
AFIT/GCE/ENG/89J- 1

Ow?

0

SIGNED-DIGIT
HIGH SPEED TRANSCENDENTAL

FUNCTION PROCESSOR ARCHITECTURE

THESIS

Robert Alan PetersonC
Captain, USAF -TF

AFIT/GCE/ENG/89J-1 J} l ;", :,.

Approved for public release; distribution unlimited

JIL

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 70od

l a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNASSIFIED
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG/89J-I

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
SIGNED DIGIT HIGH SPEED TRANSCENDETAL FUNCTICN PROCESSOR ARCHITECITRE

12. PERSONAL AUTHOR(S)
Robert A. Peterson, B.S. Captain, USAF

13a. TYPE OF REPORT 13b. TIME COVERED J14. DATE OF REPORT (YearMonth, Day) 15. PAGE COUNT

MS Thesis FROM TO_ 1989, JUNE 160
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Chebyshev Polynomials, Approximation Algorithms,
12 01 Signed-digit Representation, Pipeline Processor
12 03

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman : Joseph DeGroat, Major, USAF

20, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

I UNCLASSIFIED/UNLIMITED '1 SAME AS RPT. C DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Joseph DeGroat, Major, USAF 513-255-5633 AFIT/ENG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED,

19. / In support of the computation requirements of complex
equations, a processor which can compute elementary
transcendental functions with high throughput is becoming a hard
requirement for many systems. In particular, the computation of
components of the Vector Wave Equation are becoming bottlenecked
by the reduced speed of the processor when computing the required
elementary functions.

To speed up the computation of these type of functions, a
pipelined processor with high throughput is developed. This
processor will compute Sine, Cosine, Tangent, Cotangent,
Arctangent, Exponential, Natural Logarithm and Division as a
minimum. The accuracy of the computations will be greater than
IEEE double precision. The majority of the approximation
algorithms are derived from Chebyshev Polynomials, due to their
error characteristics and compatability with a pipelined
processor. The only approximation algorithm not derived from
Chebyshev Polynomials is the division algorithm. Division is
derived from an iterative form of a power series which has a
similar computational form as that required by the algorithms
developed from Chebyshev Polynomials. To prepare the algorithms
for implementation in a pipelined processor, the algorithms are
regrouped and rearranged into the from obtained by Homers'
method. Then, the development of a unified Transcendental
Function Processor is reviewed.

In an attempt to speed up the computations within the
processor, alternate forms of data representation are
investigated. Signed-Digit representation offers the greatest
potential for increased speed over standard binary. This
increased speed is due to the reduction of carry-barrow
propagation delays throughout the hardware units. Signed-Digit
modules are developed and performance estimates given. The
modules are then described in VHDL and simulation results
presented. From the VHDL module descriptions, a 16 digit by 16
digit multiplier is built and simulated.

/

AFIT/GCE/ENG/89J-1

SIGNED-DIGIT

HIGH SPEED TRANSCENDENTAL

FUNCTION PROCESSOR ARCHITECTURE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Accession For

Requirements for the Degree of NTIS G A&I
Engieern TIC TA&

Master of Science in Computer Engineering DTIC TAB
Unanwio ;.ced

Just if icat .-

B';
Distribo:t ion/

Robert Alan Peterson, B.S. Avn1 1 itv Codes
-A',il ic/or

Captain, USAF zst opecra1

June, 1989

Approved for public release; distribution unlimited

Preface

This research is a continued effort into the development of a Transcendental Function

Processor. The processor has been baselined by Mickey Bailey and the approximation

functions expanded and further elaborated to encompass a larger set of functions.

Intra-processor data representation is discussed and alternate forms of representing

the data considered. Signed-Digit representation is discussed in great detail as a possible

alternate to standard binary representation inside the processor. Signed-Digit hardware is

presented along with its estimated performance parameters. The discussion of Signed-Digit

representation proves to be the greatest thrust of this thesis.

I would like to thank AFIT and ENG in particular for the help and understanding

during this thesis effort. Dr. D'Azzo and Major De Groat allowed me to have the time any

motivation for me to complete the thesis. I would also like to thank my wife and family

for their support and encouragement throughout the Master's Degree Program.

Robert Alan Peterson

iii

Table of Contents

Page

Preface . ii

Table of Contents ... iii

List of Figures vi

Abstract .. viii

I. Introduction ... 1-1

Transcendental Function Processor Background 1-1

Objective 1-2

Scope 1-2

Assumptions 1-3

Organization 1-3

II. Approximation Methods and Algorithms 2-1

Approximation of Transcendental Functions 2-1

Chebyshev Approximation Methods 2-4

Division Algorithm 2-7

Summary of Algorithms 2-10

III. Processor Architecture 3-1

Pre-processing Stages 3-1

Sine and Cosine Pre-processing 3-1

Tangent and Cotangent Pre-processing 3-2

Arctangent Pre-processing 3-4

Exponential Pre-processing 3-6

iii

Page

Natural Logarithm Pre-processing 3-7

Division Pre-processing 3-8

Unified Pre-processor. 3-10

Pipeline Architecture 3-10

Post-processor. 3-14

IV. Intra-Processor Data Representation 4-1

Alternate Data Representations. 4-1

Signed-Digit Data Representation. 4-2

Signed-Digit Numeric Units 4-5

Conversion Unit 4-5

Adder/Subtractor Unit 4-9

Multiplier Unit. 4-11

Assimilation Unit 4-20

V. Signed-Digit Hardware Modules 5-1

SiR Recoder. 5-1

SlA Adder. 5-3

52 Adder 5-4

MO Multiplier 5-4

Al Assimilator. 5-9

VI. Signed-Digit Performance 6-1

Signed-Digit Module Descriptions. 6-1

Complete SD Multiplier. 6-4

Testing of the Signed-Digit Multiplier 6-8

VII. Conclusions and Recommendations. 7-1

Conclusions 7-1

Recommendations. 7-3

iv

Page

Appendix A. Determination of Chebyshev Constants. A-i

Appendix B. Signed-Digit CIFPLOTS B-1

Appendix C. Signed-Digit VHDL Descriptions C-i

Bibliography. BIB-i1

Vita VITA-i

v

List of Figures

Figure Page

2.1. Least Square Error Compared to Maximum Norm Error 2-2

2.2. Error Function Using Taylor's Series Approximations 2-4

3.1. Sine/Cosine Pre-processing Requirements 3-3

3.2. Tangent/Cotangent Pre-processing Requirements 3-5

3.3. Arctangent Pre-processing Requirements 3-6

3.4. Exponential Pre-processing Requirements 3-7

3.5. Natural Logarithm Pre-processing Requirements 3-9

3.6. Division Pre-processing Requirements 3-11

3.7. Stage One of Pipeline 3-13

3.8. Pipeline Architecture 3-15

4.1. Conversion Recoding Hardware and Data Flow 4-6

4.2. Conversion Recoder Example 4-8

4.3. Block Diagram of Conversion Stage 4-10

4.4. Data Flow in SD Adder 4-11

4.5. SD Addition/Subtraction Unit 4-12

4.6. Single Digit by Single Digit Multiplier, MO 4-13

4.7. Single Digit by SD Number Multiplier Block 4-16

4.8. Partial Product Summer Structure 4-18

4.9. SD Assimilator Data Flow 4-20

4.10. SD to IEEE Assimilator 4-22

5.1. S1R Recoder Routing 5-2

5.2. Complete S1 A Adder 5-5

5.3. S2 Adder Configuration 5-6

vi

Figure Page

5.4. MO Multipliers Multiplexer Arrangement 5-8

5.5. Complete MO Multiplier Configuration. 5-10

5.6. Assimilator for Signed-Digit Digit. 5-11

B.l. CIFPLOT Of SlA Adder B-2

B.2. CIFPLOT of S2 Adder. B-3

B.3. CIFPLOT of MO Multiplier B-4

B.4. CLFPLOT of Proposed SD Tiny Chip B-5

vii

AFIT/GCE/ENG/89J-1

Abstract

In support of the computation requirements of complex equations, a processor which

can compute elementary transcendental functions with high throughput is becoming a

hard requirement for many systems. In particular, the computation of components of the

Vector Wave Equation are becoming bottlenecked by the reduced speed of the processor

when computing the required elementary functions.

To speed up the computation of these type of functions, a pipelined processor with

high throughput is developed. This processor will compute Sine, Cosine, Tangent, Cotan-

gent, Arctangent, Exponential, Natural Logarithm and Division as a minimum. The ac-

curacy of the computations will be greater than IEEE double precision. The majority of

the approximation algorithms are derived from Chebyshev Polynomials, due to their er-

ror characteristics and compatability with a pipelined processor. The only approximation

algorithm not derived from Chebyshev Polynomials is the division algorithm. Division is

derived from an iterative form of a power series which has a similar computational form

as that required by the algorithms developed fr m Chebyshev Polynomials. To prepare

the algorithms for implementation in a pipelined processor, the algorithms are regrouped

and rearranged into the from obtained by Homers' method. Then, the development of a

unified Transcendental Function Processor is reviewed.

In an attempt to speed up the computations within the processor, alternate forms

of data representation are investigated. Signed-Digit representation offers the greatest

potential for increased speed over standard binary. This increased speed is due to the

reduction of carry-barrow propagation delays throughout the hardware units. Signed-Digit

modules are developed and performance estimates given. The modules are then described

in VHDL and simulation results presented. From the VHDL module descriptions, a 16

digit by 16 digit multiplier is built and simulated.

viii

SIGNED-DIGIT

HIGH SPEED TRANSCENDENTAL

_ UNCTION PROCESSOR ARCHITECTURE

L Introduction

This effort studies approximation algorithms for various functions with the premise

that the algorithms will be implemented in a pipeline processor. In an attempt to increase

processing speed of the functions, alternate forms of data representation are investigated.

Approximation algorithms for trigonometric, exponential, natural logarithm, and

the division function are developed. The structure of the approximation functions must be

developed such that the processors pipeline will not require extensive re-configuration and

control between the computation of different functions. Once the algorithms are developed,

a unified processor can be designed to encompass pre-processing, pipeline processing, and

post-processing.

A pipeline processor can increase the through-put of a system; however, the through-

put is limited by the processing speed of the slowest stage. To increase the speed of the

stages, either unique processing hardware must be designed or the data must be repre-

sented in a form which permits faster computation. This thesis looks at alternate data

representation forms which reduce the carry-barrow propagation delays during computa-

tions.

Transcendental Function Processor Background

Approximation algorithms for Sine, Cosine, Tangent, Cotangent, Arctangent, Expo-

nential, and Natural Logarithm have been long known and are quite numerous, [1, 2, 3, 4].

The algorithms were derived from Chebyshev Polynomials which are expanded, summed,

and regrouped into a polynomial function of x. The pre-processing, pipeline processing,

and post-processing requirements are similar for each function. A baseline processor was

1-1

defined to provide IEEE single precision accuracy for the computations. The performance

estimates of the processor are based on the speed of an IEEE single precision floating point

multiplier.

Other algorithms which have been investigated include the CORDIC algorithm and

other ultra-spherical polynomials, [1, 4]. However, the primary algorithm of their in-

vestigations, other than those developed from Chebyshev Polynomials, is the CORDIC

algorithm. The CORDIC algorithm is an iterative algorithm which can not be realisti-

cally implemented in a pipelined processor. Other problems involve the computation of

non-trigonometric functions to which the CORDIC algorithm is not suited.

Alternate forms of data representation which have been studied include the Negative

Base Number System, Residue Number System, and Signed-Digit Number System, [9, 10,

12, 131. Each has advantages and dis-advantages associated with them and are discussed

further in Chapter 4.

Objective

The objective is to complete the development of the approximation algorithms which

are to provide IEEE double precision accuracy while investigating alternate forms of data

representation to speed-up their processing. Once the algorithms are developed they will

be mapped onto a pipelined processor architecture.

Scope

The scope of this thesis effort is to extend the previous work done on the develop-

ment of approximation algorithms by extending the precision of the developed algorithms.

The algorithm for division will be developed such that its general form is compatible to

the processor defined by the algorithms developed from Chebyshev Polynomials. A unified

processor will be defined to encompass the processing requirements of all of the approxi-

mation functi-'-s. Alternate forms of data representation will be studied and their benefits

elaborated with emphasis on the reduction of carry-barrow propagation delays.

1-2

Assumptions

The assumptions made in this effort are that the physical size of the processor is

not limited. There are no attempts to determine the resulting chip area that would be

required to implement the processor. It is assumed that the processor will operate in an

environment where the pipelines latency will not cause major problems.

Organization

The remained of this thesis is organized as follows. Chapter 2 is the rational behind

using Chebyshev Polynomials for approximations in the Transcendental Function Proces-

sor; as well as the development of the division algorithm. The processors hardware is

discussed in Chapter 3 with a breakdown of its pre-processing, pipeline processing, and

post-processing requirements. Chapter 4 presents alternate forms of data representation

and elaborates on Signed-Digit representation and its major functional units. Chapter 5

presents the basic Signed-Digit modules used to construct major functional units, compo-

nents such as multipliers and adder/subtractors, and presents SPICE results as estimates

of their preformance. Chapter 6 builds the VHDL descriptions of the basic modules and

instantiates them to build a Signed-Digit multiplier with an accuracy greater than IEEE

double precision. This multiplier is then simulated and performance estimates presented.

The thesis is concluded in Chapter 7 with final conclusions and recommendations for

follow-on research.

1-3

II. Approximation Methods and Algorithms

Approximation of Transcendental Functions

By definition, transcendental functions are functions which are not algebraic, [7].

Therefore, they cannot be expressed in terms of sums, differences, products, quotients, or

roots. The only way to evaluate them is by approximation, which leads to the study of

approximation methods, or algorithms. Each method has advantages and disadvantages

associated with them. This study looks at the proven methods of approximation with the

idea of implementing the algorithms in hardware.

There are hardware limitations which constrain the total class of approximating

methods to looking at approximation algorithms which employ multiplication and addi-

tion. A large number of algorithms use quotient and root functions. In hardware, these

functions are too time consuming for implementation as a one step function and are there-

fore discarded as not viable approximation algorithms for implementation. This dramaticly

narrows the class of approximation methods. The remaining approximation algorithms

may then be compared by looking at the error characteristics of each.

To decide which algorithm is the best, the term best must be clearly defined. In this

paper, the best approximation algorithm is the one which requires the fewest mathematical

operations and gives an error less than some maximum tolerable error. There are different

types of error which are of interest when approximating; each may specify a different

algorithm as being the best. If the the error associated with the best algorithm is defined

as the average difference between the approximating function and the true function, across

an interval, then the Least Squarc error is the error type of interest. However, if the

maximum deviation between the approximating function and the true function, across an

interval, is of interest, then, the type of error specifying the best approximation algorithm is

termed the Maximum Norm error. When approximating a function to obtain the domain-

range pair on a point- for-point basis, the Maximum Norm error is used to identify the best

approximation algorithm. In this study, this is the type of error used to determine the best

algorithm. Figure 2.1 shows how the Least Square error and the Maximum Norm error

2-1

differ, given the magnitude of the respective errors are equal. Note that the error function

characterizing the Least Square error is near zero over a portion of the interval; however,

the maximum deviation is greater than the error function characterizing Maximum Norm

error. Since the domain is continuous over the interval of interest, the maximum magnitude

of the error is used to compare approximation algorithms, Maximum Norm error.

Possible Least Square Error Function

Possible Maximum Norm Error Function

Figure 2.1. Least Square Error Compared to Maximum Norm Error.

Error functions associated with a specific approximation algorithm have characteris-

tic shapes. These shapes not only indicated how well an algorithm, with a given number

2-2

of terms, approximates the true function, they give an indication of how the Maximum

Norm error changes as the number of terms used for the approximation change. These

shapes can lead to the selection of the beat approximation method by understanding the

relationship between the Maximum Norm error and the number of approximation terms.

The error function associated with the Taylor's series, as shown in Figure 2.2, is shaped

like a parabola with zero error in the center, or the point of differentiation. As the number

of terms in the approximation function increase, the smaller the error is at the end-points

of the parabola, corresponding to the end-points of the interval. Eventually, if an infinite

number of terms are used in the approximating function, the error at the end-points be-

comes zero. Therefore, to get the Maximum Norm error below a specific value, the number

of terms required is determined by the magnitude of the error at the end points while the

error between the end points may be acceptable with considerably fewer terms. The er-

ror function associated with approximation using Legendre Polynomials oscillates around

zero with the magnitude of the oscillations increasing as the end points of the interval are

approached. Though the maximum error may not occur at the end points, the maximum

error is near the end points. To get this Maximum Norm error below a specific value, the

number of terms required is determined by the magnitude of the oscillation near the end

points. This is better than the Taylor series since the maximum error does not correspond

exactly with the end points of the interval. A better approach is to have the error oscillate

with equal magnitude around zero. Then, as the number of terms increase, the Maximum

Norm error decreases uniformly across the interval. This equal magnitude oscillation of

the error is termed the equal ripple property [3]. The equal ripple property ensures a uni-

form maximum error across the interval, unlike the Taylor series or Legendre polynomials

which achieve excellent approximations near zero but poor approximations at, or near, the

end points. The approximation algorithms which exhibit the equal ripple property are the

algorithms which approximate functions using Chebyshev Polynomials.

Approximation algorithms using the Taylor series, Chebyshev Polynomials, and the

Legendre Polynomials are sub-classes of more general approximation algorithms using

Ultra-spherical Polynomials [31. The general form of the Ultra-spherical Polynomial is

p ~-)(z) = C"(1 - X2)-a d -) n + a

2-3

Maximum Allowable Error

N

N+M

N+M+L

Figure 2.2. Error Function Using Taylor's Series Approximations.

where C,, is a constant and a is in the interval (-1 < a < oo).

A general analysis of approximations using Ultra-spherical polynomials shows that,

when a is greater than -1/2, the amplitude of the oscillations of the error function in-

creases as x moves away from the origin. Ultimately, as a approaches oo, the series of

Ultra-spherical polynomials describes the Taylor series. When a = 0, the ultra-spherical

polynomial corresponds to the Legendre Polynomial. However, when a is less than -1/2,

the magnitude of the oscillations of the error function decrease as x moves away from the

origin. The value of a which gives the equal ripple property is a = -1/2; this describes

the Chebyshev Polynomial.

Chebyshev Approximation Methods

Chebyshev Polynomials are orthogonal polynomials, similar to the trigonometric

functions of Sine and Cosine, and are derived from the more general class of Ultra-spherical

polynomials. The Chebyshev polynomials, T, are related to trigonometric functions by the

2-4

identity

Tn(cos x) = cos nx.

From this identity, and the functional relations of the Cosine,

cos 0 = 1,

CosX = CosX,

cos2z = 2(cos 2 x)- 1,

the Chebyshev Polynomials may be derived.

To(x) 1

T, (x) =x

T2(x) = 2x 2 -1

Additional Chebyshev polynomials are found by the recursions formula

Tn+l(x) = 2 * Tn2(x) - T._I(x).

(The expanded Chebyshev polynomials, up to n = 22, are given in [2].)

When approximating a function with Chebyshev polynomials, each polynomial is

weighted by a constant and then summed.

N

f(x) = E anTn(x) where- 1 < x < 1
n=O

Since the Chebyshev polynomials exhibit the orthogonality property, odd functions require

summing of only the odd polynomials; likewise, even functions only require the summing

of even polynomials.

The weighting constants for each polynomial are computed from the function

an = 7f(cos x) cos nx dx

This functions is not simple to integrate; however, there are means to accomplish the in-

tegration; these are described in Appendix A. The last piece of information required to

2-5

completely define an approximation algorithm using Chebyshev Polynomials is to deter-

mine the number of terms, or polynomials, required for the approximation. To do this, a

relationship between the maximum tolerable error and the number of polynomials required,

such that the Maximum Norm error from the approximation is less than the maximum

tolerable error, is needed. This relationship is

IEV fN(x) (2.1)1([2NIN!I

From this relationship, the maximum magnitude of the error can be approximated for any

function, given the number of polynomials used to approximate that function.

By using Equation 2.1 to estimate the number of terms required to have an error

less than 2- ', the general form of the Chebyshev polynomial approximations for the

transcendental functions of interest are

7r 9
sin(jx) -

sin() 1Za2n+ T2n+l x)

9

cos(>) = Za 2 T2(z)

T 15

I
istan(4X) = F a 2,+lT2n+I(x)

n0O
15

ot4) =Za2,+T2+(x)

arctan(x) = Z a2n+T2n+(z)

11
er = Z_.anTn(z)

n=O
11

ln(z + 1) = Ea Tn(x)

Approximating with Chebyshev Polynomials has one problem. The form of the

approximation algorithms does not fit well into a pipelined architecture. This is due to

the computation, weighting, and summing of the terms as the approximation progresses.

f(z) = aoTo(z) + a2T 2 (x) + a4T 4(x) +... + aTn(x)

2-6

However, since all of the terms are polynomials, each term may be expanded and regrouped,

using the distributive and associative properties, to form a single polynomial of degree N.

This eliminates the computation and weighting of each polynomial term. However, the

parallel summing of the powers of the resultant polynomial must still occur.

f(x) = Bo + B2 x 2 + B 4 x4 +"-+ Bznx

To eliminate this problem, the approximation polynomial may be rearranged by using

Horner's method [8]. This results in an expression which is computed as a series of sum-

product stages with the result from each stage used as the input for the next.

f(W)= Co(C 2 + X2(C4 + x2(. .. (Cn + X2)...))) (2.2)

This form of approximation is well suited for a pipelined architecture. However, when

manipulating the coefficients of the Chebyshev Polynomials to obtain this arrangement,

precision is lost. To achieve the same precision as that specified when implementing the

approximation using the Chebyshev Polynomials directly, one additional term, or polyno-

mial, is required.

