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AFIT/GA/ENY/89J-2

Abstract

The purpose of this study is to locate critical inclinations in long term high eccen-
tricity orbits about Mars using numerical methods. A critical inclination is defined as the
inclination at orbit insertion which produces a local maximum in the amplitude of the vari-
ation of eccentricity or inclination. The perturbation model consists of the first non-zero
zonal harmonic (J2) of the Mars gravity potential and the Sun as a point mass third body.
The search range consists of inclinations from 0.25 to 90.0 degrees, eccentricities from 0.40

to 0.90, periapse radii from 4000 &m to 7000 km, and orbit lifetimes of 10 Earth years.

The numerical search comprises the following procedure: (1) A time history of eccen-
tricity and inclination is produced for each combination of orbit insertion initial conditions
by numerically propagating Lagrange’s Planetary Equations. (2) Each time history is fit,
in the least squares sense, to a linear function. The standard deviation of the residuals
for each fit is employed as the search parameter. (3) A three-dimensional surface plot
of the standard deviation in eccentricity and the standard deviation in inclination versus
eccentricity and inclination is produced for each value of periapse radius considered. The
local maximums in these surfaces identifies the locations of the critical inclinations. (4)
The three-dimensional surfaces are then reduced to two dimensions by plotting inclination

versus eccentricity for the local maximums in standard deviation.

Six critical inclination curves for eccentricity are identified, three of which are curve
fit and found to be linear in periapse radius and quadratic in eccentricity. The surface
plots for inclination indicate the presence of large variations but the surface topography

does not allow for the identification of distinct local maximum curves.




NUMERICAL DETERMINATION OF THE LOCATION OF CRITICAL
INCLINATIONS FOR LONG TERM HIGH ECCENTRICITY
ORBITS ABOUT MARS

I. Introduction

The task of placing satellites in long-term orbit about Mars will require extensive
planning, but one of the first mission parameters to consider will be the orbit itself. Orbit
design will be a function not only of the specific mission requirements, but also of mission
costs, and in particular, the costs related to orbit insertion. Inserting a satellite into orbit
about Mars requires a large velocity change between the Earth-to-Mars transfer trajectory
and a closed orbit about Mars. The magnitude of the velocity change, and therefore the

related costs, is inversely proportional to the energy of the Mars-centered orbit.

Consider a satellite mission which includes the need to make close observations of
the Martian surface. This requirement may be met by simply inserting the satellite into
a near circular orbit just above the atmosphere, but such an orbit possesses at least two
disadvantages: 1) atmospheric drag, and 2) the fuel required to insert the satellite into

such a low-energy orbit.

An approach to the solution of these problems is to utilize a high eccentricity orbit,
which allows for close approach (at periapse) as well as reduced insertion fuel requirements
(compared to the circular or near circular orbit). High eccentricity orbits, however, are
not without difficulties. The combined effects of the gravity fields of Mars and of the Sun
will produce resonance, causing large variations in the orbital elements. Such variations

may result in violated mission constraints, and in severe cases, reentry and impact.

To illustrate this phenomenon, Figures 1 and 2 display the behavior of the eccentricity
and inclination of a Martian orbit over a period of twenty Earth years (under the conditions
for which large variations are not present). Figures 3 and 4 present the behavior of these

parameters under the conditions for which large variations do exist.
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The conditions for which such large variations occur are primarily a function of the
values of the eccentricity and inclination at orbit insertion. These two elements determine
the exposure of the orbit to the effects of the planet oblateness and to the third-body
effects of the Sun. The dependencc of these variaticns on ecceutricity will be shown to
be generally a direct one, that is, the larger the eccentricity, the greater the variations.
However, the effects of the orbit inclination are not as clear, and are therefore of greater

concern.

This thesis develops a numerical method for determining the values of inclination and
eccentricity for which large variations in these two elements occur. The gravity models
will be simplified, considering only the first non-zero zonal harmonic (J; ) of the Mars
gravity potential, and treating the Sun as a point mass. The reasons for this are twofold:
1) to meet with the constraint of limited computer time, and 2), to provide a basis for
comparison with an analytical approach in locating the critical inclinations. This model
therefore includes only the dominant sources of perturbation (for Mars, J; is larger than
any other zonal harmonic by two orders of magnitude, and is twice the magnitude of J,

for Earth).

This investigation begins by presenting the theory upon which the numerical work
is’ based, including the derivation of the disturbing functions used in Lagrange’s Planetary
Equations (LPEs) for propagating the time history of the orbital elements, as well as
providing a brief summary of an analytical approach to locating the critical inclinations.
The numerical work is presented by describing the computer program which was utilized,
followed by a description of the approach in locating the critical inclinations. The results

are given primarily in graphical form.
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II. Analytical Development

Equation of Motion

Figure 5 shows the reference frame used throughout this investigation. The Sun,

relative to this reference frame, is considered to “orbit” Mars.

A
Mars
spin .
i N\ pericenter
apparent
Sun
orbit
Mars
equatorial >
plane
——————— ascending node

Figure 5. Mars-centered Reference Frame

Symbols used in this figure are defined as follows:

7 = satellite radius vector
¥, = Sun radius vector
1 = inclination of satellite orbit

2 = argument of ascending node for satellite orbit




w = argument of periapse for satellite orbit
I = inclination of Sun orbit
A = right ascension of the Sun
L = Mars-centered latitude of the Sun
= satellite central angle

6
6; = Sun central angle

The equations of motion for the satellite in this reference frame may be written as

the gradient of the gravity potentials of Mars and of the Sun:
F = V(Ru + Rs) (1)

where

V = gradient operator
Ry = Mars gravity potential
Rs = Sun gravity potential

The orbital elements (other than the mean anomaly) remain constant when the
central body is modeled as a point mass and no other forces are included. The effects
of the Sun and of the oblateness of Mars introduce perturbations which cause the orbital
elements to vary with time. The perturbing contribution to the gravity potentials are
modeled as a disturbing function R , which, when introduced into the LPEs [4:476-483],

describes the ‘motion’ of the orbital elements.




The LPEs may be written as follows:

& 1 oR
dt ~ nabsini 8i
di _ 1 R cos:i OR
dt =  nabsini 992 ' nabsini Ow
dw _ cost OR b 8R
dt ~ " nabsini i ' nade Oe
d _ 20k
dt =~ naedM
de _ 5 OR b OR
dt = na'edM  nade dw
dM _ _ 20R_ B 8R
4t " nada  nale de

where

e = eccentricity of satellite orbit

a = semi-major axis of satellite orbit

b = av1— €2 = semi-minor axis of satellite orbit
Bm = Mars gravity constant

M = satellite mean anomaly

n = \/im/a° = satellite mean motion

The disturbing function R will now be derived.

(2)
3)
(4)
(5)

(M




The Mars Disturbing Function
The gravity potential of Mars may be written as a combination of the two-body,
undisturbed potential and the disturbing function:
Bp = ﬁ:—l + R, (8)

where

7 = magnitude of 7

R,, = Mars disturbing function

The Mars disturbing function (3:421), including only the second harmonic coefficient J;

(i.e., the first non-zero zonal harmonic), may be written as

H JZIZ2 .2
R, = —%ﬁ(l ~ 3sin® §) (9)

where R, is the Mars equatorial radius, and é is the satellite declination (see Figure 5).

