
DARPA Status Report-- November 1988

Sun Young Hwang

'So
1. Introduction ''"..C) _% Simulation now requires vast amounts of t time. This severly limits the size of a design

that can be tested thoroughly. lZcrementa simulation is a possible solution to these limit.

~Specific synthesis and an~ysis tools are also proposed. \,Ile primary purpose of this project is

to allow the designer to make his changes and optimizations at as high a level as possible, but
allowing him to observe the ramifications of his changes at a lower level and to help guide the
synthesis routines in the selection of a good design. This user guidance is necessary because of
the huge design search space faced by synthesis programs. L I I

ELECTE

2. Progess 3 APR27 1989

2.1. Incremental Simutatlon
We proposed two incremental simulation algorithms, the incremental-in-space in .

incremental-in-time algorithms, and impleminted them in our THOR simulation system. These
two algorithms are comparable to each other one sho%s better performance for some circuits

over the other, depending on the circuit structure and topology of the circuit under simulation.

2.2. Behavioral Synthesis: Hermod System
jThe primary purpose of this project is to allow the designer to make changes and

optimizations at as high a level as possible, while allowing him to observe the ramifications qf
his changes at a lower level and to help guide the synthesis routines in the selection of a good
design. This user guidance is necessary because of the huge design search space faced by
synthesis programs. The synthesis system displays the data/control flow graph extracted from a

functional model on the window screen. And register-transfer representation of a behavioral
level description is displayed on the screen after optimization effort by the system.

6 91 614

) T..

' -,7 ,Li;.- '

i i I I I I I

3. Future Work
1. Simulation: More experiment on a hybrid version of the incremental simulator, and install

incremental THOR simulator at -cad directory.

2. behavioral synthesis: Partitioning in behavioral synthesis will be investigated. In the VLSI
design, it is important to partition the hardware at the early stage of design to generate good
quality designs. Partitioning of algorithmic/behavioral descriptions should provide the
synthesizer with the capability to explore design space effectively. Algorithmic partitioning can
be achieved by splitting a procedure into multiple processes that can be executed concurrently or
be pipelined. Algorithmic partitioner will be designed for the behavioral descriptions written
HardwareC, the high level language for Hercules synthesis system.

4. Publications
One paper is published and another one is accepted for possible publication around the end of

1988. They are listed below:

[1] S.Y. Hwang, T. Blank, and k. Choi,
"Fast Functional Simulation: An Incremental Approach",
IEEE Trans. on Computer-Aided Design of Integrated Systems and Circuits,
CAD-7 (7), July 1988, pp. 765-774.

[2] M. Odani, S.Y. Hwang, T. Blank, and-T. Rokicki,
'The Hermod Behavioral Synthesis System", durnal of Systems and Software,
to appear in 1989.

Ac cesin For.T" It
DTIC TAB [-]

Unf-.mouncod]_
Just i f c ttle

AVaii11bility CodeS
Av8', I &rxd/or I.

Dist Special

Suitability of Message Passing Computers for
Implementing Production Systems

Anoop Gupta Milin Tamnbe
Dept. of Computer Science Dept. of Computer Science

Stanford University .Carnegie Mellon University
Stanford. CA 94305 Pittsburgh,. PA 15213

Abstract been analyzed. Considering WPCs is important. because NFCs
represent a major architectural and programmiing model in current

Two important parallel architecture types are the soerd-memory use. Previously, the communication delays in the MPCs made dhem
architectures and die message-passing architectures. In die pant impossible to be used for the purpose of exploiting fine grained
researchers working on the parallel implementations of prdcto parallelismn. However. recent developments in the implementations
systems have focussed either on shared-memory multiprocessors or of MPCs (3). have reduced the communication delays and the
on special purpose architectures. Message-passing computers have message processing overheads by 2-3 orders of magnitude. The
not been studied. 7he main reasons have been the large message- presence of these new generation MPlCs srch as the AMETEK-2010
passing latency (as large as a few milliseconds) and high message [19] makes it interesting to consider MFCs for implementing
reception overheads (several hundred microseconds) exhibited by die prouction stems.
first generation message-passang computers. Theme overheads are too
large for die parallel implementation of production systems, wheae it Ths paper is organized as follows. Section 2 describles the OPS5
is necessary to eploit parallelism at a very fin grnuaity tooti production system and the Rete matching algorithm used in
significant speed-up (aibtasks execute about 100 machine inplemnenting it. Section 3 describes recent developments in the
instructions). However, recent advances in interconnection network WPCs azid presents the assumptions5 about their execution times
technology and processing node design have cut the network latency which we will use in oLu r nalysis. Section 4 presents our scheme for
and message reception overhead by 2-3 orders of magnitude, making implementing OPS5 on die MMLs We then evaluate its performance
these computers much more interesting. In this paper we pent and comrpare it with other parallel implementations of production
techniques for mapping production systems onto message-passing sytes.
computers We show that using a concurrent distributed hash table
data stracture, it is possible to exploit parallelism at a very finer
granularity and to obtain signifrcant speed-ups fromn parallelim'. 2: Backround

1. Introduction 2.1. OPSS
Production systems (or nile-based systems) occupy a prominent An OPSS [2] production system is composed of a set of if-:hen

place in die field of AL They have been used extensively in the rules called productions that make up die produsction nmemory, and a
attempts to understand the nature of intelligence as well as to develop database of temporary assertions. called the working memory. The
expert systems spanning a wide variety of applications. Production individual assertions ane called working memory elements (VIMEs).
system programs, however, wre computation intensive and run which sat lists of artribute-value pairs Each production consists of a
slowly. This slows down research and limits The utility of diese conjunction of condition elements (CFA) corresponding to tit if Part
systems. In this paper, we examine the sutability of message-passing of the rule (the left-hand side or LHS). and a set of actions
computers (MPCs) for exploiting parallelism to speed-up the corresponding to the then. part of the rile (die tight-hand aide or
execution of production systems RHS).

To obtain significant speed-up from parallelism in production The CEs in a production consist of artribute-value tests. where
systems it is necessary to exploit parallelismn at a very fine some attributes may contain variables as values. Thie attribute-value
graularity. For example, the average number of instructions tests of a CE must all be matched by a WME for the CE to march; the
executed by subtasks in the parallel implementation suggested in variables in die condition element may match any value, but if die
(101 is only about 100. In the past. researchers have explored the use variable occurs in more than one CE of a production, then all
of special-purpose architectures and shared memory multiprocessors occurrenices of die variable must match identical Values. When all
to capture this fine-grained paralleliun [10, 16,17,18,11,21). die CEs of aproduction are matched, the production is satisfied, and
However, the performance of MPCs for production systems his not an instantiation of the production (a list of WMs that matched it). is

created and entered into die conflict set. The production system uses
a selection procedure called conflict-resolution to choose a
production from the conflict set, which is then fired. When a

This reuearch wa ponsored by Enre Computer7 C~pvui Djijta E~p production fires, the RHS actions associated with that rroduction are
Corporeuamm isi by thic Defense Advanced Research Procu A~ency (DOD), ARIA order executed. The RHS actions can add, remove or modify WMFs, or
No. 476 under contect F3361W4.C-149 uund noim by the Air Fares Avionic perform 110.
Laborstay. Asco Gupta is euppota by DARPA convect NOOOI-17.K.CIS and an
awad from tse Ditital Equipuitent Corporation. Thre viw aud conclusios con~s i i
this dounat ane time of the a1,on an "ol .. t be iump~wd asrpeenigO The production system is executed by an interpreter that
official plictim. aitlut espud or imptied. of Eactus Conpase Carpomatot. Digita repeatedly cycles through three steps: match, conflict- resolutison. and

Uqsiptytti Carporstn ,and ons Defense Ahaared Rteseach Projects Agency or On US act. The matching procedure determines die set of satisfied

It' ec~~4~.AAA1 -t

productions. the conflict-resolution procedure selects the highest
prionty nAwnatoon. and the act procedure executes its R4S,

(C ttrl <X> zottr2 121
(C2 attrl 9 e.ttr2 <x>) Root

2.2L Reu C2 v^,trl ex> ^attr2 15)

Rete 17) is a highly efficient match algorithm that is also suitable (remove 2) C2 "
for parallel implementatons (9]. Rete gains its eff(iency fro) to C

Optimizations. Fist it exploits the fact that only a small fraction of / IK\
wocking memory changes ech cycle by storing results of match fronm 12
previous cycles and using them in subsequent cycles. Second. it
exploits the commonality between CEs of productions, to reduce the
number of teas performed. t C2:ttr2 #I

Rete uses a special kind of a dama-flow network compiled from the
LHSs of productions to perform match. The network is generated at
compile time, before the production system is actually run. The
entities that flow in this network are called tokens, which consist of a odes pt
sag, a ist of WME time-lagr, and a list of vriable binAngs. The tag
is either a + or a- indicating the addition or deletion of a WM The
list of WME time-tags identifies the dat elements matching a Figure 2-1: The Rete network.
subsequence of CEs in the production. The list of variable bindings
associated with a token corresponds to the bindings created for
variables in those ClEs that the system is tryng to numacho has potentially reduce the messageze on overhead by an order of
already matched. magnitude. With today's VLSI technology. it is possible to construct

MPCs with thousands of processing nodes and hundreds of
her an primaurily three types of nodes in the actwodi wich use megabytes of memory [3). Thus very fine grain parallelism can now

the tokens described above to perform much: be exploited easily with the MCs.
1. Consant-tes nodes: These are used to test the constant-

value attributes of the CEs and always appear in the top Ths raises the issue of whether production systems can be
past of the network. They take less than 10% of the time implanemted efficiently on the NICs to give good speedups, which
spent in M tch. we analyze in detail in this paper. For the purpose of this analysis,

2. Memory nodes: These store the results of the match phase we assume a 32-d'y 2-cube architecmre (1024 nodes), with a 4 MIPS

from previous cycles as state. This state consists of a lut processor at each node similar to the MDP. mhe various times that

of the tokens that match a pan of the LHS of the requited for our analysis ame as fOWLwsm latency of worhole

associated production. This way only changes made to ruting is given by

the wordng memory by the most recent production firing A TU Te (D + L/W)
have to be processed every cycle.

3. Two-input nodes: These test for joint satisfaction of CEs Whr-e

in the LHS of a production. Both inputs of a two-input Tc Channel Delay, assumed to be 50 nanoseconds
node come from memory nodes. When a token arives (as), as in 13].
fhrn the kft memory. i.e., on the left input of a two-input W Channel Width, assumed to be 16 bits.
node, it is compared to each token stored in the right
memory. All token pai that have consistent variable L Length of the message in bits.
bindings we sent to the successors of the two-input node. D Distance or number of hops traveled by the
Similar action occurs when a token arrives from the right message. If two processing nodes are Idected at
memory. We refer to such an action as a noe-activ~.on random in a k-ary n-cube, then number bf hops is

igure 2-1 shows the Iew net for a production nmed Pl. n*(k2 - 1)13k - 22 for our 32-ary 2-cube.

We assume that the MDP is driven by a 100 na clock and that the
time to execute a send (broadcast) command is

3. Message-Passing Computers and Assumptions To- (s + V*Q) aook c ss.
Ps are MIM computers based on the programming model of

concurrent processes commnicating by message passing. Them is where a message of Q words is to be sent to N sites [5]. m!e
no global shared memory and hence communication between the overhead of receiving messages is assumed insignificant (5]. Thus
concurrent processes is explicit as in Hoae's CSP (12], though not there are two delays associated with a message: T, in transmission,
necessarily synchronous. The early MPCs mch " the Cosnic T.,, in its communication.
Cube [20] had a high network latency of sbout -2 millisecond (ms)
and a high overhead of message handling of about -300
microseconds (js). As a result, it was impossible to exploit
parsllelism at the fine granularity of 50-100 ju as is necessary in 4. Mapping Rete on the MPC
production systems. In this section we describe our mapping of Ret, on the MPC's. We

draw heavily from our previous work with the PSM implementations
Recent developments in WPCs such as worm-hole routing [4] have of production systems on shared-memory multaprocessors (9. 10,21).

reduced the network latencies to 2-3 ps and the use of special
processors such as the MDP (Message Driven Processor) (51 can One possible schcme for implementing OPSS on the MPCs aises

fim viewing Rose in an object-orieted manner, where the nodes of right buckets ast only one index need to be accessed.) This mapping is
Rewt an objects and tokens ae messages. This scheme maps a single pictorially depicted in Rgure 4-2. There is one restriction on the
ebject (node) of Rate onto a single processor of the MPC. However. communication with the processor-pair - it can only be done
them are two serious problems: (1) The mapping requires one through the left.processor. Allowing communication with both left
p ocess-o per node of the Rote net, ad the processor utilization of and right processrs can result in creation of duplicaue tokens leading
such a Lcbe is expected to be very low; (2) Often, the processing to incorrect behavior, and it does not gain as much in concurrency.
of a VIM change rests in multiple activations of the same Rete
node, which in the above mapping would be processed sequentially
oan the same P. thus causing that PE to be a bottleneck. Token Structure

____________________________________I_ .1/ r Inodeid I arb I varb2l wta vts

M
control

processorh. .ash fn Variables
involved in

match equality tests at
processors Unchanged dest nodes

bits for poc Index T-basepartTtt on
a concurrent

E[hasT-able

4 const ant 4 conf lict
node processors set processors

Figure 4-: A highlevel viewof the Mappingnthe pMcss.

To overcome the limitations of above mapping, we propose an
alternative mapping, a high-level picture of which is shown in Figure
4-1. At the heart of this mapping is a concurrent disributed
hash-table (6] data structure that enables fine-grain exploitation of
concurrency. T1he details are described later in this section. As
shown ion the figure 4-1. the parallel mapping consists of 1 contsros
processor. 4 cojtar-node processors, 4 co iclt proessort. i
the rest ar match processors. The constant-test nodes of the Rete net
ame divided into 4 parts and assigned to the constant-node processors
7Te match processors perform the function of the rest of the Rete net.
The conflict-set processors perform conflict-resolution on the
instandations sent to them. Subsequently. they send the best Left sh Buckets I Right Hash Buckets
instanation to the control processor. Ie control processor is e _posr __d _ytr mi etont _teihprcsr

tsponible for performing conflict-resolution among the best
istantiations. evaluating the RHS and performing other functions of Figure 4-2: The detailed mapping.
the interpreter. n s hhnostt p e c p s t n to tfe rtr

As mentioned in Section 2.2, most of the time in match is spent A processor-pair together performs the activity of a ingle tod
processing two-input node activations. Hashing the contents of the activation. Consder the case when a token corresponding to the
associated memory nodes, instead of storing them in linea lists, leftctivaon of a two-input node arrives at a processor-pair. The
seduces the number of comparisons performed during a node- left processor immediately tanits the token to the right processor.
activation and thus improves the performance of Rete. One hash The left processor then copies the token into a dat- structure and adds
table is used for all left memory nodes in the network and the other it to the appropriate hash-table bucket. Meanwhile, the right
for all right memory nodes. The hash function that is applied to the processor compares the token with contents of the appropriate right
tokens takes into account (1) the variable bindings tested for equality bucket to generate tokens required for successor node activations
at the two-input node, and (2) the unique node-identifier of the The right-processor then calculates the hash value for the newly
destination two-input node. This permits quick detection of the created tokens, and sends each token to the processor pair which
tokens that am likely to pass the equal variable tests. owns the buckets that it hashes to. The activities performed by the

individual processors of the processor pair ar called micro-tasks, and
In our mapping, to allow the parallel processing of (1) tokens all the micro-tasks on the various processor pairs are performed in

destined for the same two-input node and (2) tokens destined for parallel
different two-input nodes, the hash tables buckets storing the tokens
ame distributed among the PEs of the processor array. In particular, a The perforrmance of this scheme depends on the discriminability of
small number of corresponding buckets from the left and right hash hashing. Two observations can be made in this respect:
tables are assigned to each processor pair in the array - the left-
buckets to the left processor and the right buckets to the right 1. Hashing is based on equality tests in CEs and 90% of the

processor. (Note that when processing a node activation, the left and tests at two input nodes ane equality tests (9].

2. Tbe locks an the hash tables in he PSM implermntations . Performance Analysis
have not been m to be boalenecks (10. 21. We now evaluate. the MC implementation usng the

measurements an the Rete net from [9]2 The point of the analysis is
T h ashing is not expected to be a problem in geneual. to establish that the MPCs will provide good speedups compared to

However, in certain production systems, a large number a(two-input other previously proposed parallel implementations, rather than to
nodes do rot have any tests. For much nodes, various schemes as estimate the exact performance that wall be obtained on a real
proposed in I1. can be used to introduce disciminability into the machim.
tokens generated. Furthermore, when the compiler does come across
nodes which canmot be hashed, it can sip i a larger humber of One of the important numbers for this analysis is the time spent in
processo s for that pair of buckets. (since all the tokens would end up the processing of one node activation. Using that, we can estimate the
in a single pair of buckets) thus breaking up the procesing. time for a micro-task. A node activation is identical to a rask on the

PSM, which takes 200 ps on a 1 MIPS processor [10].
The code for the Ret. net is to be encoded in the OPS83 (8] Measurements of the number of instructions executed indicate that

software technology. With this encoding, large OPS5 programs (with about 50% of that time is spent in updating the hash bucket and 50%
- 1000 productions) require about 1-2 Mbytes of memory - a in performing tests with tokens in opposite memory. We therefore
problem, since each MPC processor has only 10-20 kbytes of local assume that on our 4 MIPS processor, performing a micro-task will
memory. We therefore use two strategies to save space: take about 25 pa. which is 200 p * 1/4 (due to processor speed) " 0.5

1. Partition the nodes of Ret much that each processor (due to partitioning of the node-activation into micro-tasks).
evaluates nodes from only one partition. This
partitioning is easily achieved if the hash function Since the processor-pain communicate via tokens, we also need to
preserves same bits from the node-id. To avoid calculate the overhead of a token message. The length of a token-
contention, nodes belong to a single production are put mesage is dependent on the number of variable bindings and tl,.
into different partitions, number of WW% timnetags carried by the token. There are on average

four variable bindings per production (9). The number of WME
2. One cause of the large memory requirement is the in-line timetags is dependent on the number of CEs in a production.

expansion of procedures. We can instead encode the two- Assuming the number of CEs to be (M - 5) for the moment, we use
input nodes into structure of 14 bytes, indexed by the the token-stnrurem in Figure 4-2 to estimate 42 bytes of information
node-id. A snall performance penalty of loading the per token. The overhead of sending the token message will therefore
required information into registers is then paid in the be equal to Ts a (5 + Q * N) clock cycles, with Q = 42/4 words •d N
beginning of the computation. - I processor (see sction 3). Substituting, we get T, - 1.6 ps. The

The system's overall operation is as follows: commucation delay Th is given by TC(D + 1W). This
I.The control processor evaluates a /ME change and wcmmunication will be between a random pairs of processor.

.transmitsitothe co nsta t nodes a WM chage ndTherefore. D - 22. We have assumed TC to be S0ns and W to be 16.
basris it to the constant node pOur L is 42 0 a336 bits. Substituting. we get T b - 2.2 1a. The

2. The constant node processors mtch the WME with the total delay will be therefore 1.6 + 2.2 n 3.8 lit per token message
constants in the CEs The result of this match is tokens 4 between processor-pai.
that have bindings for the variables in matched CEs. 4
These tokens represent individual node activations and We can now estimate the cost of one march cycle. The steps
am sent to appropriate processor pairs. below correspond to the algorithm in the previous section.

3. The following steps arm then repeated by the processor-pisuntil completion of matc~h: Ste 1: Te WMIE changes me trnmitted to the 4 constant-node
processor. The cost of addition of a WME is as follows: Tlhe

* Split the node-activation into mNcro-tasks and average WME consists of 24 attribute value pairs, which can be
perform the in paralleL encoded in 24 bytes for attributes + 24 words for the values -30

* Count the number of successor tokens generated words. Broadcasting this WME takes T" a (5 + 30 words " 4
due to this token; if no successors ae generated, processors) clock cycles i.e., 12.5 ps.
then send an acknowledgement (ack) message to
this processor pair's activator. For the communication delay, Te. D a 1 since the constant node

e Accept ack me s fm te processors ae one hop away from the control processor. The value
of L is 30 words 0 32 bits/word - 960 bits; W = 16 and the value of

accounted for all successors of a token, send an ark TC is fixed at 50. Substituting, we get Tt - 3.1 ps. Thus the total
message to the activator, time spent in communication during VME-addition is 15.6 pa

Detecting termination in a distributed system is a complex For deleting a VME, only the timetag of the WME to be deleted is
problem in itself [15). The ack messages provide an easy and passed on to the constant-node processom Calculating T. and T,,s in
reasonably efficient method of informing the conflict-set o a iilar fashion, we get the total time spent in delete to be 1.1 pcs.
about the completion of the match. Thus after the processing of the There is an average of 2.5 VME changes per cycle. Assuming equal

last activation in the current match cycle, a single stream of ack 're is aera dele.5 s, e cos oe le ssuin equal

messages flows back, finally to the control processor. which then proportions of adds and deletes, t cost of the first step is 1.25(l.1 +

informs the conflict se processors that the match is completed. 15.6) - 21 Its.

'We do not amilye ft conf c-eolution " action pweu Of Ow rmich nin€ Own take
I= ohan 10% of h tine in a eriml imptemenaittim. Sino em have divided up Ow conlwt

-A an pipehn d 0 act-tion W with OW emach.. then ahoul take eyes le tilme "n that.
In caset y do bec-me bouic.oka, vanous achenva discussed in 193 can be used o seduc
theif overads.

Step 2: The constant tests m now eluated. Assuming that the 6. Discussion
constant was an implemented via hashing. there e 20 constant- Compang the WC, implementation to a shared memory multi-
node activations per WME change [91. On average, each partition processor implementation, we see that the principle advantage of the
will have S activations per WME change. Thus about (5 * 2 / 4 MPC implementation is the absence of a centralzed task-scheduler.
MMPS) - 2.5 ps an spent in matching the constant nodes. A token which can be a potential bolmck. As down in (9]. in shared-
muctre is thean generated and bindings am created for the variable(s) memoy implementations. a slow scheduler forces saturation speedup
of the CMa which passed the ets. Measurements (9) show that them with relatively small number of processors, irespective of the
will be about 5-7 such tokens generated per WME change, which we inherent paralelism in the system. However, the MPC
assume to take 20 ps. Th7s whole operation of processing a WME- implementation suffers from a static partitioning of the hash tablez. h
change by a constant-node processor is therefore estimated to take is possible that distinct tokens, which could potentially be processed
about 22.5 ps. For the 2.5 WME-chunges. (22.5 * 2.5) - 56 Ips will in parallel, an processed sequentia y because they hush to the same
be spent in processing the constant nodes and generating the initial processor pair. Such a possibility does not arise in the shared-
tokens in a cycle. The generation of these tokens is pipelined with memory implementation. incA the size of the hash table is
sending the tokens to the match processors. independent of the number of processors.

Step 3: The processor-pairs perform the rest of the match. The Another tradeoff to be considered is between processor utilization
node-activation typically go to different processor-pairs, and ae and die number of processors. With a higher number of processors,
processed in paraUel Tberefom, the total time to finish the match is the processor utilization will be low, but the message contention in
determined by the longest chain of dependent node-activations, since the network will be reduced. As the number of processors is reduced,
the micro-tasks in the chain have to be processed sequentially. On an processor utilization wil be improved; but again, this will also
average, the chain will be generated after 50% of the initial tokens in increase the hash table contention. Thus there are some interesting
a cycle have been generated. A constant-node processor takes 36 15 tradeoffs involved in moving towards the MPCs.
to generate all the initial tokenr therefore, we asume that the initial
token generating the long chain will be created after 28 ts. Including A mapping similar to one proposed in this paper has been used to
the constant-node processors, let the longest chain be of length M implement production systems on the simulator for Nectar. a network
S. cnmputer architecture with low message passing latencies [13].

These simulations show that good speedups can be obtained by
When a token arrives at the left processor. it is immediately implementing production systems on MPCs with low latencies (22).

transamitted to the right processor. For this transmission, T. is still 1.6 The simulations also indicate that the constant node processors can
Pa. But. T , 50(0 channel + 42 * 8/16) a 1.1 Pa. Thus, after a quickly become bottlenecks if the initial tokens an not generated and
token arrives at the left processor. it will take 1.6 + 1.1 - 2.7 Pa to sent fast enough. In or current implementation, we have hashed the
mach the right processor. The right processor will take 25 ps to finish constant nodes to take cam of such a possibility. If the constant node
the micro-task. It will then take 3.8 ps for the successor token to processors continue to be bottlenecks inspite of this, then schemes
reach its destination. Thus, the time to complete a micro-task is 25 + proposed in (22) can be used to remove them.
2.7 + 3.8 a 31.5 ps. A chain of length 5 wi therefore take 31.5 * 4 +
28 pa (due to the constant nodes) w 154 p.. (Similar analysis ouVk Finally, we would lMke to reiterate the importance of mapping
be done if the successors an generated by the left processor). oproduction systems on MPCs. Current production systems offer

limite"J10-20 fold) parslleism 19]. We have shown that the MPCs
The ack messages am propagated back through the node activation an capable of exploting this limited parallelism. However,

chain, after the last activation is processed. It is I word of production systems with more inherent paralelism are getting
information and so we estimate T., a 1.2 pa and T. a 0.6 ps. designed 114). In such production systems, the parallelism is
Assuming that the ack is processed in I ps. the time spent in the expected to be much higher 121]. For such production systems, it
chain of ack messages is (M 5) * (1 + 1.2 + 0.6) = 14.0 is. Adding becomes necessary to analyze easily scalable architectures such as
all the numbers together, we get the time for MPC to match to be the MPCs for their implementations.
approximately 154 + 14 + 21 = 189 ps.

A production system generates 200 micro-tasks an an 7. Summary
averagekyele. and therefore a uniproressor will take 200 25 - 5000 Recent advances in interconnection network technology and
pa per cycle. Using this we get about 26 fold speedup for the above processing node design have reduced the latency and message
system with the longest chain of M = . Tis is -oe of the handling ovetheads in MPCs to a few microseconds. In this paper we
ganMum paraiy eism exploitable on an idea multi-proceor at this addressed the issue of efficiently implementing production systems

nularity. Our calculations show that the speedups is -14 fold if M on these new-generation MPCs. We conclude that it is indeed quite
- 10 and -9 fold if M a 15. Again, this is -60% of the maximum possible to implement production systems efficiently on MNPCs. At a
available parallelism. This is comparable with the estimate of 60% high level, our mapping corresponds to an object oriented system,
exploitable parallelism in shared memory multiprocessors at the with Rete network nodes passing tokens to each other using
node-activation level (91. This coarser grain node-activation level messages. At a lower level, however, instead of mapping each Rete
parallelism can be exploited an the MPCs by allocating both the left node onto a single processor, the state and the code associated with a
and right buckets to one processor. Our calculations show that the node am distributed among the multiple processors. The main data
micro-task baed scheme is capable of exploiting 1.5 time mor structure that we exploit in our mapping is a concurrent distributed
speedup than a scheme to exploit the node-activation level hash-table that not only allows activations of distinct Rete nodes to
parallelism, be processed in parallel, but also allows multiple activations of the

same node to be processed in pareL A single node activation is
further split into two micro-tasks that are processed in parallel,
resulting in very high expected performance.

Acknowledgements 114] Laird. J. L., Newell, A., & Roseabloonm, P. S.
We would lke to thank . T. Kong for queMioning our Soar. An aschitetture for general intelligence.

aupbio" about sared memory architectures. We would like to ArtjcialInteiagence 33:1-64, 1987.
Shank Chaues Fogy, Brian Mines, Allea Newell and Peter
Sweakie for many useful commens an eai drafts of this paper. 115] Martem, F.

Algorithms for distributed termination deuction.
We would alo like to thank Kathy Swedlow f tehi ediJournal of Distributed Computing 2:161-175, 1987.

[16] Miranker, D. P.
References REAT: A New and Efficient Algoritan for Al Production

Systems.
I) Achary, A.. Klp, D.. Tambe. M. PhD thexis, Columbia University, 1987.

Cross Products and Long Chains. [17] Ofluer, IL
Technical Report. Carnegie Mellon University Computer Partitioning in Parallel Processing of Production Systems.

SCI w e Deartmel. In preparaton. PhD thesis, Camegie-Mellon University, March, 1987.
[2) Irownuon, L, Farrell. R., Kant, B., Martina, N.SceirF imena..

Programming Erp Systems in OPS5: An Introduction to [18] Schreiner. F., Zimmetn. G.

Rule-based Programming. Pesa- 1- A Parallel Architcu for Production Syaems.

Addison-Wesley, 1985. In International Conference on Parallel Processing. 1987.

P] Dally, W.J. [19] Seitz, C., Athas, W., Flaig, C., Martin, A., Seizovic, L., Steele,

Directions in Concurmt Computing. C., Su, W.
bn Proceedings ofiCCD.86. October, 1986. The Architecture and Programming of the AMETEK 2010

Multicomputer.

14] Daily. W. I. In Hypercube concurrent computer and applications. 1988.
Wire Efficient VLSI Multiprocessor Communication 20] Siz, C. L

NetwotkL[
In Stanford Conference on Advanced Research in . The Cosmic Cube.

1987. Communications of ACM C-33(12), 1984.

15] Daily. W. L. Chao, L. Chien, A.. Hasoun, S., Horwu, W., [21] Tambe, M. S., Kalp, D., Gupta, A., Forgy, C. L. Milnes, B.,

Kaplan. J., Song P., Touy. B., Wills, S. Newellg A.

Architecture of a Message-Driven Processor. Sor-PSM : Invesigatin match pare in a lering

I International Symposium on Computer Architecture. 1987. production system.
In Proceedings of the PPALS.88. 1988.

[6] Da~ly. W. L.
A VLS Architecure for Concurrent Data Structures. (22] Tambe, M., Bitz, F., Steenkite, P.

PhD tei. California Inscitute of Technology, 197. Production Systems on the Nectar: Simulation Results and
Analysis.

17] -orgy. C. L ,jehnical Report, Carnegie Mellon University Computer
Rae: A fast algorithm for many pattem/many object pattern Science Department, In preparation.

match problem.
ArtficialIntelligence 19:17-37, 1982.

[111 Forgy CL
Te 0PS83 Report.
Technical Report 84-133, Carnegie Mellon University

Computer Science Department, May. 1984.

19] Gupta, A.
Parallelism in Production Systems.
PhD thesis. Carnegie Mellon University, March, 1966.

[10) Gupta, A., Forgy, C. L. Kalp, D., Newell, A.. Tambe, M. S.
Parallel OPS5 on the Encore Multimax.
In Proceedings of the International Conference on Parallel

Processing. August, 1988.

1111 Hilyer, B. K. and Shaw, D. E
Execution of OPS5 production syaems on a Massively

Parallel Machine.
Journal of Parallel and Distributed Processing 3"236-268,

1986.

1121 Hoae, C. A. R.
Communicating sequential processes.
Communications of ACM 21(8):666-677. 1973.

[13] Kung. It T.. Steenkiste. P., Bitz, F.
The Nectar computer architecture.
Personal Communication.

Temperature Measurement of Simulated Andealing Placements

Jonathan Rose
Computer Systems Laboratory, Stanford University, Stanford CA

Wolfgang K0ebsch and Juergen Wolf
Siemens AG, Munich, Federal Republic of Germany

Abstract The detemnnation of starting temperature for Simulated
Annealing in two-stage systems bas not been seriously

One way to reduce the computational requiumumts of Simulated addressd before. Doth (Rose16,Ros.88) and [Grov87]
Annealing placement algorithms is to use a faster heunic to introduce the quetion but avoid answering it by choosing a
replace the early phase of Simulated Annealing. Such systems staning temperature based simply on prior experience.
need to Iow a su-ting euperature for the annealing phase that
makes the best use of tie existing stmcum. yet an 2 DefinItIon of Equilibrium and Temperature
appropnae mount of improvemet.L This paper presenta a
method for measuing the temperature of an existing plaoement In pevious discussions of cooling schedules and
based on analysis of the probability distzibution of the change in convergence (Rome4. WhitB4, Aart5], the Simulated
aoo function. Using this view a new definition of equilibrium is Annealing state has boen represented either as the probability
givem and the equilibriwm temperature of a placement is definie, disribuion of the absolute corn P (C), or the am of transition
Temperaures of placements produced both by a Simulated probabilities from every stae i to every other state j. Tj. We
Annealing and a Min-Cut placement algorithm am measured. suggest a diffem view that lives moe information about

equibrium dynamics: the probability distribution of the charge
I Introduction in coo f.ctionfron the curret state. P(AC) is die probability

that a given mae under a Simulated Annealing process with a
The success of the Simulated Annealing algorithm for particular geneaon function (RonteS4] wW generate a move

automatic placement [SechgS] has been hindered by its with a change in cost function of AC. P(AC) varies with
excessive computational requirements. Recent work on standard temperature (T) and as moves are made.
cell placement algorithms (Rose86. GovV7, RoaeS8] has
suggested aleviating this by using a two-stage approach: begin We can use this view to give a different perspective on the
with a goad heuristic such as the Min-Cut algorithm [DunS) equilibrium of a Simulated Annealing proceIs Since at
and follow it with a Simulated Arnaling-based approach for equilibrium the absolute coe function no longer changes, this
mom fine optimiaion. This allows a tradeoff berka implies thax the expected value of the change in cod function is
execution time and quality. A critical issue in this approach is to zero:
decide the staiing temperature af the Simulated Annealing E(AC)=O (1)
phase. If it is too high, then some of the structure cresed by the
fis phase will be destroyed and unnecessary extr work will An expression fe E(AC) can be fonned assuming that P (AC)
have to be done in the Simulated Annealing phase. e is known:
temperanure is too low then solution quality is lost, similar to the IC P(AC')PA-(WC) dAC (
case of a quenching cooling schedule [Wii$4]. -dl. 1A

This paper presents a technique for masunwin the PAC.(AC) is the probability that the acceptance function will
temperature of a placement for use in such two-stage sse s accept a move with cost AC [Rome84J. h cammonly has the

To do so. we present a new view of Simulated Annealing stae value 1 for W 90 and e "T for AC >0 [Sech85]. W1 note
different from those articulated in (RomeS4, Whit84, Aar5]. here that P(AC) in equation (2) must be the distri'bution
The principal difference is that we look at probabilty measured on a ruing Simulated Annealing process at the
distributions of the change in cost function of a Simulated equilibrium temperature. This distribution is difficult to
Annealing mae, rather than the absolute cost function. Using measurt, and wili be discussed further in Section 3.1.
this view we give a definition of equiblbrium from which follows
the notion of the equilibrium temperatuwre of a placemet. Using this PAJp(AC) we can split equation (2) into two

pans and, at equilibrium from equation (1) we em equate it to
From this we develop a measure that quantifies the nearness zm:

of a Simulated Annealing placement to equilibrium and give ""C
expe mental evidence of its abiliy to detect equilibrium. This AC P (AC)dAC + C P (AC) e "TdAC = 0 (3)
leads to a method fee meamiing the equilibrium tenperare of
a placement, and we dow that it works both for placements
produced by a Simulated Annealing and a Min-Cut plaemen Thus equilibrium can now be defined as the state where, at a
algoit m. given T =T.j,. the distbution P(AC) satisfies equation (3).