Division Algorithm

Division is performed by finding the reciprocal of the divisor and multiplying the

result to the dividend. Chebyshev polynomials cannot be used efficiently for the approxi-

mation of the reciprocal function. Therefore, alternate methods were investigated.

An algorithm is sought which requires only the sum and product operations. Also,

the algorithm should be in a form similar to the general form defined by Horner's method,

Equation 2.2. The algorithm which best meets these requirements is an iterative form of

a power series for reciprocal [2]. This algorithm has the form

Y'+I = Y(2 - xY,) (2.3)

where Y is the ith approximation of 1/x and 1f+ is the next approximation. This iterative

equation differs from the form that Horner's method yields. However, Equation 2.3 can be

rewritten as

r +j = 1'(2 + Yi(O - x)) (2.4)

2-7

This is in the form required by the pipelined architecture presented in the preceding section.

However, there are two sum-product functions required for each iteration. Therefore, if

the kth iteration gives a result which has a Maximum Norm error less than some specified

error value then, 2k sum-product operations are required. As long as the number of

iterations required is less than one-hialf the order of the highest polynomial used for the

approximations by the rearranged Chebyshev Polynomials, no additional stages in the

pipeline are required. This algorithm also requires x to be positive. However, Equation 2.4

inverts the sign of x, now requiring it to be negative. Sign corrections can be performed

in the pre and post-processing stages of the architecture.

The number of iterations required to achieve a Maximum Norm error less than some

specific value, e, depends on the magnitude of e and the magnitude of the error in Y0 ,

where Y0 is the initial guess of the reciprocal and must be computed in a pre-processing

stage. If the initial guess is defined as

where A is some error term, then,

y,= (') _ A2,

X

y () =TA s , and

1/4 = x15A1 6.

The ith iteration yield an error term of

e(X) x2' - A 2 '

As long as ei(x) < e for all x in an interval, then, Y1 = 1Ix. Once the maximum toler-

able error, e, and the interval of x defined, then, the maximum allowable error for Y0 is

determined by the number of iterations, i.

2-8

As the number of iterations increase, the required accuracy of Y0 decreases.

The difficulty of the reciprocal algorithm is determining how to compute Y0. To make

full use of the pipeline hardware required to compute the transcendental functions from

the preceding section, eight iterations of the reciprocal algorithm are used. Therefore, the

maximum allowable error when x = 1 is As(1) - 0.85005 and the maximum allowable

error when x = 1/16 is As(1/16) ; 13.45434. A linear function can compute Y0 for all x

in the interval (1/16 < x < 1) and give an error less than A 8 (x). The linear function has

the form Yo(x) = ax + b. The error function between is Yo(z) and 1/x is

e(x) = ax + b - (1/x) = a 2 +bz -1

The absolute value of the error generated from e(x) must be less than, or equal to, A 8(x),

the initial maximum allowable error, for all x in an interval. The best linear function will

not give the line that bisects the function 1/x because the error of the linear function at

the upper end point of the interval must be less than the error at the lower end point.

What is required is to have the ratios of the errors at the end points, relative to their

maximum allowable error, equal. By analyzing the error in this manner, the error across

the interval is essentially normalized. The normalized error function is

n(x) =er ,) ax2 + bx - 1 (2.5)
As(P) - 20 0625 0 06 25 (

Because of the shape of 11z and the fact that it is being estimated by a linear function,

the errors at each end point are negative. There is also some point between in which the

error will be positive and a maximum. This can be seen from Equation 2.5 by realizing

the slope of the line approximating 1/x must be negative, giving a negative a in the error

function n(x). Then, the numerator of n(x) is a quadratic which opens downward; in the

intervals of interest, the denominator is always positive. Also, in order to get the best fit

for the approximation line, the line will cross 1/x. Therefore, the location of maximum

positive error of the normalized error function, n(x), is found by setting the first derivative

of n(x) equals 0. This results in

0 = 2-'6 2 5 -1 .062 5(a * 1.9375 * x 2 + b * 0.9375 * x + 0.0625).

2-9

As long as z does not equal 0, the location of the maximum positive error, X,, is obtainable

from the quadratic term above.

Xc = -B ±" VB 2 - 4AC2A

where A = 1.9375a, B = 0.9375b,andC = 0.0625. Since a is negative and the square root

term is positive and larger than B, the negative of the square root term gives a positive

X,. In order to minimize the normalized error over an entire interval, the magnitude of

the normalized error at the end points must equal the magnitude of the normalized error

at X, and be of opposite sign. The magnitude of the normalized error at these points are

the maximums for the interval. As long as this maximum is less than 1, the reciprocal

algorithm, with eight iterations, will converge to 11x with an accuracy better than e. To

find a and b, the normalized error function must be used with z equal to the end points of

the interval. Then, a normalized error, less than 1, is chosen. This results in two equations

with two unknowns whereby a and b are determined. Then, with a and b, X, is computed

and the normalized error, n(x), when x = X, is compared to the chosen normalized error

used to determine a and b. If the normalized errors are not equal, the chosen normalized

error is changed until the normalized error at X, equals the chosen normalized error, within

desired bounds. By using the linear equation and a and b in the pre-processing stages, the

initial estimate, Y0, will always cause the final iteration to converge to within the required

accuracy, e.

Summary of Algorithms

All of the algorithms used, with the exception of the algorithm for the approximation

of the division function, are based on Chebyshev Polynomials. This is due the the error

characteristics of Chebyshev Polynomials over other approximation algorithms. By using

an algorithm which has the equal ripple property, fewer number of terms are required

to achieve a specified precision. Then, by regrouping and rearranging the polynomials,

a form suitable for pipeline processing emerges. The approximation algorithm for the

division function is based on an iterative power series. The form of the power series is

compatible to the form obtained from the modified Chebyshev Polynomials.

2-10

III. Processor Architecture

Pre-processing Stages

The pre-processing stages of the processor converts the arguments of the functions

into the form required by the algorithms implemented in the pipeline. The conversion

of the arguments takes the form of scaling and sign correction to prepared them for the

pipeline. These operations of the pre-processor are fast and add little overhead to the

entire processor function.

Sine and Cosine Pre-processing The Sine and Cosine functions are computed by

using only the regrouped, rearranged, Chebyshev Polynomials to approximate sin(irx/2).

This eliminates the lookup table entries for the coefficients required for the cos(7rx/2)

function in the pipeline and reduces the overall complexity of the control logic for the

processor. The Cosine function is related to the Sine function by the identity

cosz = sin (-)

The first step in the pre-processing stage is to determine if the Sine or the Cosine function

is being called. If the Cosine functions is being called then, the argument is transformed

to an argument for the Sine function by subtracting it from ?r/2. If the Sine function is

being called, then, the argument passes unaltered to the next stages of the pre-processor.

From this point on, the pre-processing stages are the same for both the Sine and Cosine

functions.

The required range of the argument passed to the pipeline is (-1 < x < 1). To

prepare the processors input to be within this range, the input is multiplied by a constant,

2/ir, and the result is factored into a sign component, integer component, and a fractional

component. The sign component gives the direction of rotation for the functions while the

integer component, with the sign component, gives the quadrant of the argument. If the

integer component is odd then, the fractional component is subtracted from 1. Otherwise,

the fractional component is unaltered. The sign of the fractional component is determined

by the sign component xor'ed with the next least significant bit of the integer component.

3-1

Since the sign component is required to be stripped out of the argument, leaving the integer

and fractional components both positive, the multiplication constant, 2/7r, to the argument

may instead be the constant -2/r. Simple logic in the front end of the multiplier selects

which constant to use. This choice also determines the sign component. The maximum

value of the integer component required is only two least significant bits. Since the integer

component is positive and it determines which quadrant the argument is in, zero to three,

two bits are all that is required and all higher bits are discarded.

The overall pre-processing requirements for the Sine and Cosine functions are shown

in Figure 3.1. The pre-processing stages are controlled by the command word directing the

processor to compute the Sine or the Cosine of an argument. This global control is used

only to select whether to multiplex x or ir/2 - x to the next stages. All other controls for

the pre-processing stages are local control signals and do not need to extend beyond the

pre-processor.

Tangent and Cotangent Pre-processing The Tangent and Cotangent pre-processing

is similar to the pre-processing requirements of Sine and Cosine. The identity

tan x = cot (2- x)

is used to reduce the number of coefficients in the look-up tables and the amount of control

in the pipeline by computing only the Cotangent function in hardware and converting the

Tangent arguments to Cotangent arguments. This conversion hardware is the same as that

required for the Cosine to Sine argument conversions. Therefore, if the Tangent functions

is to be computed, the argument is subtracted from 7r/2 and the resultant argument is

operated on as if the Cotangent function was called. The next step is to scale the argument

into the range (-1 < x < 1) and extract the sign, integer, and fractional components for

the computation of rotation and quadrant of the argument. This is the same as the

requirements for the Sine-Cosine argument. The argument is multiplied by 2/7r, or -2/7r,

and the result extracted into its three components. The least significant bit of the integer

component is used to select whether to use the fractional component directly or to subtract

it from 1. If the integer component is odd, the least significant bit is a 1, then the

fractional component is subtracted from 1 to give the correct magnitude. Otierwise, the

3-2

X

pi/2

MULTIPLEXER - FUNCTION SELECT

SIGN

SIGN2/pi

MUX 2/pi

EXTRACTORJ

FRACTION

INTEGER -

QUADRANTMULTIPLEXER

SIGN SELECTOR

TO PIPELINE

Figure 3.1. Sine/Cosine Pre-processing Requirements.

3-3

least significant bit is 0 and the fractional component is unaltered. The sign of the fractional

component is determined by the XOR operation of the sign component and the next least

significant bit of the integer component. Up to this point, the hardware requirements for

pre-processing the Tangent and Cotangent arguments is the same as that required for pre-

processing of the Sine and Cosine arguments. However, the range of the argument for the

Tangent approximation is (-nr/4 < x < T/2 - nr/4) and the range for the Cotangent

argument is (-?r/4 < nrx/2 < ?r/4). The final pre-processing step is to multiply the

resultant argument by 2. If the result is greater than 1, an internal error is generated which

indicates that the argument is out-of-range for the called function and the co-function, in

conjunction with the division function, must be used to compute the required result. This

constrains the computation of the Tangent and Cotangent functions somewhat. However,

it is necessary to limit the length of the pipeline to a reasonable number of stages. One

method to overcome this problem is to increase the processors control section such that

when it detects an out-of-range error, the co-function and division function are internally

scheduled and performed to get the desired results. The addition of control logic hardware

must be weighed against the alternative of having software check the arguments before

requesting the function and against the frequency of the arguments being out-of-range.

The pre-processing requirements for the Tangent and Cotangent functions are shown

in Figure 3.2. Like the Sine and Cosine functions, the global control is used only to select

which function is to be performed. All other control operations do not extend beyond the

pre-processing stages. The out-of-range error is used as discussed above.

Arctangent Pre-processing The pre-processing requirements for the Arctangent func-

tion is described in [1] and reviewed here. The range of the argument required for the

pipeline is (-1 < x < 1). If the argument of the Arctangent function is within this range

it may be given directly to to pipeline for computation. However, if the argument is outside

this range, the trigonometric identity

arctan(x) = 7r/2 - arctan(1/x)

must be used. The error signal must be generated and either handled internally, by the

control section scheduling the proper operations, or by software to compute the desired

3-4

X

pi/2

MULTIPLEXER FUNCTION SELECT
SIGN SIGN

M - 2/pi
2/pi

~FRACTION

SELECTOR MULTIPLEXER

SIGN SELECTOR *

[*H2

OUT-OF-RANGE ERROR

TO PIPELINE

Figure 3.2. Tangent/Cotangent Pre-processing Requirements.

3-5

X

OUT-OF-RANGE ERROR

TO PIPELINE

Figure 3.3. Arctangent Pre-processing Requirements.

value. Figure 3.3 shows the pre-processing requirements for the Arctangent function. This

differs from Figure 3.4 in [1] due to the realization of the control section having to schedule

the reciprocal operation as a separate function and not just a pre-processing operation.

Exponential Pre-processing The pre-processing requirements for the Exponential

function, as described by [1], requires x be decomposed into an integer and fractional

value.

eX =
N * e F

The integer portion, eN, is evaluated by using a ROM table to look-up the result. For IEEE

single precision, the required ROM table is 89 words deep; for double precision, the ROM

table is 712 words deep. The fractional component, eF , is computed by submitting F to

the pipeline for computation. The integer and fractional results are then multiplied in the

3-6

X

NEGATIVE-VALUE
ERROR - EXTRACTOR

INTEGER FRACTION

OVERFLOW ERROR

TO POST-PROCESSOR TO PIPELINE
VIA ROM TABLE

Figure 3.4. Exponential Pre-processing Requirements.

post-processor. If x is negative, an internal error is generated and the control section may

either schedule the exponential and division functions for x or generate an external error

and let the software handle the error. Figure 3.4 shows the pre-processing requirements for

the exponential function. The extractor separates the argument into an integer part and

a fractional part. The integer part is used to find the value of eN in the ROM table while

the fractional part is operated on in the pipeline. If the integer value is larger than the

depth of the ROM table, an overflow error is generated. This error signifies that the value

of eN is larger than the largest value which can be represented in the data representation

form, such as IEEE single or double precision.

Natural Logarithm Pre-processing The pre-processing requirements for the Natural

Logarithm function is complex and well described by [1]. Presented here is an overview of

3-7

the requirements in order to get an understanding of the full pre-processing requirements

of the processor.

To compute the In(x) by using Chebyshev approximation, in(x+ 1) must be computed

where x + 1 must be in the interval (0.7071 < z + 1 < 1). To scale x + 1 to this range, the

identity

lnz v = ylnx

is used to separate the exponent of the argument from the mantissa. The exponent is

then used in the post-processor stages. The mantissa is then scaled by a value which is

selected by the magnitude of the mantissa in order to get a result in the required range.

The identity

In mn = In m + In n

is used to justify the scaling and later subtraction of the Natural Logarithm of the scaling

factor from the pipelines result in the post-processing stages. Figure 3.5 shows the pre-

processing requirements for the Natural Logarithm function.

Division Pre-processing The pre-processing requirements for the division function

consist of sign correction of the divisor, extraction of the mantissa and exponent of the

divisor, and the computation of the initial guess, Yo. The algorithm implemented in the

pipeline requires the divisor to be positive. Therefore, if the divisor is negative, the numera-

tor and denominator are both multiplied by -1. This performs the required sign correction

for the divisor without any additional requirements imposed on the post-processor. The

exponent and mantissa are separated and the mantissa shifted, with a corresponding ad-

justment of the exponent, such that it is in the range (1/16 < M < 1). The exponent is

then operated on separately from the mantissa. The mantissa is then used as the argument

of a linear function to compute an initial guess of the reciprocal, Y0. The linear function,

Yo = aM + b

is used where a and b are both constants which are not dependent on the value of M. Yo

and M are then given to the pipeline for computation of the reciprocal of the denominator

while the numerator and the exponent of the denominator are sent to the post-processor

for eventual processing.

3-8

X

EXTRACTOR

EXPONENT MANTISSA

SCALE
SELECTOR

SCALE

TO POST-PROCESSOR TO PIPELINE

Figure 3.5. Natural Logarithm Pre-processing Requirements.

3-9

Figure 3.6 shows the pre-processing requirements for division. At a minimum, the

control hardware must detect a zero denominator; and, the control hardware could be

increased to detect a zero numerator.

Unified Pre-processor A Unified Pre-processor combines all of the requirements of the

preceding sections and establishes one pre-processor to handle them all. This Unified Pre-

processor can take on many different forms, the best form is not necessarily the best for all

environments. The architecture of the pre-processor is dependent on the frequency of each

operation requested. If a certain function is not requested often and it has a unique pre-

processing requirement, then the architecture of the pre-processor will take on a different

configuration than it would if the function was requested more often. In general, the

configuration of the Unified Pre-processor will have to consist of a bus arrangement where

data can be inserted, and pulled from, different points. By simple analysis, the two extreme

pre-processing requirement are those of the Tangent/Cotangent functions and the Division

function. Much of the hardware required for pre-processing of the Tangent/Cotangent

functions, as well as its layout, is suitable for most of the other functions. The extractor

stage can be constructed such that it is more general in nature, giving the fractional,

integer, sign, exponent, and mantissa components.

The exact layout of a Unified Pre-processor requires a great deal of analysis of in-

struction frequencies before it can be properly designed.

Pipeline Architecture

The pipeline architecture is designed for the computation of algorithms which have

been regrouped and rearranged such that they are expressed in the form generated from

applying Horners' Method [8]. This yields a series of sum-product stages with each stage

feeding the next. The algorithms developed by regrouping and rearranging Chebyshev

polynomials all have a similar form, with one exception. The even functions only use even

powers of the argument presented to the pipeline while odd functions only use odd powers.

Functions such as the Exponential use both even and odd powers. However, when all of

the functions are expressed using Horners' Method, only z and X2 are required. Even

3-10

NUMERATOR DENOMINATOR

S DETECTO ""-'"*

ZERO FLAG

[EXTRACTOR

EXPONENT
SHIFTER

ZERO ERROR
_I

Z E M Yo

TO POST PROCESSOR TO PIPELINE

Figure 3.6. Division Pre-processing Requirements.

3-11

functions only use the x2 term,

fe.(X) = Co + 2(C2 + X2(.. (C" + X2)...

while odd functions use both terms,

fodd(Z) = X(Ci + X2(C3 + X2 (... (Cm + X2) -))).

Functions which are neither even nor odd only use the z term.

fneither(X) = Co + X(Ci + ... (Ck + X)'..))

Therefore, the first stage of the pipeline, as shown in Figure 3.7, takes its argument and

squares it. Then, the argument and its square are propagated down the entire length of

the pipeline, with the pipeline control section selecting the argument to use, depending on

the function being computed. The control section also selects the coefficients to sum with

the product result from the previous stage.

This leads to the development of a control pipeline where, as the data advances down

the data pipeline, a control word advances down a control pipeline, selecting coefficients

and arguments for the data pipeline at each stage.

The division algorithm is the only algorithm not derived from Chebyshev Polynomi-

als. Its general form is
= Y,(2 - Y,(O+ x)).

The general form shows the requirement of being able to block the propagation of x 2

down the the data pipeline and replacing it with Yi at select points. This can easily be

accomplished by the control word selecting, through the use of a multiplexer, whether to

propagate z 2 or the output of the previous stage down the pipeline.

The total number of sum-product stages in the pipeline is developed around the

requirement of obtaining, at a minimum, IEEE double precision accuracy. The algorithm

requiring the greatest number of sum-product stages is the algorithm which computes

Tangent/Cotangent. This algorithm requires 16 sum-product stages to achieve double

precision accuracy, even with the limited range of its argument.

3-12

ARGUMENT PRESENTED TO PIPELINE
x

2
x x

TO ARGUMENT PIPELINE

Figure 3.7. Stage One of Pipeline.

3-13

Figure 3.8 shows how the architecture of the pipeline is constructed. A total of 16

sum-product stages follow the initial squaring stage. The control word, passing down the

control pipeline, selects coefficients and arguments for use in each sum-product stage as

well as the argument to be propagated down the z 2 argument pipeline. The result from

the last stage is given to the post-processor for computation of the final result.

Post.processor

There is no requirement of post-processing for the Sine/Cosine, Tangent/Cotangent,

and Arctangent functions. The result from the last stage of the pipeline is the value which

requires scheduling for return to memory or for additional processing. The Exponential

function requires a multiplier in the post-processor to multiply the result of the last pipeline

stage to the value obtained from a ROM table. This result can then be scheduled for return

to memory. The Natural Logarithm function requires a subtractor to subtract the bias

out of the exponent, a subtractor to subtract the Natural Logarithm of the scaling factor,

obtained from a look-up table, from the result of the last stage of the pipeline, and a

multiplier to multiply the two intermediate result. The result from the multiply operation

can be scheduled for return to memory. The post-processing requirements of the Division

function consist of a subtractor, complementor, and an adder for the exponent to compute

the negative exponent of the denominator. A multiplier is also required to multiply the

reciprocal of the denominator and the sign adjusted numerator to obtain a final result

which can then be scheduled for return tW memory.

The architecture of a unified post-processor depends directly on the level of complex-

ity of its control section. At one extreme, the control section is relatively simple, having

dummy stages in the post-processor such that all functions require the same number of

clock cycles through the post-processor. At the other extreme; a complex control sec-

tion has each post-processor operation selected by the control logic and the results, which

require minimum computation, are scheduled for return to memory before results which

require more computation, even though they may have arrived at the post-processor first.

3-14

STAGE 1 1 FROM PRE-PROCESSOR

A _ o CONTROL WORD

REGISTER STAGE
MULTIPLEXER +/* CONTROLLERI E

REGISTER STAGE
MULTIPLEXER +/* CONTROLLER

REGISTER STAGE
MULTIPLEXER +/* CONTROLLER

REGISTERSTAGE

MULTIPLEXER
-CONTROLLER

TO POST-PROCESSOR

Figure 3.8. Pipeline Architecture.

3-15

IV. Intra-Processor Data Representation

Alternate Data Representations

The Transcendental Function Processor requires a look into alternate data repre-

sentation schemes. The motivation behind this is to achieve the greatest speed from the

algorithms and hardware designs before looking at the speed-up possible from different

technologlies used to construct the hardware. By looking at alternate data representation

schemes, the hardware design advantages may be analyzed.