The parameter § must now be rewritten in terms of the orbital elements f and w,
where f is the satellite true anomaly. To carry out this transformation, consider Figures 6

and 7 on the following page.
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® N\
f
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Figure 6. Looking Down the Mars Spin Axis

Figure 7. Relationship between § and f + w : A Right Spherical Triangle




Py In Figure 6, w is measured counterclockwise from the ascending node, f is measured
counterclockwise from periapse, and « is defined such that o + f + w = 7. The central
angles a and 6 and the vertex angle i define a right spherical triangle, as shown in Figure 7.

Making use of spherical and plane trigonometric identities gives

siné = sintsina

sinisin(r — (f + w))

sin i sin( f + w)
Squaring yields
sin?d = sin?isin®(f 4+ w)
= sin?i [1 — cos®(f + w)]
- antif- (g
= sin z[l (2+2cos2(f+w)
= %sin2i[1—~cos2(f+w)]

Substituting for sin?§ in equation (9) results in

uszRz( 3 ., 3 .4, )
_ _3 3 0
R, o3 1 7 8in 1+2s1n tcos2(f + w) (10)

10




Averaging the Mars Disturbing Function

To determine the long-term behavior of the orbital elements, the short-term effects
of the mean (or true) anomaly may be averaged out by integrating the disturbing function
over 27 with respect to the mean anomaly M. The averaged Mars disturbing function R,

is acquired by

—_ 1

27
= — 11
Ll A R, dM (11)

This integration is fascillitated by employing Hansen’s Coefficients [2]. A brief description
of Hansen’s Coefficients along with the derivation of the Hansen’s Coefficients used below

are given in Appendix A. Substituting equation (10) into equation (11) yields

— 1 2 [J.mJQRz 3 . 2 )
R, = -2;/(; —5 (1-—58111 i) dM
27 2
+2i1r[ 3—Mﬂ‘};gisinzicos2(f+w)dM (12)
0 |

Calling the first integral A and the second B:

um.fgﬁg( 3 ., ) 1 /27 (,.)-3
- _3 ~ T 13
A 523 1 58in" i ) o L3 aM (13)
From appendix A:
1 [\ -3,0 2\~3/2
5;/; (;) dM = X" = (1 —-e ) (14)
Therefore
[JmJ2R3 ( 3 . 2 ) »
= HmDke (3 15
203 (1 — €2)*/? 1-gsin%s (15)

Working with the second integral:

3[lm12R2 2.4 1 2 fp\ 3
Bszn i 57?-/0 ;) cos2(f +w)dM (16)
Using the appropriate trigonometric relation, the expression in curly brackets becomes
1
27

2w1 27 fp\ 3 d . 1 21,.—3. M
= (Os 5;/0 (;) cos2f .M-—sm2w2—7r/o (;) sin2f

2r -3
/0 (-2) (cos2f cos 2w — sin 2 f sin 2w) dM

11




From appendix A

1 2T /o -3
0
and
2T -3
51;/ (2) cos2f dM = X532 =0 (18)
0

Hence, the averaged Mars disturbing function becomes

P — ,Uva2R2 ( 3 2 )
_ A (-3 19
R 20 (1 PP 1 5 Sin’ i (19)

12




The Solar Disturbing Function

Since the third-body effects of the Sun are to be included by considering the Sun to
be a point mass, the solar disturbing function may be derived by invoking Newton’s Law
of Universal Gravitation. The final expression for the solar disturbing function is to be
with repect to the reference frame shown in Figure 5. To accomplish this, consider the

arbitrary inertial reference frame shown in Figure 8 below.

sarellite

¥ Sun

Figure 8. Inertial Reference Frame for Deriving Solar Disturbing Function

Define the following;:

4
]

radius vector to satellite
To = radius vector to Mars

== radius vector to Sun

~3
w

]

)

m; = mass of satellite
m, = mass of Mars
ma = mass of Sun

Tij =T —Ti

13




The force on the satellite due to the combined effects of Mars and the Sun is

T = -Gm, [T-Z‘rgl + Erm] (20)
™ ™5

where G is the universal gravitational constant. The force on Mars due to the combined

effects of the satellite and the Sun is

Fg = —Gm2 [ml Ti12 + Ln-:iraz] (21)
T2 32
The accelerations of the satellite and of Mars are
. F [m2 ms ]
F= 22 = g | B3, 4+ 37 22
71 ™ = n + 2 31 (22)
. T’
Fp = = -G —7’12 + —7’32] (23)
m2 r32

Since 7y = ¥, — T2, the acceleration of the satelhte relative to Mars is 3y = ¥; — T2, or

fau = -G [ Ta + —-7‘31] +G [ T2 + —7‘32]
21 "31 12 "32
= imeEm)e | Gm, [1333 _ 23_1] (24)
™ T2 T3

Since mg > m;, m; may be ignored. Making the substitutions 4,, = Gmj and y, = Gmg

results in
= HBm _ T31  T32
T =—=3Ta -l =3~ 5 (25)
™ ™ T

In terms of the notation used in Figure 5
1’21 =7F
Fiza=-T2 =T,

T31 =T —T,

Making these substitutions, equation (25) becomes

. F~-T, ¥,
T= —-u—';? - m + = ] V(Rm + Rs) (26)
Therefore
F,~F T,
VRs = u, [m - ;:;;] (27)
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The solar gravity potential is then (see (11))

1 T T,
rs = m [t - 5] (%)

The solar disturbing function R, may now be extracted from the solar gravity
potential Rg. Let p = ¥, — 7. Therefore

PP = =T =(F—7) (Ts—T)
= Ty Ty —2F T+ 7T

= rf —2rrycos B + 12

where
_TT,
cos B = - (29)
Factoring out 72
2
2 _ .2 T 2r
p-=r; <1+ ;_?— r—’cosB)
1/2
rZ2  2r -
p=T, [1+;_?—;;cosB] = |Fs ~ 7| (30)
Substituting Eqs (29) and (30) into Eq (28) yields
N -1/2
R,=-“—‘[<1+%-?1cos3) —"C°SB] (31)
7‘3 7‘, 1‘, ‘ra
The first term within the brackets of Eq (31) may be expanded in a binomial series:
2 2 -1/2 0 1 2 n
1+ %——tcosB =Z 2 r—2-—-2—rcosB
rZ o, S S r2 r,
1(r* 2r 13 (7% 2r 2
—I—E(E_ECOSB>+-2-Z (;?——ac sB) +
Since r, 3> r, terms of order (r/r,)2 and above may be neglected, yielding
2 -1/2
1+ r~2 ¥ cos B
e T
1/r* 2r. 3(4r2
= 1—5<;§—;-’-cosB)+§(—;3-cos B) (32)
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Substituting Eq (32) into Eq (31) results in

2 2
_ M|, 1t 3 2
Rs = . [1 o2 + 377 cos B]
Hs r? 2
= = _— - 33
- [l+ 577 (3cos B 1)] (33)
Analogous to Eq (8)
Rs=%2 1R, (34)
Ts
Therefore, the solar disturbing function is
2
_ HsT 2p_
Ro=%s [3cos® B ~ 1] (35)
or
2 2
BsT ’F-'F,)
=213 - 36
R, 2r3 [ ( T, 1] (36)