This work was uppoid by se NSERC Pon-Doctoal Felowsqp --
DARPA Contract ON00014487-K48 1.

o--

Comversy. the euiib wu a&eme,, of a placement with a 3 Meauring Temperature
dribution P (AC) is the oapmre. T.q. for which uaion
(3) is asuufied. As defned in Secton 2. ite temperature of a placement is

the iamperare at which the Simulated Aumealing process
2.1 An Equillbrtum-Nearness Measure rining an the placement is in equilibrium. In dus secnon we

present a method for measuring the tanperamir of an arbirary
Using equation (3) we cat invent a measure of the nearness placme.

of a given Simulated Annealing state to equilibnum. Define E..
to be the abolute value of the first arm in the equation. that is The method is caed the CFR Binary Search and has dte

fol owing outline:
. -IIAC P (C ACI 11. lesur P(AC) for the given circuit under the Sum-hred

Similady let E. be the second term of equation (3): Annealing proces. This is discussed in deta in Section
-AC 3.1.E. = JA P(AC) e'EdAC

2. Set the starting search tanperature. T.. arbitrarily.
When T. is the emperature of the Simulated Annealing
prociss. We can now defie the Can Force Rato. (CFR) as: -AC

CFR - 3. Based o n the cuenrt T.. calculate PAC€,(AC) : -C =E- x 100 (4) orA >0ad- I for'ACSgo.
for AC >0an lOW A~

The closer CPR is to 50% (the expected value of the good 4. Calculate the Cost Force Ratio. CFR. using PAc,,p(AC)

mows being equal to the expected values of the bed moves, and equation (4).
E.= E,) the close the system is so equilibrium. E. If CFR < 50. reduce T. according to a binary search and go

to step 3;
a- CFA % If CFR > 50, incr ase T. according to a binary search and

go to step 3.

si6. What CFR a 50. T. is the equilibrium teniperre. Tq.
........... Finish.

47 I Each iteration of die CFR Binary Search requires only the

4_-_ _ _ecalf1ation of the positive portion of the acceptance function
I I I i probability. PA,.p,(AC), and oubsequently E, and CFR sinc

0 200 400 600 800 1000 E_- does not change with T.. Note &so dthat P(AC)need only
be generated once. This is important since it takes many moves
(104 to 105) to get an accurate pcture of die probabilityMove Number In lOfs disaributima

Figure 1 . CFR vs Move as Process Achieves Equilibriwu 3.1 Measurement of the Probability Distribution

A key and difcult step in the CFR Binry Learch
ADl experiments in this paper use a placement of the 833 temperarure measurement procedure is the measurement of the

standard cell Primaryl circuit boo the Preu-Roberts standard distibution P(AC). Tbere ae two possible methods:
cell benchmak aute [] aI7]. The placement was produced by
the SALTOR Simulated Annealing placement program 1. Static Measurement. P(AC) is measured by generating
(Rosef6.Rose88]. which is baed on the ideas of the Tunberwolf (but not accepting) moves in the Simulated Annealing
standard cell placement program [SecbS5]. Figure I is a plot of process on the placement, and recording the frequency with
CFR versus generated move number for a Simulated Annealing which each cost occus These virtual moves do not change
process running on circuit Primaryl. as it goes fron non- the placemen.
equihbum to equilibrium at temperature 400 changing to 300.
CFR is determined by keeping a window of AC values 2. Dynamic Meawrement. P (AC) is measured by generating
multiplied by the PA c..p function and using this to calculate E,* and accepting moves on the placement. Herm the placement
and E- In this figure the CFR comes down fromn an initial does change as dte measurement is made.
value a(5S% and hovers around 50%a. This shows that the CFR
indicates when equilibrium has been achieved. h varies about For the general case of any Simulated Annealing application a
the 50% point due to the stochastic nature of the algorithm and stafic measurement will not give the correct distributon. This is
the approximation of measuring the CFR in a finite window. because a static measurement of P(AC) could be taken when

die system was at a local (but not global) optimum. In this case
there would be no good (negative) moves generated and since

.2-

E. would tus be 0 the temp wu wolha to be 0. which de to tWo effects: Fbum 6m is & dilt dirferece.-
is incorrect in bhe case ofa local optium. Simioe problems iscussd above. berwogn the s~mc and te (mose camcl)
m woccur n the oet , s a or eer digmumties a te dynamic measurement d P(AC). Second, a lowe
aep landscape. tmperahls bem am a tfwer negaie movs. and so the

accuracy of E. &a =. dcraug the ,ccumry ot CFR and
Them dYam: meaurmnt approach wait th Simulated hence bthe temperature ma

Annealing pcesm at is equilib inm umpenam. Using a
dffemt amaperasue would cause the plsaoear* temperature A Produced C Blnary Search Differene
to change. Unfiarltely tbe equilibrium fmperaft is bie

quantity we we seeking. and is not known. Thiis a • dilemma not Temperature Measured Temp

maie be Hkiseberg uncertainty principle: the set of measming S00 496 -4
he temperure thius way can came the temperftue to chage. 405 420 .15

An a"madve is to measure P (AC) uing the staic method, 294 1__ -11

and to destenrine how accurate this is u an approximsaion. The 213 215 +2
acuracy is entirely problem dependent it depends on die 153 164 +11
nery landsca Of the OureflYing Simulated Annealint 99 97 -2

formulaton. We have experimeted to de9n7ure -2e reny
for the standard e piacemem problem and have found that bie 57 60 +3

matsi meAaa ent of P(AC) i almost exactly the same as be 28 29 0
dynamic measurement. Figure 2 shows a plot of a satc 9 156
distibution ad a dynamic; dis'buon measured on cizwt 2 2
Plmaryl at temperaure 300. Measurements and numerical 4 4_

aopanons un this and several ther citus at various
temperatm s have shown very small differences between the Table 1 - Temperaure Meawremera oqfAnnIeans Placmenu
Kstadc and dynamic measurements. Thus we will osethe mttic
measurement of P (AC) in be temperature measuremet
allganthm. This las point can be seen experimentally: figure 3 is a plot

ma- __ of the percentage standard de-iszon of tbe measured
stemrcrature as a functon of the number of virtual moves. N. for

00 .. ym c p)terrPeriturres 21. 153 and 405. The standard deviation w"
calculam.d from five rums t ea number of vimW mover.

100 A % Standard Deviation
200-........ Tz2II

mT aT15
"'" T,,400

100- 50 T a 405

0- 25

-200 -100 -1000 -00 0 oo 1000 1500 21000 0

AC i i
2 3 4 5

Figure 2 - Coeiparison of Siaic amdDyamvpc Meaurmet log10 (Number of Virtual Moves)

Figure 2 - Vantoo T ,,ermw vs. Nuber of Mows

3.2 Measurement of Annealing Placement*

The variation is a decreaing function of N. as would be
The CFR Binary Search was used to measure the expectu The figue illus-uae the increase in percentge

temperature of a so of Primaryl placements produced by the variation at lower temperature.
SALTOR Simulated Annealing placement program
(Rosel86,Rose,83. Each placement was meaed statically using 4 Measurement of MIn-Cut Placements
N a I00,000 virtual moves to experimentally determine P (AC).
Table I gives bhe temperatue at which each placement's Out goal is to determine the starting temperature when
Simulated Annealing process was terminated (while i switching from a non-annealing placement algorithm to an
equibbrium), and the measured temperature using be CFR annealing-based one. In this section we test the ideas presented
Biar Search. above on the Mn-Cut placement algorithm [Dud85].

The measure temperature is quite accurate -a be higher Seven terms first need to be defined for Min-Ct
lemperatue. usually less than 7% error. The lower tempermau placements, as shown in Figure 4. A Min-Cut placement
measurements ar proportionatey len accurate. The error is

.3-

adgoidlin is cdaacterimad by. among odte thuags. thoer an d Della Maiae k is a the temperware of a placeinent by
specing of the cut lines appied. bi Rpm 4. fhe m-r igle runnig a dynamic aruealing process an die placement over a
smesmuthde aan pieet Over which is laid a so of range of temperamm. The percentage difference in absolute
vertcal and hotiarital cut boas, If the spacing of die vertical am functioe after (100 moves per cell an made) is meared.

aminee is V and at dhe borizona] cut lins is H. iben the cad W~hen a tonperntre is found for which dhis difference is lea
.a.i .gven by A - V x H. dma 2%. that is taken u the temnperature of dhe placement. This

%P110110is a diret way of experimentally finding the temperature at
which change in coo function is nea 0. Table 2 gives dhe

___ mpeaturs determined by die Delta Method, and the
Go LM difference: between die CPR Binary Search and the Delta

Cii ii ~Method. The C0R Binary Search meaaarernent for Mmn-Cut

V. VWWcoo sowThe CPK Binary Search method consstntly overeimates
V.~d ~the equilibrium temperature due to die fact that a mm-cut

Figure 4 - DefInaaou of Cia-Area placment is amt in equilibrium, as discusaed above.

One dlifficuhty with maanng the temaperature of 'Am- ocuin

anneaing proiduced placcieents is that the definition of We have presented a method for detemuning die
senaperanuie presented in Seein= 2 depends am the associated tepraue in the Simulaied Annealinig seise, a(an arbitrary
Simulated Annealing process being in equiliium. ht is clear, placement It uses a new view of Simulated Annaling state that
however, that a placeimn produced by a non-annealing is based am the probabiuity distribution of die change in coot
algorithm is not in equilbrium. Thus we must make an function. The knmperature of sneveral Simulated Annealing
sW rximauion ad assizme that a mim-cin placement can be plcmet have becel measured with good accuracy. The
thought of as bein in equilbrum at somne tempersae The temnpelmaw of a w4t of Min-Cut plaeents has also been
efect of this approximaboo is ineasuied in the neat sectom measured This method is useful for determining the starting
whene we compare The CFR Biawy Search method with a mome smperr when switching horn a non-azueaing based
ifimt-had, placemeni traegy to an waeling-based one.

4.1 MeasuIernll 6 References

Using the CFR Binaay Search method we meamired dhe A.a~d
timperature of several Mm-Cut placements with different cut aiu. Anik PJX won wo.n "A Ne Polyorwl1rnt Cooling
areas. Thene placements were produced by the ALTOR Schodk.- Pmc. MCAD 85. 1

4ousma 1955, "p. 20-20.
standaz'd-cell placement program (Rose8Sj. Table 2 gives the Dw55
socaawed staperanre for each placement and its ctt ara. A. Dunlop. B. Kannaum "A hwemdus *w Plom1 of Sauxled-C4.11 VLSI

Cic,.."M Trama CAD. VOL CAD.4. No. 1. Jim 1155, "p 9296_

Cut Area Temperature Measured Diff erence LX1 0,--. ' ~ Call Ploma Usall Simiand SiwW& P..
u x10' Binary Search Deft& Method 24hDr utI7 ". 36 3

=I____ 39 7 2 IT. ?nm, "3mce 1w Call-Buand La4yout Syaw Pm.. U41)aiip
1011 234 200 +34 Auam. Colown)unt 197. "p. 319-32D.

50.3 162 132 F.0 ItAems"nYniaft, .bIas ~ Ci~m

252.6 124 96 +.28 Moriduma. Piopa i Apptimamm" Macomnam No. UCBNF*L

126.3 91 67 +24 maqu ur. Im6. tJwuuy tr

63.22 73 50 +23 JS. Itac. W. Sosipove. Z Vmnm "ALTQ Am Auumatk Swulard Cal

31._58 49 40 +9 Layout Piotrean." Nc. Cmndion Cauf am VLSL Nov I9M. "p. 165-173.

25.24 40 32 +8 iS. Rome, D m. dW Scutgrows. Z. Vroanni, "Faa.)gb Quabty VLSI

12.60 34 30 .+4 Nlcanmoe as n Maimapooma." ICAD 86. Nov. 56. "p. 42-45.

7.697 29 27 +2 I.S Ron, WX SuIlowt. L.a. Veasg, 'NWu1sl Sinndwd Call P lte
3.139 28 26 +2 Allpwiemt wAi Quality Biqvialo in Suouhrod A---ng,

-mictwo CAD. Vol. 7. NoJ. Mamb 11,5 "p. 367-.36
SOC1111

Table 2 -Tempertre Meaurement of Min-Cut Plascements C. Secham A. Swm a.=iVmw~fU 'I Tuubar. wolf a uI 1 nd
Rouing Packau" ME nC, Vol. SC-20, No.2Z Aprl 191S. PP 510-5=2

W60"

To check the CFR Binary Search aeasurernwnta, the 3J Whiw. "*Comm" of Sale is SUnolud Aim-iag." PO. 1111- Cod- m

placements were measured usmaig a different approach, called the Cou;.uuw DwMt Osuabo 1954, pp. All.41.

.4-

The Effect of Logic Block Complexity on

Area of Programmable Gate Arrays

Jonathan Rose
Computer Systems Laboratory, Stanford University, Stanford, CA 94305

Robert J. Francis, Paul Chow, David Lewis
Dept of Electrical Engineering, University of Toronto, Toronto, Ont. Canada

2 Experimental Procedure

I Introduction To answer these questions, our approach is to implement a
et of circuits in a variety of logic blocks md programming

The Programmable Gate Amy (PGA) is an exciting new tdhologies, and determine the am required for each. This

idea in semi-custom integrated circuits that reduces the IC data will indicate an appropriate choice of logic block, in terms

manufacturing time from months to minutes and prototype cost of area, for as giv technology.

from tens of kilodollars to wnder $I00. The PGA was! -,_,

introduced in tCam86) and newer versions have been presentedK
in (Hsie87j4sie88,ElGa8aEAy88]. It is similar to a pe array D,,

in stucure, but can be field-programmed to specify the vat
function of the basic logic blocks and their interconnection. c lo-..

This paper studies the effect of logic block complexity on total __"__.____

cutuit area for PGAs.
Figure I- General Model of Logic Block

The archiuecture of a PGA consists of its logic block
function, interconnection scheme, IO block design and the
giobal mucture. Thee am many tradeoffs between urchitecnre Igure I depicts the general architectural model used for the

area, and speed, each of which depends heavily on the logic UIt consists of a K-input arbitrary combinational

programming technology. Programming technology is the logic function (referred to as an "Arb-K"). connected to a D

underlying method by whicb the logic function is set and the flip-flop followed by a multiplexer that selects either the flip-flop

connections am implemented at program time. For example, the output ar the Ab-K output. Its output is passed to a trisae

programming technology used in [l-ieS8] is based on sic driver that can be enabled by another input or left permanently

RAM and pass transistors, while that of [lEGa88a] uses an anti- on. To determine if the D lip-flop is beneficial, two variations

fuse. In this paper we focus on the effect of logic block of this bask model wi be considered: one that contains the D

complexity on PGA arva, ignoring speed considerations. While flip-flop, and one that does not.

circuit speed is very important, this work represents an initial
exploration into plausible architecrures from an area perspective. The global architecture of the PGA under conaderauion is

shown in Figure 2. It is a regular amy of logic blocks,

We address two questions: First, should the basic logic separ by horizontal and vertical routing channels. The

block contain a ignihicar amount of fixed hardware, such as a number of tracks in all of the routing channels, W, is the stame.

D flip-flop? Our experimental results indicate that a D flip-flop is Since we want to know the area requirements of a logic block

destrable for large programming technologies (like SRAM architecture, a crucial concept in this procedure is that W is

(Hue48]) but that it is inefficient for smaller technologies such determined by the placement and routing for each circuit.

as the anti-fuse. Second, for logic blocks containing arbitrary
combinational logic functions. (Le. any K to I logic function) The following procedure performs the circuit

what is the beat number (K) of inputs to use? Sutpriingly. the implementation:
best number of inputs remains nearly constant over a wide range
of programming technologies and was almost the same whether Input: a logic circuit, a range of K's indicating how many inputs

or not the block contained a D ip-flop, on the Asb-K block, and a set of programming technologies.

This work was supponed by DARPA Contract #NOW014-87-K-0828. ad
NSERC Opersami Grants NA4029 id #A4053.

-1-

J.oaathan Rose, Center for Integrated Systems, Stanford, CA 94305 (415)-725-3635

/ ~ ago 3 Architecture Model

El El Dl The area of a logic block is a function of the number of its
- - -inputs, dhe mrount of fxed hardware itcontains, andth

pgrm ng technology. The pitch of the routing track can be

____ _____approximately modeled as a function of die programnming
____ ____technology.

Ell 0The programming technology is represented by one
parameter: the area required to store one bit in the technology,

Figure 2 -Routing Model of PGA air Bit Area (BA). For example, in the Xilin PGA NsieeSS). the
Bit Area is the area of a static RAM bit. In the Acte! PGA

Output: foir each (K& programming technology) pair the area [ElGalSa] the bit area is much smaller, close to the space
required to imlement the circuit with a logic block that contains required by an anti-fuse. The overhead required to access the
a D flip-flop, and the area for a logic block that does not. AAb-K block and the area required by the D flip-flop (if it is

present) and all other nan-arbitrary logic function hardware is
procedure: For each logic block type: =epreaented by a second parameter. called the Fixed Overhead

Area (FA).
1. Partition the original cirscuit into the current logic block.

71si is sometimes called technology mapping (Detj87], but An AAb-K block. because it caLn implement ary K to 1 logic
is a mome difficult problem for PGAs because each logic function, requires 2' bits of information to be stored and so
block can collapse many combinational logic functions. The must have are proportional to2K. Using this, we can derive
Chortle program was developed to do this mapping the following expression for logic block area:
[W=88). h uses agreedy algorithm thattries tocollapse as Logic Blok Ae BA x 2' + FA
many standard cells as it can into each logic block.

where BA is the bit area in the programming technology and FA
2I Perform the placement of the resuling circuit. Thiis is donof is the fixed overhead.

using the Altar placement program ORoseSS]. which is baned

an the min-cut placement algorithm [Breu77]. Altor makes The Idic technology is assumed to be 1.25pun CMOS. FA
sie array as square us possible. has been calibrated using data acquired fiom Xllin [Card8).

giving FA - 1200Apn 2for logic blocks without a D flip-flop and
3. Perform the global routing Of the circuit. Global routing 1600011m 2for logic blocks with a D flip-flop. The

determines the path of channels that each wire is to take. end corresponding Bit Area for an SRAM programming technology
hence determines the maximum number of tracks required in is 4OOAM2 tand is roughly 4OAM2 fo an anti-fuse technology.
each channel, W. The algorithm used is similar to the one In our experiments, we will vary the Bit Area between and
described in [Roses]38. but is changed to fit the routing above these two values.
model pinctured in Figure 2.

T'hough the PGA interconnection scheme is not addressed
4L Section 3 describes a model for the logic block area and directly in this paper, the area required by routing is an

routing artsa as a function of K mid programming important factor in determining the logic block. We need to
technology. With this model, W. and the placement know the pitch of the routing track as a function of
dimensions, the circuit area for a range of programming programming technology. Each routing track will need at leant
technologies is calculated. one bit of information in it, and probably several - to determine

if a set of switches or fuses is open or closed. Since it is difficult
to lay out a bit with highly non-square aspect ratios. the pitch of

7he above procedure mnakes the approximation that the a routing track is approximated as the uare root of the am
Slobsl routing track coun t determines the number of tracks required by a bit, ie. Routing Pitch " ~A
tuquired in a channel This is generaly accepted as true for
unconstrained channel routers, but may not be true for switch- 4 Experimental Results
based routing schemes. We have reason to believe, however,
that the error in this assumption is only a few tracks [ElGAS~b]. The circuits used in these experiments are five standard-cell

circuits obtained from Bell-Northern Research (MariSS],

-2-

Jonathan Rose, Center for Integrated Systems, Stanford CA 94305 (415)-725-3635

ranging in size from 420 to 1681 standlard ecls. They consist of function of the bit area.

aY i of random logic and data path circuits& Figure 3 is a plot
o absolute area for the PGA versus number of inputs to the 7%e number of logic blocks increases when the logic block

arbitrary combinational logic block. &. for a 1073 standard cell has no flip-flop because the D flip-flops must then be
circuit. implemented in comubinational gales. Since the size of each logic

WIMMOD"block is less. the final area may or may not be smaller. Figure 5
is a normalized are plot for logic blocks that do not contain D

s -Absolute Arse flip-flops. The best number of inputs in this cain is three. only
pm"2x 1**7slightly different than the D flip-flap case. Aga"n this number is

40 iaa independent of programming technology.

25-MaI 0m"
201Smo@Aa80a-

... ... 20- Normalized Areas RA w * m*

2 3 4 5 6 7 6 9 1A5 "-

K 10-

Figure 3 - Area for versus Kfor One Circuit 5 _______________

7here are two curves -one giving area.when the logic block 2 3 4 5 6 7 1 9
contains a D flip-flop, and one without. The programming K
technology. BA - 41SI.un 2, corresponds to an SRAM-baaed
approach DisiellSj. Using similar data for all of the circuits. with Figures. Suam of Normalzed Areas versus K Without DFF
mome programming technologies, the questions raised in the
introduction were addressed. In both cases, the best K is low (3 or 4) primariLly because

If the circuits cannot make effective use of the larger K blocks.

4.1 Number of Inputs to Logic Block because the increasing functionality comes at the cost of a much
greater Waive area, which exponentially increases in K. it

Figure 4 shaws the sum of the normalized arma ovar all of doemi't pay to use the larger logic blocks.
the circuits, versus K. The normalized area for a circuit is
detennined by dividing the are using logic block K by the beet 4.2 Utility of the D Flip-Flop
area over all K. The logic block used in this data contains a D
flip-flop. Figure 4 gives several plots for different bit amoa Figure 6is plot ofcircuitam& usng and not usng aD fLip-
(programming technologies), flop versus Bit Area for a 1073 standard cell circuit- The: circuit

20-Smo M 1Vp 2 are used is the one obtained with the lowest area K.

15Normaflzed Ares DA.a SOgim"I 25- Circuit Area ."VhuII OFF

Wit OFF

10a10m0 111

10

K 0 200 400 600 600

Figure 4 - Sum of Normalized Areas versus K Using DFF Bit Area ILmfl2

It is clear, from the dip at K - 4, that a 4-input arirr Figure 6 -Area versus Bit Area)I Circuit

logic block consistently achieves the lowest area. Surprisingly, 7sfgr hw ht o eysa i ra,-ti
this number is constant over a wide range of bit areas. It is due Thisntagure sow thsea, forp verTsal but areas bit ires
to the fact that, for a given . the are is predomninantly a linear avnaeu o oueaDflpfobtlre i ra

-

Jonathan Rose, Center for Integrated Systems, Stanford CA 94305 (415)-725-3635

perform better by using a D flip flop, 7his is ute for all of the 6 Acknlowledgmnts
ciscuits but the cross-over point is difflerent for each.

The authors are grateful to Grant Martin of Bell-Northern

Figure 7 is a plot of Are thut FlipFlo Bit Research for supplying the circuits and cell functional
AreaWithFlipFlopdescriptions.

Area for each circuit, indicating whan it is advantageous to use a
flip-flop. In the mnaller bit areas, corresponding to an anti-fuse 7Rfrne
programming technology, the use of a D flip flop is unprofitable. 7Rfrne
7his is the case in the Actel PGA [ElGaSS). The middle and [SU?
lasger bit areas, corresponding to the SRAM program MABrur"inCtPaent-JraloDsgnuomin
technology, can benefit by including a D flip-flop, and in fact the a. Bol-lrai "M mutPaomn." o a of336 Oct ig A1977.
Xilinx PGA fliieSS uses two D flip-flops. (andFut-oeat cium. .34-6.Oc 97

Ratio of Area W. Carter at.al. "A User Progrwnznable Reconfigurable Gate

Without OFF to With DFF Ara. Proc. 1936 CICC. May 1936. pp. 233-235.

A W. Carer, private Comuniaion.

D Lletjus et. al "Technology Mapping i MIS". Proc. ICCAD 87.
2- a Novl1987,pp. 116-119.

I ~...-yt t " .0 lc~ll ohubeGt

Array," Proc. 1951 ISSCC. pp. 76-77.

100 415 goo Iso0 A. E GamaL, et. 4L "An Architecture for BEkcrically Configurable

Bit Arm Gate Anrsas, Proc. 1988 CICC, May 1988, pp. 15.4.1 -15.4.4.

Figure 7 - Without DFFWith DFF versuss Bit Area A. El gimal Private Cominunicaboe.

R.i. Fracis, "Chortle: A Technology Mapping Algorithm for

5 Conclusions and Future Work Progruamable GakeArrays". inpparston.

We have presented a procedure and 'model to evaluate Fl Hsieb at. 4 "A Second Generation User Pro~rnable Gat

different logic block architectures for Programmable Gat Arry," Proc. 1987 CICC, May 1987. pp. 515-521.

Arrays, on the basis of circuit ara. Using this method, for a hes

particular aet of circuits, we have demonstrted a floo nubrHLsielk as. al "A 9000-Gat User-Progrunmable Gate A .

of inputs to use for the arbitrary combinatonal logic block. In Proc. 1961 CCC, May 1965. pp. 1 5S3 .1 - 153 .7.

adldition, we have displayed the trade-off between programming (an

ftchnology area and utility of a D flip-flop in the logic block. Grant Marin, Bell-Northern Research, private commtaon
(Rosel5i

There is an enormous amount of future wor to be don in 3. Rose, et. al., "ALTOIL An Automatic Standard Cell Layout

this field. We would like to investigate more kinds of logic Prga-ro.Cn nfonVSNv.15.p.6973

blocks - in particular those with less arbitrary logic functions. (Rosessl

Other work will directly address questions dealing with circuit 3. Rome "Locualtoute: A Parallel Global Router for Standard CClls.

speed. T1hi reates to the specific architecture of the Proc. 25th DAC June 1968. pp. 139-195.

interconnection scheme. All of this work needs to be
implemrented on a wider range Of circuit New CAD algorithms
need to be developed for POAs. Our technology mapper needs
more development, and the placement and routing needs to
address the specific needs of PGAs. PGAs, because they
promise such enormous economic advantages, are a fertile and
growing field of research and developmnent.

-4-

Memory-Reference Characteristics
of

Multiprocessor Applications under MACH
S

Anant Agarwalo and Anoop Gupta
Computer Systems Laboratory
Stanford University, CA 94305

Abstract Analysis of shared-memory reference patterns is needed to
determine the most suitable organization of the memory hi-

Shared-memory multiprocessors have received wide attention erarchy in multiprocessors. For example, several cache con-
in recent times a a means of achieving high-performance sistency algorithms proposed in the literature are based on
cost-efectivelv. Their viability requires a thorough under. subtle differences in the expected memory reference patterns;
standing of the memory access patterns of parallel process- lacking detailed data, the benefits of one scheme over another
ins applications and operating systems. This paper reports cannot be assessed accurately. While some previous studies
on the memory reference behavior of several parallel applica- have looked at sbred-memory reference patterns. e.g., [2].
tions running under the MACH operating system on a shared. they did not fully address issues such as the temporal. spatial.
memory multiprocessor. The data used for this study is de- and processor locality of shared data, sharing in the operating
rived from multiprocessor address traces obtained from an system. and the impact on cache consistency. For example,
extended ATUM address tracing scheme implemented on a we show that shared references display a significant amount
4-CPU DEC VAX 8350. The applications include parallel of processor locality. The average number of read and write
OPS5. logic simulation. and a VSLI wire routing program. references to a write-shared block before a remote reference
Among the important issues addressed in this paper are the are 4 and 2 respectively. This locality is exploited by the
amount of sharing in user programs and in the operating sy*. write-back class of cache coherence schemes to significantly
tem, comparing the characteristics of user and system refer- reduce the cost of references to shared data. Another surpris-
ence patterns, sharing related to process migration. an4 the ing result that we observed for shared data references is that
temporal. spatial. and processor locality of shared blocid. We the total bus bandwidth required is minimized when block
also analyze the impact of shared references on cache coher. size is 4 bytes and increases as the block size is increased.
ence in shared-memory multiprocessors. AWf also observe that processor migration causes a large in-

create in the sharing level as observed by the caches, which
can greatly increase cache coherence traffic on the bus.

1 Introduction This paper is organized as follows. Section 2 presents back-
ground information about the ATUM address tracing tech-

Although we now have a reasonably good understanding of nique. the applications measured. and the MACH operating

memory system design for uniprocessors, very little is under- system. Section 3 defines our multiprocessor model and the
stood about memory system design for multiprocessors. A terminology used throughout the paper. Section 4 constitutes

major reason for this has been the lack of real data about the bulk of the paper and is devoted to analyzing the traces.
memory reference patterns for multiprocessors, because of This section characterizes shared-memory referelce patterns
the difficulty of tracing such machines. The problem of get- and looks at the impact of the reference characteristics on
ting realistic trace data is even more acute if one wishes to cache consistency algorithms. Specificaly, in Section 4.1 we

the study the effects of operating system references, process present data about the general characteristics of the traces,

migration, and other such real system events. This paper including statistics about interlocked instructions. Section

attempts to correct this situation and analyses memory ref- 4.2 assesses the temporal and processor locality of shared ref-

erence patterns of several parallel applications running under erences. Section 4.3 focuses on how the memory reference
the MACH operating system on a shared-memory multipro- characteristics affect the performance of various cache consis-

cessor. The address traces used in our study were obtained tency algorithms. Section 5 concludes the paper.
from a 4-processor VAX 8350 multiprocessor using an ex-
tended version of the ATUM (Il address tracing technique.
These traces contain both system and user memory refer- 2 Background and Methodology
ences, including process migration information.

Our study is based on trace analysis. The traces are obtained
using a multiprocessor extension of the ATUM tracing scheme
II]. ATUM stands for Address Tracing Using Microcode and
works as follows: During the execution of each instruction,
the microcode writes out the memory references

"Anant Agarwal is ctvrently with the Laborator for Computa
Scence (NE43-418). M.I.T. Cambridge, MA 02139

In Proceedings of SIGMETRICS '88

,.ra . ,,,,. mm,,m mmm• mmmmm m i nm r---,1

made by the processor to a portion of memory reserved for
tracing. In the multiprocessor extension of ATUM. each ac- Table 1: Summary of trace characteristics. All numbers are
cess to trace memory is interlocked to enable the microcode in thousands
in several processors to write their references to this memory. '_Trace IF inot De_ _ D1 r_ _:sr Vt.
Thus a trace contains interleaved address streams of several O 3142 16-4 1257 261 2817 325
processors. The traces used for this study were gathered on THOR 3222 1456 1398 361 2927 495

a 4-CPU VAX 83S0 machine running the MACH operating PERO 3508 1834 1266 409 324 266
system. ATUM traces are 'complete' in that they capture

all operating system and multiprogramming activity. Each
trace is roughly 3.5 million references long. In addition to
addresses. ATUM records the opcodes, and the virtual-to. 3 M ultiprocessor Model and
physical translations that occur during translation-lookaside- Definitions
buffer (TLB or TB) misses. A location is considered shared
when it is referenced by more than one CPU. Because differ-
ent processes could access a given shared location with differ- The multiprocessor model we assume for our analyses in this

eant virtual addresses. sharing is detected by translating the paper is quite straightforward. We assume that the system
various virtual addresses of a shared location to its common consists of several processors each with its own cache memory.

physical address. The caches are connected to a common system bus on which
shared main memory is located. We also make the simplifying

trams: POPS. THOR. and PERO. POPS [3] is parallel assumption that caches are infinite in size. since we would like

implementation of a rule-based programming language called to concentrate on traffic caused due to shared data nd not

OPSS. which is a widely used languages for the building ex- mix it up with trac due to limited cache size.

pert systems. It exploits parallelism at a fine granularity and We introduce some nomenclature to help explain memory

makes extensive use of the shared memory provided by the access patterns. A bock is the unit of data transfer between

architecture. THOR is a parallel implementation of a logic the cache and main memory. For the rest of the paper, we

simulator done by Larry Soule at Stanford University. The assume block size to be I word (4 bytes). The small block size

simulator transforms the task of circuit simulation into a se- is chosen so that the reference behavior for each data object
ries of node evaluations, where each node corresponds to a can be derived. However. characterization using larger block

device in the circuit. The parallel implementation evaluates sizes is also important to study the spatial locality of shared

these nodes in parallel, while taking care of the dependencies objects. and is dealt with in Section 4.3.

between them. PERO is a parallel VLSI router written by A reod-shared block is one that is shared (accessed by mul-
Jonathan Rose at Stanford [4]. tiple processors). but never written into. A wnte.sharedblock

We briefly describe the MACH operating system, since is one that is shared. and both read and written into. A refer-

some of the shared references in the traces belong to it. and ence to a block B by processor i is said to ping if the previous

also because the programming style used in the applic4#ons reference to that block was by processor j. where j It. We

was influenced by it. MACH is a multiprocessor operating S call such a reference a pinging reference. Conversely, a refer-

system developed at Carnegie Mellon University. It is binary encsto a block B by processor mis said to cing if the previous
compatible with Berkeley Unix. and provides several new fa- reference to that block was als.. by processor t. Such a ref-

cilities to support parallel processing. It provides facilities for erence is called a clinging reference. By these definitions, a

multiple tasks to share memory permitting the exploitation ping can only occur on a reference to a shared block. Pings

of very fine grained parallelism. All three programs make use and clings to a block are determined simply by keeping track

of multiple tasks that share memory to communicate with of which processor last referenced a block. References are

each other and to share information. MACH is not a to- read references or write references depending on whether the

tally symmetric operating system in that kernel interrupts operation performed is a read or write. The state of a block

are handled by processor zero. This causes the memory ref- (clean/dirty) is determined by the references of the proces-

erence pattern of processor zero to be different from that of sot accessing it currently. A block is said to be~lirty if it

the remaining processors. In parallel programs. where many has been written into after the previous pinging reference to

tasks are performing I/O. the high level of OS interrupts can it. Therefore. a block always starts out clean after a pinging

also cause excessive process migration. Fortunately. none of reference to it.
the programs that we study in this paper do very much 1/O. The notion of clings and pings yields useful insights on how

Table 1 presents general trace characteristics for the three various shared-memory multiprocessor architectures would

programs. The columns denote the total number of refer- perform. The appealing feature of clings and pings is that

ences. instruction references. data reads. data writes, user they do not depend on implementation details such as cache

and system references. Instruction and data references are sizes. Assuming a local cache, clinging read references never

about equal, while there are roughly three reads to every need the bus: pinging read references need to use the bus only

write. About 12% of all references are system. if the read misses or if the block is dirty in another cache.
A bus transaction must occur on a pinging write reference.

The ATUM traces used for this study do have some im- In the ensuing discussion we will show results on the time
itations. The machine used had only 4 CPUs and it is not intervals between such clings and pings. and also on the fre-
dear how to extend the results to a larger number of proces- quency of various kinds of dings and pings The time interval
sots. Work on this issue is in progress. Another problem is plots are a useful method of depicting the temporal locality
the unavailability of a large number of applications, but the of shared-memory references. while the frequency of clings
number is growing. and pings is a method of showing the 'processor locality" of

references to a block. Besides spatial locality and temporal
locality, the form of locality important in a multiprocessor

2

context is proccsor localty - the tpndenc% of a processor of unique blocks and the proportion of references to shared
to access a block repeatedly before to access from another blocks in the traces.
processor. A direct impact of this locality is noticed in the
performance of various cache consastevy schemes. which ex-
ploit different locality patterns in references to read-shared or Table 2: Proportion of shared references and unique shared
write-shared blocks. Also notice that a high temporal local- blocks when the blocksize is 4 bytes Both Inaruction and
ity of pinging references yields a low processor locality, and data references of user and OS are included. All numbers are
negatively impacts the performance of multiprocessor caches. in thousands. Block size is 4 bytes.

