
* /_

0

DOCUMENT CONTROL AND RETRIEVAL

SYSTEM FOR THE BRAZILIAN AIR FORCE

THESIS

Antonio F. Bernardo dla Silva

* ~ JffLt Col, Brazilian Air Force
ELECTE AFIT/GCS/ENG/89J

JUN20 1989 D
D%

Approved for public release; distribution unlimited.

8 60O

UNCLASSIFIED
VTECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE 0A8ot o0I

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

DL CC , Approved for public release;
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/ENG/89J-2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, a-d ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION B f applirable)

Brazilian Air Force F

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM ' PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. CCESSION NO.

11. TITLE (Include Security Classification)
Document Control and Retrieval System for the Brazilian Air Force
UNCLASSIFIED

12. PERSONAL AUTHOR(S)
Antonio Fernando Bernardo da Silva, Lt Col, Brazilian Air Force

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Month, Day) 15. PAGE COUNT
MS Thesis I FROM TO_ 1989 June 190

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Relational Database Oracle RDBMS

Document Control SQL
Document Retrieval Thesaurus

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

This theses addresses the design and complete implementation of a document control
system. The problem Is defined, the requirements are specified, attributes are defined
and the Entity-Relationship Model Is used to describe the conceptual model. Entitles
and Relationship Sets are translated to tables and the database Is Imp I nted using
the Oracle Relational Database Manager System, which features SQL*Forms, afnterectlve
forms based system that accesses the Dytabase using embedded SQL sta eents and
triggers. The proposed system uses a Thesaurus to perform subject retrieving end
provides the means to build and maintain the thesaurus, lf(ewo d.r ,.rncd%, thATVx/

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
KJ]UNCLASSIFIED/UNLIMITED 03 SAME AS RPT. 3 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL .22b. TEYHJIE'- - Code) S,7r N1YMSO.
James Howatt, Major, USAF via

L-0 Form 1473, JUN 86 P,*uus editons art Obsolete, SECURITY CLASSIFKIOW Of Big -em

AFIT/GCS/ENG/89J

DOCMOENT cONTROL AND RETRIEVAL SYSTEM

FOR THE BRAZILIAN AIR FORCE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

cesion For

,;rI1 TA3

Antonio F. Bernardo da Silva, B.S. ,.- ".'a ic d

Lt Col, Brazilian Air Force

D:trb :tlc .i '

June 1989 ty &,ch..I
.0k :.i a r,,'ot

Approved for public release; distribution unlimited.

COPY
INSPhCTM

Preface

The purpose of this thesis effort was to design and implement a

prototype of a document control and retrieval system which could be used

as a standard system by Brazilian Air Force Organizations. The system is

addressed to documents exchanged externally among Brazilian Air Force

organizations and other government, civilian and private organizations.

The diversity of formats, standards, and kinds of documents make

such a system a challenge. The belief that it can significantly improve

decision making and assessment has motivated me to accomplish this task.

I would like to thank my thesis advisor, Major James Howatt, who

has enriched this work with his significant comments and suggestions, and

my committee members, Major Mark Roth and Prof. Henry Potoczny.

I wish to dedicate this work to my loving wife, Vera, for all the

encouragement and support she has given me.

ii

Table of Contents

Page

Preface . ii

List of Figures ix

List of Tables x

I. Introduction 1
Background 1
Problem Statement 2
Scope 2
General Approach 3
Sequence of Presentation 3

II. Requirements Specification 5
Introduction 5
Document Control Overview 5

Document . 5
Protocol 6
Archive 6
Document Destruction 7
Microfilmed Documents 7

What to Expect from the Automated System 8
Control 8
Standajrdization 9
Manpower 9
Time 9
Reliability11
Resistance 11

General Design Specification 11
Document Attributes Identification 14

Catalog Database 15
Protocol Number 15
Document Identification 16
Document Reference Number 17
Organization Name 18
Issuing Date 18
Title . 18
Document Type 18
Classification 18
Reference 19
Annex 19

Control Database 19
Validity . 19
Document History 20
DocLment Status 21
Microfilm Indexing 22
Join Indexing 22

iii

Verifier 22
Modular Partition 23

The Environment Level Diagram 24
The Main Modules 24

Register Document 26
Update Database 27
Specific Updates 28
Consult Database 29
Maintain Thesaurus 31

The System Structure 32

III. Theory 34
Thesaurus 34

Hierarchical Relationship 35
Associative Relationship 37
Synonymy Relationship 37
Term Description - TERM 38
Class - CLASS 39
Class Code - CLASSCD 39
Main Term-MAINTR 39
Secondary Term - SECTR 39
Relationship Between terms - REL 39
Scope Notes - NOTE 40

Database 41
The Ent.ity-Relationship Data Model. 41

Rectangles 41
Ellipses 41
Diamonds 41
Lines 42

Data Independence 42
Data Integrity 42
Security Enforcement 42
Backup and Recovery 43
Concurrence Control 43

Data Manipulation Language - DML 43
ORACLE Relational Database Management System 44

IV. Data Base Design 45
Introduction 45
Information Concerning Entities and Relationships 45
Information Structure 46

Primary Keys 46
Document Entity Set 47
in Relationship 49
Microfilm Relationship 50
Document and Department Relationships 51
Document-Thesaurus Relationships 52
Reducing E-R Diagrams to Tables 53

V. Implementation 56
Introduction 56
Forth-Generation Languages - 4GL 56

iv

Oracle's Development Tools 58
Form . 58
Block . 59
Page . 60

Implementation Strategy 60
Creation of Database Tables, Clusters and Indexes 60

Clustering 61
Access Time 61
Disk Storage Space 62

Indexing 63
Development of an Experimental Module 65
Design of Screen Templates 66
Distribution of Screens Within the Forms 66
Implementation of Basic Functions and Simple Data Validations 69
Implementation of Complex Data Validations and Integrity

Rules 69
Implementation of Printed Reports 74
Design of the Document Transference Receipt 76
Integration and Testing 76
Table Locking 78
Implementation Difficulties 78

VI. Conclusion 81
System Evaluation 81

Building the Database 81
Answering the Questions 82
Evaluation Conclusion 83
Extra Features 84

Recommendations 85
Thesaurus Building 85
Passwords 85
Document Entering from a File 85

Conclusion 86

Appendix A: Script File for Creation of Tables, Clusters, and
Indexes 87

Appendix B: Screen Templates 91
Screen AO, Main Menu 91
Screen Al, Register Document 92
Screen All, Enter Document 92
Screen A12, Print Processing Sheet 93
Screen A2, Update Database 93
Screen A21-1, Generic Update 94
Screen A21-2, Generic Update 94
Screen A22, Change Validity 95
Screen A23, Document Destruction 95
Screen A24, Join Documents..... 96
Screen A25, Transfer Document Custody 96
Screen A251, Transfer Custody - Department 97
Screen A252, Transfer Custody - Holder Name. 97
Screen A26, Update Microfilm Data....... 98

v

Screen A27, Subject Indexing . . 98
Screen A3, Consult Database 99
Screen A31, Browse Documents By Holder 99
Screen A32, Look Up Thesaurus Terms 100
Screen A321, Look Up Thesaurus Classes100
Screen A322, Look Up Terms and Relationships 101
Screen A323, Look Up Terms Within Classes 101
Screen A324, Look Up Terms in Sequential Order102
Screen A33, Browse Documents by Headers 102
Screen A34-1, Browse Documents By Subject 103
Screen A34-2, Browse Documents By Subject 103
Screen A35-1, Retrieve Documents 104
Screen A35-2, Retrieve Documents 104
Screen A36, Show Statistics105
Screen A4, Maintain Thesaurus 105
Screen A41, Maintain Thesaurus Classes. 106
Screen A42, Maintain Thesaurus Terms 106
Screen A43, Maintain Relationships 107
Screen A44, Print Thesaurus Terms 107

Appendix C: Validation and Integrity Rules 108
Modules AO, Al, A2, A25, A3, A32, A4 - Menu Tree108

Input Condition: Insertion, Update, Deletion, and Query . 108
Input Condition: Value of Choice 108
Input Condition: Insertion108
Input Condition: Deletion...109
Input Condition: Update109
Input Condition: Query109

Module A12 - Print Processing Sheet 110
Input Condition: Pre-Form 110
Input Condition: Value of Choice 110

Module A21 - Generic Update 110
Input Condition: Insertion 110
Input Condition: Update 110
Input Condition: Deletion 111
Input Condition: Query 111

Module A22 - Change Validity 112

Input Condition: Insertion and Deletion 112
Input Condition: Update 112

Form A23 - Process Document Destruction 112
Input Condition: Insertion and Update 112
Input Condition: Process Document Destruction 112

Module A24 - Join Documents113
Input Condition: Update113
Input Condition: Insertion 113
Input Condition: Deletion 113

Module A251 - Transfer Custody Department 113
Input Condition: Update and Deletion 113
Input Condition: Insertion 113

Module A252 - Transfer Custody Holder Name 114
Input Condition: Insertion and Deletion 114
Input Condition: Update114

vi

Input Condition: Query 114
Nodule A26 - Update Microfilm Data 115

Input Condition: Insertion 115
Input Condition: Update and Deletion 115

Module A27 - Subject Indexing115
Input Condition: Insertion and Update115
Input Condition: Deletion 115
Input Condition: Query 115

Module A31 - Browse by Holder116
Input Condition: Insertion, Update, and Deletion 116
Input Condition: Query 116

Module A321 - Look up Thesaurus Classes 116
Input Condition: Insertion, Update, and Deletion 116
Input Condition: Query 116

Module A322 - Look up Thesaurus Terms and Relations 116
Input Condition: Insertion, Update, and Deletion 116
Input Condition: Query 116

Module A323 - Look up Thesaurus Terms within Classes 117
Input Condition: Insertion, Update, and Deletion 117
Input Condition: Query 117

Module A324 - Look up Thesaurus Terms Sequentially 117
Input Condition: Insertion, Update, and Deletion 117
Input Condition: Query 117

Module A33 - Browse by Header 117
Input Condition: Insertion, Update, and Deletion 117
Input Condition: Query 117

Module A34 - Browse by Subject 117
Input Condition: Insertion, Update, and Deletion 117
Input Condition: Query 117

Module A35 - Retrieve Documents118
Input Condition: Insertion, Update, and Deletion 118
Input Condtition: Query 118

Module A36 - Show Statistics 118
Input Condition: Insertion, Update, and Deletion 118
Input Condition: Query 118

Module A41 - Maintain Thesaurus Classes 118
Input Condition: Insertion 119
Input Condition: Update 119
Input Condition: Deletion120
Input Condition: Query 120

Module A42 - Mintain Thesaurus Terms 120
Input Condition: Insertion 120
Input Condition: Update 120
Input Condition: Deletion...... 121
Input Condition: Query 121

Module A43 - Mintain Thesaurus Relationships 121
The Hierarchical Tree 121
Input Condition: Insertion 121
Input Condition: Update 122
Input Condition: Deletion 123
Input Condition: Query 123

Module A44 - Print Thesaurus Terms124

vii

Input Condition: Insertion, Update and Deletion 124
Input Condition: Value of Choice 124

Appendix D: Selected Triggers from the INP Files 125
Trigger Execution and Conventions 125
SQL*Forms Commands 126
Macro Function Codes Used inside a SQLtForm Exemacro Command . 126
Form: AO, Menu Tree 127

Form Level 127
Block AO 128

Field Choice 128
Block A2, Fie]d Choice 128

Form All, Enter Document 129
Block Document 129

Field Automatic Number 132
Field DocType133
Field OrgName133

Form A12, Print Processing Sheet, Block A12133
Field Choice 134

Form A21, Generic Update, Block Document 136
Form A22, Change Validity, Block Document 139
Form A23, Process Document Destruction, Block A23 139
Form A24, Join Documents, Block Join 144
Form A251, Transfer Department Custody, Block Doc Log. 146

Field DRN 148
Form A322, Look Up Thesaurus Terms and Relationships 149

Form Level 149
Block Terms, Field ClassCd 149

Form A36, Show Statistics, Block A36 149
Form A41, Mintain Classes, Block Classes 154
Form A42, Maintain Terms, Block Terms 159
Form A43, Mintain Relationships, Block Relships.163

Field SecTr 173
Form A44, Print Thesaurus Terms, Block A44 173

Field Choice 175

Appendix E: Report Generation Files176
File Report.Bat 176
File A12_l.RP, Received Document Process Sheet Generation . 177
Processing Sheet Sample 182
File A44_3.RPT, Print Thesaurus Terms by Hierarchical

Relationship 183
File A44_4.RPT, Print Thesaurus Terms Giving all

Relationships 185

Bibliography189

Vita 190

viii

List of Figures

Figure Page

1. Document Flow Chart 13

2. Protocol Number 16

3. Identification Number and Complement 17

4. Verifier Function 23

5. SADT Environment Level Diagram 25

6. SADT AO Level Diagram 26

7. Register Document Diagram 27

8. Update Database Diagram 28

9. Consult Database Diagram 30

10. Maintain Thesaurus Diagram 31

11. System Structure Diagram 33

12. Hierarchical Relationship 36

13. Main Term and Possible Relationships 40

14. Document Entity Set 48

15. Join Relationship Diagram 49

16. Microfilm Indexing Relationship 50

17. Document History and Department 51

18. Thesaurus-Document Entities and Relationships 53

19. Tables that Compose a Document 55

20. Example of Three Level Menu 68

21. Trigger Step to Validate a Document Transference 72

22. Report A44_3.LIS, Terms by Hierarchical Association 75

23. Document Transference Receipt 77

ix

List of Tables

Table Page

I. Documents Kept in an Organization's Archive 7

I. Header Attributes 15

III. Some Types of Document used by the BAF 19

IV. Major Entities and Relationships 46

V. Tables Derived from the E-R Diagrams 54

VI. SQL*Forr Main Concepts 59

VII. Steps of the Implementation Strategy 61

VIII. Clustered Columns and Tables 62

IX. Indexed Columns and Tables 64

X. Symbols Used in the Screen Templates 67

XI. Screen Distribution within the Forms 70

XII. Tasks performed in the Implementation of the Basic Functions. . 71

XIII. Partial Ordering for Locking Tables 79

XIV. Document Control Fundamental Questions 82

x

DOCUMENT OONTROL AND RETRIEVAL SYSTEM

FOR THE BRAZILIAN AIR FORCE

I. Introduction

Background

In this thesis the term documents refer to those printed reports

sent or received by Brazilian Air Force (BAF) organizations, that

constitute the Brazilian Air Force Official Correspondence. Because

decisions, requests and reports are the essence of documents, the control

and organization of a document collection has become as important as the

decision making or/and assessment that depend on researching the

collection. The use of digital computers profoundly affected the field

of information retrieval by permitting the mechanization of routines and

the scanning of large interdependent files. Because of the high costs

involved, until few years ago most BAF organizations could not afford the

computer resources necessary to run such systems. As a consequence of

the electronics industry revolution that has been made microcomputers

more powerful and cheaper, BAF organizations can now afford an increasing

number of microcomputer systems, and some organizations can even buy such

a system out of their own budget. It is already possible to take

advantage of the new era and improve efficiency and speed in the

classification, control, and retrieval of documents.

mmmmmmmm mm -- - 1

Problem Statement

The problem addressed in this thesis will be the development of a

document control and retrieval system to manage Brazilian Air Force

official correspondence. The system is intended to be used on

microcomputers as standard software for most of BAF organizations.

scope

This thesis presents the main concepts, the design and the

implementation of a prototype of the system including the information

retrieval subsystem that uses a thesaurus for searching by subject. The

definition of the terms that will constitute the thesaurus is beyond the

scope of this thesis, although the structure and rules to define them, as

well as the tools to create and maintain the thesaurus, are given.

The procedures, terms, document numbering and database attributes

comprise the standards for elaboration, archive and elimination of

documents, as defined by the "Instrucao Sobre Correspondencia e Atos

Oficiais do Ministerio da Aeronautica," ICAER (M.Aer., 1976), and by the

"Regulamento para a Salvaguarda de Assuntos Sigilosos," RSAS (M.Aer.,

1977).

As the official correspondence encompasses classified documents, it

is assumed that the system will be operated by qualified personnel to

which are granted the adequate access authorization. It is possible to

limit the access to the system or parts of the system by using passwords.

It is even possible to restrict the operation to a certain group of

activities by using the facilities provided by the Data Base Management

2

System. These protection actions are beyond the scope of this thesis and

thus, are not presented.

General Approach

The main steps followed in developing the system were:

a. To identify significant attributes of BAF documents.

b. To define the system requirements.

c. To review the literature on document control and information
retrieval.

d. To review the literature on database design.

e. To review the literature on software engineering.

f. To choose the Database Management System (DBMS) for supporting the
system.

g. To establish a software engineering environment, in hardware and
software, to support the system development effort.

h. To design the relational database model.

i. To implement the prototype by modules.

j. To test each module individually and integrate it with the previous
developed modules.

Sequence of Presentation

The ordering of the steps to come to a conclusion is not always the

best ordering to explain that conclusion. The sequence of presentation

differs a little from the ordering used to develop the system, but I

believe that doing this the presentation becomes clearer. The second

chapter, Requirements Specification, describes the desirable behavior of

the system. In that chapter the system is decomposed into activities to

perform the necessary functions. Chapter three reviews some of the

theory that led to the design decisions made on the project, mainly on

3

the database design and on the choice of using a thesaurus. Chapter four

presents the main aspects of the database design, which was modeled using

the Entity-Relationship Database Model. The following chapter, number

five, talks about the implementation of the model, which was done using

the Oracle RDBMS for MDOS based PC microcomputers. In this chapter are

presented some of the facilities offered by the Oracle RDBMS, like the

4th-generation tool to generate screen forms. Finally, chapter six

concludes the work evaluating the proposed system and presenting

recommendations for future research.

4

II. Requirements Specification

Introduction

Before presenting the requirements specification it is necessary to

clarify some important concepts as which kind of documents the system is

expect to deal with, which sectors in an organization are concerned with

documentation, what is expected from a computerized system and which

procedures of the manual system actually in use are important and must be

preserved in the proposed system. Therefore, we present, as an

introduction to the specification of the proposed system, a brief

overview of the rules and procedures concerning document control and

retrieval in the Brazilian Air Ministry, and some of the advantages of

computerizing the manual system. All explanations are based in the

official issues of ICAER (M.Aer., 1976) and WSAS (M.Aer., 1977).

Following this overview we state the specification of the proposed

system, which is divided in three major units, and identify the document

attributes that will constitute each unit. Finally, the system is

decomposed into modules to accomplish specific functions.

Document Control Overview

Document. The Air Ministry Official Correspondence, that is, the

correspondence elaborated by or sent to organizations under the Air

Ministry or Brazilian Air Force jurisdiction, may be divided into

internal and external documents. Internal documents move internally

among the sectors of the same organization. External documents are those

exchanged among Air Ministry organizations or among these organizations

5

and organizations or persons that are not under the Air Ministry

jurisdiction.

Protocol. An organization has two sectors that are directly

concerned with documentation, the Protocol and the Archive sections. The

Archive Section is introduced in the next paragraph. Protocol is the

document register and delivery section, which is responsible also for

giving to the users information about documents and document management.

For each document that is sent or received, the Protocol Section keeps a

"Ficha Protocolo" (FP), that is, a Protocol Card, which records the

document movement. The FP, which is typewritten with three copies, for a

total of 4 versions, contains the description of the document

characteristics. Each copy is kept in a different file and they provide

the retrieval of documents by:

1. Protocol Number
2. Originator
3. Name of a person related to the document
4. Subject (one line summary of the document)

An organization may have two Protocol Sections, one for public documents

and the other for classified documents. Classified documents demand some

supplementary procedures, as a document-received confirmation from the

addressee, and sometimes use a more sophisticated subject retrieval,

usually based on a list of subjects.

Archive. Archive is the document repository section. It is

responsible for organizing the docunent collection in such a way that it

can be easy consulted. There are three levels of Archive:

- of an internal Department or Division;
- of an Organization;
- of the Air Ministry.

6

In this effort we are mainly concerned with the Archive of an

Organization. Table I shows which types of documents are kept in an

organization.

Table I. Documents Kept in an Organization's Archive

Permanently:

- originals of Organization's Bulletin;
- documents with historical value;
- personnel records;
- documents related to Justice;
- documents related to Instruction (for schools, academies,

institutes, etc);
- other documents, chosen by the commander.

For 10 years:

- documents related to permanent material.

For 5 years:

- documents related to finances;
- copies of documents sent to other organizations;
- documents related to discipline;
- received documents, definitely solved, which are not expected to

be consulted again

Document Destruction. A commission composed by three members is

designated yearly to select among the documents in the files those which

should stay in the Archive, those to be sent to the Air Ministry Archive,

or those to be destroyed. The decision is posted on the document control

card. The procedure for classified documents is regulated by the RSAS

(M.Aer., 1977), but is essentially the same.

Microfilmed Documents. Microfilm process is used whenever

possible. The documents to be translated to microfilm are those selected

7

to be kept permanently and for 10 years. Documents of historical value

cannot be destroyed, even after they have been microfilmed. Microfilms

should be organized to permit the same kind of retrieval that is done

with documents in paper form.

What to Expect from the Automated Sytem

One could argue that it is not necessary, nowadays, to discuss the

benefits of automation because everybody knows that computers do it

faster. I agree! The problem is why should we take the always limited

resources we have, to computerize the document control system instead of

some other not-automated-yet system. Is it important? How much time and

manpower an automated system might save?

It is not possible to give precise numbers that represent the gain

without having two real systems to contrast. The comparison depends on

various parameters of each system being compared. In spite of not giving

final numbers, we can present various aspects and facilities of both

system, to permit the reader come to his own conclusions. The remarks

about manual and automated systems for document control are personal

viewpoints derived from an experience of ten years working in tasks

related to document management in the Brazilian Air Force.

Control. One of the most important advantages of the computerized

system is the control over the documentation being processed. Once the

criteria of stability was defined, that is, the average time to process

kinds of documents, it is easier to detect instability and to take

corrective actions. The manual system offers inadequate control. As an

example, to find a document that has never reached the Archive Section we

8

have to follow the document track from its first destination to

departments and sections through which it might eventually have passed.

Another difficulty of the manual system is choosing which documents from

the collection have to be destroyed. Deciding which dociments are

"definitely solved, and not expected to be consulted again" is a

challenging task. Because of the inherent retrieval facility offered by

computerized systems, it is possible to give a "validity" attribute to

each document that makes easier a future decision about its destruction.

Standardization. A standard system offers the possibility of easy

communication between distinct systems. It would be possible exchange

documents in computer file form between organizations, taking advantage

of the same kind of management, recording, and retrieval. This would

represent a tremendous savings in personntl instruction, software

development effort and time.

Manpower. When a manual document control system is automated the

per-sonnel staffing is not likely to be reduced for two reasons:

- usually the staff was insufficient to do all the tasks it was
supposed to do. The automated system fills the gap.

- new facilities offered by the automated system and the completion
of tasks which were not accomplished before absorb the manpower
that would be saved.

Time. The following example gives an idea about time saving in an

automated system. Correspondence arrival is not smoothly distributed,

the regular official mail comes twice a day. Depending on the size of

the organization, the Protocol Section is overloaded in these occasions.

Maybe important information or urgent decisions have to wait for the

protocol processing. In the manual system, for each document, the

9

Protocol has to typewrite data on a protocol card (four copies) and on a

processtihg sheet. Suppose that the same data is to be entered in the

computerized system using a keyboard and a terminal display, and that the

processing sheet is printed by a printer connected to the computer. If

we assume that:

a - the data about each document stuns 180 characters on average

b - the operator types 180 characters per minute in average (typewriter
or keyboard)

c - the time to change and adjust a protocol card in the typewriter is
30 seconds

d - the time to change and adjust a processing sheet in the typewriter
is 30 seconds

e - the printer prints at 180 characters per second
f - the time to change and adjust a processing sheet in the printer is

5 seconds (it is automatic)

g - the operator does not make any mistakes entering the data

h - the Protocol Section receives, at the same time, 40 documents to be
processed

i - the work is done by only one operator in either systems

Processing the 40 documents in the manual system would take 2 hours:

- Typing protocol cards: (h * a) / b = 40 * 180 / 180 = 40 minutes

- Typing processing sheets: (h * a) / b = 40 * 180 /180 40 minutes

- Changing protocol cards on the typewriter: c * h 0.5 * 40 = 20
minutes

- Changing processing sheets on the typewriter:
d * h = 0.5 * 40 = 20 minutes

In the automated system the same task would take 0.73 hours:

- Entering the data on the keyboard:
(h * a) / b = 40 * 180 / 180 = minutes

- Printing the processing sheets:
(e + f) * h = lsec + 5sec * 40 = 240 sec = 4 minutes

10

A very important and time consuming task was not taken into account. In

the manual system we still have to insert each copy of the protocol cards

in four different files, in alphabetical order. This totals 160 cards

that have to be properly arranged. How much time does it takes? If it

takes about 30 seconds to file each copy, this extra work will take I

hour and 20 minutes. How many mistakes are committed in this task?

Reliability. Rigid and controlled structure is one of the most

important characteristics of a computerized system. There is no threat

of informal changes introduced in the system by users. There are means

to validate entry data in order to reduce human errors. Once the entries

are correct the data manipulation does not corrupt information stored in

the database. Retrieval is less human dependent. We can browse the

collection in numerous ways to assure that no documentation stays

forgotten, inaccessible, lost in the stacks.

Resistance. Some resistance in accepting the new system is

expected. Oppusition usually is for unconscious reasons. Behind the

antagonism there is a feeling of loss. Persons who used to be consulted

about documents feel unimportant anymore because looking for a document

was made easy. Delays and incorrect handling are soon detected and people

feel they are being audited. Explanations about the system and its goals

are the solution to the majority of resistance problems.

General Design Specification

According Pressman (Pressman, 1987:152), because specifications are

the description of "what", rather than "how", they can take the form of

mathematical functions: "given some set of input, produce a particular

11

set of outputs." Using this kind of description we present the desired

system as follows:

Given a set of identifiers that denotes a document, the most

frequent questions made about administrative documents are:

- Has the organization received this document?

- What is this document about?

- Where is this document?

- Which sections/departments have already processed this document?

- Who is currently analyzing this document?

- Which documents may I destroy?

Less frequent than the previous, but not less important,

the following question arises:

- Which documents are related to this subject?

Figure I shows a typical administrative document routine for

Brazilian Air Force organizations. The Protocol Section enters the

document description in Protocol Cards and prepares a Processing Sheet

(PS) that contains data about the document identification. The

processing sheet is attached to the document. The Comiander, or a person

designated by him, decides which department or section the document will

be sent to; this is explicitly placed on the PS. The Protocol Section

sends the document to the referred department or section. If it is

necessary, the former department sends the document to another

department. After processing, the document is sent to the Archive

Section. In the processing phase, occasionally, documents are joined to

each other to form a single document. Briefly, these are the main steps

involved in the administrative document routine.

12

COMM4ANDE R

EXTERNAL PROTOCOL
ORGANIZATION SECTION C DEPARTeNT

ARCHIV

Figure 1. Document Flow Chart.

The Archive Section works as a library and keeps the whole document

collection. Departments and sections borrow documents from the Archive.

In the Archive Section, documents my stay in paper form or may be

recorded on microfilm. Periodically, useless documents are selected to

be destroyed.

To answer those questions about administrative documents, the

proposed system has manual and computerized procedures that involve the

registering, distribution, processing, retention, archive and destruction

of documents, each one contributing to form a knowledge base about the

document collection. This knowledge base is logically subdivided in

three parts:

- Catalog Database
- Subject Database
- Control Database

13

We may thing about the system in an object-oriented manner where a

document is the principal object. The logical division of the database

reflects that we are mainly interested in three aspects of documents:

- The Catalog view, which gives us the identification of a document
based on its characteristics; we can call these characteristics
"header attributes".