The large number of sum-product stages in the processor warrant the analysis of data

representation schemes which can make the computations faster. The primary method of

speeding up the multiplication and addition operations is by reducing the carry-barrow

propagation delay throughout each hardware component. The problem of propagation

delays of the carry is not a significant problem with exponents but it is significant with

mantissa values. This difference is due to the relative sizes, or number of bits, of each.

The number of bits in the exponent of an IEEE double precision numbers is 11 whereas

the number of bits of the mantissa is 52. The propagation delay across 52 bits is signifi-

cant. There have been many methods proposed to eliminate the problem of carry-barrow

propagation delays. Data representation schemes which have been studied in great depth

include the Residue Number System, and the Signed-Digit Number System, [9]. The

Residue Number System is a digit oriented system where no weighting factor is assigned

to any digit. Instead, a residue number is represented by an n-tuple, n, which relates to

another n-tuple, m, where m is a set of relatively prime numbers and n is a set of numbers

which represent a modulo factor of each element in m such that the sum, for all pair wise

elements in the sets, is the value of n. The major problems with this system are the digit

set pairing and normalization of a residue number is not practical. Therefore, precision can

not be maintained for all representable values. A number system similar to the Residue

Number System is the Negative Base System; however, it has the additional complexity of

determining the sign of the number.

4-1

The Signed-Digit Number System is a system which allows for a great amount of

flexibility. A number is represented by a set of digits where each digit can only take on a

value in the set D.. The digit set, Dp, is a balanced set where both rj and -r are elements

and (-p < 1_5 p). A Signed-Digit (SD) number is composed of digits which are positional

weighted using some radix. This gives a degree of redundancy to the representation a

number depending on the value of p in Dp.

Regardless of what alternate data representation form is used, there is a cost associ-

ated with using it. The costs occur from the requirement to convert numbers represented

in the conventional form to, and from, the alternate representation. As long as these costs

are out weighed by the benefits of the alternate representation, the alternate representation

should be considered.

Signed-Digit Data Representation

As stated previously, a Signed-Digit number is composed of a set of digits where

each digit is positionally weighted and is an element of the digit set D.. SD number

representation has the primary advantage of being free of carry propagation delays. The

SD Number System has four basic properties associated with it [13, 12].

1. The radix r, associated with the positional weighting, is a positive integer.

2. Zero is represented by a unique set of digits.

3. Totally parallel addition and subtraction are possible.

4. There exist transforms between conventional data representation schemes, such as

IEEE form, to SD representations.

The SD number, Z, is expressed as

z ={Zo, z1, z 2, z 3,..},zn

corresponding to

Z = Zor ° + Zr -' + Zr -2 + ... + Z,, r-".

4-2

Each digit in Z is an element of the digit set D,, where

D,, = {-p,l1- p, 2- p,...O-0... p- 1,p)

In general, the maximum value of p is

Pmaz < r - 1

and its minimum value

The above axe general constraints defined by [12]. More specific constraints on p defined

by [13] are

Pmax < r - 2

and

Pmi [L! + 2.

The more restrictive constraints on p simplifies the normalization procedure of a SD num-

ber. Another feature of SD numbers is that each digit carries it own sign and the sign of

the SD number is given by the sign of its most significant non-zero digit.

Because the digit set Dp is balanced and each digit carries it own sign, numbers

represented as SD may have a degree of redundancy associated with them. A minimally

redundant SD Number System is defined as one where

if r = 16, this defines a digit set where p = 8. Using this digit set, and two digits to

represent a number, only one number can be represented in a redundant manner. For

example, if the number 0.5 decimal is the number to be represented using a minimally

redundant digit set where r = 16, it may be expressed as

Z = (1)r ° + (-8)r 1

or as

Z = (0)7 ° + (8)r-'.

4-3

No other number may be expressed in this redundant fashion. In a maximumly redundant

digit set, one where

p = r -1,

all numbers except 0 are representable in a redundant manner. Zero is not representable

in a redundant manner because pmx = r - 1 and a redundant representation of zero

violates one of the four basic properties of the Sign-Digit Number System. The level of

redundancy in a chosen system effect other aspects than simply the way which numbers

can be represented. When a maximumally redundant digit set is chosen, the conversion

transform between conventional representations and SD representations is simple. How-

ever, the normalization procedure is made complex. The opposite is true for a minimally

redundant digit set, conversion is difficult but normalization is simple. The digit set for

any SD Number System will range between these to extremes. When selecting the digit

set, done by the selection of p, the tradeoffs between the chosen degree of redundancy

and the complexity of the hardware must be examined. In a system where a number is

converted, used extensively, and then assimilated back to a conventional representation,

the frequency of the conversion process is much less than the frequency of normalization.

Therefore, in this system, a digit set which is minimally redundant should be chosen. The

opposite is true when the frequencies of conversion and assimilation approaches the fre-

quency of normalization. The majority of the work presented in literature [13, 12, 15]

has shown that when in an environment where the frequency of normalization is greater

than the frequency of conversion, such as in a pipelined processor, p = 10 yields the best

tradeoff between conversion and normalization complexities.

The normalization of a SD number is preformed by the shifting of digits and adjusting

of the exponent. A SD number is normalized if

1. The most significant digit, IZ0 is 1 and VZo + Zir- 1I S 1 or

2. If Z0 = 0 and jZ 1r- 1 + Z2 r - 2 > r - 1 or

3. If all of the digits are 0.

Since normalization shifts digits and not bits, the exponent is adjusted by the binary

equivalent of the log base 2 of the radix for each shift. The exponent of a SD number may

4-4

be represented in either SD or conventional form; however, by keeping it in a conventional

form, the conversion, assimilation, and alignment processes are kept relatively simple.

However, during the alignment process for addition, if the exponents are not the same or

some multiple of the log base 2 of the radix apart, alignment cannot occur. Therefore,

during the conversion process, the exponents must be adjusted such that all numbers

represented in SD form have exponents which are a multiple of the log base 2 of the radix

apart. This is done by shifting the conventionally represented input such that the n least

significant bits, where 2' = log 2 r, are the same for all SD number exponents. When the

radix equals 16, the two least significant bits of the exponent are required to be the same.

Signed-Digit Numeric Units

The SD numeric units for the processor consist of the conversion, adder/subtractor,

multiplier, and assimilation units. The conversion and assimilator units have only a single

input while the adder/subtractor and multiplier each have two primary inputs. The pro-

cessor represents SD numbers with radix-16 weighting and a minimally redundant digit

set, Pmaa, = 10. Each numeric unit is constructed from a common set of macrocells to be

described in detail later.

Conversion Unit The conversion unit takes, as its input, a single number represented

in some conventional form, such as IEEE double precision. Before the input can be operated

on, it must be check to insure that it is a legal number and not an infinity or NaNs [6].

If the input is not a legal number, an error signal is generated and the conversion process

aborted. However, if the input is a legal number, the conversion process begins. To explain

the conversion process, an IEEE single precision number is used.

A single precision floating point, number is represented by a 23 bit mantissa, an 8 bit

exponent, and a single sign bit. The mantissa has an implied 1 in front and is expressed as

1.XX XXX... XX which can represent a value in the range (1.0 < M < 2). To convert the

number to SD representation, the range of the mantissa should be [1/r, 1) which simplifies

the normalization of the SD number after conversion to, at most, one left shift. Therefore,

if the mantissa is shifted right one to four bit places, it is within the range required for SD

4-5

SHIFTED MANTISSA IN 4-BIT SLICES
BO B1 B2 Bi

ZO Zl Zj-1 Zj
SIGNED-DIGIT OUTPUT

Figure 4.1. Conversion Recoding Hardware and Data Flow.

conversion. The number of places to shift the mantissa is determined by the exponent. The

exponent is expressed by 8 bits and has a bias value of +{127; the range of the un-biased

exponent is -126 to +127. The two ends of the possible range of the biased exponent, 0

and 255, are used to represent 0 and ±-inf which are handled separately. To convert to

a radix-16 SD number, the exponent must have the form XXXXXXOO. Therefore, the

number of right shifts to the mantissa is equal to 4 minus the value represented by the two

least significant bits of the exponent. This always shifts the mantissa at least one pl~e.

The only time the result will not be within the required range for SD conversion is when

the mantissa is 1.000.. .00 and the exponent is XXXXXXOO. This is the only condition

where the mantissa requires zero shifts. Once the mantissa is shifted and the exponent is

adjusted to reflect the right shifts, the SD conversion may occur.

SD conversion is a recoding process in which its input, the shifted mantissa, is split

into four-bit slices and recoded to adhere to the SD digit set, Dp. Figure 4.1 shows the

conversion recoding hardware and data flow. The shifted mantissa is input into a recoder,

S1R, and recoded such that the output of SIR is X and T, where X and T are elements

4-6

. . . .I i f I I

in the digit sets D, and Dt respectively and whose value is related to the input by the

function

Bi = Xr+T.

The digit set D. is required to consist of the elements {0, 1}. The digit set Dt is determined

by the requirement that

When p = (r - 1)/2) + 2], Tm,, should equal r(r - 1)121, [13]. This makes the digit set

Dt minimally redundant when used with D.

Dt =

The outputs of SIR are the inputs into the summer S2. This summer adds the inputs,

X and T, and outputs the digit Z which is an element of D.. All digits are expressed in

binary twos complement format. The sign bit of the floating point number is used below

the S2 level to determine the correct representation of Z, either Z or its 2's complement.

A simple example of the conversion process is shown in Figure 4.2. A mantissa of 12 bits

and an exponent of 4 bits are shown for simplicity, one sign bit.

The value of the input, expressed in radix-16, to the conversion unit is

- (0.16o + 3.16- i + 11.16 - 2 + 14.16 - 3) = -3.16 -1 - 11.16 - 2 _ 14.16 - 3 (4.1)

The second term on the right hand side of expression 4.1 may be re-expressed as

-11 • 16- ' = (5- 16) 16- 2 = 5 .16 - 2 -16.16 - 2 = 5 .16 - 2 1 • 16- '.

Similarly, the third term may be re-expressed as

-14.16 - 3 = (2- 16). 16- 3 = 2.16 - 3 16.16- 3 = 2 .16 - 3 1 . 16- 2.

The right hand side of the expression 4.1 may be re-expressed as

-3. 16- ' + (5.16 - 2 - 1. 16- 1) + (2.16- 3 - 1. 16- 2) = -4 -16 - + 4 .16 - 2 +2.16 - 3 .

This expression is the same as the final conversion results shown in Figure 4.2. After

conversion, the exponent is carried along with the SD number and used the same as in

4-7

INPUT IN CONVENTIONAL FORM

-1.11011111 E0101
INPUT SHIFT AND EXPONENT ADJUST

0J 0ll 1011 1111 E10
I 1 sS I 1R SIR [S1]

- NORMALIZE/COMPLEMENT MULTIPLEXER EXPONENTI

0 -4 4 2 El0

OUTPUT IN SIGNED-DIGIT FORM

Figure 4.2. Conversion Recoder Example.

4-8

standard floating point arithmetic. However, the exponent has two less bits since the two

least significant bits are dropped because they are assumed 0. A block diagram of the

conversion stage is shown in Figure 4.3. As stated previously, the SD number out of the

conversion process may require, at most, one left shift to normalize.

The level of complexity of conversion is minimal; however, an additional stage in

the pipeline is required. This disadvantage must be offset by some advantage in addi-

tion/subtraction, and multiplication.

Adder/Subtractor Unit Addition is very similar to the conversion process with only

minor exceptions. The first change is the alignment of the exponents. This is simpler

than in standard representation since the exponents are two bits shorter and the number

of digits to shift are less than the number of bits to shift in standard floating point. Then,

instead of the recoder SIR having a single input, S1 A is a summer and has, as its input,

two numbers in SD format. The outputs of SIA are X and T, but the digit set D. must

now include a -1. The digit set for T, Dt, is unchanged. The summer SlA performs the

function

Xr 1 - + Tr- i = INIr- ' + IN2r- .

The maximum sum of the inputs is defined by 2p and gives a maximum sum of 20. This

range is covered by the range of Xr + T. The summer S2 is unchanged with the exception

of the required -1 in the input digit set of X. The normalization of a SD number after

addition requires, at most, one right shift or multiple left shifts. Rounding is required if a

right shift occurs and is discussed at the end of the multiplication section. The complexity

of SD addition is of the same order as the conversion process. In comparison to standard

binary addition, the alignment of the exponents must still occur, though the exponents

are two bits shorter for a SD number. Also, the maximum carry propagation for a number

expressed in SD form is 1 digit; whereas, a number expressed in binary may require a

carry propagation across its entire field. This is the benefit of SD addition over standard

binary addition. The SD Adders data flow is shown in Figure 4.4 for four digit addition,

less exponent adjust, normalization and rounding.

4-9

IEEE STANDARD 754 INPUT

SIGN MANTISSA EXPONENT

MANTISSA SHIFT AND EXPONENT ADJUST i

SHIFTED MANTISSA
ADJUSTED EXPONENT

S1 RECODER LEVEL

X AND T VALUES

S2 SUMMER LEVEL

Z VALUES

_

NORMALIZATION/COMPLEMENTOR MULTIPLEXER

MANTISSA EXPONENT

SIGNED-DIGIT RESULT

Figure 4.3. Block Diagram of Conversion Stage.

4-10

SIGNED-DIGIT INPUT

AO BO Al BI A2 B2 A3 B3

SIA Sl SIA SIA

11
Z0 Z1 Z2 Z3

SIGNED-DIGIT RESULT

Figure 4.4. Data Flow in SD Adder.

SD subtraction is essentially the same as SD addition with the following exception.

Prior to the SlA level, the digit to be subtracted is 2's complemented. The remainder of

the the circuit is unchanged. A block diagram of the addition/subtraction unit is shown

in Figure 4.5.

Multiplier Unit The SD Multiplier computes all of the partial products in parallel,

in its first level. The next levels sum the partial products, two at a time, until a single

result is obtained. Then, the result is normalized, rounded and a final result obtained.

The multiplier stage used to compute the partial products is discussed first due to the

additional digit sets used in the multiplication scheme which have not been presented yet.

A single digit multiplier, MO, is shown in Figure 4.6. The two additional digit sets

for the multiplier are D, and D, from Mo. The maximum values of these digit sets are

determined by the requirement to cover the maximum range of the input product, p2, and

the requirement of redundancy for the output. MO multiplies two digits in the digit set

4-11

SIGNED-DIGIT INPUTS

MANTISSA EXPONENTS
10 11 E0 El

DIGIT SH-IFT FOR AL IGNMENT H COMPARATOR

l1 [EO,E1]max

10 +2's COMPLEMENTOR -+/-

S1A ADDER LEVEL

X and T VALUES

LI S2 SUMMER LEVEL

NON-NORMALIZED RESULT

NORMALIZATION AND ROUNDING

Z

SIGNED DIGIT SUM

Figure 4.5. SD Addition/Subtraction Unit.

4-12

SINGLE DIGIT BY SINGLE DIGIT INPUT

FROM STAGE TO STAGE ON

V~ IMP--TOTHLF THE RIGH

S

SINGLE DIGIT RESULT

Figure 4.6. Single Digit by Single Digit Multiplier, MO

4-13

Dp and outputs the result as

Url - i + Wr - i = (Br-') (Ar-').

To express the product, in a redundant manner, the digit set of Dw must be, at least,

minimally redundant. This requires Wme. , [(r - 1)/21 which is the same requirement

for Tma, discussed earlier. No benefit is achieved by having D" more than minimally

redundant but there is a cost in attempting to do so as the complexity of the entire

multiply hardware increases as the redundancy increases. Therefore, D, is established as

a minimally redundant digit set.

D= {-8,-7,...,-1,0,1,...,7,8}

The required digit set for U can now be established. Since the maximum absolute value

of the product of IABI is 100, p2 = 100, then

r100 -WmaX 6
Um~ = 16 16

With these two digit sets, D, and D,, the entire range of the product of A and B is

representable with minimal redundancy. The remaining digit sets in the multiplication

scheme above, Dt and D,, are unchanged from their definition given earlier, with the

exception of Dt, not equal to Dt. This will be explained later in this section.

The digit sets used for multiplication are DP, D,, D,, Dt, and D,; the values in each

digit set are

Dp = {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10}

D = {-8,-7,-6,-5,-4,-3,-2,-1,0, 1,2,3,4,5,6,7,8}

Du = {-6,-5,-4,-3,-2,-1,0, 1,2,3,4,5,6}

Dt = {-8,-7,-6,-5,-4,-3,-2,-1,0, 1,2,3,4,5,6,7,8}

D, = {-1,0,1}

In the Variable Precision Module presented by [13], the digit set of T' is allowed to

be larger than the digit set of T, Dt. Dt, may be as large as Dj+,. This increases the

4-14

size of Dt, by 1 on each side of the symmetric set over Dt. Since the partial products are

computed in full parallel and not in serial or in an array structure, the additional size of

the digit set Dt, is not required. However, to optimize later aspects of the multiplication

scheme, specifically during the addition of the partial products to form the end result, the

ability of inputing a T' in Dt,, as defined above, will prove useful at no cost.

In Figure 4.6, it is important to note the shifting of the resultant output as compared

to the input. The most significant digit output is two digit places to the left of the most

significant input digit. This is because of the output of MO, which outputs Ur1 , and the

outputs of S1A, which outputs Xr 1 . Therefore, the resultant output, Z- 2 , is r 2 times the

digit place of the inputs.

For a full parallel multiplier to multiply a complete SD number, B, by a single

digit, Ak, the single digit multiplier stage is duplicated for each digit in B. The result of

replicating the stage is shown in Figure 4.7 and forms a full parallel multiplier block.

Since the computation of the partial products occurs in parallel, W and To are

always 0. This simplifies the left most stage of the block. SlAo and S2 0 are not required

because the maximum value of U out of MOo is Umax = 6 which, when added to 0 in SlAo,

results in X = 0 and T,,a, = 6. Therefore, S1Ao may be removed completely and U, from

MOO, can go directly to the T input of S2 1 . S2 0 is not required because both of its inputs

are always 0. This eliminates SlAo, S20, and the S-2 output.

To multiply two SD numbers, the multiplier block, shown in Figure 4.7, is replicated

so that each digit in A is used to form a partial product with the number B.

The remaining levels of the multiplier unit sum the partial products after shifting the

products to correct for the decimal point position of Ak. The following discussion simplifies

the summation levels by reducing the number of digit adders required in each level. What

must be kept in mind is that the inputs to the multiplier are normalized SD numbers. This

is important because significant savings in the amount of hardware required to sum the

partial products will result.

Because the inputs are normalized, the maximum absolute value of B0 is 1. If B0

is 1 then B is either 0 or it has the opposite sign of B0 . This is a requirement of a

4-15

SIGNED-DIGIT NUMBER

BO BI B2 B -l Bj

DIGIT Ax

MO MO MO MO MO

0

SIA SlA SlA SlA S1A

Z-2 Z-1 ZO Zj-3 Zj-2 Zj-1 Zj

PARTIAL PRODUCT

Figure 4.7. Single Digit by SD Number Multiplier Block.

4-16

normalized number; if IBO = 1 then JBo + BI must be less than, or equal, to 1. Therefore,

the maximum value of the resultant U out of MO0 is 1; and, if IUI = 1 then W out of

MOo must be 5 < JW <8 and have the opposite polarity of U. The U out of MO1 is in

the range 0 < IUI <5 6 and has the same polarity as W out of MOo. This is all with the

condition that U out of MoO is not 0. Since W and U into SlA, have the same polarity,

then 5 < JW + U1 < 14 and the sum has the opposite polarity of U out of MO0 . The

resultant X out of SlA1 has the same sign as (W + U). Therefore, the inputs into S2 1

are U, from MO0 , and X, from SlAi, with the constraints that tUI = 1 and X is X = 0

or X = -U. The value of Z-1 is the sum of these inputs and is either U, where JUI = 1,

or 0 giving an IZImax = 1. The next condition which needs to be looked at is when U

out of MOO equals 0. When this is the case, IW _ 7. If W is any value except 0 then

B0 = 1 and the same condition holds for B, as above. The output U from MO1 must be

0 or in the portion of the digit set D, which has the opposite sign of W from MO0O. The

summer SlAt sums W from MOO, IWI _< 7, and U from MO1, IUI < 6 with the constraint

of opposite polarity, and outputs an X = 0 and a ITI 7. Therefore, the inputs into S21

are both 0 and the output S-1 = 0. The last condition to look at is when B0 = 0 and B,

is any element in DP. With this condition, U and W out of MOO are 0 and U out of MO1

may be any element in the set D,. The inputs into SlAt are W, from M~o, and U, from

MO1 . With these inputs, X out of SlAl is 0 and T = U. Therefore, the inputs to S21 are

both 0 so the output Z- 1 = 0. These are the only possible combinations that can effect

Z- 1, therefore, the possible values of Z- 1 are {-1, 0, 1}. This proves to be an important

fact which reduces the amount of hardware required in the partial product summers. It is

also important to note that Z-1 will always equal 0 when Ak = A0 . The reason for this is

as described above when U out of MO0 equals 0, which is always the case when Ak = A0 .