To separate the effects of process migration. we also
present numbers for process-migragron-sharid blocks. These Trace Ref niq B12 Sl d Ref Shd Bl.
are blocks accessed from processor t by process p. and also POPS 3142 37.8 2122 23.0

from processor j I I by the same process p. On the other THOR 3222 76.3 1881 7.0

hand. real-shared blocks, are blocks accessed from processor PERO 3508 22.6 218
i by process p. and also from processor j a 1 by process q,
whereq p always holds. Table 3 gives the same statistics. but only for data refer-

It is useful to have a notion of time in the context of multi- ences of both user and the operating system. In addition.
processor execution. Our traces contain interleaved memory Table 3 presents the number of blocks that are written Be-
accesses by the various processors in approximately the same cause the instruction space is usually read-only. it can be
order they occurred. However. the exact time at which the treated specially in memory management, and so most of the
reference wa, made is not clear. For example. if the pro- statistics presented later correspond to data references alone.
cessors I. j. and k each made references at real time in- Table 4 presents the same statistics for user data references
stants t. t + 1. and so on. the trace might have references alone.
S.J,. k,. ac. . ,s. k, 1 . and so on. where the order of the th When both user and the operating system data references
references of the 4 processors might be random with respect are considered. the ratio of shared references to all data refer-
to each other. The traces also show clusters of memory ref- ences (averaged over all three traces) is 0.25; the ratio is 0.27
erences by the same processor. and the time interval between when only user data references are considered. We see that
references by the same processor also varies, the level of sharing in the operating system is only slightly

Due to this nature of the reference pattern, we will not try lower than in user.
to approximate real time. Instead, we will use the order of These traces have an insignifcant amount of process-
occurrence of a reference in the trace as the index of time. So migration-related sharing. We also looked at some other
the r' h reference in the trace is considered to have occurred at traces for the same applications with a large amount of pro-
time r.' The paper considers several cases where the traces cess migration, and the levels of sharing are drastically differ-
are filtered to extract specific references (e.g.. user). and to ent in these traces. The ratio of shared to total is 0.9 for user
enable comparisons, the time index used for a reference*e- data references when process migration is high: when process
pends on its index in the original trace. For example. when we q. migration effects are excluded (only references to real-shared
Alter out operating system references while studying sharing bloc#9 are counted), the ratio of user data references and all
in the user address space, the time index of a user reference data references falls to 0.2.
corresponds to its position in the unfiltered trace.

4.1.1 Statistics for Interlocked Instructions

4 Results and Analyses The VAX architecture provides seven interlocked instructions

for synchronization. These are: BBSSI - branch on bit set
We first present some general statistics about the traces, in- and set interlocked: BBCCI - branch on bit clear and clear in-
cluding data about interlocked instructions. We then present terlocked. ADAW! - add aligned word interlocked;.NSQHI.
statistics about temporal and processor locality found in the INSQTI. REMQHI. REMQTI - four instructions to manipu-
traces when only user references are included and there is no late linked lists (queues) in an interlocked manner. The usage
process migration sharing, when both system and user refer- of these instructions is presented in Table 5, with separate
ences are included, and when the effects of process migration numbers given for operating system code and user code.
are taken into account. We then evaluate three different cache
coherence schemes on the basis of the amount of traffic they Table 5 shows that only BBSSI and BECCI instructions
generate on a shared bus. Unless stated otherwise, we assume occur in the trace. The ADAWI instruction is used in the

infinite caches and a 4-byte block size. POPS code, although it does not occur in the instruction
references that our trace contains. These statistics show the
strong preference of programmers to use the simpler test-set

4.1 General Statistics type instructions for synchronization, rather than using the
more complex queue manipulation instructions.

The statistics in Table 2, for both instructions and data refer- The number of interlocked instructions as a fraction of all
ences of user and the operating system, relate to the number instruction references is 0.1%-1.6% for the three programs.

IyWe blieve that fine time distinctions are not significant in our While the fraction is as high as 1.2Y-1.6% for POPS and
study. To approximate real time. one can keep a virtual system THOR, the fraction is only 0.1% for PERO. The reason is
time incremented by one uit for every n references in the trace, simply that the author of PERO bad made an explicit deci-
where vs is the numbe of processors. In other words, the Limes sion not to use locks for the most frequently used data struc-
specified in our paper can be divided by 4 to get a rough idea of ture. thus trading the quality of the final solution for extra
the real time. performance. Since executing an interlocked instruction may

be as much as 10-20 times more expensive than an ordinary

3

Table 3: Proportion of shared references and unique shared data blocks when the blocksize is 4 bytes. Oly doto references to

both user and OS are included. All numbers are in thousands.

Trace Refs I miq Blks Written I Shd Refs. Shd Blks Shd Wr

OPS Is1 31.1 9.4 1 597[19.9 4.0

THOR 17661 74.4 16.6 530 5.2 1.5
MRO 1674 14.0 4.3 136 3.4 0.8

Table 4: Proportion of shared references and unique shared data blocks when the blocksize is one word (4 bytes). Only data
references of user are included. All numbers are in thousands.I Trace Refs Uniq ltks Written Shd Refa Shd Blks h Wrt

THOR 1527 71.9 15.9 473 4.8 1.3
PERO 15208 11.6 3.8 119 3.3 0.73

instruction on some multiprocessors, a small percentage of the process resumes execution on the same processor after be-
interlocked instructions can consume a large percentage of ing switched out. The first peak. clearly, is due to references
total execution time. We also note that most of the inter- within a context switch interval. The height of the second
locked instructions result from the user code and not from peak is much larger in traces that show significant process
the operating system code. migration. This low temporal locality component of clinging

references introduced by process migration can be deleterious
to cache performance.

These results are compared with those for pinging refer-

User Data References ences. or for a reference to a block by a processor followed
by a reference from another processor. Figure 2(a) shows

This section deals with dynamic memory access patterns and the cumulative distribution, and Figure 2(b) the frequency
characterizes the temporal and processor locality of real- distribution. The time intervals in this case are interest-
shared user data references. The first few figures plot the ingly lower than for clinging references, which says that ref-
cumulative distributions and the frequency distributions of erences to shared blocks by different processors are usually at
the time intervals between clinging and pinging references to least as finely interleaved as references by the same processor.
demonstrate the temporal locality of data references. *fig- Doubtlessly, the fact that our applications exploit parallelism
ures use a block size of 4 bytes. at L fine granularity is the cause of the high temporal locality.

Figure 1(a) shows the cumulative frequency distribution he small second peak at 256 time units in Figure 2(b) is
of the time interval between clinging references to a shared due to the process migrating to another processor following a
block. In other words. a point 1z, 1) on a curve means that context switch. If the level of process migration is high. this
I references occur to a block with the time interval between peak at a large time interval can become much taller. which
these references not more than z. The corresponding fre- falsely suggests that process migration lowers the temporal
quency distribution plot for one of these programs is also locality of shared references. In reality, process migration
shown in Figure 1(b). Due to the wide range of time inter- simply makes a large fraction of the logically private blocks
vals in which the references occur. the bins on the X-axis appear shared. and it is references to these shared blocks
increase in powers of two. Therefore a bar at z with height alone that give rise to the tall second peak. *
I in the frequency plot, implies that r references occur to a

block with an interval t such that z _ 1 < 2z. For brevity we Our analysis also shows that roughly a fourth of the data

plot the frequency distributions only for THOR. references are to shared data. However, a large part of
the shared references need not generate bus traffic because

The average interval of time between accesses to the same in most multiprocessor architectures. the large number of
shared block is 1165 time units in THOR. This number is clinging references to shared blocks (especially reads) ca be
unusually large because even one reference with a very large treated in much the same manner as references to private
interval (or an oulier) can skew the average towards large blocks, in other words. blocks can be treated as private dur-
values. Therefore, in the context of time intervals, a more ing large windows of time.
interesting number is the median, or the time interval over
which half the clinging references occur. It is easy to see that The previous figures did not distinguish between read and

over 50% of the intervals are 25 time units or less in THOR. write references. Making this distinction is necessary because

(The much larger average is due to the bias brought in by a in many high-performance multiprocessor architectures, only

few outliers.) Not surprisingly. these numbers indicate that pinging references to dirty blocks cause bus traffic when the

blocks are re-referenced at small intervals of time. which is new value of the dirty block must be somehow transmitted to

simply a reconfirmation of the fact that memory references the requesting processor. Figure 3 shows the distribution of

display a high temporal locality, and is the precise reason why the time interval between pinging references to a dirty block.

caching is successful. The values at 4K-SK time units form The total number of pinging references to dirty blocks is far

a second peak (Figure l(b)), although the height is much less than all the pinging references. As we shall show later

smaller than the first peak at 16-32 time units. This second in our discussion on cache consistency performance, sophisti-

peak can be explained as clinging references that occur when cated cache management schemes that take advantage of such
features can have significant advantages over simpler schemes.

4

Table 5: Interlocked inottruction %tatiptics. Note the numberis are mot in thousands.
jBBSS' BB iT1 OTH 1IRS~ T T

Trace = ser O User -5 r S er+ '. - f-f refS

THOR 169 490 11600 48T 0 49 1.6
PERO 109 431 109 4311 01.%

- - POPS (Ave-M6S. Med.n) -- TH4OR (ave-1uN. Wdaw5
ThOR (Ave-laISS. Msd.3S1 : **.PERO (Avo-25 46. Me&.UIU)

MAN

Wk to ~ "a 3Wan om 11 tadt oPm AD S Id9 Slinks

Figure 1: Distribution of the time interval between clining relFrences to a shared block. Only real..hared data references of
user included.

810 POPS (Avo422. Msd6lO) 100U. THOR (eve.10SS, Mal.7)
* THOR (Ave-106S. Msd.7)

.PERO (Ave-21 26 M.13S1)

1:

1W 100 "n lo 4 o 50

Figure 2: Distribution of the time interval between pinging references to a block. Only real-shared dota references of user
included.

I . - POPS (Av.e2. 2 • a - T (asI7. Usit 77
.THO (Am-11744. M06.177)

. PMA (Ave4Ma3. bbMtgwt) I

.... P~t)p~v ..lltJ) .J8

• ,d I

toI IN U0 1100 1 d * 11 aU M iw MO M 10
urnbw us PbAW M.Emus.. ft a Mom* lime 11F P610u8 bahemo ba ay Aso*

Figure 3: Distribution of the time interval between pinging references to a dirty block. Only real-shored data references of user
included.

Comparing Figures 2(b) and 3(b). we see that the peak One of the chief differences between some of the snoop-
around the time interval 4-8 in Figure 2(b) is caused by ref- ins cache consistency schemes is the way they treat write
erence to read-shared objects. Because Figure 3(b) does not references. One set of schemes. e.g.. DRAGON [7] or FIRE-
show this early peak, we believe that references to write- FLY [8], allow caches to hold valid copies of blocks that are
shared blocks have less temporal locality than references being written into by others. and update the values on writes.
to read-shared blocks, which benefits multiprocessor caches. Another set of schemes prefer to allow only one copy of a writ-
A possible case is the test-and-testaset synchronization se- ten block (e.g., Berkeley Ownership [9], or various flavors of
quence. where one might expect multiple reads from several directory schemes [6]). The performance of one or the other
processors. but less frequent writes. The low temporaljo- method is predicated on the locality of references to write-
cality in pinging references to dirty blocks encourages Ar to shared blocks, which we address next.
believe that for large time periods blocks can be considered F,ure 5 shows the number of read and write references -
as private and no traffic need be generated in maintaining at least one reference a write - before a pinging reference.
consistent caches. Several observations can be made from this figure. First. the

As caches grow bigger. blocks are expected to stay in the average number of references to write-shLred blocks by the
cache for long periods of time. In such a situation, a bet- same processor before a pinging reference is 5.6 for POPS, 3.6
ter characterization uses the notion of processor locality. (A for THOR, and 7.5 for PERO. Write references are relatively
similar characterization has also been used in [5]). We will fewer than reads and contribute 1.6. 1.7, and 1.2 respectively
address processor locality in two ways. The first looks at the to these averages. These averages indicate that the processor
number of references to a block before a pinging references locality of shared-writable blocks is higher than that of read-
to it. and the second looks at the number of references to a shared blocks. (Rt-call that the corresponding nqgnbers for
block before a pinging reference to it. given that at least one all references were 1.8, 1.3. and 2.5). The higher processor
of the references was a write. Each of the above two char- locality indicates that a shared written datum is accessed
acterizations is pertinent to some cache consistency scheme. multiple times by a processor before being relinquished.
For example. the first one indicates the potential of a cache A more important observation from Figure 5 is that the
consistency scheme that allows only one cached copy of a total number of these pings are approximately an order of
block, magnitude lower than all pinging references. which lessens the

Figure 4(a) shows the cumulative distribution of the num- adverse impact of the low processor locality of write references
ber of references to a block before a pinging reference. and on the performance of cache consistency schemes.
Figure 4(b) the frequency distribution. In Figure 4(b) for As noted earlier, the average number of writes to a block
THOR. there are about 200.000 pinging references to a block before a pinging reference is small 11.7 for THOR): there are
referenced only once by the previous processor. Unlike in several possible reasons for this low value. We expect a low
the distributions of time intervals, where we used the median value for references caused by spinlocks. We also expect this
as a measure of temporal locality, here the average is more value to be low for shared objects which move from one pro-
indicative of processor locality, because outliers represent a cessor to another, with each processor making some modifica-
large number of references. and must be weighted accordingly. tions to the object. Also mostly-read-only objects are written
The low average of 1.3 indicates that interleaved references once, and then numerous pinging read references are made by
by different processors are as frequent as clinging references, other processors.
implying low processor locality. We evaluated a cache con-
sistency scheme that allowed only one cached copy of any
block (6]. and it performed abysmally for this very reason. references is moderate, with roughly 2 writes and 4 reads

6

M M- W YWOrn (A . Mow-)

Wmu

anrn (As.I3, Mad-I)

.... PERO (Av.U. MndUI) -

. o. o. .o. oo......o.....

AAm ~lwmo so@ ~hf" f"-PP

0)1

Matil. Wel ue b Je V : IS ai e L

Figure 4: Distribution of the number of references to a block before a pinging reference. Only real-shared data references of
user included.

on average to write-shared objects before a pinging reference. 4.2.2 Effects of Process Migration
Therefore, a good cache consistency scheme must ensure ef-
fective handling of repeat read-references to shared blocks. Since the three traces we have discussed so far do not show a
Given the moderate processor locality of shared-data, we can- significant amount of process migration, we used three othernot directly determine whether invalidating cache consistency traces of the sane applications that did. Due to space con-
schemes such as the Berkeley Ownership protocol or directory straints we will only summarize our findings here and details
schemes. or the updating protocols such as the Dragon and are presented in [10].
Firefly schemes are superior. More detailed evaluation that The temporal locality of clinging references decreases if
takes into account the cost of updating versus invalidating processes are rescheduled on the same processor. after having
must be undertaken to make a decision. .5 run on another processor (it will show up as a large increase in

the height of the second peak in Figure 1 (b)). One component
4.2.1 Sharing Characteristics of Both User and of akhe interference caused by migration is simiJlar to the

OS References interference caused by context switching.
Perhaps the most important effect of process migration isThe following discussion focuses on the sharing characteris.. the significant increase in the number of blocks that get phys-

tics of both user and system references, where instruction ically shared by several processors. although the logical shar-
references are excluded, as before. The general observation is ing in the program might be much smaller. For instance, the
that the sharing characteristics of user and system are not sig- fraction of references to shared data blocks increases from
nificantly different, although the temporal locality of shared 0.2 to 0.9 with process migration. Due to the typically long
system references was slightly lower, and the processor local- intervals between process switches (thousands of references).
ity was slightly higher. the time interval between pinging references to these shared

For the times between clinging references in POPS. THOR. blocks is very large. ad causes a much larger second peak in
and PERO. the medians occurred at 26. 27. and 27772 for user Figure 2(b). Similarly. the average number of references to a
and system, while the corresponding numbers for user alone block - at least one reference being a write - before a pinging
were 23. 25. and 28188. The times between pinging references reference is 13 with process migration Lad less than 2 with-
were different by roughly the same ratio. while the times be- out. This perceived decrease in the temporal locality and the
tween pinging references to dirty blocks showed greater v..i- increase in processor locality of shared references stems from
ation. The medians for user and system were 438. 2095, and the fact that many of these references are to logically private
12446, as compared to 363, 1779. and 19711 for user alone, data objects that are not referenced by other processors untilthe process actually migrates to another processor.

The processor locality metrics also showed only small dif- n m l process migrat onr pro .
ferences from the cae of user references alone. In general. In summary, although process migration increases the pro-
for the user and system references the average number of ref- cessor locality and decreases the temporal locality of shared
erences to a block before a pinging reference were roughly blocks, it increases the total number of shared blocks sub-
Af greater. A similar trend was observed for the number of stantially, and potentially impacts both intrinsic cache per-
references to write-shared blocks. formance. and the performance of cache consistency schemes

adversely.

7I i m lm g ~ es • •ig m s m mn m m mNM I I I ISI

U U - THOR (Avsn3.6. M.am

m ..~... PEROK V(4..&0 M~KWX.

...............................

.. o..

L FL

I R .6 8 a a of up M l 812 IN I t o & 0 ' o ws m I wr

Figure 5: Distribution of the number of references to a block before a pinging reference to the same block, given that at least
one reference was a write. Only rel.shared data references of user are included.

4.3 Cache Consistency Implications three kinds of bus transactions: block transfers, updates, and
invalidotons. A block transfer transaction transfers a block

The memory reference traces also yield useful insights about from memory to cache or vice versa. For example, a block
the electiveness of various cache consistency schemes. For transfer into a cache on a read miss. An update transaction
example. they enable an accurate determination of the traffic updates the contents of a location either in main memory
caused on a shared bus by any given cache consistency scheme (e.g.. on a processor write in WTI) or in a remote cache (e.g.,
under realistic load conditions. While a detailed analysis of on a write to a shared location in WBU). The update trans-
the numerous cache consistency schemes proposed in liters- fers only one word, and is hence cheaper than a block transfer
ture [11.9.7.12.8] would be interesting, it is beyond the scxpe with a large block sise. A processor uses an invalidation to
of this paper. Instead, we consider one representative each purge cache blocks in other caches to get exclusive ownership
from the write-through with invalidate, write-back with inval- oftte block. No data transfer is required for this transaction,
idate. and write-back with update classes of cache coherence oni. the address of the cache block to be invalidated need be
schemes. To help explain the various phenomena observed specified. Note that block transfers and updates can simulta-
here. we use the data presented in earlier sections. As before neously serve as invalidation transactions, and this is usually
we assume infinite caches. and unless otherwise stated. block exploited in most coherence schemes.
size is one word (or four bytes). Table 6 presents the event frequencies for the three traces

The first scheme discussed in this paper is write-through as a function of the cache coherence strategy. Because of our
with invalidate (WTI) commonly used in commercial mul- interest in characteristics of shared references. we only include
tiprocessors. In this scheme. every write from a processor cpu-shared user data references for POPS. THOR. and PERO
accesses the bus both to update main memory and to in- (see Table 4 for details). Because caches are infiadte. a data
validate that location in other caches. Examples of wite- item brought into the cache remains there until invalidated.
back with invalidate schemes are Goodman's write-once [11), From Table 6 we derive the total number of block transfer
Rudolph and Segall's scheme [12]. Berkeley Ownership [9]. transactions and update transactions that would occur in a
and the directory scheme [13]. We consider write-once as the multiprocessor ad present the numbers in Table 7. The table
second scheme in this paper. In this scheme. the first write also presents data for 16-byte and 64-byte blocks to study
to a location uses the bus to update main memory and to in- spatial locality in shared references.
validate that location in other caches. Subsequent writes to We first examine Table 7 for 4-byte blocks. Comparing
that location by the same processor do not result in any bus total number of transactions. the WTI scheme is worse than
traffic, as that location is now owned locally. This scheme is both WBI and WBU. WTI looses to WB! because of the
labeled WBI in the following discussion to indicate the class processor locality displayed by write references, as shown in
it belongs to. Examples of the write-back with update schemes Figure S. While every write generates bus traffic in WTI,
are Dragon [7J and Firefly [8]. We use Dragon as the third clinging write references do not cause bus traffic in WBI.
scheme, and denote it WBU. In the Dragon scheme, al writes Comparing WTI and WBU, both schemes generate an update
to & shared location (a location present in multiple caches) transaction for every write to a shared location. However,
result in a bus access to update the value of that location in WBU saves about 25% updates because before the point that
other caches. For non-shared locations, the cache acts like a a location becomes shared (a second processor requests it).
regular uniprocessor write-back cache. only the first read or write produces a bus transaction. WBU

We evaluate the performance of the above three cache co- also has fewer block transfers because, unlike WTI. it never
herence schemes in terms of the bus transactions generated invalidates a location from a cache. The details of the events
on a shared-memory multiprocessor. We distinguish between are in Table 6.

8

Table 6: Events. bus transactions. and event frequencies. Each event is a triple: event-type (read-miss write-miss, write-ht).
state in local cache (not present. clean. dirty), and state in remote cache (sot presant. clean, dirty). We use abbreviations d
for block transfer. a for update. and a for invalidate. Only cpu-shaed user data references are considered. All numbers are in
thousands.

Event Bus Transactions POPS THOR PE1O
Type WTI WBI WBU WTI WBI WBU WTI WBT WBU WTI WBF WBU
total refs - 575.6 575.6 575.6 473.1 473.1 473.1 119.0 219.0 119.0
read-hits (rh) 429.5 429.5 451.8 416.3 416.3 423.8 102.3 102.3 105.3
read-misses (rm)

rm-np-np Id Ud 10.01 10.01 10.01 2.55 2.55 2.55 3.20 3.20 3.20
rm-np-d Id ld Id 59.24 25.11 13.46 14.21 2.14 0.54 7.13 3.57 2.53
rm-np-di Id Id - 34.13 23.52 - 12.06 6.18 - 3.56 1.57

write-misses (wm)
wm-np-np Id. It Id Id 9.72 9.72 9.72 2.28 2.28 2.28 0.08 0.08 0.08
wm-np-cl Id. l d ld. l 12.81 4.39 1.74 0.12 0.01 0.00 0.38 0.10 0.10
wm-np-di Id Id. lw 8.42 1.90 - 0.11 0.03 - 0.28 0.15

write-hits (wh
wh-cl-np Is l 0 7.64 2.14 2.14 7.39 2.15 2.15 1.38 1.08 1.08
wh-d-cl 1. Is Is 46.63 22.12 1.35 30.27 9.00 0.16 4.53 3.33 1.06
wh-cl-di - I 1 23.87 - 8.75 - 1.95
wh-di-np 0 0 - 30.01 5.50 26.50 5.24 - 1.49 0.29
wh-di-cl Is -30.58 21.45 - 1.65

Dividing the total number of bus transactions generated by is no spatial locality or the cache interference neutralizes the
all three programs for the WBI scheme in Table 7 (161.6K) benefits due to locality. THOR behaves differently. When
by the total number of references that resulted in these trans- the block size is increased from 4 to 16 bytes, the number of
actions (1168.7K). we see that there are approximately 0.138 block transfers increases by a factor of 1.5. This indicates that
bus transactions generated per reference This number ap- negative cache interference effects dominate.2 In contrast to
pears quite large given infinite caches, and there are two rea- POPS and THOR. increasing block size has a very positive
sons for this. First, this data represents only cpu-shared user effect on PERO. The number of block transfers decrease by
data references, which show poor processor locality as in Fig- a factor of 2 as the block size is increased from 4 to 16 bytes.
are 4. or equivalently, which display a high temporal locality and further by a factor of 3.4 when the block size is increased
of pinging references as in Figure 2). Consequeutly t5 fdo from 16 to 64 bytes. The number of update transactions de-
not benefit much from the read-sharing allowed by the WBI - creases steadily too. Thus the PERO program appears to
scheme. If one includes both user and OS references, and hawf4higb spatial locality with almost no cache interference.
both data and instructions, then the number of transactions Another interesting result that can be observed by exam-
per reference falls to 0.031, which is much better. This re- ining the total traffic lines in Table 7 is that for shared data
duction is primarily due to the large number of read-shared references the total bus bandwidth required is minimized
references generated by instruction fetches. (Consequently, when block size is 4 bytes and increases as the block size
allowing read sharing for instructions is crucial in multipro- is increased. This result is in start contrast to uniprocessor
cessor caches.) The second reason for the high value is that caches, where the optimal block size tends to be much larger.
block size is 4 bytes. When the block size is increased to 16 The only exception is the PERO program when block size
bytes. the number of transactions per reference drops down equals 64 bytes.
further to 0.016. primarily due to the high spatial locality of
instruction fetch references. We were interested in estimating the effects of obviating

broadcasts in cache consistency schemes to enable scalability.
Ia general, two opposing forces come into play as the block Table 8 presents the number of caches in which blocks are

size is increased - one trying to decrease the number of trans. actually invalidated, whenever a reference that could poten-
actions and the other trying to increase them. As the block tially invalidate other caches is processed in the WBI scheme.
size is increased the number of bus transactions is reduced Such references for the WBI scheme are all write raisses and
because the bus access or invalidation cost is amortized over all write-hits to a clean location in the local cache. The to-
several words. Contrarily, a large block size increases the tal number of such references is given in column three. The
probability of unrelated objects residing in the same block, inv-0 column gives the number of potentially invalidating ref-
and a write to one object can unnecessarily invalidate an ac- erences that resulted in no actual invalidations, the inv-I col-
tive unrelated object in a remote cache. umn gives the number of such references that resulted in ex-

To study the spatial locality characteristics of cpu-shared actly one invalidation, the inv-2 column gives the number
user data references, we now examine the bus transactions that resulted in an invalidation in two other caches, and the
generated by WBI in Table 7 as the block size is increased. inv-3 column denotes an invalidations in three other caches.
For POPS the number of block transfers decreaes from Since all the traces are four-processor traces, no reference can
91.86K to 47.15K to 46.23K as the block size is increased result in invalidation in more than three other caches.
from 4 to 16 to 64 bytes. This indicates that there is high lAnotber factor contributing to the increased number of block
spatial locality at 16-bytes. with little cache interference due transfers is the fact that as block size is incre-sed. the number Of
to coresiding unrelated objects. Beyond 16 bytes, either there epu-she references also increases.

9

Table 7: Bus transactions. Only cpu-shared data references of user are included. AD numbers are in thousands.

Bus POPS THOR PEROTransactionr. WIAT WB] WJU" WTI WBI MBV" 7T WHI WBI-

Block-Size = 4 bytes
block-ifers (d) 91.86 91.86 60.42 19.15 19.15 11.58 10.79 10.79 7.63
updates (a) 76.79 24.25 59.43 40.06 11.15 30.31 6.37 4.42 4.91

Total Trafficd + u) 16.65 116.11 119.85 59.21 30.30 41.96 17.16 15.21 1254
Block-Size = 16 bytes - r I

block-xfers (d) 47.15 47.15 22.97 2977 2977 20.27 5.05 5.05 3.44
updates (u) 78.47 15.04 61.48 49.39 12.38 34.02 1 6.571 2.14 5.26

Total Traffic (4d +a) 267.07 203.64 [153.36 1168.47 131.46 115.10 26.77 22.34 19.02IBlock-Size = 64 bytes-1 I
block-xfers (d) 46.23 46.23 9.30 29.75 29.75 16.68 1.50 1.50 0.94
updates () 7939 2017 6509 86.99 16.61 73.15 6.95 0.70 5.61

Total Traffic (6d+ a) 449.23 390.0] 139.49 324.99 254.61 206.59 18.95 12.70 13.13

We would like to remark on two aspects of the data pe- then either the lock will not have too many processes wait-
sented in Table 8: the fraction of references that invalidate ing on it and thus only one or a few caches will need to be
multiple caches as compared to those that invalidate only one invalidated, or such an occurrence will be very rare, and the
cache, and the effect of changing the cache block size. Let us probability of invalidating many caches will be very small.
examine the first aspect. The data for 4-byte blocks indi- The second common use of write shared objects is as
cates that the fraction of references that cause invalidations mostly-read-only objects. An example is multiple programs
in three caches (1.39c) is quite small compared to the fraction sharing a database that is occasionally modified. By occasion-
that cause invalidations in one cache (61.0%).3 It is interest- ally we mean that relative to the number of references made
ing to speculate if this phenomenon - that on an invalidate to that object, the number of writes is small. On a write to
transaction, with high probability, data in only one or very a mostly-read-only object, multiple caches may have to be
few caches needs to be invalidated - is true even when the invalidated, but since writes are rare, the overall fraction of
number of processors is large. If it is true, then instead of multiple cache invalidations still stays low. The third com-
building broadcast-based cache consistency mechanisms, one mon use of write-shared objects is where one process works
can build message-based mechanisms where the invalidation on an object for some time, then another process, and so on.
message is sent only to those caches that contain that data. Shared objects protected by locks often behave this way. In
The resulting reduction in bandwidth requrements mz~ps it this third case, when one process is working on an object,
possible to build scalable shared-memory multiprocessors. In " that object resides in the cache of the associated processor.
the following paragraphs. we speculate why the above result W& that object moves to another process (and possibly to
should also hold for a larger number of processors. another processor), the cache entries in the previous proces-

There are three kinds of data objects in parallel programs: sor are invalidated, but that corresponds to invalidation in
1i non-shared, (ii) read-shared. and (iii) write-shared objects, only one other cache. So it is still consistent with our con-
The non-shared objects normally do not cause any invalida- jecture that in larger multiprocessors invalidations will hap-
tions except due to process migration. in which cue all the pen in only one or in a very small number of other caches
invalidations go only to the processor that previously ran that with high probability. The above observations suggest the
process. The read-shared objects also do not cause any in- use of a message-based cache consistency protocol. instead of
validations. So the multiple cache invalidations come from a broadcast-based protocol. We are analyzing ths issue in
write-shared objects. We now explore some common ways in detail and results will be presented in a future paper.
which write-shared objects are used in parallel programs. We now look at the effect of increasing the cache block

The first common use of write-shared objects is as spin size on the number of invalidations. The fraction of refer-
locks or other similar synchronization related structures. Let ences that cause invalidations in multiple caches increases
us consider the spin lock as the typical case. If the spin lock with block size. As an example. for POPS, consider dividing
is implemented in a straightforward way using an interlocked the entries in the inv-3 column by corresponding entries in
testkset instruction, since the instruction ends in a write, at the total column in Table 8. The numbers we get are 2.1%,
the end of each instruction only one cache contains the data 4.6. and 6.2 respectively. The primary reason for this
and only one cache has to be invalidated on a subsequent ref- phenomenon is that as block size is increased, unrelated data
erence by a different processor. If the spin lock is implemented objects fall into the same cache block. Multiple processors
using a test-and-test&set instruction.' then with some prob- accessing these distinct objects cache the same block, and a
ability the lock will be present in multiple caches. When the subsequent write results in an invalidation in multiple caches.
lock is set free by writing into it, these multiple caches have
to be invalidated. However, if the program is "reasonable"
(i.e., there is no excessive contention for the locked object), 5 Summary and Conclusions

3The reason why this ratio is smaller fr POPS and THOR for
larger block sizes is discussed later. We have presented data characterizing the memory refer-

'In a test-and-test&set instruction, if the first test fails we ence patterns in shared-memory multiprocessors. Our data
simply loop back and do not execute the test& set part of the is based on traces obtained for three applications from a 4-
instruction.

10

Corporation. Hudson. made multiprocessor ATUM possible.
Table 8: Cache invalidation statistics for the WBI coherence and Digital Equipment Corporation made the ATUM mi-
scheme. Only user cpu-shared data references are included. crocode available for our use Larry Soule snd Helen Davis at
Ad numbers are in thousands. Stanford helped with the THOR program and Jonathan Rose

with PERO. Finally many ideas presented in this paper cameTracee B total inv-0 nv-I nv-2 in-3 up during discussions with Susan Eggers, Mark Horowitz,
4 46.77 11.85 29.24 4.69 0.99 John Hennessy. and Rich Simoni. We appreciate their contri-

POPS 16 27.06 3.89 18.51 3.42 1.24 butions. The research reported in this paper was funded by
64 30.18 1.33 20.07 6.92 1.86 DARPA contract MDA903-83-C-0335. Anoop Gupta is also
4 13.55 4.43 8.97 0.13 0.02 supported by a faculty development award from DEC.

THOR 16 14.72 5.11 8.69 0.74 0.18
8.64 .06 3.28 13.72 0.94 0.121

4 4.87 1.16 2.65 0.98 0.08 References
PERO 16 2.18 0.47 1.17 0.50 0.04

64 0.72 0.14 0.42 0.14 0.02 [1] Anant Agarwal. Richard L. Sites, and Mark Horowitz.

ATUM: A New Technique for Capturing Address Traces
Using Microcode. In Proceedings of the 13th Annual

processor VAX 8350 using the ATUM address tracing tech- Symposium on Computer Architecture, pages 119-127,
nique. The traces used are "complete', in that they contain June 1986.
information about both system and user references, references [2] F. Darema-Rogers, G. F. Pfister, and K. So Memory
due to interrupts, process scheduling. etc. access patterns of parallel scientific programs. In Pro.

Our anaJyses shows that a large fraction (about one-fourth) ceedengs of the 1987 ACM SIGMETRICS Conference,
of references in the traces are to shared objects. These shared pages 46-58. May 1987.
references display a significant amount of temporal locality, [3] Anoop Gupta, Charles Forgy. and Robert Wedig. Paral-
and only a small amount of processor locality for both read lel architectures and algorithms for rule-based systems.
and write references. For example, the average number of In Proceedingi of the 1th Annual Symposium on Com.
reads and writes to a write-shared block before a remote ref- puter Architecture, June 1986.
erence (a ping. which may possibly invalidate the data) are
4 and 2 respectively. Nevertheless, caching shared data is [4] Jonathan Rose. .ocusRoute: A Parallel Global Router
still highly useful because of the significant amount of read to Standard Cells. Technical Report, Computer Sys-
sharing. temns Laboratory, Stanford University, 1987.

We also present statistics about the use of interlocked in- [f Susan J. Esters and Randy B. Katz. A Choracterutonstructions. The traces show that 0.1%-1.6% of instruction of Shorng in Parallel Programs and its opplacabslhty/tostrutios. he race shw tat .1% 1.6 ofinsrucionCoherencyl Protocol Evaluation. EECS Department, UC
references are to interlocked instructions, and that mos, of Berkeley. October 18o.
these instructions references are from user code. The piper eky ctoer 1987.
also touches on the effects of process migration. Process mi- [6) Ana wt AgaSwal, Rich Simoni, John Bennessy, and
gration causes a large number of logically unshared references C,4ark Horowitz. Scalable Director t Schemes for Cache
to become shared references with respect to the cache system. Coherenc. Computer Systems Laboratory, StanfordUniversity, October 1987. Submitted for publication.

The nature of shared-memory reference patterns also yields [7] E. McCreight. The Dragon Computer System: An Early
insight on how various cache consistency schemes will per- ve rew Thnica R oter S eptem er
form. We present the analysis for three cases of cache Over1e9, . Technical Report, Xerox Corp., September
consistency schemes - write-through with invalidate (WTI), 1984.
write-back with invalidate (WBI), and write-back with up- [8] Charles P. Thacker and Lawrence C. Stewart. Firefly: a
date (WBU). For shared data references, WTI performs worse Multiprocessor Workstation. In Proceedings ofASPLOS
than both WB! and WBU as it uses the bus on every write. It.)ages 164-172, October 1987.
Comparing WBI and WBU, the former seems to have an edge [9] R. H. Katz et &I. Implementing a cache consistency
for 4-byte blocks, while WBU does better for 16-byte and 64- protocol. In Proceedings of the Ifth International Sym.
byte blocks. Another surprising result that we observed for possum on Computer Architecture. pages 276-283. June
shared data references is that the total bus bandwidth re- 1985.
quired is minimized when block size is 4 bytes and increases (10] Anant Agarwal and Anoop Gupta. Memory-Reference
as the block size is increased. Our traces also show that when Charocterutics of Multiprocessor Applications under
a reference that could possibly invalidate a cache is processed, MACH. Computer Systems Laboratory, Stanford Uni-
with a very high probability (61.0 %) it invalidates only one versity, February 1988.
other cache. The probability of causing an invalidation in al 11] James R. Goodma. Using Cache Memory to Re-
three caches is only 1.3%. We discuss why this should also be
true for multiprocessors with larger number of processors. and duce Processor-Memory Traffic. In Proceedings of the
suggest the use of message-based cache consistency schemes 10th Annual Symposium on Computer Architecture,
rather than broadcast-based cache consistency schemes. pages 124-131. June 1983.