- The Subject perspective, that classifies documents by their
contents, that is, by the issues, themes, topics, or information
addressed on them.

- Finally, the Control perception, which gives information about
the document processing stage, the department or section that keeps
the document, the person who is handling it, etc...

The two first databases are concerned with different kinds of

document retrieval and the last one with the document control. In the

following section the attributes that constitute the Catalog and Control

Databases are presented. The attributes which form the Subject Database

are introduced on the section about Thesaurus theory.

Document Attributes Identification

By document attributes we do not mean only those that are written

in the header or body of a document, but also those that are used to

identify or control the documentation. Some of them are found in the

Processing Sheet, the paper attached to a received document by the

Protocol Section, others may be written in a "despacho" (dispatch,

process) cover, which is a kind of a document that is a join of other

documents necessary to answer or clarify a same question or subject.

Explanations will be given whenever necessary to clarify the meaning of

an attribute.

14

Catalog Database. The catalog database is composed of all files

that together store the document characteristics, generically called

"header attributes." These attributes are listed in Table II and defined

in the next paragraphs.

Table II. Header Attributes.

Protocol Number
Document Identification
Document Reference Number
Organization Name
Issuing Date
Title
Document Type
Classification
Reference
Annex

Protocol Number. The Protocol Number (PROT) is one of the

major means of document identification in the Brazilian Air Ministry.

This number is assigned to a document by the issuing organization and no

further numbering is permitted, even when a receiving organization

forwards the document to other organizations. It is composed of three

parts: an Organization Code (P_CODE), a sequential number (P_NUBER), and

the two last digits of the current year (PYEAR). The parts are separated

by slashes. The PCODE is formed by the superior command code (P_SC) and

by the organization code (POC), which are separated by a bar (99-99).

Figure 2 shows an example of a protocol number. In a document,

this number is always preceded by the initials "Proc". Air Ministry

organizations which do not have the organization code (POC) substitute,

on a temporary basis, the code by the organization initials. Any

15

Proc Nr 10-01/453/88

Figure 2. Protocol Number.

document received by Brazilian Air Ministry organizations that does not

have the protocol number is numbered by the receiving organization. Each

document has only one protocol number, from its issue to its final

archive, even if it has been sent to several organizations in different

years (M.Aer., 1976:7-1,7-2). Classified documents have an independent

sequential ordering for each classification level.

Document Identification. The document identification is an

alphanumeric identification given to a document by the issuing

organization. This identification may be subdivided in a variable number

of fields, each one with a different meaning. The segmentation and the

meaning of each part vary among organizations. These variations make

difficult the use of the document identification attribute as a searching

key. Since all variations have a common point, - a sequential

identification number, this number is extracted from the document

identification and used isolated as a searching key. All other parts

together constitute an identification complement to differentiate

documents with a same identification number.

- Identification Number - IDNR

- Identification Complement - ID(XtPL

Figure 3 shows the placement of the identification number and complement

on a document. Different documents, even from the same organization,

might have duplicated IDNR. This typically occurs when each Department

16

MINISTERI0 DA AEMNALMrICA

OEPARTAIMENTO DE EN6IN

O Sot O LC0a 4 0 or" I 1 , is 00 A, i I, a n O

0 Es .0 m s. .0

OF No 202/SUOENS/69
I

nber comp iement

Figure 3. Identification Number and Complement.

in the same organization assigns its own number. Usually, the

differentiation is made by the Department initials in the IDCOMPL.

Document Reference Number. The DRN is a composite number

given to a document by the Archive Section. It is formed by:

- the year of registering

- the origin code ("1" received documents, "2" sent document)

- the sequential number under each of the previous numbers

The document collection is physically organized in the Archive

Section by this number, making easy the physical document retrieval.

17

Organization Name. ORGNAME is the short name of the

organization that has issued the document. There must be an unique name

for each organization.

Issuing Date. ISSUEDT is the date when the document was

issued. Issuing date and organization name together constitute an

important key for an empiric retrieving, browsing a set of documents

issued by a certain organization, during a given period of time.

Title. The TITLE of an administrative document usually is an

outline of the Document subject. This title does not have the same

meaning as a bibliographic or technical document title. It is not

unusual to find several documents with the same title.

Document Type. The BAF deals roughly with 40 types of

document - DOCTYPE. Most of them are sporadically used. Some of the

most used documents are shown in Table II.

Classification. Concerning the distribution - CLASSIF,

documents are considered public or classified. The public official issue

that establishes special procedures applied to classified documents is

the "Regulamento para a Salvaguarda de Assuntos Sigilosos" - RSAS

(M.Aer., 1977). It divides classified documents in Reserved,

Confidential, Secret and Ultra-Secret. As the details of each

classification are not in the scope of this thesis, we will not discuss

them here. The procedures for classified documents will be presented

whenever it becomes necessary. The proposed system is intended to manage

three of the classification levels:

P - public or unclassified
R - reserved
C - confidential

18

Table III. Some Types of Document used by the BAF.

Document Name Translation

Apreciacao Analysis
Despacho Process, join of documents
Encaminhamento Doc. listing and introduction

of other documents
Estimativa Estimating
Informacao Information
Oficio Officio
Relatorio Report
Relatorio Especial Special Report
Relatorio Periodico Periodic Report
Requerimento Request
Boletim Organization's Bulletin

Reference. Some documents may refer (REFER) to other

documents for various reasons. The organization may or may not have

received the referenced document. The reference itself can be a Document

Reference Number, a Protocol Number, a Document Identification or another

alphanumeric string.

Annex. Documents may have a supplement attached to it. This

supplement is called "Anexo" (ANNEX). This attribute describes in words

the writing attached to the document.

Control Database. As the name indicates, the control database is

related to the document control and to the actual phase of document

processing. The attributes identified in this base are the following:

Validity. The interest about most administrative documents

decreases with time. Some documents are of ephemeral importance and

become of no interest very fast. As a consequence, unlike

bibliographical techniques, we will be interested in destroying these

19

useless documents that occupy space in the Archive Section. When a

document is cataloged in the system it automatically receives a validity

date (VALIDITY), that consists in the date to which the document is

considered of importance (valid). This automatic assignment is made for

a five year period, based on the document Issuing Date. The document

analyst, when processing the document, may request to change the validity

date. The request is written on the processing sheet and processed by

the Archive Section.

Document History. The document history expresses the

processing for which a document has passed. It is composed of two parts:

the document log and the actual holder. The document log is a set of

attributes chronologically arranged in a table which reflects the

document processing.

DATE - Delivery date
TIME - Delivery time
SENDDEP - Sending department or section Initials
RECDEP - Receiving department or section Initials

The holder information is composed of the holding department code and the
holding person name as follows:

DEPOODE - Department code
NAME - Name of who is processing the document

Too much control tends to slow down the document processing speed. From

a centralized control overview it is enough to determine in which

Department the document actually is. Therefore, the name of the holder

is an accurate control to be optionally used by a Department as an

internal control, whenever the department has its own computer terminal.

20

The document history is updated when the document is sent from one

Department to another one. The information for this update is extracted

from a transference receipt.

Document Status. The document status represents the document

situation related to the following conditions:

JOINSTS - Join Status

J - Joined. The document was joined to another one. In this situation
it does not have its own document history. The history of a joined
document is the same as the history of the principal document, that
is, the document to which it was joined.

M - Main document. Other document(s) has(ve) been joined to this
document.

I - Independent. The document has its own document history.

PROCSTS - Processing Phase Status

P - Processing. The document is being processed. It is automatically
given by the system when the document is entered.

W - Waiting. Unpredictable delay on the document solution or unsolved
document.

S - Solved.

FMOTS - Document Form Status

P - Paper.
M - Microfilm.
F - Computer File.
D - Destroyed. The document has been destroyed.

HISTSTS - Document History Status

A - Alteration. An anomaly or inconsistency was detected in the
document history.

N - Normal.

ARCHSTS - Responsible Archive Section Status

C - Classified Archive.
U - Unclassified Archive.

To know whether a document is filed in the classified archive or in the

unclassified archive it is not always enough to know the document

classification level. Although a classified document will never be filed

21

in the unclassified archive, the inverse may happen. If an unclassified

document is joined to a classified one the whole document becomes

classified. A controversy arises whether the unclassified part should or

not be officially declared classified. The Archive Status solves this

uncertainty by giving the exact direction.

Microfilm Indexing. When the document has been microfilmed,

the kind of film and frame identification are recorded. They might have

more than one microfilm record related to each document because frames

are not in sequence or are in distinct films. The database attributes

are as follows:

F TYPE - Type of film
F NO - Film number
FIRST - Initial frame number
LAST - Last frame number

Join Indexing. When documents have been joined, which is

indicated by the join status, there is a list that relates the main

document to the document(s) that has(have) been joined to it. On this

list documents are referred as:

MAINDOC - the main document
JOINED - the joined document(s)

Verifier. VERIFIER is a control attribute created to protect

against wrong document updates. It is used in update screens that do not

display the catalog data, which makes difficult the document

identification. Its computation was derived from a Division Hash

Function where we consider the verifier as the resulting address for a

URN key. The original hash function was slightly modified by taking the

URN to the second power, to provide no consecutive verifiers for

consecutive URNs. Figure 4 shows the original function, the Verifier

22

Hash Function: F(X) - X mod M

Verifier Function: Ver(DRN) = mod(DRN^2,97)

RECEIVE SEND
DRN VERIFIER DRN VERIFIER

89100001 8 89200001 61
89100002 50 89200002 89
89100003 94 89200003 22
89100004 43 89200004 54
89100005 91 89200005 88
89100006 44 89200006 27
89100007 96 89200007 65
89100008 53 89200008 8
89100009 12 89200009 50
89100010 70 89200010 94

Figure 4. Verifier Function.

Function, and some DRNs with corresponding Verifier values. "M" was

chosen as 97, which is the highest two digit prime number, giving

verifiers in the range 0 to 96. The choice of a prime number is

suggested by Horowitz (Horowitz, 1987:456,457). The Verifier is printed

on the Processing Sheet.

Modular Partition

There are various analysis methodologies that enable an analyst to

apply fundamental analysis principles. According Pressman (Pressman,

1987:164), all methods have the common characteristics of permitting a

function representation, definition of interfaces, mechanisms for problem

partitioning, support for abstraction, and representation of physical and

logical views. Structured Analysis and Design Technique, SADIT (registered

trademark of SofTech, Inc.) is a comprehensive methodology for doing

functional analysis and system design. It is beyond the scope of this

23

work to detail this technique but its fairly strict syntax permits a good

understanding of the system decomposition without deep explanations.

This modeling technique encompasses a series of hierarchically related

function diagrams. It is used in this work to capture the system

decomposition from the user viewpoint and to give us a first insight of

modules interaction.

The Environment Level Diagram. The environment level diagram shown

in Figure 5 is the system highest level diagram. It shows the interaction

of the system with the world. On the left side there are the inputs to

the system. Il, Keyboard Input, represents all information entered via

the terminal keyboard. This information might be data from the document

header, parameters for a document search, or any other kind of

information needed to update the database files or to run the system

programs. 12 represents all the database files used by the system to

storage information, either in a temporary or permanent basis. Cl, User

Comands, on the upper side of the figure, defines to the system what to

do with the entered input. User commands are the menu choices, function

keys, and any other means of choosing an action to be taken by the

system. These actions and the input elaboration produce the outputs,

which are interpreted on the right side as CRT Displays - 01, Printed

Reports - 02, and Modified Database Files - 03. The modified database

files are reused as input, which is represented on the diagram by the

cycle from the output to the input.

The Main Modules. Figure 6 shows the AO level SADT diagram

corresponding to the environment diagram of Figure 5. Although

meaningful, the logical databases in which the system is divided are very

24

Ci~e

User Comm nds

,1 Keyboard Input CPT OiSPIyS

___ _ Document

Contro I Printed Reports

an-d >02

12 ODtaOse Fi es Retrieval Modifieo Dat1>se
r > etri ev I 03

A-0

Figure 5. SADT Environment Level Diagram.

ample. Each one embraces several attributes that are not available at

the same time. We need modular partitions that depict the available

operations for the object document. These operations will add and modify

attribute values in each relational database. They are grouped in the

four main modules shown in Figure 6 as follows:

1. Register Document
2. Update Database
3. Consult Database
4. Maintain Thesaurus

Although modularity has been accepted as an important software attribute

and an extension of the "divide and conquer" method, we must strive for a

few design heuristics. At this level, these heuristics are maximum

cohesion and minimum coupling between modules to improve modular

25

MENU CHOICE

C 1 CRT D ISPLAYS
PR IN'TED

Figre6. SAI AO~
COevel iREPORTSar1

12 REG5TER 02u e OSLT / O

DOCUM E:NT ,'"0 3 -

ICE~O. ..IN MOD! rfED

independence and clarity of design. The variety of operations

encompassed by the system constrain our first level decomposition (AO) to

a logic and temporal cohesion, which will permit later, the desired

functional cohesion. On the other hand, they present the desired loose

coupling, with no direct coupling between modules.

Register DocNPent. Figure 7 shows the decomposition of the

Register Document module.* Note that this module is ntunbered 1 in

Figure 6, and that its decomposition, Figure 7, is named Al on the left

bottom coner. This is the guiding line to relate a parent module to its

decomposition. The docueent processing routine begins with entering data

about just received documents. This data is extracted from the docuent

header. The system gives to each document an unique Document Reference

26

C1
REG ISTER

DOCUMENT DATA I NCLUD

1 1 P ENTERDOCL)MENT DATA DISPLAY 01

DATABASE FILES DATA MODIFIED DATA BASE 03
12 N"

DOCUMENT
REFERENCE

NLMBER PRINT PS

PP I NT 02

PPOCESSI P.-
CATALOG DATA SHEET PROCESSING SHEET

Al

Figure 7. Register Document Diagram.

Number - DRN. The Document Reference Number that comes from module All,

Enter Document Data, to module A12, Print Processing Sheet, points to the

last document entered, as a reminder to the user when printing the

processing sheet - PS. Although these modules are independent of each

other, the typical sequence is first entering all received documents,

then printing the corresponding processing sheets.

Update Database. Figure 8 displays the decomposition of the

Update Database Module. The decomposition presents functional and

procedural cohesion. Module A21, Generic Update is intended for generic

situations where some erroneous data was introduced in the catalog

database and the correction using some of the other modules is not

27

C1
SUPDATE vE,, _. E

MENU CHO~ICE

CRT DISPLAY

2 MOD t I I lED ATASASEI J . ID03

V1EFG19AR0 I NPU't5

DATABASE FI LES
\ I SIPEC IFI:I C

UPDATES

2r

A2

Figure 8. Update Database Diagram.

possible or convenient. Thus, this module is mainly related to the

Protocol or Archive Sections. The Module A22, Specific Updates,

encompasses several update operations, which are described in the

following section.

Specific Updates. This module is formed of various lower

level modules.

- Change Validity
- Process Document Destruction
- Join Documents
- Transfer Custody
- Update Microfilmed Data
- Subject Indexing

28

Although they all modify the control database they do so on distinct

occasions and for different purposes. Therefore, they are separated into

individual units. There is no SADT Diagram describing these modules but

they are shown in Figure 11, as part of the system structure.

- Change Validity is used by the Archive Section when an analyst
requests a change to the validity that was automatically given to
the document.

- Process Document Destruction removes some data from the files (as
document history, for instance), and references the destruction
authorization document.

- Join Documents relates a document (main document) to other ones
(secondary documents) when these documents are joined to constitute
a single document. This update is to be made by a department or by
the Archive Section. This module also separates Documents, giving
them again their own individuality.

- The Transfer Custody module updates the document history. Each
document transference is made based on the Document Transference
Receipt (see Figure Figure 23), that constitutes the sender's
transference proof. The details of this receipt are introduced in
the implementation chapter.

- Update Microfilm Data adds to the database information about
microfilmed documents.

- The Subject Indexing module creates and modifies relationships
among documents and thesaurus terms.

Consult Database. Figure 9 shows the Consult Database

Mode. The module A31, Browse Database, permits an overview of several

documents at the same time. It is further decomposed into three modules,

Browse by Holder, Browse by Header, and Browse by Subject. They are

specially useful when the searcher is not sure about the document he is

looking for or the adequate keys to use in a query. The module Browse by

Holder permits a Department to control its own document processing. As

was stated before, the name of the person who is actually analyzing a

document is not compulsory information. Although from a centralized

29

C1

' CRT DISPLAYS
{1 BROWSEI ,// o

r . C DATABASE

TH. TERMS

DATARASE FILES

SH)W /

A3

Figure 9. Consult Database Diagram.

viewpoint is enough to know the Department responsible for a document,

these modules can and should be freely used by a Department as its

internal control over the documents that are being processed and to

identify the person who is processing each one of them.

Look Up Thesaurus Terms is a feature to search for a thesaurus term

that approximates some desired concept. It permits the user to navigate

through the thesaurus tree.

The Retrieve Documents module permits a document search by any

document attribute and gives a complete information about the documents

retrieved. The result of a query is a list of the documents that satisfy

the request. These documents may be seen one at a time on the screen.

30

Maintain Thesaurus. Figure 10 shows the decomposition of the

Maintain Thesaurus Module. Observe that the thesaurus maintenance is

quite independent of the other main modules. As a standard system used

by various organizations, we are interested in keeping identical

thesaurus terms. This is easier accomplished by having an unified

thesaurus maintenance. For this reason only the organization responsible

for the thesaurus maintenance needs the complete Thesaurus Maintenance

Module. This organization would concentrate the requests for changes and

distribute upgraded versions of the thesaurus terms.

Cl
WKNTA IN THEAUR MO IFIED DATABASE

~~MENU CHiOICE /
'r / CRT DIS5PLAYS

I CLASSES
03

A I I

TER MS 2 1

DATABASE PILES ;
-MAINTAIN

RELATION- I

" KEYBOARD INPUT
HIP 3

PR I "

STH. TERMS< 4 02

A4

Figure 10. Maintain Thesaurus Diagram.

31

The System Structure

The system structure chosen, presented in Figure 11, closely

resembles the decomposition already made. The necessity for defining the

interfaces between modules is attenuated by using a Database Management

System (DBMS), which consists of a collection of interrelated data and

programs to access that data. Database systems are designed to manage

large bodies of information. Therefore, they already provide a storage

structure and mechanism for the manipulation of information, including

provisions for the safety of the information stored. On the other hand

the data structures become more important. The data structures are

expressed as the database model that permits the DBMS to access the

necessary information in the files. The database model presented in the

next chapter.

To present the complete structure of the system we have anticipated

the modules that constitute the thesaurus maintenance, although reserving

for the next chapter the explanations about the thesaurus theory.

32

ifw

Figure 11. System Structure Diagram.

33

III. Theory

Thesaurus

The thesaurus is the heart of the subject database. To better

understand the distinct roles that the subject database and the catalog

database play we may divide the relevant information for retrieving

documents from the collection into two units:

1. A set of data which defines a specific document, that is, the
document identification or physical description.

2. A subjective set of terms which describes the document contents,
that is, the information the document transmits.

The first one involves a process called cataloging and the second one

subject indexing. The subject indexing process has two steps:

- the conceptual analysis of a document.

- the translation of the conceptual analysis into a particular
vocabulary.

The translation of the conceptual analysis into a particular vocabulary

employs a controlled vocabulary, that is, a limited set of terms used by

both the indexer and the searcher to represent the document contents.

The vocabulary might vary from a simple list of subject headings,

keywords or phrases, to a thesaurus. The proposed system uses a

Thesaurus that is the most used approach in information retrieval

applications (Jackson, 1971:1). In the thesaurus approach, a document is

regarded as a list of terms. A decision to retrieve or not retrieve is

made by determining whether the list of terms which represents the

document matches the terms of the request. The whole vocabulary is

logically subdivided into individual vocabularies or subsets, each one

34

pertaining to different subject areas called Classes. The vocabulary is

structured to show relationships between terms. Strict rules are

established to define permissible structuring. The relationship between

two terms may be expressed by a three element tuple where the first

element is the main term - MAINTR, the third element is the secondary

term - SECTR, and the second element is the two-letter code - REL, which

expresses the relationship that relates the main term to the secondary

term. The relationships implemented in the subject database are:

Hierarchical Relationship.

" Broader Term (BT)
" Narrower Term (NT)

The hierarchical relationship is represented by the codes BT and

NT. The first one means broader term and the second one narrower term.

As an example, the hierarchical relationships that are depicted

on Figure 12 would be expressed as:

<POLICY ,NT,POLITICAL DOCTRINES>
<POLICY ,NT,E3ffEiNAL POLICY >
<POLICY ,NT,INTERNAL POLICY >
<POLICY ,NT,SECRAL POLICY >
<INTERNAL POLICY,NT, FEDERAL POLICY >
(INTERNAL POLICY,NT,STATE POLICY >
<SECTORAL POLICY,NT,AGRICULTURAL POLICY>
<SECTORAL POLICY,NT,TRANSPORT POLICY >
<SECI)RAL POLICY,NT,ENERGY POLICY >

Those tuples only describe half of the hierarchical relationships that

are depicted on Figure 12. Two rows are necessary to completely express

each single hierarchical relationship between two terms, that is, we have

to create reciprocal entries. The reciprocal is obtained by switching

the main and secondary term and replacing the relationship code by its

inverse, that is, NT by BT (or BT by NT).

<POLITICAL DOCTRINES,BT,POLICY >

35

POL I CY

E'TFPtAt INTFRNAL POLITICAL SECTORAL

POLICY POLICY DOCTRINES POLICY

FEDERAL STATE AGRICULTURAL TRANSPORT
POLICY POLICY POL ICY POLICY

ENERGY
POL I CY

Figure 12. Hierarchical Relationship.

<EXTERNAL POLICY ,BT,POLICY >
<INTERNAL POLICY ,BT,POLICY >
<SELMRAL POLICY , BT,POLICY >
<FEDERAL POLICY ,BT,INTERNAL POLICY>
<STATE POLICY ,BT, INTERNAL POLICY>
<AGRICULTURAL POLICY, BT, SECTORAL POLICY>
<TRANSPORT POLICY , BT, SECIXRAL POLICY>
<ENERGY POLICY ,BT,SEC1)RAL POLICY>

When retrieving documents, the replacement of a term by a broader term

has the effect of increasing the number of documents retrieved. In the

other hand, we might retrieve documents which are not relevant. The

replacement of a term by a narrower term has the reverse effect. A term

cannot have more than one broader term relationship.

36

Associative Relationship.

Related Term (RT)

The associative relationship is represented by the code RT which

means related term. It is used to approximate similar terms, which are

alphabetically or hierarchically separated, and related terms, which are

frequently associated during retrieval operations. The necessity of

using such relationship may arise from relating:

- a thing and its application
- an effect and a cause
- a thing and property strongly associated with it
- a raw material and a product
- two complementary activities
- an activity and an agent of that activity
- an activity an a product of that activity
- A thing and its parts
[Lancaster, 1986:46-47)

A simple example of this kind of relation is the association of computers

with keyboards and printers. Since the hierarchical relationship would

be ambiguous, this relationship is expressed as:

<C4UTERS , RT, KEYBOARDS >
<C(XtITRS, RT, PRINTERS >

<KEYBOARDS, RT, QUWfERS>
<PRINTERS ,RU, VrERS>

Note that the associative relationship also requires reciprocal entries.

The reciprocal is obtained by switching the main term and secondary term

of the original tuple.

Synonymy Relationship.

.Use (US)

.Used For (UF)

The synonymy relationship is represented by the codes US an IF.

The first one means "use" and the second one means "used for." This

37

relationship assigns a single term to represent each unique concept.

Other terms considered to be synonymous or near-synonymous indicate the

elected term. In turn, the single term indicates the other terms it

represents. The following entries would represent a synonymy relationship

among priest, pastor, reverend, rabbi, and clergyman:

<PRIEST ,UF,PASTR >
<PRIEST , UF,REVEREND >
<PRIEST ,UF,RABBI >
<PRIEST , JF, CLERGYMAN>

<PASTOR ,US,PRIEST >
<REVEREND ,US,PRIEST >
<RABBI ,US,PRIEST >
<CLERGYMAN,US, PRIEST >

A tem that has a "use" relationship cannot have any other relationship.

Since we are indicating another term to the user, all further

relationships should be applied to the indicated term.

The relationships between terms are the thesaurus essence, but

other attributes are also necessary to implement the vocabulary. The

following paragraphs formally identify all attributes for the Subject

Database.

Term Description - TERM. The term description expresses the

desired concept and might be formed by one or more words. Each Term

Description must be unique. Suppose we have a class named cities and

another class named states. If we have a city and a state with the same

name we differentiate them by adding its class (between parentheses) just

after the word. For instance, suppose that cities pertain to class 05 and

states pertain to class 06. To enter SAO PAULO city and SAO PAULO state

we would enter these terms as: SAO PAULO(05) and SAO PAULO(06).

38

Class - CLASS. A class logically subdivides the whole vocabulary

into individual vocabularies or subsets, each one pertaining to a

different subject area. A document may be indexed under terms pertaining

to a various classes. The searcher is able to retrieve a document not

only by the precise term but also by the combination of terms pertaining

to distinct classes. Moreover, the searcher is able to select all

documents that we indexed by terms hierarchically subordinated to a

chosen term. A class name is also a term in the thesaurus and all terms

that have hierarchical relationships are descendants of their classes.

Classes are intended for two main purposes:

- to facilitate the choice of terms. Dividing the all vocabulary
into logically related smaller sets gives the searcher an intuitive
notion of where to look for a desired term;

- to permit the system to use a set of terms as consistency
constraints. For instance, organization names might be a class
used to verify the database entries for document senders.

Class Code - CLASSCD. The class code was created to reduce disk

space needs. As the class is repeatedly used, the internal use of such a

code to represent the class avoids wasted space.

Main Term-MAINTR. A main term is a thesaurus term that constitutes

the domain term of a relationship between terms.

Secondary Term - SECTR. A secondary term is a thesaurus term that

constitutes the codomain of a relationship between terms.

Relationship Between terms - REL. The relationship between terms

is a two-letter code that represents the relation between two terms in

the thesaurus.

BT Broader Term
NT Narrower Term
RT Related Term

39

US Use

UF Used For

Scop Notes - NOTE. Scope notes are used to define or clarify

ambiguous terms, to provide complete spelling of truncated terms, or to

provide historical data on changes in usage for a given term. It is a

guide to how a particilar term should or should not be used. For

instance, suppose we have the term "(OMGAR" that pertains to the class

"Organization". Its Scope Note can be the complete name of the

organization: "Comando Geral do Ar."

Figure 13 illustrates possible relationships of a main term. Note

that a term may have at most one broader term, while having several

"Wow

] TERM]

Figure 13. Main Term and Possible Relationships.

40

narrower terms. The same term cannot have "use" and "used for"

relationships simultaneously. A term that has a "use" relationship

cannot have any other relationship.

Database

In the following sections we explain some fundamental concepts about

data models, data manipulation languages, and database management systems

used in constructing the proposed system.

The Entity-Relationship Data Model. The Entity-Relationship Data

Model (E-R) has been used for performing logical database design for

relational systems. It is used in describing data at the conceptual

level because it is semantically rich. The E-R model perceives the world

as entities and relationships. The model provides for a high degree of

data independence and is based on set and relation theories. The logical

structure of the entity-relationship data model is graphically expressed

as follows:

Rectangles. Represent entity sets. An entity is an object

that exists and is distinguishable from other objects. A double line

rectangle represents a weak entity. A weak entity does not have a

candidate key and its existence depends on the existence of a regular

entity.