The parenthetical expression in Eq (36) must now be written in terms of the elements
of the satellite orbit and of the apparent Sun orbit. In order to simplify notation, the

following abbreviations will be used henceforth for all trigonometric functions:
sinf =Sy cosf=Cy

Using the notation of Figure 5, define the following unit vectors:

CqCs - 85qC;5s

. T
ér = T = S5aCs + CqC;Sp (37)
' S$:Ss
CACL .
, _ Ts
€y = ;" = CLSA (38)
SL
Therefore
F‘F' 2 -
rr, o6

= CaCyCACL — SqCiSeCACL + SqCyCrLSs + CaCiSeCLSA + SiSeSL

= CyCL (CaCh + SaSa) + CiSeCL (CaSh — SaCr) + S5:SsSL

16
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= CypCLCa-p + CiSeCLSa-A + SiSeSL (39)

The solar disturbing function now becomes
2
r
R, = l%_-s— {3 [CoCLCq-n + C;SeCLSq- + S,'SoSle - 1} (40)
s

Expanding the term in brackets yields

2
HsT 2 2
R, = S5 {3 [KiCE + 2KaCoSo + KsS3) -1} (41)
where
K, = (CLCQ_A)2
K, = SLCLS:Ca_p ~ CiCiSa-aCa-a
K3 = (CiCLSa-a - 515:)°
But
1 1
2 3 - -—
Cg = 3 + 2020
1 1
2 — - _Z
S = 3730
25¢Cy = Sy
and
0=f+w
so the solar disturbing function is finally
2 (3 3
.= ——-"2;3 { 341C2(s40) + 34253(140) + 543 - 1} (42)

where

Al = Kl—Ka,

Ay, = K,
Az = K+ K3
17




Averaging the Solar Disturbing Function

As was done in the case of the Mars disturbing function, the short-term effects of the
satellite true anomaly may be averaged out. The averaged solar disturbing function R, is
obtained by

— 1

27
o= | RodM (43)

To accomplish the averaging by employing Hansen’s Coefficients (appendix A), the true
anomaly f must be separated from the argument of periapse w. Using the trigonometric

relations

Cos+w) = C2fCay — S2452
Sof+w) = S2Couw+ Ca2fSa2u

Eq (42) becomes

T2 (3 3 3
R, = “2:; {§A102f02w - §A152f52w + 3A2524Cau + 3A42C25 52, + 343~ 1}

2
ru'sr 3 3 3
= 2r3 {(§A102” + 3A2S2~) Cas + (3A2C2w - '2'A152w) Sa5 + §A3 - 1}

Multiplying and dividing by the square of the semi-major axis a, and then distributing r?

results in

2 2
psa 3 r
R, = 2’1.3 {(EAlcmu + 3A2S2w) (;) Coy

+ (3A2C2w - g‘AISZW) (-2)2 Saw + (%Aa - 1) (5)2} (44)

Averaging the terms which are functions of the mean anomaly yields

1 (27 /r\? .22 5€?

—_— — = S a—— 5

27r/0 (a) Cap dM = X3* = = (45)
1 2r r 2
— /0 (;) Sap dM =0 (46)
2 2

51; /0 (E) dM = X =1+ ;ez (47)

The averaged solar disturbing function is then

2 2
= _ M 3 Se 3 3 2)
R, = 27‘;3 {(2Alczw+3A23?w> 7 + (2/43—1) (1+ 26
2
. Hea® 15 4 3
= —4‘7‘? {—2—6 A1 Co, + 15€2A252w + (2 + 362) (5.43 - 1)} (48)
18




Substituting for A, 4, and Aj yields

&

a’ (15
%’—3- {—62 [CI%CS%—A - (CiCLSa-A - SLSi)z] Cau
ry L2
+ 15 [CLSLS:‘CQ—A -~ CzCiCn-ASQ-A] Souw

+ (2 + 362) [g [C?,Crzz_,x +(CiCLSa-a - 5L5i)2] - 1]} (49)

Eqgs (19) and (49) combine to form the complete disturbing function being considered

in this investigation:

R=R.+R, (50)
19




Analytical Determination of the Location of Critical Inclinations

The last section detailed the derivation of the disturbing function which will be in-
corporated into the LPEs for numerical integration. The resulting disturbing function was
obtained by averaging on 27 over the satellite mean anomaly for both the Mars disturbing
function and the Solar disturbing function. What remains, however, are the time depen-
dent terms of the Sun’s motion, namely the solar central angle #, and the solar latitude
L (see Figure 5). Averaging with respect to these terms fascillitates the development of
an analytical approach for determining the location of the critical inclinations (see (5:182-
192)). The purpose of this section is to examine the conditions under which such averaging

is valid, and to summarize the results of this approach.

The averaging of any cyclic parameter is valid when its variation is faster than the
variation of the other variables involved. Averaging with respect to the mean anomaly is
valid since, in this investigation, the orbit period is shorter than the period of the variation
of the argument of periapse w or of the argument of the ascending node Q. To average
out the effects of #, and L, the mean motion of the Sun n, must also be greater than the
rate at which w and Q vary. The conditions for which this relationship holds will now be

demonstrated.

To obtain an order-of-magnitude comparison of these terms, the LPEs may be used

directly. Also, since R,, > R,, only R,, will be used for this comparison. Using Eqgs (2),

(4), and (19):
g-gzz = --2-—(3-12‘2-—']:::;—2/2 sinicos? (51)
LI 2_932?]26_’*)_‘;3 (1-3as) (52) -
cfl—(tl = _55(21{2:%-)—2- cos i (53)
%’: %(l—gsinzi)+%mszi (54)

Considering only the magnitudes of the rates of change of Q and w, the following approx-

imations may be obtained:
dQ  dw | JLRuM?

@@ T gna ey (59

20




Therefore, averaging the effects of the Sun’s mean motion n, is valid when
1/2
JzRglJn{

ns > —~——a7/2(1 ~er)?

(56)
The parameters in Eq (56) have the following approximate values (12):

J, = 0.0019604
R, = 339%km
pm = 42828 km3 / sec?

n, = 1.058x10~7 sec™}

The motivation for using high eccentricity orbits is to reduce orbit insertion costs while
allowing for a satellite mission which requires close approaches. To meet this requirement,
consider the periapse radius r, to be in the range 4000 km < 7, < 7000 km (it will be
shown surface impacts due to the variation of eccentriciy do not allow the examination of

periapse radii smaller than 4000km). Using the relation @ = r,/(1 —e), averaging the solar

central angle requires
1/2
T2 R2pnd

(=) (- ey

Figure 9 presents a plot of Q vs e for various values of periapse radius, along with the

ng, >

Q (87)

plot of n, for comparison. The figure indicates averaging the effects of the Sun is valid for
high-eccentricity orbits, with the lower bound on eccentricity increasing with decreasing

e

periapse radius.
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Figure 9. Approximate Magnitude (Q) of & and Q2 vs e for Various Values of Periapse
Radius

Averaging the motion of the Sun within the range determined above produces a
disturbing function which no longer contains time-varying solar elements. The Hamiltonian
for this system may be formed (10, 8, 6), allowing for a canonical transformation into a
new set of variables in which the new disturbing function is expandable in powers of J,.
Higher order terms are then ignored, resulting in a disturbing function containing critical
divisors (7), all of which are functions only of inclination. The resulting critical inclinations

which lie between 0° and 90° are given in the table below.
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Table 1. Critical Inclinations from Analytical Approach

t. (degrees)