[12] L. Rudolph and Z. Segall. Dynamic decentralzed cache
consistency schemes for mimd parallel processors. In

6 Acknowledgements Proceedings of the 12th Intemational Symposium on
Computer Architecture, pages 340-347, June 1985.

Several people have helped us in obtaining the traces. We to (13] Lucien M. Censier and Paul Feautrier. A new solution to
thank Roberto Bisiani and the Speech Group at CMU for let- coherence problems in multicache systems IEEE Trans.
ting us use their VAX 8350. Dick Sites at Digital Equipment actions on Computers, c-27(12):1112-11is, Dec. 1978.

11

Competitive Management of Distributed Shared Memory

David L. Black Anoop Gupta and Wolf-Dietrich Weber
Carnegie-Mellon University Stanford University

Pittsburgh. PA 15213 Stanford, CA 94305

Abstract useful for this work because they explicitly address the con-

stant factors ignored by' standard complexity analysis. and

This paper presents and analyzes algorithms for managing because they are well-suited to the analysis of resource man-
the distributed shared memory present in non-uniform mem- agement problems. Previous work has developed competitive

ory access multiprocessors and related systems. The com- algorithms for the related problems of optimizing the use of

petitive properties of these algorithms guarantee that their snoopy caches [8].
performance is within a small constant factor of optimal even The performance results for these algorithms are based on
though they make no use of any information about memory trace-driven simulations of several production applications
reference patterns. Both hardware and software implementa- from UMA multiprocessors. These results show that the pro-
tion concerns are covered. A case study of the Mach operating posed algorithms attain total speedups of 5 to 10 over random
system indicates that integration of these algorithms into op- assignment of pages. This indicates that significant locality
erating systems does not pose major problems. On the other (both code and data) may exist in a large class of multiproce-
hand. hardware support is required to obtain the full func- sor applications, and that this locality can be detected and
tionality of the algorithms. We also sketch possible algorithm exploited automatically. As a result such applications may
extensions to additional hardware architectures and software not require extensive design changes or modifications for use
programming models. on NUMA multiprocessors; no such changes or modifications

Trace driven simulations are used to evaluate our approach were made to our applications.
and compare it to other alternatives. Speedups of 5 to 10 over This paper concentrates on the application aspects of our
random assignment of pages on production applications are work. Proofs of the competitive properties of the algorithms
achieved without modifying the applications for non-uniform can be found in [2]. The next section presents a basic model
memory access (NUMA) architectures. We compare our pro- that covers the systems to which our algorithms are appli-
posed hardware support with the more aggressive approajb cable. This is followed by an introduction to competitive
of fully-consistent caches. An additional factor of 2 to 34rn ,algorithms. Section 4 breaks down the basic problem and
performance can be obtained from the cache approach, but at presew our competitive algorithms for solving it. Sections 5
the cost of much more hardware. These results indicate that and 6 continue with a discussion of implementation concerns
the algorithms and their hardware support may represent a including the difficulties imposed by most current hardware.
viable cost/performance tradeoff. Section 7 presents our performance results from trace driven

simulations. Sections 8, 9, and 10 briefly discuss extensions
of this work. Sections 11 and 12 conclude the paper with a

1 Introduction review of related work and a short summary of results.

The widespread use of uniform memory access (UMA) mul-
tiprocessors has sparked interest in using uniform shared 2 Basic Model
memory programming models on non-uniform memory access
(NUMA) multiprocessors. Use of a common programming This section presents the basic memory model for which our
model enhances the portability of applications among such algorithms were developed. We assume an idealized machine
machines. and can reduce the effort required to fit or tune composed of processor-memory clusters, with physical mem-
applications to NUMA multiprocessors. New techniques are ory divided entirely among the clusters. A processor-memory
required to manage the distributed physical memory found in cluster consists of one or more processors with local memory
a NUMA multiprocessor because the location of memory used that is equally accessible (in terms of latency) to all proces-
by an application (with respect to the processor(s) executing sors. Our idealized machine has two distinct memory access
the application) directly affects performance. Optimizing the latencies; the latency to access memory in the same cluster.
use of physical memory to minimize access costs is a major and a significantly larger latency to access memory in an-
issue that must be faced by any implementation of a shared other cluster. As a result all memory within a single cluster
memory programming model on such machines. This paper is equivalent, and all processors within a cluster have iden-
presents techniques and algorithms for this problem, along tical memory access characteristics (latency in terms of the
with preliminary performance results from trace-driven sim- cluster in which the accessed memory is located). Finally all
ulations. memory locations outside the cluster have the same access

Our algorithms are competitive in a strict theoretic sense. latency from any processor in the cluster.
An informal statement of this property is that the algorithms This basic model subdivides memory into pages and pages
are essentially the best that can he achieved in the absence into locations. Pages are the fundamental unit of memory
of information alout future memor'v reference behavior. The management: locations are the fundamental unit of memory
techniques of competitive algorithm analysis are particularly access. We assume the existence of virtual memory map-

-T -oplt Ch•mCt W

ping mechanisms, and therefore dilingui-h between virtual the related Iproblen o snoopy caching: our model and it,
pages (in tile address space of soome program or the operating realization% do no have broadcast. invalidate, or -.nooping

.vstem) and physical pages (actual memory in the cluslers). mechanim. that can maintain con-sktencv among muhiple
Mapping virtual pages to phvsical pages if. one of the responsi- Colpies of a virtual page wien write% occur. Tliwt prohihilt'
hilities of a memory management facility. Sharing may result replication of writable page-s. Because we have %eI)arated the
ii, more than one virtual page in one or more address spaces imue of page reclamation, migration of read-oni* page snake
being mapped to the same physical page. The page size used little sense: replication is Its-. costly. and providef. the benefit!

hy our algorithms can he no smaller titan the hard'ware page of local access to two clusters instead of one. As a result the
siae if mapping is used, but it may be a multiple thereof. overall problem splits into two sub-problems:

We normalize our model by assumitng the difference in cost * Replication of read-only pages.
between an in-cluster memory access and a remote-cluster
memory access is 1: this cost includes the effects of both in- * Migration of writable pages.

cre&4ed latency and u-e of interconnection bandwidth. This If a virtual page is both read-only and writable at different
cost only applies to accesses that actually use the intercon- times during the execution of an application. we consider each
nection network: if caches are present at the processors. we segment (read-only or read/write) of the page's existence to
only consider accesses that miss in or bypass the appropri- be a separate instance of the corresponding problem.
ate cache. In addition. we are assuming that read and write
costs are identical: all of our work generalizes to cases in which
these costs are not identical. 4 Basic Algorithms

This model permits us to analyze techniques for managing
the performance impact of distribution in a shared memory Effective use of replication and migration presents an enigma.
system. We concentrate on two major tools for this manage- Replicating or migrating a page that will never be referenced
ment: replication and migration of virtual memory. Replica- again is very costly. but so is failing to replicate or migrate a
tion consists of making a copy of a virtual page in another page that will be used heavily in a remote cluster. Avoiding
cluster and updating mappings that benefit from this copy' (in these situations seems to require knowledge of the future that
reduced access time). Migration consists of moving a virtual is not available when decisions must be made: this results in
page from one cluster to another and updating all mappings a situation where any decision about replication or migration
to that page. We formalize the costs of replication and migra- could be both wrong and costly. Problems that require these
tion as r and m respectively in terms of access costs. These decisions to be made (affected by future system behavior, but
costs include latency and overhead components. but do not must be made without any knowledge about this behavior)
include the additional costs of allocating a physical page in and algorithms that make these decisions are called on-line.
a duster with a page shortage (i.e. causing pageout) or the
additional benefits of freeing a physical page in such a clustel Results obtained from the analysis of competitive algo-
(i.e. avoiding pageout). We separate the issues involved M rithms provide a solution to this enigma. An on-line algo-
page reclaim from migration and replication; these are ad- lithm is called competive if its cumulative cost on any se-
dressed in section 5.1. quencos within a constant factor of the cost of the optimal

algorithm1 on the same sequence. and no such algorithm ex-
Our basic model applies to any machine that can ima- ists for any smaller constant. Competitive algorithms have

plement NUMA memory. This includes NUMA machines been found for a number of problems. including list manage-
that implement the model directly (e.g. Butterfly (5]), no re- ment [16), snoopy caching [8], and some server problems [10].
mote memory access (NORMA) machines with uniform ac- This paper extends past work by presenting competitive al-
cess costs, and network shared memory implementations on gorithms for replication and migration of distributed shared
networks with uniform communication costs. For the last two memory.
classes of the machines, it is essential that the system (hard-
ware and/or software) support access forwarding so that ac-
cesses to pages that are not in local memory can be satisfied 4.1 Replication
at remote memory without moving the entire page to local
memory (an expensive operation). Most current NORMA The on-line replication problem consists of determining when
machines (e.g. hypercubes) and network shared memory im- in a sequence of accesses a page should be replicated into
plementations [4,9.21] do not support this functionality, other clusters, without look-ahead. Under our model all clus-

ters are uniformly equidistant; if a page is not resident locally,
the cost to access it does not depend on the cluster in which

3 Basic Problem it is accessed. As a result the decision to replicate a page into
a given cluster is independent of the decisions to replicate

The problem we address here is the management of dis- into any other clusters. Hence the general replication prob-

tributed shared memory in architectures conforming to our lem reduces to the replication problem for two clusters with

model. For architectures utilizing a single copy of the operat- the page initially resident in only one cluster. Algorithm R

ing system (N'MA multiprocessors), this includes not only is our algorithm for this problem.
memory shared explicitly, but also memory shared implicitly Algorithm iR:
via copy-on-write techniques. Since we rely on replication
and migration to perform this management. the problem can Count remote accesses from the cluster that

be restated as -When and under what circumstance should does not have the page. When this count exceeds

(virtuall pages be replicated into or migrated to memory in the replication cost, r. replicate the page into the

othier clusters ? cluster.

There is a significant difference between this problem and 1The optimal algorithm may look at the entire sequence before
making any cleciions

2

Results: information and alQ hecane it makes the resulting benefitsavailable to all applicajiol,. on tile system. insiead of just

1. Any on-line algorithm for this' problem intust have a cost those that are modified to use our algorithms.
that i., at least twice the cost inacurr,-d hi an optimal
off-line algorithm on some .equence of accesses.

2. Algorithm R is competitive. i.e. its cost is always 5.1 Limited Physical Memory Size
within a factor of two of optimal on any sequence of
accesses. Since there are many other demamds on physical memory

besides those generated by replication and migration (e.g.
Algorithm R (and algorithm M to be presented later) are memory allocation, file mapping. internal use by the oper.

algorithms that perform well across the entire spectrum of ating system. etc.), extending the replication and migration
possible sequences. If the specific sequence that will occur is algorithms to control memory usage is not appropriate. We
known in advance. an on-line algorithm can be constructed believe that the operating system should separate reuse of
that performs well on that particular sequence. but will per- physical memory (pageout or page reclaim) from replication
form worse than our algorithm on many other sequences. and migration issues. Even the fallback position of dedicating
This embodies the optimality property of our competitive al- a fixed amount of physical memory to replication/migration
gorithms; they are essentially the best possible in the absence and managing that is not a good idea: this prevents realloca-
of knowledge about what will happen in the future. tion of memory to the uses for which it is in greatest demand.

We propose the use of independent pageout daemons for

4.2 Migration the management of various cluster memory pools. These dat-
mons can respond appropriately to the potentially different

The on-line migration problem consists of determining when memory demands from cluster to cluster. Any of severaJ
in a sequence of accesses a page should be migrated to another standard paging algorithms can be used to implement the
cluster without look-ahead. Unlike the replication problem, daemons (18]. The migration and replication costs can be
migration depends on the number of clusters: of all the clus- dynamically modified to feed information about page avail-
ters that would benefit from having the page. only one can ability back into the replication and migration algorithms.
actually have the page. Decisions to migrate different pages These modifications should be restricted to increasing costs
are still independent, so the migration problem reduces to mi- above their basic levels to reflect page shortages and hence
gration of a single page in response to accesses to that page. discourage future use of memory in clusters with page short-
Algorithm M is our algorithm for this multiple clustpr page ages. Decreasing migration costs to encourage freeing mem-
migration problem. ory in clusters with shortages, and cost-based reclamation of

Algorithm M: replicates are fraught with potential danger; this is because
not all system components that use memory are or can be

Associate a counter with each cluster: initial- j sensitive to costs - hence these cost-driven alternatives may
ize the counts to zero. Access from a cluster ,-result in heavily used pages being evicted in order to retain
that does not have the page increments that clus- lightlUsed ones for cost-insensitive components.
ter's counter. and decrements some other clus-
ter's counter, but not to less than zero. When
a cluster's counter reaches twice the migration 5.2 Memory Management Interactions
cost (i.e. 3m) migrate the page to that dlusterand zero its counter. Access from at duster that Algorithms M and R can be incorporated into the operat-has the page decrements some other cluster's ing system's memory management code on a NUMA multi-counter, but not to less than zero. processor. Implementing these algorithms inside the operat-ing system allows their benefits to accrue to all uses of the

All of the counters for a page will be zero after a migration machine, but also results in interactions with other lpemory
due to the way they are maintained by algorithm M. management functions that must be dealt with as paft of the

Results: implementation.
We use the virtual memory management portion of the

I. Any on-line algorithm for this problem must have a Mach operating system [12] as a base for a case study of these
cost that is at least three times the zost incurred by an interactions. Mach is a multiprocessor operating system de-
optimal off-line algorithm on some sequence of accesses. veloped at Carnegie-Mellon University; its %'M system pro-

2. Algorithm M is competitive, i.e. its cost is always vides advanced memory management functionality including
within a factor of three of optimal on any sequence flexible sharing (both read/write and virtual copy), mapped
of accesses. files, and external memory management. This functionality

stresses the interactions of our algorithms with the remain-
der of the operating system, and serves to expose potential

5 Operating Systems Issues problems.

The Mach VM implementation is cleanly split into
There are two sets of operating systems issues that must be machine-independent and machine-dependent portions. The
addressed in implementing our algorithms: (i) how do we take machine-dependent portion consists of a single module. the
into account the limited size of physical memory: and lii) pmop module. that is responsible for all physical map opera-
what are the interactions between the proposed algorithms tions. The machine-independent portion of the system aso-
and the memory management portion of an operating sys- ciates a pmap with each addreus space and invokes the pmap
tem. The .econd issue arises primarily if the algorithms are module as needed to perform mapping operations. Mach sup-
implemented in the operating system kernel: this is an attrac- ports parallel execution of multiple threads within a single
tive choice both because it permits direct access to mapping task's address space: this parallel execution call result in a

3

single pmap being used simultaneously hy more than one pro-
ces~or.

Mach envision. support for non-nniform phystical memory
k-. adding a NUNIA layer bketween thke inacliine-indepenclent AH AH
atid machime-dependent portions of the VM styrtem [I]. AEcci
Thii, layer hide- the non-uniformity of the memory structure *l140 MEMORY
by translating logical poges Imanipulated by the machine-
independent portion of the VNM system) to ph'rsieal pages
(in the hardware) in order to implement architecture-specihc
memory management policies (e.g. replication, migration). A
similar translation process is needed for pmaps to allow repli- I II
cation within a single address space if its threads are spread
acro's multiple clu.-ters, in this. case each cluster would have
it. own physical map. but the collection of these pmaps would
appear as a single logical pmap to the machine-independent Figure 1: Architectural model
portion of the VM system. This adds additional complexity
to the N.MA layer to better support multi-threaded appli-
cations. and may complicate interfaces that allow users to reference counters is required per processor in the system.
modify replication and migration behavior because an ad- Together with increment/decrement logic these maintain the
dress space no longer uniquely specifies a cluster, counts required by algorithms R and M. An exception is

There are two other minor interactions of the NUMA layer caused when the built-in threshold for migration or replica-
with the remainder of the Mach VM system, and one ziajor tion is reached. The operating system then deals with the
interaction. The two minor interactions are: copying and remapping operations required.

" Pageout functionality must be moved into the NUMA The counters are kept with their associated memory page.
layer and redesigned to use multiple pageout daemons For a 64-processor system and 16-bit counters. we thus re-
as discussed in Section 5.1. The resulting daemons quire 256 bytes of memory per page. This translates to 50%,
must cope with system-wide (logical) page shortages overhead for 512-byte pages. 25%. overhead for 1K pages.

as well as page shortages in the individual clusters. 6.25%. for 4K pages and 3.1259t for 8K pages. The overhead

" There must be a physical page available for every free seems quite acceptable for pages in the 4K - 8K range.

logical page. Therefore use of a physical page for repli- For replication. we only need to increment a single counter.
cation may require stealing a logical page from the res- Migration. on the other hand, requires updating two count ers.
ident page subsystem to maintain this invariant. Free. one of which must be chosen from the non-zero counters for
ing of such a replicate should cause the stolen logir, that page (local references only update the latter counter).
page to be returned to the resident page subsystem's , Since the updating of the counters must take place trans-
free list. parengy and at the same speed of a memory reference. a

sequential search for non-zero counters is not acceptable. An
Neither interaction poses great difficulties for an implemen- alternative is to pick a counter and decrement it if it'is non-
tation. zero. This is much simpler to implement and our simulations

The major interaction involves replication and copy-on- indicate that its performance is similar to the original migra-
write. If the system has replicated a shared page that must tion algorithm.
be copied if written, then the replicates can be used to sat- Copy on reference is the major alternative to our repli-
isfy write faults on the page; this avoids the costs of creating cation approach. It should be used where enough locality
an extra copy, but imposes extra costs if the replicate was is known (e.g. from previous experimentation) or expected
used by more than one address space and has to be recreated (e.g. code) to exist to cause replication by algoritl)m R. if
as a result. The easy case is if there is a replicate that is replication is going to occur, it is always more efficient to
only being used by the address space that caused the write do it in response to the first reference. The proposed algo-
fault; this replicate can always be used to satisfy the fault. rithm R, however, has an advantage in cases where read-only
For multiple address spaces, we would propose always using data may not be accessed enough to cause replication: sys-
the replicate unless one of the other spaces has indicated that tems that manage large amounts of data for which locality
the replicate is needed (cf. the always replicate operation in cannot be assumed are an example. The choice of approach
section 10). An additional primitive must be added to Mach's should depend on the situation being faced. copy on reference
machine-dependent interface to implement this functionality; is probably more applicable to the most common situations
the fault handler must be able to find out if the NUMA layer than our delayed replication approach.
has a replicate that can be used to satisfy a write fault.

6 Hardware Support 7 Performance Analysis

Existing multiprocessor hardware will not allow a sufficiently 7.1 Architectural Model and Assump-
accurate implementation of the NI.'MA memory management tions
r-chemes discussed in this paper. Software systems that im-
pose a level of indirection on all acce,..s to memory or The architectural model shown in Fig I was used for the anal-
shared memory can not hope to recover from this perfor- ysis of the algorithms presented in this paper. It consistr of
mance penalty. Thus we propose an architecture with hard- several nodes linked by an interconnection network. Each
ware support for our algorithms. For each page, a set of two node has a network inierfacel.1.). its share of the global

4

nmeenory. a proces..or and a cache. In the case of the NVMA
architecture, the cache is write-througli and is. only used to
cache memory locationm in the local portion of the global 5.,,
miemory. Global cache consi.stency i., thus ax ured. The fol- ",

lowing costs were used for the various operations in our sim-
ulalions: M

Operation Time nlocal reference 0.1 PS [""n

remote reference 4.0 ps

replication of a page 1200 its % "'migration of a page 211(it.,

The access costs are ba.ed on those found in the Butterfly; o- - -o MM
replication and migration cost were estimated by examining is Et
page fault overheads in Mach (e.g. replication is very similar to
to a copy on write fault). These times include the overhead e--_ _ _I_ __ _

of updating page tables: this results in larger migration costs neither sigraten repaten ht
because more page tables must be changed by a migration o,1y ony
than by a replication. Figure 2: Performance Improvements

We also evaluate a system that allows the caches to cache
an memory locations and uses a directory-based scheme to
keep the caches coherent [1]. The hardware requirements of the effect of varying page size against the simulated run time
this scheme are greater. both in terms of memory require- of the trace. This time is shown as a percentage of the time
ments and in terms of complexity of the directory controller. required to execute the trace with replication and migration
We assume the cache scheme has the following costs for com- turned off (i.e. "neither" in Fig. 2).
parison with the NUMA scheme:2 Two effects are important when deciding the most efficient

Operation Time page size. Smaller pages are basically smaller units of repli-
cache hi t 0.) Ps cation/migration and would be expected to efficiently track
cache miss 4.0 ps the sharing needs of a program. At the same time. however,
invalidation 4.0 us the fixed portion of remapping overhead makes larger pages

The algorithms were evaluated using multiprocessor traces more efficient. These two effects result in a U-shaped curve atsof three parallel applications: LocusRoute [13s. MP3D [11 seen in Figure 3. Although the position of the curves for the
ofd th parallel1applicatios LocusRouaten d [. g a [different applications varies vertically, their shape is basically
and P-THOR [17]. LocusRoute is a standard cell global identical. In every case the best page size was 512 bytes. but
router, which exploits parallelism at a fairly coarse graio the effect of using larger pages was not significant.
MP3D is a 3-dimensional particle simulator. It uses dis- 9
tributed loops and is a typical example of parallel scientific
code. P-THOR is a parallel logic simulator.

The traces were gathered on a VAX 8350, using a combined 8..
hardware/software scheme [7]. AU traces were 8-processor 10 .. *o- -. - -- -

runs and contain about half a million references per processor is a a
(4 million references total). 24

A simulator was used to keep track of the location of every
memory page and the values of the various counters. The 1-
initial placement of each page was random. Code pages were Is -
allowed to replicate while data pages could only migrate. eI

I - O---0 MPSo
7.2 Results - -A P-THM

Figure 2 shows the performance increases gained by apply- t
ing replication and migration. We are plotting the overall I I
runtime for four schemes. "Neither" designates a random 1S 5t2 1k 2k Ok
placement of memory pages in the nodes with neither repli- p11e UM (yt.)
cation nor migration allowed. The other points show the Figure 3: Effect of page size
effect of allowing only migration. only replication and then
both. Each curve shows the results for one of the three ap- Tuning the thresholds in these algorithms to match ex-
plications. When both replication and migration are allowed, pected access patterns may improve average case performance
the overall runtime decreases by a factor of 5 to 10. without sacrificing constant factor bounds on the worst case

We ale-o explored variations of three parameters: page size, performance. Tuning increases the constant factors in the
replication threshold and migration threshold. The results bounds (i.e. the resulting algorithms are no longer competi-
from varying the page size are shown in Figure 3. We plot tive). but the increases may be offset by the improved average

case behavior. For example changing the replication thresh-2 N.te that the ctt given for invalidation is a per remote i",el. old in algorithm R from r to 0.5r or 2r increases the constant
idefow cost. Thti. if a write reference results in invalidations in factor in the performance bound from 2! to 3. Our results
tIfuee remote caches, the total cost is assumed to bie 12 Ms. show that threshold tuning has. very little effect on overall

performance. In each case lowering the tlhreshold increaue.. which a static access pattern dintrihuted over the ring can
performance h% a very small amount. Most of the pages are cause a page to cycle iround tie ring interminably (using up
replicated or migrated juit once. so the sooner the movement ring bandwidth) when it should stay put. It i. powtible that
takes place. tle lower the overall co-t. more sophisticated algorithms that keep additional itfornia-

In the results presented above, each page was allowed to tion about the pattern and history of acces-es can avoid these

migrate any number of times. We also explored a variation problems. hut this extra state and the cost of updating it may

where only a single migration per page was allowed - this ba- affect the overall utility of such algorithms.
sically allowed the program to achieve a good initial page as-
signment. The performance of this variation was just as good
as when multiple migrations were allowed, indicating tiat a 9 Replication of W ritable Pages
good initial assignment is the most critical factor. This may
he due in part to the length of the traces. Longer traces may So far we have not allowed the replication of writable page,.
show a larger benefit for dynamic migration, as the program For portions of shared memory that are rarely written (called
moves from one -working set" to another. mostly-read ob)ects in [20]). the amortized costs of tie atomic

Tables I and 2 compare the performance of the NUMA updates required by the writes may not be prohibitive. Such

memory management scheme to that of a directory-based a scheme can be implemented by using hardware mechanisms

cache scheme. Due to limitations of space, only results for to cause a trap if a write occurs to any of the replicates. The

LocusRoute are shown. but the relative performance was sim- handler for this trap can then perform the atomic update by
ilar for the other two applications. The data shows that the disabling all access to all copies until the write has been prop-
cache scheme does about twice as well as the NUMA scheme. agated to all of them. Relaxed consistency constraints are

While cost for local references are comparable. the extra cost preferable if the data has to be updated frequently. On the

of remote references in the NUMA scheme is not offset by the other hand. if the memory is never written after some point.

extra cost of misses and invalidations in the cache scheme. then replication is a very good idea. Researchers working on
the ACE project at IBM Hawthorne have found this to be
the case for a parallel shortest path program: the data struc-

Table 1: NUMA scheme performance tures describing the graph to be searched are never written

NUMA after the initialization phase. but are read heavily during the

Count Operation Cost (t search. Replicating these structures into local memories on

36 replication 43.200 their machine produced major improvements in the run time

86 migration 180.600 of the application [3].

227.304 remote ref 909.216 Algorithm R may not be appropriate for managing repli-
4.114.180 local ref 411.418 cated writable shared memory because it ignores the costs of

Total 1.544.434 updating other replicates in response to a write. The General.
Snoop y-Caching algorithm in (8] is a better choice if these

*costs are important because it takes them into account: this
algoriAm is competitive with a competitive factor of 3. If

Table 2: Cache scheme performance update costs depend on the number of replicates (e.g. if indi-

CACHE vidual messages are required to update each replicate), then
Count Operation Cost (ps) the algorithm must be modified accordingly in order to re-
31.435 read miss 125.740 main competitive.
8.547 write miss 34,188
5.192 invalidation 20,768

4.301.493 hit 430.149 10 Input and Feedback
Total 610.845

If additional information is available about the acc4 ss pat-
terns for a page, the algorithms M and R can be further
improved upon. We propose four primitives to help specify

8 Extensions to Other Architec- this additional memory usage information. The actual infor-
mation may be provided by the user directly or it may come

tures as feedback from a profiler. The primitives are:

Competitive replication and migration algorithms have been Never replicate: On average, this page is used so infre-

found for certain extensions to our basic architectural model. quently in this cluster that it should never be repli-

A companion paper [2] presents competitive algorithms for cated, even if it accumulates r accesses.

replication and migration in arbitrary trees and architectures Always replicate: On average, this page will be used
based on trees including hypercubes and meshes. The related enough in this cluster to justify replication as early as
topologies of rings and torii handle replication easily, but pose possible. Alternatively, this page is read-only due to
problems for migration. the use of copy-on-write techniques and is going to be

Migration on rings and torii (products of rings) is problem- written (which will require a copy to be made).

tic. Bidirectional rings exhibit the phenomenon of pinning Never migrate: On average, this page is used so infre-

[15] in which accesses in both directions from the far side of quently that it should not be migrated to this cluster
the ring can pin a page in place and prevent it from migrating even if it accumulates enough accesses to justify migra-

closer to the accesses. Unidirectional rings or unidirectional tion.
routing structures imposed on bidirectional ring% avoid this Anchor: This page will be so heavily used in this cluster that
problem. but inlmead exhibit the phenomenon of cycling in it should he anchored here and not allowed to migrate

6

until further notice. Ai option to reverse thi. (ffect io6 erence behavior. A rate study of the Mach VM .ystem in-
alo needed. dicates that incorporation of these algorithm. into an oper-

ating -ystem kernel should not poe any great difficultie.
Lazy evaluation can he us&ed to (IdsY the efft'ct% of AlwAys In contra.. hardware support it required to obtain the full

replicate until the memory in question is actually acce.,ed. functionality of our approach on most multiproces.ors. We
Thi.- is done by unmapping the page in hardware and per- have also sketched extensions of our approach to additional
forming the operation in response to the page fault generated hardware architectures (e.g. hypercubes) and software pro-
by the first access. This permits greater flexibility in the use gramming models (e.g. weak consi.tency).
of this primitive. as no additional cost is imposed for pages We used trace driven simulations to evaluate our approach
that are not used: similar functionality i,. provided by copy an c e to oher alterativs peup of 5ptoa1h
on reference. and compare it to other alternatives. Speedup, of 5 to 10

over random assignment of pages are achieved on production
These primitives can also he used to provide feedback from applications without modifying the applications for NUMA

the management algorithm.s and other instrumentation over architectures. These results indicate that significant instruc-
multiple runs of an application to improve its performance tion and data locality may be present in many shared mem-
by adapting its memory usage to the memory structure of ory multiprocessor applications, and that this locality an
the machine. This feedback may reduce the effort required to be exploited automatically. We also compare our proposed
restructure data to take advantage of non-uniform memory hardware support with the more aggressive approach of fully-
architectures. consistent caches. An additional factor of 2 in performance

can be obtained from the cache approach, but at the cost of
much more hardware.

11 Related Work
Competitive management of distributed shared memory is a Acknowledgements
topic at the juncture of several active areas of research. Li [9].
Cheriton [4]. and others have implemented distributed shared Most of the theoretical results in this paper represent joint
memory using messages on a network. The hardware for these work with Daniel Sleator; complete proofs and details can be
implementations does not support remote accesses or accet.s found in [2]. We would also like to thank Richard Rashid
forwarding: this removes the choice of the amount of data to and Roberto Bisiani for encouragement and support. Anoop
send in response to a request that is critical to our work. Most Gupta and Wolf-Dietrich Weber are supported by DARPA
research projects in the area of NUMA architectures have im- contract N00014-8T-K-0828. Anoop Gupta is al&o supported
plemented a shared memory programming model: the best by a faculty award from Digital Equipment Corporation.
known is BBN's Uniform System [19]. and it typifies them
in that it directly exports the non-uniform memory structure
to users. Our work supports automatic management me*- References
anisms that free users from some of the details involved in R
managing non-uniform memory, and should make these ma- [
chines easier to program. Scheurich and Dubois [15] have [A] Agarwal, R. Simon|. J. Hennessy. and M. Horowitz.
independently discovered an extension of our migration algo- An Evaluation of Directory Schemes for Cache Coher-
rithm to mesh-connected machines and hypercubes. but not ecune, 198o m
its competitive properties. They also note the pinning prob- Architecture, 1988.
lem for bidirectional rings, but not the cycling problem for [2] D. Black and D. Sleator. Algorithms for the 1-Server
unidirectional rings. Rudolph and Segall [14] are investigat- problem with Excursions. Technical report, Computer
ing a bus-based hardware consistency mechanism for pages. Science Dept., Carnegie Mellon University, Pittsburgh,
Their work differs from ours in that it depends on a hard- PA, 1988. to appear.
ware consistency mechanism to permit replication of writable [3] W. Bolosky. Personal Communication, Septemler 1988.
pages without weakening consistency. Finally our work makes
contributions to the area of competitive algorithms; the mi- [4] D. Cheriton. Unified Management of Memory and File
gration algorithms are competitive solutions to several cases Caching Using the V Virtual Memory System. Techni-
of the *one server with excursions' problem [10]. While we cal Report STAN-CS-88-1192, Computer Science Dept.,
would like to solve this problem in full generality (i.e. for any Stanford University, Stanford, CA, 1988.
topology), we are of the opinion that any such solution must [5] W. Crowther, J. Goodhue. E. Starr. R. Thomas, W. hlil-
maintain too much state to be applicable to real systems. Fi- liken, and T. Blackadar. Performance Mmeasurements
naly the techniques of competitive algorithm analysis may be on a 128-node Butterfly Parallel Processor. In Intl. Conf.
applicable to other resource management problems that oc- on Parallel Processing, pages 531-540. 1985.
cur in distributed systems and multiprocesors, such as load [6) A. Ezzat. Load Balancing in NEST: a Network of Work-
balancing [6). stations. In Fall Joit Computer Conference (FJCC),

November 1986.

12 Conclusion [7] S. Goldschmidt. Simulating Multiprocessor Memory
Traces. EE390 Report, Stanford University. Dec. 1987.

This paper ha.s presented and analyzed algorithm- for man- [8) A. Karlin M. .Manai.-se, L. Rudolph. and D* Sleator.
aging memory in NUMA multiprocessors and related sys- Competitive Snoopy Caching. Technical Report CMU-
tems. Competitive algorithm analysis guarantees small con- CS-86-164. Computer Science Dept.. Carnegie Mellon
stant factor bounds on performance with respect to optimal University. Pittsburgh. PA. 19S6. Preliminary version
aigorithms that require information on future memory ref- appeared in 27th FOCS, 1986.

191 K Li and P. Hudak. Memory (oherence in Shared Vir-
tual Memory Systenm.. In ;Ih .5 ,,nl. on Prnciples of
Dttribued C.'omputing. pages 129-21t. 196.

[10] M. Manaise. L. McGeoch. and D. Sleator. Competitive
Algorithms for Server Problems. In 20h Symp. on Tile.
ory of Computing pages 322-333. 19*8.

[11] J. McDonald. A Direct Particle Simulation Method for
Hypersonic Rarified Flow on a Shared Memory Multi-
processor. CS411 - Final Project Report, Stanford Uni-
versity, Mar. 1988.

1121 R. Rashid. A. Tevanian Jr., M. Young. D. Golub,
R. Baron. D. Black. J. Chew. and W. Boloskv. Machine-
Independent Virtual Memory Management for Paged
U miprocessor and Multiprocessor Archtectures. IEEE
Trans. Comput., 37(8):896-908. August 1988.

113] J. Rose. LocusRoute: A Parallel Global Router for Stan-
dard Cells. In Design Automation Conference, pages
189-195. June 1988.

[14) L. Rudolph and Z. Segall. Dynamic Paging Schemes for
MIMD Parallel Processors. Research notes on work in
progress.

115] C. Scheurich and M. Dubois. Dynamic Page Migration
in Multiprocessors with Distributed Global Memory. In
Int. Cont. on Distributed Computer Systems, pages 162-
169. 1988.

[16] D. Sleator and R. Tarjan. Amortized Efficiency of List
Update and Paging Rules. Commun. ACM, 28(2):202-
208, February 1985.

117] L. Soule and T. Blank. Parallel Logic Simulation on
General Purpose Machines. In Design Automation Con-
ference. pages 166-171. June 1988.

1183 A. Tevanian Jr. Architecture.Independent Virtual Mem-
ory Management for Parallel and Distributed Environ.
ments: The Much Approach. PhD thesis, Carnegie Mel-
lon University, Pittsburgh. PA, December 1987.

[19] R. Thomas and W. Crowther. The Uniform System:
An approach to runtime support for large scale shared
memory multiprocessors. In Proc. of 1988 Int. Coni. on
Parallel Processing, Vol 11, pages 245-254, 1988.

[20] W.-D. Weber and A. Gupta. Analysis of Cache Invalida-
tion Patterns in Multiprocessors. In Third International
Conference on Architectural Support for Programming
Languages and Operatisn Systems (ASPLOS III), Apr.
1989.