Ellipses. Indicate attributes of an entity. An entity may

be represented by a set of attributes. A star inside a ellipse denotes a

candidate key for the set of attributes.

Diamonds. Denote relationships among entity sets.

41

Lines. Link attributes to entity sets and entity sets to

relationships (Korth and Silberschatz, 1986:6-7).

Data Independence. There are two levels of data independence, the

physical and the logical levels. This means that the programs to access

the database do not have to be rewritten after a physical or logical

modification on the database. A physical modification is a change in how

the data are stored. A logical modification is a change in what data are

actually stored in the database and the relationship that exist among

data.

Data Integrity. This means that the data in the database

have to satisfy some integrity constraints that are specified explicitly

by the database administrator. As an example, suppose the constraint of

a term name which has to be unique. It should be impossible to enter a

new term with the same name as an existing term. A particular case of

data integrity which the DBMS must ensure is known as "data consistency".

It consists of keeping contradictory information from the database. An

example is a same term with "use" and "used for" relationships

simultaneously.

Security Enforcement. The data stored in the database needs

to be protected from unauthorized access, intentional destruction, and

malicious alteration. While "integrity" refers to accidental loss of

consistency, security usually is related to protection against

deliberated misuse. A DBM usually provides security by using passwords

which authorizes the access to only portions of the database and to

perform limited operations.

42

Backup and Recovery. A computer failure due to mechanical or

electrical problems may result in data loss. The DBMS has to offer means

to detect such occurrences and to restore the database to a state that

existed prior to the failure.

Concurrence Control. When several users may update the

database at the same time there is a threat of data inconsistency. The

DBMS has to control these interactions in a such a way that no harm can

result from these operations.

Data Manipulation Language - DML. Commands are entered by the user

and processed by the database management system. These commands, also

called statements, and the rules that constraint their use constitutes

the data manipulation language. Every DBMS possesses its own database

language. Al hough there are differences among database languages they

are divided into two basic groups: "procedural" and "nonprocedural." A

procedural DML requires the user to specify which data is needed and how

to get it, that is, the user provides the sequence of operations that

generates the desired answer. A nonprocedural DML just requires an user

to specify what data is needed.

A relational DBMS manipulates the data according the concepts and

ideas of that relational data model described earlier (see page 41).

They use manipulation (query) languages generically known as "relational

database languages", which are classified as nonprocedural languages.

SQL, Structured Query Language, is one of the best known relational

database languages. SQL can be used in two modes: interactive, and

embedded. In interactive SQL, statements are entered at a terminal or

microcomputer and immediately processed or interpreted. In the embedded

43

SQL, statements are embedded in a program written in another language

(procedural). These statements are not immediately executed. They are

processed only when the host program is run.

The basic SQL expression consists of three clauses: select, from,

and where. The "select" clause lists the desired attributes or columns

of a table. The "from" clause lists the relations or tables that will be

scanned in the execution of the expression. Finally, the "where" clause

establishes certain conditions involving attributes that have to be met.

ORACLE Relational Database Management System. The Oracle RDB"S was

the database management system chosen to implement the proposed system.

It is a relational database designed to run on a microcomputer equivalent

to the IBM PC/AT, which may be attached to a computer network. The

system is compatible with S1 and DB2, which are IBM database systems that

run on large IBM computers. According the Oracle manual (Oracle, 1987:3)

Oracle runs on many different mainframe computers, minicomputers and

microcomputers, being available on over 30 operating stems and 80

hardware platforms. Its Query language, SQL*Plus, offers a rich

collection of features. The system offers in addition SQL*Forms, an

application development tool also integrated to the system that permits a

quick development of forms-based applications for entering, querying,

updating and deleting data. Forms are specified using menus and a screen

painter. Instructions and embedded SQL statements are combined to

generate the application. More explanations about the system will be

given in the chapter describing the implementation.

44

IV. Data Base Design

Introduction

According the "Webster's New Word Dictionary" (Simon and Schuster,

1984:360), the definition of database is as follows:

"A large collection of data in a computer organized so that
it can be expanded, updated, and retrieved rapidly for
various uses.

This collection of data has to be organized in some way. Moreover, we

need a set of programs to manage the data files in order to expand, to

update, and to retrieve information. We used the Entity-Relationship

data model for performing the logical database design. The E-R model was

introduced by Peter Chen in 1976. Most of the concepts presented in this

section are borrowed from him (Chen, 1976).

The logical view of data is an important issue. The E-R model

describes the world in a natural and intuitive way that consists of

entities and relationships. In this work the E-R model is used at two

levels: first, to convey information concerning entities and

relationships which exist in the designer mind; second, to provide

information structure, the organization of data where the entities and

the relationships are substituted by values.

Information Concerning Entities and Relationships

An entity is an object that can be distinctly identified. Some

people may view a certain object as an entity, while other persons may

view it as a relationship. Entities are classified into different

"entity sets". There are predicates associated with each entity set that

45

identifies an instantiation of an entity as belonging to that set. If we

know that an entity is in a certain set, then we know that it has the

properties common to the other entities that pertain to the same set.

A relationship is an association between entities. The "role" of

an entity in a relationship is the function that it performs in the

relationship. A "relationship set" is a mathematical relation among a

number of entities, each of them taken from an entity set.

Table IV shows the most important entities and relationships that

exist on the proposed system.

Information Structure

The information about an entity or a relationship may be recorded

as pairs of <attribute,data value>, where attribute is a predicate name.

If an entity has 5 attributes, for instance, thus we can describe an

entity instantiation by 5 pairs of attribute-data value. Note that

relationships also have attributes.

Primary Keys. The values of an attribute can be used to uniquely

identify an entity in an entity set. The attribute used for this task is

Table IV. Major Entities and Relationships.

Entities Relationships

Document Document/Reference
Reference Document/Annex
Annex Document/Microfilm
Microfilm Join (Document-Document)
Thes. Term Document Log(Doc/Datetime/Depart.)
Department Holder (Doc/HolderDepart./HolderName)
Holder Subject Index (Document/Term)
Relationship Rel. Between Terms (Term/Relat./Term)

46

known as "primary key". If there is no attribute with unique values we

can use two or more attributes. If even using all attributes available

in the entity set it is still impossible to uniquely identify each

entity, or if simplicity in identifying entities is desired, we can

define a new attribute so that such identification becomes possible.

Document Entity Set. Figure 14 shows the DOCUMENT entity set.

Note that Document Reference Number (DRN) is an attribute created to

simplify document identification. Protocol Number (PROT) could have been

elected the primary key. It was not chosen for convenience. The

protocol number is large, difficult to memorize, and does not denote the

physical place where the document is kept. On the other hand a DRN

indicates the document registering year, the document origin (received or

sent code), and the chronological sequence number (of receiving or

sending). The DRN maps the exact archive where the document is filed.

The DRN "89 1 345", for instance, denotes the 345th document received in

1989.

When an entity cannot be uniquely identified by the values of its

own attributes we must use E- relationship to identify it. This is known

as a "weak entity relationship". The concept of weak entity is also

related to the concept of "existence dependency" (Korth and Silberschatz,

1986:29). In Figure 14 the entity set Reference is depicted as a weak

entity. If we think that its single attribute, REFER, is a document

reference number (DRN) we may conclude that it uniquely identifies a

reference. Therefore, it would not be a weak entity. REFER, would be

the entity set primary key. The problem is that the reference by itself

does not make sense. We are interested in the relationship between a

47

TITLE VALIDITY

HIWCSTS

DOCUMENT

OIOC/ CM/
PEER ANNEX

Figure 14. Doctument Entity Set.

doctument and a reference. There is no utility in knowing the reference

without knowing the doctument that references it. Furthermore, REFER is a

free description of a reference which way consist of a Doctument Reference

Nuber, the name of a book, or anything else; therefore, it might have

homographt references with distinct meanings. For all these reasons the

existence of the Reference entity depends on the Dociument entity.

48

Moreover, there is no necessity for implementing both the relation

corresponding to the Reference entity set and the relation corresponding

to the DOC/REFER relationship set. We shall see later (see page 54) that

relationship sets derived from the association of a weak entity with a

strong entity contain the same attributes as those of the weak entity.

For similar reasons, the entity set Annex is also presented as a weak

entity.

Join Relationship. The Join relationship is illustrated in

Figure 15. The relationship set components are both Document Reference

Numbers. Their names, MAIN and JOINED, reflect the "role" they perform.

The arrow on the MAIN side means there is a 1:n (n=0, 1, 2, ...) mapping

from MAINDOC to JOINED, that is, each main document may have none, one,

~'DRNA

DOCUMENT

MAINDOC JOINED

I NOEX I NG

Figure 15. Join Relationship Diagram.

49

or more joined documents. When no arrow exists on both sides of a

relationship the mapping is n:m (n=O, 1, 2, ... , and m=O, 1 , 2, ...).

Microfilm Relationship. Figure 16 illustrates the Microfilm

relationship set and the Microfilm entity set. The diagram indicates

that each document may have none, one, or more microfilm entities. Each

microfilm entity is a frame sequence expressed by the type of microfilm,

its number, and initial and final frame number. Although the microfilm

entity set possesses a primary key formed by taking the attributes

F_TYPE, FNO, and FIRST (or FINAL) together, it is expressed as a weak

entity to indicate existence dependency on the Document entity set. When

a document is eliminated from the Document entity set, we also eliminate

the relationships on the Microfilm Indexing relationship set that

correspond to the document being excluded. Although we do not physically

destroy the microfilm, we lose the pointers to the frames.

DOCUMENT I M I COIF I LM

Figure 16. Microfilm Irmlexing Relationship.

50

Document and Department Relationships. Figure 17 illustrates the

association of the Department entity set to the Document entity set.

These entity sets define two relationship sets: Document Log and Holder.

On the Document Log relationship set the Datetime attribute guarantees

the uniqueness of each relationship and provides means to serialize the

Figure 17. Document History and Department.

document processing. For a given document at each datetime there is only

one sending department and only one receiving department. In fact, we

shall see later that the primary key of the Document Log relationship is

composed only of the DRN, the sender department and the transference

date. The situation where a same department sends the same document more

than once a day is so rare that it is considered an error. The time

attribute has an important role in ordering transferences that were made

in the same day. Some constraints cannot be described symbolically.

Document transference is made by means of a receipt. It is possible that

51

transferences are entered in the system out of order. In this situation

we have a temporary anomaly. The document log may indicate that someone

has sent a document which was not previously received. We want to be

able to recognize this inconsistency and to recover when the missing

record is entered.

The second relationship set, Holder, permits the identification of

a department code and a holder person name which are responsible for a

document. The diagram shows that the name of the holder is not directly

related to the department set. It was designed to permit a department to

keep its own control over the personnel actually processing documents

without bringing unnecessary complexity to the system (see Document

History, page 20). Therefore, there is neither the necessity of entering

this information on the system (it is optional) nor prior registering the

name that is going to be entered.

Document-Thesaurus Relationships. Figure 18 shows the entities and

relationships related to the thesaurus The single attribute of a

thesaurus term is its class. The primary key of the term entity set is

the term name. The class logically divides the terms in related

subjects. A class entity set, not shown in the illustration, is used for

data validation purposes. It was decided to use the term name as the

primary key, instead of the term name and the class. As a consequence,

the term name must be unique. It was chosen for the sake of simplicity.

The occurrence of duplicated terms does not justify having to specify a

term class in all term relationships and queries. As we do not expect a

large number of duplicates, the simplest solution is to add the class

52

code to the name itself, to differentiate from an existing homographic

term.

PEL V T CLASSCO TEFUDR

RELATIaON. THESAURUS
BET WEEN TE SSBETIXDCMN

SECTR

TEA- NOTE

Figure 18. Thesaurus-Doc uent Entities and Relationships.

The first step in defining a new term is entering the term

description on the Terms entity set. We may supply the user with usage

details by creating a scope note associated to the entered term. The

next step is defining relationships between the new term and other

existing terms. Different consistency constraints apply for each

relationship between terms (REL). These constraints are shown in

Appendix C, page 121.

Reducing E-R Diagrams to Tables. The E-R diagrams can be

represented by a collection of tables. Table V shows the tables derived

53

Table V. Tables Derived from the E-R Diagrams.

DOCUMENT (DRN, PSC, POC, PNUMBER, P_YEAR, IDNR, IDCOIPL,
OR"NE, ISSUEDT, TITLE, DOCT'YPE, CLASSIF, VALIDITY,
JOINSTS, PROCSTS, FORfMTS, HISTSTS, ARCHSTS)

REFERENCE (DRN, REFER)

ANNEX (DRN, ANNEX)

JOIN (MAIN, JOINED)

MICIFIL1 (DRN, TYPE, FNO, FIRST, LAST)

DEPARTMENT (DEPCODE)

HOLDER (DRN, DEPOODE, NAME)

DOC_LOG (DRN, DATE, TIME, SEND DEP, RECDEP)

TERMS (TERM, CLASSCD)

CLASSES (CLASSCD, CLASS)

RELSHIPS (MAINTR, REL, SECXXOD)

NOTES (TER, NOTE)

SUBJECT (DRN, TEI)

from the previous diagrams. As a general rule, for each entity set and

for each relationship set in the model we define an unique table. In

tables derived from entity sets, the columns correspond to attributes in

the former entity set. In tables derived from relationship sets, the

columns correspond to those attributes that constitute the primary keys

of the originating entity sets. Weak entities are an exception to the

general rule. The table derived from a weak entity contains all

attributes of that entity plus the attribute(s) that constitutes the

primary key of the strong entity on which the weak entity depends. The

54

Reference, Annex, and Microfilm entities are examples of weak entities.

We observe on Table V that those tables have the document reference

number (DRN) as an attribute. In this case, the tables derived from the

relationship set and from the entity set are equal. Therefore, we

implement only one of them. The columns that constitute the primary key

of each table are underlined. A table that has no underlined columns has

the primary key composed of all columns.

Figure 19 illustrates the tables needed to compose the information

about a document. Note that a joined document has only one main document

while a main document may have several joined documents. The document in

the figure has been microfilmed. Therefore, it must have the "form

status" set to "M" of microfilm. If it were a destroyed document it

would have only the document and reference entries. The reference would

be pointing to the document that authorized its destruction, while the

form status would contain the value "D" of destroyed document. Since the

data model is complete, next chapter presents its implementation.

DOCUMENT

MAM R ONK

Figure 19. Tables that Compose a Document.

55

V. Implementation

Introduction

This chapter addresses the implementation of a prototype of the

proposed system. The term prototype is used in a sense of "a first

system" that still has to be evaluated by the user and refined to reach

its final form. It does not mean a "working prototype" from the

"prototyping" software paradigm, which is used only as a tool to refine

requirement specifications. A "working prototype" may even use a

inappropriate operating system or programming languages because it is

mainly concerned with a quick development for demonstrating capabilities.

The prototype developed in this thesis effort is not an adaptation of

program fragments intended to show system potential but a full

implementation of all specifications presented in the previous chapters.

We present the steps, how they were accomplished, the reasons, facilities

and difficulties. First we talk about fourth-generation languages in

general, and about SQL language and Oracle's Relation Data Base Manager

System (RDBMS) in particular. We divided the implementation into several

steps, each discussed in detail. Additional information about system

files, field specifications, screen templates, SQL statements, and

triggers are given in the appendices.

Forth-Generation Languages - 4GL

Fourth-generation languages are consequence of the need to instruct

computers more easily and more quickly than in the past. First

generation languages' characteristic was the binary notation (ones and

56

zeros), since early computers did not have interpreters or compilers to

translate machine language to a more readable form. The second

generation languages used symbolic assembly languages where the physical

address of variables and their names became independent. Third

generation languages have been used since 1960 and are referred to as

"high-level" languages. They have been continually improved and still

are extensively used. Some of their most important aspects are the use

of English words, mathematical notation, and the hardware independence,

which is provided to a certain extent. The major drawback of third

generation languages is the time consuming need for writing and debugging

a number of lines of code, which makes the modification of complex

systems a very difficult task.

Forth-generation languages vary greatly in their power and

capabilities. The term encompasses software tools that enable the

software developer to specify some particular aspect of the software at a

high level. The tool then automatically generates the code, based on the

user specification. Therefore, while some 4GLs are merely query

languages or report generators, others are able to build a complete

application. Some 4GLs are referred as "nonprocedural languages". A

nonprocedural language specifies "what" is needed, instead of focusing on

procedural details of "how" to accomplish the action. SQL - Structured

Query Language is a relational database language that is an example of

nonprocedural language. The following statement is a complete program in

this language :

SELECT DRN, TITLE
FROM DOUT
WHERE ORGNAME = 'AFIT'

57

AND ISSUEDT BETWEEN

'10-JAN-89' AND '20-FEB-89';

Oracle RDBMS uses SQL as its data manipulation language and offers

additional facilities that are described in the next section.

Oracle's Development Tools

Pressman states (Pressman, 1987:24) that 4GL environments offer

some or all of the following tools: "nonprocedural languages for data

base query, report generation, data manipulation, screen interaction and

definition, and code generation ... " Thus, Oracle does offer a 4GL

environment. According Lans, Oracle's SQL (SQL*Plus) has a "noteworthy"

large number of additions (Lans, 1988:283). Besides the facilities

offered by the language itself Oracle provides SQL*Forms, a tool designed

to simplify system/user interaction, and SQL*Reporter, a tool to generate

printed documents derived from the database. The main concepts of

SQL*Forms are shown in Table VI. Form, page and block concepts are

explained in the next paragraphs. SQL statements were already introduced

but they will be illustrated again, later, together with triggers and

macros. The Reporter facility will be commented on the paragraphs about

the modules Print Processing Sheet and Print Thesaurus Terms.

Form. A form is a screen layout that presents a fill-in-the-blanks

arrangement of database information. It permits efficient data entry,

update and query that, otherwise, would require the operator to use SQL

statements. The Oracle program that creates and maintains forms is

referred as SQL*Forms. We may see a form as a independent set of

specifications that works like a program. These specifications include

screen definitions, tables, queries, integrity rules, data validation,

58

Table VI. SQL*Forms Main Concepts.

- form
- block
- page
- SQL statements
- triggers
- macros

etc, which are made in a interactive manner by typing statements in

"popup" windows. Forms can call each other, but only can exchange

information by explicitly defined global variables. A form has one or

more blocks and one or more pages. The smallest form would have at least

one "page" and one "block." A form is saved inside the database files

and also externally in a ASCII file that has a .INP extension.

Applications forms can migrate to a different computer system that also

uses Oracle RDEMS using these files.

Block. A block is a subset of a form that provides automatic

insertion, deletion, update, and query to a table on the database system.

We can think of a block as a standard procedure available in a program

which can be used as many times as needed, and tailored to fit our

necessities. A block can also access no tables. An example is a form

used as a menu. The single block only contains a control variable that

triggers macro statements calling the "subordinate" modules. Note that

"subordinate module" only means a module that is called by another

module, which does not imply any other kind of interaction.

A block has a "base table" but can contain also fields from other

tables. Automatic operations are supported only for the base table.

59

Those fields are manipulated by specifying triggers and SQL statements to

act on them. These "extraneous" fields are commonly used to access

and/or display related information, and for complex data validation and

integrity enforcement. Information can be exchanged among blocks by

referring to a field in a "select into ..." statement, or by using a

macro statement as "#OPY fromfield tofield".

Page. A page is the part of the form which the user sees on the

screen. A form may have as many pages as are necessary. A block may

occupy only part of a page, an entire page, or several pages, according

to the necessity and the extension and number of fields on the base

table. We may have also more than one block on a single page. Since

each block has its own base table, they act independently of each other.

It is possible to create for the user an illusion of interdependency by

using triggers and macros, which simulate the operator strokes by

executing hidden statements. Later in this chapter, some examples are

given.

Implementation Strategy

It was necessary to define an implementation strategy to guide the

development effort. The steps of this strategy are described in

Table VII. Each one of them is explained and discussed in the following

paragraphs.

Creation of Database Tables, Clusters and Indexes

The implementation begins by creating the tables that will

constitute the database. Additional tables were created for data

validation and integrity rules.

60

Table VII. Steps of the Implementation Strategy.

1 - Creation of database tables, clusters and indexes.
2 - Development of a experimental module.
3 - Design of screen templates.
4 - Distribution of screens within the forms.
5 - Implementation of basic functions and simple data validations.

We added to the tables shown in Table V the tables SEQNUMBERS,

RELNAME, and CLASSIFICATION. The table SEIQUMBERS is used to generate

Document Reference Numbers automatically, the table RELNAME contains the

relationship codes and complete names, and finally the table

CLASSIFICATION that contains the classification codes with their

respective complete names. In the preceding chapters we have

concentrated on the conceptual level. However, a major issue is the

system performance. The performance depends not only on the efficiency

of the data structures used to represent the data in the database but

also on the system efficiency in accessing and manipulating these data

structures. Clustering and Indexing were used to improve the system

performance and are explained in the following paragraphs. The file used

to create the tables and insert initial data is shown in Appendix A.

Clustering. This is a database technique and Oracle feature that

permits both access time and disk storage space savings.

Access Time. Data is transferred between disk storage and

main memory in units of storage called "blocks". Clustering saves access

time by organizing related information in a single block and, when a

single block is not enough, in contiguous blocks. The performance of

join queries is improved because rows that are joined are stored

61

together. Usually, the rows of a table are represented by records in a

file. If we assign the records randomly, it can be the case that a

different block must be accessed for each row needed.

Disk Storage Space. We may be able to save disk storage

space by storing only once values of similar columns that were defined in

different tables. Therefore, to be clustered, a group of tables must

share a column with the same type, length, and meaning. Such a column is

called "cluster column". Clustering affects the way tables are

physically stored on disk, while having no effect on the logical

appearance of the table. Therefore, it is not necessary to know the name

of a cluster column in order to use it in a query. The program will use

it automatically, whenever the query that was requested permits its use.

Table VIII shows the tables that were clustered on the Document

Reference Number column (DRN) and on the Term column (TERM). All

Table VIII. Clustered Columns and Tables.

Cluster Name Columns Tables Included

C_DOCUMENT DRN DOCUMENT
REFERENCE
ANNEX
JOIN
MICROFILM
DOC LOG
HOLDER
SUBJECT

C_TERM TERM TERMS
RELSHIPS
NOTES

62

information related to a single document are kept together providing a

minimal access time.

We decided to cluster the Subject table by the column DRN instead

of clustering by the column TERM because join queries using DRN will be

more frequent. Suppose we are interested in documents about "jet engine"

and "maintenance". The query has to find all the documents indexed by

"jet engine" and then verify whether those documents are also indexed by

"maintenance". If we suppose the query accesses 1000 documents

registered under the term "jet engine" and that each document is indexed

by 5 terms in average, the total number of accesses by TERM key would be

1000, and the total number of accesses by the DRN key would be 5000.

Actually, the number of accesses is smaller than 5000 because the

subquery stops when a positive comparison is reached.

Sometimes a cluster that contains just one table also saves disk

storage space. This would be the case of the table Terms, where a same

value of CLASSCD is repeated on the rows of all terms pertaining to that

class. Since nested clustering is not possible, in place of clustering

by CLASSCD we preferred to keep together all information related with a

same TERM. In addition to the organizational advantages of clustering,

the DBMS creates an index on the clustered column(s) that increases the

access speed.

Indexing. An index to a table helps to find information quickly.

The program can "look up" the rows in an index to the table. Otherwise,

it would have to scan all the rows of the table. Indexing a table may

reduce the time requested to perform a query, mainly if the table is

large. On the other hand, if the table has a few columns (a few may be

63

considered as less than two hundred) the overhead involved in using an

index will probably exceed the time saved. Another use of indexing is to

guarantee that a column of a table contains unique values (as we want for

the primary key of a table), although we did not use the index feature on

this purpose (we used the "primary key" feature of SQL*Forms). By

contrast, clustering does not enforces uniqueness. Therefore, we used

the indexing technique on the columns expected to be frequently accessed

by queries, whenever clustering was not possible, not necessary, or not

efficient enough. We also used indexing on the columns where speed is

more important than saving disk storage space.

Table IX shows the indexes that were created on the database

tables. Alike clustering, the user does not need to know whether a

column is indexed, nor the name of a index. If an index exists, the

query will use it automatically, whenever possible.

Table IX. Indexed Columns and Tables.

Index Name Column Table Name

ITERM TERM SUBJECT

I_PNUMBER PNUMBER DOCUMENT

I_IDNR IDNR DOCUMENT

I ORGNAME ORGNAME DOCUMENT

64

Development of an Experimental Module

This step was to help me, as a new Oracle developer, to learn the

capabilities of the Oracle system and to choose a suitable style to be

used on all the other modules. The Enter Document module was chosen to

be the experimental module. In this phase I became familiar with

defining forms, defining database and control fields, choosing field

attributes, establishing data validation, using triggers, and using SQL

statements inside a form. SQL*Forms does not provide means for copying

trigger steps from one trigger to another one, nor triggers from one

block to another block in the same form. This ability is useful when

standardization of commands and messages is needed.

To overcome this deficiency, part of the work was done directly on

the INP files. An INP file (.INP suffix) is an intermediate text file

that contains a form description used by the system to generate form

files (.FRM suffix), to load the form description into the SQL*Forms

program, or to convert the form description into a database format (which

is kept in several Oracle system tables).

After doing the modifications, the program Interactive Application

Converter - IAC was used to convert the INP file into a database format.

The program Interactive Application Generator - IAG was used to generate

the form file. Another possibility investigated was a memory resident

text editor to cut and paste on the SQL*Forms Paint Screen. This

process permits SQL statements to be copied between fields and blocks and

also between forms. Its disadvantage is the abrupt end of the SQL*Form

program, losing the modifications already done, when it does not have

enough memory space to keep those changes. To avoid this loss it is

65

necessary to save the form, exit from SQL*Forms, and enter again.

Therefore, due to te memory space used by the resident program, a user

should save the work frequently.

Design of Screen Templates

Table X shows the conventions used in template design. The screens

were designed outside SQL*Forms, before creating the forms that would use

them. They were designed using a text processor.

Figure 20 shows an example of a menu screen used in the system. To

give the user the notion of which level he or she is working, it used a

windowing like menu system. Some menus go one level deeper by having

another submenu window that partially covers the previous menu.

The system has around 30 different screens (or pages) and the style

used for all of them has the following characteristics:

- use of a windowing menu tree

- a single-line box surrounding no menu screens

- enumeration of blocks in a same screen

- separation of blocks in a same screen by a double line

- module name on the left bottom corner of the screen

- main keys used on the module at the bottom of the screen

All screens are shown in Appendix B.

Distribution of Screens Within the Forms

To facilitate the identification of forms, blocks, and pages, the

method that follows was used in naming the screen templates. Each screen

represents a module of the proposed system (see Figure 11). The screen

name is the code that corresponds to the system module (ex: AO, A34,

66

Table X. Symbols Used in the Screen Templates.

C fields may contain any combination of letters, digits, blank
spaces, punctuation, and special characters.

9 field may contain any number.

DD day of the month.

MN month of the year, as JAN for instance.

YY last two digits of the current year.

HH hours of the day, in a 24 hours format.

MI minutes of the hour.

() enclosing a field definition, as "(CXXCC)" for instance, to
represent fields that cannot be accessed by the operator.
Protected field.

-> at one end of a field, as "CCOC->" for instance, or above the
field name, to indicate that the field length is longer than the
display length. The operator can use the arrow key to scroll the
field horizontally.

etc). Each screen has its name written on the left bottom corner of the

template. Therefore, each screen template also corresponds to a "page"

of a "form" on the Oracle system. When a form has only one page (it

corresponds to just one system module) the name of the form is identical

to the name of the screen it represents. When the same form has more

than one page (more than one screen) two situations may arise:

1. Each page constitutes a different module. The form borrows the
name of the first page. Usually, the first page corresponds to a
"parent" module and the other pages to "children" modules, with the
same structure of the proposed system.