46.4

56.1
63.4

69.0
73.2

The numerical approach which follows does not invoke the simplifications of solar
averaging and includes all terms related to J,. The results of the numerical integration

will be shown to depart from the analytical results given in the table above.
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III. Numerical Development and Results

Numerical Solution of Lagrange’s Planetary Equations

Using the disturbing function derived in the last chapter, the LPEs may now be
numerically integrated. Integration was accomplished using a multi-step, variable step size
and variable order scheme (see [8] and [11]). To avoid numerical difficulties which arise

when the classical variable set (a,e,i,w,Q, M) is used, the following transformations are

utilized:
h = esinw (58)
k = ecosw (59)
and
M
’\N = S+w +(Q—¢) (60)
0

where ¢ is the Mars equivalent of the Greenwich hour angle and Sy approximates the
ratio of the number of orbits per pianet revolution. The variables # and & are introduced
in order to avoid the singularity at zero eccentricity. The variable Ay , which is called
the stroboscopic mean node [6], represents the mean satellite position. Introduction of An
allows for averaging the mean anomaly while retaining the effects of resonances with tesseral
harmonics. If the position of the satellite is commensurate with one or more tesserals, these
tesserals will have long-term effects on the orbital elements (commensurability occurs when

So is a ratio of two integers).

Prior to casting the LPEs in terms of the new variable set (a, h, i, k, 2, AN), note the
disturbing function of interest does not include the mean anomaly, which was averaged
out. Therefore, the semi-major axis a remains constant (da/dt = 0). Also, since J; is
the only harmonic considered, the stroboscopic mean node is not needed. The six original
LPEs (Eqs. 2 to 7) reduce to four (Eqgs. 2, 3, 4, and 6). Transforming these four into the

new variable set requires the following derivatives:

SR _ OROh 0RO
dw =~ O6hdw Bk bw

R R
= k-a—h— - h—a'z (61)
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®
OR _ ORdh 09Kk
® de ~  Oh de ' Ok Oe
h3R kOR
= Tonteor (62)

dh _ Ohde Ohdv _hde  dv

@ dt dedt  Owdt edt dt

D (e e (130
e nade 8h ok nabsini 81  na®e \e O0h ' e 8k
b 8R kcosi OR

= na® ok nabsini%? (63)
|
di _ Okde Okdo kde do
dt =~ Oedt  Hwdt edt dt
C (L) (bE - hE) n[ 2R, b (hoR koR)
T e nade oh ok nabsini 8¢  nade \e dh e Ok
. _ _bOR._ _csi OR
7 Ok * nabsini 9 (64)
In terms of the new variable set, the pertinent LPEs become
dQ 1 B8R
¢ dt = nabsini 9 (65)
di coti / OR OR 1 OR
a - nab ( e h?l;) " nabsini 09 (66)
dh b OR kcotidR
dh_ b OR keotidk (67)
dt na3 8k nab <?z
PY dk - _ b R hcotza_}-l (68)
dt na3 oh nab 9:

where b = a(1 — €2)'/2 is the semi-minor axis as before, and

o e = /(h? + &?) (69)

The complete disturbing function in terms of the new variables is

2
R = BmJ2 Re 575 (1 - isin2 i)
° 2a3 (1 — h? — k2)%/ 2
a? (15
+ 4”_3 {—2~ [c,ﬁc?,_A —(CiCLSq-n - sLs,-)z] (lc2 - h2)
+ 30 [CLSLS.-CQ_A — CECiCa_aSan| hk
3
PY + (2 +3h% 4+ 3k2) [5 [C}‘:Crz)—/\ + (CiCLSq-A — SLSi)Q] - 1]} (70)
25
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The required partial derivatives are

R 3 Ja R2k ( 3 2.)
ok 203(1 - h2 — k2)%/? 1-gemt

2
+ __;;,; {15 [C%Csz'z-,x - (CiCLSa-a - SLS;’)Z] k
s

+ 30 [CLSLS,'CQ_A - CIZIC,'CQ..ASQ_A] h

+ 6k [-Z- [€2C3_ + (CiCLSa_n - 515)%] - 1]} (71)
oR 34im J2 R2h ( 3. .
8h ~ 243(1 - h? ~ k2)/? S 2)

2
a
+ B {~15[cici s - (CiCLSa_n - 515 h

4ry
+ 30 [cLsLs.-cn_A - cgc,-cn_,\sn_,\] k
3
+ 6h [-2- [cgc;-;_A + (CiCLSa-a - 5,,5,-)2] - 1]} (72)
2
3_1? = - Spim J2 Re sin 2i
a1 4a3 (1 — 2 — k2)3/?

/‘302 ) ,
+ {15(CiCLSa-n = 515:) (S:CLSa-n + SLC:) (K* - h?)
+ 30 [CLSLC,-CQ_A + C2SiCa_nSa- A] bk
- 3 (2 +3h%+ 3k2) (CiCLSq-p — SLS:i) (SiCLSa-a + SLCi)} (73)

oR psa’
N 4r3

- 30 [CLSLS,'SQ_A + C%CiCQ(Q—A)] hk

15
{-—2- [C2S2a-n) +2(CiCLSa-A - 51.5)) CiCCa-n) (K - h?)

3
s (2 +3h2 + 3k2) [cgsz(n_,\) — 2(CiCLSqa_p - SLS:) c,-chn_A]} (74)

The details of employing the numerical integrator to locate critical inclinations is

described in the next section.
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Locating Critical Inclinations

Figures 1 through 4 illustrated the phenomenon of large amplitude variations in ec-
centricity and inclination. These large variations occur under specific conditions, namely
certain critical inclinations for high eccentricity orbits. The last section of Chapter II sum-
marized an analytical approach for determining the location of these critical inclinations,
which were found to be independent of eccentricity (i.e., constant). The resultant criti-
cal inclinations also had the property of producing a local maximum in the variations of
both eccentricity and inclination. The intent of the numerical approach is to accomplish
a discrete numerical search for the critical inclinations throughout a range of interest. For
the purpose of this search, a critical inclination is defined as the inclination at orbit inser-
tion which results in the largest local variation in eccentricity or inclination (i.e, a local
maximum). No assumption is made concerning correlations between the behavior of the

eccentricity and the behavior of inclination, therefore a separate search is made for each.

Search Method.

The numerical integrator produces an output data file consisting of the values of the
orbital elements at time increments determined by the user. The behavior of the elements
may be observed by plotting the data. However, the magnitude of the search demands the
use of a numerical technique for locating the local maximums in the variations, thereby
identifying the critical inclinations. The method employed is to fit a linear function, in
the least squares sense [9:23-47], to the graph of eccentricity versus time and the graph of
inclination verses time. The standard deviation of the residuals then becomes the tool for
locating critical inclinations. The larger the variation in the behavior of these elements,
the greater the standard deviation will be for the linear fit. By looping through the
range of orbit insertion inclinations while keeping other initial conditions the same, critical
inclinations for a given eccentricity are those which produce a local maximum in the plot of
standard deviation verses inclination. An outer loop which increments the orbit insertion
eccentricity completes the search, allowing for a three- dimensional surface to be plotted,
where eccentricity and inclination are the independent variables, and standard deviation

is the dependent variable. The ‘peaks’ in this surface are the points of interest.
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Search Parameter Values and Initial Conditions.