[21] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger. J. Chew, W. Bolosky, D. Black, and R. Baron.
The Duality of Memory and Communication in the Im-
plementation of a Multiprocessor Operating System. In
lth Syip. on Operating Systems Principles, pages 63-
76. 1987.

Analysis of Cache Invalidation Patterns in Multiprocessors

Wolf-Dietrich Weber and Anoop Gupta

(Draft: Sep 20. 1988)
Com'puter Systems Laboratory
Stanford University, CA 94305

Abstract

To make shared-menory multiprocessors scalable. researchers are now exploring cache
coherence protocols that do not rely on broadcast. but instead send invalidation messages to
individual caches that contain stale data. The feasibility of such directory-based protocols
is highly sensitive to the cache invalidation patterns that parallel programs exhibit. In this
paper. we analyze the cache invalidation patterns caused by several parallel applications and
investigate the effect of these patterns on a directory-based protocol. Our results are based
on multiprocessor traces with 4, 8 and 16 processors. To get insight into what the invalidation
patterns would look like beyond 16 processors. we propose a classification scheme for data
objects found in parallel applications and link the invalidation traffic patterns observed in
the traces back to these high-level objects. Our results show that synchronization objects
have very different invalidation patterns from those of other data objects. A write reference
to a synchronization object usually causes invalidations in many more caches. We point out
situations whe:e restructuring the application seems appropriate to reduce the invalidation
traffic. and others where hardware support is more appropriate. Our results also show that it
should be possible to scale "well-written- parallel programs to a large number of processors
without an explosion in invalidation traffic.

1 Introduction r

One of the most critical issues in the design of shared-memory multiprocessors is the cache co-
herence strategy. Most multiprocessors rely on a shared bus and use a broadcast-based protocol
to keep the caches coherent [8.16.18,15.23]. However, such multiprocessors are not very scalable,
as the shared-bus soon becomes a bottleneck. As an alternative, researchers have started explor-
ing cache coherence protocols that do not rely on broadcast, the most common example being
directory-based protocols [2.4]. These protocols rely on the system having knowledge about
which caches contain a particular piece of data. On a write, invalidation messages are sent only
to these specific caches. The number of pointers in each directory entry determines how many
other caches can be kept track of. Determining the performance of directory-based protocols
requires the answer to several questions. We would like to know the distribution of the number
of remote caches that need to be invalidated on shared writes. We would like to know how these
distributions scale as the number of processors is increased. Ve are interested in knowing what
types of data objects in the applications result in what kind of invalidation patterns. This paper
attempts to answer some of these questions for directory-based' protocols.

We analyze the patterns of invalidation traffic produced by a set of five application programs.
Three of the five applications selected are -real- parallel programs. in the sense that they solve
real-world problems and that a lot of effort has gone into obtaining good processor efficiency
with them. The remaining two applications are smaller. but they. are still interesting in tlat
they could form the kernels of larger applications. Our study is based on memory reference
traces obtained for the applications when simulating 4. S. and 16 processors.' The traces were

'Previous studies [1.:] presented results using traces with only 4 proce-ors. This study uses a more extensive

set of applications, a larger number of proces.ors. and goes more deeply into the causes of invalidation patterns.

To appear in Third International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, April 1989.

1

generated using coftware-traps on a 4-processor VAX-8350 and a VAX-3200 running MACI!.
In addition to presenting the invalidation patterns as observed directly from the traces. the
paper links the invalidation patterns to the high-level program data structures (objects) that
cause them. A classification of such ;shared objects on the basis of their expected invalidation
behavior is given. Linking the invalidation patterns to the high-level objects helps us predict
how the invalidation traffic would change as the number of processors is increased. It is far more
accurate to extrapolate the behavior of each class of data object than to simply extrapolate the
composite behavior. For the application types we have considered. our results indicate that it is
quite possible to write parallel programs that do not create an enormous amount of invalidation
traffic. Thus directory-based schemes with just a few pointers per entry could efficiently execute
well-designed parallel programs.

The next section explains the methodology used in generating the traces and explains how
the traces were analyzed. Section 3 introduces the five applications used in this study and gives
a brief overview of their computational behavior. In Section 4 we present some basic trace
characteristics. In the next section we present the proposed classification of shared data objects
in parallel programs. Section 6 goes into a detailed analysis of the invalidation behavior of each
application and relates these patterns to specific data objects in the applications. Section 7
assembles the results from the various applications and presents conclusions.

2 Methodology and Assumptions

The traces were collected using a combined hardware/software method [7]. The process creation
is modified to have one master process, whic controls the actual tracing. and a number of slave
processes. one for each -virtual processor. Once the desired start position for tracing is reached.
each of the slaves stops itself and is then single-stepped b5 the master. The stepping takes place
in a round-robin fashion. The stepping employs the UNIX pfrace system call which uses the
T-bit on the VAX. While stepping, the master process records data in the trace file. For each
reference, the type (I-fetch, read. or write), the address, and the CPU number are recorded.
Trace lengths used were 20Mbytes for 4-processor traces, 30Mbytes for 8-processor traces, and
50Mbytes for 16-processor traces. This corresponds to about 2.5, 4 and 7 million references
respectively, or around 0.5 million references per processor.

The traces were gathered on a VAX-8350 with 4 processors and a VAX-3200 workstation,
both running the MACH operating system. MACH allows allocation of shared memory for
the processors. On the 8350 it takes about 24 hours to obtain 20Mbytes of trace, while the
VAX-3200 can gather about 50Mbytes in the same time.

Once the traces were gathered. they were used as input to a program that simulates multipro-
cessor cache behavior and gathers statistics. Infinite caches were used for simplicity of the cache
simulator. The cache coherence protocol used was an invalidation scheme similar to the Berke-
ley Ownership scheme [16]. For each potential invalidation, a record was written containing the
CPU number. the data address. the most recent instruction address and the number of other
caches actually invalidated. The data and instruction addresses were later used to associate
the invalidation with the high-level language construct that caused it. Several post-processing
programs were used to gather statistics from the invalidation traces.

The main advantage of the software scheme of gathering traces is that we can get traces
for an arbitrary number of processors. which is not possible with hardware schemes like ATUM
[20]. However. there are some disadvantages too. For example. the ptract call does not trace
operating system calls, but rather treats them as a single reference. This is not a major problem

2

in this study. since there are uot many operating syslem calls in the sections traced. Also.
each instruction take, one time unit to complete. regardless of the complexity of the instruction.
This is clearly an oversinplification, but there is no reason to believe that it significantly distorts
results.

3 Application Programs

In this section we describe the data structures and computational behavior of the applications.
This is important background for Section 6, where we relate invalidation traffic to high-level
objects. The applications used for tracing were selected to represent a variety of algorithms
used in an engineering computing environment. All of the applications were written in C. The
Argonne National Laboratory macro package [11.12] was used to provide synchronization and
sharing primitives. The synchronization primitives used include spin locks, as well as barriers
and distributed loops.

3.1 Maxflow

Maxflow 13] finds the maximum flow in a directed graph. This is a common problem in operations
research and many other fields. The program is a parallel implementation of an algorithm
proposed by Goldberg and Tarjan. The bulk of execution time is spent picking off nodes from
a task queue, adjusting the flow along its incoming and outgoing edges, and then placing its
successor nodes onto a task queue. Maxflow exploits parallelism at a fine grain.

Ma.xflow does not assign the nodes of thegraph to processors statically. Instead, task queues
are used to distribute the load. Each processor has its own local task queue and need only" go
to the single global task queue when the local queue isImpty. Tasks are put onto the global
queue only when processes are waiting there. and onto the local queue otherwise. Note that the
task queues are made up of the nodes themselves, linked together with appropriate pointers.
Locks are used to serialize access to each node element, but contention for these is fairly low. as
there are many more nodes than processors. In Section 6 we will see that most invalidations are
related to the global task queue and the migration of node data from one processor to another.

The traces were collected while solving Ma.,diow for a set of nodes arranged as a 10-ary
2-cube. Tracing was started as the program entered the main loop after completing the initial
distance labeling. The implementation provides speedups of about 8 with 12 processors.

3.2 SA-TSP

SA-TSP [21] solves the traveling salesperson problem using simulated annealing [10]. A linear
array contains the cities in tour order. At each step. a processor selects a pair of cities to swap.
The swap is performed if it results in a shorter tour or if the increase in tour distance is within
the margin prescribed by the cooling function. The tour is locked only during the actual swap.
which means that errors occur when the tour has been modified between making the decision
and actually performing the swap. This trades off quality of solution for greater speedup. Note
that there is only one global lock for all the tour data. This becomes a major bottleneck as the
number of processors increases. In the initial annealing phase - which is the section we traced
- most moves are accepted and contention for the lock is especially large. While the program
achieves an overall speedup of 7 with 8 processors. no more than 4 processors can be kept buqy
during this initial portion.

3

3.3 MP3D

MP3D [13.14] is a 3-dimens.ional particle simulator for tariffed flow. It is used to study" the slock
waves created as an object flies at high speed through the upper atmosphere. MP3D is a good
example of scientific code that is vectorizable and can be parallelized using distributed loops. A
version of MP3D that runs on the Cray-2 is being used extensively at NASA for research.

The overall computation of MP3D consists of evaluating the ,ositions and velocities of
molecules over a sequence of time steps. During each time step. the molecules are picked up one
at a time and moved as governed by their velocity vectors. Collisions with the boundaries anid
with each other are resolved. The simulator is well suited to parallelization because each molecule
can be treated independently at each time step. The work is spread over the processors with
the help of a distributed loop. consisting of a lock and a global index variable. Each processor
obtains the lock, reads the index, increments it, and releases the lock. In this manner the
processes pick up the index of the next particle to be moved. The traces cover most of one time
step. i.e. each particle is moved once. No locking is employed in the various arrays that keep
track of the particles and space, because collisions are impossible in the particle arrays and very
rare in the space arrays. Thus. the distributed loop is the only synchronization seen in this
trace.

3.4 Distributed CSIM

Distributed CSIM [221 is a parallel logic simulator developed at Stanford University. It is an
interesting application based on the Chandy-Misra simulation algorithm [5]. which is specially
designed for highly parallel machines - unike evept.based algorithms, this algorithm does not
rely on a single global time during simulation.

The primary data structures associated with the simulator are the logic elements (e.g.. A.D-
gates. flip-flops), the nets (the wires linking the elements) and the task queues which contain
activated elements. Each processor has as many task queues as there are other processors.
This ensures that there is no contention when adding elements to some other processor's queue.
Each processor executes the following loop. It removes an activated element from one of its
task queues and determines the changes on the element's outputs. It then looks up the net
data structure to determine which elements are affected by the output change and potentially i
schedules those activated elements onto other processors' task queues. Newly activated elements
are assigned to other processors in a round-robin fashion.

3.5 LocusRoute

LocusRoute [17] is a global router for VLSI standard cells. It is a real application in that it
is a part of a system that has been used to design real integrated circuits, and it has been
highly tuned to run well on a shared-memory multiprocessor. LocusRoute represents the class
of parallel programs that exploit fairly coarse grain parallelism.

The LocusRoute program exploits parallelism by routing multiple wires in a circuit concur-
rently. Each processor executes the following loop: (i) remove a wire to route from the task
queue: (ii) explore alternative routes: and (iii) pick the best route for the wire and place it there.
The central data structure used in LocusRoute is a grid of cells called the cost arrmyri. Each
row of the cost array corresponds to a routing channel for standard cells. LocusRoute uses the
cost array to record the presence of a wire at each point, and the congestion of a route is used

4

as a cost function for guiding the placement of new wires. No locking is needed in the cost
array. which is accesspd and updated simultaneously by several processors. because the effect of
occasional collisions is tolerable. Each routing task is fairly large graii, which prevents the task
queue from becoming a bottleneck.

4 Trace Characteristics

Table 1 gives an overview of the traces of the five applications. For each application, we give
the trace length in number of references and the breakdown in terms of I-fetches. reads and
writes. We also show the proportion of shared writes, and the average number of invalidations
caused by each shared write. In addition to absolute numbers. the columns also list the number
of references in each category as a fraction of all references in the trace.

Table 1: General Trace Characteristics.

num ofp refs I fetcles reads w ites shared rit es avg. invals

_ _Application CPUs mi mill e mill w is thous per sh-wrt

4 2.62 1.21 46 1.06 40 0.3.5 13 73.6 2.81 0.30
Maxflow 8 4.1.5 1.91 46 1.69 41 0.55 13 121.6 2.93 0.49

16 8.36 3.86 46 3.46 41 1.04 12 274.8 3.29 1.07
4 2.65 1.10 42 1.12 42 0.43 16 19.5 0.74 1.27

SA-TSP 8 4.16 1.84 44 1.88 45 0.44 11 37.3 0.90 2.29
16 7.11 3.30 46 A37 47 0.43 6 77.0 1.0 2.93

4 2.53 1.57 62 0.80 2 0.; 7 83.7 3.31 0.6S
MP3D 8 3.59 2.22 62 1.13 31 0.23 6 119.9 3.34 0.80

16 7.0.5 4.28 61 2.33 33 0.43 6 230.3 3.27 1.03
4 2.61 1.28 49 1.01 39 0.32 12 8.5 0.33 0.44

Dist CSIM 8 4.13 2.04 49 1.61 39 0.48 12 19.9 0.48 0.46
16 7.09 3.52 50 2.80 39 0.77 11 42.5 0.60 0.51

4 2.60 1.31 50 0.95 37 0.33 13 5.6 0.22 0.56
LocusRoute 8 4.34 2.26 52 1.59 37 0.49 11 4.8 0.11 1.07

16 7.70 3.95 51 2.83 37 0.92 12 9.2 0.12 1.28

In all of the programs. with the exception of MP3D. about 45-.509, of the references are
1-fetches. MP3D has a larger proportion of I-fetches because there are a lot of array references
which require several instructions to compute the effective address of the reference.

The proportion of read references varies from about 3 0W in MP3D to over 4.57(in SA-TSP.
In SA-TSP there are a lot of simple integer reads when determining the effect of a swap on tour
distance. The read fraction is low in MP3D because of the larger proportion of I-fetches.

Writes hover around 10-1. ,7 of all references. MP3D again stands out with a very low
write fraction. again dne to frequent array references. The number of writes in SA-TSP stays
virtually constant even though the number of references increases greatly as we move from 4 to
16 processors. This is explained by the fact that writes are only used when a swap is accepted.
Contention for the lock in the portion of SA-TSP traced is so large that no more swaps are
accepted in the 16-processor trace than in the 4-processor trace. This portion of SA-TSP was

chosen to demonstrate the effects that a poorly written program segment may have oii directory-
based coherence schemes. Details are presented in Section 6.2.

In our study, we define .hared Iorntiom. to be those that are referenced by more than one
process in the trace. and we define s h'tjrd urift.- to be write references to shared locations. Noie
that some locations that really are shared in the application are considered not-shared in our
study. because within the limited length of the trace multiple processes do not reference those
locations.

The second to last column in Table 1 presents the proportion of shared writes in the appli-
cations - it is important to study shared writes because they can cause invalidations in some
or all of the caches. There is a general trend towards an increasing percentage of shared writes
as the number of processors increases. One reason for this is larger contention over locks. The
locks are implemented as test-testkset sequences and thus cause additional shared writes when
several processors are contending for a lock that was just freed. Also. as more processors are
added. the chances of a data item being accessed by more than one process increases.2 resulting
in a larger fraction Of shared writes.

An important metric of invalidation traffic is the average number of invalidations per shared
write. The values are shown in the last column of Table 1. This parameter is the largest for
SA-TSP. mostly due to invalidation traffic caused by the single global spin-lock. In fact. the
average number of invalidations increases steeply with more processors due to the increased
contention for this global lock. The number of invalidations per shared write is the smallest
for distributed CSIM. and hardly goes up as the number of processors is increased. This is
mainly because there are no synchronization objects in the portion of distributed CSIM traced.
Averages. however, do not carry all of the JPeresting information. Consequently. the detailed
invalidation distributions and their analysis are presented in Section 6.

5 Classification of Data Objects

When trying to extrapolate invalidation behavior to a larger number of processors. it is important
to explain the invalidation patterns in terms of the underlying high-level structures which cause
the invalidations. We distinguish several types of shared objects on the basis of their significance
in parallel programs and their expected invalidation behavior [1]:

1. Code and read-only data objects.

2. Migratory objects.

3. Synchronization objects.

4. Mostly-read objects.

5. Frequently read/written objects.

(ode and read-only data objects obviously do not cause invalidations at all. and thus pose
no problem to any coherence scheme. A fixed database such as the matrix that contains the
distances between cities in SA-TSP is a good example of such read-only data.

2 This i. partly because we get a longer trace for a run with more proce ors. and partly because with a larger
number of proce-.or . there is a higher probability that subtasks Aharing data get scheduled on different processors
ralher than on the same processor.

6

Migratory data objects are those that are manipulated by onl. a single processor at a time.
Shared objects protected by locks often exhibit this property. While such an object is beinig
manipulated by one processor. the objects data resides in the associated cache. When the object
is later manipulated by some other processor. the cache entry of the previous processor needs
to be invalidated.3 Migratory data usually causes a high proportion of .ingle invalidations. The
nodes in Maxflow are a good example of migratory data. Each node is evaluated by several
processors over the complete run. but there is only one processor manipulating each node at ally
one time.

Synchronization objects such as locks can cause a very large number of invalidations if used
improperly. When locks are implemented as test-test-&set. and there are processors waiting on
a lock. invalidations are caused each time the lock changes hands. As a lock is freed. all waiting
processors fall through the test part of the test-test, set. They then attempt the test&set. but
only one of them succeeds. causing invalidations in all other waiting processors' caches. It is
important to use locks in a manner that minimizes contention for them.

An example of mostly-read data is the cost-array of LocusRoute. Most of the time it is just
read. but every now and then. when the best route for a wire is decided, the array is written.
It is a candidate for large number of invalidations because many reads by different processors
occur before each write. Thus the data is cached by many processors. and a write causes many
invalidations. However, since only the writes cause invalidations and writes are infrequent, the
overall number of invalidations will be quite small.

Finally. there is frequently read/written data." An example is the variable that counts how
many processors are waiting on the global task queue in Maxflow. Frequently read/written
data has the worst invalidation behavior. U'nlke mostly-read objects. this data is written quite
frequently. Although each write may only caTse 3 ot 4 invalidations, this may exceed the number
of pointers per entry in a directory scheme. thus causingkequent broadcasts. This type of data
object should be avoided if at all possible.

6 Application Case Studies

In this section we present the results of the detailed analysis of the invalidation traces produced
when running the cache simulator over the multiprocessor traces. For each application, we show ;
the overall invalidation patterns, the high-level objects causing the invalidations, the expected
broadcast behavior of directory-based cache coherency schemes [4.2], and the scalability of the
application beyond 16 processors.

The overall invalidation behavior is presented in terms of an invalidation distribution graph
as shown in Figure 1. The graph shows the fraction of shared writes that caused no invali-
dations, single invalidations and so on. Ideally these graphs will contain a large proportion of
small invalidations, as these can be handled efficiently by directory-based cache schemes. By
comparing the invalidation distributions for 4, - and 16 processor traces, we can begin to get a
feeling for how the invalidations scale with a larger number of processors. We would prefer to
see no change in the distribution as the number of processors is increased, but it is more likely
that a shift towards both more and larger invalidations occurs.

For each application, we also present another kind of graph that shows the fraction of broad-
casts required as a function of the number of pointers per entry in the directory (see Figure

'Cheriton dis-cw-se a programming model ba."ed on .uch ohjec.ti. called -worL form5' in 1O].
SFrequently read/writitn saouild be interpreled as both freqtienth read tond frequettlv written.

6). A directory-based scheme such as Dir,B needs to use broadcast when a shared write is 1o
a location that is contained in more caches than there are director'v pointers for that entr'y.
The data is plotted for directories with pointers varying from 1 to n. where n is the number of
processors in the trace. We do nor show directory schemes with 0 pointers as these require a
broadcast for every shared write. Obviously, a directory with n pointers can keep track of all
processors and broadcast is never required.

6.1 Maxflow

Figures 1. 2 and 3 show the invalidation distributions for Maxfiow with 4. 8 and 16 processors
respectively. Note that the distribution shifts to larger number of invalidations as the number
of processors is increased. While at 4 processors only about 2%, of shared writes cause more
than one invalidation, this figure moves up to 18% with 16 processors. Analysis shows that the
bulk of this increase is due to synchronization traffic involving the global task queue. Figures
4 and 5 show the invalidation distributions broken down by global queue traffic and all other
invalidation traffic respectively. The global queue traffic includes all writes to the queue locks
as well as the count of the number of processors blocked and the queue head pointer. It is clear
that most of the spreading of the invalidation distribution is due to global-queue-related traffic.

A large fraction of the invalidations in Figures 1, 2 and 3 are single invalidations. They are
caused by the manipulation of nodes and edges. which are good examples of migratory data
objects. One processor picks up an active node and pushes flow through it. Later the node will
get re-activated, and some other processor will pick it up and start processing it.

Some parameters of the nodes. such as/0s distance label, behave like mostly-read objects.
Distance labels only get changed in the infrequenf re-labeling steps. Between re-labeling, many
processors may read a node's distance label causing rt-abeling to generate a large number of
invalidations. In the 16-processor trace, an average of 4.6 invalidations occur for each re-labeling
write. Although 4.6 invalidations per shared write is large, the effect of these writes on the total
number of invalidations is small since the writes are very infrequent.

The locks for the global task queue cause a large number of invalidations. Not only are they
accessed and written frequently, but they also cause an average of about 2 invalidations per
shared write in the 16-processor trace. The global queue is the major source of double or larger
invalidations and should be a primary target for efforts aimed at improving the program.

The per-node locks, on the other hand, work well. They are an example of a synchroniza-
tion object that causes few invalidations. There are so many more nodes than processors that
contention is very limited.

The count of how many processors are waiting for the global task queue is checked frequently
by all processors. It is also written frequently. namely whenever a process starts waiting on the
global task queue. It is thus often read and written and causes many invalidations. It has an
average of 2.8 invalidations per shared write and the highest number of shared writes to an%
single data object except for the global task queue locks.

A pattern of double invalidations found in Maxflow is very common when dealing with queues
and is seen in several other applications. In .Maxflow. one processor puts a node onto the global
task queue. a second one picks it off. and a third one may later place the node on another
queue. At first. the object is owned by one processor. When the node is picked up by the second
processor. it becomes read-shared. Fiiially. the third processor writes the object. causing double
invalidations in the link pointers. Many variations of this basic theme exist. Another example
was founid in POPS [9]. a parallel rule-based expert system. where a single buffer is u~ed for a

Avg invals per shared write: 0.30 S "S Avg invals per shared write: 1.92I esNumber of shared writes: 73611 se Number of shared writes: 77959
Shared writes are 2.81% of all rofs Shared writes are 0.93% of ail refs

n.I
- - I__

I.s C A$ 4 1 1.0 0 .S 0 3 0 1 0)01 0 0 0 0 0

o 1 a 3 0 * 1 2 4 a 7 8 0 to1 S 12134 1 is

Inblkindone InvoIdtons

Maxflow4 a J.M

Figure 1: Maxflow 4 Figure 4: Maxflow 16 (Queue)

t Avg invals per shared write: 0.49 3 1 Avg invals per shared write: 0.69
Number of shared writes: 121626 s Number of shared writes: 191102
Shared writes are 2.93% of all rets Shared writes are 229"/ of all refs

To p

2O/SO a.

: 1.0 0.4 0.2 0.1 0.1 .m1.07.5040.20I L00. .

0 1 2 1 4 5 7 s 6 eo 11 12 1 14 is
bmAndatie Inalationo

Maxftoow Maflet 16da

Figure 2: Maxflow 8 Figure 5: Ma.xflow 16 (Data)

38 Avg invals per shared write: 1.07 Number of writes: 1035310
Number of shared writes: 274775 Number of shared writes: 274775
Shared writes are 3.29% of all rets Shared writes are 329/ of all rofs

0J - U.

40 " so4"

"m-m~3 - ,,.
08 .. 03 .0~ sO 10 oaoo0 l 107 ,aIaIO -j

0 1 2 3 4 6 7 11 t 11 12 141 Ift 4 6 8 8 I 1 s e a a v 1213 4 51s

Invodledtlona Directory Pointers par Entry

MaxailosW Maxtflow 165.di

Figure 3: .Iaxflow 16 Figure 6: .Maxflowv 16 Direclory Performance

task queue. An item is written into the buffer by one processor and read by ajiother. Later. a
third processor overwrites that item with some new data. thus invalidating the caches of boil,
previous, processors.

Figure 6 shows the proportion of shared writes that need to be broadcast for directory-based
schemes witl a varying number of pointers per entry. Although a scheme with two pointers per
entry (Dir 2B in 121) only needs to broadcast 1.8% of shared writes with 4 processors. this figure
jumps up to l5.9 for 16 processors. The invalidation distribution keeps spreading out as the
number of processors is increased, mostly due to the invalidations associated with the global
queue.

Let us now use the object classification to see how the invalidation distributions will change
as the number of processors is scaled. Ve expect little change in the invalidations produced by
migratory objects which will continue to produce single invalidations. Mostly-read objects will
have a slightly higher average number of invalidations per shared write because more processors
are likely to have cached the data. Note though, that the average number of invalidations per
write (4.6 for 16 processors) may already be beyond the number of pointers stored in the direc-
tory. so no additional broadcasts will result. Synchronization objects and frequently read/written
objects. on the other hand. are expected to have a higher average number of invalidations per
shared write. In addition. we expect to see more shared writes due to synchronization. Since
both synchronization objects with high contention and frequently read/written objects exist in
Max-flow. we will see a continued spread of the invalidation distribution towards larger inva]-
idations per shared write. If the program is to be scaled successfully, we will have to reduce
synchronization contention and eliminate frequently read/written objects.

6.2 SA-TSP f R

Figures 7. 8 and 9 show the invalidation distributions for SA-TSP with 4, 8 and 16 processors.
Most noticeable is the hump in the invalidation distribution for 16 processors at around 12
to 13 invalidations. This hump is less obvious with 8 processors and does not appear with 4
processors. All of the invalidations that make up this hump in the 16-processor distribution are
due to the single global lock. In fact as many as 94% of all invalidations are due to that lock. a

Figures 10 and 11 show the invalidation distribution for the 16-processor trace. broken down
into lock traffic and all other data traffic. These graphs show clearly that nearly all of the largi
invalidations are due to the single lock. This is a good example of how a poorly-used lock can
flood a machine with invalidations. In the initial annealing phase (the portion that was traced),
most moves get accepted. Thus all of the processors want to update the global tour. which
requires the lock. This results in very high contention for the lock. We found that with 12 to 13
processors waiting for the lock to be released, this phase of the program could use no more than
about 4 processors. As the cooling function progresses, fewer and fewer moves are accepted.
contention for the lock subsides and the program achieves good speedup.

The invalidations due to the shared data range between 0 and about 8. All of these are
from the array that holds the order of the cities in the tour. The large average of shared-write
invalidations is due to the mostly-read uature of this data. A processor needs to look at two
cities and their four iieighbors to determile whether a swap is to occur, and only if the swap
meets certain annealing criteria does it actually take place. This means that for each proposed
swap. at least four cities are only read. not written. Each successful swap thus invalidates a large
TIumber of caches. The frequency of invalidations is due to the fact that there are relativel. few
data objects (36 in this case. as the program was solving a tour with 36 cities). especially when

10

J Avg invals per shared write: 1.27 1Avg invals per shared write: 2.94Number of shared writes: 19515 3 s- Number of hared writes: 71739
Shared writes are 0.74% of all refs Shared writes are 1.01% of all refs

'K

3/2 1. 1 000.6 . 4 0.3 0.0.7 ILI .4.

3 6 2 3 4 5 9 ?7 0 10 11 I 13 14 15Invadaveono lnvllla

SA.hP4 &,a.Tsp16b_
Figure 7: SA-TSP 4 Figure 10: SA-TSP 16 (Lock)

Avg invas per shared write: 2.29 ' Avg invals per shared write: 2.72Iso• Number of shared writes: 372841 * Number of shared writes: 5267Shared writes are 0.90% of all rofs Shared writes are 0.07% of all refs

,4.54

U
Us U

4040 38.s

30~ - 2 4.

4. C 12.9 14.7I0 *.I Ul ____ 5~ 0- .OOPM meo 0: . e o~
.3 o-s a.& 2 o 2 o.3 0.8

S 1 2 3 4 a 6 7 • 1 s 4 5 7 G 10 11 12 13 14 16Invlldatione J Jdons

Figure 8: SA-TSP 8 Figure 11: SA-TSP 16 (Data)

i100 f - Avg invals per shared write: 2.93 i . Numberowrite: 434239Number of shared writes: 77006 1 Number of shared writes: 77006
Shared writes are 1.08% of all rots Shared writes are 1.08% of all refs

o -
440 O I 1h0 t11 0.2 O 0 0 0.7 ..

6 0 13 4 G 6 7 6 1 10 11 12 13 14 11 1 I 3 4 6 7 1 9 l0 11 2 !13 14 1 1
hvllditeOne Dlrlcory PoInto per En t y

SA.TIP16 SA-TSP_ 1I dime

Fi-ure 9: SA-TSP 16 Figure 12: SA-TSP 16 Direclory Performatice

11

compared to Locuslioule or MP3D. where there are thousands of objects. Hence the chances of
some other processor caching an object before it is wrilten are much larger.

Figure 12 shows that even directory schemes with large number of pointers per entry perform
poorly in the face of SA-TSP's invalilation traffic. After an initial lowering in the number of
broadcasts with increasing number of directory pointer., the graph basically flattens out until
we reach the hump. In the 16-processor case, a 10-pointer scheme would perform essentially as
poorly as a .5-pointer scheme.

Further scaling of the number of processors would result in even larger contention for the
global lock. This would move the invalidation hump to a larger number of invalidations per
shared write. Essentially no additional useful work would he accomplished. A distributed locking
scheme could reduce contention for the elements of the global tour. Even if the synchronization
traffic is eliminated. however. we will still have a fair amount of shared data invalidation traffic.
This is due to the fact that there are only a small number of data objects that are continuously
read and written by several processors.

6.3 MP3D

Figures 13. 14 and 1.5 show the invalidation distributions for MP3D with 4. 8 and 16 processors
respectively. The distributions are dominated by zero and single invalidations. As we increase
the number of processors. some invalidations of 2 or more start to appear. This effect is most
noticeable with 16 processors. Further analysis shows that the bulk of the double or larger
invalidations are due to the monitor lock of the distributed loop. Figures 16 and 17 give the
invalidation distribution for the 16-processor ace, broken down into monitor lock traffic and
all other traffic. Here we note that shared Wata contribqjes very little to the invalidations of
2 or more. There are 0.02% that we do not see in the Sp~ph. and which are due to occasional
collisions in the various data arrays. Unlike SA-TSP, where there are very few data elements.
the number of data elements is very large in MP3D and so we do not see any large invalidations.
The monitor lock traffic distribution, however, is seen to have significant portions beyond single
invalidations. The ratio of time spent doing useful work to time spent in the monitor was
found to have an average value of about 16. If there are fewer than about 16 processors, they
manage to stagger themselves in the first round of contention. Contention in subsequent rounds
is very limited because staggering has occurred. This means that with any more than about 16
processors. we will see a step-increase in invalidations for each processor added. In this manner.
a well-behaved program can suddenly produce a very large number of invalidations as it is being
scaled.

It is interesting to note that a much faster implementation of the distributed index is possible
with some hardware support. This would shift the ratio of unlocked to locked time to a much
higher value and would enable time program to be scaled beyond 16 processors. A similar result
could be achieved by increasing the grain size - for example by letting each processor move .5
molecules instead of one at a time.

The monitor lock illustrates another phenomenon. When contention for a critical section is
low. the lock references cause few invalidations. As more processors are added. the critical section
becomes a bottleneck and contention for the lock increases. This in turn raises the number of
invalidations caused by lock references. By fixing the program to remove the bottleneck we can
also fix the problem of generatinmg a large number of invalidations. In conclusion. synchronization
objects themselves are not a problem unless contention for them is high. Since distributed loops
and barriers are usually built out of spini locks, this conclusion applies to these synchronization

12

' -Avg invals per shared write: 0.68 3 Avg invals per shared write: 1.37
N Number of shared writes: 83722 s Number of shared writes: 66848

Shared writes are 3.30% of all refs * Shared writes are 0.95% of all refs

67.3 B 5 6.

USU

Ii 4

U -$ U .

24.1

1O4
a 3 0 1 3 4 5 6 7 0 9 10 11 12 13 1s

Inva1dadien invaidatens

MP3O_4 MUP016eyn

Figure 13: MP3D 4 Figure 16: MP3D 16 (Synchronization)

Avg invals per shared write: 0.80 10 Avg invals per shared write: 0.89
g - Number of shared writes: 119853 n Number of shared writes: 163477

o a Shared writes are 3.34% of all reos Shared writes are 2.32% of all refs

o

7o so

0 1 I 2 4 5 7 S S 1011 12 13 IS-If
nvlkMdaeone Invalkione

MPIDS MPSJS._data

Figure 14: MP3D 8 Figure 17: MP3D 16 (Data)

IO- Avg invals per shared write: 1.03 -IONumber of writes: 433169
w- Number of shared writes: 230325 s Number of shared writes: 230325

eu0 Shared writes are 3.27% of all refs j Shared writes are 327% of all refs

te0 *10 '7.0 1

0 1 * 3 • 0 6 7 8 0 10 11 12 2 6 14 I 1 2 3 4 1 6 1 8 8 10 11 12 13 U 1s ts
kivalldatons Dfrodlory PoIntwa pw EnVy

MP3J.1 MPWIdlmc

Figure 15: MP3D 16 Figure US: MP3D 16 Directory" Performance

13

objects as well.

.Moq accesses to shared data by MP3D consist of a read followed immediately by a write.
This will allow at most one other cache to be invalidated. unless two processors are accessiug
the exaci sante portiou of data at 't1e same time. Chances of such a collision are very low and
their effect can be tolerated in MP3D. hence no locks are required for the shared data. Updal e-
type data objecis such as the shared data of MP3D. can be considered to be a special case of
migratory objects. and their invalidation behavior is very similar. The only difference is that
each data object is kept for only a short period of time before it moves on to the next processor.

As Figure 18 indicates. directories with just two or three pointers per entry would do ex-
tremely well with MP3D. For 3-pointer directory schemes we reduce broadcasts to 2.1c7 of
shared writes, even in the 16-processor case. A re-coding of the distributed loop as suggested
above could hold the broadcast percentage to below 1%. even if the number of processors is
scaled to well above 16. For MP3D a broadcast fraction of 1%, of shared writes corresponds to
0.33 broadcasts per thousand references. which is low enough to be supportable in fairly large
machines.

6.4 Distributed CSIM

Figures 19. 20 and 21 give the invalidation distributions of Distributed CSIM. We note that the
number of shared writes is a much smaller fraction of all references than in the previous three
applications. Furthermore. very few shared writes cause more than 2 invalidations. Note that
this trace covers a section of code that does not have any synchronization at all. and this is why
we do not show a further breakdown of the 1)-processor distribution. The distributions we see
are for shared data only. Most shared writes cause 6nly zeTo or single invalidations.

The basic data objects of Distributed CSIM are the element and net structures. Some parts
of these structures behave like mostly-read data (e.g., the activation flags) and some parts like
migratory data (e.g., next input event pointers). The invalidation patterns vary accordingly.