2. A same module spans more than one page (never more than two pages).
Each screen has the same basic name but differs on suffix. The
first page has a suffix "-1" and the second page has a suffix "-2".

67

DOCUMENT CONTROL AND RETRIEVAL SYSTEM

MAIN MENU
Consult Database

1 - Register Docum Look Up Thes. Terms r
S

2 - Update Databas 1 - Classes r
2 - Terms & Relations t

3 * Consult Databa 3 - Terms within Class t

4 - Terms Sequentially
4 - Maintain Thesa

Type your choice: Press Enter to accept
Ctrl-Z to exit

A32

Figure 20. Example of Three Level Menu.

A page may contain one or more than one blocks. Blocks that have a

base table are referred to by the base table name. Blocks that do not

have a base table are usually alone in a page and are referred to by the

module name which they represent.

The criteria used to place modules (pages) in the same form was:

necessity of communication between modules. A block placed in
screen "A" may need to copy the value of a field which is placed
somewhere in screen "B". Blocks communicate more easily when
placed in the same form. Communications between forms have to be
done using global variables that have a constrained use.

necessity of reducing the loading time of a called module. Some
modules are expected to switch frequently from one module to the
other. We shall reduce the waiting time as much as possible. This
is the case of the menu tree which was placed in the same form to
reduce the time between displaying the main menu and a submenu.

The criteria used to place modules in distinct forms was:

68

- independence, that is, there is no need of accessing a field
pertaining to another block in a different screen. The module is a
complete and functional unit.

- simplicity. Although a module may logically correlate to other
modules, if there is no physical dependency, making it a single-
page form simplifies maintenance.

The arrangement summarized in Table XI was obtained by applying the

heuristic-, described above. The table maps system modules to pages of a

form. Some forms, as form AO for instance, encompass more than one

module. In form AO each module is a page. On the other hand, a page may

encompass more than one block, as form A241 page #1 for instance.

Coordinate or control blocks, which do not have a base table, are

indicated in the table by a star preceding the block name. Form AO, in

spite of having several screens and blocks, does not have any "base

table". The same happens with module A36. In spite of accessing several

tables to calculate the statistics, it does not have a base table.

Implementation of Basic Functions and Simple Data Validations

For the sake of simplicity, the implementation of forms was divided

into two phases. In the first stage the forms were created but without

the use of triggers and imbedded SQL statements, except when they were

strictly necessary to implement basic functions. Table XII lists the

tasks done in this phase.

Implementation of Complex Data Validations and Integrity Rules

Integrity constraints and validation criteria were condensed by

module to facilitate the forms development and to provide means for their

testing. Constraints were listed according to significant input

conditions. Some of these conditions were Insertion, Update, Deletion

69

Table XI. Screen Distribution within the Forms.

Module Name Form Screen Pg# C Block(s)
Main Menu AO AO 1 * AO
Register Document " Al 2 * Al
Update Database A2 3 * A2
Transfer Custody A25 4 * A25
Consult Database A3 5 * A3
Look up Thesaurus Terms A32 6 * A32
Maintain Thesaurus " A4 7 * A4
Enter Document All All 1 DOCUMENT,

REFERENCE, ANNEX.
Print Processing Sheet A12 A12 1 * A12
Generic Update A21 A21-1 1 DOCUMENT

REFERENCE, ANNEX
A21-2 2 HOLDER, DOC LOG

Change Validity A22 A22 1 DOCUMENT
Process Document Destruction A23 A23 1 DOCUMENT
Join Documents A24 A24 1 JOIN
Transfer Department Custody A251 A251 1 DOCLOG
Transfer Holder Name A252 A252 1 HOLDER
Update Microfilm Data A26 A26 1 MICROFILM
Subject Indexing A27 A27 1 SUBJECT
Browse by Holder A31 A31 1 HOLDER,DOCMENT
Look Up Classes A321 A321 1 CLASSES
Look Up Terms/Relationships A322 A322 1 TER,RELSHIPS
Look Up Terms within Classes A323 A323 1 TERM
Look Up Terms Sequentially A324 A324 1 TERM
Browse by Header A33 A33 1 DOCUMENT
Browse by Subject A34 A34 I SUBJECT,DOaMNT
Retrieve Document A35 A35-1 1 DOCILKENT,SUBJECT

A35-2 2 REFERENCE,ANNEX
MICROFILMJOIN,
HOLDER,DOC LOG.

Show Statistics A36 A36 1 * A36
Maintain Classes A41 A41 1 CLASSES
Maintain Terms A42 A42 1 TEIM,NOTES
Maintain Relationships A43 A43 1 RELSHIPS
Print Thesaurus Terms A44 A44 1 * A44

and Query. Appendix C shows the integrity rules, Appendix B the screen

templates where the rules apply, and Appendix D some of the triggers that

implement the integrity rules. Actually, Appendix D does not encompass

all existing triggers, due to their great number. Those listed are

70

Table XII. Tasks performed in the Implementation of the Basic Functions.

- Creation of forms, blocks and fields;

- Specification of field attributes using the Specify Attributes
feature of SQL*Forms;

- Data validation of field input, using the Specify Validation
feature;

- Definition of the default ordering in queries using the Default
Ordering Window;

- Specification of triggers, using the Trigger Step feature.

samples of a class of integrity enforcement.

To illustrate the accomplishment of integrity rules, an example was

selected from module A251 - Transfer Custody - Department. The following

integrity rule is listed under the insertion input condition (Appendix C,

page 114):

- Set the document history status equal "A" (alteration) if there
exists a transference of the document in which the sending department is
different from the receiving department in the previe"- row. Otherwise,
set the document history status equal "N" (normal). Example: assume
there are two rows in the DocLog table, ordered by DRN, Date, and Time,
in ascending order, with these values:

DfRN Date Time Send Dep RecDep
99999999 DATEI TIME1 DEPi DEP2
SAME DRN DATE2 TIME2 DEP3 DEP4

The underlined departments should be the same. As they are not the same,
set the document history status equal "A".

Figure 21 shows the trigger step that verifies the rows

corresponding to the document being transferred, in the table DOCLOG, to

enforce the integrity rule described above. The trigger step was

ex.tracted from the A251.INP file that describes the form A251, and is

71

*POST-INSERT
;SQL>
SELECT *
FROM ix LOG Y
WHERE EXISTS (SELECT *

FROM DOC _LG X
WHERE - DRN
AND Y.DRN DRN
AND Y.SENDDEP <> RECDEP
AND

TONUMBER(TO_CHAR (Y.LDATE,'J')
SUBSTR(Y.LTIME, 1,2)
SUBSTR(Y.LTIME,4,2))

(SELECT MIN (ALL TONUMBER(TOCHAR (LDATE, 'J')
'I SUBSTR(LTIME,1,2)

SUBSTR(LTIME,4,2)))

FROM DOC LOG
WHERE DRN = :DRN
AND TOCHAR(LDATE, 'J')

SUBSTR(LTIME,1,2)
SUBSTR(LTIME,4,2)

TO CHAR (X.LDATE, 'J')
SUBSTR(X.LTIME,1,2)

,: SUBSTR(X.LTIME,4,2)

/
;Message if value not found
$SETALTERATION $SETNORMAL

Figure 21. Trigger Step to Validate a DocIument Transference.

also listed in Appendix D, page 146. The step is part of a "Post-Insert"

trigger. This means that it is executed after the operator has inserted

the new row in the table DocLog, corresponding to the transference being

made. Observe the last line of the step. The first "$" symbol indicates

the label of the next step to be performed if this step succeeds. The

second "$" indicates the failure label. The step shown does not set the

document history status itself; but, if there exists a row where the

72

sending department is different from the receiving department of the

previous row the step succeeds and the success label deviates the trigger

to the step that will set the status equal "A"lteration. On the other

hand, even if the history status was alteration, if the insertion of the

present row brings consistency to the document log (suppose the missing

row was introduced) the step fails, causing the trigger to set the

history status "N'ormal. Therefore, this step accommodates transference

insertions that are made out of order.

The SQL query that analyses the rows is one of the most complex

queries in the entire system. Note that it gives to the table DocLog

the "aliases" Y and X to make comparisons with distinct instantiations of

the table Doc_Log. The logical expression "exists" is evaluated as true

if the subquery returns at least one row, and false if not. The date

(LDATE) is transformed to Julian date and is concatenated to the time

(LTIME) without the comma. This makes comparisons between date-times

easier.

The analysis is made by selecting each row of the document being

transferred. This row is compared with the row that has the "MIN"imum

date-time value among those rows that have the date-time value greater

than the row that was selected for the comparison. The comparison

verifies that the Send Dep of the selected row is different from the

RecDep of the "greater's-smallest" row. This way, each row is compared

with the row that has the date-time value immediately greater.

73

Implementation of Printed Reports

Although all queries displayed on the screen may be output to a

printer attached to the microcomputer terminal there are two forms

specially designed to generate printed reports. They are the A12, Print

Processing Sheet and the A44, Print Thesaurus Terms. While it is easy to

extract reports using line commands in SQL*Plus, we need standardized

reports in special situations. The first is the process ing sheet that is

attached to each document, the second is the printed thesaurus

dictionary, which may be used for off-line document indexing. These

reports are generated using the Oracle tool SQL*Report, a procedural

system compose' of two programs. The "Report Generator - RPT", is used

to extract information from the database and the "Reporter Text Formatter

is used to format the report. To generate a report we create a source

file which is successively compiled by both programs. Appendix E lists

the object file of the processing sheet and two of the four reports

generated for the thesaurus. The remaining object files are not

presented because they are only variations of the other ones. Note that

these reports are executed from inside SQL*Forms with no need of quitting

the program. The reports are printed simultaneously to the printer and

to disk files. The disk files have the same name of the generating Form

concatenated with the corresponding menu number, and a suffix LIS.

Therefore, the program All which gives report options 1, 2 and 3 prints

reports to the files AllI.LIS, All_2.LIS and All_3.LIS. Each time the

same report is generated it overwrites the previous

report. Figure 22 gives a sample the format of the report A44_3.LIS

which orders terms by their hierarchical relationship. For demonstration

74

THESAURUS REPORT A44_3 - ORDER BY TERM HIERARCHICAL ASSOCIATION

08/03/89 03:53 PAGE 1

Level Term

1. ROOT
2. DOCUMENT CONTROL

3. AO
4. Al

5. All
5. A12

4. A2
5. A21
5. A22
5. A23
5. A24
5. A25
5. A25

6. A251
6. A252

5. A26
5. A27

4. A3
5. A31
5. A32

6. A321

6. A322
6. A323
6. A324

5. A33
5. A34
5. A35
5. A36

4. A4
5. A41
5. A42
5. A43
5. A44

END OF REPORT

Figure 22. Report A44_3.LIS, Terms by Hierarchical Association.

purposes, the names of the modules that compose the proposed system were

entered as thesaurus terms, creating the same hierarchical relationships

that exist in Figure 11. The report traverses the hierarchical tree in

75

preorder; giving the term name and the term level in the hierarchical

relationship tree.

Design of the Document Transference Receipt

When a document is transferred from one department to another the

updates of tables Holder and Doc_Log are made using the module A251,

Transfer Custody -Department. This task may be assigned to the Protocol

Section, to the Archive Section, or even to both of them. Whatever

section is chosen, they cannot afford to have a computer station

dedicated only to enter document transferences. But, because we do not

want to introduce delays in the document processing, we create a document

transference receipt.

The proposed model is shown in Figure 23. The sending department

may place in one receipt more than one document. Also, documents in the

same receipt may have different destinations. Someone in the

transferring department fills the receipt fields except those

corresponding to the transference time, receiver name, and initials. The

distribution man distributes the documents, collecting the receivers'

names and initials. He also enters the Time the transference was made.

Upon completion, he leaves a copy in the section assigned to enter

document transferences and keeps the original with him, after noting the

name and initials of the transference station responsible.

Integration and Testing

Two kinds of tests were performed: individual test and integrated

test. The first one was concerned with the proper execution of the

fundamental operations. The second one, executed after integrating the

76

DOCUMENT TRANSFERENCE RECEIPT

Sending Department/ Sect ion

Date - - Respons Iple Name: .. ntlIs

Time DN - ver Receiving Dep/Sec Responsiole lnitia s

C-e'-a t or ---- ---------------- ----- -I-S

Figure 23. Document. Transference Receipt.

mnodule into the system, was concerned with details and boundaries. The

rationale for creating test oases was based in the "Equivalence Classes"

and "Boundary-Value" testing techniques. Both are largely heuristic

methods that provide the tester with a set of guidelines. The task was

simplified because Oracle itself does most of the input validation.

However, it is necessary to set the proper options using SQL*Forms to

have those validations performed. Complex validation and integrity rules

are entered by using embedded SQL statements inside the forms (triggers).

To verify whether these operations were properly executed was a more

difficult task. Some triggers update tables that are not presented on

the form's screen. In this situation it is necessary to exit the testing

module to access those tables. Some queries were tested before being

77

inserted into the form. These complex queries were developed using

SQL*Plus. When the desired results were obtained, the query was

integrated to the form with just a few modifications.

The data validation and integrity rules listed in Appendix C were

largely used not only in developing the forms but also in testing them.

Table Locking

When an operator queries a block or updates a record in a block the

base table for the block is automatically locked by SQL*Forms in "share

update mode". This permits more than one operator to update the table

concurrently. When a trigger acts in a table, SQL*Forms issues an

"exclusive lock" on that table. If the table has already been locked in

share update mode by another form, this will cause an error with the

consequent roll back of the operations not committed yet. To avoid this

situation a kind of a "two phase locking protocol" mixed with a "graph-

based protocol" was used to "soften" the locking level. It is a two

phase locking protocol in the sense that locks acquired are not released

until a commit has been issue by the trigger or by the operator. It is a

graph-based protocol because tables are accessed following an established

partial ordering.

Table XIII shows the table ordering used in triggers to delete and

update data that are not accessed from the block base table.

Implementation Difficulties

The most significant difficulty faced in the implementation phase

came from a "bug" in the SQL*Form. The "Trigger Step Attribute Window"

is a feature used when defining triggers. In this window it is possible

78

Table XIII. Partial Ordering for Locking Tables.

Table Name

Document
Reference

Annex
DocLog
Holder

Join
Microfilm

Subject
Classes

Terms
Notes

Relships
SeqNumbers
ToDelete

to define a success and/or a failure label to instruct the trigger about

the next step to be executed after performing the actual trigger step.

According the Oracle manual "SQL*Forms - Designer's Reference" (Zussman

and others, 1987:8-29) we may define only the failure label, if desired.

In this case when the trigger succeeds it is supposed to proceed to the

next step and when it fails it is supposed to proceed to the failure

label. Actually, if only the failure label was defined, the next time

the form was loaded into the SQL*Forms, that label would not be saved

into the INP file. This makes the trigger proceed to the next step on

success or failure. There are some special conditions that avoids this

behavior. If when loading that form you recall that trigger step and

open that Trigger Step Attribute Window again, the label will be recorded

back in the INP file. This "bug" causes confusing form behavior. The

79

form is tested and it is working well. Later, when some modification is

introduced, the form starts to commit errors not related to the

modification that was done. When the designer recalls the trigger to

inspect the cause, he finds the single label there and no reason for the

anomaly. But just because the trigger was recalled, the label is

recorded back in the INP file and the form starts working well again.

The developer becomes afraid of doing modifications in a form. It seems

that whenever a form is loaded it starts making errors that stop only

when the form is completely revised, even when nothing wrong is found.

The solution is just to create a success label also, whenever a failure

label becomes necessary. Success labels alone do not cause any problems.

80

VI. Conclusion

Although the final evaluation has to be made by the user, a natural

way of measuring how well the system fulfills the requirements is by

comparing the implementation to the system requirement specifications.

System Evaluation

A complete design and implementation of a complex database is a

difficult and time consuming task. Even the requirements specification

is a difficult task when the user does not know exactly what is needed,

which frequently happens. The essence of the requirements are the

necessity of a standard software to be run on PC like microcomputers,

able to answer the questions presented in the Requirements Specification

chapter, which are replicated in Table XIII for convenience. Because of

this loose definition the evaluation is somewhat subjective. To show

that the proposed system fulfills the needs the following paragraphs

contrast the system with those questions.

Building the Database. The most important tasks in the system are

those related to collecting, organizing, and updating the information

about documents received and sent. Three of the four main modules in

which the proposed system is divided are dedicated to these tasks. The

fourth module, "Consult Data1ase", concentrates the programs used to

retrieve the stored information. In spite of their importance, most

end-users will not have access to the maintenance modules. They will

only use the module "Consult Database" to retrieve document information.

Because of these system characteristics and because the system

81

Table XIV. Document Control Fundamental Questions.

a. Has the organization received this document?

b. What is this document about?

c. Where is this document?

d. Which sections/departments have already processed this
document?

e. Who is currently analyzing this document?

f. Which documents may I destroy.

g. Which documents are related to this subject?

requirements are expressed as end-users' questions about documents, the

capacity of responding well to those questions depends on having the

right information stored in the database, and the flexibility in

extracting information.

Answering the Questions. The goal of the maintenance modules is to

keep a knowledge base that contains all information needed, logically

divided into three partitions:

- Control Database
- Catalog Database
- Subject Database

The standard way of extracting this information is using any of the

"Consult Database" modules. The basic Consult Database module is the

"Retrieve Document". All document attributes are available in this

module. In spite of that, some of the other consult-database modules may

be more appropriate, depending on the type of search being performed.

All consult-database modules use embedded SQL statements. If some

82

special situation arises, a specific SQL query may be entered, using

SQL*Plus command line. This kind of query only requires of the user a

better understanding of SQL statements. This flexibility offered by the

SQL language enforces the necessity of having all relevant information

about the document collection in the database.

The "control database" encompasses information about document

destination, processing, validity, and custody. It has the information

needed to answer questions "c", "d", "e", and "f". Besides the "Retrieve

Document" module, answers for questions "c" and "e" may also be obtained

using the module "Browse by Holder".

The "catalog database" encompasses information about document

identification attributes entered into the system by the module "Register

Document'. it has the information needed to answer question "a" and

questior "b". One can query browse the database with identification

arguments by using the module "Browse by Header".

Finally, the "subject database" encompasses all information needed

to search for documents about a subject of interest. One can find the

answer to question "g" by querying the database using thesaurus terms as

arguments. This may be accomplished using the module "Browse by

Subject".

Evaluation Conclusion.

By comparing the needs with the proposed system, one concludes the

proposed system well satisfies the requirements. It satisfies the

requirements because it has procedures easily implementable, to store all

data necessary to respond the questions presented in the specification;

because it provides standard and alternative ways to query about those

83

questions; and, finally, because it is appropriate for a standard

software, since its procedures are based on official issues and it was

implemented with a DBMS available for PC like microcomputers and several

other computer hosts.

Extra Features. The system not only satisfies the requirements but

also provides additional information and control. As an example we have

the DRN Verifier, which was introduced to avoid incorrect updates by

having the operator enter a different DRN than that of the document being

updated. Another example of additional information and control is the

"Show Statistics" module. It is impossible to detect instability in the

system, to tell whether the document processing is becoming slower, or to

take corrective actions if there are no standards to compare with. The

referred module provides information for this kind of management. It

gives the statistical mean and standard deviation of the document

processing time, calculated for solved documents that where issued

between two user selected dates. This information is based on the time

lapse between the first and the last custody transference date-time

recorded in the Doc-Log table (document history).

Another significant feature is the subject retrieval capability

provided by the Thesaurus. Note that the thesaurus, because of its

relative independence from the Catalog and Control databases, may be used

for other applications in the same environment. The interface would be a

table like the table Subject, that would relate thesaurus terms and the

other system's primary key. In a school environment, for instance, could

use a student register number as the primary key to retrieve information

84

related to the students or a course code to search for data about

courses.

Recommendations

There are three main recommendations for future research. The

first one is basic to permit the use of the proposed system's subject

retrieval feature. The second is desirable to improve the system

security. The third and last one is concerned with the next natural step

in the proposed system upgrading.

Thesaurus Building. Defining the terms that will constitute the

thesaurus is a very important and also difficult task. We recommend

doing a initial list by collecting suggested terms already used in the

organizations elected to have the system.

Passwords. Forms and reports in the proposed system use a master

user name and password. The modules (forms) were organized and

partitioned in such way that permit password modular assignments by

operator. Operator responsibilities should be well defined and accesses

must be granted based on these obligations.

Document Entering from a File. A natural upgrading is exchanging

documents in computer file format. In this situation, an alternative way

of entering document data in the system would be a program to parse the

received document file and to insert automatically the document attribute

values into the database. Oracle has a utility tool referred as Data

Loader (ODL) that can be used to develop an automatic document entering

module.

85

Conclusion

Overall, this work significantly contributes to solving a basic and

important problem shared for numerous Brazilian Air Force organizations.

The proposed system, as standard software, offers many possibilities, as

to make it possible to query the databases of different organizations and

to exchange documents in computer file format, using the existing

telecommunication networks. It represents a large step ahead to

accelerate the document processing and to improve the decision making.

86

Appendix A: Script File for Creation of Tables, Clusters, and Indexes

The following statements were used in the script file CREATE T.SQL

to create the database in the Oracles's environment. It was run by

typing START CREATET from inside SQL*Plus and pressing Enter. The

database may be moved or replicated using this file or using a export

file (Oracle utility).

CREATE CLUSTER CDOCUMENT
(Dey NUMBER(8));

CREATE TABLE DOCUMENT
(DRN NUMBER(8) NOT NULL,
P-SC NUMBER(2),
P OC NUMBER(2),
P NUMBER NUMBER (5),
PYEAR NUMBER(2),
IDNR NUMBER (5) NOT NULL,
IDCOMPL CHAR(13) NOT NULL,
ORGNAME CHAR(20) NOT NULL,
ISSUEDT DATE NOT NULL,
TITLE CHAR(78) NOT NULL,
DOCTYPE CHAR(7) NOT NULL,
CLASSIF CHAR(1) NOT NULL,
VALIDITY TIME NOT NULL,

JOINSTS CHAR(1) NOT NULL,
IROCSTS CHAR(1) NOT NULL,
FORMSTS CHAR() NOT NULL
HISTSTS CHAR(l) NOT NULL,
ARCHSTS CHAR(1) NOT NULL)

CLUSTER CDOCUMENT (DRN);

CREATE INDEX I P NUMBER
ON DOCUMENT (PNUMBER ASC);

CREATE INDEX IIDNR
ON DOCUMENT (IDNR ASC);

CREATE INDEX IORGNAME
ON DOCUMENT (OR2AME);

CREATE TABLE REFERENCE
(DRN NUMBER(8) NOT NULL,

87

REE CHAR(20) NOT NULL)
CLUSTER C DOCUMENT (DRN);

CREATE TABLE ANNEX
(DRN NUMBER(8) NOT NULL,
ANNEX CHAR(20) NOT NULL)

CLUSTER CDOCUMENT (DRN);

CREATE TABLE JOIN
(MAIN NUMBER(8) NOT NULL,
JOINED NUMBER(8) NOT NULL)

CLUSTER CDOCUMENT (MAIN);

CREATE TABLE MICROFILM
(DRN NUMBER(8) NOT NULL,
F_TYPE CHAR(I) NOT NULL,
F NO NUMBER(4) NOT NULL,
FIRST NUMBER(5) NOT NULL,
LAST NUMBER(5))

CLUSTER CDOCUMENT (DRN);

CREATE TABLE DEPARTMENT
(DEPOODE CHAR(6) NOT NULL);

CREATE TABLE HOLDER
(DRN NUMBER(8) NOT NULL,
DEPCODE CHAR(6) NOT NULL,
NAME CHAR(15))

CLUSTER CDOCUMENT (DRN);

CREATE TABLE DOCLOG
(DRN NUMBER(8) NOT NULL,
LDATE DATE NOT NULL,
LTIME CHAR(5) NOT NULL,
SENDDEP CHAR(6) NOT NULL,
RECDEP CHAR(6) NOT NULL)

CLUSTER CDOCUMENT (DRN);

CREATE VIEW DOCLOG VIEW AS
SELECT
TO_NUMBER (TO CHAR (LDATE,'J')

SUBSTR(LTIME, 1,2)
: SUBSTR(LTIME,4,2)) JULIAN D T

DRN, LDATE, LTIME, SEND_DEP, RECDEP
FR DOC LOG;

CREATE TABLE SUBJECT
(DRN NUMBER(8) NOT NULL,
TERM CHAR(25) NOT NULL)

CLUTER CDOCUMENT (DRN);

CREATE INDEX SUBJECT TERM

88

ON SUBJECT (TERM ASC);

CREATE CLUSTER CTERM
(TERM CHAR(25));

CREATE TABLE TERMS
(TERM CHAR(25) NOT NULL,
CLASSCD CHAR(2) NOT NULL)

CLUSTER CTERM (TERM);

CREATE TABLE CLASSES
(CLASSCD CHAR(2) NOT NULL,
CLASS CHAR(20) NOT NULL);

CREATE TABLE RELSHIPS
(MAINTR CHAR(25) NOT NULL,
REL CHAR(2) NOT NULL,
SECTR CHAR(25)

CLUSTER CTERM (MAINTR);

CREATE TABLE NOTES
(TERM CHAR(25) NOT NULL,
NOTE CHAR(60) NOT NULL)

CLUSTER CTERM (TERM);

CREATE TABLE DOC TYPE
(DOC'1YPE CHAR(7) NOT NULL);

CREATE TABLE CLASSIFICATION
(CLASSIF CHAR(1) NOT NULL,
CLASSIF NAME CHAR(12) NOT NULL);

CREATE TABLE RELNAME
(REL CHAR(2) NOT NULL,
RNAME CHAR(8) NOT NULL);

CREATE TABLE SFQ1MBERS
(LASTNUMBER NUMBER(8),
TABLENAME CHAR(30));

CREATE TABLE TO DELETE
(DRN NUMBER(8));

INSERT INTO CLASSIFICATION VALUES ('P','PUBLIC');
INSERT INTO CLASSIFICATION VALUES ('R' ,'RESERVED');
INSERT INTO CLASSIFICATION VALUES ('C', 'CONFTDENTIAL');

INSERT INTO RELNAME VALUES ('BT', 'BROADER');
INSERT INTO RELNAME VALUES ('NT' , 'NARROWER');

89

INSERT INTO RELNAME VALUES ('RT, 'RELATED');
INSERT INTO RELJNAME VALUES ('US' ,'USE');
INSERT INTO REULAME VALUES ('UF' ,'USED FOR');

INSERT INTO DEPARTMENT VALUES ('COMMAN');
INSERT INTO DEPARTIENT VALUES ('PROTOC');
INSERT INTO DEPARTMENT VALUES ('ARCH 1');
INSERT INTO DEPARTMENT VALUES ('ARCH2');
INSERT INTO DEPARTMENT VALUES ('DEP 1');
INSERT INTO DEPARTMENT VALUES ('DEP2');
INSERT INTO DEPARTMENT VALUES ('DEP3');
INSERT INTO DEPARTMENT VALUES ('DEP4');
INSERT INTO DEPARTMENT VALUES ('SEC 1');
INSERT INTO DEPARTMENT VALUES ('SEC2') ;

INSERT INTO DOC TYPE VALUES ('APRECIA');
INSERT INTO DOCTYPE VALUES ('DESPACH');
INSERT INTO DOC TYPE VALUES ('ENCAMIN');
INSERT INTO DOC TYPE VALUES ('ESTIMAT');
INSERT INTO XDOCTYPE VALUES ('INFO');
INSERT INTO DOC_TYPE VALUES ('OF');
INSERT INTO DOCTYPE VALUES ('RELAT');
INSERT INTO DOCTYPE VALUES ('REL ESP');
INSERT INTO DOC TYPE VALUES ('REL PER');
INSERT INTO DOCTYPE VALUES ('REQ');
INSERT INTO DOCTYPE VALUES ('BOL');

INSERT INTO SEQNUMBERS VALUES (89100000, 'DOCRECEIVED');
INSERT INTO SEQNUMBERS VALUES (89200000, 'DOCSENT');
INSERT INTO SEQNUMBERS VALUES (89100000, 'PRINTPS RECEIVED');
INSERT INTO SEQNUMBERS VALUES (89200000, 'PRINT PS SENT');

INSERT INTO CLASSES VALUES ('00'r iOTy);
INSERT INTO CLASSES VALUES ('01', 'ORGANIZATION');

INSERT INTO TFRMS VALUES ('ROOT'','00');
INSERT INTO TERMS VALUES ('ORGANIZATION NAME','01');

INSERT INTO RELSHIPS VALUES ('RGOT',lBT',");
INSERT INTO RELSHIPS VALUES ('ORGANIZATION' ,'BT', ' ,OX')
INSERT INTO RELSHIPS VALUES ('ROOT','NT' ,'ORGANIZATION');

COfIT

EXIT

90

Appendix B: Screen Templates

The symbols and conventions used on the screen templates are listed
in Table X.