As stated previously, the summer levels of the SD multiplier form a tree structure

where the number of partial products half as they proceed down the tree. Figure 4.8

shows this tree structure summing eight partial products. The SL2 summer sums two

partial products, P and P,,+, which are shifted one digit position from each other due

to the position of Ak with respect to each other. The most significant digit of P" is, as

described above, -1, 0, or 1. Therefore, when summing at this level, the most significant

4-17

PARTIAL PRODUCT INPUTS

P0 1 P2 P3 P4 P5 P6 P7

I I I I
LEVEL 2 SL2 S2 SL2 SL2

LEVEL 3 LS3

LEVEL 4 L

z
SINGLE RESULT

Figure 4.8. Partial Product Summer Structure.

4-18

S1A adder is not required and the digit may be input directly into the most significant S2

adder. The least significant digit of P,,+, bypasses the SL2 summer completely since Pn

does not have an input to add with it. The SL3 summer sums the results of SL2 which

are shifted two digit positions from each other. This is where the digit set Dr, becomes

a factor. If Dt is expanded to the size of Dr,, then, the most significant digit of P,,,n+l

bypass the SL3 summer and the next most significant digit may be input directly into

an S2 adder. The maximum magnitude of this next most significant digit is 9 because

it is an output from the previous level where IT + Xlmesz = 9. The least significant two

digits of P,+2,n+3 bypass the SL3 summer. The SL4 summer sums the results from the

SL3 summers. These inputs are shifted four digit positions from each other. The three

most significant digits of Pn,n+1,n+2,n+3 bypass the SL4 summer as well as the four least

significant digits of Pn+4,n+5,n+6,n+7. The forth most significant digit of Pn,n+l,n+2,n+3 is

input into the most significant S2 Adder. If more summation levels are required to sum

the partial products, this process is continued until a single result is obtained. Once this

single result is computed, the result is normalized. The result may require, at most, one

digit shift to the right or two digit shifts to the left to normalize after multiplication.

The last step is to round the result to obtain the final output. The maximum round-

off error is less than p/r - j -1 with simple truncation, where j is the number of digits used

to represent a normalized SD number. Nearest rounding is easily accomplished in SD

number representation. If a SD number is represented by J digits, 0 through J - 1, then,

nearest rounding will affect only the J - 1 digit. The maximum value of the J - 1 digit is

IJ - l1md. = IT + Xla = 9; and, since rounding can affect the J - 1 digit by, at most,

1, the maximum value of J - 1 after rounding is 10, which is in D0 . The maximum error

by nearest rounding is

Errormx [(r)/2]

The IEEE Standard 754 - 1985 requires the intermediate result to be computed to a

greater precision and then rounded to the precision of its destination. Due to the way

multiplication is performed in the full parallel, the least significant digits of the partial

products which do not effect the rounding procedure could be dropped. However, very

little hardware is saved by doing this and it will not conform to the IEEE standard.

4-19

SIGNED-DIGIT INPUTzo zi Z2 z*
l l l

VO NO N1 N2 Nj

SIGN NON-REDUNDANT OUTPUT

Figure 4.9. SD Assimilator Data Flow.

Assimilation Unit The final unit preforms the assimilation of a SD number to stan-

dard binary, such as IEEE floating point. The assimilator is an additional cost of using SD

number representation and requires a separate stage in the pipeline. In fact, assimilation is

the most costly part of SD representation because this is the only operation with significant

carry-barrow propagation delays. The negative SD digits represent the problem. In order

to convert the negative digits to positive, the assimilation stage performs the function

-r. V + Ni = Zi - V+,

where Z is a SD digit in D,, N is a 4-bit number in non-redundant form, and V is an

element in {0, 1} which represents a barrow. The assimilator is shown in Figure 4.9. The

barrow output from each stage has the possibility of propagating left across all of the

stages in this level. The possible values of No are 0, 1, 14, or 15. If No is 0 or 1, then,

V0 is 0 which indicates that the SD number assimilated is positive. However, if No is 14

or 15 then, Vo is 1, indicating the SD number is negative, and the output Ni is given in

2's complement form. A second level, in the assimilation process, 2's complements the

output and a multiplexer, controlled by Vo, selects which output to pass as the result. The

4-20

final levels normalize the result, adjusts the exponent, and forms the final result to IEEE

standard. The result may require, at most, four left shifts to normalize. Rounding is also

required for the result and is as specified by the IEEE standard. A block diagram of the

assimilation process is shown in Figure 4.10. To optimize the time required to perform

the assimilation, the 2's complementor and the multiplexer should be placed before the

assimilator. To perform a 2's complement on a SD number takes substantially less time

than a standard binary number.

4-21

SIGNED-DIGIT NUMBER

MANTISSA EXPONENT

~ASSIMILATE

~MULTIPLEXER

EXPONENT
NORILIZATION/ROUNDING ADJUST

IEEE STANDARD 754 NUMBER

Figure 4.10. SD to IEEE Assimilator.

4-22

V. Signed-Digit Hardware Modules

When representing a number in SD form and performing operations on it, unique

hardware must be designed. Since SD representation has great advantages over standard

binary, these advantages should be exploited in the hardware. The primary modules used

for the SD operations presented in Chapter 2 are the SiR Recoder, SlA Adder, S2 Adder,

MO Multiplier, and the Al assimilator. Each of these are discussed as well as their es-

timated performance parameters. The performance parameters are obtained through the

use of SPICE analysis. CIFPLOTs of the S 1 A Adder, S2 Adder, and MO Multiplier are

in Appendix B.

SIR Recoder

The SIR Recoder is the simplest of all SD hardware modules. It accepts a 4-bit

slice input and outputs X and T in the digit sets D_ and Dt respectively. The input is

expressed in binary non-redundant form which gives it a range of number representation

from 0 to 15. The digit set of X is {-1, 0, 1} and represents a radix-16 higher value than

the least significant bit of the input. The digit set of T is {-8,-7,. . .,0,. . ., 7, 8} and

represents a value which has the same positional weighting as the least significant bit of

the input. Both X and T are represented in 2's complement form, as are all numbers in

SD representation. The input is recoded by the SIR Recoder such that any value of input

is recoded into X and T by the function

N =Xr+T.

For all input values in the range (0, 8) the value may pass directly to T. However, if the

input is in the range (9, Th), tWe value of X is 1 while the value of T is 16- N. By analyzing

the possible inputs and their required results, a simple solution is developed. When the

input is in the range (0, 7), its most significant bit is 0. When the input is greater than 7,

the most significant bit is 1. Therefore, the SIR Recoder is designed without the use of

any logic gates, it is simply a routing problem. The input is routed directly to T; however,

the input is 4-bits wide while T is 5-bits wide. For sign extension of T, the most significant

5-1

NON-REDUNDANT INPUT

0

X OUTPUT T OUTPUT

Figure 5.1. SIR Recoder Routing.

bit of the 4-bit input is extended to be the most significant bit of T. The most significant

bit of the input is also used as the least significant bit of X. Since X is a 2-bit number

and the input is expressed in a non-redundant form, X is only 0 or 1; therefore, the most

significant bit is always 0. Figure 5.1 shows the routing of the SIR Recoder.

Since there is no logic required for the SIR Recoder, the is no appreciable propagation

delay through it. However, there are important VLSI considerations which must be kept

in mind. The loading on the most significant bit of the input is three times the loading

of the other bits of the input. When designing the SIR Recoder for a specific application,

the loading on the most significant bit must be compensated for by either using inverters

5-2

at the inputs and output ports or by ensuring the driver for the most significant bit is

scaled large enough for the load. The use of inverters at the input and output ports give

the advantage of isolating the input drivers from the load that the outputs of SIR sees.

This allows for the independent design of the follow-on modules and scaling of the recoders

output drivers for those follow-on modules. The cost is the addition of 11 inverters.

S1A Adder

The SlA adder accepts, as its inputs, two SD digits where each digit is an element

of the digit set D.. SD digits are represented in 2's complement by 5-bits. The outputs of

the SlA Adder are X and T, where X and T are in the digit sets D. and Dt respectively.

The first requirement of the SIA Adder is to add the inputs, giv;lg a result which is 6-bits

wide. After the inputs are added, the result must be recoded into X and T.

The adder must be designed for inputs which are 5-bits and a carry-in bit. The

carry-in bit is connected to the control logic and used in conjunction with an inverter

to perform the subtraction operation. By designing the adder this way, it can perform

addition and subtraction faster due to the short propagation delay through an inverter

compared to a 2's complementor. The next step in the design of the adder is to select the

type of adder to use in order to minimize its propagation delay. The adder which best suits

the needs of minimum propagation delay is a carry-select adder. A carry-select adder is

used to give rapid lateral carry propagation. Through the use of SPICE simulations, using

2M technology, the estimated propagation delay through the worst case path of the adder

is 4.9 ns.

Recoding of the adders 6-bit result is similar to the recoding in the SIR Recoder with

the exception of the possibility of having a negative value for X. To perform the recoding,

the four least significant bits of the adder results are routed to the four least significant

bit of T. The most significant bit of T is a sign extension of its next most significant

bit. X is determined by the two most significant bits of the adders result and the most

significant bit of T. The two most significant bits of the adders result are added to the

most significant bit of T to form X. This is done by using two half adders to compute

X. SPICE simulations for this step estimates the worst case propagation time is 1.2 ns.

5-3

The complete $1A Adder is shown in Figure 5.2. An estimate of the overall propagation

time of the SiA adder is 6.1 ns. This is the time required to obtain the most s%-,'ficant

bit of X; however, the time required for T is only the adders time, 4.9 ns. A CIFPLOT

of the SiA Adder is in Appendix B. A transistor count of the S1A Adder shows that 160

transistors are used.

S2 Adder

The S2 Adder is very similar to the SIA Adder with the exception of the recoding

stage not required. The S2 Adder has two inputs, X and T, or T', which are in the

digit sets D. and Dt, or Dt,, respectively. Therefore, the maximum value of their sum

is Tmax + Xm,. = 9 + 1 = 10. The addition is accomplished by using the same carry-

select adder described in the preceding section for the S1A Adder. However, the adders

hardware is reduced by recognizing that the CARRY-IN to the first adder is always 0.

This reduces the hardware of the two least significant bit adders. Also, the hardware for

the most significant bit adder is reduced since CARRY-OUT is not required. Figure 5.3

shows the requirements of the 52 Adder. SPICE simulation have shown that the worst

case propagation delay is 4.9 ns. The CIFPLOT of the S2 Adder is in Appendix B. The

S2 Adder requires 129 transistors.

MO Multiplier

The MO Multiplier is the most complex module for SD arithmetic. The multiplier

has two inputs which are both elements of the digit set D,. The results are two values, U

and W which are in the digit sets Du and D, respectively. Multiplication is accomplished

by converting one of the SD digits to a modified radix-4 representation.

Ai = 4Kf + Ki

In this representation, K and K' are pseudo-numbers in that they represent numbers in

the set {-2, -1, 0, 1,2} but they are not coded in a standard manner. The encoder forms

K and K' from A by using the functions

Ko = (A, xor A 4) and (73 or A4)

5-4

SIGNED-DIGIT INPUT

A DIGIT B DIGIT

5-BIT CARRY-SELECT ADDER

CARRY OUT

2 BIT HALF ADDER

X OUTPUT T OUTPUT

Figure 5.2. Complete SlA Adder.

5-5

X INPUT T INPUT

5-BIT MODIFIED CARRY-SELECT ADDER

SIGNED DIGIT RESULT

Figure 5.3. S2 Adder Configuration.

5-6

K, =

K 2 = (TO OrAj)

K' -- A4

K'= (Al xnor A2) or(A3 andX 4)

K = (A, xorA4) or (A 2 zorA3)

K and K' are coded such that they can operate directly on a set of three multiplexers each

where the first multiplexer selects the B digit or its 2's complement. The second multiplexer

is used for selecting the output of the preceding multiplexer or shift that output left one bit.

Finally, the third multiplexer select whether to pass the output of the second multiplexer

or to pass all zeros. K and K' each operate on a set of these multiplexers. However, the K

and K', as well as the outputs of the multiplexer sets, are a radix-4 apart. Figure 5.4 shows

how the multiplexer sets are arranged and controlled. The least significant bit of K, and

K', control the Complementor Multiplexer while the next least significant bit controls the

Shifter Multiplexer. The most significant bit controls the Zero Multiplexer. The outputs

of the two multiplexer sets form two partial products which are shifted two bit positions

relative to each other.

The partial products are added by using a 6-bit carry-select adder, similar to the

5-bit version described previously. The two least significant bits of the multiplexer set

controlled by K by-pass the adder since the multiplexer sets are radix-4 apart in their

weighting. The final step is to recode the results of addition into the digit sets for U and

W. W is coded the same way that T is coded in the SlA adder. The four least significant

bits of the adder, where two of the four bits by-passed the adder, are routed to the four

least significant bits of W. The most significant bit of W is the sign extension of its next

most significant bit. U is coded the same way that X was coded except that U is 4-bits

wide. Four half adders are used to recode the four most significant bits of the 6-bit adders

result along with the most significant bit of W.

An overall diagram of the MO multiplier is shown in Figure 5.5. The encoder for the

generation of K and K' is shown as part of the multiplier. In reality, this encoder is used

5-7

B DIGIT

'S 2'S
COMPLEMENT COMPLEMENT

5 5 5 5

COMPLEMENTOR K'0 K COMPLEMENTOR
MULTIPLEXER MULTIPLEXER

SmFTER j K 1 KSHIFTER
MULTIPLEXER MULTIPLEXER

MULTIPLEXER MULTIPLEXER

{66

BK' BK
PARTIAL PRODUCTS

Figure 5.4. MO Multipliers Multiplexer Arrangement.

5-8

as a separate block when a single digit is being multiplied to a complete SD number. In

this case, the single digit is the input to the encoder and the resulting K and K' bits are

used for each multiplexer set corresponding to each digit in the SD number. This reduces

the required hardware.

The performance parameters obtained from SPICE analysis are worst case values.

The time to encode a SD digit into K and K' is 2.5 ns. This time is done in parallel with the

formation of the 2's compler Lent of the multiplexer digit and, in part, with the multiplexer

set. The total time to obtain partial product results from the multiplexer set, including

the encoder time, is 4.3 ns. The addition of the partial products requires 5.7 ns and the

recoding of its output requires 3.7 ns. However, a portion of the recoding stage overlaps

the adder stage. Therefore, the partial product adder and the recoding of its output were

estimated as requiring 9.0 ns. From the simulation results, the estimated time to multiply

two SD digits is 13.3 ns for the formation of the U result and 10.0 ns for the W result. A

CIFPLOT of the MO Multiplier is in Appendix B. This plot shows MO with the encoder

as an internal structure. In this configuration, the MO Multiplier requires 494 transistors,

113 of those are for the encoder.

Al Assimilator

The Al Assimilator is the most time consuming operation of all SD operations. This

is due to the barrow propagation delays across the entire field. The assimilator accepts

a SD digit, which is expressed in a redundant form, and outputs a result which is non-

redundant. A barrow signal is used to propagate negative values from a digit which is

weighted r - ' to the digit on the left which is weighted r 1 - . If the digit is positive, it value

may be output directly. However, if the digit is negative, the value must be subtracted from

16 and its value output. The barrows are used to decrement the output of the stage on the

left, a radix higher. The general configuration of the assimilator is shown in Figure 5.6.

The assimilator recodes the SD digit into a non-redundant form, by stripping out the four

least significant bits, and generates a barrow signal for the next stage. Once the digit is

expressed in a non-redundant form, it is subtracted by the barrow from the stage on the

right. The subtraction is accomplished by adding the barrow, with sign extension, to the

5-9

A B

T'S
COMPLEMENT

COMPLEMENT COMPLEMENT
K'0 MULTIPLEXER MULTIPLEXER

KO _____
__

11SHIFTER SHIFTER
K'l 3.MULTIPLEXER J MULTIPLEXER

Ki

ZERO ZR
K12 MULTIPLEnXER JMLTIPLEnXER

ENCODER _________

6-BIT MODIFIED
CARRY-SELECT ADDER

HALF ADDERS

U W

Figure 5.5. Complete MO Multiplier Configuration.

5-10

SIGNED-DIGIT DIGIT

BARROW OUT BARROW IN

4-BIT ADDER

NON-REDUNDANT RESULT

Figure 5.6. Assimilator for Signed-Digit Digit.

non-redundant result. The adder is configured as a 2-2 modified carry-select adder. The

recoding of the digit is performed by simple routing and requires negligible time. The

adder requires 4.5 ns to compute the final result.

5-11

VI. Signed-Digit Performance

In the preceding chapters, the SD operation units, and the modules with which the

units are built, were described. Performance estimates for the modules were given in terms

of propagation delays through each unit. By using these estimates of module performance,

the SD modules can accurately be described in VHDL. Once the modules are described,

SD units can be modeled and simulated.

Signed-Digit Module Descriptions

The SIR Recoder accepts a 4-bit input and provides the outputs T and X which are

in the digit sets Dt and D. respectively. The VHDL description of the entity interface is

defined by these signals.

use work.SDDEFINITIONS .all;

entity SlECDDER is

port (DATAIN : in bit_vector(3 dornto 0);

T-out : out TTYPE;

Xout : out XTYPE);

end SIRECODER;

The DATAJN signal describes the 4-bit input which is a 4-bit slice of the total input

mantissa. TTYPE and XTYPE are data types which describe subtypes of a bit-vector

where TTYPE is a bit-vector (4 downto 0) and X.TYPE is a bit-vector (1 downto

0). These subtypes are used to clarify the data types by giving them unique names

corresponding to the aigit sets which they represent. All of the data types are defined in the

package SDDEFINITIONS. The SIR Recoder is described behaviorally and only involves

proper routing of the input signals to the correct output lines. No generic parameters

are passed to the recoder since there is no requirement for altering the propagation delay,

which is essentially 0 ns. The complete VHDL description of the SIR Recoder is given in

Appendix C.

6-1

The SlA Adder is more involved than the recoder. It accepts two SD digits in the

digit set Dp and outputs T and X in the digit sets Dt and D, respectively. The SIA

Adder also requires a control signal which indicates if it is performing and addition or a

subtraction. The VHDL entity description defines these inputs.

use work.SDDEFINITIONS. all;

entity SIADDER is

generic (TECHNOLOGY.SCALE : real := 1.0);

port C SDI-in : in SDDIGIT;

SD2_in : in SDDIGIT;

ADD-SUB : in bit;

Xout : out XTYPE;

T-out : out TTYPE);

end S1_ADDER;

The data type SDDIGIT is defined as a bit-vector (4 downto 0) in the pack-

age SD.DEFINITIONS. XTYPE and T.TYPE are as defined previously while bit is

a predefined type. The generic parameter TECHNOLOGY-SCALE is used to linearly

alter the propagation delay through the adder. The default propagation delay, TECH-

NOLOGY.SCALE equal to 1.0, is determined through SPICE analysis using 2 micron

technology. If a different technology is used, the propagation delay is changed by setting

TECHNOLOGY-SCALE to linearly adjust for the new technology. The architectural de-

scription of the adder is a behavioral description. This description converts the SD digits to

integer values, adds the integers, and converts the result into and X vector and a T value.

The T value is then converted to a T vector. Two functions are used in this behavioral

description, BINTOINT and INTTO..SD. These functions are defined in the package

SDDEFINITIONS and called when required. The complete VHDL description is given in

Appendix C.

The S2 Adder accepts an X vector and a T vector, which are defined by the data

types XTYPE and T.TYPE respectively. The output is a SD digit defined by the data

6-2

type SDDIGIT. The S2 Adder does not require any control signals. The entity description

defines these inputs and the output.

use work.SDDEFINITIONS .all

entity S2_ADDER is

generic C TECHNOLOGY-SCALE : real := 1.0);

port C Xin : in X.TYPE;

T-in : in T.TYPE;

SD-out : out SD.DIGIT);

end S2_ADDER;

The architectural description of the S2 Adder is a behavioral description. Tin is

converted to an integer and incremented, decremented, or un-altered depending on the bit

fields of X-in. The result is then converted to a bit vector, SDout, defined by the data

type SDDIGIT. TECHNOLOGY-SCALE is used as discussed previously. The complete

VHDL description for the S2 Adder is given in Appendix C.

The MO Multiplier multiplies two SD digits and outputs, as its result, U and W

which are in the digit set D, and D, respectively. There are no control signals required

for the multiplier. The inputs and outputs are defined in the entity description.

use work. SDDEFINITIONS. all;

entity MO_4ULT is

generic C TECHNOLOGY-SCALE : real :- 1.0);

port C SDI : in SDDIGIT;

SD_2 : in SDDIGIT;

U.out : out UTYPE;

Wout : out WTYPE);

end MOMULT;

The data types UTYPE and W.TYPE are bit vectors which are defined in the

package SDDEFINITIONS. The architectural description of the multiplier is behavioral.

6-3

The two SD digits are converted to integers and multiplied. The result is then converted

to a U vector and a W value, where the W value is then converted to a W vector through

the function call INTTOSD. The complete VHDL description of the MO Multiplier is

given in Appendix C.

Once the VHDL descriptions of the SD modules were completed, each module was

tested. The tests were designed to validated the correctness of each module before instan-

tiating them in larger models. SLRECODERTB, SIADDERTB, S2_ADDERTB, and

M0_MULTTB test benches were written, analyzed, simulated, and reports generated to

verify correctness. These test benches and their report generators are given in Appendix C.

Simulation results are also presented in Appendix C.

Complete SD Multiplier

A SD number which corresponds to the precision of IEEE double precision requires

the number to consist of 16 digits, 0 to 15. This provides a precision of 16- 15 = 2- 6° .