The activation flag of an element is set as a processor changes one of the element's input
values. Many processors can check this flag to see an element is activated. Later. the element
is evaluated and the activation flags are reset. i ile the setting of the activation flag causes
only one invalidation, the rmsetting can cause many because many processors may have read thlI
flag in the meantime. The resetting of the activation flags causes about 60% of the shared writes

that result in more than single invalidations.

The next input event pointers, on the other hand, are used when an element is being eval-
uated. aid are thus only read and written by one processor while it is updating the element. u
Hence we see mostly single invalidations - the pattern typical for migratory data.

Another factor that affects the number of invaidations is the connectivity of the circuit being
evaluated. Nets that are connected to many elements. clock lines for example. are more likely
to cause large invalidations when they are updated.

Figure 22 shows that Distributed CSIM is well suited for directory-based cache schemes.
A single-pointer directory captures 17% of broadcasts and a secotid poinler diminishes this
fraction to 3.2'7. Further reduction of broadcasts could only he achieved if the program exploited
processor locality in some way.

A scaling in the number of proCessors would result in a larger invalidation average per shared
write. but not in more shared writes, since no synchronization objects are present ini this portion
of Distribuied CSIM.

14

Avg invals per shared write: 0.44
Number of shared writes: 8532Shared writes are 0.33% of all rots

70 -

40.3

Figure 19: Distributed CSIM 4

0Avg irvals per shared write: 0.40
Number of shared writes: 19853
Shared writes are 0.48/ of all rets

70 - .

30:7.4

3.

0 I 3 2 4 I 6 7
Invldalene

macs"Us

Figure.20: Distributed CSIM 8

Avg invals per shared write: 0.51Number of shared writes: 42475 N Number of shared writes: 42475
Shared writes are 0.60% of all refs Shared writes are 0.60% of all res

30

01 2 3 IN 9 10 11 t 12 12 14 II

Da4s"1CSJU 16 diree
Figue 21 DitribiedCSIN 16Figure 22: Distributed CS1M 16 Directory Per-

forinaiice

150

6.5 LocusRoute

Figures 23. 24 aind 25 show the invalidation distributions for LocusRoule. It is noted that there
are very few shared writes per reference. This shows how a well-designed parallel program cant
avoid excessive interprocess communication. Most of the invalidations are due to data objects.
The only synchronization object that shows up is a lock used to control the access to the shared
memory allocation routine (SliMalloc).

The single largest source of invalidations is the global cost array. It is a good example of
mostly-read data. It is frequently read while testing different routes for a wire. but is written
only when the wire route is decided. The average number of invalidations per shared write of
the cost array is about 2 with 16 processors. but some writes can cause up to 6 invalidations.
depending on how many processors have cached a given portion of the cost array (see Figure
27). Note that there are only 7400 shared writes to the cost array in the 7.7 million reference
16-processor trace.

Invalidations due to the ShMalloc lock are very infrequent in this portion of the program
as the program keeps its own free lists and will have allocated most of its shared memory
requirement by the time the trace was gathered. As contention for the lock is non-existant. all
shared writes to the lock cause only zero or single invalidations (see Figure 26).

LocusRoute would be expected to scale well beyond 16 processors. The shared data is mostly-
read and shared writes are very infrequent. As more processors are added. the average number
of invalidations per shared write will increase slightly (because more processors are likely to have
cached a given portion of the cost array), but the number of shared writes is not expected to
increase.

/.

7 Generalizations and Conclusions

We have proposed several classes of data objects that can be distinguished by their use in parallel
programs and by their invalidation traffic patterns. By merging the invalidation behavior found
in the applications discussed in the previous section. we can gain more general insights into the
invalidation patterns of certain high-level constructs. We also have the opportunity to predict .
behavior beyond the 16 processor limit of the case studies.

Little needs to be said about code and read-only data. Since they are never written, they
never cause invalidations. Some directory schemes do not allow a memory location to be present

in more caches than there are entries (for example DirNB schemes in [2)). This kind of scheme
is not suitable for shared code and read-only data.

Migratory data objects move from processor to processor as execution progresses. but they
are never manipulated by more than one processor at any one time. The node structures of
Maxflow and the global arrays of MP3D are good examples of this data type. Migration of the
data object causes at most single invalidations, because each processor writes to the object before
relinquishing control of it. Single invalidations are expected. even as the number of processors
is scaled. We note that a large number of these invalidations could be avoided if the processors
were smart enough to flush the data items out of their cache when they are no longer needed.
Hardware and operating system support for this feature seems desirable.

Synchroeaization primitives were found in all applications. In well-designed applications such
as Distributed CSIM and LocusRoute. contention for the critical sections protected by the locks
was minimized and this effectively reduced the invalidation traffic caused by the locks. It is seen

16

I ' "Avg invals per shared write: 021'Ue Avg invals per shared write: 0.56 Number of shared writes: 1355f mNumber of shared writes: 5832 Shared writes are 0.02% of all rots

IShare writes are 022% of all refs

4.2 40.1

I. .U

1 2 3 4 C 6 7 S 10 11 12 13 14 1,
O I I nvWld&UonabIvwilat~ofi

L.mRouftja.1jock
LouRb_4 Figure 26: LocusRoute 16 (ShMafloc lock)Figure 23: LocusRoute 4

I'Avg invals per shared write: 1.46
Avg invals per shared write: 1.07 Number of shared writes: 7833

U Number of shared writes: 4873 Shared writes are 0.10% of all rots
eUl Shared writes are 0.11% of all refs

41.7.- WIN
0 1 2 3 4 a 6 7 I.,hWds0 0 2.5 2.

*. -./ : "" '' 0,4 00O I 3 8 4 5 6 7 0 S 1S 11 12 13 14 IS
1 I :1 4 h ~ d~is nidtoInvolklotlono

LoowoRoulom 0 LowoRouteIkj_dd

Figure 24: LocusRoute 8 Figure 27: LocusRoute 16 (Data)

Number d writes: 916933
Avg invals per shared write: 1.28 Number of shared writes: 9188
Number of shared writes: 9188 Shared writes are 0.12% of all refs

so: Shared writes are 0.12% of all refs

1RP,!030
HLI; as s

V4 ,, Go ''*
I•O' oop g p

V
p p DpOp DOo 1 3 4 5 6 7 & S 10 11 12 13 14 15 16

e 1 3 3 2 4 5 6 • 6 10 11 12 13 14 15 OrctoryPoIntee .pwE'y

InvAlldalono
LocusRoute 16_dirs

Figure 2.5: LocusRoute 16 Figure 2': LocusRoute 16 Directory Perfor-
IM a 1l ce

17

then. that proper program design will allow the use of locks without a large volume of invalidatioli
traffic. As more processors are used. alt ever increasing amount of effort will have to go into the
programi design to avoid contention over locks. Alternatively,. a separate mechaitisin for dealing
with synchronizaiion traffic may be provided.

NMostly-read data such as the global cost array in LocusRoule has potential for causing a
large number of invalidations, since each write is preceded by a number of reads from various
processors. The average number of invalidations caused by each write is thus high. Tile good
news is that writes to this kind of data tend to be relatively infrequent and hence the total
invalidation traffic is not very large. With more processors. we expect an increase in the average
number of invalidalions per shared write. because it is likely that more processors will have
touched the data object before a write to it takes place. Some of this effect may be mitigated
by taking advantage of locality. i.e.. assigning work in a local area of the problem to a relatively
small section of the processors available. We are currently exploring such issues of locality, which
we think will be critical in the design of highly scalable machines.

Frequently read/written data presents the largest problem in terms of invalidations. Not
only does each write cause several invalidations, but writes are also frequent. A good example of
this type of data is the variable in Ma,ow that keeps track of how many processors are waiting,
on the global queue. Frequently read/written data will show increased invalidations as more
processors are used. because more reads and more writes to the data item will take place. This
type of data object should be avoided for parallel applications with large number of processors.

In summary. in this paper we have presented data about the invalidation patterns of five
applications using 4. 8 and 16 processor traces. By classifying data objects, we are able to predict
invalidation behavior beyond the number processors currently traced. Such extrapolation
suggests that directory-based cache schemes with just two or three pointers per entry can work
in scalable multiprocessors. if the applications are well-&signed. In particular. effort has to be
put into limiting contention over synchronization objects and eliminating frequently read/written
data objects.

8 Acknowledgments

We would like to thank Roberto Bisiani for letting us use his VAX-83-50 at CMU and Davidj
Black. Robert Baron. and Mary Thompson for helping us with the inner details of the MACH
operating system. We wish to thank Larry Soule, Jeff McDonald. Jonathan Rose. Mike Smith
and Francisco Carrasco for letting us trace their applications, and for patiently explaining the
details of the data structures used by them. We would like to thank Richard Sites of Digital
Equipment Corporation. Hudson MA. for providing the VAX-83.50 used for tracing at Stan-
ford and for supporting Wolf-Dietrich Weber. Anoop Gupta is supported by DARPA contract
N00014-87-K-0828 and by a faculty award from Digital Equipment Corporation.

18

References

[1] Anant Agarwal and Anoop Gupta.
Memory' Reference Characteristics of Multiprocessor Applications under MACH.
In ACiM .JGMIETRJCS. 1988.

[2] Anani Agarwal. Richard Sinioni. John Henness\. and Mark Horowitz.
Ani Evaluation of Director v Schemes for Cache Coherence.
In 1.3th InIc rnui~tiomtil,*Syinzpo-..um oil C'omiputer A rchitetiure. 1988.

[3] Francisco Javier Carrasco.
A Parallel Maxflow Implementation.
M\arch 1988.
CS411 - Final Project Report. Stanford University.

[4] M. Censier and P. Feautier.
A New Solution to Coherence Problems in Multicathe Systems.
IEEE Trunsactions on Computers. C-27(12):1112-1118, December 1978.

151 K. M. Chandy and J. Misra.
Asynchronous Distributed Simulation via a Sequence of Parallel Computations.
In C'ommunicaztions of the ACAM. April 1981.

[6] David Cheriton.
WNorkform Processing: A Model and Language for Parallel Computation.
Stanford University. Computer Science Technical Report, 1986.

[7] Stephen R. Goldschmidt.
Simulating Multiprocessor Memory Tryes.
December 1987.
EE390 Report. Stanford University.

[8] J.R. Goodman.
Using Cache Memory to Reduce Processor-M-emory Traffic.
In Proc. Tenth International Symposium on Computer Architecture, pages 124-131, Junie

1983.

[9) Anoop Gupta. Charles Forgy, and Robert WN7edig.
Parallel Algorithms and Architectures for Rule-Based Sytems.
In Proc. 13th Int. Symp. of Computer Architecture, June 1986.

[10] S. Kirkpatrick, C.D. Gelatt. and M. P. Vecchi.
Optimization by Simulated Annealing.
Science. 220(4.580):6714680. May 1983.

[11] Lusk, Overbeek. et a].
Portable Program,, for Parallel Processors.
Holt. Rinehart. and Winston Inc.. 1987.

112] Lusk. Stevens. and Overbeek.
A4 Tutorial on the Use of 11onitors in C- Writing Portable Code for Multiprocfessors.
Argonne National Laboratory. Argonne. Illiniois 60439. 19%6.

[13] Jeffrey D. M~cDoniald.
A Direct Particle Simulation Method for Hypersonic Rarified Flow on a Shared Memiory

Muii iprocessor.

March 1~S
CS41 1 - riiial Project Report. Stanford University.

19

[14] Jeffrey D. McDonald and Donald Baganoff.
Vectorization of a Particle Simulation Method for Hypersonic Rarified Flow.
In .41.4.4 Th(rmodynannin.s. Pla..n dynarnic, and La.cr.s Confe r neic. June 19.

[15] Louis Monier and Pradeep Sindhu.
The Architecture of the Dragon.
In Proc. Thirtieth IEEE Int. Conferf nre. pages 118-121. IEEE. Februrary 1985.

116] R. Katz. S. Eggers. D. Wood. C. Perkins, and R. Sheldon.
Implementing a Cache Consistency Protocol.
In 12th Int rnational .'ymposium on Computer .4rchitecturt. 198.5.

[17] Jonathan Rose.
LocusRoute: A Parallel Global Router for Standard Cells.
In Df ,ign .4utomation Conferelnce. pages 189-195. June 1988.

[18] Larry Rudolph and Zary Segall.
Dynamic Decentralized Cache Consistency Schemes for MIMD Parallel Processors.
In Proc. 12th Int. Symp. on Computer Architecturm. pages 355-362. ACM SIGARCH. June

19S5.
also SIGARCH Newsletter. Volume 13. Issue 3. 1985.

[19] C. Sechen and A. Sangiovanni-Vincentelli.
The Timberwolf Placement and Routing Package.
IEEE JSSC. SC-20(2):510-522. April 1985.

[20] Richard L. Sites and Anant Agarwal.
Multiprocessor Cache Analysis using A_"M.
In Proc. 15th Annual Inturnational Syrposiumn on Computer Architecture, May 1988.

[21] Michael Smith and Wolf-Dietrich Weber. Of
Parallel Simulated Annealing.
March 1988.
CS411 - Final Project Report, Stanford University.

[22] Larry Soule and Tom Blank.
Parallel Logic Simulation on General Purpose Machines.
In Design Automation Conference, pages 166-171, June 1988.

[23] C. Thacker and L. Stewart.
Firefly: A Multiprocessor Workstation.
In 2nd Int. Conference on Architectural .Support for Programming Languoges and Operating

.5ystems. pages 164-172, ACM. October 1987.

20

11/10/88
SPIM
Santoro and Horowitz

SPIM: A Pipelined 64 X 64 bit Iterative Multiplier

Mark R. Santoro
Mark A. Horowitz

Center for Integrated Systems
Stanford University

Stanford, CA. 94305
(415)725-3707

Abstract

A 64 by 64 bit iterating multiplier, SPIM (Stanford Pipelined Iterative Multiplier)

is presented. The pipelined array consists of a small tree of 4:2 adders. The 4:2

tree is better suited than a Wallace tree for a VLSI implementation because it is

a more regular structure. A 4:2 ca/ry save accumulator at the bottom of the

array is used to iteratively accumulate partial I0oducts, allowing a partial array

to be used, which reduces area. SPIM was fabricated in a 1.61.m CMOS

process. It has a core size of 3.8 X 6.5mm and contains 41 thousand

transistors. The on chip clock generator runs at an internal clock frequency of

85MHz. The latency for a 64 X 64 bit fractional multiply is under 120ns, with a

pipeline rate of one multiply every 47ns.

11/10/88
SPIM
Santoro and Horowitz

SPIM: A Pipelined 64 X 64 bit Iterative Multiplier

Mark R. Santoro
Mark A. Horowitz

Center for Integrated Systems
Stanford University

Stanford, CA. 94305

I. Introduction
The demand for high performance floating point coprocessors has created a

need for high-speed, small-area multipliers. Applications such as DSP,

graphics, and on chip multipliers for processors require fast area efficient

multipliers. Conventional array multipliers achieve high performance but

require large amounts of silicon, while shift and add multipliers require less

hardware but have low performanfe. Tree structures achieve even higher

performance than conventional arrays but require still more area.

The goal of this project was to develop a multiplier architecture which was faster

and more area efficient than a conventional array. As a test vehicle for the new

architecture a structure capable of performing the mantissa portion of a double

extended precision (80 bit) floating point multiply was chosen. The multiplier

core should be small enough such that an entire floating point co-processor,

including a floating point multiplier, divider, ALU, and register file, could be

fabricated on a single chip. A core size of less than 25mm 2 was determined to

be acceptable. This paper presents a 64 by 64 bit pipelined array iteratively

accumulating multiplier, SPIM (Stanford Pipelined Iterative Multiplier), which

I a ., mm ia mm m mr

11/10/88
SPIM
Santoro and Horowitz

can provide over twice the performance of a comparable conventional full array

at 1/4 of the silicon area.

II. Architectural Overview

Conventional array multipliers consist of rows of carry save adders (CSA)

where each row of carry save adders sums up one additional partial product

(see Figure 1).1 Since intermediate partial products are kept in carry save form

there is no carry propagate, so the delay is only dependent upon the depth of

the array and is independent of the partial product width. Although arrays are

fast, they require large amounts of hardware which is used inefficiently. As the

sum is propagated down through the array, each row of carry save adders is

used only once. Most of the hardware is doing no useful work at any given time.

Pipelining can be used to increase rrdware utilization by overlapping several

calculations. Pipelining greatly increases thrgughput, but the added latches

increase both the required hardware, and the latency.

Since full arrays tend to be quite large when multiplying double or extended

precision numbers, chip designers have used partial arrays and iterated using I

the system clock. This structure has the benefit of reducing the hardware by

increasing utilization. At the limit, an iterative structure would have one row of

carry save adders and a latch. Figure 2 shows a minimal iterative structure.

Clearly, this structure requires the least amount of hardware and has the

highest utilization since each CSA is used every cycle. An important

observation is that iterative structures can be made fast if the latch delays are

small, and the clock is matched to the combinational delay of the carry save

1Carry save adders are also often referred to as full adders or 3:2 adders.

2

11/10/88
SPIM
Santoro and Horowitz

adders. If both of these conditions are met the iterative structure approaches

the same throughput and latency as the full array. This structure does, however,

require very fast clocks. For a 21im process clocks may be in the 100MHz

range. A few companies use iterative structures in their new high performance

floating point processors [5].

In an attempt to increase performance of the minimal iterative structure

additional rows of carry save adders could be added, resulting in a bigger array.

For example, addition of a row of CSA cells to the minimal structure would yield

a partial array with two rows of Carry Save Adders. This structure provides two

advantages over the single row of CSA cells: it reduces the required clock

frequency, and requires only half as many latch delays.2 One should note,

however, that although we doubled the number of carry save adders, the

latency was only reduced by halving the rdumbjr of latch delays. The number of

CSA delays remains the same. Increasing the depth of the partial array by

simply adding additional rows of carry save adders in a conventional structure

yields only a slight performance increase. This small reduction in latency is the

result of reducing the number of latches.

To increase the performance of this iterative structure we must make the CSA

cells fast and, more importantly, decrease the number of series adds required to

generate the product. Two well known methods for the latter are Booth

encoding and tree structures [2][9]. Modified Booth encoding, which halves the

number of series adds required, is used on most modern floating point chips,

2 In fact one rarely finds a multiplier array that consists of only a single row of carry save adders. The
latch overhead in this structure Is extremely high.

3

11/10/88
SPIM
Sanloro and Horowitz

including SPIM [7][8]. Tree structures reduce partial products much faster than

conventional methods, requiring only order logN CSA delays to reduce N

partial products (see Figure 3). Though trees are faster than conventional

arrays, like conventional arrays they still require one row of CSA cells for each

partial product to be retired. Unfortunately, tree structures are notoriously hard

to lay out, and require large wiring channels. The additional wiring makes full

trees even larger than full arrays. This has caused designers to look at

permutations of the basic tree structure [1][11]. Unbalanced or modified trees

make a compromise between conventional full arrays and full tree structures.

They reduce the routing required of full trees but still require one row of carry

save adders for each partial product. Ideally one would want the speed benefits

of the tree in a smaller and more regular structure. Since high performance was

a prerequisite for SPIM a tree struct e was used. This left two problems. The

first, was the irregularity of commonly used treestructures. The second problem

was the large size of the trees.

Wallace [9], Dadda [4], and most other multiplier trees use a carry save adder as

the basic building block. The carry save adder takes 3 inputs of the same Y

weight and produces 2 outputs. This 3:2 nature makes it impossible to build a

completely regular tree structure using the CSA as the basic building block. A

binary tree has a symmetric and regular structure. In fact, any basic building

block which reduces products by a factor of two will yield a more regular tree

than a 3:2 tree. Since a more regular tree structure was needed the solution

was to introduce a new building block: the 4:2 adder, which reduces 4 partial

products of the same weight to 2 bits. Figure 4 is a block diagram of the 4:2

adder. The truth table for the 4:2 adder is shown in Table 1. Notice that the 4:2

4

11/10/88
$PIM

Santoro and Horowitz

adder actually has 5 inputs and 3 outputs. It is different from a 5:3 counter

which takes in 5 inputs of tle same weight and produces 3 outputs of different

weights. The sum output of the 4:2 has weight 1 while the Carry and Cout both

have the same weight of 2. In addition, the 4:2 is not a simple counter as the

Cout output must NOT be a function of the Cin input or a ripple carry could

occur. As for the name, 4:2 refers to the number of inputs from one level of a

tree and the number of outputs produced at the next lower level. That is, for

every 4 inputs taken in at one level, two outputs are produced at the next lower

level. This is analogous to the binary tree in which for every 2 inputs 1 output is

produced at the next lower level. The 4:2 adder can be implemented directly

from the truth table, or with two carry save add (CSA) cells as in Figure 5.3

A 4:2 tree will reduce partial producjs at a rate of 1og 2 (N/2) whereas a Wallace

tree requires log1 . 5 (N/2); where N is the pumber of inputs to be reduced.

Though the 4:2 tree might appear faster than the Wallace tree, the basic 4:2 cell

is more complex so the speed is comparable. The 4:2 structure does however

yield a tree which is much more regular. In addition the 4:2 adder has the

advantage that two Carry Save Adders are in each pipe in place of one. This

reduces both the required clock frequency and the latch overhead.

To overcome the size problem SPIM uses a partial 4:2 tree, and then iteratively

accumulates partial products in a carry save accumulator to complete the

computation. The carry save accumulator is simply a 4:2 adder with two of the

3SPIM implemenled the 4:2 adder with two CSA cells because it permits a straight forward
comparison with other architectures on the basis of CSA delays. By knowing the size and speed
of the CSA cells In any technology a designer can predict the size and speed advantages of this
method over that currently used.

5

11/10/88
SPIM
Santoro and Horowitz

inputs used to accumulate the previous outputs. The carry save accumulator is

much faster than a carry propagate accumulator and requires only one

additional pipe stage.

Figure 6 compares a single 4:2 adder with carry save accumulator, to a

conventional partial piped array.4 Both structures reduce 4 partial products per

cycle. Notice, however, that the tree structure is clocked at almost twice the

frequency of the partial piped array. It has only 2 CSA cells per pipe stage,

whereas the partial piped array has 4. Consequently, the partial array would

require 32 CSA delays to reduce 32 partial products where the tree structure

would need only 18 CSA delays. Using the 4:2 adder with carry save

accumulator is almost twice as fast as the partial piped array, while using

roughly the same amount of hardware.I

The 4:2 adder structure can be used to construct larger trees, further increasing

performance. In Figure 7 we use the same 4:2 adder structure to form an 8

input tree. This allows us to reduce 8 partial products per cycle. Notice that we

still pipeline the tree after every 2 carry save adds (each 4:2 adder). In cntrast,

if we clocked the tree every 4 carry save adds it would double the cycle time

and only decrease the required number of cycles by one. The overall effect

would be a much slower ,::ply.

41n figures 6, 7, and 9 the detailed routing has not been shown. Providing the exact detailed
routing, as was done in figure 5, would provide more information; however, It would significantly
complicate the figures and would tend to obscure their purpose, which is to show the data flow in
terms of pipe stages and carry save add delays.

6

11/10/88
SPIM
Santoro and Horowitz

Figure 8 shows the size and speed advantages of different sized 4:2 trees with

carry save accumulators vs. conventional partial arrays. This plot is a

price/performance plot where the price is size and the performance is speed

(latency - 1/speed). The plot assumes we are doing a 64 X 64 bit multiply.

Booth encoding is used, thus we must retire 32 partial products. Size has been

normalized such that 32 rows of CSA cells (a full array) has a size of 1 unit.5 In

the upper left corner is the structure using only 2 rows of CSA cells. In this case

the tree and conventional structures are one and the same and can be seen as

a partial array 2 rows deep, or as a 2 input partial tree. We can see that adding

hardware to form larger partial arrays provides very little performance

improvement. A full array is only 15% faster than the iterative structure using 2

rows of carry save adders. Adding hardware in a tree type structure however,

dramatically improves performanc: For example, using a 4 input tree, which
9.

uses 4 rows of carry save adders, is almostf wice as fast as the 2 input tree.

Using an 8 input tree is almost 3 times as fast as a 2 input tree and only 1/4 the

size of the full array.

The latency of the multiplier is determined by the depth of the partial 4:2 tree

and the fraction of the partial products compressed each cycle. The latency is

equal to Iog2 (K/2) + (N/K) where N is the operand size and K is the partial tree

size. If Booth encoding is used N would be one half the operand size since

Booth encoding has already provided a factor of 2 compression. Startup times

and pipe stages before the tree must also be taken into account when

determining latency. We choose the 8 input piped tree with Booth encoding for

5Latency is in terms of CSA delays. We have assumed a latch is equivalent to 1/3 of a CSA delay
In an attempt to take the latch delays into account. Size is the number of CSA cells used. It does
not include the latch or wiring area.

7

11/10/88
SPIM
Santoro and Horowitz

SPIM, as we felt this provided best area speed tradeoff for our purpose. The

number of cycles required to reduce 64 bits using Booth encoding and an 8 bit

tree is:

1og 2 (8/2) + (32/8) + one cycle overhead - 7 cycles's

III. SPIM Implementation

Figure 9 is a block diagram of the SPIM data path. The Booth encoders, which

encode 16 bits per cycle, are to the left of the data path. The Booth encoded

bits drive the Booth select muxes in the A and B block. The A and B block Booth

select mux outputs drive an 8 input tree structure constructed of 4:2 adders

which are found in the A, B, and C blocks. Each pipe stage uses one 4:2 adder

which consists of two carry save adders. The D block is a carry save

accumulator. It also contains a 16 bit had wired right shift to align the partial

sum from the previous cycle to the current partial sum to be accumulated.

Figure 10 is a die photograph of SPIM. The A block inputs are pre-shifted

allowing the A block to be placed on top of B block. Using 4:2 adders in a

partial tree allows the array to be efficiently routed, and laid out as a bit slice,

thus making the SPIM array a very regular structure. Interestingly, the CSA

cells occupy only 27% of the core area. The Booth select muxes used in the A

and B blocks make these blocks three times as large as the C block. Each

Booth mux with it's corresponding latch Is larger than a single carry save adder.

Also, due to the routing required for the 16 bit shift, the D block is twice as large

as the C block. The array area can be split into four main components; routing,

*The one cycle overhead is used for the Booth select muxes.

8

11/10/88
SPIM
Santoro and Horowitz

CSA cells, muxes, and latches. The routing required 20% of the area, while the

other 75% was equally split between the CSA cells, muxes, and latches.

The critical path in the SPIM data path is through the D block. The D block

contains the slowest path because of the added routing at the output, and the

additional control mux at its input. The input mux is needed to reset the carry

save accumulator. It selects "0" to reset, or the previous shifted output when

accumulating. The final critical path through the D block includes 2 CSA cells, a

master slave latch, a control mux, and the drive across 16 bits (128pm) of

routing.

IV. Clocking
The architecture of SPIM yields a very, fast multiply; however, the speed at

which the structure runs demands careful attention to clocking issues. Only two

carry save adders (one 4:2 adder) are found in each pipe stage, yielding clock

rates on the order of 100MHz. The typical system clock is not fast enough to be

useful for this type of structure. To produce a clock of the desired frequency

SPIM uses a controllable on chip clock generator. The clock is generated by a

stoppable ring oscillator. The clock is started when a multiply is initiated, and

stopped when the array portion of the multiply has been completed. The use of

a stoppable clock provides two benefits. It prevents synchronization errors from

occurring and it saves power as the entire array is powered down upon

completing a multiply. The actual clock generator used on SPIM is shown in

Figure 11. It has a digitally selectable feedback path which provides a

programmable delay element for test purposes. This allows the clock frequency

9

11/10/88
SPIM
Santoro and Horowitz

to be tuned to the critical path delay. In addition, the clock generator has the

ability to use an external test clock in place of the fast internally generated clock.

When a multiply signal has been received a small delay occurs while starting

up the clocks. This delay comes from two sources. The first is the logic which

decodes the run signal and starts up the ring oscillator. The second source of

delay is from the long control and clock lines running across the array. They

have large capacitive loads and require large buffer chains to drive them. The

simulated delay of the buffer chain and associated logic is 6ns, almost half a

clock cycle. Since the inputs are latched before the multiply is started, SPIM

does the first Booth encode before the array clocks become active (cycle 0).

Thus, the startup time is not wasted. After the clocks have been started SPIM

requires seven clock cycles (cycles 1-7) to complete the array portion of a

multiply. I

The detailed timing is shown in Table 2. In the time before the clocks are

started (cycle 0) the first 16 bits are Booth encoded. During cycle 1, the first 16

Booth-coded partial products from cycle 0 are latched at the input of the array.

The next four cycles are needed to enter all 32 Booth-coded partial products

into the array. Two additional cycles are needed to get the output through the C

and D blocks. If a subsequent multiply were to follow it would have been started

on cycle 4, giving a pipelined rate of 4 cycles per multiply. When the array

portion of the multiply is complete the carry save result is latched, and the run

signal is turned off. Since the final partial sum from the D block is latched into

the carry propagate adder only every fourth cycle, several cycles are available

to stop the clock without corrupting the result.

10

11/10/88
SPIM
Santoro and Horowitz

The clock generator is located in the lower left hand side of the die (see Figure

10). The clock signal runs up a set of matched buffers, along the side of the

array, which are carefully tuned to minimize skew across the array. Wider than

minimum metal lines are used on the master clock line to reduce the resistance

of the clock line relative to the resistance of the driver. The clock and control

lines driven from the matched buffers then run across the entire width of the

array in metal.

V. Test Results
To accurately measure the internal clock frequency the clock was made

available at an output allowing an oscilloscope to be attached. SPIM was then

placed in continuous (loop) mode where the cjck is kept running and multiplies

are piped through at a rate of one multiply every 4 cycles. Since the clock is

continuously running its frequency can be accurately determined.

Three components determine the actual performance of SPIM. The startup l

time, when the clocks are started and the first Booth encode takes place (cycle

0), the array time, which includes the time through the partial array plus the

accumulation cycles (cycles 1-7), and tha carry propagate addition time, when

the final carry propagate addition converts the carry save form of the result from

the accumulator to a simple binary representation. Due to limitations in our

testing equipment only the array time could be accurately measured. Since the

array time requires 7 cycles, and the array clock frequency was 85MHz the

array time is simply 7 * (1/85MHz) = 82.4ns. The startup and cpadd times,

11

11/10/88
SPIM
Santoro and Horowitz

based upon simulations, were 6ns and 30ns respectively. In flowthrough mode

the total latency is simply the sum of the startup time (6ns), the array time

(82.4ns), and the cpadd time (30ns), for a total of 118.4ns. Thus SPIM has a

total latency under 120ns. SPIM has a throughput of one multiply every 4

cycles or 4 * (1/85MHz) a 47ns, for a maximum pipelined rate in excess of 20

million 80 bit floating point multiplies per second.

The performance range of the parts tested was from 85.4MHz to 88.6MHz at a

room temperature of 24.5 °C and a supply voltage of 4.9 volts. One of the parts

was tested over a temperature range of 5 to 100 °C. At 5 °C it ran at 93.3MHz

with speeds of 88.6MHz and 74.5MHz at 25 and 100 °C. The average power

consumed at 85MHz was 72mA while an average of only lOmA was consumed

in standby mode. f

VI. Future Improvements

The Booth select muxes with their corresponding latches account for 38% of the

array area. This was larger than expected. Though Booth encoding reduces I

the number of partial products by a factor of two, the same result could be

achieved by adding one more level of 4:2 adders to the tree. Since much of the

routing already exists for the Booth muxes, adding another level to the tree

requires replacing each two Booth select muxes with a 4:2 adder and 4 AND

gates (see Figure 12). Since the CSA cells are slightly larger than the Booth

select muxes the array size will grow slightly, (by about 7%). However, if we

take the whole picture into account, the core would remain about the same size,

as we would no longer need the Booth encoders. Replacing the Booth

12

11/10/88
SPIM
Santoro and Horowitz

encoders and Booth select muxes with an additional level to the tree would also

reduce the latency by one cycle from 7 cycles to 6. This occurs because the

cycle required to Booth encode is now no longer needed. There are other

advantages in addition to the increase in speed. Perhaps the greatest gain is

the reduction in complexity. Both the Booth encoders and Booth select muxes

are now unnecessary, thus the number of cells has been reduced. In addition,

Booth encoding generates negative partial products. An increase in complexity

resuls in the need to handle the negative partial products correctly. Replacing

the Booth encoders with an additional level of 4:2 adders would remove the

negative partial products. Our observation is that an increase in speed and

reduction in complexity can be obtained with little or no increase in area.7

SPIM uses full static master slave latches for testing purposes. These latchesX

are quite large, accounting for 27% of thi arra. size. In addition they are slow,

requiring 25% of the cycle time. Since the SPIM architecture has been proven,

these latches are not required on future versions. One obvious choice is simply

to replace the full static master slave version with dynamic latches. Another

option is to split the master slave latches into two separate half latches and

incorporate them into the CSA cells. This would reduce area and increase

speed. A still more efficient structure, is the use of single phase dynamic

latches. The balanced pipe nature of the multiplier makes the use of single

phase latches possible. Since only half as many latches are required in the

7 Replacing the Booth encoders and select muxes with an additional level of 4:2 compressors is a
viable alternative on more conventional, i.e. non-piped and non iterative, trees as well. The non-
pipelined speed gain depends upon the relative speed of the Booth encode plus Booth select
mux vs. the delay through one 4:2 compressor and a NAND gate.

13

11/10/88
SPIM
Santoro and Horowitz

pipe, single phase dynamic latches would reduce the cycle time and decrease

latch area.

Research on piped 4:2 trees and accumulators has continued. A test circuit

consisting of a new clock generator and an improved 4:2 adder has been

fabricated in a 0.81gm CMOS technology. Preliminary test results have

demonstrated performance in the range of 400MHz.

VII. Conclusion

SPIM was fabricated in a 1.6lam CMOS process through the DARPA MOSIS

fabrication service. It ran at an internal cjpck speed of 85MHz at room

temperature. The latency for a 64 X 64 bit fractional multiply is under 120ns. In

piped mode SPIM can initiate a multiply every 4 cycles (47ns), for a throughput

in excess of 20 million multiplies per second. SPIM required an average of

72mA at 85MHz, and only 1OmA in standby mode. SPIM contains 41 thousand 1

transistors with a core size of 3.8 X 6.5mm, and an array size of 2.9 X 5.3mm.

The 4:2 adder yields a tree structure which is as efficient and far more regular

than a Wallace type tree and is therefore better suited for a VLSI

implementation. By using a partial 4:2 tree with a carry save accumulator a

multiplier can be built which is both faster and smaller than a comparable

conventional array. Future designs implemented in a 0.81.m CMOS technology

should be capable of clock speeds approaching 400MHz.

14

11/10/88
SPIM
Santoro and Horowitz

Acknowledgements

The development of SPIM was partially supported by the Defense Advanced

Project Research Agency (DARPA) under contracts MDA903-83-C-0335 and

N00014-87-K-0828. Fabrication support through MOSIS is also gratefully

acknowledged.

1

15

11/10/88
SPIM
Santoro and Horowitz

References

[1] S. F. Anderson, J. G. Earle, et al., "The IBM system/360 Model 91:
Floating-Point Execution Unit", IBM Journal, VOL. 11, NO. 1, pp. 34-53,
January 1967.

[2] A. D. Booth, "A Signed Binary Multiplication Technique, Ot. J. Mech.
Appl. Math., Vol. 4, Part 2, 1951.

[3] J. F. Cavanagh, "Digital Computer Arithmetic Design and
Implementation", McGraw-Hill, 1984.

[4] L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza,
Vol. 34, No. 5, pp. 349-356, March 1965.