Screen AQ, Main Menu

DOCUMENT OONXTOL AND RETRIEVAL SYSTEM1

MAIN MENU

1 - Register Document

2 - Update Database

3 - Consult Database

4 - Maintain Thesaurus

Type your choice: C Press Enter to accept
Ctrl-Z to exit

AO

91

Screen Al, Register Document

DOCUMENTI ONT)L AND RETRIEVAL SYSTEM

MAIN MENU

1 * Register Document Register Document

2 - Update Database 1 - Enter Document
2 - Print Processing

3 - Consult Database Sheet

4 - Maintain Thesaurus

Type your choice: C Press Enter to accept
Ctrl-Z to exit

Al

Screen All, Enter Document

E N T E R D O C U M E N T Block 1

Automatic DRN C DRN 99999999 Validity DD-MON-YY

Protocol No 99-99/99999/99 Doc. Type CCCCCCC Classif C

IDoc. Identif. 99999/CCO Issue Date DD-MON-YY

Organization CCCCCCCCCCCCCCCCCCCCC Status: C C C C C

Title Join Proc Form Hist Arch

Reference CCCCCCCOCCCCCCCCCC Block 2

Annex U Block 3

All F7 query F10 insert/update Ctrl-Z Menu

92

Screen A12, Print Processing Sheet

PRINT PROCESSING SHEET

Printing Status:
Received Sent

A - Last Document Printed 99999999 99999999

B - Last Document Entered 99999999 99999999

Options:

1 - Print Received Documents from A to B.

2 - Print Sent Documents from A to B.

3 - Print a single document, given the DRN.

Enter your choice: C

A12 Enter to print Ctrl-Z to Menu

Screen A2. Update Database

DOCUMENT CO)NTROL AND RETRIEVAL SYSTEMI

MAIN MENU te Databe

1 - Generic Update
1 - Register Document 2 - Change Validity

3 - Doc. Destruction
2$ Update Database 4 - Join Documents

5 - Transfer Custody
3 - Consult Database 6 - Microfilm Data

7 - Subject Indexing
4 - Maintain Thesaurus

Type your choice: C Press Enter to accept

Ctrl-Z to exit
A2

93

Screen A21-1, Generic Update

Page 1 GE N E R I C UPDATE Block i

DRN 99999999

Protocol No 99-99/99999/99 Doc. Type CCOCCCC Classif C

Doc. Identif. 99999/CCCCCCCCCCC Issue Date DD-MON-YY

Organization CX XCCCCCCCCCCCCCCCCCCO Status: C C C C C
Title Join Proc Form Hist Arch

Reference CCCCCCCCCXJCCCC Block 2

Annex CX0CCCCCCCCCCCCC Block 3

A21-1 F7 query F10 update F6 del PgDn next block/pg Ctrl-Z Menu

Screen A21-2, Generic Updat

Page 2 G E N E R I C UPDATE

HOLDER Block 4

Department CCCCCCC Holder Name CCCCCCCCCCCCCC

HISTORY Block 5

Date Time Sender Receiver
DD-MON-YY HH:MI COCCCCC CCCCCC

PgUp previous block/page PgDn next block/page
A21-2 F7 query F10 update/insert Sh-F6 delete Ctrl-Z to Menu

94

Screen A22 Change Validity

CHANGE VALIDITY

DRN 99999999 - 99 Validity DD-MON-YY

A22 F7 juery F10 update Ctrl-Z Menu

Screen A23, Document Destruction

DOCUMENT DESTRUCTION

Block 1
Reference CXXXXXXXXXXXXCOCCOCCCCCC

DRN 99999999 - 99 Holder (CXXXXCC) Block 2

Noe ntrareeec o beisre o ahdcmn rcse

99 ip dt

99 99 99

99 99 99

99 99 99

99 99 99

Nt:ER reference t eisre o ahdcmn rcse

DR F query99 hf-F9 proessderu(cion C Blo-cMen

tl tt 95

Screen A4 Join Documents

JOIN/SEPARATE DOCUMENTS

Main Document 99999999 - 99 Joined Document 99999999 - 99

Scee A2,Tase oueto iC s

2,- Hode Nam tod

3 Conul Dat Ia

Typ you coc:CPesEtroacpto t

A24 hif-F6 epaateCtrl-Z to n

ScenA25L rnfrDcmn utd

9 MA9N ME9U9

99 9 9 99io

Typduplicatehfield FlPrcreate/updateajoins

A24Shit-6 sparteCtrl-Z to Menu

Scree .rnfrDcuetCso~

DOCMET X)TRO AD ETIEVL Y96~

Screen A251, Transfer Custod - Department

TRANSFER CUSTODY - DEPARTMENT

Sending Receiving
Department Department Date Time Document
9999999 9999999 DD-MON-YY HH:MI 99999999-99

A25 F3dplcte il 1 crat recrd CtlZ to en

Scee A252 Trnse ,s Hode Nm

Deatmn Hode Nam Doue tt

ICOC 99 99CCCOC 99999999 9

I , '9tttI

A251 F3 duplicate field Fl0 create records Ctrl-Z to Menu

Screen A252, Transfer s y - Holder Name

TR A NS FE R C US T ODY - HOLDER NAME

Department Holder Name Document

99999999999

99 99 99 99

.9 99 99 99

99 99 99 99

99 99 99 99

99 99 99 99

t252FlOupdte tr-iMn

It tt tt97

Screen A26, Update Microfilm Data

UPDATE MICROFILM DATA

DRN Ver Type Number First Frame Last Frame
99999999- 99 C 9999 99999 99999

,i 55 5, 55 ,o .,

1A26 F7 query F10 insert/update Shift-F6 delete Ctrl-Z Menu

Il Iii I I

Screen A7 Subject Indexing

SUBJECT INDEXING

DRN Ver Thesaurus Term Class Name

99999999 -99 CCCCCCCCCCCCC CCCOCXCaOCaXOCCX

55 55I 5 ItI I

F9 look up terms Shift-F6 delete
A27 F10 insert/update Ctrl-Z Menu

98

Screen A3, Consult Database

DOCUMENT CXONTROL AND RETRIEVAL SYSTEM

MAIN MENU
Consult Dtabae

1 - Register Document 1 - Browse by Holder
2 - Look Thes. Terms

2 - Update Database 3 - Browse by Header
4 - Browse by Subject

3 * Consult Database 5 - Retrieve Document

4 - Maintain Thesaurus

Type your choice: Press Enter to accept
Ctrl-Z to exit

A3

Screen A31, Browse Documents By Holder

BROWSE BY HOLDER

-> -> -> Date of ->

IDepart Holder N. DRN Prot#/yy Doc Ident. Type Register Title
CCCCCC CC(CXXXCC 99999999 99999 99 99999 CCCC CCCC DD-MON-YY CCCCCCCCCI

9o I9 of of 99 99 9 99 t 99

11, It 1s of of 11 #1 t 1

99it it of It t to of of of

tt its It os f to 1. of to st

€ to of to It 11 It to of

¢It ,o to t t to to to t

99 99 99 99 99 99 99 99 99 99

A31 F7 query :V variable % wildeard(*) _wildcard(?) Ctrl-Z Menu

99

Screen A32, Look Up Thesaurus Terms

DOCUMENT WXNTIR)L AND RETRIEVAL SYSTEM1

MAIN MENU

Cnsult Dtabae

1 - Register Doc Loo Up es. erms

2 - Update Databas 1 - Classes
2 - Terms & Relations t

3 * Consult Data 3 - Terms within Class t
4 - Terms Sequentially

4 - Maintain Thesa

Type your choice: Press Enter to accept
Ctrl-Z to exit

A32

Screen A321, Look Up Thesaurus Classes

LOOK UP THESAURUS- CLASSES

Class Code CC Name CX[CCCCCCCCCCCC(CCC

. to

vo of
it t9

to to

itt

of it

11 to

A321 F7 query :V variable % wildeard(*) -wildcard(?) Ctrl-Z Menu

1001

Screen A322, Look Up Terms and Relationships

L OO K U P T H E S A U R U S - TERMS D R ioNSHIPS

Term Class Code Class Name Block 1

COOCXOXCXXCCCOCGCC cc (CC-CCCCCCCCCCC)

(CCCCCCCC) () Block 2

IA322 F7 query F5 copy V: variable % wildcards Ctrl-Z Menu

Screen A323, Look Up Terms Within Classes

LOOK UP THESAURUS -TERSWITHIN CLASSES

Class Code Term
cc CCCOXCCCCOCCCCCCCCC CCCCCCCCC(XC

2 9 9r

910 9

999 99

99, 9 99

99 9 99

99 9 99

A32 9F qury 9 coyV9aibl9 idarsCr-~n

Scen 93 Lok 99Tem 9ihn9lse

99OK9U T99 UR S-TI ~HI . S_

Cl9s CodeTer

99 99 9

99 99 99

9t 99 99

A33F qur Vvaibe% idad() w ttad? tr- eu

t, tt101

Screen A324, Look Up Terms in Sequential Order

LOOK UP T H E S A U R U S - TE S IN SEQUENTIAL ORDER

Name Class Code
C~c0~cCCCCcCC~ccCcCC cc (CCCCCOC~X~ ~ CCcOCOCC)

to 1o t

A324 F7 query :V variable % wildcard(*M wildcard(?) Ctrl-Z Menul

Screen A33 Browse Documents b~y Headers

BROWSE BY HEADERS

DRN ID* Issue Org. Type C Issue.Dt Title

99999999 CCOCC CCCCCCCCCCCC 00CC C DD4SJN-YY CCCCCCCCOCCCOCCCCCCCCXCC

1 1It to ifoft

t9 if 9ft9 99 99 99

it to 11I o fo

it to 'Ito toi

ofi t to to

99 of of it 99 It to

A334 F7 query :V variable No wildard(*) _ wildard(?) Ctrl-Z Menu I

999999999C DD 9N-91

t9 99 99 99 99 99 99

99 99 99 99 99 99 99

99 99 99 99 99 9t 99

99 t9 99 99 99 99 99

99 99 99 99 99 t9 99

A3 7qeypVvral t!wildcard(t tidor(? tr ZMn

to to t o t o102

Screen A34-1. Browse Documents By Subject

Page 1 B R OW S E BY S U B J E C T

Term to browse by Other terms for which the document is indexed

9, 9, 99

A;4- F7 qura nx ae CtlZMn

99999999 99CCCCC 99CCD-O CCCCCCCCCCCCCC,t tt toof #It

it tt t!0 f ft

itt to it 11 11I

IV t, It if ifo

•ti 19 it to ofit 9 19, t #Ii

tot of too

A34-2 F7 query Tab next page Ctrl-Z Menu

Screen A34-2, Browse Documents By Subjict

Pge 2 B ROW SE BY S UB JE CT

DRN ID# Issue Organ Type C Issue Dt Title

99999999 99999 COICN2CCGC CCC C DD-4Z)N XC NN
9, 99 99 99 99 9Y *9

9, 99 99 99 99 9t 99

99 99 99 99 99 tt 99

99 99 99 99 99 99 99

99 9t 99 99 99 99 99

9, 99 99 99 99 99 99

99 99 99 t9 99 99 99

9, 9, 99 99 99 99 .9

99 99 9, 99 99 9, 99

A34-2 F7 query Tab previous page Ctrl-Z Menu

103

Screen A35-1, Retrieve Documents

Page 1 R E T R I E V E DOCUMENTS (COMPLETE) Block 1

DRN 99999999 99 Validity DD-MON-YY

Protocol No 99-99 / 99999 / 99 Doc. Type CCCCCC Classif C

Doc. Identif. 99999 / CCCCCCCCXXX Issue Date DD-MON-YY

Organization CCCCCCCCCCCCCCCC Status: C C C C C
Title Join Process Form Hist Arch

SC [CCC

Subject Index: Block 2
DRN 99999999 Term CCCCCCCCCCCCCCCCCCCCCCCC Class CCCCCCCCCCCCCCCCCC

A35-1 F6 help F7 query F5 browse PgDn see more Ctrl-Z Menu

Screen A35-2, Retrieve Documents

Page 2 R E T R I E VE D O C UME N T S

Reference: CCCCCCCCCCCCCCCCCCCC (999999999) block 3

Annex: oC (999999999) block 4

Join: Main 99999999 Joined 99999999 block 5

Mcofilm: Type C * 9999 First 99999 Last 99999 (99999999) block 6

Holder: Name CCCCCCCCCCCCC Dep CCCCCC DRN(99999999) block 7

History: Date DD-MON-YY HH:MI Send CCCCCC Rec CCCCCC DRN (9999999)

b l o c k 8 i t.
99 99 to t of

to of It it 11

of to .1 #1 It

of is It to it

A35-2 F7 query PgUp page I Ctrl-Z Menu

104

Screen A36, Show Statistics

SHOW STATISTICS

Enter period: from DD-MON-YY to DD-MON-YY

Total # doc 999999 Processing time in days: mean 999 std dev 9999
Status: Processing

Form % Join % Phase %
paper 999999 999 indep 999999 999 processing 999999 9991

microfilm 999999 999 main 999999 999 waiting 999999 9991
destroyed 999999 999 joined 999999 999 solved 999999 999'

History % Archive Sec %
normal 999999 999 classified 999999 999

ialteration 999999 999 unclassified 999999 999

Thesaurus:
Classes 99 terms 999999 Scope Notes 999999 Relationships 999999

Indexed doc: # 999999 % 999 # of terms by indexed doc: avrg 99 std 9991

A36 F5 calculate F7 clean fields Ctrl-Z Menu

Screen A4, Maintain Thesaurus

DOCUMENT CON'TROL AND RETRIEVAL SYSTEM

MAIN MENU

Maintain Tesaurus
1 - Register Document

1 - Classes
2 - Update Database 2 - Terms

3 - Relationships
3 - Consult Database 4 - Print Thes.Terms

4 * Maintain Thesaurus

Type your choice: Press Enter to accept
Ctrl-Z to exit

A4

105

Screen A41, Maintain Thesaurus Classes

MA NT A IN T HES A U R USCCASSES

Class Code CC Name (CCCCCCCCCCCCCCCCC

A41 F10 insert/update Shift-F6 delete the class Ctrl-Z Menu

Screen A42 * Maintain Thesaurus Terms

M A NT AIN T H ESAURUS - TERMiS
block 1

Name Class Code
CC!COCJGGOOCCCC~CIccCCOCC CC CCCCCCCCCCCXJCCCCC

Not9es:

bloc 299

A42 910 inetudt99f-6dlee F ur t ZMn

99 99109

Screen A43, Maintain Relationships

M A N T A I N T H E S A U R U S - RELATIONSHIPS

Main Term Relation Secondary Term
cccccccccccc0xcccccccc cc cc cccccccc cccccccccccccccccccccccc

A4 1 netpt Sit-F del F5lo ptrm tlZMn

S e 99 99 9u

M At Ng T SAURUS- RN EM

99 ,9 99 99

IA44 Ente acceupt Sit-6d F5lo p choice Ctrl-Z Menu

c 4 Thesur 9e

MA 9 99 IN H99 A99 IIT II

A44 l netudt SitF e Ente lookep thois Ctrl-Z Menu

Scren A4, Prnt hesarus erm

Appendix C: Validation and Integrity Rules

Modules A0, Al, A2. A25, A3, A32, A4 - Menu Tree

Input Condition: Insertion, Update, Deletion, and er.

" Do not permit these operations in the module.

Input Condition: Value of Choice.

" According the value of the choice call the appropriated module.

Module All - Enter Document

Input Condition: Insertion.

* Verify the primary key of the table Document: DRN.

* Verify the primary key of the table Reference: DRN, REFER.

• Verify the primary key of the table Annex: DRN, ANNEX.

* Generate automatically the DRN for a received document when the control
field "Automatic DRN" has the value R.

. Generate automatically the DRN for a sent document when the control
field "Automatic DRN" has the value S.

• Permit the operator to type the DRN that will be used for the insertion
when the control field "Automatic DRN" has the value N (none).

• Skip the DRN field when the control field is set to generate the DRN
automatically.

. Insert automatically a validity date 5 years ahead of the insertion
date.

. Verify if exists in the table Doc Type the value entered in the
document type field.

. Display by operator request, in the field Document Type, the values
available for this field.

.Verify whether there exists in the table OrgName the value entered in
the field Organization.

.Verify whether there exists in the table Classification the value
entered in the field Classification.

108

* Display by operator request, in the field Document Classification, the
values available for this field.

" Insert automatically the following status values:
" Join = I,
• Process = P,
• Form = P,
• History = N.

• Insert automatically the Archive status:

• If document classification is P (public), then ARCHSTS = U;

" If document classification is R or C, then ARCHSTS = C.

• Insert automatically a row in the DOCLOG table with the following
values:

" DRN = the document's DRN,
• LATE and LTIME = date and time of registering,
• SEND DEP = PIF)TOC,
• RECDEP = OOMMAN.

* Insert automatically a row in the HOLDER table with the following
values:

DRN = document DRN,
* DEPODE = COMMAN,
.NAME = NULL.

Inpt Condition: Deletion.

* Do not permit to delete a document (block 1).

Input Condition: Update.

* Do not permit to change the DRN, Validity, and all status fields.

Input Condition: Q

* Order queries by DRN in descendent order.

* Permit to enter a query condition based on document table valuee.

* Display automatically, when the operator queries the document block,
the Reference and Annex rows that correspond to the DRN in the DRN field.

109

Module A12 - Print Processing Sheet

Input Condition: Pre-Form.

* Show the DRN of the last document entered and the DRN of the last
document printed, either received and sent.

Input Condition: Value of Choice.

* When Choice is 1, generate the processing sheets that correspond to the
received documents that have a DRN higher than the DRN of the last
document printed, and a DRN smaller or equal the DRN of the last document
entered.

• When Choice is 2, generate the processing sheets that correspond to the
sent documents that have a DRN higher than the DRN of the last document
printed, and a DRN smaller or equal the DRN of the last document entered.

• When Choice is 3, ask for a DRN to print the correspondent processing
sheet.

• In either choices 1, 2, and 3, also direct the output to a DOS ASCII
file.

• After printing choices 1 and 2, update the table Seqnumbers (where the
last DRN entered and printed are kept) setting the last DRN printed equal
the last DRN entered.

Module A21 - Generic Update

Input Condition: Insertion.

* Do not permit insertion in the table Document (to create a new
document).

• Insertions in all other tables must use the same DRN of table Document.

* Verify the primary key of the table Reference: DRN, REFER.

* Verify the primary key of the table Annex: DRN, ANNEX.

* Verify the primary key of the table Holder: DRN.

* Verify the primary key of the table DocLog: DRN, LDATE, SENDDEP.

* Rules for Holder and Document Log tables are the same of thoje on
update input condition.

Input Condition: Update.

Do not permit to update the DRN in the table Document.

110

* Verify in the table DocType the existence of the value entered in the
field Document Type.

. Verify in the table OrgName the existence of the value entered in the
field Organization.

. Verify in the table Classification the existence of the value enteed

in the field Classification.

. If the document is Joined or Destroyed, do not permit to access the
Holder and the Document Log tables.

* Update the table Holder automatically when a row is inserted, updated,
or deleted in the table DocLog (Historic). Set the field Holder Name
equal null and the field Holder Department equal the latest department
that received the document.

. Set the document history status equal "A" (alteration) if there exists
a row in the table DocLog in which the sending department is different
from the receiving department in the previous row. Otherwise, set the
document history status equal "N" (normal). Example: assume there are
two rows in the Dc Log table, ordered by DRN, Date, and Time, in
ascendent order, with these values:

DRN Date Time Send Dep Rec Dep
99999999 DATE1 TIME1 DEPI DEP2
SAME DRN DATE2 TIME2 DEP3 DEP4

The underlined departments should be the same. As they are not the same,

set the document history status equal A.

Input Condition: Deletion.

* If the document to be deleted is a Main document, delete also all
corresponding joined documents in the join table.

. Each document deleted from the table document, has to be deleted also

from the following tables:

* Reference
Annex
Doc_Log

* Holder
" Join
" Microfilm
" Subject

Input Condition: Query.

* Order queries by DRN in descendent order.

111

. Permit to enter a query with conditions based only on columns of table
Document. Query all other tables by the DRN entered in the table
Document.

. Display automatically, when the operator queries the document block,
the Reference and Annex rows that correspond to the document.

. If the document is Joined or Destroyed, do not permit to access the
Holder and the Document Log tables.

. Display automatically, when the operator turns to the second page of
the form, the Holder and Doc_Log rows that corresponds to the DRN entered
on table Document.

. Display again the rows of tables Doc_Log and Holder after an updating,
deletion or insertion in table Doc_Log.

Module A22 - Change Validity

Input Condition: Insertion and Deletion.

* Do not permit these operations in the module.

Input Condition: Update.

* Before updating, test the Verifier correctness.

Form A23 - Process Document Destruction

Input Condition: Insertion and Update.

" Do not permit these operations in the module.

Input Condition: Process Document Destruction.

" Test the Verifier(s) correctness.

" If the document is a Main document in a Join relationship process also
the document that are joined to it.

Delete the document(s) from the tables:

" Reference
" Annex
" Doc_Log
" Holder
" Join
" Microfilm
" Subject

112

" Set the status of each document equal "D" (table Document).

" Insert a reference in the Reference table for each document that was
processed.

Module A24 - Join Documents

Input Condition: Update.

" Do not permit this operation in the module.

Input Condition: Insertion.

" Verify the primary key of the table Join: JOINED.

" Verify whether document exists and its form status is not destroyed.

" Verify whether the Main document is already a Joined document.

" Verify whether the Joined document is already in the table.

" Verify whether the Main and Joined documents are the same.

" Test Verifiers correctness.

" Set the join status of the Main document equal "M", and of the Joined
document equal "J".

" Delete the Historic and Holder of the joined document.

Input Condition: Deletion.

" Set the join status of the Joined document equal "I".

" Set the joined document holder department and holder name equal to
those of the Main document.

. Insert in the joined document log (History) the latest transference in
the main document history.

. Set the join status of the Main document equal "I", only if there is
not any other document joined to it.

Module A251 - Transfer Custody Department

Input Condition: Update and Deletion.

* Do not permit these operations in this form.

Input Condition: Insertion.

113

" Verify the primary key of the table Doc_Log: DRN, LDATE, SENDDEP.

" Verify the existence of the sending and receiving departments.

" Verify the existence of the document in the Doc_Log table.

" Verify whether the document is joined.

" Verify whether the document was destroyed.

" Test Verifier correctness.

" Update the table Holder. Set the field Holder Name equal null and the
field Holder Department equal the receiving department of the latest row.

. Set the document history status equal "A" (alteration) if there exists
a transference of the document in which the sending department is
different from the receiving department in the previous row. Otherwise,
set the document history status equal "N" (normal). Example: assume
there are two rows in the Doc_Log table, ordered by DRN, Date, and Time,
in ascendent order, with these values:

DRN Date Time SendjDep Rec Dep
99999999 DATEI TINEI DEPI DEP2
SAME DRN DATE2 TIME2 DEP3 DEP4

The underlined departments should be the same. As they are not the same,
set the document history status equal A.

Module A252 - Transfer Custody Holder Name

Input Condition: Insertion and Deletion.

" Verify the primary key of the table Holder: DRN.

" Do not permit these operations in the module.

Input Condition: Update.

" Update only the Holder Name.

" Test the DRN Verifier before updating.

Input Condition: Q .

" Query by all columns of table Holder.

114

Module A26 - U Microfilm Data

Inpt Condition: Insertion.

* Verify the primary key of the table Microfilm: DRN, FTYPE, FNO,
FIRST.

" Verify whether the document exists in table Document.

" Test Verifier correctness.

" Change Form status to M (microf, lined).

Input Condition: Lhate and Deletion.

" Test Verifier Correctness.

" Do not permit to update the PRN field.

" Update Form status to P (paper) when the last row of a document is
deleted from the table Microfilm.

Module A27 - Subject Indexing
Input Condition: Insertion and U

" Verify the primary key of the table Subject: DRN, TEII.

" Verify the document existence in the table document.

. Test the Verifier correctness.

Input Condition: Deletion.

• Test the Verifier correctness.

Input Condition: Q .

• Display the class of each term.

" Query by all columns of table Subject.

" Permit a direct access to Look up Terms e Relationships form.

" Permit to copy a term from the Look up Terms form and paste it on the
Subject Indexing form.

115

Module A31 - Browse by Holder

I Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Inpt Condition: Query.

" Query by the holder department, holder name, and DRN.

" Order queries by department, holder name, and DRN in descendent order.

" For each document retrieved by the query, show the corresponding

columns of table Document.

Module A321 - Look up Thesaurus Classes

Input Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Input Condition: Query.

" Order queries by CLASS, CLASSCD (class code).

Module A322 - Look up Thesaurus Terms and Relations

Input Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Input Condition: Query.

" Query by term and class.

" Order queries by CLASSCD (class code), TERM.

" For each term retrieved by the query, show the existing scope note,
from the table Notes, and the existing relationships and corresponding
terms, from the table Relships.

. Permit to copy a term into a memory variable to be possible to paste
the term in a calling module.

116

Module A323 - Look up Thesaurus Terms within Classes

Input Condition: Insertion, Update, and Deletion.

• Do not permit these operations in the module.

Input Condition: Query.

" Query by term and class.

• Order queries by CLASSCD, TERM.

Module A324 - Look p Thesaurus Terms Sequentially

Input Condition: Insertion, Update, and Deletion.

* Do not permit these operations in the module.

Input Condition: Query.

* Query by term.

Order queries by TERM.

For each term retrieved, show the corresponding class name, from the
table Classes.

Module A33 - Browse by Header

Input Condition: Insertion, Update, and Deletion.

* Do not permit these operations in the module.

Inpt Condition: Query.

* Query by DRN, document identification number, issuing organization,
issued date, document type, classification, and document title.

. Order queries by DRN in descendent order.

Module A34 - Browse by Subject

Inpt Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Input Condition: Query.

" Query by term, from the subject indexing table.

117

* For each document retrieved, show other terms under which the document
is also indexed.

. For each document retrieved, show from the table Document its
corresponding DRN, document identification number, issuing organization,
issued date, document type, classification, and document title.

. Order queries by term and DRN in descendent order.

Module A35 - Retrieve Documents

Input Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Input Condition: Query.

" Query by all attributes a document may have, from all tables.

" Order queries by DRN in descendent order.

Module A36 - Show Statistics

Input Condition: Insertion, Update, and Deletion.