The search method described above would be best accomplished with very small
increments in eccentricity and inclination, combined with a sufficiently long propagation
time. The plot in Figure 3, showing data which spans a period of seventy Earth years
about Mars, does not yet exhibit a repeatable pattern. However, computer time and
storage constraints did not allow for large data collection, therefore a smaller sample was
used. This is not a serious constraint since large variations near critical inclinations become
evident very soon after orbit insertion. Also, an orbit period of five or ten years may be

of more immediate concern.

The table below lists the initial conditions and search parameter increments used to
perform the numerical search. Choosing the periapse radius r, determines the value of the

semi-major axis by a = r,/(1 — €). For a complete listing of the program input file, see

appendix B.
Table 2. Search Increment Values and Initial Conditions
w at insertion 0
2 at insertion 0
M at insertion 0
e at insertion incremented from 0.40 to 0.90 by 0.02
i at insertion incremented from 0.25 to 90.0 by 0.25 (degrees)
Tp at insertion incremented from 4500 km to 7000 km by 500 km
- orbit lifetime 10 Earth years
epoch at insertion 7 January 2001
data output increment | 100 days

The effect of using a different epoch at orbit insertion was tested and found to produce no

noticeable change in the results for the search range considered.
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Critical Inclinations for Eccentricity

The inner loop of the search procedure described in the last section consisted of
incrementing through the range of inclinations for a given eccentricity. For each of these
insertion eccentricities, a plot of the standard deviation of the residuals in eccentricity
(SDE) verses inclination may be generated. These plots are too numerous to include them

all here, however, all such plots for a periapse radius of 6500km can be found in appendix D.

Three-Dimensional Surface Plots.

Combining all the plots of SDE vs Inclination for a given periapse radius 2llows for
the generation of a three-dimensional plot, where the third axis is the range of eccentricities
(these plots are presented in Figures 10 through 16). These surfaces indicate the locations

of the critical inclinations, which vary with eccentricity.

Critical inclinations at eccentricities near 0.4 and inclinations near 0.25 degrees vary
rapidly with eccentricity, generating a rough surface topography. This rough area moves
out of the search range as periapse radius increases and is totally absent at periapse radii
greater than 6000km. Subsequent analysis will therefore focus on the remaining smoother

areas where pronounced topography is present throughout the range of interest.

Some of the surfaces do not contain the complete range of data (i.e., eccentricities
between 0.4 and 0.9). Where this data is not present, large variations in the eccentricity
caused the orbit to impact before the full set of data was collected. These computer runs

were rejected (see appendix C for further discussion).
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Two-Dimensional Plots.

In order to reduce each three-dimensional surface to a two-dimensional plot of critical
inclination verses eccentricity, the following procedure was employed. For each eccentricity
considered, local maximums were identified by observing the slope of the line connecting
adjacent data points in the plot of SDE versus inclination. A data point was considered
a maximum (critical) when the slope of the line transitioned from positive to negative.
Figures 10 through 16 indicate the presence of five significant critical inclination curves, as
well as other smaller local maximums. These smaller maximums were filtered out, retaining
maximums with the five greatest values of SDE. The resultant data is given in tabular form
in appendix E, and the plots of critical inclinations verses eccentricity are given in Figures
17 through 22. Insufficient data was collected at periapse radius of 4000 km to produce a
meaningful two-dimensional plot, therefore only periapse radii of 4500 km and above are

presented.
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Figure 19. Critical Inclination vs Eccentricity: Periapse Radius=5500 km
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Figure 20. Critical Inclination vs Eccentricity: Periapse Radius=6000 km
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Critical Inclinations for Inclination

The techniques for locating critical inclinations in eccentricity were also applied to
inclination. Incrementing through the range of inclinations for a given eccentricity produces
a plot of the standard deviation of the residuals in inclination (SDI) verses inclination (see
appendix D). As before, combining the data for the full range of eccentricities allows for
the creation of a three-dimensional surface plot for each periapse radius considered. These

surface plots are given in Figures 23 through 29.

Unlike the surfaces for eccentricity, the surfaces for inclination indicate fewer distinct
critical locations. The presence of one or two well pronounced critical locations in the
surface topography at high eccentricities forces other possible critical locations to appear
flat. Attempting to reduce the surfaces for inclination to two dimensions as was done for

eccentricity did not produce meaningful results.

Although the attempt to produce a two-dimensional view of the critical values for
inclination was not successful, overlapping the plots of SDE and SDI verses inclination
for each eccentricity allows for a comparison of the location of the local maximums. Ap-
pendix D presents these plots for a periapse radius of 6500km. There is no indication
of any correlation between the location of critical inclinations for eccentricity and critical
inclinations for inclination. However, recall these results apply to a ten Earth-year orbit
lifetime, which does not capture a full period of the large amplitude variations. A longer

orbit lifetime may produce different results.
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Modeling the Locations of Critical Inclinations in Eccentricity

The locations of critical inclinations for each periapse radius considered were pre-
sented in Figures 17 through 22. The shapes of the curves are similar between periapse
radii, but shifted slightly from one periapse radius to another. This s ~*ion will take a
closer look at the dependence of these critical inclination curves on eccentricity and peri-

apse radius, and a curve fit will be applied to three of the curves.

The Variation of Critical Inclination Curves with Periapse Radius.

To better view the dependence of the critical inclination curves on periapse radius,
Figures 30 through 35 present plots of the overlap of all similar curves (i.e., all curves
labeled ‘a’ appear in Figure 30, all curves labeled ‘b’ in Figure 31, and so forth). Each set
of curves is similar in shape but is shifted toward lower eccentricities as periapse radius

increases. Two other features are also present.

The first is the tendency of each group of curves to converge at lower eccentricities.
By inspection, curves a, b, and f converge to approximately 67.5, 64.5, and 61 degrees
respectively, and curves e appear to converge to approximately 54 degrees. Curves ‘c’ and
‘d’ do not extend far enough into the lower eccentricities to estimate their convergence
points. Comparing these convergence inclinations directly with the critical inclinations
determined by analytical means may not be justified since the numerical search did not
capture the full period of the variations. Nevertheless, curves ‘a’ may be compared with
the 69.0 degree analytical result, curves ‘b’ with the 63.4 degree analytical result, and
curves ‘e’ with the 56.1 degree analytical result.

The second feature of the critical inclination curves is the direction in which the
curves diverge from the convergence points discussed above. Curves a, b, and ¢ diverge
toward increasing inclinations; curves d, e, and f diverge toward decreasing inclinations.
The dividing inclination seems to be near the well known critical inclination produced by
J, alone, namely 63.4 degrees, at which the argument of pericenter remains constant. The
direction of divergence may be related to the direction of the change in the argument of

pericenter.
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Curve Fitting.

Of the six critical inclination curves plotted, curves a, b, and e best demonstrate the
convergence behavior discussed above. For curves a and b, as eccentricity increases from
0.4, the critical inclination remains constant until a specific eccentricity is reached, hence-
forth called the departure eccentricity. Beyond the departure eccentricities, the critical
inclination curves are no longer constant. Curve e exhibits the same behavior, however the

departure eccentricities appear to occur below the range of data examined.