[5] B. Elkind, J. Lessert, J. Peterson, and G. Taylor, "A Sub 10 ns Bipolar
64 Bit Integer/Floating Point Processor Implemented on Two Circuits",
IEEE Bipolar Circuits and Technology Meeting, pp. 101-104,
September 1987.

[6] K. Hwang, "Computer Arithmetic: Principles, Architecture, and Design",
New York, John Wiley & Sons, 1979.

[7] P. Y. Lu, et al., "A 30-MFL P 32b CMOS Floating-Point Processor",
IEEE Solid-State Circuits Conference"$roceedings Vol. XXXI, pp. 28-
29, February 1988.

[8] W. McAllister and D. Zuras, "An nMOS 64b Floating Point Chip Set",
IEEE Int. Solid-State Circuits conf., pp. 34-35, February 1986.

[9] C. S. Wallace, "A Suggestion for Fast Multipliers", IEEE Trans.
Electronic Computers, Vol. EC-13, pp. 14-17, February 1964.

[10] S. Waser, and M. J. Flynn, "Introduction to Arithmetic for Digital Systems
Designers", New York, CBS Publishing, 1982.

[11] D. Zuras, and W. McAllister, "Balanced Delay Trees and Combinatorial
Division in VLSI", IEEE Journal of Solid-State Circuits, VOL. sc-21, no.
5, October 1986.

16

11/10/88
SPIM
Santoro and Horowitz

Captions for Tables
Table 1: Truth table for the 4:2 adder.

where:
n is number of inputs (from In1, In2, In3, In4) which = 1
Cin is the input carry from the Cout of the adjacent bit slice
Cout and Carry both have weight 2
Sum has weight 1

NOTES:

Either Cout or Carry may be 1 a for 2 or 3 inputs equal to 1 but NOT

both.

Cout may NOT be a function of the Cin from the adjacent block or a

ripple carry may occur.

Table 2: SPIM pipe timing. Numbers indicate which partial products are being
reduced. 0 is the least significant bit.

n Cn Cout Carry Sum

0 0 0 0 0
1 0 0 0 1
2 0 * 0
3 0 * 1
4 0 1 1 0
0 1 0 0 1
1 1 0 1 0
2 1 * 1
31 1 0
4 1 1 1 1

Table 1
Santoro and Horowitz

ActCon cle 0 1 2 3 4 5 6 7

startup

Booth Encode 0-15 16-31 32-47 48-63

A and B block
Booth Muxs 0-15 16-31 32-47 4843

A Block 0-7 16-23 32-39 48-55
CSAs

B Block 8-15 24-31 40-47 56-63
CSA's

C Block 0-15 16-31 32-47 48-63

clear
D Block 0-15 16-31 32-47 48-63

4

Table 2
Santoro and Horowitz

11/10/88
SPIM
Santoro and Horowitz

Figure Captions

Figure 1. Conventional Array Multiplier. Shaded areas represent intermediate
partial product flowing down array.

Figure 2. Minimal Iterative Structure using a single row of carry save adders.
Black bars represent latches.
Figure 3. A conventional structure (a) has depth proportional to N, while a tree
structure (b) has depth proportional to logN.

Figure 4. Block diagram of a 4:2 adder.

Figure 5. A 4:2 adder implemented with two carry save adders.

Figure 6. With the same 4 CSA cells a 4 input partial tree structure with a carry
save accumulator (a) will attain almost twice the throughput of a partial piped
array (b). In (a) the carry save accumulator is placed under the 4:2 adder.

Figure 7. An 8 input tree constructed trom 4:2 adders can reduce 8 partial
products per cycle.

Figure 8. Architectural comparison of piped partial tree structure with carry save
accumulator vs. conventional partialprray.

Figure 9. The SPIM Data Path.

Figure 10. Microphotograph of SPIM.

Figure 11. SPIM clock generator circuit.

Figure 12. Booth encoding vs. additional tree level. The Booth encoders and
Booth select muxes (a) can be replaced with an additional level of 4:2 adders
and AND gates (b).

CSA SA CA CI

GSA CSA GSA CSA

GSA CSA CSA CSA [GSA jGSA I CSA CGSAJ

CS GAISA G SA ,[SAICSA CSA(GSA~

Figure1
Santoro and Horowitz

2 2 12 12

CSA ICSA ICSA ICSAI

222 2

f

Figure 2

Santoro and Horowitz

Figure 3a
Santoro and Horowitz

Figure 3b
Santoro and Horowitz

IMl n2 ln3 1nM

Cout 4:2 Cin

Ca 5py Sum

Figure 4
Santoro and Horowitz

ml 1ln2 1n3 1nM

CSA
C s

Cout Cin

Carry Sum

Figure 5
Santoro and Horowitz

CSA

,'
[SA,

Figure 6a
Santoro and Horov-;tz

jA]

CSA_

CSA

Figure 6b
Santoro and Horowitz

CSA CSA

CSA [SA

CSA

GSA

Figure 7
Santoro and Horowitz

.)

32 14AryFull Array

24 a Conventional partial
array structures

V Piped partial tree
4Input Piped tree structures

16

a Input Piped tree

8 Full Tree

III I 'Size
1/4 1/2 3/4 1 (CSA cells/32)

Figure 8
Santoro and Horowitz

I Multiplicand (A Input)

=A Block B Block
C Booth Muxes Booth Muxes

VA Block B Block00
2a4:2 4:2

0
U
.C N

I C Block

Li 4:2

Shift Right
D)~lock 16 bits

Accumulator

To Carry Propagate Adder

Figure 9
Santoro and Horowitz

7

0

0

* 0 0

Is 06 4.

S
Sm a

0

0

0

0

a

I ~ I U.~

spedi .h sp.d2.h as..d3h sped.h spe~ddh speed6.h

starl.h

testclk

testmode.h @11112

mux

0

Figure 11
Santoro and Horowitz

Figure 12a
Santoro and Horowitz

Figure 12b
Santoro and Horowitz

Characterization of Parallelism and Deadlocks in Distributed
Digital Logic Simulation

Larry Soule and Anoop Gupta
Computer Systems Laboratory
Stanford University, CA 94305

Draft of November 3. 19SS

Abstract

This paper explores the suitability of the Chandy-Misra algorithm for digital logic simulation. We use four
realistic circuits as benchmarks for our analysis, with one of them being the vector-unit controller for the Titan
supercomputer from Ardent. Our results show that the average number of logic elements available for concurrent
execution ranges from 6.2 to 92 for the four circuits. with an overall average of 50. Although this is twice a., much
parallelism as that obtained by traditional event-driven algorithms, we feel it is still too low. One major factor limiting
concurrency is the large number of global synchronization points - "deadlocks' in the Chandy-Misra terminology -
that occur during execution. Towards the goal of reducing the number of deadlocks, the paper presents a classification
of the t 'pes of deadlocks that occur during digital logic simulation. Four different types are identified and described
both intuitively in terms of circuit structure and formally with equations. Using domain specific knowledge. the paper
proposes methods for reducing these deadlock occurrences. For one of the benchmark circuits, the use of the proposed
techniques eliminated all deadlocks and increased the average parallelism from 40 to 160. We believe that the use
of such domain knowledge will make the Chandy-Misra algorithm significantly more effective than it would be in its
generic form.

1 Introduction

Logic simulation is a very common and effective technique for verifying the behavior of digital designs before they
are physically built. A thorough verification can reduce the number of expensive prototypes that are constructed
and save vast amounts of debugging time. However, logic simulation is extremely time consuming for large designs
where verification is needed the most. The result is that for large digital systems only partial simulation is done. and
even then the CPU time required may be days or weeks. The use of parallel computers to run these logic simulations
offers one promising solution to the problem.

Traditionally. the two commonly used parallel simulation algorithms for digital logic have been (i) compiled-mode
simulations and (ii) centralized time event-driven simulations. In compiled-mode simulations, each logic element
in the circuit is evaluated on each clock tick. The main advantage of this algorithm is its simplicity, the main
disadvantage being that the processors do a lot of avoidable work, since typically only a small fraction of logic
elements change state on any clock tick. The algorithm's simplicity makes it suitable for direct implementation in
hardware [3,6], but such implementations make it difficult to incorporate user-defined models or represent the circuit
elements at different levels of abstraction. In the second approach of centralized time event-driven algorithms, only
those logic elements whose inputs have changed are evaluated on a clock tick. This avoids the redundant work
done in the previous algorithm, however the notion of the global clock and synchronized advance of time for all
elements in the circuit himits the amount of concurrency [2.14.17]. These centralized time approachs work efficiently
on multiprocessors with 10 aode- or so [12.13.16], but for larger machines we need alternative approaches that miove
away from this centralized advance of the simulation clock.

The approach generating the most interest recently is the Bryant/Chandy-Misra distributed time discrete-event
simulation algorithm [I.4..t..10.l 1.15]. t allows each logic element to have a local clock, and the elements comMu-
nicate with each other using time-stamled messages. In this paper, we explore the suitability of the Chatidy-Misra
algorithm for parallel digital logic simulation. We use four realistic circuits & benchmarks for our analysis In fact.
one of the circuits is the vector-umit controller for the Titan supercomputer from Ardent Our result, show that

I
Subntkecl 4c, I AC 15 b

-2-

the basic unoptimized Ciandy-Misra al-oritlhn results in an average concumncy' of .50 for the four circuits while
being just as efficient as Ihe evpnt-driven algorit hrn. For two of the benchmark circuits, which were also .t tidied in
an earlier paper [14]. the unopvnit:ed Chandy-Misra algorithm extracted 40(X and 107(7 more parallelism than the
centralized time event-driwei simulation 4lgorithm.

The .50-fold average concurrency observed in the four benchmark circuits. however, is still too low. Once all the
overheads are taken into account. the .50-fold concurrency may not result in much nmre than 10-20 fold speed-
up. One major factor limiting concurrency is the large number of global synchronization points - 'deadlocks"
in the Chandy-Misra terminology - that occur during execution. We believe that understanding the nature of
the deadlocks,. why they occur and how their number can he reduced, is the key to getting increased concurrency
from the Chandy-Misra algorithm. To this end, the paper presents a classification of the types of deadlocks that
occur during digital logic simulation. Four different types are identified and described both intuitively in terms
of circuit structure and formally with equations. Using domain specific knowledge. we then propose methods for
reducing these deadlock occurrences. For one benchmark circuit, we show how using information about logic gates
can eliminate all of the deadlocks. We believe that the use of such domain knowledge will make the Chandy-Misra
algorithm significantly more effective than it would be in its generic form.

The organization of the rest of the paper is as follows. The next section describes the basic Chandy-Misra algorithm
and some notation used in the paper. Next we describe the four benchmark circuits that were simulated to get the
measurements. Section 4 presents measurements of the parallelism extracted by the algorithm and Section .5 presents
the classification of the deadlocks and ways for resolving them. Finally, Section 6 presents a summary of the results
and discusses directions for future research.

2 Background and Notation

2.1 Basic Chandy-Misra Algorithm, Deadlocks, and NULL Messages

We begin with a brief description of the basic Chandy-Mlisra algorithm [.5] as applied to the domain of digital logic
simulation. The simulated circuit consists of several circuit elhients (transistors, gates. latches. etc) called physical
processes (PP). One or more of these PPs can be combined into a logical process (LP), and it is with these LPs that
the simulator works.2 Each different type of LP has a corresponding section of code that simulates the underlying
physical processes (note that the mapping between PPs and LPs is often trivial in gate-level circuits, with each gate
represented as a simulation primitive). Each of these LPs has associated with it a local time that indicates how far
the element has advanced in the simulation. Different LPs in the circuit can have different local times associated with
them, and thus the name distributed time simulation algorithm. Each LP receives time-stamped event messages on
its inputs and consumes the messages whenever all of the inputs are ready. As a result of consuming the mnessages,
the logic element advances its local time and possibly sends out one or more time-stamped event messates on its
outputs.

As an example, consider a two-input AND-gate with local-time 10, an event waiting on input-I at time 20 (thus
the value of input-I is known between times 10 and 20), and no events pending on input-2. In this state, the
AND-gate process is suspended and it waits for an event message on input-2. Now suppose that it gets an event on
input-2 with a time-stamp of 15. The AND-gate now becomes active, consumes the event on input-2, advances its
local time to 15, and possibly sends an output message with time stamp 15 plus AND-gate delay.

We now introduce the concepts of deadlocks. In the basic Chandy-Misra algorithm, even when input events are
consumed and the local time of an LP is advanced, no messages are sent on -. output line unless the value of that
output changes. This optimization is similar to that used in normal sequential event-driven simulators where only
elements whose inputs have changed are evaluated and it makes the basic Chandy-Misra algorithm just as efficient.
However, this optimization also causes deadlocks in the Chandy-Misra algorithm. In a deadlock situation. no element
can advance its local time. because each element has at least one input with no pending events. We reemphasize that
this deadlock has nothing to do with a deadlock in the physical circuit. but it is purely a result of the optimization

Note that. by concurrency we refer to the number of logic elements that could be evaluated in parallel if there were infinite proce,.rs.
tin this paper the terms LP and element are used interchangeably.

-3- -

(liscus-.d alhove. The deadlock is re~olved b. scanning all the unprocessed events in tie syst lPi. finding the nIIimuin
time-st amp associated with these events. and updating the input-time of all inputs with no events to tlhj' t ii- hiq'ot
that tli, deadlock resolution can also be done in parallel). Conspquently, the basic Chandy-Misra algorihm c'clV
between two phases: the complit phase when elements are advancing their local time. and the deadlock rfsolto1
phase when all elements are stuck.

One way to totally bypass the deadlock problem is to not use the optimization discussed above. Thus elements
would send output messages whenever input events are consumed and the local time of an element is advanced. Tli
would be done even if the value on the output does not change. Such messages are called NULL messages in the
Chandy-Misra terminology. as they carry only time information and no value information. Ulnfortunatel\. alwa.s
%endiig NULL messages makes the ('handy-Misra algorithm so inefficient that it is not a good alternative to avoiding
deadlocks. However. in this paper we show how stlect'ch use of NULL messages can significantly reduce the number
of deadlocks that need to be processed.

Regarding parallel implementation of the Chandy-Misra algorithm, since each element is able to advance its local
time mndcpendently of other elements, all elements can potentially execute concurrently. However, only when ali
inputs to an element become ready (have a pending event), is the element marked as available for execution. and
placed on a distributed work queue. The processors take these elements off the distributed queue, execute them.
update their outputs. and possibly activate other elements connected to the out puts. This happens until a deadlock
is reached. when the deadlock resolution procedure is invoked.

2.2 Notation

As pointed out in the introduction, understanding the nature of deadlocks is key to increasing the parallel simulation
performajce. To help describe and understand the deadlocks, we now introduce some formal notation. Recall that
each logical process has input and output event queues with time-stamped messages associated with it. For a
particular LP,. we have:

q

Eij - the time of the earliest unprocessed event on input j of .,

Emin - the minimum time of all the current input events of LP, (short for min, E,,).

V i - the maximum simulation time LP, has progressed to.

Viu - the simulation time the j input of LP, is valid until.

Dij - the propagation delay from any change in an input value to a change in the jh output of LP,.

VI - the simulation time the jih output LP, is valid until (usually 1° = 1; + ,j.

Oi - the node connected to the jt output of LP.

lij - the node connected to the jlh input of LP,.

- Directed circuit connectivity: {True if there i: a 'ink from LP, to LP
-I False otherwise

In addition to the variables above, most circuits have some notion of a system clock and an associated cycle time.
so let this cycle time be denoted as Tcycle.

3 Benchmark Circuits

In thirs section. we first provide a brief description of the benchmark circuits uked in our study and then somne general
statistics characlerizing these circuits. The four circuits that we uqe are:

-4-

1. Ardeut-1: Thi- circuit i, that of the vector control unit (VCU) for the Ardent Titan graplocs sulercoinpuer7l
The VCU i- implemented in a I.Sp ('MOS gate array technology and it provides the in1erface among tje int eger
processing unit. lie rgi.ter file. and the memory. It also allows multiple scalar instructions to be executed
concurrently by scorehoarding. It con.ists of approximately 45.000 two-input gates.

2. H-FIUSC: A small RISC generated by the HERCULES [9) high-level synthesis .ystem from the I9s, High
Level Svnthesis Workshop. The RISC instruction set is stack based and fairly simple. This circuit cowijst,, of
approximately 11.000 two-input gates.

3. Multiplier: This circuit represents the inner core of a custom 3p CMOS combinational 1tjxl0 bit integer
multiplier. Multiplies are pipelined and have a latency time of 70ns. The approximate complexity is 7.000
two-input gates.

4. 8080: This circuit corresponds to a TTL board design that implements the 8080 instruction set. The design
is pipelmned. runr 8080 code at a speed of 3-5 MIPS. and provides an interface that is "pin-for-pin- compatible
with the 8080. The approximate complexity is 3.000 two-input gates.

We note that the benchmark circuits cover a wide range of design styles and complexity - we have a large mixed-
level synchronous gate array; a medium gate-level synthesized circuit: a medium gate-level combinational chip: and
a small synchronous board-level design. The fact that we have both synchronous pipelined circuits and totally
combinational circuits is also important. because they exhibit very different deadlock behavior during simulation.

Ve now present some general statistics for these benchmark circuits in Table 1. The statistics consist of:

" Element count: The number of primitive eien,.nts (LPs) in the circuit. One expects the amount of concurrency
in the circuit to be positively correlated with this number (it is indeed so. as can be seen in Table 2).

" Element complexity: This is defined as the number of equivalent two input gates per primitive element. The
number of primitive elements multiplied by tl-e elen-vnt complexity gives a more uniform measure for the circuit
complexity. The element complexity also gives-6n in :1 cation of the compute time required to evaluate a primitive
element. and thus specifies the grain of computation. d

• Element fan-in/fan-out: The average number of inputs/outputs of an element. These numbers are also correlated
to the element complexity. If the average number of inputs is high. one would expect a higher probability of
deadlock as there are more ways in which one of the inputs may have no event.

" Percent logic and synchronous elements: The percentage of elements that are purely combinational logic and the
percentage that have internal state. Pipelined designs like the Ardent and 8080, tend to have a higher percentage
of synchronous elements.

" Net count: The number of wires in the circuit.

" Net fan-out: The average number of elements a wire is attached to. The Ardent and 8080 circuits have some
global buses that affect many components. This fact is reflected in their high net fan-out numbers.

* Representation: The level of representation of the simulation primitives. A circuit made up of only logic gates
and one-bit registers is at the gate-level while a design made up of TTL-like components is at the RTL-level.

Another important performance related aspect that we can infer from these numbers is the relative cost of resolving
a deadlock. This cost of resolving a deadlock depends on the execution time of the models (related to element
complexity) and the number of elements that must be checked and possibly activated. Thus we would expect
deadlock resolution to be fairly cheap for the 8080 design with 281 elements, since there are so few elements to be
checked and because each evaluation of an RTL element is much longer than a trivial logic operation However. we
would expect the relative cost of reolving a deadlock in the larger gate-level circuits (for example. H-FRISC) to he
high due to the large number of components and the low execution time of the models.

Table 1: Basic Circuit Statistics

SialI, tic ']Ardent-] H-FHI" .\ult-16 sUK 0J

Element (ount 1'3.34t) s.076 4.9O 21

Eleien Compiexii1 3.4 1.40 1.42 12
Element -au-in 2.72 2.14 2.14 ".7

Elemet Fan-out 1.2 1.0 1.0 2.63
VA Logic Elements Wi.(97.7 100 63.3
V 'ynchronous Elements 11.2 2. , 0.0 16.7
Net Count 13.873 8.093 .5.077 746
Net Faii-out 2.66 2.14 2.14 5.46

Representation gate/RTL gate gate RTL
Ba-ic Unit of Delay 0.Sn unit Ins Iln;

4 Parallelism Measurements

In this section. we discuss how parallelism is exploited by the Chandy-Misra algorithm and present data regarding
the amount of concurrency available in the four benchmark circuits. We also present data regarding the granularity
of computation. the number of deadlocks per clock cycle, and the amount of time spent in deadlock resolution.
These numbers were gathered from our parallel implementation of the Chandy-Misra algorithm running on an
Encore Multimax. a shared-memory multiprocessor with sixteen NS32032 processors. each processor delivering
approximately 0.75 MIPS.

Since we are interested in the parallel implementations of the ChandN-Misra algorithm, the first question that arises
is how much speed-up cmn be obtained if there werdfarbitrarily many processors, and if there were no synchronization
or scheduling overheads. Ve call this measure the concur 4 ncy or intrinsic parallelism of the circuits under Chandy-

Misra algorithm. For our concurrency data. we further assumethat all element evaluations take exactly one unit
of time. Thus. the simulation proceeds as follows. After a deadlock and the ensuing deadlock resolution phase. all
elements that are activated (i.e.. have at least one event on each of their inputs) are processed. This happens in
exactly one unit-cost cycle as we assume arbitrarily many processors. The number of elements that are evaluated
constitutes the concurrency for this iferatton. The evaluation of the elements, of course. results in the activation of
a whole new set of elements, and these are evaluated in one cycle in the next iteration. The computation proceeds
on this way until a deadlock is reached, and we start all over again.

Figure 1 shows the concurrency data (shown using the dashed line) and event profiles (shown using Ihe solid
line) for the four benchmark circuits. The event profiles show a plot of the total number of logic elements evaluated
between deadlocks. The profiles are generated over three to five simulated clock cycles in the middle of the simulation.
We would like to reemphasize that the profiles in Figure 1 are not algorithm independent, but are specific to the
basic Chandy-Misra algorithm. In fact, our research suggests enhancements to the basic Chandy-Misra algorithm.
so that much more concurrency may be observed.

The profiles clearly show cyclical patterns with the highest peaks corresponding to the system clock(s) of :he
simulated circuits. and the portions between the peaks corresponding to the events propagating through the coiil-
binational logic between the sets of registers. The Ardent profile shows that the circuit quickly stabilizes after the
clock with only a few deadlocks while the multiplier, with many levels of combinational logic, takes quite a while to
stabilize with many deadlocks. This close correspondence between the event ,ofiles and the circuit being simulated
shows the importance of exploiting domain specific information: any circuit ciiaracteristic we change or exploit will he
directly reflected in the event profiles. Understanding how these changes affect the profiles and being able to predict
them is important in ohtaining better performance A sutiimar\ of the concurrency information is also presented in
Table 2. The top line of the table shows the concurrency as averaged over all ilerations in the simulation

In addition to knowing how many concurrent element esaluatiois or tasks that are availahle. Ae also need to know

Average parallelism-92 - Evals Between Deaciocs

1400- 14N ...1400 Parallelism

LU20 w 1200o Average parallelism-61

*1000 10
w w

400 400

20020

0 0
1200 1230 1260 1290 1320 1350 1380 200 240 280 320 360 400 440 480

Iteration Iteration

Ardent Queue Length~ Profile Risc Queue Length Profile

120-
1400

120Average prleim4 0. Average paraiielism=6.2
w~~ 12000

I I
1 1000 * 80so
w

Boo0 60.

600
40

400

200 20

00

420 480 540 600 660 720 780 840 900 550 570 590 610 630 650 670 690
Iteration Iteration

Multiplier Queue Length Profile 8080 Queue Length Profile

Figure 1: Event Profiles

I

Table 2: Simulation Statktic's

-,Ia_ __ , Ij ArdpI-l] H-FRI,(' Mult-Ib .O UT

_,_nl-co____ralll __ 92 67 42 6 .2
('Granulariix (n " 0.74 0.66 0.75 26,1
Deadlock Ratio 30t 24.5 246 15
Cycle Ratio 1.644 1.9b2 6.712 132
Deadlocks Per C'ycle 5.3 6.l 27.1 t'.9

Avg Deadlock Be-olntion Time (n) 520 230 206 11
V Time in Deadlock Resolution 5__' 46 41 19

the task granularity and how often deadlocks (global processor synchronizations) occur. The granularity or basic
task size for our application (a model evaluation) includes checking the input channel times. executing the model
code. calculating the least next event and possibly activating the elements in its fan-out. The numberF discussing
task granularity and frequency of deadlocks are summarized in Table 2. The table also presents the following ratios
that help characterize the performance of the Chandy-Misra algorithm:

* Deadlock ratio (DR): Number of element evaluations divided by the number of deadlocks.

" Cycle ratio (CR): Number of element evaluations divided by the number of simulated clock cycles.

" Deadlocks per cycle: Number of deadlocks divided by the number of simulated clock cycles.

Since increased parallelism was the main motivazion for using the Chandy-Misra algorithm. we now compare the
concurrency it obtains to that obtained using a t7aditioqal event-based algorithm. For our comparison, we use the
concurrency data presented for the 8080 and multiplier circuik in a parallel event-driven environment in [13.14.
These papers showed that the available concurrency was about 3 for the 8080 and 30 for the multiplier. From Table
2. the corresponding numbers for the Chandy-Misra algorithm are 6.2 for the 8080 and 42 for the multiplier. The fact
that the concurrency increases only by a factor of 1.5-2 is somewhat disappointing, since Chandy-Misra algorithm
is more complex to implement. However, we believe that using the techniques proposed in the next section, the
Chandy-Misra algorithm can be suitably enhanced to show much higher concurrency.

The last two lines of Table 2 give data about the average time taken by each call to deadlock resolution and the total
fraction of time spent in deadlock resolution. The cost of resolving a deadlock for the three larger circuits is indeed
high. especially when compared to the cost of evaluating a logic element (see the granularity line). For xample,
in the time it takes to resolve a deadlock in Ardent, 700 logic element activations could have been processed. In
H-FRISC. 350 elements could have been evaluated, and in the multiplier. 275 elements could have been evaluated.
In our research, we are also exploring techniques to reduce the deadlock resolution time significantly by caching
information from previous simulation runs of same circuit, but results are not available yet.

5 Characterizing Deadlocks

Even though there is reasonable parallelism available in the execution phase of the Chandy'-Misra algorithm, deadlock
resolution is so expensive in the larger circuits that it consumes 40-60/ of the total execution time. Clearly we have
to reduce this percentage in order to get good overall parallel performance. The first step towards this reduction
is understanding why deadlocks occur and how they can be avoided. The types of deadlock that occur in logic
simulation are characterized in this section and this characterization gives us insight into what a.spects of logic
simulation can be effectively exploited to achieve good overall performance.

In the logic simulation% that were studied. the elements that became deadlocked can be put into two categories:
(it those deadlocked due to some aspect of the circuit structure (e.g topology, nature of regkiters. feed-back) and (ii)

--- W Regl Loi 2 Reg2

I A _.. .20M,00 .. 0.0

Figure 2: Deadlock Caused by a Clocked Register

those deadlocked due to low activity levels (e.g. typically only 0.1% of elements need to be evaluated on each time

step in eveni-driven siniulators[14]). In the following subsections, descriptions and examples of each of the types of
deadlock are ;iven, along with measurements that show how much each type contributes to the whole.

5.1 Registers and Generator Nodes

In a typical circuit. enough time is allowed for the changes in the output of one set of registers to propagate all the
way to the next set of registers in the datapath a#8 stabilize before the registers are clocked again. For example. in
Figure 2. the critical path of the combinational part of #he circit is 82ns. and the clock node changes every 100ns
to allow everything to stabilize. Regl is clocked at the start O1f the simulation. and the events propagate through
the combinational logic, generating an event at time 82. This event at time 82 is consumed by Reg2 since the clock
node is defined for all time in this example. However. the next event at time 100 is not consumed since the input
to the latch is only defined up to time 82, not 100. This causes Reg, to block and the deadlock resolution phase
is entered. This is a large source of deadlocks since most circuits have many registers, latches and generator nodes
(e.g. clock(s). reset. inputs, etc.),

In Table 3 we see that for the Ardent, register-clock deadlocks account for 92% of all the elements activated in
the deadlock resolution phase even though registers only make up 11% of the elements. This is mainly 4pe to the
pipelined nature of the Ardent design where there is only a small amount of combinational logic between register
stages. In the case of the RISC design, there are more combinational logic between the registers than the Ardent
and more logic gates connected to the input stimulus generators. Thus register-clock and generator deadlocks both
cause around 20% of the deadlock activations for a total of 40%. In the multiplier design, there are many levels
of logic between the inputs and outputs and does not have any registers. Thus there can not be any register-clock
deadlocks and very few generator deadlocks. The 8080 design, like the Ardent, is pipelines and hence register-clock
deadlocks are the main source of deadlock Here 55% of the activations are caused by register-clock deadlocks while
only 17%d of the elements are registers.

5.1.1 Detection

In order to measure how much any particular deadlock type affects the overall simulation. there must he sonie way
of concretely identifving that type. A register-clock deadlock is said to occur whenever a clocked element LP, that
is activated during deadlock resolution has the earliest unprocessed event on its clock input. A generator dtidlock
is said to occur whenever the earliest unprocessed event was received directly from a generator element. In termn of
the iotat ion introduced earlier, this can be expressed as when E,1'1 mod T,,,,, = 0

Tahe 3: Regi,:tr-(lock and Generator Deadlocks

('ircut "lotal Deadlock Register-clock 'R of Generator 17 of

1_ Actli'atioIS Activations Total Activations Total
Ardent- I 31(1.0k 290.k 92 5'3 0 2
11-FIH RM' 45.6k _ _.Yk 20 8-800 19.0
N111h-16 27.2k 0'k 0 40 01

_;t ,.3k 4.6k 5.5 5 06

5.1.2 Proposed Solutions

Taking advantage of behavior: In general. an input event may arrive at any time in an element's future causing
it to change its output. Thus. an element can only be sure of its outputs up to the minimum time its inputs are
%ald plus the output delay (1; + D,j). In the case of registers and latches, however, we know LiaaL the output
will not change until the next event occurs on the clock input regardless of the other inputs. This knowledge of
input senstiation is easy to use and potentially very effective since the outputs can he advanced up to the next
clock cycle. In registers and latches with asynchronous inputs (like set, clear. etc.), those inputs must be taken into
account as well as the clock node when determining the valid time of an output.

Fan-out Globbing: This technique reduces the overhead and the time needed to perform deadlock resolution.
Recall that a particular LP is composed of many PPs. These PPs can be combined in different ways to form larger
units. Combining many registers that share the same clock node will reduce the overhead of activating each register
separately. Typically hundreds of one-bit registers and gates are connected to the clock node(s) and often times
during deadlock resolution. the minimum event is on the clock node (as in the example above). If we combine these
registers and gates in groups of n. we call this gyuping fan-out globbing with a ciurnping factor of n since we are
combining the fan-out elements of the clock. This reduces the overhead of inserting and deleting the elements in the
evaluation queue. However. since it combines elements. it als4Wreduces the parallelism available. We are currently
looking into just how much reduction in overhead and parallelism this causes.

5.2 Multiple Input Paths with Different Delays

Whenever there are multiple paths with different delays from a node to an element, there is a chance of that element
deadlocking. An example of this is the MUX shown in Figure 3. There are two paths from the Select line to the
OR-gate at the output. If the Data and ScanData lines are valid, an event on the Select node could propagate
through the two paths and generate events at times 11 and 12. The event at time 12 will not be consumed by the
OR-gate since its other input is only defined up to time 11 causing the OR-gate to deadlock. Thus. multiple paths
from a node to an element can result in an unconsumed event on the path with the larger delay.

5.2.1 Detection

Let LP, be the deadlocked element and j be the index of the input with the unprocessed event (i.e. j such that
E,j = E7""). Then if there are two different paths from some element, LPk, to the deadlocked element. LP,. with
the longer path ending at input j, then a multiple path deadlock has occurred.

5.2.2 Proposed Solutions

Since this type of deadlock is due to the local topology of the circuit, there is no easy way of avoiding it ltowexer.
there are a couple of options.

- 10-

Data 0 Consumed

- Unconsumed

"- 012

Scana-,-

Figure 3: Deadlock due to Multiple Paths of Different Delays

Demand-driven: The elements that are affected by multiple paths could be marked either while compiling the
netlist or from previous simulation runs. When these elements are executed. a demand driven technique could be
used. With a demand-driven technique, whenever an element can not consume an input event, requests are made to
its fan-in elements (the ones driving its input pins) asking -Can I proceed to this time?. These requests propagate

backwards until a yes or no answer can be ensured. Propagating these requests can be expensive especially if there
are long feedback chains in the circuit. Thus we must be very selective in the elements we choose to use this technique
with.

Structure globbing: If there are not too many elements involved in the multiple paths. we may be able to hid
the multiple paths by globbing those elements i$to one larger LP. However, the composite behavior of the gates
must be generated and the detailed timing information %iust bi preserved. Preserving the exact timing information
is non-trivial. In essence a state variable must be made for dch of the internal nodes and the element may have
to schedule itself to make the outputs change at the correct times. This self-scheduling may cause the element to
deadlock because. by requesting itself to be evaluated at some time, it must wait until the inputs are valid up to
that time just as before. If the detailed timing information does not need to be preserved, the composite behavior is
easy to generate (compiled-code simulation techniques can be used on the small portion of the circuit that is being
globbed together) and this deadlock type will be avoided.

Taking advantage of behavior: If we know the behavior of an element, it may be possible to advance that

element even though some of its inputs are not known. For example in Figure 3, if the event at time 11 oing into
the OR-gate has a value of I, the output is known to be I regardless of the value of the other input and the OR-gate
need not deadlock. In a gate-level simulation, the behavior of most of the elements is very simple and can be readily
exploited.

5.3 Order Of Node Updates

The actiration crtera for the basic Chandy-Misra algorithm is: activate an element only when an event is received
on one of its inputs. Sometimes this activation criteria can cause a consumable input event to be stranded due to
the order in which the node updates are performed. This stranded event will cause the element to deadlock. In
Figure 4. element el consumes the event at time 10, produces an event at time 11. and activates element e3. If e3
is now executed. e3 will not be able to consume the event at time 11 because the input from e2 will not be valid at
time II. If an event at time 10 now arrives at e2 and e2 is evaluated, it will update the valid-time of the input to

e3 but it will not activate e3 because no event was generated. If e3 had waited for e2 to he evaluated, the inputs to
e3 would have both been valid at time 12 and the event at time 11 could have been consumed.

In Table 4, we see that the order of iiode updates type of deadlock is uncommon in the Ardent simulation which is

Order of evaluation:
el, e3, e2

1@10 valid
unitil

_______e2 1
0

Figure 4: Deadlock Caused by Order Of Node Updates

Table 4: Deadlock Activations Caused by the Order of Node Updates

SCircuit Deadlock Activiins Order of Node Updates 1 '7 of T-otal
SArdent-I 316__6F__1.4k__0_4

H -F RISC _____________ 1 ___k_2_2

Mu It-16 27.2k________ 1.7k__________ ___ .2_

dominated by the register-clock deadlocks. The order of node updates is, however, important in the combinational
multiplier with its many levels of logic

5.3.1 Detection

Suppose LP, is activated during deadlock resolution because it was waiting to consume an event at time 1. If all
of the input nodes are found to have advanced up to time t - that is if the elemewnt can safely consumne the event
without any input times being updated, an order of node updates deadlock has occurred. In the notation introduced
earlier, this happens if min, I, E

5.3.2 Proposed Solutions

New activation criteria: The problem is that the activation criteria does not activate ant element when the valid
times of its input node are updated. The problem can be eliminated if an element checks it, fan-out elements when
0i updates the timew of its output nodes. Any- of those fan-out elements that have a real event at a time less than
or equal to the new valid-time, should be activated. In the example. e2 would activate e3 when it updated the
%alid-iime of its output to I I since e3 has a real event at finio 11. Note that dii only works for the case where
the updated node is directly connected to the element with the unconsumed event. if there are any intermiediate

-12 -

no event @1

Figure 5: Deadlock Caused by Unevaluated Path

elements the deadlock is considered to be caused by an unevaluated path which is explained in the next subs'ction.
If e3 had a third input, it still may not be able to consume the event at time I1 even after e2 is evaluated. This extra
activation creates needless work and the effectiveness of this solution depends on the relative cost of performing a
deadlock resolution on the particular circuit being simulated.