" Do not permit these operations in the module.

Input Condition: Query.

" Query tables by a period of time.

" Calculate statistics from database tables.

Module A41 - Maintain Thesaurus Classes

A class is also a thesaurus term. We may think in a class as a

implicit one level hierarchical relationship between a term (the class

name) and other terms which are subordinated to it. Explicit

hierarchical relationships are expressed by the hierarchical

relationship. All terms that have explicit hierarchical relationships

have to be descendants of the term ROOT, which is the root of the

118

explicit hierarchical relationship tree. When a class is created it is

also created a hierarchical relationship connecting the class name

(actually the term which corresponds to a class name) to the root of the

hierarchical tree. All hierarchical relationships subtrees of this class

that will be further created will be connected to the hierarchical tree

trough the class name.

Because of these characteristics, some operations in the table

Class have consequences in the tables Terms, Notes, Subject, and

Relationships.

Input Condition: Insertion.

* Verify the primary key of table Classes: CLASSCD.

* Verify the uniqueness of the class name in the table Classes.

* Verify the uniqueness of the class name in the table Terms.

* Insert automatically in the table TERM a term corresponding to the
class being created (which will be referred as the "class-term" like the
example below:

Table Classes: Class Name = 'JOBS,, Class Code = '04'
Table Terms: Term Name = 'JOBS', Class Code = '04'

* Insert automatically in the table Notes a note equal "CLASS"
corresponding to the class-term.

. Insert automatically in the table Relships a hierarchical relationship
(and the correspondent reciprocal entry) where the main term is the
class-term that is being inserted, the relationship is broader term, and
the secondary term is "ROOT".

Input Condition: Update.

Verify the primary key of table Classes: CLASSCD.

Verify the uniqueness of the class name in the table Classes.

* Verify the uniqueness of the class name in the table Terms.

Do not permit updating of classes 00 and 01. Give a message saying they
are owned by the system.

119

" Update in the table Subject the corresponding terms.

" Update in the table Terms the corresponding term.

" When the class code was updated, update in table Terms the class code
of all terms that pertain to the class being update

* Update in table Notes the corresponding terms.

* Update in table Relships the rows that have either the main term or the
secondary term equal the class name.

Input Condition: Deletion.

* Do not permit deleting the classes 00 and 01. Give a message saying
they are owned by the system.

. Delete in the table Subject all rows that have the column term equal
the class being deleted.

. Delete in the table Relships the rows that have either the main term or
the secondary term equal a term pertaining to the class being deleted.

. Delete in the table Notes the rows that have the column term equal a
term pertaining to the class being deleted.

. Delete in the table Terms the rows that have the column class code
equal the class code of the class being deleted.

Input Condition: Query.

" Order by class code.

" Query by class code and class name.

Module A42 - Maintain Thesaurus Terms

Input Condition: Insertion.

Verify the primary key of the table Terms: TEM.

* Verify the primary key of the table Notes: TERM, NOTE.

Input Condition: Update.

Do not permit updating class-terms.

* Update in the table Subject the corresponding terms.

Update in table Notes the corresponding terms.

120

* Update in table Relships the rows that have either the main term or the

secondary term equal the class name.

Input Condition: Deletion.

. Delete in the table Subject all rows that have the column term equal
the term being deleted.

. If there exist hierarchical relationships in the table Relships
involving the term being deleted, disconnect the deleting term from the
hierarchical tree.

. Delete in the table Relships the rows that have either the main term or
the secondary term equal the term being deleted.

. Delete in the table Notes the rows that have the column term equal the
term being deleted.

Input Condition: Query.

Order queries by TERM (table Terms).

Display for each term shown in the table Terms the corresponding class
name.

. Display for each term shown in the table Terms the corresponding scope
notes.

. When querying the table Scope Notes, display for each scope note the
correspondent terms.

. Permit to copy and paste between blocks and to and from other forms.

Module A43 - Maintain Thesaurus Relationships

The Hierarchical Tree.

The hierarchical relationships form a hierarchical tree. The root of
this tree is the term "root", which is the single term of a class created
by the system, also named "root", which has the class code "00". The
nodes at the first level of this tree are composed of class names.
Therefore, each class is a child of the root. These relationships are
maintained automatically when a class is created, updated or deleted.
All terms that have hierarchical relationships are descendants of their
classes.

Input Condition: Insertion.

Do not permit the operator to insert relationships having "root" as the
main term or secondary term.

121

. Verify the primary key of the table Relships: main term, relationship,

and secondary term.

" Verify the term existence in the table Terms.

" Verify the uniqueness of a main term in a "use" relationship, and its
reciprocal entry secondary term in a "used for" relationship.

. Verify uniqueness of MAINTR, 'BT' (broader term) relationship and its
reciprocal entry SECTR, 'NT' (narrower term).

. Do not create hierarchical relationships with terms that have a "use"
relationship.

• Do not permit a term to have both the "use" and the "used for" synonym
relationships.

.Verify that both terms in a "broader term." or in a "narrower term"
relationship pertain to the same class.

. Connect automatically to the class in the hierarchical relationship
tree, hierarchical relationships between terms that are disconnected from
the tree. As an example suppose "microcomputer" and "keyboard" are terms
pertaining to the class "computer" and that no previous hierarchical
relationships were created involving these two terms. The insertion of
the relationship

<microcomputer, NT, keyboard>

will generate automatically the following relationships:

<keyboard, BT, microcomputer>, which is the reciprocal entry,
<microcomputer, BT, computer> to connect the previous relation

to the hierarchical tree,
<computer, NT, microcomputer> which is the reciprocal entry.

Insert the reciprocal of the hierarchical (broader/narrower)
relationship automatically.

. Insert the reciprocal of the associative (related) relationship
automatically.

• Insert the reciprocal of the synonym (use/used for) relationship
automatically.

* Create automatically a hierarchical relationship between a term and its
class name when the broader term, in a hierarchical relationship being
inserted, is disconnected from the hierarchical tree in the table
RELSHIPS.

Input Condition: Update.

122

" Permit to update only the main term.

" Do not permit the operator to update relationships having "root" as the
main or secondary term.

• Verify that both terms in a "broader term" or in a "narrower term"
relationship pertain to the same class.

. Update the reciprocal of the hierarchical (broader/narrower)
relationship automatically.

. Update the reciprocal of the associative (related) relationship
automatically.

. Update the reciprocal of the synonym (use/used for) relationship

automatically.

Input Condition: Deletion.

* Do not permit the operator to delete relationships having "root" as the
main or secondary term.

. Delete the reciprocal of the hierarchical (broader/narrower)
relationship automatically.

. Delete the reciprocal of the associative (related) relationship
automatically.

. Delete the reciprocal of the synonym (use/used for) relationship
automatically.

. Before deleting a hierarchical relationship disconnect the deleting
node (the relationship and its reciprocal entry) from the hierarchical
tree.

Input Condition: Query.

" Order queries by MAINTR, REL, SECTR.

" Display the relationship name corresponding to the relationship code
(REL).

" Permit a direct access to Look up Terms e Relationships form.

• Permit to copy a term from the Look up Terms form and paste it on the
form.

123

Module A44 - Print Thesaurus Terms

Input Condition: Insertion, Update and Deletion.

" Do not permit these operations in this form.

Input Condition: Value of Choice.

" According the value of choice (1, 2, 3 or 4) generate the following
reports:

Report A44_1: Order by Class, Term.
Select all terms and their class codes from the table Term and list

them ordered by Class and Term. Select from table Classes the
corresponding Class Name. Print the class only when the class changes
and at the beginning of a new page.

Report A44_2: Order by Term.
Select all terms and their class codes from table Term and list

them ordered by Term. Select from table Classes the corresponding Class
Name. Print the class only when the class changes and at the beginning
of a new page.

Report A44_3: Order by Term Hierarchical Association.
Select all terms from the table Relships by traversing the

hierarchical tree in "preorder". Print terms and their corresponding
level in the hierarchical tree. Indent each term 3 times its own level.

Report A44_4: Order by Term, Giving all Relationships.
Select all terms from the table Terms and for each term select:

- the corresponding scope notes from the table Notes,
- The corresponding relationship codes and secondary terms from the table
Relships.
- The relationship name corresponding to the relationship code from the
table RelName.

124

Appendix D: Selected Triggers from the INP Files

This appendix briefly explains triggers's usage and lists samples
of triggers that are actually used in the proposed system forms. The
following definitions are mainly based in definitions presented in the
Oracle manual "SQL*Forms, Designer's Reference, Version 2.0" (Zussman,
1987).

Trigger Execution and Conventions

- There are two kinds of triggers:
a. SQL statement, b. SQL*Forms command

- A trigger is composed of one or more trigger steps. A trigger
succeeds when all its steps succeeds.

- A trigger step succeeds if it acts on at least one row (SQL
statement) or if it executes properly (SQL*Forms command).

- Triggers have three levels or scopes:
1. Form, 2. Block, 3. Field.

- When a same type of trigger is defined at more than one level, the
specific overrides the general.

- The prompt ";Message if value not found :" is used in a INP file to
introduce the message displayed on the screen (if any) when the
trigger step fails.

- When the message begins with a star means that the normal criteria
for success and failure is reversed. Therefore, if the SQL
statement returns any row, the step fails.

- Two sentences beginning with the symbol $ in the place of the
referred message indicates a success and a failure label
respectively. If the actual step succeeds, the step identified by
the success label is executed. If the actual step fails, the step
identified by the failure label is executed. When a label is blank
(there is only the symbol $) the next step to be executed follows a
sequential ordering.

- The prompt ";Must value exist Y/N :" states the necessity of a
success value to succeed the trigger step. The normal value is
(Y)es. When the answer is (N)o, the step does not fail when no row
is acted on (a select statement select no row, or a delete
statement deletes no row). In this case, the trigger may fail only
because of syntax errors.

- A star preceding the "Y" or "N" referred in the previous item means
that it will be returned success if the step causes the trigger to

125

abort. It is meaningful only if the value corresponding to the
prompt "Must value exist Y/N" is "Y".

- A form field has the format ":block.name". When the field name is
unique in a form, the block name is no needed
(ex: ":DOCUMENT.DRN").

- SQL*Form has extended the SQL "select" statement. It added to it
the "into" clause that copies the selected value into a form field.
After a "into" clause there is no need of a comma to indicate a
form field, once only a form field is allowed in this clause.

- A one row and one column dummy table named DUAL is used in select
statements to perform form field validation.

SQL*Forms Commands

There are four SQL*Forms commands:

- #EXEMACRO, to execute macro functions and simulate operator strokes
- #COPY, to copy values between form fields and/or global variables
- #ERASE, to release memory space occupied by a global variable
- #HOST, or #OHOST, to execute operating system commands.

Macro Function Codes Used inside a SQL*Fom Exemacro Command

Macro function codes are used inside a #EXEMACRO command to perform
the desired action. The most used macro function codes in this work are:

- CALL, suspends processing of the current form and displays the form
specified. When terminated with and Exit code, it resumes the
original form.

- CALLQRY, the same of the previous except that only queries are
permitted in the called form.

- ENT7RY, enter query.

- EMQRY, execute query.

- GOBLK block, moves the cursor to the specified block in the current
form.

- GOFLD block.field, moves the cursor to the specified field in the
current form.

- NOOP, no operation; does nothing but displays the message
"Unrecognized Command".

126

- NXTBLK, moves the cursor to the first field of the next block in
the current form. If the cursor was in the last block, the next
block is the first block in the form.

- PRVBLK, previous block.

- EXETRG usernamedtrigger, execute a user-named trigger.

- CREREC, create record.

- DELREC, delete record.

- COMMIT, commit.

- NEWFRN formname, Replaces the current form in memory by the form
specified.

Form: AO, Menu Tree

Form Level.

Remark: This trigger redefines the normal exit function on menu tree
modules. It calls the Main Menu when the exit function key is pressed,
whenever there not exists a more specific Key-Exit trigger.
**KEY-EXIT
;SQL>
#EXEMACRO GOBLK AO;

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger disables the Oracle menu key (the user must use the
menu screen).
**KEY-MENU
;SQL>
#EXEMACRO NOOP;

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger disables the next block key (the user must use the
menu screen).
* ,KEY-NXTBLK

127

;SQL>

#E)CEACRO NOOP;

;Message if value not found

;Must value exist Y/N
Y

Block AO.

Remark: This trigger overwrites the form level trigger key-exit. Exiting
from the Document Control system must be made from the Main Menu.
*KEY-EXIT
;SQL>
#EXEMACRO EXIT;

;Message if value not found

;Must value exist Y/N
Y

Field Choice.

Remark: This trigger branches to a submenu according the selected choice.
**KEY-NXTFLD
/
;SQL>
SELECT 'X' FF40M DUAL
WHERE :AO.CHOICE IN ('1','2','3','4')
/
;Message if value not found
Invalid choice. Type 1, 2, 3, or 4 and Enter.
;Must value exist Y/N

Y
#E] EMACRO CASE AO.CHOICE IS

WHEN '1' THEN GOBLK Al;
WHEN '2' THEN GOBLK A2;
WHEN '3' THEN GOBLK A3;
WHEN '4' THEN GOBLK A4;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

Block A2, Field Choice .

Remark: This trigger calls other forms according to the selected choice.
**KEy-NXTFID
/
;SQL>

128

SELECT 'X' FROM DUAL
WHERE :A2.CHOICE IN ('1''2'1'3'0'4 '5' '6','7')
/
;Message if value not found
Invalid choice.
;Must value exist Y/N
Y
#EXCEACRO CASE A2.CHOICE IS

WHEN '1' THEN CALL A21;
WHEN '2' THEN CALL A22;
WHEN '3' THEN CALL A23;
WHEN '4' THEN CALL A24;
WHEN '5' THEN GOBLK A25;
WHEN '6' THEN CALL A26;
WHEN '7' THEN CALL A27;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

Form All. Enter Document

Block Document.

Remark: This trigger executes the following actions:
1) generates the DRN automatically according the operator choice
placed in the field AutomaticNumber:

"R" - DRN corresponding to a received document
"S" - DRN corresponding to a sent document
Other value - do not generate the DRN

2) Insert a validity date 60 months (5 years) later than the
register date.
3) Insert into table Doc_Log and Holder values corresponding to a
custody transference from the Protocol Section to the Commander.
4) Insert into the Processing Phase Status the value "P"
(processing).
5) Insert into the Archive Section Status the value "U" if the
value in field Classif is "U", otherwise insert a "C".

*PRE- INSERT
;SQL>
SELECT 'X' FROM DUAL
WHERE :AUTOMATICNUMBER = IR'
/* Failure label TEST_S
/
;Message if value not found
$REC $TEST_S
;Must value exist Y/N
N
$REC

129

SELECT * FROM SEQNUMBERS
WHERE TABLENAME = 'DOC RECEIVED'
FOR UPDATE OF LASTNUMBER
/

;Message if value not found

;Must value exist Y/N
Y
UPDATE SBQNUMBERS
SET LASTNUMBER = LASTNUMBER + 1
WHERE TABLENAME 'DOC RECEIVED'
/
;Message if value not found

;Must value exist Y/N
Y
SELECT LASTNUMBER
INTO :DOCUMENT. DRN
FROM SEQNUMBERS
WHERE TABLENAME = 'DOC RECEIVED'
/
;Message if value not found
$VALIDITY $
;Must value exist Y/N
Y
$TEST_S
SELECT 'X' FROM dual
WHERE :AUTOMATIC NUMBER = IS'
/* Failure label VALIDITY
/
;Message if value not found
$SENT $VALIDITY
;Must value exist Y/N
N
$SENT
SELECT * FROM SEQNUMBERS
WHERE TABLENAME = 'DOC SENT'
FOR UPDATE OF LASTNUMBER
/

;Message if value not found

;Must value exist Y/N
Y
UPDATE SFUMBERS
SET LASTNUMBER : LASTNMBER + 1
WHERE TABLENAME = 'DOC SENT'
/
;Message if value not found

;Must value exist Y/N
Y
SELECT LASTHN ER

130

INTO :DOCUMENT . DRN
FROM SEQNUMBERS
WHERE TABLENAME 'DOC-SENT'
/
;Message if value not found
$VALIDITY $
;Must value exist YIN

Y
$VALIDITY
SELECT ADD MONTHS (SYSDATE, 60)
INTO :DOCUMENT. VALIDITY
FROM DUAL
/

;Message if value not found

;Must value exist Y/N
Y
INSERT INTO DOC-LOG VALUES
(:DOCUMENT.DRN,SYSDATE,TOCHAR(SYSDATE, 'HH24:MI'), 'PROTOC' , 'CO AN')
/
;Message if value not found

;Must value exist Y/N
Y
INSERT INTO HOLDER (DRN,DEPCODE) VALUES
(:DOCUMENT.DRN, 'cOMMAN')

/
;Message if value not found

;Must value exist Y/N
Y
SELECT 'X' FROM DUAL
WHERE :DOCUMENT.CLASSIF = IP'
/* Do not abort trigger when step fails

Failure label CLASSIFIED */
/
;Message if value not found
$UNCLASSIFIED $CLASSIFIED
;Must value exist Y/N
N
$UNCLASSIFIED
SELECT 'U' INTO :DOCUMENT.ARCHSTS
FROM DUAL
/* Success label END */
/
;Message if value not found
$END $
;Must value exist Y/N

Y
$CLASSIFIED
SELECT 'C' INTO :DOCUMENT. ARCHSTS
FROM DUAL

131

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger forbids deletions in the block
*PRE-DELETE
;SQL>
SELECT 'X' FROM DUAL
/* Abort trigger when step fails

Reverse return code */

;Message if value not found
*It is not permitted to delete documents in this module. Use GENERIC
UPDATE.
;Must value exist Y/N
Y

Field Automatic Number.

Remark: This trigger validates the value entered in the field
Automatic Number against constant values.
**POST-CHANGE

/
;SQL>
SELECT 'X'
FROM DUAL /* dual is a dummy table */
WHERE :DOCUMENT.AUTCMATICNUMBER IN ('R', 'S', 'N')
/

;Message if value not found
Invalid code for DRN automatic generation. Enter R, S, or N.
;Must value exist Y/N
Y

Remark: This trigger makes the cursor to skip the DRN field if the
operator chose automatic DRN generation (values R or S entered in field
Automatic Number).
**KEY-NXTFLD
/

;SQL>
#EXEACRO CASE AUTOMATICNUMBER IS

WHEN 'N' THEN NXTFLD;
WHEN OTHERS THEN NXTFLD;NXTFLD;

END CASE;

;Message if value not found

132

;Must value exist Y/N

Y

Field DocType.

Remark: This trigger validates the value entered in field DocType against
values selected from the table DocType.
**POST-CHANGE
/
;SQL>

SELECT DOCrYPE
FROM DOC TYPE
WHERE DOC TYPE.DOCTYPE = :DOCUMENT.DOCTYPE

;Message if value not found :
Invalid document type. Press <F9> to see a field list.
;Must value exist Y/N
Y

Field OrgName.

Remark: This trigger validates the value entered in field OrgName against
values selected from the thesaurus (table Terms).
**POST-CHANGE
/
;SQL>
SELECT TERM
FROM TERMS
WHERE TEMS.TERM = :DOCUMENT.ORGNAME
AND TERFS.CLASSCD = '01'

;Message if value not found
Invalid organization name. Enter again.
;Must value exist Y/N

Y

Form A12L Print Processing Sheet, Block A12

Remark: This trigger retrieves from table SeqNumbers, before the block is
displayed on the screen, the values of the last received and sent
documents printed and the last received and sent document entered in the
system.
*PRE-BLOCK
;SQL>
SELECT LASTNMBER
INTO :P_RECEIVED
FRM SE ERS
WHERE SEQIUMBERS.TABLENAME 'PRINTPSRECEIVED'
/
;Message if value not found

133

;Must value exist Y/N
Y
SELECT LASTNUMBER
INTO :PSENT
FROM SEaQNMERS
WHERE SE WLMBERS. TABLENAME ' PRINT PSSENT'
/
;Message if value not found

;Must value exist Y/N
Y
SELECT LASTNUMBER
INTO :E RECEIVED
FROM SEQNUMBERS
WHERE SEQNUMBERS.TABLENAME 'DOC RECEIVED'
/
;Message if value not found

;Must value exist Y/N
Y
SELECT LASTNLMBER
INTO :E SENT
FROM SEQNUMBERS
WHERE SEQNUMBERS.TABLENAME 'DOC SENT'

;Message if value not found

;Must value exist Y/N
Y

Field Choice.

Remark: This trigger calls the report generator corresponding to the user
choice. After the report generation it is called a script file to update
the table SeqNumbers with the last document printed.
* *KEY-NXTFLD
/
;SQL>
SELECT 'X' FROM DUAL
WHERE :CHOICE 1 ''
/

;Message if value not found
$REC $SENT
;Must value exist Y/N

N
$REC
#OHOST 'REPORT A12 REC -s'
/

;Message if value not found

;Must value exist Y/N
Y

134

#OHOST 'SQLPLUS @A12_REC.SQL'
/
;Message if value not found
$END $
;Must value exist Y/N

Y
$SENT
SELECT X' FROM DUAL
WHERE :CHOICE = '2'
/
;Message if value not found
$STARTREPORT $DRN
;Must value exist Y/N

N
$STARTREPORT
#OHOST 'REPORT A12_SENT -s'
/

;Message if value not found

;Must value exist Y/N
Y
#OHOST 'SQLPLUS @A12 SENT.SQL'
/
;Message if value not found
$END $
;Must value exist Y/N

Y
$DRN
SELECT 'X' F1OM DUAL
WHERE :CHOICE = '3'
/
;Message if value not found
Invalid choice. Choose 1, 2, or 3. For choice 3, type the DRN first.
;Must value exist Y/N
Y
#OHOST 'REPORT A12_DRN -s'
/
;Message if value not found

;Must value exist Y/N
Y
$END
#*EMACRD NEWFRM A12;

;Message if value not found

;Must value exist Y/N
Y

135

Form A21L Generic Update, Block Document

Remark: This trigger makes all the deletions that are necessary for
eliminating a document from the database. Observe the tables locking
sequence. Tables are unlocked only when the deletion is committed.
*PRE-DELETE
;SQL>
LOCK TABLE DOCUMENT IN SHARE UPDATE MODE
I
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE REFERENCE IN SHARE UPDATE MODE

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE ANNEX IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE DOC-LOG IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE HOLDER IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE JOIN IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE MICROFILM IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/
;Message if value not found

136

;Must value exist Y/N
Y
DELETE FROM TO _DELETE
I
;Message if value not found

;Must value exist Y/N
N
INSERT INTO TODELETE (DRN)

SELECT JOINED FROM JOIN
WHERE MAIN = :DOCUMENT.DRN

/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM DOCUMENT
WHERE DRN IN (SELECT DRN FROM TODELETE)
I
;Message if value not found

;Must value exist Y/N
N
INSERT INTO TODELETE (DRN) VALUES (:DOCUMENT.DRN)
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM REFERENCE
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM ANNEX
WHERE DRN IN (SELECT DRN FROM TO_DELETE)
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM DOC LOG
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM HOLDER

137

WHERE DRN IN (SELECT DRN FPOM TODELETE)
/

;Message if value not found

;Must value exist Y/N
N
DELETE FROM JOIN
WHERE JOINED IN (SELECT DRN FROM TODELETE)
/

;Message if value not found

;Must value exist Y/N
N
DELETE FROM MICROFILM
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM SUBJECT
WHERE DRN IN (SELECT DRN FROM TODELETE)
/

;Message if value not found

;Must value exist Y/N
N
DELETE FROM TODELETE

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger queries the Reference and Annex blocks
automatically, when the Block document is queried.
*KEY-ENTRY
;SQL>
#EXEMACRO ENTQRY;
/
;Message if value not found

;Must value exist Y/N
*Y
#EXEMACRO NXTBLK; EXEQRY;
/
;Message if value not found

;Must value exist Y/N
N

138

#EXEMACRO NXTBLK; EXE)QRY;
/

;Message if value not found :

;Must value exist Y/N
N
#EXEMACRO PRVBLK; PRVBLK;

;Message if value not found :

;Must value exist Y/N
Y

Form A22, Change Validity, Block Document

Remark: This trigger tests the Verifier value entered. If there is an
error the update is rolled back.
*PRE-UPDATE
;SQL>
SELECT 'X' FROM DUAL
WHERE :VERIFIER = TO_CHAR(mod(power(:DRN,2),97))

;Message if value not found
Verifier incorrect.
;Must value exist Y/N
Y

Form A23, Process Document Destruction, Block A23

Remark: This trigger makes all integrity tests and operations necessary
to process a document that has been destroyed.
*PRE-DELETE
;SQL>
SELECT DRN FROM IDOCUMENT
WHERE DRN = :DRN
AND FORMSTS <> 'D'
/

;Message if value not found
This document has already the Form Status "(D)estroyed".
;Must value exist Y/N

Y
SELECT 'X' FRIM DUAL
WHERE TOCHAR(mod(power(:DRN,2),97)) = :VERIFIER
/

;Message if value not found
Verifier incorrect.
;Must value exist Y/N
Y
$LOCKTABLES
LOCK TABLE DOCUMENT IN SHARE UPDATE MODE

139

/

;Message if value not found

;Must value exist Y/N
y
LOCK TABLE REFERENCE IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE ANNEX IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
y
LOCK TABLE DOCLOG IN SHARE UPDATE MODE
/

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE HOLDER IN SHARE UPDATE MODE
/

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE JOIN IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE MICROFILM IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
SELECT * FROM TODELETE
/
;Message if value not found
$NEXT1 $INSERTINTO TO DELETE
;Must value exist Y/N

140

N
SNEXT1
DELETE FROM TODELETE
/
;Message if value not found

;Must value exist Y/N
Y
$INSERTINTO TO DELETE
INSERT INTO TODELETE (DRN) VALUES (:DRN)
/
;Message if value not found

;Must value exist Y/N
Y
SELECT * FROM JOIN
WHERE MAIN = :DRN
/
;Message if value not found
$NEXT2 $DELETEREFERENCE
;Must value exist Y/N
N
$NEXT2
INSERT INTO TODELETE (DEN)

SELECT JOINED FROM JOIN
WHERE MAIN = :DRN

/
;Message if value not found

;Must value exist Y/N
Y
SDELETEREFERENCE
SELECT * FROM REFERENCE
WHERE DEN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found
$NEXT3 $DELETEANNEX
;Must value exist Y/N
N
$NEXT3
DELETE FROM REFERENCE
WHERE DEN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
y
SDELETEANNEX
SELECT * FTCM ANNEX
WHERE DIRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

141

SNEXT4 $DELETEDOCLOG
;Must value exist Y/N
N
$NEXT4
DELETE FROM ANNEX
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
Y
$DELETEDOCLOG
SELECT * F1OM DOCLOG
WHERE DRN IN (SELECT DRN FROM TO DELETE)
/
;Message if value not found
$NEXT5 $DELETEHOLDER
;Must value exist Y/N
N
SNEXT5
DELETE FROM DOC-LOG
WHERE DRN IN (SELECT DRN FROM TODELETE)
/

;Message if value not found

;Must value exist Y/N
Y
$DELETEHOLDER
SELECT * FROM HOLDER
WHERE DRN IN (SELECT DRN FROM TODELETE

MINUS
SELECT DRN FROM TODELETE
WHERE DRN = :DRN)

/
;Message if value not found
$NEXT6 $DELETE JOIN
;Must value exist Y/N

N
$NEXT6
DELETE FROM HOLDER
WHERE DRN IN (SELECT DRN FROM TODELETE

MINUS
SELECT DRN FROM TODELETE
WHERE DRN :DRN)