In order to apply multiple regression to curves a, b, and e, each curve must be
divided into two sections. The section which lies below the departure eccentricity is simply
a straight line at constant inclination. The section above the departure eccentricity is the
section to be fitted (for curve e, the entire range of data will be assumed to lie above the
departure eccentricity). The location of the departure eccentricities must be determined
as a function of periapse radius. Since the data for each curve is discrete, the departure
eccentricities for the data collected may be approximated (recall, the search increment in
inclination was 0.25 degrees). Table 3 below lists the departure eccentricities for curves a

and b for each periapse radius.

Table 3. Departure Eccentricities for Curves a, b, and e

Curve a Curve b
Periapse Radius (km)| Departure Eccentricity
4500 0.74 0.78
5000 0.68 0.74
5500 0.62 0.70
6000 0.56 0.64
6500 0.50 0.58
7000 0.44 0.54
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A linear fit to the data above yields correlation coefficients of -1.0000 and -0.997 for curves

a and b respectively. The resulting functions are

DE, = 1.280-1.20x 107*r, (75)

DE, 1.235-9.94 x 10~°r, (76)

i

where DE;, and DE} are the respective departure eccentricities for curves a and b, and

Tp is in kilometers.

Fitting the critical inclination curves above the departure eccentricities to a curve

linear in periapse radius and quadratic in eccentricity yields the following functions:

, 67.5 e< DE,
leg =

~33.9 + 0.01204r, + 89.403¢? e > DE,
. 64.5 e< DE,
b =

0.0068443r, + 56.411e2 e > DE,
tee = { 107.72 — 0.0067837r, — 49.59¢? e > 0.40

where i., , i , and i, are the respective critical inclination functions for curves a, b,
and e. The coefficients of multiple determination (R?) for these fits are 0.95, 0.94, and
0.86 respectively. The curve fits were accomplished using the GLM (general linear model)

procedure of the SAS (Statistical Analysis System) computer package [10].
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IV. Conclusions and Recommendations

Summary and Conclusions

The purpose of this thesis was to locate critical inclinations in long term high eccen-
tricity orbits about Mars using numerical methods. The approach consisted of applying a
linear least squares fit to the graphs of eccentricity versus time and inclination versus time
for a range of eccentricities and inclinations. The residuals from the linear fits served as
the search parameter for identifying the critical inclinations, which appeared in the form
of local maximums in the three-dimensional surface plots of the standard deviation in the

residuals versus e and . The following results were obtained:

1. The numerical approach clearly identified the locations of some of the critical in-
clinations in eccentricity within the range searched. The presence of other critical
inclinations were indicated, however the range and resolution of the search were not

extensive enough for close examination of these other locations.

2. The locations of critical values for eccentricity were found to vary with eccentricity
and periapse radius. Six distinct critical location curves were identified, three of
which were curve fit to functions linear in periapse radius and quadratic in eccentric-
ity.

3. These three curves converge to three critical inclinations determined by analytical
results to within the search increments used. The remaining curves did not include

enough data for direct comparison with analytical results.

4. Critical values for inclination were not clearly identified. Three dimensional surface
plots of the standard deviation in the residuals for inclination produced one or two

dominant local maximums.

5. For the range and resolution of data collected, no evidence of correlation between

critical values for eccentricity and critical values for inclination was found.

Based on these results, a high eccentricity orbit about Mars may be utilized to

meet specific satellite mission requirements, or to reduce orbit insertion costs, provided
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care is taken to avoid critical inclinations which produce unacceptable variations. This
investigation demonstrated a numerical procedure for identifying the conditions for which

such variations occur.

Recommendations for Further Study

The presence of constraints within any form of research automatically provides op-
portunities for further study when the contraints are removed. The work presented here
could be repeated using much finer search increments, and more importantly, longer orbit
lifetimes. Capturing at least one full period of the variations in eccentricity and inclination
may provide for a much more detailed analysis, as well as a more complete comparison
with analytical results. Under these more favorable conditions, the following additional

studies might also be accomplished:

1. Attempt to determine low eccentricity convergence points for all critical inclination

curves identified.

2. Determine not only the location of the critical inclinations but also the magnitudes

and periods of the variations.

3. Extend the search range to 180 degrees inclination. The work accomplished in this

investigation produced no evidence of symmetry about 90 degrees inclination.
4. Include the effects of additional harmonics in the Mars gravity potential.

5. Investigate the effects of varying the arguments of periapse and ascending node at

orbit insertion.

62




Appendix A. Hansen’s Coefficients

For a complete derivation of Hansen’s Coefficients, see [2]. This appendix provides
a brief definition, as well as the derivation of Eqs (14), (17), and (18), and Egs (45), (46),
and (47).

Definition of Hansen’s Coefficient
Let
z=exp(jf), y=exp(JE), z=exp(jM)

where f is the true anomaly, E is the eccentric anomaly, M is the mean anomoly, and

Jj = v—1. Hansen’s Coefficients are then defined

1 (27 (r\"
nmo_ — m,—p 77
X 27r/o(a)aczatM (77)
For p=0:
Im| 1 —n- -
xpm= (-2 nhimiA) p(lmlon-t im| =5 mi+1; € (78)
0 2 2 2
Im|

where F' is the hypergeometric function [1:272-277] defined as
o= (@)n(®)n ¥"
Fla,b;c;y)= —— <1
( v) :_/;; o a1

The abbreviation (a),, which is called the Pochhammer symbol, has the following proper-
ties:

(a)o=1

(1), = n!

(a)p=a(a+1)a+2)---(a+n-1) n=123,...

The Pochhammer symbol and the binomial coefficient are related by

(a), = (=1)"n!
n

The following property of Hansen’s Coefficients will be used below:

Xg™ = X","'-" (79)
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Derivations

Derivation of Eq (14):

1 2 T -3 -3,0
wl, (5) = %

n=0

The last expression is simply the binomial expansion for (1 — €2)~%/2, so

X5 = (1-¢) —l (80)
Derivation of Eq (17):
Using the identity
sin2f = = [exp(72f) - exp(=321)] (81)
then
( ) sin2f dM
= = ( ) 3 lexp(2/) ~ exp(=721)] aM
1 . 1 2 r -3 .
- % [ (2) 7 emznam - = [7(£) exw(-s21) dM]
= -21—(X0’32—X'3 ) =0 (82)

because of Eq (79).
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Derivation of Eq (18):

Using the identity
1 . .
cos2f = [exp(j2f) + exp(-j2f)] (83)

then

cos2fdM

1/(1‘
27?0 a

]
\, \_/

( ) L1 exp(i2f) + exp(—j2f)] dM
P -3
_ exp(j2f)dM+-21? /02 (2) exp(—j2f)dM]

( X 32 + Xo—a 2) X0-3,2 (84)

Xo‘3'2=(-g)z(z)f‘(z,g—;s;é):o (85)

Derivation of Eq (45)
1 21 /e 2
o /0 (Z) cos2fdM

2%
/ (;) 5 [exp(j2f) + exp(-j2f) ] dM
(-) expli2f) bt + 5= [ (1)2 exp(32f) dM]

a

]
N N = to
r——-—‘

N N = M'H
—_ —
§|+~

v
ON
N

?+ X37) = 37 (86)