Therefore, to multiply two SD numbers, 16 multiplier blocks with 16 digit multipliers in

each block are required. This will result in 16 partial products. The partial products

are added in a tree structure with four levels until a single result is obtained. To build

a VHDL model of the multiplier, several sub-components were built. A multiplier block

which multiplies a single digit to a SD number was built. This block consists of 16 MO

Multipliers, 15 SIA Adders, and 15 S2 Adders. Since the S1A Adders are only used for

addition in a multiplier, the ADD-SUB control signals are set to ADD. The result out

of the block is a partial product which is 17 digits long. The entity description of the

multiplier block defines the inputs.

use work.SDDEFINITIONS .all;

entity MULTBLOCK is

generic C TECHNOLOGYSCALE : real := 1.0);

port (DIGITC : in SDDIGIT;

SD_NUIB : in SD-NUMBER;

RESULT : out PARTIALP (0 to 16));

6-4

end NULTBLOCK;

The data type SDNUMBER is defined in SDDEFINITIONS as an array (0 to 15)

of SDDIGIT while PARTIALP is defined as an unbounded array of type SD.DIGIT. The

distinction between the two is made to identify a SD number as a distinct type apart from

any partial product types. The generic parameter is not directly used in the architecture

but is passed down to the lower modules. A structural description of the multiplier block

instantiates all of the modules required individually. The complete VHDL description is

given in Appendix C.

The next sub-component written is ADDERIL. ADDERI is an adder composed of a

single SlADDER and an S2_ADDER. This component was written to reduce the number

of component instantiation statements in the partial adder sub-components. ADDER_1

requires two SDDIGIT inputs, a T in input, and outputs a SDDIGIT and a T.out. The

entity description defines its required signals.

use work. SDDEFINITIONS. all;

entity ADDER_1 is

generic C TECHNOLOGY-SCALE : real := 1.0);

port C SD1 : in SDDIGIT;

SD2 : in SD.DIGIT;

T-in : in TTYPE;

T-out : out TTYPE;

SUMr : out SDDIGIT);

end ADDER_ 1;

The architectural description is structural and instantiates one SlADDER and one

S2_ADDER. An X vector is declared within the architecture and provides the path between

the adders for this signal. TECHNOLOGY-SCALE is passed down to the adder modules.

A complete VHDL description is given in Appendix C.

Four levels of partial product adders were modeled, SL2_ADDER, SLKADDER,

SL4_ADDER, and SLSADDER. Each of these adders requires the same number of

6-5

ADDERI components, 16, but there interface signals are different. SL2.ADDER ac-

cepts partial products from the MULT.BLOCK and sums them. The result is a partial

product which is 18 digits long, 0 to 17. The SL3ADDER then adds two of these results

and outputs a partial product 20 digits long, 0 to 19. SL4ADDER adds two of these

results and outputs a partial product 24 digits long, 0 to 23. Finally, SL5_ADDER adds

the two partial products from SL4.ADDER and outputs the final partial product which is

32 digits long, 0 to 31. The entity descriptions for the partial product adders define there

signals.

use work. SDDEFINITIONS. all;

entity SL2_ADDER is

generic (TECHNOLOGY-SCALE : real := 1.0);

port (PARTIALH : in PARTIALP C 0 to 16);

PARTIALL : in PARTIALP (0 to 16);

P.out : out PARTIALP C 0 to 17));

end SL2_ADDER;

use work.SD.DEFINITIONS .all;

entity SL3_ADDER is

generic C TECHNOLOGY-SCALE : real :- 1.0);

port (PARTIALH : in PARTIALP (0 to 17);

PARTIALL : in PARTIALP C 0 to 17);

P.out : out PARTIAL.? C 0 to 19));

end SL3.ADDER;

use work.SDDEFINITIONS .all;

entity SL4_ADDER is

generic C TECHNOLOGY-SCALE : real := 1.0);

port C PARTIALH : in PARTIALP C 0 to 19);

PARTIALL : in PARTIALP C 0 to 19);

P.out : out PARTIALP C 0 to 23));

6-6

end SL4.ADDER;

use work. SD.DEFINITIONS. all;

entity SLSADDER is

generic C TECHNOLOGY.SCALE : real :a 1.0);

port (PARTIALH : in PARTIALP (0 to 23);

PARTIALL : in PARTIAL.P C 0 to 23);

Pout : out PARTIALP C 0 to 31));

end SLSADDER;

Complete VHDL descriptions for the partial product adders are given in Appendix C.

From these components, a SD multiplier which multiplies the mantissas of two SD

numbers, corresponding to a precision greater than IEEE double precision, can be built.

The mantissa multiplier, SDJMULT, accepts two SD numbers of type SD.NUMBER, and

outputs a result which is of type PARTIAL.P with a range 0 to 31. The entity description

of SD.MULT defines the multipliers signals.

use work.SDDEFINITIONS .all;

entity SD_MULT is

generic (TECHNOLOGY-SCALE : real := 1.0);

port (SDA : in SDNUMBER;

SDB : in SDNUNBER;

SDout : out PARTIALP (0 to 31));

end SD-MULT;

The result, SD.out, is shifted to the right one digit due to the multiply algorithm

discussed in Chapter 4. The architectural description of the multiplier is structural and

instantiates the components MULTBLOCK, SL2_ADDER, SL3_ADDER, SL4.ADDER,

and SL5_ADDER. MULT.BLOCK is instantiated 16 times while SL2.ADDER is instan-

tiated 8 times. SL3_ADDER is instantiated 4 times; and, SL4_ADDER is instantiated

2 times. SL5.ADDER is instantiated only once. The generic parameter is passed down

6-7

through each instantiation. The complete VHDL description of SD.MULT is given in

Appendix C.

Testing of the Signed-Digit Multiplier

Testing of the multiplier consists of writing a test bench which instantiates the mul-

tiplier and mapping test vectors to its inputs. Then, the result is analyzed after the report

is generated. The instantiation of the multiplier is a single instantiation of SDMULT.

However, to generate a set of test vectors becomes complex. This is due to the require-

ments of the digit set of a SD digit. To work around this problem, a test bench package

was developed, TBYPACKAGE. Within the package, two functions are used to easy the

generation of test vectors and result analysis. The function SD.MAKE is passed a real

number and returns a normalized SD number while the function SDTOREAL is passed a

SD number and returns its real number equivalent. Care must be used when calling these

functions. When SDMAKE is called and passed a number which is not in the range of

a normalized SD number, the result returned will not have the same value as that passed

but will be some factor of 16 of the argument. The function SD.TO.REAL assumes that

the most significant digit is weighted with a 1. When being passed the 16 most significant

digits of the multipliers result, this is not true. Therefore, the value returned is a factor

of 16 smaller than the actual result. However, by passing the function P-out(1 to 16), the

value returned is correct. The test bench SD.MULTTB is given in Appendix C.

Once the test bench was analyzed, model generated, and built, the model was sim-

ulated. Various reports were generated from the simulation. The correctness of the test

bench package functions were analyzed first. Once the correctness of the functions verified,

the propagation delay of the multiplier was analyzed. These propagation delays assume

that the inputs have already been converted to SD form and that the mantissa section of

the multiplier requires more time than the addition of the exponents, a reasonable assump-

tion. When using the default TECHNOLOGY-SCALE, indicating 2 micron technology,

the worst case propagation delay is 65 ns. If the technology is changed to 1.25 micron,

the TECHNOLOGY.SCALE factor is change to roughly approximate the speed-up asso-

ciated with the change in technology. Linear scaling gives the approximate speed-up of

6-8

2, implying that TECHNOLOGYSCALE equals 0.5. Using this scaling factor, the worst

case propagation delay is 32 ns. The report generators and the reports are given in Ap-

pendix C. On3 note regarding the report generated is that the VHDL report generator

has a problem reporting negative real numbers. This is a problem with the VHDL report

generator, Intermetrics Version 1.5 running on the Suns.

6-9

VII. Conclusions and Recommendations

Conclusions

The original motivation behind the study into developing a processor to compute

transcendental functions was driven by the requirements of solving the Vector Wave Equa-

tion. Mickey Bailey, [1], expanded the set of transcendental functions to encompass a

greater number of functions than required. These functions all were derived from Cheby-

shev Polynomials. With the development of the division algorithm, together with the

expanded trigonometric, exponential, and natural logarithm functions to give IEEE dou-

ble precision accuracy, an extensive Transcendental Function Processor can be developed.

Chapter 2 and Chapter 3 developed the approximation algorithms and the rational for

their use. The fewest number of terms to achieve an error below a specified value was used

as the determining factor in the selection of the best approximation method. This section

of the thesis covered important information which did not appear in the original effort. The

structure of the approximations algorithms are based on Homers' method of restructuring

a polynomial such that its computational form is suitable for a pipelined processor. The

pre-processing, pipeline processing, and post-processing requirements of a unified processor

were discussed. However, the structure of a unified Transcendental Function Processor did

not evolve. The reasons for this are that the pre-processor requires different operations

performed on the arguments of different functions. Therefore, the pre-processor can be

optimized by knowing the mix of the functions requested. The more complex the mix of

the requests, the more complex the control section of the pre-processor must be. Post-

processing has the same complexity problem; if an complex control section for the post-

processor is designed, the through-put of the processor can remain high. However, if the

control section is simple, the processor will have to have dummy stages inserted into the

post-processing stages to synchronize data for return to memory or further processing. The

pipeline processing section is the best developed section. The pipeline consists of a data

pipeline, an argument pipeline, and a control pipeline. This permits rapid reconfiguration

of the pipeline to compute the approximation functions in any order, without delays in the

arguments into the pipeline.

7-1

Chapter 4 presented an overview on alternate forms of data representation for use

in the processor. The most interesting and advanced form is Signed-Digit representation.

SD representation offers a number of advantages when compared to standard binary rep-

resentation. The greatest advantage is the reduction of carry-barrow propagation delays.

This increases the computation speeds possible from adders and multipliers. However,

the advantages of SD representation do have a cost associated with its use; this is the

penalty of converting IEEE double precision numbers to, and from, SD form. The penalty

of the conversion operation to SD form is minor due to its limited carry propagation. The

assimilation penalty is more sever since there exist the possibility of having a barrow prop-

agate across the entire mantissa. However, in a pipelined processor environment, these

conversions need only occur once.

Chapter 5 expands of the hardware required for numbers represented in SD form.

The basic module were presented as well as their performance estimates obtained from

SPICE models with LAMBDA equal to 1.0 microns. The SIRECODER does not have

any propagation delay since it consists of only routing of the input bits to their proper

output. The S1_ADDERs T output has a propagation delay of 4.9 ns while the X output

requires 6.1 ns. The S2_ADDER requires 4.9 ns to propagate the input to the output. The

MOMULTs propagation delay is 10 ns for the W output and 13.3 is for the U output.

Each of the modules were built in VLSI and presented in Appendix B.

In Chapter 6, the basic modules were describe in VIIDL and each simulated to ensure

their function and propagation times agree with the times obtained from the SPICE simu-

lation. Then, a 16 digit by 16 digit multiplier was constructed and simulated. Simulation

estimates the worst case propagation delay of the SD mantissa multiplier as 65 ns when

using 2.0 micron technology, excluding conversion and assimilation time. This propagation

time drops to 32 ns when the technology is changed to 1.25 micron. The additional time

required for only the conversion of the mantissa is the propagation time of the S2 Adder,

4.9 ns. Assimilation of the mantissa is dependent of the construction of the Assimi!, ion

Unit. The simulation results, as well as the VIII)L descriptions of the hardware, were

)resented and shown in Appendix C. The speed of the SI) hardware is comparablc to a

step in technology size when compared to standard methods of computation.

7-2

Recommendations

The Transcendental Function Processor requires further investigations into the trade-

offs between control complexity and throughput for its pre and post processors. This will

rely heavily of the type and frequency of functions to be computed. However, the dedica-

tion of hardware of any form to the processor is still premature. Further work is required

into the realizable advantages of SD representation. A tiny chip was constructed a part of

this thesis effort and is shown in Appendix B. This chip needs to be fabricated and tested

with results compared to those expected from a VHDL model. If the results show that SD

representation does provide an appreciable speed-up then, a full SD multiplier should be

built and tested. Though this thesis did not consider the size requirement of SD hardware,

this must be studied when considering its use in the Transcend,. tal Function Processor.

7-3

Appendix A. Determination of Chebyshev Constants

The evaluation of the integral

an - f(cos x) cos nxdx

is not simple for most functions, f(x). However, the accuracy of the summed Chebyshev

Polynomials is dependent on the accuracy of these constants. To obtain a resultant ac-

curacy of double precision, the precision of these constants is required to be greater than

double precision. Therefore, for those function in which the integral can be evaluated, the

accuracy of the result can easily be reached. For functions where the integral can not be

evaluated directly, the result must be approximated by using an integral approximation

method such as Simpson's Rule. Using these types of approximation methods requires a

great deal of care. The limiting factor in making these approximations is the precision of

the computer used. If the computer only has the ability to compute up to double precision

accuracy, then, the resultant error will be somewhat greater depending on the distribu-

tion of the truncation errors in the computation. For all of the coefficients used in the

Transcendental Function Processor, the error term of the coefficients is required to be less

than 2- 60 . This is due to the internal precision ability of the processor when numbers are

represented in Signed-Digit form.

Additional problems appear when trying to approximate to the required accuracy

of the coefficients. The shape of the graph of the integrand must be considered. If the

integrand has the shape of a negative parabola, then the approximation must begin with the

outer edges where the magnitude is the smallest and sum towards the center. The opposite

is true if the shape is similar to a positive parabola. Virtually all of the transcendental

functions of interest exhibit one of these shapes. The important point to remember is the

smallest magnitude of the curve must be summed first. Also, when trying to approximate

using a method such as Simpsons Rule, to obtain the required precision, the number of

intervals required to be summed is quite large. However, if the programs are written

carefully and the library routines validated for accuracy, a method which computes the

area under the curves by summing intervals can be used.

A-1

As stated previously, there are ways to solve for the integration. One such method

involves Residue Analysis. As an example of how this analysis works, the coefficients for

f(x) = sin(rx/2) will be solved. Therefore, the equation for the coefficients is

an = - sin (Tcosx) cos nx dx

The limits of integration are changed by recognizing that the integrand is an odd function.

The result is a circular interval of integration.

an -- sin (VCos cos nx dx1J- -

The first step in Residue Analysis is to generate a series in the complex plane to represent

the integrand. Euler's Equation is used to do this conversion.

eiX + e- iX
Cos X =

2

and
e in x + e - i n x

cos nx =
2

If

then

iexdx = dZ

Rearranging
dx - dZ

iz

Therefore, the integral is

1 4s Z1) (Z"+Z- n) dZ
an= - sn Z + +

1 2 si n ((+ Z1)) (znl' zn)dZ

where C is the unit circle centered at the origin transversed in the counter clockwise

direction. To perform simple Residue Analysis, there should only be one unique pole in

the unit radius around zero, which is the case here. Therefore,

an = Resz=o (sin (4(Z+ Z-)) (Zn- 1 + Z-n-1))

A-2

To derive a series from the above equation, the trigonometric series for Sine is used.

x3 x 5 x 7

sinx = x - + T , + .

00 z2k+ 1

k=O (2k + 1)!

Solving in steps,

sin ((Z + Z - 1) - ,(- 1)k((Z + Z
1))

2 k+
1

k=O (2k + 1)!

~ (~z +Z1)) 00 (...l)k(L)2k+t(Z + Z-1)2k+isin !(g + g- 1) 4 2 +)

k=O(2k + 1)!

And,

(Z + Z-1) 2k+l = Z 2k +1 + (2k + 1)Z 2kZ - 1 + (2k)(2k + 1)Z2k-IZ - 2 +

(z Z-1 2k+ 1

or~
(Z + Z-) l= Ek1 ((k + 1)! J))Z 2 j 2 k-I

Therefore,

(4)) (-1)k(.)2k + 2k+1 (2k + 1)!_ Z 2 2 klsin ((Z + Z-1)) = (2k+ 1)! - (j)!(2k+1-j)! -k=0 j=O

The coefficients equal

0 (--1)k()2k+l (2k+1 (2k + 1)! -2k+n-2 + 2-2k-n-2

an (2k + 1)! _ (j)!(2k+ 1- j)!) (z 2 - -+
k=O \ j=0

In Residue Analysis, when looking for the first integration of a series whose pole is at Z

= 0, the integration value is obtained from the coefficient of Z - 1. Therefore, from the

equation above, the value of j which will give a power of -1 to Z must be solved.

2j - 2k + n -2 = -1

and

2j- 2k- n- 2 = -1

Therefore, from the first equation,

n-1
j=k-

2
2

A-3

and from the second equation,

2

Using these values for j and solving,

an = 2 0 (-1)k 2
a =2 () ((k - 2)!(k + -+1

This infinite series is evaluated by summing to a finite number. Since the denominator of

the series is a factorial, the number of terms required to be summed to obtain the needed

precision is small, on the order of 30 terms. To maintain precision, the summation must

occur in reverse order; that is, the sum should be computed from k = 30 down to 0 when

computing a,.

A-4

Appendix B. Signed-Digit CIFPLOTS

B-i

:xe I

ra

35C

491

.TZ
V

a

G No dd_ ND dd-

Figure B.1. CIFPLOT Of SIA Adder.

B-2

Ij Im low[LA IM

ca

-- z3 if

la

E3

13

- ---------
lm

03

to

IF

IT

Figure B.2. CIFPLOT of S2 Adder.

B-3

Figure B.3. CIFPLOT of MO Multiplier.

B-4

1 _1 MY-1It II I! it ji ji lr t 11

fiue1..CPOUfPrpsdSFiyC~p

I POO-5

Appendix C. Signed-Digit VHDL Descriptions

package SDDEFINITIONS is

subtype SDDIGIT is bitvector(4 domnto 0);
type SD.NUMBER is array (0 to 15) of SDDIGIT;
type PARTIALP is array C integer range <>) of SDDIGIT;
subtype XTYPE is bit-vector(1 downto 0);
subtype T-TYPE is bit.vector(4 downto 0);
subtype UTYPE is bit-vector(3 downto 0);
subtype WTYPE is bit-vector(4 downto 0);
type TARRAY is array (integer range <>) of T.TYPE;
type XARRAY is array C integer range <>) of X-TYPE;
type UARRAY is array C integer range <>) of UTYPE;
type WARRAY is array C integer range <>) of W-TYPE;

function UTOSD (U-value : UTYPE) return SDDIGIT;
function UTO-T (U-value : UTYPE) return TTYPE;
function BINTOINT (INVECT : bit-vector) return INTEGER;
function INTTOSD (INTVAL : integer) return SDDIGIT;

end SDDEFINITIONS;

package body SDDEFINITIONS is

function BINTOINT (INJECT : bit-vector) return INTEGER is

variable vect-high, int-val, scale : integer;

begin

int-val 0;
scale 1;

for i in 0 to (INJECT'high - I) loop
if (INVECT(i) - '') then

int-val := int-val + scale;
end if;
scale := scale*2;

end loop;

vect-high := INVECT'high;

if (INVECT(vect-high) = 'I') then
int-val := int-val - scale;

C-1

end if;

return (int-val);

end BINTOINT;

function INTTOSD (INTVAL : integer) return SDDIGIT is

variable int-vect : SDDIGIT;
variable range-ck, temp : integer;

begin

if (INTVAL < 0) then
int-vect(4) := '1';

temp := 16 + INTVAL;

else
int-vect(4) := '0';

temp INTVAL;
end if;

ran& ck 8;

for i in 3 downto 0 loop

if (tlemp >= range.ck) then
int.vect(i) := '1';

temp := temp - range.ck;

else

int-vect(i) '0';

end if;
range-ck := range-ck/2;

end loop;

return (int-vect);

end INTTOSD;

function UTOSD (U-value : UTYPE) return SDDIGIT is

variable SD-value : SDDIGIT;

begin

C-2

SD-.value(O) U-.value(O);

SD-.value(1) :=U-.value(1);

SD-.value(2) U-.value(2);
SD-.value(3) :=U-.value(3);

SD..value(4) :U-.value(3);

return (SD..yalue)

end U-.TO..SD;

function U-TQ...T (U..yalue :U..TYPE)return T-TYPE is

variable T-.value : LTYPE;

begin

f or I in 0 to 3 loop

T..salue(I) :U..value(I);
end loop;

T-.valueC4) :=U..alueC3);

return (T-.value);

end U-.TO-.T;

end SD-.DEFINITIONS;

C- 3

use work .SD-.DEFINITIONS .all;

entity S1..RECODER is

port (DATA-.IN :in bit-.vector C3 dovnto 0)
X..out :out X..TYPE;
T-.out :out T-.TYPE);

end S1..RECODER;

use work. SD-.DEFINITIONS .all;
architecture Structural of SI-RECODER is

begin

T-out(O) <= DATA-INCO);
T-.out(1) <- DAT-IN~i);
T-.out(2) <= DAT-INC2);
T-.out(3) <= DAT-IN(3);
T..out(4) <= DAT-IN(3);
X-.outCO) <= DAT-IN(3);
X..out(1) <= '0';

end Structural;

C-4

use work. SDDEFINITIONS. all;
entity SIADDER is

generic (TECHNOLOGY-SCALE : real :- 1.0);
port (SDI-in : in SDDIGIT;

SD2_in : in SDDIGIT;
ADD-SUB : in bit;
X.out : out XTYPE;
T.out : out TTYPE);

end S1_ADDER;

use work. SDDEFINITIONS. all;
architecture Behavioral of SIADDER is

begin

process

variable SDLval, SD2_val, SUM : integer;
variable X.temp : bit-vector (I downto 0);

begin

wait on SD1-in, SD2_in, ADD-SUB;