/
;Message if value not found

;Must value exist Y/N
Y
$DELETEJOIN
SELECT * FROM JOIN
WHERE JOINED IN (SELECT DRN FROM TO DELETE)

142

/
;Message if value not found
$NEXT7 $DELETEMICROFIL
;Must value exist Y/N
N
$NEXT7
DELETE FROM JOIN
WHERE JOINED IN (SELECT DRN FROM TO_DELTE)
/

;Message if value not found

;Must value exist Y/N
Y
$DELETEMICROFILIM
SELECT * FROM MICROFILM
WHERE DRN IN (SELECT DRN FIO TO DELETE)
/
;Message if value not found
$NEXT8 $DELETE SUBJECT
;Must value exist Y/N
N
$NEXT8
DELETE FROM MICROFILMI
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N
Y
$DELETESUBJECT
SELECT * FROM SUBJECT
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found
$NEXT9 $UPDATEDOOMENT
;Must value exist Y/N
N
$NEXT9
DELETE FROM SUBJECT
WHERE DRN IN (SELECT DRN FROM TODELETE)
/
;Message if value not found

;Must value exist Y/N

Y
$UPDATEDOCUMENT
UPDATE DOCUMENT
SET FOfi:TS 'D'
WHERE DRN IN (SELECT DRN FROM TODELETE)
/

;Message if value not found

143

;Must value exist Y/N
Y
INSERT INTO REFERENCE (DRN, REFER)

SELECT TODELETE. DRN, :REFERENCE
FROM TO_DELETE

/
;Message if value not found :

;Must value exist Y/N
Y
DELETE FROM TO DELETE

;Message if value not found :

;Must value exist Y/N
Y

Form A24, Join Documents, Block Join

Remark: This trigger performs the integrity rules necessary to join two
documents.
*PRE-INSERT
;SQL>

SELECT 'X' FROM DUAL
WHERE :MAIN <> :JOINED
/
;Message if value not found
Main and Joined cannot be the same document.
;Must value exist Y/N
Y
SELECT * FROM DOCUMENT
WHERE DRN IN (:MAIN,:JOINED)

FOR UPDATE OF JOINSTS
/
;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE DOCLOG IN SHARE UPDATE MODE
/

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE HOLDER IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE DOCUMENT

144

SET JOINSTS = 'M'
WHERE DRN = :MAIN
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE DOCUMENT
SET JOINSTS = 'J'
WHERE DRN = :JOINED
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM DOC LG
WHERE DRN = :JOINED
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM HOLDER
WHERE DRN = : JOINED

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger executes the integrity rules necessary to separate
two documents that were joined before.
*PRE-DELETE
;SQL>
SELECT * FROM DOCUMENT
WHERE DRN IN (: MAIN,:JOINED)
FOR UPDATE OF JOINSTS
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE DOCUMENT
SET JOINSTS 'I'
WHERE DRN :JOINED
I
;Message if value not found

;Must value exist Y/N
Y

145

INSERT INTO HOLDER (DRN, NAME, DEPCODE)
SELECT :JOINED, NAME, DEPCODE
FR0M HOLDER
WHERE DRN = :MAIN
/

;Message if value not found

;Must value exist Y/N
Y
INSERT INTO DOCLOG (DRN, LDATE, LTIME, SEND DEP, RECDEP)
SELECT :JOINED, LDATE, LTIME, SENDDEP, RECDEP
FROM DOCLOGVIEW
WHERE DRN = :MAIN
AND JULIAN D T = (SELECT MAX(ALL JULIAN D T)

FROM DOCLOG_VIEW
WHERE DRN :MAIN)

/
;Message if value not found

;Must value exist Y/N
Y
SELECT * FROM JOIN
WHERE MAIN = :MAIN
AND JOINED > :JOINED
/
;Message if value not found
$END $
;Must value exist Y/N
N
UPDATE DOCUMENT
SET JOINSTS = 'I'
WHERE DRN = :MAIN

;Message if value not found

;Must value exist Y/N

Y

Form A251, Transfer Department Custody, Block Doc Log

Reaiark: This trigger verliies whether the sending department in a
document transference has received the document previously. If it was,
set History Status equal "N"ormal, if not, set it equal "A"lteration.
*POST-INSERT
;SQL>
SELECT *
FROM DOC_LOG Y
WHERE EXISTS

SELECT,
FROM DOC LOG X

146

WHERE DRN = : DRN
AND Y.DRN = DRN
AND Y.SENDDEP <> RECDEP
AND TO NUMBER

(TOCHAR (Y.LDATE, 'J') H SUBSTR(Y.LTIME,1,2)
H SUBSTR(Y.LTIME,4,2))

- (SELECT MIN (ALL TO NUMBER
(To CHAR (LDATE,'J')

SUBSTR(LTIME,1,2)
H SUBSTR(LTIME,4,2)))

FROM DOC LOG
WHERE DRN = :DRN
AND TOCHAR (LDATE,'J') H SUBSTR(LTIME,1,2)

SUBSTR(LTIME,4,2)

TOCHAR (X.LDATE,'J') H SUBSTR(X.LTIME,1,2)
H SUBSTR(X.LTIME,4,2)

))

/
;Message if value not found
$SET ALTERATION $SETNORMAL
;Must value exist Y/N
N
$SETNORMAL
LOCK TABLE DOCUMENT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE DOCUMENT
SET HISTSTS = 'N'
WHERE DRN = :DOC LOG.DRN
/
;Message if value not found
SEND $
;Must value exist Y/N
Y
$SETALTERATION
LOCK TABLE DOCUMENT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE DOCUMENT
SET HISTSTS = 'A'
WHERE DRN = :DOCLOG.DRN

;Message if value not found

147

;Must value exist Y/N

Y

Field DRN.

Remark: This trigger verifies:
1) Whether the document exists. If the document already has a row
in the table Doc Log, is because it exists, and it is not a joined
nor a destroyed document.
2) Whether the document is a joined document in a join
relationship.
3) Whether the document is a destroyed document.

**POST-CHANGE\
/
;SQL>
SELECT * FRFO DOC LOG
WHERE DRN = DRN
I
;Message if value not found
$END $
;Must value exist Y/N

N
SELECT * FROM DOCUMENT
WHERE DRN = :DRN
/
;Message if value not found
This document does not exist.
;Must value exist Y/N

Y
SELECT * FROM DOCUMENT
WHERE DRN = :DRN
AND JOINSTS = 'J,
/
;Message if value not found
*This document is Joined. It cannot be transferred alone.
;Must value exist Y/N
Y
SELECT * FROM DOCUMENT
WHERE DRN = : DRN
AND FOIMSTS = 'D'

;Message if value not found
*This document was destroyed.
;Must value exist Y/N
Y

148

Form A322, Look Up Thesaurus Terms and Relationships

Form Level.

Remark: This trigger uses variable reference (&var). It copies the
contents of the current field in the form to a global variable. This is
used to paste the copied field in another field elsewhere, in the calling
module.

**KEY-MENU
;SQL>
#COPY &SYSTEM. CURRENT FIELD GLOBAL.VAR

;Message if value not found

;Must value exist Y/N
Y

Block Terms, Field ClassCd.

Remark: This trigger selects the class name into the field Class, on the
screen, that corresponds to the code entered in the field ClassCd.
* *POST-CHANGE
/
;SQL>
SELECT CLASS INTO :CLASS
FRCM CLASSES
WHERE CLASSCD = :CLASSCD

;Message if value not found
This class does not exist. Press F9 to see list of values.
;Must value exist Y/N
Y

Form A36, Show Statistics, Block A36

Remark: This trigger accesses several tables to compute statistics. The
form does not have a base table.
*KEY-MENU
;SQL>
SELECT COUNT(ALL DRN) INTO TOTAL
FROM DOCUMENT
WHERE ISSUEDT BETWEEN :FROMDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT AVG(ALL (MAX(ALL LDATE) - MIN(ALL LDATE) + 1)),

STDDEV(ALL (MAX(ALL LDATE) - MIN(ALL LDATE) + 1)
INTO AVGDAYS, STDDAYS,

149

FRO DOC LOG
WHERE DRN IN (SELECT DRN

FROM CNT
WHERE PROCSTS = 'S'
AND ISSUEDT
BETWEEN :FROMDT AND :TODT)

GROUP BY DRN
/* This standard deviation is UNBIASED Sf
/
;Message if value not found

;Must value exist Y/N
Y
SELECT OOUNT (ALL FOIMTS) INTO PAPER
FROM DOCUMENT
WHERE FORMSTS = 'P'
AND ISSUEDT BETWEEN :FRtMDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT WOUNT(ALL FORMETS) INTO MICROFILM
FROM DOCUMENT
WHERE FORISTS = 'M'
AND ISSUEDT BETWEEN :FROKDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL FOISTS) INTO DESTROYED
FROM DOCUMENT
WHERE FORTS 'D'
AND ISSUEDT BETWEEN :FROMDY AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT WOUNT(ALL JOINSTS) INTO INDEPENDENT
FROMD NT
WHERE JOINSTS = 'I'
AND ISSUEDT BETWEEN :FROMDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL JOINSTS) INTO MAIN
FROMDOUENT
WHERE JOINSTS = W

150

AND ISSUEDT BETWEEN :FROMDT AND :TODT
/

;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL JOINSTS) INTO JOINED
FROM DOCUMENT
WHERE JOINSTS = 'J'
AND ISSUELYT BETWEEN : FROMIT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL PROCSTS) INTO PROCESSING
FROM DOCUMENT
WHERE PROCSTS = 'P'
AND ISSUEDT BETWEEN :F4MIYT AND :TODT
/

;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT (ALL MR)CSTS) INTO WAITING
FROM DOCUMENT
WHERE PROCSTS = W'
AND ISSUEDT BETWEEN :FROMDT AND :TODT
/

;Message if value not found

;Must value exist Y/N
Y
SELECT OOUNT(ALL PROCSTS) INTO SOLVED
FROM CUME
WHERE PROCSTS = 'S'
AND ISSUEDT BETWEEN :FROMDT AND :TODT
/

;Message if value not found

;Must value exist Y/N
Y
SELECT (OUNT(ALL HISTSTS) INTO NORMAL
FFM DOCUMENT
WHERE HISTSTS = 'N'
AND ISSUEDT BETWEEN :FROMDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT O(XUNT(ALL HISTSTS) INTO ALTERATION

151

FROMD NT
WHERE HISTS = 'A'
AND ISSUEIDT BETEEN :FROTYf AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL ARCHSTS) INTO UNCLASSIFIED
FROMDOUMENT
WHERE ARCHSTS = 'U'
AND ISSUEDT BETWEEN :FROMDT AND :TODT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT OOUNT(ALL ARCHSTS) INTO CLASSIFIED
FROMD NT
WHERE ARCHSTS = 'C'
AND ISSUEDT BETWEEN :FROMDT"L AND :TODT
/
;Me.sage if value not found

;Must value exist Y/N
Y
SELECT
(:PAPER/:TOTAL)*100, (:MICROFILM/:TOTAL)*100, (:DESTROYED/:TOTAL)*100,
(:INDEPENDENT/:TOTAL)*100, (:MAIN/:TOrAL)*100, (:JOINED/:TOTAL)*100,
(: PCESSING/:TOTAL)*100, (:WAITING/:TOTAL)*100, (:SOLVED/:TOTAL)*100,
(:NORMAL/:1OTAL)*100, (:ALTERATION/:TOTAL)*100,
(:CLASSIFIED/:TOTAL) *100, (:UNCLASSIFIED/:TOTAL) *100
INTO
PPAPER, PMICROFILM, PDESTROYED,
PINDEPENDENT, PMAIN, PJOINED,

OCESSING, P.AITING, PSOLVED,
PNORMAL, PALTERATION,
PCLASSIFIED, RJNCLASSIFIED
FROM DUAL
/
;Message if value not found

;Must value exist Y/N
Y
SELECT OOUNT(ALL CLASSCD) INTO CLASSES
FROM CLASSES
/
;Message if value not found

;Must value exist Y/N
Y
SELECT OXIUNT(ALL TEM) INTO TERM

152

FROM TERM
/
;Message if value not found

;Must value exist Y/N
Y
SELEC OUNT(ALL NOTE) INTO NOTES
FROM NOTES
/
;Message if value not found

;Must value exist Y/N
Y
SELECT OOUNT(ALL MAINTR)
INTO RELSHIPS
FF0M RELSHIPS
/
;Message if value not found

;Must value exist Y/N
Y
SELECT XOUNT(DISTINCT DRN) INTO INDEXED
FROM SUBJECT
/
;Message if value not found

;Must value exist Y/N
Y
SELECT (:INDEXED/:TOTAL) * 100
INTO PINDEXED
FROM DUAL
/

;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL DRN) / UNT(DISTINCT DRN) AVERAGE
INTO AVGTERM
FROM SUBJECT
/

;Message if value not found

;Must value exist Y/N
Y
SELECT COUNT(ALL DRN) / OOUNT(DISTINCT DRN) AVERAGE,

STDDEV (ALL ((OUNT(ALL DRN) / COUNT(DISTINCT DRN))
"STANDARD DEV"

INTO STDTERM
FROM SUBJECT
GROUP BY DRN

;Message if value not found

153

;Must value exist Y/N
Y

Form A41, Maintain Classes, Block Classes

Remark: This trigger does the following automatic insertions:
1) Insert the class name as a term in the table TERMS.
2) Insert the scope note "class".
3) Connect the term to the root of the hierarchical tree.

*PRE- INSERT
;SQL>
INSERT INTO TERMS (TERM,CLASSCD)
VALUES (:CLASS, :CLASSCD)
/* Insert the class name as a term in the table TERMS
/
;Message if value not found

;Must value exist Y/N
Y
INSERT INTO NOTES (TERM,NOTE)
VALUES (:CLASS, 'CLASS')
/* Insert the word CLASS as a scope note for the term that
/* corresponds to a class
/

;Message if value not found

;Must value exist Y/N
Y
INSERT INTO RELSHIPS (MAINTR,REL,SECrR)
VALUES (:CLASS, 'BT' , '1ROO')
/* Create a hierarchical relationship having ROOT as the parent and the
/5 class being inserted as the child
/
;Message if value not found

;Must value exist Y/N
Y
INSERT INTO RELSHIPS (MAINTR,REL,SECTR)
VALUES ('ROOT','NT',:CLASS)
/* Create a hierarchical relationship having ROOT as the parent and the
/* class being inserted as the child

;Message if value not found

;Must value exist Y/N
Y

154

Remark: This trigger verifies whether the user is trying to update a
system maintained class and performs integrity operations related to the
update being made in the table class.
*PRE-UPDATE
;SQL>
SELECT * FROM CLASSES
WHERE IKWID = :ROWID
AND (CLASSCD = '00' OR CLASSCD = '01')
/* Do not permit to update classes 00 or 01
/
;Message if value not found
*This class is owned by the system. Update is not allowed.
;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE SUBJECT
SET TERM = : CLASS
WHERE TERM = (SELECT CLASS FROM CLASSES

WHERE ROWID = :ROWID)
/* update all rows that have the old class name as the term
/
;Message if value not found

;Must value exist Y/N
N
LOCK TABLE TERMS IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE TERMS SET TERM : CLASS
WHERE TERM = (SELECT CLASS FIOM CLASSES

WHERE ROWID = :ROWID)
/* Update the corresponding term in the table TERMS
/
;Message if value not found

;Must value exist Y/N
N
SELECT 'X' FROM DUAL
WHERE
:CLASSCD = (SELECT CLASSCD FROM CLASSES

WHERE ROWID = :ROWID)
/* it is being tested whether the class code was changed. If not
/* there is no necessity of updating the class code of terms
/* that pertain to the class being updated

155

/* if the step succeeds, branch to update table Notes
/
;Message if value not found
$UPDATE NOTES $
;Must value exist Y/N
N
UPDATE TERMS
SET CLASSCD = :CLASSCD
WHERE CLASSCD = (SELECT CLASSCD FROM CLASSES

WHERE IROWID = :ROWID)
/* Update all rows in table Terms that have the same class code
/
;Message if value not found

;Must value exist Y/N
N
$UPDATENOTES
LOCK TABLE NOTES IN SHARE UPDATE MODE
/* Update the term in the table Relships
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE NOTES
SET TERM = :CLASS
WHERE TERM z (SELECT CLASS FROM CLASSES

WHERE ROWID = :ROWID)
/* As a class is also a term, it may have scope notes to be updated
/
;Message if value not found

;Must value exist Y/N
N
LOCK TABLE RELSHIPS IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE RELSHIPS
SET MAINTR : CLASS
WHERE MAINTR = (SELECT CLASS FROM CLASSES

WRE IRWID = :RWID)
/* update all rows that have the old class name as the main term
/
;Message if value not found

;Must value exist Y/N
N
UPDATE RELSHIPS
SET SETR = :CLASS

156

WHERE SECTR = (SELECT CLASS FIM CLASSES
WHERE ROWID = :ROWID)

/* update all rows that have the old class name as the secondary term

;Message if value not found

;Must value exist Y/N
N

Remark: This trigger verifies whether the user is trying to delete a
system maintained class and performs integrity operations related to the
deletion being made in the table class.
*PRE-DELETE
;SQL>
SELECT * FROM CLASSES
WHERE ROWID = :ROWID
AND (CLASSCD = '00' OR CLASSCD = '01')
/* Do not permit to delete classes 00 or 01
/
;Message if value not found
*This class is owned by the system. Deleting is not allowed.
;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM SUBJECT
WHERE TERM IN (SELECT TERM FROM TERMS

WHERE CLASSCD : CLASSCD)
/
;Message if value not found

;Must value exist Y/N
N
LOCK TABLE TERM IN SHARE UPDATE MODE
/

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE NOTES IN SHARE UPDATE MDE
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM NOTES

157

WHERE TERM IN (SELECT TERM FROM TERM
WHERE CLASSCD :CLASSCD)

/
;Message if value not found

;Must value exist Y/N
N
LOCK TABLE REISHIPS IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FROM RELSHIPS
WHERE MAINTR IN (SELECT TERM FROM

WHERE CLASSCD = :CLASSCD)
OR SECTR IN (SELECT TERM FROM TERMS

WHERE CLASSCD = :CLASSCD)
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM TERMS
WHERE CLASSCD = :CLASSCD

;Message if value not found

;Must value exist Y/N
N

Remark: This trigger is an example of redefining a key to commit an
operation immediately after executing it. This avoids the accumulation
of operations not committed that would be all rolled back in an eventual
error. This also releases the looks requested by triggers. This
redefinition is also used in the "key-delrec" trigger.
*KEY-CREREC
;SQL>
#EXEMACRO CREREC; COMMIT;

;Message if value not found

;Must value exist Y/N
Y

158

Form A42, Maintain Terms, Block Terms

Remark: This trigger performs integrity operations related with a term
update.
*PRE-UPDATE
;SQL>
SELECT * FROM CLASSES
WHERE CLASS (SELECT TERM FROM TERMS

WHERE ROWID = :TERMS.ROWID)
/* do not permit to update a term that corresponds to a class
/
;Message if value not found
*Tenn corresponds to a class name. Use A41-Maintain Classes.
;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/* Update the term in the table Subject.
/* As the old name is not anymore in the form, we use the rowid to
/* find the matches in the table Subject.
/
;Message if value not found

;Must value exist Y/N
Y
UPDATE SUBJECT
SET TERM = :TERMS.TERM
WHERE TERM = (SELECT TERM FROM TERMS

WHERE TERMS.ROWID = :TERMS.ROWID)
/

;Message if value not found

;Must value exist Y/N
N
LOCK TABLE NOTES IN SHARE UPDATE MODE
/* Update the term in the table Relships
/

;Message if value not found

;Must value exist Y/N
Y
UPDATE NOTES
SET TERM = :TE[MS.TERM
WHERE TERM = (SELECT TERM FROM TERMS

WHERE TER.ROWID = :TEIS.ROWID)
/

;Message if value not found

;Must value exist Y/N
N
LOCK TABLE RELSHIPS IN SHARE UPDATE MODE
/* Update the term in the table Relships

1

159

;Message if value not found

;Must value exist Y/N
Y
UPDATE RELSHIPS
SET MAINTR = :TEIRS.TERM
WHERE MAINTR = (SELECT TERI FRM TERMS

WHERE TERMS.ROWID = :TERMS.IK)WID)
/
;Message if value not found

;Must value exist Y/N
N
UPDATE RELSHIPS
SET SECTR = :TERMS.TERM
WHERE SECTR = (SELECT TERM FROM TEIMS

WHERE TERMS.ROMID = :TERMS.ROWID)

;Message if value not found

;Must value exist Y/N
N

Remark: This trigger performs integrity operations related with a term
deletion.
*PRE-DELETE
;SQL>
SELECT * FROM CLASSES
WHERE CLASS = (SELECT TERM FROM TERMS

WHERE ROWID = :TERMS.ROWID)
/* do not permit to delete the term that corresponds to a class
/

;Message if value not found
*Term corresponds to a class name. Use A41-Maintain Classes.
;Must value exist Y/N
Y
LOCK TABLE SUBJECT IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
DELETE FFR0M SUBJECT
WHERE TERN : :TEMS.TERM
/
;Message if value not found

;Must value exist Y/N
N
LOCK TABLE NOTES IN SHARE UPDATE MODE

160

/

;Message if value not found

;Must value exist Y/N
Y
LOCK TABLE RELSHIPS IN SHARE UPDATE MODE
/
;Message if value not found

;Must value exist Y/N
Y
$VERIFYREISHIPS
SELECT MAINTR, REL, SECTR
INTO MAINTR, REL, SECTR
FROM RELSHIPS
WHERE MAINTR = :TERM.TERM
AND REL = 'BT'
/* verify if the term being deleted is involved in a hierarchical
/* relationship. If it is, the values of maintr, rel and sectr are
/* copied to control fields for the purpose of disconnecting the
/* term from the hierarchical tree and the disconnecting step is called
/* if the term does not have relationships, proceed to delete
/* all rows that have either the main or secondary term equal
/* the term being deleted
/
;Message if value not found
$DISONNECT $DELRELSHIPS
;Must value exist Y/N
N

call trigger to disconnect the term from a node in the
table Relships. Only one node is disconnected at a time.
When returning, deviate to the beginning to verify
whether still exists any hierarchical relationships
Keep looping until all hierar. rel. were disconnected.

$DISCONNECT
#EXEMACRO EXET) G DISCONNECr NODE;
/
;Message if value not found
$VERIFYRELSHIPS $
;Must value exist Y/N

Y
$DELRELSHIPS
DELETE FROM RELSHIPS
WHERE MAINTR = :TERMM.TERM
OR SECTR = TEM. TERM
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM NOTES
WHERE TERM = :TERMS.TERM

161

/* Do not abort trigger when step fails $/

;Message if value not found

;Must value exist Y/N
N

Remark: This trigger uses variable reference (&var). It copies the
contents of a global variable to the current field in the form. This is
used to paste a field copied from this or from another form inside a
field in this module. See the following trigger and also a trigger in
form A322 that are used in combination with this one.

*KEY-CREREC
;SQL>
#COPY GLOBAL. VAR :TERMS. TERM

;Message if value not found

;Must value exist Y/N
Y

Remark: This trigger is used in combination with the previous trigger to
"cut and paste" field values.
;SQL>
#OPY :TEIMS.TERM GLOBAL.VAR

;Message if value not found

;Must value exist Y/N

Y

Remark: This trigger is used to disconnect a hierarchical relationship in
the table Relships. This trigger is called from another trigger.
*DISXONNECT2 NODE
;SQL>

disconnect a hierarchical relationship from the
hierarchical tree

UPDATE RELSHIPS
SET MAINTR = :SECTR
WHERE MAINTR = :MAINTR
AND REL = 'NT'
/* If the term has a child, connect its child to its parent
/
;Message if value not found

162

;Must value exist Y/N
N
UPDATE RELSHIPS
SET SECTR : SECTR
WHERE SBT = : MAINTR
AND REL = 'BT'
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROtM RELSHIPS
WHERE MAINTR = :MAINTR AND SECTR = :SECTR AND REL = 'BT'
/* delete the relationship
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'NT'
/* If there exists, deletes the reciprocal

;Message if value not found

;Must value exist Y/N
N

Form A43, Maintain Relationships, Block Relships

Remark: This form uses user-defined triggers in combination with
pre-insert, pre-update and pre-delete triggers to enforce integrity rules
in insertions, updates and deletions executed in the table Relships.
Each kind of relationship has its particular rules. A case statement
identifies the relation involved and calls the appropriated trigger.