8%
(8]
] |
NN TN
®, |
~ ., Win
~~ ~n
—
e
= N -
~ h
y
|
fr=
(=]
w
(4.
N

= = | (87)
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Derivation of Eq (46)

o
27 2
—1— (_r_) sin2f dM
27 a
®
1 2 .
- / (%) 5 fexpti2n) - exp(-s2)] at
T Jo
1 21r d 2 fp\2 . IM
. =l [T () etznam - [7 () expi-iz)
Derivation of Eq (47)
@

1 21\'7.2 2.0
E/o (Z) iM = X2

o - )°( 11 )

had —% (l)nez"

I

I

n=0
d = 1428 (89)
2
L
@
®
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Appendix B. Sample Program Input File

This appendix includes the program input file for the numerical integrator (this
information is included to provide consistency should further analysis be performed). Only
A (a), E (e), and I (¢) were changed for each computer run. All other parameters remained
constant. For an explanation of the parameters listed, see [8].

L
M
ISUN
IMOON
IEPHEM
IDRAG
ISRP
IORB
IPRINT
IPLOT
NP
NQ
IQMAX
NK
ICASE
LSUN
NSUN(1)
(2)
(3
(4)
(8)
()
m
(8)
(9)
LMOON
NMOON(1)
(2)
&)
@
()
(6)
(n
(8)
(9
NSEG1
NSEG2
70000.D0 ORB(1), A

b OO0 OO0 000000000000 0000000 KMHEPLEOOO OO O - ON
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0.9D0

40.75D0

0.D0

0.D0

0.D0

1.D-6

1.D-6

100.D0
19911007.D0
0.D0
20011007.D0
0.D0
19911007.D0
0.D0
4.2828287D4
3397.2D0
4.061249803D-3
333.55971D0
.1017D0
3487.2D0

6.D-4

361.D0

36.D0

1000.D0

10.D-6

20.D-6

1000.D0

2.DO

1.98D-3
.13271244D12
227.9410D6
93.39697D-3
25.191183D0
0.D0
~109.0506D0
171.60476D0
6.065196184D-6
0.D0

.DO
.DO
.DO
.DO
.DO
.DO
.DO

OO O0OO0OO0OO0OOo

(2), E
3,1
(4), NODE
(5), W
(6), M
RELERR
ABSERR
STEP
TINT(1)
(2)
TFIN(1)
(2
TREF (1)
(2)
GE
RE
RATE
PM
ELLIP
RATM
RDENS
RHT
SHT
ALTMAX
AREAD
AREAS
SCMASS
CDRAG
CSRP
GS
ES(1)
ES(2)
ES(3)
ES(4)
ES(5)
ES(6)
ES(7)
GM
EM(1)
EM(2)
EM(3)
EM(4)
EM(5)
EM(6)
EM(T)




2 0 -0.1960387250000000E-02 0.0000000000000000E+00
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Appendix C. Linear Least Squares Fit for Eccentricity and Inclination

Linear fits to the curves of eccentricity versus time and inclination versus time allowed
for using the standard deviation of the residuals as the search parameter for locating critical
inclinations. In the standard notation, z is the independent variable, y is the dependent

variable. and ¢ is the residual (13:23-47), so that
yi = Bo+ Hzi + & (90)

where the subscript i refers to the ith observation or data point. The coefficients are

determined by

. _‘E xi!!z yl!
=thyz Py (91)

Zx?-@ﬁ
i

n

Bo = ‘:;(Eyi‘ﬂl in) (92)

where n is the number of data points. The error mean square (M SFE) of the residuals is

B

given by \
MSE = Z(yi—ﬁo—ﬁll‘i) — 2612

n-2 n—2

(93)

The estimator of the standard deviation of the residuals is simply the positive square root

of MSE.

A FORTRAN program was written to calculate the standard deviations. The pro-
gram reads data from the numerical integrator output file, calculates the standard deviation
of the residuals to the linear fit in eccentricity and inclination for each orbit run, then out-
puts the standard deviations to a new file. Three-dimensional surface plots were created

using the data from this new file.

The program includes a provision for computer runs which ended prematurely. If the
radius of periapse became equal to or less than the planet radius due to a large variation in
eccentricity, an impact occured and the run was terminated. In order to use the standard
deviation as a search parameter for critical inclinations, each run must have the same (or
nearly the same) number of data points. Significantly shorter runs were rejected, runs
which were only a few days shorter were kept. The shorter runs appear as discoutinuities

at the edges of the surface plots.




Appendix D. Plots of SDE and SDI versus Inclination for r, = 6500km

This appendix includes all the plots of Standard Deviation in Eccentricity (SDE)
and Standard Deviation in Inclination (SDI) versus Inclination for a periapse radius of
6500km. The plots of SDE and SDI are overlayed for the purpose of comparison. Each

vertical axis is relatively scaled.
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Figure 38. SDE and SDI (dashed) vs Inclination
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Appendix E. Tables for Critical Inclinations in Eccentricity
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Table 4. Critical Inclinations for Eccentricity: Curve a

Radius of Periapse (km)

4500 | 5000 { 5500 | 6000 | 6500 | 7000

e Critical Inclinations (degrees)

0.40}) - - - |67.75]68.00)68.25
0.42| - - |67.5068.00|68.00|68.50
044 - - 167.50]67.75]68.25|68.75
046 - - |67.75167.75]68.25]69.25
048] - - |67.75168.00| 68.50 | 70.00
0.50) - 67.50]67.75168.25]68.75| 71.75
0.52| - 67.50|67.75|68.25]69.25 | 74.00
0.54] - 67.75168.00168.50] 70.25 | 75.75
0.56] - |68.00]68.25}68.75]72.00)77.50

0.58 167.50 | 67.75 | 68.25169.25 | 74.25 | 79.50

0.60 | 67.50 | 67.75 | 68.50 | 70.25 | 76.25 | 81.75
0.6267.75 | 68.00 | 68.75 | 72.50 | 78.25 | 85.25
0.64|68.00|68.25 | 69.25 | 75.00| 80.50| -
0.66 | 67.75| 68.50 | 70.50 | 77.00| 83.75| -
0.6868.00|68.75|73.25{79.50{ - | -
0.70|68.25|69.50 | 75.75|82.50] - | -
0.72]68.50|71.25|78.25] - | - | -
0.74|68.75| 7450|8150 - | - | -
0.76|69.75| 7725|8750 - | - | -
0.78|73.00l8075] - | - | - | -
o8o|7650fs77s| - | - | - | -
o.82fsosol - | - | - | - | -
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Table 5. Critical Inclinations for Eccentricity: Curve b

[
Radius of Periapse (km)
4500 | 5000 | 5500 | 6000 | 6500 | 7000
® e Critical Inclinations (degrees)
040| - - - - |65.0064.75
0.42}| - - - - |65.00164.75
0.44] - - - - 164.75]64.50
0.46| - - - - 164.75164.50
048] - - - |65.00]64.75164.75
050 - - - 65.00| 64.50 | 64.75
0.52 - - 64.75164.75]64.50 | 65.00
0.54]| - - 65.00164.75164.75165.75
056 - - 165.00|64.75}64.75]66.50
058} - - 164.75]64.75|65.25]67.50
0.60] - - 164.75}64.75|65.75 | 68.75
0.62] - |65.00]64.75}65.00|66.75|69.75
0.64| - |65.00|64.75]65.50|68.00|70.75