SD1.val :- BINTOINT(SDI-in);
SD2_val BINTOINT(SD2_in);

if (ADD-SUB = 10') then
SUM := SD1_val + SD2_val;

else
SUM :u SDi-val + SD2_val + 1;

end if;

if (SUM >= 8) then
SUM := SUM- 16;
X.temp(O) '1';
X.temp(i) : '0';

elsif (SUM <= -8) then
SUM :- SUM + 16;
X.temp(O) := '1';
X.temp(i) :- '1';

else

C-5

X.tmp(O) :- '0';
X..tep(i) := '0';

end if;

X-out <= X.temp after (TECHNOLOGY.SCALE * 6.1 na);
T-out <- INTTO.SD(SUM) after (TECHNOLOGY-SCALE * 4.9 ns);

end process;

end Behavioral;

C-6

use work.SDDEFINITIONS.all;
entity S2_ADDER is

generic (TECHNOLOGY-SCALE : real := 1.0);
port (Xin : in XTYPE;

Tin : in TTYPE;
SD-out : out SDDIGIT);

end S2.ADDER;

use work.SDDEFINITIONS.all;
architecture Behavioral of S2_ADDER is

begin

process

variable TVAL, XVAL, SUM integer;

begin

wait on X-in, T-in;

TVAL BINTOINT(T-in);
XVAL BINTOINT(Xin);
SUM := TVAL + XVAL;
SD-out <= INTTUSD(SUM) after (TECHNOLOGY-SCALE * 4.9 ns);

end process;

end Behavioral;

C-7

use work.SDDEFINITIONS.all;
entity MOMULT is

generic C TECHNOLOGY-SCALE : real :- 1.0);
port (A-DIGIT : in SDDIGIT;

BDIGIT : in SDDIGIT;
WOUT : out WTYPE;

UOUT : out UTYPE);

end MOMULT;

use work.SDDEFINITIONS.all;
architecture Behavioral of MO.NULT is

begin

process

variable A-val, B-val, PROD, U-val : integer;
variable longU : bit-vector (4 downto 0);

begin

wait on A-DIGIT, BDIGIT;

A-val := BINTOINT(A-DIGIT);

B-val BINTOINT(BDIGIT);
PROD := A-val*B-val;
U.val 0;

if (PROD >= 0) then

for i in I to 6 loop
if (PROD >= 8) then

PROD : PROD - 16;
U-val U-val + 1;

end if;
end loop;

else

for i in I to 6 loop

if (PROD <= -8) then
PROD PROD + 16;
U-val :=U-val - 1;

end if;
end loop;

end if;

C-8

longU :- INTTO.SD(U-val);

UOUT(O) <= long.U(O) after (TECHNOLOGY-SCALE * 13.3 ns);
UOUT(I) <- long.U(1) after (TECHNOLOGY-SCALE * 13.3 ns);
UOUT(2) <- longU(2) after (TECHNOLOGY-SCALE * 13.3 ns);
UOUT(3) <= long.U(3) after (TECHNOLOGY-SCALE * 13.3 ns);
WOUT <- INTTO.SD(PROD) after (TECHNOLOGY-SCALE * 9.6 ns);

end process;

end Behavioral;

C-9

use work.SDDEFINITIONS.all;

entity CONVERSION.TB is

end CONVERSIONTB;

use work.SDDEFINITIONS.all;
architecture TESTCO of CONVERSION.TB is

component SIRECODER
port (DATA-IN : in bit-vector (3 downto 0);

X.out : out XTYPE;
T-out : out TTYPE);

end component;

component S2_ADDER
generic (TECHNOLOGY-SCALE : real := 1.0);
port (X-in : in XTYPE;

T-in : in T.TYPE;
SD-out : out SD.DIGIT);

end component;

for all : SlRECODER use entity work.SiECODER(Structural);
for all : S2_ADDER use entity work.S2_ADDER(Behavioral);

signal SLICEO, SLICE1 : bit-vector (3 downto 0);
signal X-1, XO : X.TYPE;
signal TO : TTYPE;
signal SDO, SD1 : SDDIGIT;

begin

SIR SIRECODER
port map (DATA-IN => SLICEO,

X.out => X_1,
T-out => TO);

S2R : SIRECODER
port map (DATA-IN => SLICE1,

Xout => XO,

T-out => SDI);

S2A : S2_ADDER
port map (T-in => TO,

X-in => XO,
SD-out => SDO);

C- 10

SLICE1 <u "0001" after 20 ns, "0010" after 40 ns,

"0100" after 60 no, "0110" after 80 ns,
"1000" after 100 ns, "1100" after 120 n,
"1100" after 140 ns, "1110" after 160 no,
"1111" after 180 ns, "1110" after 220 n,
"1100" after 240 ns, "1010" after 260 nu,
"1000" after 280 ns, "0110" after 300 nu,

"0100" after 320 no, "0010" after 340 n,

"0001" after 360 no, "0000" after 380 ns;

SLICEO 4- "0001" after 200 ns;

end TESTCO;

C-Il

SD Conversion module report"

Vhdl Simulation Report

Report Name: SD Conversion module report"
Kernel Library Name: <<RPETERSO>>TESTCO

Kernel Creation Date: MAR-31-1989
Kernel Creation Time: 15:37:49

Run Identifer: 1
Run Date: MAR-31-1989

Run Time: 15:37:49

Report Control Language File: conversionreport.rcl
Report Output File : conversion-report.rpt

Max Time: 9223372036854775807
Max Delta: 2147483646

Report Control Language :

Simulation-report CONVERSION-report is
begin

Report-name is "SD Conversion module report";

Page-width is 80;

Page-length is 50;

Signal-format is horizontal;

Sample-signals by-event in ns;

Select-signal : SLICEO;

Seleet-signal : SLICEI:
Select-signal : SDO;
Select-signal : SD1;

end CONVERSION-report;

Report Format Information

Time is in NS relative to the start of simulation

Time period for report is from 0 NS to End of Simulation

Signal values are reported by event (' ' indicates no event)

C-12

MAR-31-1989 15:41:14 VHDL Report Generator PAGE 2
SD Conversion module report"

TIME ----------------------- SIGNAL NAMES ------------------------
SLICEO SLICEI SDO SDI

(NS) (3 DOWNTO 0) (3 DOWNTO 0) (4 DOWNTO 0) (4 DOWNTO 0)

0 I "0000" "0000" "00000" "00000"
20 I"0001"
+1 "00001"
40 1"0010"

41 1"00010"
60 "0100"
+1 I"00100"
80 i"0110"
+1 I "00110"

100 1 "1000"
+1 1"11000"

104* "00001"

120 1"1010"

+1 I "11010"
140 " 1100"
+1 "I1100"
160 1"1110"
+1 "11110"
180 "1111"
+1 "11111"

200 1"0001"

204* 1"00010"

220 1"1110"

+1 1"11110"
240 I "1100"
+1 "11100"
260 1"1010"

+1 1"11010"
280 t "1000"

+1 1"11000"
300 1"0110"

+1 1"00110"
304* 1"00001"

320 I"0100"
+1 1"00100"
340 I"0010"
+1 1"00010"

C-13

use work.6DDEFINITIONS.all;

entity ADDERTB is
end ADDERTB;

use work.SDDEFIITIONS.all;
architecture TEST-ADDER of ADDERTB is

component StADDER
generic C TECHNOLOGY-SCALE : real : 1.0);
port C SDI-in : in SDDIGIT;

SD2.in : in SDDIGIT;
ADD-SUB : in bit;
X.out : out XTYPE;
T-out : out TTYPE);

end component;

component S2_ADDER
generic (TECHNOLOGY-SCALE : real := 1.0);

port C X.in : in XTYPE;
T-in : in TTYPE;
SD-out : out SD.DIGIT);

end component;

for all : SI-ADDER use entity work.Si.ADDER(Behavioral);
for all : S2-ADDER use entity work.S2_ADDER(Behavioral);

signal SDO, SDI, SD2. SDA, SDB, SDO0, SDO1, SD02 SDDIGIT;
signal XO, Xl : XTYPE;
signal Ti : TTYPE;
signal ADDCNTL bit;

begin

SIA SIADDER
port map C SDI-in => SDI,

SD2_in => SDA,
ADD-SUB => ADDCNTL,

X.out > O,

T-out -) TI);

SIB SI-ADDER

port map (SDI-in => SD2,

SD2_in z> SDB,

ADD-SUB w> ADDCNTL,

C-14

X.out *> X1,
T-out =' SD02);

S2A : S2_ADDER
port map C T.in => SDO,

X.in -> XO.
SD-out => SDDO);

S2B : S2_ADDER
port map C T-in f> TI,

X-in => Xl,
SD.out => SDOI);

SDO <= "00000";
ADDCNTL <= '0';

SDI <= "00100" after 25 ns, "01000" after 50 ns,
"00000" after 75 no, "11100" after 100 ns,
"11000" after 125 ns, "10110" after 150 ns,
"01010" after 175 ns, "00000" after 200 ns,
"00100" after 225 ns, "01000" after 250 no,
"00000" after 275 ns, "11100" after 300 ns,
"11000" after 325 ns, "10110" after 350 no,
"01010" after 375 ns;

SDA <- "00011", "11101" after 200 ns;

SD2 <= SDA;
SDB <= SD1;

end TEST.ADDER;

C-15

MAR-31-1989 15:39:25 VHDL Report Generator PAGE 1
SD Adder module report"

Vhdl Simulation Report

Report Name: SD Adder module report"
Kernel Library Name: <<RPETERSO>>TESTADDER

Kernel Creation Date: MAR-31-1989
Kernel Creation Time: 15:38:42

Run Identifer: I
Run Date: MAR-31-1989

Run Time: 15:38:42

Report Control Language File: adder.report.rcl
Report Output File : adder.report.rpt

Max Time: 9223372036854775807
Max Delta: 2147483646

Report Control Language :

Simulation-report ADDER-report is
begin

Report-name is "SD Adder module report";
Page-.idth is 80;
Page-length is 50;
Signal-format is vertical;
Sample-signals by-event in ns;
Select-signal : SDI;
Select-signal : SD2;
Select-signal : SDA;
Select-signal : SDB;
Select-signal : SDOO;
Select-signal : SDO1;
Select-signal : SD02;

end ADDER-report;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' indicates no event)

C-16

MAR-31-1989 15:39:25 VHDL Report Generator PAGE 2

SD Adder module report"

TIME ----------------------- SIGNAL NAMES---------------------

(NS) S S S S S S S
D D D D D D D
1 2 A B 0 0 0
C (C (0 1 2
4 4 4 4 (C (

4 4 4
D D D D
0 0 0 0 D D D
W W W 0 0 0
N N N N w w H
T T T T N N N
0 0 0 0 T T T

0 0 0
0 0 0 0
)))) 0 0 0

I)))

0 I "00000" "00000" "00000" "00000" "00000" "00000" "00000"

+1 I"00011"
+2 I"00011"
4* 1"00011"
9* 1"00011"
25 I "00100"
+1 I"00100"
29* I"00111"
34* 1"00111"

50 I "01000"

+1 I"01000"
54* 1"11011"
59* "11111"

61 I"00001" "11100"

75 I "00000"
+1 I"00000"

79* 1"00011"

84* 1"00100"
86 I"00000" "00011"

100 111100"
+1 1"11100"

104* "11111"
109* "11111"

C-17

MAR-31-1989 15:39:25 VHDL Report Generator PAGE 3

SD Adder module report"

TIME - --------------------SIGNAL NAMES------------------------

(NS) S S S S S S S

D D D D D D D

1 2 A B 0 0 0
(C 0 C 1 2
4 4 4 4 (((

4 4 4
D D D D
0 0 0 0 D D D
W W W 0 0 0
N N N N H W W

T T T T N N N
0 0 0 0 T T T

0 0 0
0 0 0 0

)))) 0 0 0
I)))

125 I "11000"
+1 1"11000"

129* "11011"
134* "11011"

150 I " 10110"

+1 o"10110"
154* "11001"
159* "11001"

175 I "01010"
+1 I"01010"

179* "11101"

184* "11101"
186 I"00001" "11110"

200 I "00000" "11101"
+1 "11101" "00000"
211 I"00000" "11101" II

225 I "00100"
+1 I"00100"

229* I"00001"
234* 1"00001"

250 I "01000"

C-18

MAR-31-1989 15:39:25 VHDL Report Generator PAGE 4

SD Adder module report"

TIME --------------------------- SIGNAL NAMES------------------------

(NS) S S S S S S S

D D D D D D D

1 2 A B 0 0 0

((C C 0 1 2

4 4 4 4 C C C
4 4 4

D D D D

0 0 0 0 D D D

S W W 0 0 0

N N N N W W W

T T T T N N N

0 0 0 0 T T T

0 0 0 0
0 0 0

)))) 0 0 0

I)))

+1 "01000"

254* "00101"

259* I"00101"
275 "00000"
41 I"00000"

279* I"11101"
284* I "11101"

300 "11100"
+1 I "11100"

304* 1 "11001"

309*
" 11001"

325 "11000"
+1 1"11000"

329* I"00101"
334*

1"00101"

336
"111111" "00100"

350 "10110"

+1 o"10110"

354*
1"00011"

359*
1"00010"

C-19

use work. SDDEFINITIONS. all;

entity MOTB is

end KOTB;

use work. SDDEFINITIONS. all;
architecture TEST-NO of MOTB is

component NOMULT
generic (TECHNOLOGY-SCALE real :- 1.0);
port (A-DIGIT : in SD.DIGIT;

BDIGIT : in SD.DIGIT;
WOUT : out WTYPE;
UOUT : out U.TYPE);

end component;

for all : MO_4ULT use entity work.MOYULT(Behavioral);

signal A-DIGIT, BDIGIT : SD.DIGIT;
signal Wout : WTYPE;
signal U-out : UTYPE;

begin

MOO : MOMULT
port map (A-DIGIT => A-DIGIT,

BDIGIT => BDIGIT,

WOUT => Wout,

UOUT => Uout);

A-DIGIT <= "01010" after 50 ns, "10110" after 100 ns,
"00000" after 150 ns, "01010" after 200 ns,
"10110" after 250 na, "00000" after 300 ns,
"01010" after 350 no, "10110" after 400 ns,
"00000" after 450 no, "01010" after 500 ns,

"10110" after 550 no;

BDIGIT <= "00001" after 150 no, "01010" after 300 ns,
"10110" after 450 ns;

end TEST-NO;

C-20

APR-13-1989 12:26:02 VHDL Report Generator PAGE 1

MO Multiplier module report"

Vhdl Simulation Report

Report Name: NO Multiplier module report"
Kernel Library Name: <<PETERSON>>TESTMO

Kernel Creation Date: APR-12-1989
Kernel Creation Time: 10:48:07

Run Identifer: 1
Run Date: APR-12-1989
Run Time: 10:48:07

Report Control Language File: mOreport.rcl
Report Output File : mO-report.rpt

Max Time: 9223372036854775807
Max Delta: 2147483646

Report Control Language :

Simulation-report MOreport is
begin

Report-name is "NO Multiplier module report";
Page..idth is 80;
Page-length is 50;
Signal-format is vertical;
Sample-signals by-event in ns;
Select-signal : A-DIGIT;
Select-signal : BDIGIT;
Select.signal : U.out;
Select-signal : W.out;

end NO-report;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

C-21

APR-13-1989 12:26:02 VHDL Report Generator PAGE 2
MO Multiplier module report"

TIME - ----------------------SIGNAL NAMES---------------------

(NS) A B U w

D D 0 0
I I U U
G G T T
I I ((

I T T 3 4
C C

4 4 D D
0 0

D D W W
0 0 N N

W W T T

N N 0 0
T T

0 0 0 0
I))

0 0
I))

0 1"00000" "00000" "0000" "00000"

50 I"01010"
100 o"10110"
150 I"00000" "00001"

200 "01010"
209* 1"11010"
213* "0001"

250 o"10110"
259* 1"00110"
263* "1111"

300 I"00000" "01010"
309* "00000"
313* "0000"

350 1"01010"
359* j"00100"

363* "0110"

400 "10110"
409* 1"11100"
413* "1010"

C-22

APR-13-1989 12:26:02 VHDL Report Generator PAGE 3

MO Multiplier module report"

TIME ----------------------- SIGNAL NAMES,---------------------

(NS) A B U w

D D 0 0

I I U U
G G T T
I I C C
T T 3 4

I(C

4 4 D D
0 0

D D W W
0 0 N N
W W T T
N N 0 0
T T
0 0 0 0

I))

0 0
I))

450 I"00000" "10110"
459* 1"00000"
463* 100001

500 I"01010"
509* 1"11100"
513* "1010"

550 I"10110"
559* 1"00100"
563* 1"0110"

C-23

use work.SDDEFINITIONS.all;

entity MULTBLOCK is

generic (TECHNOLOGY-SCALE : real :- 1.0);
port (DIGITC : in SDDIGIT;

SDNUMB : in SDNUMBER;
RESULT : out PARTIALP (0 to 16));

end MULTBLOCK;

use work.SDDEFINITIONS.all;
architecture Structural of MULTBLOCK is

component MOMULT
generic (TECHNOLOGY-SCALE : real :- 1.0);
port C A-DIGIT : in SDDIGIT;

BDIGIT : in SDDIGIT;
WOUT : out WTYPE;

UOUT : out UTYPE);
end component;

component SIADDER
generic (TECHNOLOGY-SCALE : real := 1.0);
port C SDlin : in SDDIGIT;

SD2_in : in SDDIGIT;
ADD-SUB : in bit;
X.out : out XTYPE;

T-out : out TTYPE);
end component;

component S2_ADDER

generic C TECHNOLOGY-SCALE : real := 1.0);
port (X.in : in XTYPE;

T-in : in TTYPE;
SD-out : out SDDIGIT);

end component;

for all : MOMULT use entity work.MOMULT(Behavioral);
for all : SIADDER use entity work.SlADDER(Behavioral);
for all : S2_ADDER use entity work.S2_ADDER(Behavioral);

signal WARR : WARRAY (0 to 15);
signal UARR : UARRAY (0 to 15);

C-24

signal UDIG : PARTIALP(0 to 15);
signal XARR : XARRAY C 0 to 14);
signal TARR T_.ARRAY (0 to 14);
signal ADDCNTL : bit;

begin

MOO MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT -> DIGITC,

BDIGIT => SDNUMB(O),
WOUT -> W.AiU(O),
U.OUT -> UARR(O));

MOl MOMULT
generic map (TECHNOLOGY-SCALE z> TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SDNUMB(1),
WOUT => WARR(1),
UOUT => UARR1));

M02 MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SD-NUMB(2),
WOUT => W.ARR(2),
UOUT => U.ARR(2));

M03 MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SDNUMB(3),

WOUT -> WARR(3),
UOUT => UARR(3));

M04 MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC.