*PRE-INSERT
;SQL>
#EXEMACRO CASE :REL IS

WHEN 'RT' THEN EXETRG INSERTRT;
WHEN 'US' THEN EXETRG INSERTUS;
WHEN 'UF' THEN EXETRG INSERTUF;
WHEN 'BT' THEN EXETRG INSERTBT;
WHEN 'NT' THEN EXETRG INSERTNT;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

163

*PRE-UPDATE
;SQL>
SELECT * FROM RELSHIPS
WHERE ROWID = :IROWID
AND (MAINTR = 'ROO' OR SECTR = 'ROOT')
/
;Message if value not found
*Relationship owned by the system. Updating not allowed.
;Must value exist Y/N
Y
#EXEMACRO CASE :REL IS

WHEN 'RT' THEN EXETRG UPDATERT;
WHEN 'US' THEN EXETRG UPDATEUS;
WHEN 'UF' THEN EXETRG UPDATEUF;
WHEN 'BT' THEN EXETRG UPDATEBT;
WHEN 'NT' THEN FXETRG UPDATENT;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

*PRE-DELETE
;SQL>
#EXEMACRO CASE :REL IS

WHEN 'RT' THEN EXETRG DELRT;
WHEN 'US' THEN EXTIRG DELUS;
WHEN 'UF' THEN EXETRG DELUF;
WHEN 'BT' THEN EXErRG DELBT;
WHEN 'NT' THEN EXETRG DELNT;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

*INSERT BT
;SQL>
INSERT INTO REISHIPS VALUES

(:SECTR, 'NT' :MAINTR)
/t Insert the reciprocal of the relationship
/
;Message if value not found

164

;Must value exist Y/N
Y
SELECT 'X' FROM REiSHIPS
WHERE (:SECTR = 'ROOT') OR (MAINTR = :SECTR AND REL = 'BT')
/* If the secondary term already has a BROADER TERM
/* relationship goto END
/* Otherwise, we connect the sectr to the class that it pertains
/* This action is intended to not permit hierarchical relationships
/* that are disconnected from the hierarchical tree
/
;Message if value not found
$END $
;Must value exist Y/N

N
INSERT INTO RELSHIPS (MAINTR,REL,SECTR)
SELECT :SECTR, 'BT', CLASS
FROM CLASSES
WHERE CLASSCD = :SECCLASSCD
/* Insert a BROADER TERM relationship that has the secondary term
/* being inserted as the main term and its class as the
/* second try term
/
;Message if value not found

;Must value exist Y/N
Y
INSERT INTO REISHIPS (MAINTR, REL,SECTR)
SELECT CLASS, 'NT', :SECTR
FROM CLASSES
WHERE CLASSCD = :SECCLASSCD
/* Insert the reciprocal

;Message if value not found

;Must value exist Y/N
Y

*INSERTNT
;SQL>
INSERT INTO RELSHIPS VALUES

(:SECTR, 'BT', :MAINTR)
/* Insert the reciprocal of the relationship
/
;Message if value not found

;Must value exist Y/N
Y
SELECT 'X' FROM RELSHIPS
WHERE (:MAINTR = 'ROOT') OR (MAINTR = :MAINTR AND REL = 'BT')
/* If the main term has a BROADER TERM relationship goto END

165

/

;Message if value not found
$END $
;Must value exist Y/N
N
INSERT INTO RELSHIPS (MAINTR,REL,SECTR)
SELECT :MAINTR, 'BT', CLASS
FROM CLASSES
WHERE CLASSCD = :MAINCLASSCD
/* Insert a BROADER TERM relationship that has the class of the term
/* being inserted as its BROADER TERM
/
;Message if value not found

;Must value exist Y/N
Y
INSERT INTO REISHIPS (MAINTR,REL,SECTR)
SELECT CLASS, 'NT', :MAINTR
FROM CLASSES
WHERE CLASSCD = :MAINCLASSCD
/* Insert the reciprocal

;Message if value not found

;Must value exist Y/N
Y

*INSERT RT
;SQL>
INSERT INTO RELSHIPS VALUES

(:SECTR, 'RT', :MAINTR)
/$ Insert the reciprocal associative entry

;Message if value not found

;Must value exist Y/N
Y

*INSERT _UF
;SQL>
INSERT INTO RELSHIPS VALUES

(:SECTR, 'US', :MAINTR)
/* Insert the reciprocal and goto END

;Message if value not found

;Must value exist Y/N
Y

166

*INSERTUS
;SQL>
INSERT INTO RELSHIPS VALUES

(:SECTR, 'UF', :MAINTR)
/* Insert the reciprocal

;Message if value not found

;Must value exist Y/N
Y

*UPDATE BT

;SQL>
SELECT 'X' FROM DUAL
WHERE :MAINCLASSCD = :SECCLASSCD
/* If both terms in a hierarchical relat. do not pertain to the same
/* class give error message
/
;Message if value not found
In a hierarchical relationship both terms must pertain to the same class.
;Must value exist Y/N
Y
UPDATE RELSHIPS
SET SECTR z :MAINTR
WHERE MAINTR = :SECTR
AND REL = 'NT'
AND SECTR = (SELECT MAINTR FRM RELSHIPS

WHERE ROWID = :ROWID)
/* Update the reciprocal of the relationship

;Message if value not found

;Must value exist Y/N
Y

*UPDATENT
;SQL>
SELECT 'X' FROM DUAL
WHERE :MAINCIASSCD = :SECLASSCD
/* If both terms in a hierarchical relat. do not pertain to the same
/* class give error message
/
;Message if value not found
In a hierarchical relationship both terms must pertain to the same class.
;Must va],,e exist Y/N

167

Y
UPDATE RELSHIPS
SET SECTR = :MAINTR
WHERE MAINTR = :SECTR
AND REL = 'BT'
AND SECTR = (SELECT MAINTR FROM RELSHIPS

WHERE ROWID = :ROWID)
/* Update the reciprocal of the relationship

;Message if value not found

;Must value exist Y/N
Y

*UPDATE RT
;SQL>
UPDATE RELSHIPS
SET SECTR = :MAINTR
WHERE MAINTR = :SECTR
AND REL = 'RT'
AND SECTR = (SELECT MAINTR FROM RELSHIPS

WHERE ROWID = :IROWID)
/* Update the reciprocal associative entry

;Message if value not found

;Must value exist Y/N
Y

*UPDATE UF
;SQL>
UPDATE RELSHIPS
SET SECTR = :MAINTR
WHERE MAINTR = :SECTR

AND REL = 'US'
AND SECTR = (SELECT MAINTR FROM RELSHIPS

WHERE ROWID = :ROWID)
/* Update the reciprocal

;Message if value not found

;Must value exist Y/N
Y

*UPDATEUS
;SQL>

168

UPDATE RELSHIPS
SET SECTR = :MAINTR
WHERE MAINTR = :SECTR
AND REL = 'UF'
AND SECTR = (SELECT MAINTR FROM RELSHIPS

WHERE ROWID = :ROWID)
/* Update the reciprocal

;Message if value not found

;Must value exist Y/N
Y

*DELBT
;SQL>
disconnect a hierarchical relationship being deleted from the
hierarchical tree

UPDATE RELSHIPS
SET MAINTR = :SECTR
WHERE MAINTR = :MAINTR
AND REL = 'NT'
/

;Message if value not found

;Must value exist Y/N
N
UPDATE RELSHIPS
SET SECTR = :SECTR
WHERE SECTR = :MAINTR

AND REL = 'BT'
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'NT'
/* If there exists, deletes the reciprocal

;Message if value not found

;V t value exist Y/N
N

*DELNT
;SQL>
disconnect a hierarchical relationship being deleted from the
hierarchical tree

169

UPDATE RELSHIPS
SET MAINTR = :SECTR
WHERE MAINTR = :MAINTR
AND REL = 'BT'
/

;Message if value not found

;Must value exist Y/N
N
UPDATE RELSHIPS
SET SECTR = :MAINTR
WHERE SECTR = :MAINTR
AND REL = 'NT'
/
;Message if value not found

;Must value exist Y/N
N
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'BT'
/* If there exists, deletes the reciprocal

;Message if value not found

;Must value exist Y/N
N

*DE[RT
;SQL>
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'RT'
/$ If there exists, deletes the reciprocal

;Message if value not found

;Must value exist Y/N
N

*DELUF
;SQL>
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'US'
/$ If there exists, deletes the reciprocal
/* go to END

;Message if value not found

170

;Must value exist Y/N
N

*DELUS
;SQL>
DELETE FROM RELSHIPS
WHERE MAINTR = :SECTR AND SECTR = :MAINTR AND REL = 'UF'
/* If there exists, deletes the reciprocal

;Message if value not found

;Must value exist Y/N
N

Remark: The user-triggers with prefix "POST" are called from a post-
change trigger defined for the field SecTr in this same form. Thus,
these user-triggers are defined at the form level while the calling
trigger is defined at the field leve].
*POSTBT
;SQL>
SELECT 'X' FROM DUAL
WHERE :MAINCLASSCD = :SECCLASSCD
/* If both terms in a hierarchical relat. do not pertain to the same
/* class give error message
I
;Message if value not found
In a hierarchical relationship both terms must pertain to the same class.
;Must value exist Y/N
Y
SELECT 'X' FROM RELSHIPS
WHERE MAINTR = :MAINTR AND REL = 'BT'
/* A term cannot have more than one BROADER TERM relationship
/
;Message if value not found
*The main term already has a BROADER TERM relationship. It cannot have
more.
;Must value exist Y/N
Y
SELECT 'X' FROM RELSHIPS
WHERE REL = 'US' AND (MAINTR = :MAINTR OR MAINTR = :SECTR)
/* If either term already has a USE relationship give a not allowed
message

;Message if value not found
*The main term or the secondary term has a USE relationship.
;Must value exist Y/N
Y

171

*POST NT
;SQL>
SELECT 'X' FROM DUAL
WHERE :MAINCLASSCD = :SECCIASSCD
/* If both terms in a hierarchical relat. do not pertain to the same
/* class give error message
/
;Message if value not found
In a hierarchical relationship both terms must pertain to the same class.
;Must value exist Y/N
Y
SELECT * FROM RELSHIPS
WHERE SECTR = :SECTR AND REL = 'NT'
/* A secondary term cannot have more than one NARROWER TERM relationship
/
;Message if value not found
*The secondary term already has a NARROWER TERM relat. It cannot have
more.
;Must value exist Y/N

Y
SELECT 'X' FROM REISHIPS
WHERE REL = 'US' AND (MAINTR = :MAINTR OR MAINTR = :SECTR)
/* If either term already has a USE relationship give a not allowed
message

;Message if value not found
*The main term or the secondary term has a USE relationship.
;Must value exist Y/N
Y

*POST UF
;SQL>
SELECT * FRM REISHIPS
WHERE MAINTR = :MAINTR AND REL = 'US'
/* The main term cannot have a USED FOR relationship if it already has
/* a USE relationship

;Message if value not found
*The main term already has a USE relationship. It cannot have a USED FOR
rel.
;Must value exist Y/N
Y

*POST US
;SQL>
SELECT * FROM RELSHIPS

172

WHERE REL = 'US' AND MAINTR = :MAINTR
/* A main term cannot have more than one USE relationship

;Message if value not found :
*The main term already has a "USE" relationship.
;Must value exist Y/N
Y

Field SecTr.

Remark: This trigger executes some integrity operations related with the
entered value of seconnary term. It calls user-triggers that were
defined at the form level.
* * POST-CHANGE
/
;SQL>
SELECT CLASSCD INTO SECCLASSCD
FROM TERMS
WHERE TERM = : SECTR
/
;Message if value not found

The secondary term does not exist.
;Must value exist Y/N

Y
#EXEMACRO CASE :REL IS

WHEN 'US' THEN EXETRG POST US;
WHEN 'UF' THEN EXTRG POSTUF;
WHEN 'BT' THEN EXETRG POST BT;
WHEN 'NT' THEN EXETRG POSTNT;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

Form A44, Print Thesaurus Terms, Block A44

Remark: This user-triggers are called by a case statement placed in a
next field key trigger (key-nxtfld) pertaining to field Choice. They
exemplify the use of host commands to execute a report generator program
from inside a form.
*CHOICEl
;SQL>
#OHOST 'REPORT A44_1 -s'
/

;Message if value not found

;Must value exist Y/N
Y
#EXEMAC1R NEWFIR A44;

173

;Message if value not found

;Must value exist Y/N
Y

*CHOICE2
;SQL>
*OHOST 'REPORT A44_2 -s'
/

;Message if value not found

;Must value exist Y/N
Y
#EXEMACRO NEWFRM A44;

;Message if value not found

;Must value exist Y/N
Y

*CHOICE3
;SQL>
#0HOST 'REPORT A44_3 -s'
/

;Message if value not found :

;Must value exist Y/N
Y
#EXE7ACRO NEWFRM A44;

;Message if value not found :

;Must value exist Y/N

Y

*CHOICE4
;SQL>

#OHOST 'REPORT A44_4 -s'
/
;Message if value not found

;Must value exist Y/N
Y
#EXFMACRO NEWFRM A44;

174

;Message if value not found

;Must value exist Y/N
y

Field Choice.

Remark: This trigger validates the user choice and calls the user-trigger
corresponding to the choice, to generate the desired printed report.
**KEY-NXTFLD
/

;SQL>
SELECT 'X' FROM DUAL
WHERE :CHOICE IN ('1','2',:','4')
/
;Message if value not found
Invalid choice. Type 1, 2, 3, or 4 and Enter.
;Must value exist Y/N
y
#FXEMACRO CASE CHOICE IS

WHEN '1' THEN EXETRG CHOICE1;
WHEN '2' THEN EXETRG CHOICE2;
WHEN '3' THEN EXETRG CHOICE3;
WHEN '4' THEN EXETRG CHOICE4;
WHEN OTHERS THEN NULL;

END CASE;

;Message if value not found

;Must value exist Y/N
Y

175

Appendix E: Report Generation Files

File Report.Bat

SQL*Report is a Oracle's tool composed of two programs used
together to retrieve information from the database and to for-mat the
derived information as desired. They are the Report Generator (RPT) and
the Report Text Formatter (RPT). The following batch file was used to
coordinate the two programs and generate the desired reports from inside
the forms.

ECHO OFF
REM File Name: REPORT.BAT Author: Lt Col Silva Date: Feb 1989
REM This file is used by:
REM FORM A12 TO PROCESS THE A12_l.RPT, A12_2.RPT,AND A12_3.RPT
REM REPORT FILES, WHICH GENERATE PROCESSING SHEETS
REM
REM FORM A44 TO PROCESS THE A44_1.RPT, A44_2.RPT, A44_3.RPT, AND
REM A44_4.RPT REPORT FILES, WHICH GENERATE THESAURUS TERM LISTS.
RE71
REM IT CAN ALSO BE USED TO PfOCESS ANY OTHER .RPT FILES.
REM THE REPORT GENERATOR PRODUCES A INTERMEDIATE FILE THAT HAS .RPF

REM EXTENSION AND THE FINAL REPORT, THAT HAS A .LIS EXTENSION
CLEAR
ECHO.
ECHO PROCESSING SHEET GENERATION
ECHO.
ECHO Author Lt Col Silva Feb 1989
ECHO Working ...
if (%1)==() goto ERROJR
RPT %1 .RPT %1 .RPF SYSTEM/MANAGER
RPF %1.RPF %1.LIS %2
ECHO.
ECHO Output file is %1.LIS
GOTO END
:ERROR
ECHO Syntax is "REPORT filename" [-S]
ECHO.
ECHO filename is a .RPT file, without the extension
ECHO the report output is directed to filename.lis
ECHO -s if used, the output is also directed to the line printer
:END

176

File A12 1.RPT, Received Document Process Sheet Generation

.REM PROCESS SHEET GENERATION - RECEIVED DOCUMENTS
.REM PRINTS FROM
.REM THE LAST DOCUMENT THAT HAD ITS PROCESSING SHEET PRINTED
.REM TO
.REM THE LAST DOCUMENT ENTERED IN THE SYSTEM
.REM

.REM DEFINE TAB STOPS (TABLES) ON THE REPORT
#DT 1 08 73 #
#DT 2 08 17 18 18 19 20 21 21 22 26 27 27 28 29 55 73#
#DT 3 08 44 45 45 46 59 60 72#
#dt 4 08 26 28 33 35 73 #
#DT 5 12 19 20 20 26 32 33 33 54 73 #
#DT 6 20 20 33 33 #
#PAGE 0 60
.REM
.REM DECLARE VARIABLES
.REM
.DECLARE TODAY A9
.DECLARE CLASSIF NAME A12
.DECLARE CLASSIF Al
.DECLARE CDRN A8
.DECLARE DRN 99999999
.DECLARE P SC A2
.DECLARE P OC A2
.DECLARE P NUMBER A5
.DECLARE P YEAR A2
.DECLARE IDNR A5
.DECLARE IIOOMPL A13
.DECLARE ORGNAME A20
.DECLARE ISSUEDT A9
.DECLARE TITLE A78
.DECLARE DOCTYPE A7
.DECLARE VALIDITY A9
.DECLARE VERIFIER A2

.DECLARE FIRST DOC TO PRINT 99999999

.DECLARE LAST DOC TO PRINT 99999999

.REM SELECT MACROS

.REM

.DEFINE FIRST

SELECT LASTNUMBER
INTO FIRST DOC TO PRINT
FROM SEQNUMBERS
WHERE TABLENAME = 'PRINT PS RECEIVED'

177

.DEFINE LAST

SELECT LASTNUMBER
INTO LASTDOCTOPRINT

FROM SEQNUMBERS
WHERE TABLENAME = 'DOC RECEIVED'

.DEFINE DOCUMENT

.REM

SELECT SYSDATE,
CLASSIF,
TO_CHAR(DRN),
TOCHAR(mod(power(DRN,2'),97)),
DRN,
TO_CHAR (P_SC),
TO_CHAR(P_OC),
TOCHAR(PNUMBER),
TO_CHAR(PYEAR),
TOCHAR(IDNR),
IDCOMPL,
ORGNAME,

ISSUEDT,
TITLE,
DOCTYPE,
VALIDITY

INTO TODAY,
CLASSIF,
CDRN,
VERIFIER,

DRN,
P SC,
POC,

P_NUMBER,
P_YEAR,
IDNR,
IDOXXMPL,
ORG]NAME,
ISSUEDT,
TITLE,
DOCTYPE,
VALIDITY

FROM DOCUMENT
WHERE DRN > &FIRST DOC TO PRINT

AND DRN <= &LAST DOC TO PRINT

.DEFINE CLASSIFICATION
SELECT CLASS IF NAME
INTO CLASSIF NAME
FROM CLASSIFICATION
WHERE CLASSIF

178

(SELECT CLASSIF

FROM DOCUMENT
WHERE DRN = &DRN)

.REM DEFINE PROCEDURAL MACROS

.REM

.DEFINE BODY

.EXECUTE CLASSIFICATION
#Sp 1

#T 1 #S 1
#CEN
.PRINT CLASSIF NAME

#s 2
#CEN
BRAZ I L IAN\ \AIR\ \FORCE \\M I NI STRY

#s 1
#CEN PROCESSING SHEET #

#S 2
#TE
#T 2

Prot #:
.PRINT P SC
#NC

#NC
.PRINT P OC
#NC
/
*NC
.PRINT P NUMBER

#NC /
#NC
.PRINT P YEAR
#NC
DRN:
.PRINT CDRN

*PRINT VERIFIER
#S 1 #TE #T 1

.PRINT DOCTYPE

.PRINT CLASSIFNAME
from
.PRINT ORGNAME
ID #
.PRINT IDNR
/
.PRINT IIXXIPL
of
, PRINT ISSUEDT

#s 1 #TE #T 4

179

Validity:
.PRINT VALIDITY

#NC
Title:
#NC
.PRINT TITLE

#S 1
#TE #T 1

#TE
#T 5 FROM #NC : #NC TO #NC #NC DISPATCH #N
#TE #T 6

#NC #NC
#NC #NC
*#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
#NC #NC
#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
*#NC #NC
#NC #NC
*#NC #NC
*#NC *NC
#NC #NC
*#NC #NC
#NC #NC

S#C *NC
#NC #NC
#NC #NC
#NC #NC

#S 1 #TE #T 1
#CEN

180

.PRINT CLASSIFNAME
*

#NP #TE

.REM

.REM PROCEDURE SECTION
.REM
" EXECUTE FIRST
.EXECUTE LAST
.REPORT DOCUMENT BODY
* STOP

181

Processing Sheet Sample

LVt~JFIDENTIAL

BRAZILIAN AIR FORCE MiNISTRY

I~JCESSING SHEET

Prot #: 21-23/345 /89 DRN: 89100001 - 8

DOL CONFIDENTIAL froni BAAN ID * 221 / IDFR/89 of 23-FEB-89

Validity: 16-FEB-94 Title: THIS IS THE TITLE OF DOCUMENT 89100001

FF~JM TO DISPATCH
I I
a a

a a
a a
a a
I a
I I

a a
a a
a a
a a
a I

a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a I
a a

a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
* a
a a
a I
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
I a
a a

CONFIDENTIAL

182

File A44 3.RPT, Print Thesaurus Terms bZ Hierarchical Relationship

.REM FILE NAME: A44_3.RPT

.RE PARENT MODULE NAME: MAINTAIN THESAURUS

.REM MODULE NAME: PRINT TERMS
.REM REPORT NAME: ORDER BY TFM HIERARCHICAL RELATIONSHIP

.REM DEFINE TAB STOPS ON THE REPIORT
#DT 1 08 73 #
#DT 2 08 27 66 73 #
#DT 3 11 18 20 73 #
#DT 4 08 73 #
#T 1
#PAGE 1 90

.REM DECLARE VARIABLES

.DECLARE TODAY EDATE

.SET TODAY $$DATE$$

.DECLARE TIME OF REP A5

.SET TIMEOFREP $$TIME$$

.DECLARE CLASSCD) A2

.DECLARE CLASS A20

.DECLARE TERM A50

.R*M **** VARIABLES USED TO BREAK PAGES

.DECLARE COUNTER 99

.SET COUNTER 6

.DECLARE PAGENO 99

.SET PAGENO 1

.DECLARE MAX-LINES 99

.SET MAXLINES 62

.REM **** VARIABLES USED TO BREAK CLASS NAME
SDECLARE SAVE CLASSCD A2
.SET SAVE_CLASSCD '**'

.RE SELECT MACROS

.DEFINE SELTERM

SELECT LPAD(' ',3*LEVEL) :: LEVEL ::'. ':: MAIhTR
INTO TERM
FROM RELSHIPS
CONNECT BY PRIOR MAINTR = SECTR AND REL: 'BT'
START WITH MAINTR = 'ROOT'
AND REL=-'BT'
AND SECTR IS NULL

183

.REM DEFINE PROCEDURAL MACROS

.DEFINE BREAKPAGE
.&labell

.IF &CX)UNTER<&MAXLINES THEN label2

.SET OUNTER 6

.REM the heading has 5 lines

.ADD PAGE NO PAGENO 1

.NP

.HEAD
.&label2

.ADD COUNTER COUNTER 1

.DEFINE HEAD

#TE
#T 1

#CEN
THESAURUS REPORT A44_3 - ORDER BY TERM HIERARCHICAL ASSOCIATION

#TE
#T 2

.PRINT TODAY

.PRINT TIME OF REP
#NC
PAGE
.PRINT PAGE NO

#TE
#S 1
#T 3

Level
#NC
Term

#S I
* BODY

.DEFINE BODY

#TE
#T 4

. BEAK_PAGE
#CL

MFPRINT TERM

#NC

184

.DEFINE FOOT
#TE
#S 3
#CUL END OF REPORT #

.REM ROCEDURE SECTION

.REPORT SELTERM BODY HEAD FOOT

.STOP

File A44 4.RPT, Print Thesaurus Terms Giving all Relationships

.REM FILE NAME: A44_4.RPF

.REM PARENT MODULE NAME: MAINTAIN THESAURUS

.REM MODULE NAME: PRINT TERMS

.REM REPORT NAME: ORDER BY TERM AND RELATIONSHIPS

.REM DEFINE TAB STOPS (TABLES) ON THE REPORT
#DT 1 08 73 #
#DT 2 08 27 66 73 #
#DT 3 08 33 35 73 #
#DT 4 35 43 45 73 #
#DT 5 11 73 #
#T 1
#PAGE 1 90

.REM DECLARE VARIABLES

.DECLARE TODAY EDATE

.SET TODAY $$DATE$$

.DECLARE TIME OF REP A5
.SET TIME OF REP $$TIME$$

.DECLARE CLASSCD A2

.DECLARE CLASS A20

.DECLARE TERM A25

.DECLARE REL A2

.DECLARE RELNAME A8
.DECLARE SECTERM A25
.DECLARE NOTE A60

.R **** VARIABLES USED TO BREAK PAGES

.DECLARE COUNTER 99

.SET OUNTER 9

. DECLARE PAGENO 99

. SET PAGENO I

.DECLARE MAXLINES 99

.SET MAXLINES 62

185

.RI SELECT MACROS

.DEFINE SEL TERM

SELECT CLASSCD, TERM
IN'I CLASSCD, TERM
FO TERM4S
ORDER BY TERM, CLASSCD

.DEFINE SELCLASS
SELECT CLASS
INTO CLASS
FROM CLASSES
WHERE CLASSCD = &CLASSCD

.DEFINE SEL RELATIONSHIPS
SELECT REL, SECTR
INTO REL, SECTERM
FROM REISHIPS
WHERE MAINTR = &TERM
ORDER BY REL, SEC'R

.DEFINE SEL RELNAME
SELECT RNAME
INTO RELNAME
FROM RELNAME
WHERE REL = &REL

.DEFINE SEL NOTES
SELECT NOTE
INTO NOTE
FROM NOTES
WHERE TERM = &TERM

.REM DEFINE PROCEDURAL MACROS

.DEFINE BREAK PAGE
.&labell

.IF &COUNTER<MAX_LINES THEN label2

.SET (XIJNTER 9

.REM set counter with the number of lines in the header

.REM plus the top and bottom margins

.ADD PAGENO PAGENO 1

.NP

.HEAD1

186

. &label2
.ADD COUNTER COUNTER 1

.DEFINE SELRELATIONSHIPSBODY
#TE
#T 4
-EXECUTE SELRELNAME
.PRINT RELNAME
#NC
.PRINT SECTERM
#NC
.BREAK PAGE

. DEFINE SEL_NOTESBODY
#TE
#T 5
.PRINT NOTE
#NC
.BREAKPAGE

.DEFINE HEADI

#TE
#T I

#CEN
THESAURUS REPORT A44_4 - ORDER BY TERM AND RELATIONSHIPS
#

#TE
#T 2

.PRINT TODAY

.PRINT TIME OF REP
#NC
PAGE
.PRINT PAGENO

#TE
#S 1
#T 3

Term
#NC
Class Number & Class Name
#NC
\ \ \Scope Note
*NC
Relation\ \Secondary Term

#S I

.DEFINE HEAD2

187

.HEAD1
" BODY

.DEFINE BODY

.E ECITE SEL_CLASS
#TE
#T 3

.PRINT TERM

#NC
.PRINT CLASSCD
.PRINT CLASS
#NC
.REM the following nested report gets the relationships
.REPORT SEL_NOTES SEL NOTESBODY
.REPORT SELRELATIONSHIPS SELRELATIONSHIPSBODY
.BREAKPAGE

.DEFINE FOOT
#TE
#S 3
#CUL END OF REPORT #

.REM
REM CEDURE SECTION
.REM

.REPORT SEL TERM BODY HEAD2 FOOT
* STOP

188

Bibli ography

Chen, Peter P. "The Entity-Relational Model: Toward a Unified View of
Data," ACM Transactions on Database Systems, 1 #1: 9-36 (January
1976).

Codd, E. F. "A Relational Model for Large Shared Data Banks,"
Communications of the ACM, 13 #6: 377-387 (June 1970).

Horowitz, Ellis and Sahni, Sartaj. Fundamentals of Data Structures in
Pascal. Rockville, MA: Computer Science Press, 1987.

Jackson, D. M. "Classification, Relevance, and Information Retrieval."
Advances in Computers. 59-125. New York: Academic Press, 1971.

Korth, Henry F. and Silberschatz, Abraham. Database System Concepts.
New York: McGraw-Hill Book Company, 1986.

Lancaster, F. W. Vocabulary Control for Information Retrieval.
Arlington: Information Resources Press, 1986.

Lans, Rick F. Introduction to SQL. New York: Addison-Wesley Publishing
Company, 1988.

Ministerio da Aeronautica. Instrucoes sobre Correspondencia e Atos
Oficiais do Ministerio da Aeronautica, ICAER. IMA 10-01.
Guaratingueta, Brazil: edited by the Escola de Especialistas da
Aeronautica, 1976.

Ministerio da Aeronautica. Regulamento vara Salvaguarda de Assuntos
Sigilosos, RSAS. Brasilia, Brazil: edited by the Central Agency of
the National Information Service, 07 JAN 1977.

Pressman, Roger S. Software Engineering, a Practitioner's Approach. New
York: McGraw-Hill Book Company, 1987.

Oracle Corporation. Oracle for IBM PC/MS-DOS Installation and User's
Guide. Part Number 1022-V5.1A. Belmont, CA: edited by Oracle
Corporation, 1987.

Zussman, John Unger and others. S*L*Forms, Designers's Reference,
Version 2.0. Part Number 3304-V2.0. Belmont, CA: edited by Oracle
Corporation, 1987.

Simon and Schuster. Webster's New World Dictionary of the American
Language. Cleveland: New World Dictionaries, 1984.

Stonebraker, Michael. Readings in Database Systems. San Mateo, CA:
Morgan Kaufmann Publishers, INC, 1988.

189

Vita

Lieutenant Colonel Antonio F. Bernardo Silva.

He joined the Brazilian

Air Force in 1966 and graduated in 1971 with a Bachelor of Science (B.S.)

degree from the Brazilian Air Force Academy; at the same time he

completed his pilot training and received his wings. Upon graduation, he

was designated to the Fighter Pilot Selection Course, receiving his

Fighter Pilot Wings in 1972, as the more efficient pilot of his class.

He then served as a F5-E pilot in the 1st Grupo de Aviacao de Caca, Santa

Cruz, Rio de Janeiro up to his designation to the Air Defense Command,

Brasilia, in 1978. His first contact with computers were that same year,

in the "Air Defense and Air Traffic Control Integrated Center", Brasilia,

when he was assigned to a training course as Air Defense Control Chief.

In 1982 he graduated from the Roman Catholic Faculty of Technology,

Brasilia, in a four-quarter Specialization Course on Computer Science.

In 1983 he was designated to participate in a work group to create the

Air Ministry Data Processing Center, Brasilia, which became operational

in 1984. He was the head of the Center until entering the School of

Engineering, Air Force Institute of Technology, in June 1987. During his

assignment at that Center he developed several systems, mainly oriented

to databa3e bystems.

190