0.66 1 64.50 | 64.75 | 64.75 | 66.25| 69.50 | 71.75
0.68 165.0064.75|65.00 | 67.50 | 70.50 | 73.00
0.70]65.00 | 64.75 | 65.75]69.00 | 71.75 | 74.00
0.72]64.75)65.00 | 66.75 | 70.25 | 72.75 | 75.50
0.74164.75165.2568.50 | 71.50 | 74.00 | 77.25
0.76 | 64.75166.2570.00 1 72.75 75.75 | 79.50
0.78165.25168.0071.50 | 74.25] 77.75 | 84.25
0.80}66.00]|70.00]73.00}76.25|81.50| -
0.82167.75|71.50|74.75|79.25| - -
0.84170.00|73.5077.75| - - -
0.86]72.00]76.25|84.50| - - -
0.88174.75]82.50| - - - -
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Table 6. Critical Inclinations for Eccentricity: Curve ¢

Radius of Periapse (km)
Critical Inclinations (degrees)

e | 4500 { 5000 | 5500 | 6000 { 6500 | 7000
0.52] - - - - - 60.25
0.54| - - - - - 60.25
0.56] - - - - - ]60.50
0.58| - - - - - 160.50
060} - - - - - 60.75
062} - - - - 160.50|61.25
0.64] - - - - 60.75161.50
0.66] - - - 60.50161.25}62.00
0.68| - - - 160.75161.50]62.25
0701 - - - |61.00|62.00|62.50
0.72] - - 160.75}61.50}62.25|62.50
0.74] - - 161.25{62.00]62.50|62.50
0.76| - - 161.75]162.50]62.75]62.75
0.78| - |61.25|62.25|63.00|63.00[62.75
0.80f - |62.00]|63.00]63.25|63.00}62.75
0.82]62.00|62.75 | 63.50 | 63.50 | 63.25 | 62.75
6.84 63.00}64.00}63.75)63.75]63.25 ] 62.75
0.86 [ 64.00164.75|64.25164.0063.50 | 63.00
0.8865.00| 65.00 | 65.00 | 64.50 | 64.00 | 63.50
090| - - - 165.25}65.00164.75
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Table 7. Critical Inclinations for Eccentricity: Curve d

Radius of Periapse (km)

4500 | 5000 | 5500 | 6000 | 6500 | 7000
e Critical Inclinations (degrees)
0.52| - - - - - 155.00
0.54] - - - - - 54.75
056 - - - - - 54.50
0.58] - - - - |55.00|54.00
0.60] - - - - | 54.75]53.50
0.62] - - - - |54.25]53.00
0.€4] - - - |55.00]53.75]52.75
0.66{ - - - 54.75153.50 | 52.25
0.68| - - - 54.25(53.00(51.50
0.70 - - |55.00{53.75|52.50|51.00
0.72| - - |54.50]53.25]51.75 | 50.25
0.741 - 155.25{54.00|52.75]|51.25|49.25
0.76| - |55.00{53.50|52.25|50.50 | 48.25
0.78] - ]54.50]53.25|51.5049.50|47.00
0.80 | 55.25 | 54.00 | 52.50 | 50.75 | 48.25 | 45.50
0.82(55.00 | 53.50 | 52.00 | 49.75 | 47.00 | 44.25
0.84 | 54.50 | 53.25 | 51.25 | 48.75 | 45.75 | 42.75
0.86 | 54.25 | 52.75 | 50.50 | 47.75 | 44.75 | 41.50
0.88 | 54.25 | 52.50 [ 49.75 | 46.75 | 43.75 | 40.75
090} - - - |46.75]44.00 | 41.00
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®
PS Table 8. Critical Inclinations for Eccentricity: Curve e
Radius of Periapse (km)
4500 | 5000 { 5500 { 6000 | 6500 | 7000
PY e Critical Inclinations (degrees)
0.40f - 154.751 - [53.75}52.25]52.00
042 - 54.75| - 53.50|52.25 | 51.50
0.44] - |54.50] - [53.00]52.25]51.25
o 0.46| - |54.50]|54.00]52.50|52.00]50.75
0.48| - |54.25]53.75|52.25]51.75]50.25
0.5054.75] - |53.25}52.25|51.25|49.50
0.52154.50| - |52.75]52.0050.75]49.25

0.54 | 54.50 | 54.00 | 52.25 | 51.75 | 50.00 | 49.25
0.56 | 54.25 | 53.75 | 52.25 | 51.25 | 49.50 | 48.75
0.58] - 153.25]52.25}50.75|49.25|47.75
0.607 - |52.50|51.75]50.00}49.25(46.75
0.62]53.75| 52.25 | 51.25 | 49.50 | 48.50 | 45.50
0.64 | 53.50 | 52.25 ] 50.75 | 49.50 | 47.25 | 44.25
0.66 | 52.75| 52.00 ] 50.00 | 49.00 | 46.00 | 42.75
0.68 ]52.25] 51.25]49.50 | 48.00 | 44.75 | 41.25
0.70152.25 50.75 ] 49.75 ] 46.75 | 43.25 | 39.25
0.72]52.00} 50.00 | 48.50 | 45.25|41.50]37.25
0.74151.25]49.75147.25 ] 43.50 | 39.50 | 34.75
0.76 | 50.50 | 49.25 | 45.75 | 41.75} 37.2531.75
0.78 | 49.75147.75 1 44.00 } 39.50 | 34.25 | 28.25
0.80}49.75146.00 {41.75]36.75 30.75 | 24.50
0.82]48.25(44.0039.25 | 33.50 | 26.75 } 20.50
0.84 | 46.25[41.50[36.00[29.25 | 22.25 [ 16.75
0.86[43.75|38.25[31.75(24.50{ 18.00 | 14.25
0.88140.75| 34.2526.50119.50|15.00| -

090] - - - |16.00f - -
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Table 9. Critical Inclinations for Eccentricity: Curve {

Radius of Periapse (km)

4500

5000

5500

6000

6500

7000

Critical

Inclinations (degrees)

0.40

60.25

60.25

60.25

60.25 | 60.25

0.42

60.25

60.25

60.50

60.25|60.00

0.44

60.25

60.25

60.25

60.25 | 59.75

0.46

60.25

60.25

60.25

60.25 | 59.25

0.48

60.25

60.25

60.25

60.25 | 58.75

0.50

60.25

60.25

60.50

60.25

60.00| -

0.52

60.25

60.25

60.25

60.25

59.50| -

0.54

60.25

60.25

60.25

60.25

58.75{ -

0.56

60.25

60.50

60.25

60.00

0.58

60.25

60.50

60.50

59.50

0.60

60.25

60.50

60.25

59.00

0.62

60.50

60.50

60.25

0.64

60.50

60.50

59.75

0.66

60.50

60.50

59.00

0.68

60.50

60.25

0.70

60.50

60.00

0.72

60.50

59.25

0.74

60.50

0.76

60.00

0.78

59.25
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