B.DIGIT > SDNUKB(4),
WOUT *> WARR(4),
U.OUT a> UARR(4));

MOS MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A.DIGIT => DIGITC,

C-25

BDIGIT -> SDNUMBCS),
WOUT u> W.ARR(S),
UOUT -> UARR(S));

M06 MOMULT
generic map (TECHNOLOGY.SCALE a> TECHNOLOGY-SCALE)
port map (A.DIGIT -> DIGITC,

BDIGIT => SDNUMB(6),
W.OUT -> W.ARR(6),
UOUT => U.ARR(6));

M07 MOMULT
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SDNUIB(7),
WOUT => WARR(7),
UOUT -> UARR(7));

M08 MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT -> SDNUMB(8),
WOUT => WARR(8),

UOUT -> U_ARR(8));

M09 :MOMULT
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SD.NUMB(9),

WOUT => WARR(9),

UOUT => UARR(9));

1I40 MOMULT

generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT => SDNUMB(IO),

WOUT => WARR IO),
UOUT => UARR(I0));

M141 MOMULT
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (A-DIGIT => DIGITC,

BDIGIT -> SDNUNB(11),

WOUT => WARR(11),
UOUT => UARR(1l));

C-26

M12 MO-.MULT
generic map (TECHNOLOGY-.SCALE -> TECHNOLOGY-.SCALE)
port map (A-.DIGIT => DIGIT.C,

B-DIGIT => SD-.NUB(12),
W..OUT -. ARR(12).
U..OUT -. ARR(12));

M13 MO-(ULT
generic map (TECHNOLOGY-.SCALE => TECHNOLOGY-.SCALE)

port map (A-.DIGIT => DIGIT-.C,
B..DIGIT -> SD-NUMBC13),
W..OUT => W-.ARR(13),
U..OUT rn> U-.ARR(13));

M14 MO-.MULT

generic map (TECHNOLOGY-.SCALE -> TECHNOLOGY-.SCALE)
port map (A-DIGIT => DIGIT-C,

B-.DIGIT -> SD-.NUMB(14),

H..OUT => W-.ARR(14),
TL.OUT U .-ARR(14));

MIS NMOULT
generic map (TECHNOLOGY-.SCALE => TECHNOLOGY-SCALE)
port map (A-.DIGIT m>DIGIT-.C,

B-.DIGIT ->SD-.NUMB(15),

W..OUT -IARR(15),

U..OUT >U-.ARR(1S));

UDIG(O) <= U-.TO..T(U-.ARR(O));
UDIG(i) <= U-.TO..T(U-.ARR(i));
UDIG(2) <= U-.TOTC U-.ARR(2));

UDIG(4) <= U-.TO-.T(U-.ARR(4));
UDIG(4) <= U..TO-.T(U-.ARR(5));
UDIG(6) <- U-.TO-.T(U-.ARR(5));

UDIG(7) <= U_.TO-.T(TLARR(6));
UDIG(8) <= U-.TO-.T(U_.ARRC8));
UDIG(9) <- U-TO..T(U-.ARRC9));
UDIG(1O) <= UTO.TC U-.ARR(1));
UDIG(11) <= U-.TD..T(U-ARR(ii));

UDIG(12) <= U-.TO-.T(U-.ARR(12));
UDIG(13) <- U..TO-.T(U-.ARR(13));
UDIG(14) <- U-.TO-.T(U-.ARR(14));
UDIGCIS) <= U-.TO-T(U-ARR(16));

C-27

S10 SIADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SDlin -> UDIG(1),

SD2_in => WARR(O),
ADD-SUB a> ADDCNTL,
X.out -> XARR(O),
T-out => TARR(O));

S11 SLADDER
generic map (TECHNOLOGY-SCALE u> TECHNOLOGY-SCALE)
port map (SDI-in -> UDIG(2),

SD2_in => W.ARR(1),
ADD-SUB => ADDCNTL,
X-out => XARR(1),

T-out > T.ARR(1));

S12 SIADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SDI-in => UDIG(3),

SD2_in => WARR(2),
ADD.SUB => ADD.CNTL,
Xout => X-ARR(2),
T-out =>TARR(2));

S13 SIADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1-in => UDIG(4),

SD2_in => W~ARR(3),
ADD-SUB => ADDCNTL,
X-out => XARR(3,

T-out a> TARR(3));

S14 SlADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI-in => UDIG(5),

SD2_in => WARR(4),
ADD-SUB => ADDCNTL,

X.out -> XARR(4),
T-out => TARR(4));

SIS SIADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SDI-in -> UDIG(6),

SD2_in => WARR(5),

C-28

ADD-SUB => ADDCNTL,
Xout -> X.ARR(5),
T-out => T.ARR(5));

S16 SlADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SDI-in => UDIG(7),

SD2_in => W.ARR(6),
ADD-SUB => ADDCNTL,

X.out => X-dIR(6),

T-out => TARR(6));

S17 SIADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI-in => UDIG(8),

SD2_in => WARR(7),
ADD-SUB => ADDCNTL,
X.out => XARR(7),

TLout => TARR(7));

S18 SIADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1-in => UDIG(9),

SD2_in => WARR(8),

ADD-SUB => ADDCNTL,
X.out => XARR(8),

TLout => TARR(8));

S19 SIADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDlin => UDIG(IO),

SD2_in => WARR(9),
ADD-SUB => ADDCNTL,
X.out => XARR(9),

TLout => TARR(9));

SIA StADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1lin => UDIG(11),

SD2_in => WARR(IO),

ADD-SUB => ADDCNTL,
X-out => XARR(IO),

TLout => TARR(1O));

SIB SIADDER

C-29

generic map (TECHNOLOGYSCALE => TECHNOLOGY-SCALE)
port map (SD1-in => UDIG(12),

SD2_in => WARR(11),

ADD-SUB => ADD.CNTL,

X-out => XARR(i1),
T.out => TARR(i1));

SIC SIADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI-in => UDIG(13),

SD2_in => WARR(12),
ADDSUB a> ADD.CNTL,
X.out > X.ARR(12),

T-out => TARR(12));

SID SlADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDIin => UDIG(14),

SD2_in => WAR(13),
ADD-SUB => ADD-CNTL,

X.out => XARR(13),
T-out => TAPR(13));

SIE SIADDER
genezic map (TECHNOLOGY-SCALE => TECHNOLOGY.SCALE)
port map (SDI-in => UDIG(15),

SD2_in => WARR(14),

ADD-SUB => ADD.CNTL,

X.out => XARR(14),

T-out => TARR(14));

S20 S2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (X-in => XARR(O),

T-in => UDIG(O),
SD-out => RESULT(O));

S21 S2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (X-in => XARR(),

T-in => TAPR(O),

SD-out => RESULT(i));

S22 S2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)

C-30

port map (X-in => XARR(2),
T-in => TARR(1),

SD-out => RESULT(2));

S23 S2_ADDER

generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (X.in => XARR(3),

T-in -> TARR(2),
SD-out => RESULT(3));

S24 S2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (X-in -> XARR(4),

T-in => TARR(3),

SD-out => RESULT(4));

S25 S2_ADDER

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (X-in => XARR(5),

T-in => TARR(4),
SD-out => RESULT(S));

S26 S2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (X-in => XARR(6),

T-in => TARR(5),

SD-out => RESULT(6));

S27 S2_ADDER

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (X-in => XARR(7),

T-in => TARR(6),

SD-out => RESULT(7));

S28 S2_ADDER

generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (X-in => XARR(8),

T-in => TARR(7),

SD-out => RESULT(8));

S29 S2_ADDER

generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (Xin => XARR(9),

T-in => TARR(8) 0

SD-out => RESULT(9));

C-31

S2A S2_ADDER
generic map (TECHNOLOGYSCALE => TECHNOLOGY-SCALE)
port map (X-in => X.ARR(IO),

T-in a> T-ARR(9),
SD.out => RESULT(1O));

S2B S2-ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (X.in => X.ARR(II),

T.in -> TARR(IO),
SD-out a> RESULT(11));

S2C S2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (X-in => XARR(12),

T-in => TARR(11),
SD-out => RESULT(12));

S2D S2_ADDER
generic map (TECHNOLOGY-SCALE w> TECHNOLOGY-SCALE)
port map (X-in => XARR(13),

T-in => T.ARR(12),

SD-out => RESULT(13));

S2E S2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGYSCALE)
port map (X-in a> X.ARR(14),

T-in -> TARR(13),
SD.out => RESULT(14));

RESULT(15) <= T-ARR(14);
RESULT(16) <= W-.ARR(iS);

end Structural;

C-32

I

use work.SDDEFINITIONS.all;
entity ADDERi is

generic (TECHNOLOGY-SCALE : real :- 1.0);
port (SDI : in SDDIGIT;

SD2 : in SDDIGIT;
T.in : in TTYPE;

T-out : out TTYPE;

SUMr : out SDDIGIT);

end ADDER-i;

use work.SDDEFINITIONS.all;

architecture Structural of ADDER-1 is

component SIADDER
generic C TECHNOLOGY-SCALE : real := 1.0);

port C SDI-in : in SDDIGIT;
SD2_in : in SDDIGIT;

ADD-SUB : in bit;

X.out : out XTYPE;
T-out : out TTYPE);

end component;

component S2_ADDER
generic C TECHNOLOGYSCALE : real :- 1.0);
port (Xin : in XTYPE;

T-in : in TTYPE;
SD-out : out SDDIGIT);

end component;

for all : SIADDER use entity work.Si-DDER(Behavioral);
for all : S2_ADDER use entity work.S2_ADDER(Behavioral);

signal XDIG : XTYPE;
signal ADD-SIG : bit;

begin

St : SIADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SD1in => SDI,

SD2_in => SD2,

ADD-SUB => ADD-SIG,
X.out => XDIG,

C-33

T-out -. out)

S2 :S2-.ADDER

generic map (TECHNOLOGY-.SCALE ->TECHNOLOGY-.SCALE)
port map (X..in ->XDIG,

T-in - in,
SD.out ->SUMr)

end Structural;

C-34

use work.SDDEFINITIONS.all;

entity SL2_ADDER is

generic (TECHNOLOGYSCALE : real := 1.0);
port (PARTIALH : in PARTIALP (0 to 16);

PARTIALL : in PARTIALP (0 to 16);
P.out : out PARTIALP (0 to 17));

end SL2_ADDER;

use work.SDDEFINITIONS.all;
architecture Structural of SL2_ADDER is

component ADDERI
generic (TECHNOLOGY-SCALE : real 1.0);
port (SD1 : in SDDIGIT;

SD2 : in SDDIGIT;

T-in : in TTYPE;
T-out : out TTYPE;
SUMr : out SDDIGIT);

end component;

for all : ADDER_1 use entity work.ADDER-1(Structural);

signal TARR : TARRAY (0 to 16);

begin

TARR(O) <= PARTIALH(O);

ADDO : ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(I),

SD2 => PARTIALL(0),
T-in => TARR(0),
T-out => TARR(I),
SUMr => P.out(0));

ADDI ADDERm
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(2),

SD2 => PARTIALL(I),
T-in => TARR(1),
T-out => TARR(2),
SUMr => P.out(1));

C-35

ADD2 ADDER_1
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(3),

SD2 => PARTIALL(2),
T-in -> TARR(2),
T-out => TARR(3),
SUMr => P-out(2));

ADD3 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(4),

SD2 => PARTIALL(3),
T-in => TARR(3),
T-out => TARR(4),
SUMr => P.out(3));

ADD4 ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 -> PARTIALH(5),

SD2 => PARTIALL(4),
T-in => TARR(4),
T-out => TARR(5),
SUMr => P.out(4));

ADD5 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(6),

SD2 => PARTIALL(5),
T-in => TARR(5)
Tout => TARR(6),
SUMr => P.out(5));

ADD6 ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(7),

SD2 => PARTIALL(6),
T-in => TARR(6),
T.out -> TARR(7),
SUMr => P-out(6));

ADD7 ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(8),

SD2 => PARTIALL(7),

C-36

T-in => TARR(7),
T-out => TARR(8),
SUMr => P-out(7));

ADD8 ADDERI
generic map (TECHNOLOGY-SCALE > TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(9),

SD2 => PARTIALL(8),
T-in => TARR(8),
T-out => TARR(9),
SUMr => P-out(8));

ADD9 ADDER_1
generic map (TECHNOLOGY-SCALE-> TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(10),

SD2 => PARTIALL(9),
T-in => TARR(9),
T-out => TARFR(10),
SUMr -> P.out(9));

ADDA ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(11),

SD2 -> PARTIALL(10),
T-in => TARR(10),
T-out => TARR(11),
SUMr => P.out(10));

ADDB ADDER-.1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(12),

SD2 => PARTIALL(11),
T-in => TARR(11),
T-out => TARR(12)i
SUMr => P-out(11));

ADDC ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(13),

SD2 => PARTIAL-L(12),
T.in => TARR(12),
T-out => TARR(13),
SUMr => P-out(12));

ADDD ADDER_1

C-37

generic map (TECHNOLOGY.SCALE -> TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(14),

SD2 => PARTIALL(13),
T-in => TARR(13),
T-out => TARR(14),
SUMr => Pout(13));

ADDE ADDERI
generic map (TECHNOLOGY_SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIAL.H(15),

SD2 => PARTIAL.L(14),
T-in => TARR(14),
T.out => TARR(15),
SUMr => Pout(14));

ADDF ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(16),

SD2 => PARTIALL(15),
T-in => TARR(15)

T-out => TARR(16),
SUMr => P-out(15));

P-out(16) <= T.arr(16);
P-out(17) <= PARTIALL(16);

end Structural;

C-38

use work.SDDEFINITIONSall;

entity SL3_ADDER is

generic (TECHNOLOGYSCALE : real := 1.0);
port (PARTIALH : in PARTIALP C 0 to 17);

PARTIALL : in PARTIALP C 0 to 17);
P.out : out PARTIALP (0 to 19));

end SL3_ADDER;

use work.SDDEFINITIONS.all;
architecture Structural of SL3_ADDER is

component ADDERI
ganeric (TECHNOLOGY-SCALE : real 1.0);
port (SD1 : in SDDIGIT;

SD2 : in SDDIGIT;
T_in : in TTYPE;

TLout :out TTYPE;
SUMr : out SDDIGIT);

end component;

for all : ADDERI use entity work.ADDER-l(Structural);

signal TARR : TARRAY (0 to 16);

begin

P-out(O) <= PARTIALH(O);

TARR(O) <= PARTIALH(1);

ADDO ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(2),

SD2 => PARTIALL(0),
T.in => TARR(0),
TLout => TARR(I),
SUMr => P.out(1));

ADD1 ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map C SD1 => PARTIALH(3),

SD2 => PARTIAL.L(I),
T-in => TARR(I),

C-39

T-out => TARR(2),
SUMr => P.out(2));

ADD2 ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(4),

SD2 => PARTIALL(2),
T-in => TARR(2).
T-out => TARR(3),
SUMr => P-out(3));

ADD3 ADDER_1

generic map (TECHNOLOGY.SCALE > TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(5),

SD2 => PARTIALL(3),

T-in => TARR(3).
T-out => TARR(4),
SUMr => Pout(4));

ADD4 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(6),

SD2 => PARTIALL(4),
T-in => TARR(4),
T-out => TARR(5),
SUMr => P-out(5));

ADD5 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(7),

SD2 => PARTIALL(5
T-in => TARR(5),
T-out => TARR(6),
SUMr => P.out(6));

ADD6 ADDERI

generic map (TECHNOLOGYSCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(8)

SD2 => PARTIALL(6),
T-in => TARR(6),
TLout => TARR(7),
SUMr => P-out(7));

ADD7 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)

C-40

port map (SD1 => PARTIALH(9),
SD2 => PARTIAL.L(7),
T.in => TARR(7),
T-out => TARR(8),
SUMr => P.out(8));

ADD8 ADDERI
generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(10),

SD2 => PARTIALL(8),
T-in => TARR(8),
T.out => TARR(9),
SUMr -> P-out(9));

ADD9 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(11)

SD2 => PARTIALL(9),
T-in => TARR(9),
T.out => TARR(10),
SUMr => P.out(10));

ADDA ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(12),

SD2 => PARTIALL(10),
T-in => TARR(10),
T-out => TARR(11),
SUMr => P.out(11));

ADDB ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(13),

SD2 => PARTIAL.L(11),
T-in => TARR(11),
T-out => TARR(12),
SUMr => P-out(12));

ADDC ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 -> PARTIALH(14),

SD2 => PARTIAL_L(12),
T-in => TARR(12),
TLout => TARR(13),
SUMr => Pout(13));

C-41

ADDD ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)

port map (SD1 -> PARTIAL.H(15),
SD2 => PARTIALL(13),

Tin > TARR(13),
T-out => TARR(14),
SUMr => P-out(14));

ADDE ADDERI
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)

port map (SD1 => PARTIALH(16),

SD2 => PARTIALL(14),
T-in => TARR(14),

T-out => TARR(15),
SUMr => P-out(15));

ADDF ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)

port map (SDI => PARTIAL_H(17),

SD2 => PARTIAL_L(15),

T-in => TARR(15),
T-out => TARR(16),
SUMr => P-out(16));

P-out(17) <= TARR(16);

P.out(18) <= PARTIALL(16);

P-out(19) <= PARTIALL(17);

end Structural;

C-42

use work.SDDEFINITIONS.all;

entity SL4_ADDER is

generic (TECHNOLOGY-SCALE : real :- 1.0);
port (PARTIALH : in PARTIALP C 0 to 19);

PARTIALL : in PARTIALP C 0 to 19);
P.out : out PARTIALP (0 to 23));

end SL4_ADDER;

use work.SDDEFINITIONS.all;

architecture Structural of SL4_ADDER is

component ADDERI
generic (TECHNOLOGY-SCALE : real 1.0);
port (SDI : in SDDIGIT;

SD2 : in SDDIGIT;

T-in : in TTYPE;

T-out : out TTYPE;
SUMr : out SDDIGIT);

end component;

for all : ADDERI use entity work.ADDER-1(Structural);

signal TARR : TARRAY (0 to 16);

begin

Pout(O) <= PARTIALH(O);
P-out(1) <= PARTIALH(1);

P-out(2) <= PARTIALH(2);

TARR(O) <= PARTIALH(3);

ADDO ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(4),

SD2 => PARTIALL(0),
T-in => TARR(0),
TLout => TARR(1),

SUMr => P-out(3));

ADDI ADDER_!

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(5),

C-43

SD2 => PARTIALL(1),
T.in => TARR(I),
T.out => TARR(2),
SUMr => P-out(4));

ADD2 ADDERI
generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIAL.H(6),

SD2 => PARTIAL.L(2),
Tin => TARR(2),
T-out => TARR(3),
SUMr => Pout(5));

ADD3 ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(7),

SD2 => PARTIALL(3)
T-in => TARR(3),
T-out => TARR(4),
SUMr => P-out(6));

ADD4 ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(8),

SD2 => PARTIALL(4),
T-in => TARR(4),
T-out => TARR(5),
SUMr => P.out(7));

ADD5 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIAL-H(9),

SD2 => PARTIALL(5),
TLin => TARR(S),
TLout => TARR(6),
SUMr => P-out(8));

ADD6 ADDERI

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIAL.H(10),

SD2 => PARTIALL(6),
TLin => TARR(6),
T-out => T_ARR(7),
SUMr -> P-out(9));

C-44

ADD7 ADDER-1

generic map (TECHNOLOGY-SCALE w> TECHNOLOGY-SCALE)
port map (SDI -> PARTIALH(11),

SD2 => PARTIALL(7).
T-in => TARR(7),
T-out => TARR(8),
SUMr -> Pout(10));

ADD8 ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(12),

SD2 => PARTIALL(8),
T-in -> TARR(8),
T-out => TARR(9),
SUMr => P-out(11));

ADD9 ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(13),

SD2 => PARTIALL(9),
T-in -> TARR(9),
T-out => TARR(10),
SUMr => P.out(12));

ADDA ADDER_1
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SD1 -> PARTIALH(14),

SD2 => PARTIALL(10),
T-in => TARR(10),
T-out => TARR(11),
SUMr => P.out(13));

ADDB ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(15),

SD2 => PARTIALL(11),
T-in => TARR(11)
T-out => TARR(12),
SUMr => Pout(14));

ADDC ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(16),

SD2 => PARTIAL.L(12),
T-in => TARR(12),

C-45

Tout => TARR(13),
SUMr = P.out(15));

ADDD ADDERI
generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (SDI > PARTIAL.H(17),

SD2 => PARTIALL(13),
T-in => TARR(13),
T-out => TARR(14),
SUMr => P-out(16));

ADDE ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 -> PARTIALH(18),

SD2 => PARTIALL(14),
T-in => TARR(14),
T.out => TARR(15),
SUMr => P-out(17));

ADDF ADDERI
generic map (TECHNOLOGY-SCALE > TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(19),

SD2 => PARTIALL(15),
T-in => TARR(15),
T-out => TARR(16),
SUMr => Pout(18));

Pout(19) <= TARR(16);
P-out(20) <= PARTIAL_L(16);
P-out(21) <= PARTIALL(17);
P-out(22) <= PARTIALL(18);
P.out(23) <= PARTIALL(19);

end Structural;

C-46

use work. SD-.DEFINITIDNS. all;

entity SL5..ADDER is

generic (TECHNOLOGY..SCALE :real :- 1.0)
port (PARTIAL-.H :in PARTIAL.? 0 to 23)

PARTIAL.L :in PARTIAL.? 0 to 23)
P..out :out PARTIAL.? 0 to 31))

end SL5.ADDER;

use work. SD-.DEFINITIONS .all;

architecture Structural of SL5..ADDER is

component ADDER.1

generic (TECHNOLOGY-.SCALE :real 1.0)
port (SDI in SD-.DIGIT;

SD2 :in SD-.DIGIT;

T..in :in T..TYPE;
T-.out :out T..TYPE;
SUMr :out SD-DIGIT)

end component;

for all :ADDER-1 use entity work.ADDER-1(Structural);

signal T..ARR :T..ARRAY C 0 to 16)

begin

P-.out(O) <= PARTIAL-.H(O);
P..out(1) <= PARTIAL-.H(1);

P-.out(2) <= PARTIAL-.H(2);

P-.out(3) <= PARTIAL-.H(3);
P-out(4) <= PARTIAL-.H(4);
P-.out(5) <= PARTIAL-.HCS);

P-.out(6) <= PARTIAL-.H(6);

T_.ARR(0) <= PARTIAL-.HCT);

ADDO :ADDER-I
generic map (TECHNOLOGY-.SCALE => TECHNOLOGY-.SCALE)

port map (SDI => PARTIAL-H(8)
SD2 =>PARTIAL.LC 0)
T-in >T..ARR(0)
T-.out => T..ARR(1I)
SUMr -> P-out(7))

C-47

ADDI ADDER_1

generic map (TECHNOLOGY.SCALE w> TECHNOLOGY-SCALE)
port map (SD1 a> PARTIALH(9),

SD2 => PARTIALL(1),
T-in => T.ARR(I),
T-out -> TARR(2),
SUMr => Pout(8));

ADD2 ADDERI
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(10),

SD2 a> PARTIALL(2),
T-in => TARR(2),
T-out => TARR(3),
SUMr => P-out(9));

ADD3 ADDER-_
generic map (TECHNOLOGY-SCALE a> TECHNOLOGY.SCALE)
port map (SDI => PARTIALH(11),

SD2 => PARTIALL(3),
T-in => TARR(3),
T-out => TARR(4),
SLMr => Pout(10)

ADD4 ADDER_1

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(12),

SD2 => PARTIALL(4),
T-in => TARR(4),
T-out => TARR(S),
SUMr a) Pout(11));

ADDS ADDER_1
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI a) PARTIALH(13),

SD2 => PARTIALL(5),
T-in => TARR(S),
Tout a> TARR(6),
SUMr => P.out(12));

ADD6 ADDER-i
generic map (TECHNOLOGY-SCALE => TECHNOLOGY.SCALE)
port map (SD1 > PARTIALH(14),

