2-04	06	01	16	+.13	+.04	-
2-05	03	+.23	01	01	+.10	-
2-06	+.10	+.01	+.15	08	+.37	+.42
2-07	+.06	22	+.03	24	-	-
2-08	+.03	+.26	12	+.07	+.24	+.45
2-09	0.00	10	+.17	+.06	+.01	-
2-10	15	08	01	02	+.10	+.01
2-11	23	09	01	+.09	+.15	06
2-12	09	+.36	21	+.04	+.04	+.30
3-01	+.08	14	0.00	+.05	+.10	13
3-02	17	19	+.01	+.04	+.09	+.38
3-03	+.13	+.15	04	+.46	+.31	+.17
3-05	+.04	07	+.10	04	-	-
3-06	+.04	19	+.05	+.18	+.13	+.12
3-07	+.39	+.05	01	+.12	+.02	+.10
3-09	35	17	06	+.17	+.11	+.17
3-10	+.20	+.01	+.09	+.22	07	+,31
3-11	+.02	11	08	+.04	+.35	+.37
3-12	- 11	09	+.27	+.38	04	+.03
4-01	+.06	1/	02	+.02	02	-
4-02	04	+.08	07	+.22	11	09
4-03	04	15	06	27	+.18	+.13
4-04	0.00	+.08	+.08	09	0.00	01
4-05	+.05	16	+.29	+.08	+.32	+.23
4-06	+.05	+.02	24	+.26	01	+.03
4-07	11	+.06	+.22	02	+,01	+.12
4-08	+.23	+.15	+.30	02	21	-
4-09	47	+.18	+.21	+.01	+.35	+.04
4-10	02	16	+.18	05	27	-
4-11	+.05	01	06	+.03	+.08	-
4-12	+.03	+.09	10	+.05	+.39	03
N (Total)	45	45	45	45	41	
N (+)	24	19	23	29	27	20
N (-)	17	26	19	16	13	11
N (No Cha	inge) 4	0	3	0	1	0
Mean	+.008	014	+.053	+.045	+0.65	+.105