SD2 a> PARTIALL(6),

C-48

T.in ,> T.ARR(6),
T.out ,> TARR(7),
SUMr 3) P.out(13));

ADD7 ADDER_1

generic map (TECHNOLOGY.SCALE a> TECHNOLOGY-SCALE)
port map (SD1 -> PARTIALH(15),

SD2 => PARTIALL(7)
T-in -> TARR(7),
T-out => TARR(8),
SUMr => Pout(14));

ADD8 ADDERI
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (SDI -> PARTIALH(16),

SD2 => PARTIAL.L(8),
T-in -> TARR(8),
T-out => TARR(9),
SUMr => P.out(15));

ADD9 ADDER.1

generic map (TECHNOLOGY-SCALE => TECHNOLOGYSCALE)
port map (SDI => PARTIAL_H(17),

SD2 => PARTIALL(9),
T-in => TARR(9),
T-out => TARR(10),
SUMr => Pout(16));

ADDA ADDER_1

generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (SDI => PARTIALH(18),

SD2 > PARTIALL(10),
T.in => TARR(10),
T-out => TARR(11),
SUr => P-out(17));

ADDB ADDERI
generic map (TECHNOLOGY.SCALE a> TECHNOLOGY-SCALE)
port map (SDI %> PARTIALH(19),

SD2 => PARTIAL.L(11),
T.in => TARR(11),
T-out => TARR(12),
SU1r => P-out(18));

ADDC ADDERI

C-49

generic map (TECHNOLOGY.SCALE -> TECHNOLOGY-SCALE)
port map (SDI -> PARTIALH(20),

SD2 => PARTIALL(12).
T-in -> TARR(12),
T.out -> TARR(13),
SUMr -> P-out(19));

ADDD ADDERI
generic map (TECHNOLOGY.SCALE -> TECHNOLOGY-SCALE)
port map (SDI -> PARTIALH(21),

SD2 => PARTIALL(13),
T-in -> TARR(13),
T-out => TARR(14),
SUMr -> P-out(20));

ADDE ADDER_1
generic map (TECHNOLOGY-SCALE =) TECHNOLOGY-SCALE)
port map (SDI > PARTIALH(22),

SD2 -> PARTIALL(14),
T-in => TARR(14),
T-out => TARR(15),
SUMr => P.out(21));

ADDF ADDERI
generic map (TECHNOLOGY-SCALE > TECHNOLOGY-SCALE)
port map (SD1 => PARTIALH(23),

SD2 -> PARTIALL(15),
T-in => TARR(15),
T-out => TARR(16),
SUMr => P-out(22));

P.out(23) <= TARR(16);
P-out(24) <= PARTIALL(16);
P-out(25) <= PARTIALL(17);

P.out(26) <= PARTIALL(18);
P-out(27) <= PARTIALL(19);
P-out(28) <= PARTIALL(20);
P.out(29) <- PARTIALL(21);
P_out(30) <= PARTIALL(22);
P.out(31) <= PARTIALL(23);

end Structural;

C-50

use work.SDDEFINITIONS.all;

entity SDMULT is

generic (TECHNOLOGY-SCALE : real : 1.0);
port (SDA : in SDNUMBER;

SDB : in SDNUMBER;
SD-out : out PARTIALP (0 to 31));

end SDMULT; -

use work.SDDEFINITIONS.all;

architecture Structural of SDMULT is

component MULTBLOCK
generic (TECHNOLOGY-SCALE : real :- 1.0);

port (DIGITC : in SDDIGIT;

SDNUMB : in SDNUMBER;
RESULT : out PARTIAL.P (0 to 16));

end component;

component SL2_ADDER
generic (TECHNOLOGY.SCALE : real := 1.0);
port (PARTIAL.H : in PARTIALP C 0 to 16);

PARTIALL : in PARTIALP C 0 to 16);
Pout : out PARTIALP C 0 to 17));

end component;

component SL3_ADDER
generic (TECHNOLOGY-SCALE : real := 1.0);

port (PARTIALH : in PARTIAL.P C 0 to 17);
PARTIALL : in PARTIALP C 0 to 17);
P.out : out PARTIALP C 0 to 19));

end component;

component SL4_ADDER
generic (TECHNOLOGY-SCALE : real := 1.0);
port (PARTIALH : in PARTIALP C 0 to 19);

PARTIALL : in PARTIALP C 0 to 19);
P.out : out PARTIALP (0 to 23));

end component;

component SLSADDER
generic (TECHNOLOGY-SCALE : real :- 1.0);

port (PARTIALH : in PARTIAL_P (0 to 23);
PARTIALL : in PARTIALP (0 to 23);

C-51

P.out out PARTIALP (0 to 31));
end component;

for all : MULTBLOCK use entity work.MULTBLOCK(Structural);
for all : SL2_ADDER use entity work.SL2_ADDER(Structural);
for all : SL3_ADDER use entity vork.SL3_ADDER(Structural);
for all : SL4_ADDER use entity work.SL4_ADDER(Structural);
for all : SL5_ADDER use entity work.SLSADDER(Structural);

type PL12 is array (0 to 15) of PARTIALP(0 to 16);
type PL23 is array (0 to 7) of PARTIALP(0 to 17);
type PL34 is array (0 to 3) of PARTIALP(0 to 19);
type PL4S is array (0 to I) of PARTIALP(0 to 23);

signal PARTIAL.1 : PL12;
signal PARTIAL_2 : PL23;
signal PARTIAL_3 : PL34;
signal PARTIAL_4 : PL45;

begin

MUOO MULTBLOCK

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SDA(0),

SDNUMB a> SDB,

RESULT => PARTIAL-1(0));

MU01 :ULTBLOCK

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SDA(1),

SDNUNB => SDB,
RESULT => PARTIALI(I));

MU02 MULTBLOCK

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SDA(2),

SDNUMB => SDB,

RESULT => PARTIALI(2));

MU03 MULTBLOCK
generic map (TECHNOLOGY-SCALE > TECHNOLOGY-SCALE)
port map (DIGIT.C a) SDA(3),

SDNUNB -> SD.B,

RESULT => PARTIALI(3));

C-52

MU04 MULT.BLOCK
generic map C TECHNOLOGY.SCALE => TECHNOLOGY.SCALE)
port map (DIGIT.C a> SD.A(4),

SDNUNB -> SD.B,
RESULT => PARTIAL.I(4));

MU05 MULTBLOCK
generic map (TECHNOLOGY.SCALE -> TECHNOLOGY-SCALE)
port map (DIGIT.C a> SDA(5),

SDNUMB -> SDB,
RESULT -> PARTIALI(5));

MU06 MULTBLOCK

generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SD.A(6),

SDNUMB => SDB,
RESULT => PARTIALI(6));

MU07 MULTBLOCK
generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (DIGITC > SD-k(7),

SDNUMB 3> SDB,
RESULT => PARTIALI(7));

MU08 :ULT.BLOCK

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SDA(8),

SDNUMB => SD.B,
RESULT 3> PARTIAL.I(8));

MU09 MULT.BLOCK
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGIT.C => SD.A(9).

SDNUKB => SDB,

RESULT => PARTIAL-(9));

MU10 NULTBLOCK
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SD.A(10),

SDNUNB => SDB,
RESULT > PARTIALI(10));

MUll MULTBLOCK
generic map (TECHNOLOGY.SCALE => TECHNOLOGY-SCALE)
port map (DIGITC a> SDA(11),

C-53

SDUMB => SDB,

RESULT -> PARTIAL_ 1(11));

MU12 :MULT.BLOCK
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (DIGITC -> SDA(12),

SDNUMB a> SDB,

RESULT -> PARTIALI(12));

MU13 MULTBLOCK

generic map (TECHNOLOGY.SCALE-> TECHNOLOGY-SCALE)
port map (DIGITC => SDA(13),

SDNUMB a> SD.B,

RESULT => PARTIAL-I(13));

MU14 MULTBLOCK

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC => SDA(14),

SD_NUMB => SDB,
RESULT => PARTIAL-I(14));

MU15 MULTBLOCK
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (DIGITC -> SDA(15),

SDNUMB => SDB,

RESULT => PARTIAL-l(15));

AIO : SL2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH => PARTIAL-I(0),

PARTIALL => PARTIALl(1),
P.out => PARTIAL_2(0));

All SL2_ADDER

generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH => PARTIALI(2),

PARTIALL => PARTIAL-I(3),
P.out => PARTIAL_2(I));

A12 SL2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH -> PARTIALl(4),

PARTIALL => PARTIALi(5),
P-out z> PARTIAL_2" 2));

C-54

A13 : SL2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH -> PARTIAL.l(6),

PARTIALL => PARTIALI(7),
P.out -> PARTIAL_2(3));

A14 : SL2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH => PARTIAL.-(8),

PARTIALL -> PARTIAL-l(9),
P.out => PARTIAL.2(4));

AIS : SL2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH *> PARTIALI(10),

PARTIALL => PARTIALi(11),
P.out => PARTIAL_2(5));

A16 SL2_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH => PARTIAL-I(12),

PARTIALL -> PARTIAL-1(13),
Pout => PARTIAL_2(6));

A17 SL2_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH w> PARTIAL-i(14),

PARTIALL -> PARTIAL-I(15),
P.out => PARTIAL_2(7));

A20 SL3_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH a> PARTIAL_2(0),

PARTIALL => PARTIAL_2(I),
Pout => PARTIAL_3(0));

A21 SL3_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH a> PARTIAL_2(2),

PARTIALL a> PARTIAL_2(3),

P.out a> PARTIAL_3(1));

A22 SL3_ADDER
generic map (TECHNOLOGY.SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH -> PARTIAL_2(4),

C-55

PARTIAL-L -> PARTIAL_2(5),
P-out -> PARTIAL_3(2));

A23 : SL3_ADDER
generic map (TECHNOLOGY-SCALE -> TECHNOLOGY-SCALE)
port map (PARTIALH -> PARTIAL.2(6),

PARTIALL => PARTIAL-2(7),
Pout > PARTIAL_3(3));

A30 SL4_ADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH -> PARTIAL.3(0),

PARTIALL a> PARTIAL.3(1),
P-out => PARTIAL_4(0));

A31 SL4_ADDER
generic map (TECHNOLOGYSCALE => TECHNOLOGYSCALE)
port map (PARTIALH => PARTIAL_3(2),

PARTIALL => PARTIAL_3(3),
P-out => PARTIAL4(1));

A4 : SLSADDER
generic map (TECHNOLOGY-SCALE => TECHNOLOGY-SCALE)
port map (PARTIALH => PARTIAL_4(0),

PARTIALL => PARTIAL_4(1)I
P.out => SD-out);

end Structural;

C-56

use work. SDDEFINITIONS. all;

entity SDMULTTB is
end SD_MULT_TB;

use work.SDDEFINITIONS .all;
use work. TBPACKAGE. all;

architecture TESTSDMULT of SDMULTTB is

component SDMULT
generic (TECHNOLOGY-SCALE : real :- 1.0);
port (SDA : in SDNUMBER;

SDB : in SDIUMBER;
SDout : out PARTIALP (0 to 31));

end component;

for all : SDMULT use entity work.SDj(ULT(Structural);

signal NUMBERA, NUMBERB SDNUMBER;
signal RESULT PARTIALP C 0 to 31);
signal A-VALUE real 0.0;

signal BVALUE real 0.0;
signal RVALUE real 0.0;
alias RESULTH PARTIALP (0 to 15) is RESULT(0 to 15);
alias RESULTL PARTIALP (0 to 15) is RESULT(16 to 31);
alias SDRESULT PARTIALP (0 to 15) is RESULT(I to 16);

begin

M1O : SDMULT
generic map (TECHNOLOGY-SCALE > 1.0)
port map (SDA => NUMBERA,

SDB => NUMBERB,
SD-out => RESULT);

NUMBERA <= SDMAKE(A-VALUE);
NUMBERB <= SDMAKE(BVALUE);

A-VALUE <= 1.0 after 200 ns, 0.5 after 300 ns, -0.50 after 500 ns,
-1.0 after 700 no, 0.9 after 900 ns, 0.99 after 1100 ns;

BVALUE <= 1.0 after 100 no, 0.5 after 400 ns, -0.50 after 600 ns,
0.1 after 800 ns, 0.9 after 1000 ns, 0.99 after 1200 ns,
-1.0 after 1300 ns;

RALUE <= SDTOREAL(SDRESULT);

end TESTSDMULT;

C-57

APR-13-1989 10:46:57 VHDL Report Generator PAGE 1

Multiplier Unit report"

Vhdl Simulation Report

Report Name: Multiplier Unit report"
Kernel Library Name: <<PETERSON>>TESTSDMULT

Kernel Creation Date: APR-13-1989
Kernel Creation Time: 10:25:39

Run Identifer: 1
Run Date: APR-13-1989

Run Time: 10:25:39

Report Control Language File: mult.report.rcl
Report Output File : mult-report.rpt

Max Time: 9223372036854775807

Max Delta: 2147483646

Report Control Language :

Simulation-report MULTreport is
begin

Report-name is "Multiplier Unit report";
Page-width is 80;
Page-length is 50;
Signal-format is vertical;
Sample-signals by-event in ns;
Select-signal : A-VALUE;
Select-signal : BVALUE;

Select-signal : RVALUE;
end KULTreport;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

C-58

APR-13-1989 10:46:57 VHDL Report Generator PAGE 2

Multiplier Unit report"

TIME ------------------------- SIGNAL NAMES---------------------

(Ns) A B R

IV V V

A A A
L L L
U U U

E E E

0 O.OOOOOOE 00 O.00000E+00 O.OOOOOOE+00
100 1.000000E+00

200 1.000000E+00
234*
+3 1.000000E+00

300 5.OOOOOOE-01
335*

+3 O.OOOOOOE+00
339

+3 I
340*
+3 5.000000E-01

400 5.000000E-01

439
+3 1.000000E400

440*

+3 O.OOOOOOE+00
442*
+3 2.500000E-01

500 I******

542*
+3 ************

600 I
642*

+3 2.5000OOE-01

700 I
739

+3 ************

740*

+3 7.500000E-01
742*

C-59

APR-13-1989 10:46:57 VHDL Report Generator PAGE 3

Multiplier Unit report"

TIME ----------------------- SIGNAL NAMES---------------------

(NS) A B R

V V V
A A A
L L L
U U U
E E E

+3 5.O00000E-01
800 1.OOOOOOE-01
839

+3 8.750000E-01
840*

+3 I**
843*
+2 *

848*
+2I

853*
+1I

858*
+1i ************

900 9.OOOOOOE-01
939
+3 1.500000E-01

940*
+3 8.750000E-02

947*

+1 8.750000E-02
+2 9.142151E-02

950

+1 9.142151E-02
+2 8.977165E-02

951*
+2 9.001579E-02

953*

+1 9.001579E-02
+2 9.000053E-02

954*

C-60

APR-13-1989 10:46:57 VHDL Report Generator PAGE 4

Multiplier Unit report"

TIME ------------------------- SIGNAL NAMES ---------------------I

(NS) IA B R

IA A A
IL L L
IU U U
IE E E

+1 I9. 000006E-02
957*

+1 I9. 000006E-02
958*I
+1 I9. OOOOOOE-02

959*I

+1 I9. 000000E-02
961I
+1 I9 .OOOOOOE-02

962* I
+1 I9. OOOOOOE-02

963*

+1 I9. OOOOOOE-02
1000 I9 .OOOOOOE-01

1034*I

+3 I1I.090000E+00
1039I

+3 I .900000E-0 1
1040*

+3 I8 .400000E-01
1043*

41 I8. 400000E-O1
+2 I8. 400610E-01

1048*

+1 I8.400610E-01
+2 I8 .088110E-01

1050 I
41 I8 .088110E-01
+2 g8. 090275E-01

1052* I
4+. 8. 090275E-01

C-61

APR-13-1989 10:46:57 VHDL Report Generator PAGE 5

Multiplier Unit report"

TIME ---------------------- SIGNAL NAMES---------------------

(NS) A B R

IV V V

A A A
L L L

U U U
E E E

+2 8.100041E-01

1053*

+1 8.100041E-01
+2 8.100003E-01

1054*
+1 8.100003E-01

1058*
+1 8.100000E-01

1059*
+1 8.100000E-01

1061
41 8.100000E-01

1063*
+1 8.100000E-01

1100 9.900000E-01

1139

+3 9. 350000E-01
1143*

+3 8. 725000E-01
1145*

+2 8. 726678E-01

1146*

+2 8. 724237E-01
1147*

+2 9. 036737E-01

1148*
+2 8. 919550E-01

1150

+1 8.919550E-01
+2 8.919464E-01

1152*

C-62

APR-13-1989 10:46:57 VHDL Report Generator PAGE 6

Multiplier Unit report"

TIME ------------------------- SIGNAL NAMES,---------------------

(NS) A B R

IV V V

A A A

L L L

U U U

E E E

+2 8.909698E-01

1153*
+1 8.909698E-01
+2 8.910003E-O1

1154*

+1 8.910003E-01

+2 8.909994E-01
1156*

+1 8.909994E-01

1158*
+1 8.910000E-01

1159*

+1 8.910000E-01

1161
+1 8.910000E-01

1162*
+1 8.910000E-01

1162*
+1 8.910000E-01

1163*
+1 8.910000E-01

1164*
+1 8.910000E-01

1200 9.900000E-01

1239
+3 1.016000E+00

1243*

+2 9.808438E-01
1248*

+1 9.808438E-01
42 9.808476E-01

C-63

APR-13-1989 10:46:57 VHDL Report Generator PAGE 7

Multiplier Unit report"

TIME ------------------------- SIGNAL NAMES ---------------------

(NS) A B R

IV V V

A A A
L L L

U U U

E E E

1250
+2 9.810764E-01

1252*

+2 9.800999E-01
1253*

+1 9.800999E-01
1258*

+1 9.8010OOE-01
1259*

+1 9.801000E-01

1261
+1 9.801000E-01

1262*

+1 9.801000E-01
1263*

+1 9.801000E-01

1300 I
1334*

+3 ************

1343*

+1 ************

+2 ************

1348*
+2 *

1350
+2 *

1351*

+2 I
1353*

+1 *

1354*

C-64

+1I
13S8*

+1I
1359*

+11
1361

+1 I *****

0-65

Bibliography

1. Bailey, Mickey J. High Speed Transcendental Elementary Function Architecture in
Support of the Vector Wave Equation (VWE). MS Thesis, AFIT/GE/ENG/87D-
3. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB, OH, December 1987.

2. Lyusternik, L. A. and others. Handbook for Computing Elementary Functions. Oxford:
Pergamon Press, 1965.

3. Snyder, M. A. Chebyshev Methods in Numerical Approximation. Englewood Cliffs:
Prentice-Hall, Inc., 1966.

4. Cosnard, M. and others. The FELIN Arithmetic Coprocessor Chip, Proceedings on
the Eighth Symposium on Computer Arithmetic. 107-112. Washington: IEEE, 1987.

5. Hwang, Kai and others. Evaluating Elementary Functions with Chebyshev Polynomials
on Pipeline Nets, Proceedings on the Eighth Symposium on Computer Arithmetic.
121-128. Washington: IEEE, 1987.

6. IEEE Standard 754 for Binary Floating-Point Arithmetic. New York: IEEE Press,
1985.

7. Swokowski, E. W. Calculus with Analytic Geometry. Boston: Prindle, Weber, and
Schmidt, 1979.

8. Purcell, E. J. and Varberg, D. Calculus with Analytic Geometry. Englewood Cliffs:
Prentice-Hall, Inc., 1984.

9. Hwang, Kai Computer Arithmetic Principles, Architecture, and Design, New York:
John Wiley and Sons, Inc., 1979.

10. Avizienis, Algirdas Redundancy in Number Representation as an Aspect of Compu-
tational Complexity of Arithmetic Functions, IEEE Symposium on Computer Arith-
metic, 87-89. Washington: IEEE, 1980.

11. Avizienis, Algirdas Arithmetic Microsystems for the Synthesis of Function Generators,

Proceedings of the IEEE, 1910-1920 Washington: IEEE, 1966.

12. Avizienis, Algirdas Signed-Digit Number Representation for Fast Parallel Arithmetic,
IRE Transactions on Electronic Computers, Washington: IRE 1966.

13. Chow, Chaterine A Variable Precision Processor Module, Ph. D. Disertation, Depart-
ment of Computer Science, University of Illinois Urbana-Champaignm 1980.

14. Robertson, James E. Design of the Cominational Logic for a Radix 16 Digit Slice for
a Variable Precision Processor Module, IEEE International Confrence on Computer
Design : VLSI in Computers, 696-699. Washington: IEEE, 1983.

15. Robertson, James E. A Systematic Approach to the Design of Structures for Arith-
metic, IEEE Symposium on Computer Arithmetic, 35-41. Washington: IEEE, 1981.

BIB-I

Vita

Captain Robert A Peterson d
mencan Ri er

Junior College for one year prior to enlisting in the Marine Corps. As an enlisted nwmre

ber, he performed maintenance and quality assurance duties on CI[.46 helicoptem. After

release from the Marine Corps, he attended the University of California, Sacramento Wfre

he graduated in 1983 with a BSEE degree. After receiving a commission through Oflices

Training School, he was assigned to the 6520 Test Group, Edwards AFB, California were

he servered as Chief Instrumen.ation Design Engineer for the ALCM/GLCM Chase Beet,

MC-130 Modifications, and various F-15, F-16, A-10, and NKC-130 projects. He entered

the School of Engineering at the Air Force Institute of Technology, Wright-Patterson AFB,

Ohio in May 1987.

VITA-1