We can describe this new activation criteria formally by doing the following after each LP, is evaluated:

For each output j
For each LPk connected to output j

if _c0> Em"

then Activate LP

Rank ordering: The rank of an element is the maximurrntumber of levels of logic between the element and
an% registers. It can be computed by assigning all registers and generator elements a rank of 0 and then iterating
through the combinational elements assigning them a rank of one plus the maximum rank of its input elements. If
the elements in the evaluation queue are ordered by their rank. the node updates will proceed in a more ordered
fashion (i.e. elements farther away from the registers and external inputs that affect it will be evaluated later possibly
letting their inputs become defined). In the example, e2 would be inserted before e3 since the inputs to e3 depend
on the outputs of e2.

Since the rank information is easy to compute while compiling the netlist, the rin-ftmf cost is very litile. Also.
this technique does not generate any extra activations so the overall cost is cheap.

5.4 Unevaluated Path

The elements in the fan-out of a wire are activated only when a real event is produced on that wire. Thus. if element
LP, consumes an event but does not produce a new event (i.e. the activation does not result in a change in value
of output signals). all paths from LP, to the other elements will not be evaluated or updated. Figure 5 shows the
case where one event is consumed and, since no new event is produced. the OR-gate is not activated and the second
AND-gate can not consume the event at time 11 since the valid-time of the input from the OR-gate was not updated.

In Table 5 we see that unevaluated paths are very important in three of the four circuits. This is especially
true for the RISC and multiplier designs which consist of many levels of combinational elements. For the RISC.
the number of deadlocks caused by unevaluated paths is around 60% and that for the multiplier around 907. In
contrast. unevaluated paths are relatively unimportant in simulations of the pipelined Ardent design.

Table 5: Deadlock Activations (aused by U.nevaluated Paths

Crcut Dead.lock Onp v of Two V of Combined
Activations Level Total Level Total 1A

1 1 NULL NULL
Ardit- I 316.uk 10k 1.0 21 .Uk _.6 _ _

H-FRIS(" 4:).6k 4.3k 9.4 22.6k 49.6 59
Mulh-1 27.2k 1 .)k .5 .5 23.8 k t 7 .5 93

6UNJ .3k ..k 5.7 2.V9k 34.9 41

5.4.1 Detection

If NULL messages are always sent. the simulation will never deadlock (see Section 2.1). Unfortunately. this is highly
inefficient since typical activity levels in event-driven simulators are around 0.1(7 in each time step. To find out how
man. deadlocks we could avoid by only sehcltrely sending NULL messages. we did the following. We measured how
many deadlock activations would have been avoided if every deadlocked element had received NULL messages from
its immediate fan-in - corresponding to what we call *one level- of NULL messages - and how many activations
would have been avoided by two levels of NULL messages.

To define this more concretely, let the distance between LP, and LPj be the minimum number of elements.
(e..e) such that , are all true. Let this distance be denoted by b,j and the minimum delay
between LP, and LP by r,. Using tLese definitions we get: LP, was deadlocked by an unevaluated path of n levels.

If For each input j where 1;, < E,' "
and each LP where 6k,=n and the poli ends at input j

(Wk + r, > E,"'" holds

5.4.2 Proposed Solutions

Caching: Since the activity levels are so low, we need to be very selective about which elements should send NULL
messages. The proposed selection process follows the concept of caching. By caching information from previous runs.
we can identify the elements that repeatedly deadlock due to an unevaluated path as the simulation progresses. When
these elements get activated, they will send out NULL messages whenever their outputs times advance. lr4order to
be effective, the caching algorithm must be quick and effective.

Taking advantage of behavior: If we know the behavior of an element, it may be possible to advance that
element even though some of its inputs are not known. For example, if the event at time 11 going into the AN D-gate
of Figure .5 has a value of 0, the output is known to be 0 regardless of the value of the other input. In a gate-level
simulation. the behavior of most of the elements is very simple and can be readily exploited. As it turns out. this
technique works very well for the combinational multiplier circuit. It eliminates all deadlocks and increases the
parallelism from 40 to 160.

5.5 Summary of the Contributions from each Deadlock Type

A summary of the composition of an average deadlock for the benchmark circuits is given in Table 6. In all but
the Ardent circuit, the main deadlock type is the two-level NULL caused by unevaluated paths which are. in turn.
caused by- the very low activity levels in digital logic simulations. The Ardent and 8080 deadlocks are made up
predominantly of register-clock deadlocks. They account for 9*2'X and 557 of the deadlock activations e'en though
•ynchronot's elements comprise only II to 17V of the total elements. This is mainly due to the heavily pipelined

-14-

Table 6: Deadlock Activations Classified b% Type

Circuit Total Deadlock Register-clock (enerator Order of One Level Two Levj
11 Activations Activations Activations. Node Updaties NULL NI'LL

Ardent-I 3"16.0k 2190.0k 5t;3 1.4k 3.0k 21 Lu
RISC, 45. 6k s.9k b.800 1.Ok 4.3k 2_ 6L
Mult 27.2k 0.0k 40 1.7k 1..k 2:k
8080 8.3k 4.(6k 3 0.2k o-0k 2.

nature of the two circuits - lots of latches with only a few levels of logic in between. Thus most of the deadlocks
occur when the registers and latches are waiting for their inputs to become valid.

The main contributors to deadlock in the RISC circuit (after the two-level NULL deadlocks). are generator and
register-clock deadlocks. This is due to the consistent control style used by the synthesis system. The system clocks
are generated externally and first pass through a level of logic that controls which parts of the design are active.
These qualified clocks are then distributed to their corresponding circuit sections - the result being that most
registers are waiting on their inputs and the elements connected to the generator nodes are waiting on their other
inputs.

The multiplier design is highly interconnected with many levels of logic. Almost all of the deadlock activations
are caused by the unevaluated paths in the circuit as shown by the two-level NULL column. This is caused by a few
paths that are active all the way from the inputs to the outputs while most of the paths do not have any activity at
all after the first couple of levels.

6 Conclusions '4

In characterizing the parallelism in distributed-time simulations of real circuits, we have shown that the Chandy-
Misra algorithm extracts an average parallelism of 50 for the four benchmark circuits used. While this is 1.5-2 times
better than traditional parallel event-driven algorithms, it is still too low to be used effectively in large parallel
processing systems. Since deadlocks are the major factor limiting parallelism and the overall performance. the paper
focused on understanding the nature of deadlocks. We classify the deadlocks that occur in logic simulation into four
types: register clociis and generator nodes, multiple paths. unevaluated paths and the order of node updates. These
four types are able to cover almost all of the deadlocks that occur. Concentrating on each type, we presenteg specific
solutions to avoid or resolve the deadlocks caused by that type. Preliminary results show that we can elirfiinate all
of the deadlocks in the multiplier simulation raising the parallelism from 40 to 160. These solutions exploit several
different aspects of circuit behavior and we feel that it is with this domain specific knowledge that significantly better
parallel performance can be achieved.

7 Acknowledgements

The authors are supported by DARPA contract N00014-87-K-0828. In addition. Anoop Gupta is supported by
a DEC faculty award, and Larry Soule is supported by DEC, and by a National Science Foundation Graduate
Fellowship.

References

[1] Marc Abrams. The Object Library for Parallel Simulation (OLPS). In Winter Simulation Confrernr. 1988.
December 1988.

- 15-

[2] M. Baile. and L. Si~der. An Empirical .t ud% of On-Chil, Parallelism In 2.!l, Di ,,gil Aulovioti , ('ofife IC 1C.

pag- 160-165. 'ni\ersity of A.shington. Juiie W98&

[3 Tom Blank A survey of hardware accelerators used in comnputer-aided design. IEEE Tran-rlun,,ro on Detign
and Test. 21-39. August 1I4.

[4] R. E_ Bryant. Simulation of Packet (omniinication Artlhiltclur ('mpviter Sy~leins Technical Re-
port MIT.LCS.TR-Isb. MIT. July 1977.

[5] K. M. Chatidy and J.. Misra. Asynchronous Distributed Simulation Via a Sequence of Parallel ('omputations-
Cowm of th ACM. :4(11):198-20G, April 191.

[61 Monty Denneau. The Yorktown Simulation Engine. In 19th Design Automation Confernc. page 7.2.
ACM/IEEE. 1982.

[7] Tom Diede. Carl Hagenmaier. Glen Miranker. Johnathan Rubinstein. and Willian \Vorley The Titan Graphics
Supercomputer Architecture. Computer, 21(9):13-30. September 1988.

[8] Richard Fujimoto. Lookahead in Parallel Discrete Event Simulation. In Proctedmi.s of the 1986 International
Conferenc on Parallel Processing. pages 34-41. University of Utah. 1988.

[9 David Ku and Giovanni DeMicheli. HERCULES -A System for High-Level Synthesis. In 25th Design A uoma-
tion Conference. pages 483-488, ACM/IEEE. June 1988.

[10] David Nicol. Parallel Discrete-Event Simulation of FCFS Stochastic Queueing Networks. In PPEALS 88.
pages 124-137. ACM. 1988.

[11] D. Reed. A. Maloney. and B. McCredie. Parallel Discrete Event Simulation: A Shared Memory Approach.
IEEE Transactions on Softuar Engineering. 14(4):541-553. April 1988.

(12J J. Smith. K. Smith. and R. Smith. FasteffArchitectural Simulation Through Paralehsm. In 2.4th Destgr
Automation Conference,. pages 189-194, ACM/IEEY. Junk 1987.

[13] Larry Soule and Tom Blank. Parallel Logic Simulation on General Purpose Machines. In Proceedings of the
25th Design Automation Conference, pages 166-171, Stanford University, 1988.

[14] Larry Soule and Tom Blank. Statistics for Parallelism and Abstraction Level in Digital Simulation. In Proceed-
ings of the 24th Dtsign Automation Conference, pages 588-591, Stanford University, 1987.

[15] David Wagner, Edward Lazowska, and Brian Bershad. Techniques for Efficient Shared-Memory Parallel Simu-
lation. Technical Report 88-04-05. University of Washington, Department of Computer Science. August 1988.

[16] Andrew Wilson. Parallehzathon of an Event Driven Simulator on the Encore Multimaz. Technical Report ETR
86-005. Encore Computer, 1986.

[17] Franklin Wong. Statistics on Logic Simulation. In 23rd Design Automation Conference. pages 13-19.
ACM/IEEE, July 1986.

Temperature Measurement and Equilibrium Dynamics

of Simulated Annealing Placements

Jonathan Rose
Computer Systems Laboratory,

The Center For Integrated Systems, Stanford University

Wolfgang Klebsch and Juergen Wolf

Siemens AG, Munich, Federal Republic of Germany

Absetract

One way to reduce the computational requirements of Simulated Annealing placement algorithms is to use
a faster heuristic to replace the early phase of Simulated Annealing. Such systems need to know a starting
temperature for the annealing phase thal makes the best use of the structure provided by the heuristic, yet
does an appropriate amount of improvement This paper presents a method for measuring the
temperature of an existing placement. It is based on a view of Simulated Annealing state that differs from
previous work - the probability distribution of the chmnge In cost function, as opposed to the absolute cost
function. Using this view a new definition of equilibrium Is given and the equilibrium temperature of a
placement Is defined. This also gives rise to an new view of the equilibrium dynamics of Simulated
Annealing. A measure is developed that quantifies the nearness of a Simulated Annealing placement to
equilibrium, and experimental evidence of its ability to detect equilibrium is given. Based on the measure
a method is presented for determining the equilibrium temperature of a placement, and it is applied to
placements of a real circuit produced both by a Simulated Annealing and a Min-Cut placement algorithm.
For the latter an experimental relationship between the Min-Cut ot area and the measured temperature is
demonstrated. X

1 Introduction

The success of the Simulated Annealing algorithm for automatic placement [Secth5] has been

hindered by ts excessive computational requirements. Recent work on standard cell placement

algorithms [Rose86a. Grove7, Rose88a] has suggested alleviating this by using a two-stage approach:
I

begin with a good, reasonably successful heuristic such as the Min-Cut algorithm [Breu77,Dun185] and

then follow it with a Simulated Annealing-based approach for more fine optimization. Replacement of the

early phase of Simulated Annealing with a faster but potentially worse algorithm allows a tadeoff between

execution time and quality. A critical issue In this approach is to decide the starting temperature of the

Simulated Annealing phase. If the temperature is too high, then some of the structure created by the first

phase will be destroyed and unnecessary extra work will have be to be done in the Simulated Annealing

phase. If the temperature s too low then solution quality is lost, similar to the case of a quenching cooling

schedule tWhlt84.

This paper presents a technique for measuring the temperature of a placement for use in such two-

stage systems. The problem Is to determine the starling temperature for a Simulated Annealing process

-1-

so that the "bes use of the orginal structure is made, yet an *appropriate* amount of optimization is done
to improve IL To give meaning to the concept of a placement's temperature, a framework is needed in

which th. .otions of "best" and "appropiate are defined.

Accordingly, we present a new view of Simulated Annealing state different from those articulated in

[Lar87. Aart85,Rome84, Whir84]. The principal difference Is that we look at probability distributions of the

change in cost function of a Simulated Annealing state, rather than the absolute cost function. Using this

view we give a definition of equilibrium from which follows the notion of the equilibrium temperature of a

placement The way in which the probability distribution changes as equilibrium is reached, known as the

equilibrium dynamics [Laar87], Is demonstrated with measurements on a real circuit.

We develop a measure that quantifies the nearness of a Simulated Annealing placement to

equiibrium, called the Cost Force Ratio (CFR), and give experimental evidence of the CFR's ability to

detect equilibrium. Based on the CFR measure, we present a method for measuring the equilibrium

temperature of a placement, and show that It works both for placements produced by a Simulated

Annealing and a Min-Cut placement algorithm. For the latter we show an experimental relationship

between the Min-Cut cut area and the measured temperature.

The determination of starting temperature for Simulated Annealing in two-stage systems has not

been seriously addressed before. Both [Rose86a,Rose88a] and [Grov87] Introduce the question but avoid

answering it by choosing a starting temperturfbase4 simply on previous experience. A shorter version

of this paper is to appear in [Rose88b]. 4

2 Definition of Equilibrium and Temperature

In previous discussions of cooling schedules and convergence [Laar87, Aart85,Rome84, Whit84], the

Simulated Annealing state has been represented either as the probability distribution of the absolute cost

P (C). or the set of transition probabilities from every state i to every other state j, Tij. We sugges4 a

different view that gives more information about equilibrium dynanics: the probability distribution of the

change in cost function from the current state. P (AC) Is the probability that a given state under a

Simulated Annealing process with a particular generation function (Rome84] will generate a move with a

change in cost function of AC. P (AC) varies with temperature (T) and as moves are made.

We can use this view to give a different perspective on the equilibrium of a Simulated Annealing

process. Since at equilibrium the absolute cost function no longer changes, this implies that the expected

value of the change in cost function is zero:

E(AC)= 0

An expression for E (AC) can be formed assuming that P (AC) is known:

.2-

E (AC) =IC P(AC) PA ,,p(AC) dAC (2)

PAccp (AC) is the probability that the acceptance function will accept a move with cost AC [Rome84. It
-AC

commonly has the value I for AC SO and e 7- for AC >0 [Sech85J. We note here that P (AC) in

equation (2) must be the distribution measured on a running Simulated Annealing process at the

equilibrium temperature. This distribution is difficult to measure, as will be discussed further in Section 3.1.

Using this PAccept (AC) we can split equation (2) into two parts and, and at equilibrium from equation

(1) we can equate it to zero:

-
-AC

1AC P (AC) dAC + iAcP (AC) e dC = 0 (3)

Thus equilibrium can now be defined as the state where, at a given T = Tq, the distribution P (AC)

satisfies equation (3). Conversely, the equilibrium temperature of a placement with a distribution P (ACC)

is the temperature, T.., for which equation (3) is satisfied.

We note here that P (AC) in equation (2) must be the distribution measured on a running Simulated

Annealing process at the equilibrium temperature. This distribution is difficult to measure, as will be

discussed further in Section 3.1. I q.

2.1 Equilibrium Dynamics

The way in which the probability distributions change throughout the process, or the equilibrium

dynamics, can be explained by observing how P (AC) changes when moving from non-equilibrium to

equilibrium. Suppose a system is in equilibrium at temperature T 1. and its temperature is then lowered to

T 2. Figure I Is a plot of P (AC) and PAqt versus AC for a fictitious system in equilibrium at

temperature T 1. When the temperature is lowered to T 2 the only change Is that the positive portion of the

-AC -AC

accept function becomes uniformly lower because e r < e - for al AC >0.

For this system to regain equilibrium after the temperature change, P (AC) must change to again

satisfy equation (3). This means that one or both of the following must happen:

1. The positive portion of P (AC) must either shift right (greater bad moves) or up (more bad moves),

k- - "'2asing the expected positive component of AC (E+) or,

2. The negative portion of P (AC) must either shift right (smaller good moves) or down (fewer good

moves), reducing the magnitude of expected negative component of AC (E_.).

-3-

, 1.0

.....

-10 -5 0 5 10

AC

Figure 1 - Fictitous Probability Distribution and Accptance Function at Temperature Change

Experimentally, both these effects are observed. Figure 2 Is a plot of P (AC) versus AC for the 833
standard cell Primaryl circuit from the Preas-Roberts standard cell benchmark suite [Prea87j. It was
produced by the SALTOR Simulated Annealing placement program [Rose86b,Rose88a], which is based
on the ideas of the Tirmberwolf standard cell placement program (Sech85. P(AC) Is measured by
generating 200,000 moves on a placement without actually accepting those moves (these are called
vitual moves). In this way the placement is noto~anged, and a apoint* measurement of the distribution in
time is obtained. As discussed in Section 3.1, this statc measurement is very close to the dynamic one,

where the measurement is made on the Simulated Annealing process running in equilibrium.

Figure 2 gives P (AC) for three temperatures: very high (T u 5000), medium (T - 300) and low (T
9). As the temperature decreases, the negative portion of P (AC) undergoes a dramatic shift to the right,
and is much smaller than the positive portion of P (AC). This relates to tie placement process in that all
of the large good moves are used up, and only a few relatively small improvements are possible.

As temperature decreases, the positive portion of P (AC) In Figure 2 undergoes a right and upward
shift This occurs because as the placement gets better, there are more moves that wll have a greater bad

effect on the placement.

2.2 An EquillbrIum-Nearnoss Measure

Using equation (3) we can Invent a measure of the nearness of a given Simulated Annealing state to
equilibrium. Define E - to be the absolute value of the first term in t equation, that Is

E I JACP (AC)dACI

-.

m-, Tue

T 000

200-
P(*C) 2 /0X 1000000 -:..

I SO
Ii -

100 I

50 7---

-200-1600-1200-400 -400 0 400 0 1200 1600

AC

Figure 2 - P(AC) versus AC on Pimaryl for Temperatures 5000,300 and 9

Similarly let E + be the second term of equation (3):

M -AC
E+ = IAC P(AC) e dAC

Where T, is the temperature of the Simulated Annealing process. We can now define the Cost Force

Ratio, (CFR) as:

CFR = E. 100E+ + E_. x (4)

The closer CFR is to 50% (the expected value of the good moves being equal to the expected values

of the bad moves, E -= E +) the closer the system is to equilibrium.

Figure 3 is a plot of CFR versus generated move number for a Simulated Annealing process running

on circult Primaryl, as It goes from non-equilibrium to equilibrium at temperature 400 changing to 300.

CFR Is determined by keeping a window of AC values multiplied by the PAcce, function and using this to

calculate E+ and E_. In this figure the CFR comes down from an initial value of 55% and hovers around

50%. This shows that the CFR indicates when equilibrium has been acdhieved. It varies about the 50%

point due to the stochastic nature of the algorithm and the approximation of measuring the CFR in a finite

window.

-5.

53-

CFR
so

4.-

47--
I ovI I I I

a o 00 00 goo o 1000

Move Number In 1009

Figure 3 - CFR versus Move Number as Process Achieves Equilibrium

3 Measuring Temperature

As defined in Section 2, the temperature of a placement is the temperature at which the Simulated

Annealing process running on the placement is in equilibrium. In this section we present a method for

measuring the temperature of an arbitrary placeent. ,

The method is called the CFR Binary Search and has the following outline:

1. Measure P (AC) for the given crcuit under the Simulated Annealing process. This is discussed in

detal in Section 3.1.

2. Set the starting search temperature, Tm, arbitrarily.

3. Based on the current T,,, calculate:

-AC
PA ,,()= e(C &C>O

= 1 AC

4. Calculate the effective probability distribution: Pej (AC) = P (AC) X PAcc91 (AC).

Pff (AC) is the probability that a move with cost AC will be both generated and accepted.

5. Calculate the Cost Force Ratio, CFR, using Pq1f (AC) and

-6-

E- = I jAC Pert (AC) d AC I

E+ = iAC Pe(AC.)dAC

and equation (4).

6. If CFR < 50, reduce T. according to a binary search and go to step 3;

If CFR , 50, increase T., according to a binary search and go to step 3.

7. When CFR - 50, T, is the equilibrium temperature, T... Finish.

Each Iteration of the CFR Binary Search requires only the recalculation of the positive portion of the

acceptance function probability, P~c,pl (AC), and subsequently E + and CFR since E - does not change

with Ti,. Note also that P (AC) need only be generated once. This is Important since It takes many

moves (104 to 105) to get an accurate picture of the probability distribution.

3.1 Measurement of the Probability Distribution

A key and difficult step In the CFR Binary Search temperature measurement procedure is the

measurement of the distribution P (AC). There are two potential methods:

1. Static Measurement P (AC) is measured by generatig virtual moves In the Simulated Annealing

process on the placement and recording the frequency with which each cost occurs. That is, moves

are generated in the usual manner, but none are accepted, and so the placement does not change.

2. Dynamic Measurement. P (AC) is measured by generating and accepting moves on the placement.

Here the placement does change as the measurement is made.

For the general case of any Simulated Annealing application a static measurement will not give the correct

distribution. This Is because a static measurement of P (AC) could be taken when the system was at a

local (but not global) optimum. in this case there would be no good (negative) moves generated and since

E- would appear to be 0, the temperature would also appear to be 0, which Is incorrect In the case of a

local optimum. This Is an example of an extreme case, but similar problems can occur when the state is

at or near discontinuities in the energy landscape.

It Is not possible, however, to measure dynamically the distribution while running a Simulated

Annealing process at the placement's equilibrium temperature because that temperature Is what we are

seeking. if P (AC) is measured at the wrong temperature, then the placement's temperature will actually

.7-

change, and the P (AC) will reflect the temperature of the measuring process rather than the rue

temperature. This Is not unlike the Heisenberg uncetainty principle - the act of measuring the

temperature can cause the temperature to change.

An alternative Is to measure P (AC) using the static method, and to determine how accurate this is

as an approximation. The accuracy of this approach, with respect to dynamic measurement is entirely

problem dependent - It depends on the energy landscape of the underlying Simulated Annealing

formulation. We have experimented to determine the accuracy for the standard cell placemont problem

and have found that the static measurment of P (AC) is almost exactly the same as the dynamic

measurement. Figure 4 shows a plot of a static distribution and a dynamic distribution measured on

circuit Primaryl at temperature 300. Measurements and numerical comparisons on this and several other

circuits at various temperatures have shown very small differences between the static and dynamic

measurements. Thus we will use the static measurement of P (AC) In the temperature measurement

algorithm.

Note that this can only be done because of the nature of the placement problem and the specific

Simulated Annealing formulation - It is not a general result for all Simulated Annealing problems.

475- __uaa'

......... Dytmk
375 - -

325-.

175-

Vs

125-

75-

AC

Figure 4 -Comparison of Static and Dynamic Measurement of P (AC)

1N--.

3.2 Temperature Measurements of Simulated Annealing Placements

The CFR Binary Search was used to measure the temperature of a set of Primaryl placements

produced by the SALTOR Simulated Anealing placement program [Rose86,RoseS8al. Each placement

was measured by using N a 100.000 virtual moves to experimentally determine P(WC). Table 1 gives
the temperature at which each placement's Simulated Annealing process was terminated (while in

equilibrium), and the measured temperature using the CFR Binary Search.

SA Produced CFR Binary Search Difference
Temperature Measured Temp

50 496 .4
405 420 +15
294 285 -11
213 215 +2
153 164 +11
99 97 -2
57 60 +3

28 28 0

9 15 +6
2 4 +2

Table I - Temperature Measurement f Simulated Annealing Placements

The measured temperature is quite accurate at the higher temperature, usually less than 7% error.
The lower temperature measurements are proportonately less accurate, but since their absolute values

are small this is not surprising. The error is due to three effects:

1. The cooling schedule used to produce the placement is not perfect, and so the placement Is probajly

not quite in equilibrium.

2. The slight difference, as discussed above, between the static and the (more correct) dynamic

measurement of P (AC).

3. At lower temperatures, there are fewer negative moves, and so the accuracy of E- decreases,

decreasing the accuracy of CFR and hence the temperature measurement.

This last point can be seen experimentally: figure 5 Is a plot of the percentage standard deviation of the

measured temperature as a function of the number of virtual moves, N, for temperatures 28, 153 and 405.

The standard deviation was calculated from fives runs at each number of virtual moves. The variation.is a

.9-

100-,. T.-

75
-- - T ulS 3

%Standard so-o
Deviation

25-

011
I I I I

2 3 4 5

log10 (Number of Virtual Moves)

Figure 5 - Variation of Temperature with loglo (Number Virtual Moves)

decreasing function of N, as would be expected. The Increase in percentage variaton at lower

temperatures is Illustrated as described above.

4 Temperature Measurement of Min-Cut Placements

4,
The reason for measuring the temperature of 4 placement is to be able to switch from a non-

annealing algorithm to an annealing-based one, and to begin'at the correct temperature. In this section we

first define a few relevant terms, then discuss the feasability of measuring non-annealing placements, and

finaly measure a set of placements produced by the Min-Cut placement algorithm [Breu77,Dun85J.

4.1 Definition of Terms

Several terms first need to be defined for Min-Cut placements, as shown in Figure 6. A Min-dut

placement algorithm Is characterized by, among other things, the order and spacing of the cut Ines

applied. In Figure 6, the rectangle represents the entire placement, over which Is laid a set of vertical and

horizontal cut lines. f the spacing of the vertical cut lInes s V and of the horizontal cut lInes is H, then

the cut area, A,Is givenby A = VxH.

4.2 Feasablllty and Matching of Algorithms

One difficulty with measuring the temperature of non-annealing produced placements is that the

definition of temperature presented In Section 2 depends on the associated Simulated Annealing process

being in equilbrium. It is dear, however, that a placement produced by the non-annealing algorithm is not

-10-

Vertical
,"Cut Lne

A F Horizontal
TCut Cut uneAra/

Honzontal

Cut Space M n-Cut F lacerit

V. Vertical Cut Space

Figure 6 -Defintion of Cut-Area

in equilbrium. Thus we must make an approximation and assume that a min-cu placement can be

thought of as being In equilibrium at some temperature. The effect of this approximation Is measured in

the next section where we compare the CFR Binary Search method with a more direct method.

Next we must take into account a mismatch between Min-Cut placement and the Simulated

Annealing move set used in Tinberwolf [Sech85] and SALTOR [Rose88a]. This move set allows cells to

overlap and penalizes that overlap. The Min-Cut placement however, has no overlap. Thus the first

moves made on the Min-Cut placement during a Simulated Annealing process are more likely to be bad

until a basic amount of overlap occurs, since almost every move will create some overlap where there was

none before. This will shift the P (AC) distributon to the right and give erroneous results for a measured

temperature. On the other hand, some Simulated Annealin9 algorithms, such as [GrovS6], do not use

overlap and would not have this problem. To avoid it here, we used a simplified circuit in which all cells

were set to be of equal size and only exchange moves are made in the Simulated Annealing process. This

prevents any overlap from occurring. Experimentally, we have seen that reasonable results are still

obtained If overlap is allowed to occur, since the wire length portion of the cost function dominates the

overlap.

4.3 Measurements

Using the CFR Binary Search method we measured the temperature of several Min-Cut placements

with different cut areas. These placements were produced by the ALTOR standard-cell placement

program (Rose85]. Table 2 gives the measured temperature for each placement and Its cut area.

To check If the temperature measurements were correct, we measured the temperatures of the

placements In a different way, called the Delta Method. The Delta Method finds the temperature of a

placement by running an annealing process on the placement at a range of temperatures. It Is run for 100

move generations per cell, for each temperature. and the percentage difference in absolute cost function

Is measured, called the delta. The temperature at which the absolute value of the delta is less than 2% is

-Omn-

the equilibrium temperature of th placement. This Is a direct way of experimentally finding the

temperature at which the change in cost hmcion Is near 0. The Delta Method requires much more

computation than the CFR Binary Search method, and thus is of no practical use. Table 2 shows the

temperatures determinid by the delta method, and the difference between the the binary search method

and the Delta method. The binary search temperature measurement of Min-Cut placements is not as

accurate as those for Simulated-Annealing produced placements, yet it does track the temperature

reasonably well.

Cut Area Temperature Measured Difference

p.n 2x]04 Binary Search Delta Method_

2021 398 374 +24

1011 234 200 +34

505.3 162 132 +30

252.6 124 96 +28

126.3 91 67 +24

63.22 73 50 +23

31.58 49 40 +9

25.24 40 32 +8

12.60 34 30 +4

7.697 29 X 27 +2

3.139 28 ;§ +2

Table 2 - Temperature Measurement of Min-Cut Placements

The CFR Binary Search method consistently overestimates the equilibrium temperature. due to the

fact that a min-cut placement is not in equlbrium, as discussed In section 4.2. A more specific reason for

this Is that the Min-Cut placement leaves several particularly good moves possible, because of its lessyr

hill-dimbing ability (we used [Fidu82] as the partitioning algorithm). A Simulated Annealing process would

quickly correct these, but they result in an overestimation of E_ and hence a temperature that is too high.

4.4 Comments

intuitively, one would expect the measured temperature of a Min-Cut placement to be an increasing

function of the cut area, and this Is observed in Table 2. This intuition comes from the notion that at higher

temperatures, Simulated Annealing moves cells over large distances which determines a coarse

placement. The first few cuts of Min-Cut placement, corresponding to a large cut area, also determines a

coarse placement. At lower temperatures, Simulated Annealing makes moves that are much smaller in

scope [Whit84] corresponding to the much smaller cut area of Min-Cut placement. The results of the

-12-

measurements shown in Table 2 bear out this intuition, as it is clear that the measured temperature is an

increasing function of the cut area.

It is Interesting to note the relationship between cut area and measured binary search temperature.

We have found that the measured temperature Is close to a linear function of tie square root of the cut

area (4), as shown In Figure 7. The square root of the cut area Is roughly equivalent to either the H or

the V shown in Figure 6. This makes sense under the following line of reasoning: bad moves will move a

distance from proportional to "- since Min-Cut only places cells to an "accuracy" of Assume that

the cost of those moves is proportional to the move distance, as an approximation. The temperature that

is likely to accept bad moves of cost k x NT is also proportional to ;A because moves are accepted with

probability e -T. Hence the temperature Is an approximate linear function of the distance 'I-.

400-

300-

Measured
Equilibrium 200-

Temperature

100-

0--
0 10 20 30 40 50

Sqrt(Cut Area)

Figure 7 - Plot of Measured Temperature vs. Sqrt Cut Area

5 Conclusions

We have presented a method for determining the temperature, In the Simulated Annealing sense, of

an arbitrary placement. It uses a new view of Simulated Annealing state that is based on the probability

distribution of the change In cost function. This view provides a new definition of equilibrium, a measure

of the nearness of a Simulated Annealing state to equilibrium, and an Interesting perpsective on

equilbrium dynamics.

The temperature of several Simulated Annealing placements have been measured with good

accuracy. The temperature of a set of Min-Cut placements has been measured with reasonable accuracy,

and we have demonstrated an experimental relationship between cut area and temperature. These

measurements are useful for determining the starting temperature when switching from a non-anneaiing

-13-

.m m m l m llm m iimmo w

based placement strategy to an annealing-based one.

6 Rseernces

Aar185
E.H.L. Aarts, P.J.M. van Laarhoven, "A New Polynornial-Time Cooling Schedule," Proc. ICCAD 85,
November 1985, pp. 206-208.

Breu77
M.A. Breuer "Min-Cut Placement," Journal of Design Automation and Fault-Tolerant Computing. Oct
1977. pp 341-362.

Dunl85
A.E. Dunlop. S.W. Kernighan "A Procedure for Placement of Standard-Cell VLSI Circuits," IEEE
Transactions on CAD, Vol. CA6-4, No. 1, January 1985, pp 92-98,

Fidu82
C.M. Fiduccia, R.M. Matheyses. "A Linear Time Heuristic for Improving Network Partitions,6 Proc. 19th
Design Automation Conference, June 1982, pp 175-181.

Grov86
LK Grover, "A New Simulated Annealing Algorithm for Standard Coll Placement," Proc. ICCAD 86.
November 1986, pp. 378-380.

Grov67
LK Grover, "Standard Cell Placement Using Simulated Sintering," Proc. 24th DAC. June 1987, pp. 56

-59.

Laar87
P.J.M. van Laartioven and E.H.L. Aarts, Simulated Annealing: Theory and Applications," D Reidell
Publishing Co., Dordrecht, Holland, 1987.

Prea87
B.T. Preas. "Benchmarks for Cell-Based Layout Syitemns," .Proc. 24rd Design Automation Conference,
June 1987, pp. 319-320.

RomeB4
F. Romeo. ,A. Sangiovanni-Vincentelli, "Probabilistic Hill Climbing Algorithms: Properties and
Applications "Memorandum No. UCB/ERL M84/34, March 1984, Elecronics, Research Laboratory,
University oR California, Berkeley.

Rose8S
J.S. Rose, W.M. Snelgrove. Z.G. Vranesic, "ALTOR: An Automatic Standard Cell Layout Program,"
Proc. Canadian Conterence on VLSI, November 1985, pp. 168-173.

Rosefta
J.S. Rose, "Fast, High Ouality VLSI Placement on an MIMD Multiprocessor " Ph.D. Thesis, Department
of Electrical Engineern, University of Toronto 1986; also Computer tystems Research Institute
Technical Reporf # 189.

Rose86b
J.S. Rose, D.R. Blythe W.M. Snelgrove ZG Vranesic, "Fast, High Quality VLSI Placement on an
MIMD Multiprocessor." Iroc. ICCAD 86. N~ovember 1986, pp. 42-45.

Rose$8a
J.S. Rose, W.M. Snelgrove. Z.G. Vraneslc, "Parallel Standard Cell Placement Algxihr with Qualit
Ecuvalent to Simulated Annealing," IEEE Transactions on CAD, Vol. 7, No.3. March 1988. pp. 37

Rose88b
J.S. Rose W. Klebsch, J. Wolf, "Temperature Measurement of Simulated Annealing Placements," to
appear In IProc. ICCAD 1988.

Sech85
C. Sechen, A. Sangiovanni-Vincentelli "The Timberwoif Placement and Routing Package," IEEE JSSC.
Vol. SC-20, No. 2, April 1985. pp 5101&22.

-14-

W~ht84
S.R. White, "Concepts of Scale in Simulated Annealing," Proc. nt. Cont. on Computer Design. October
1984. pp. 646-651.

The Parallel Decomposition and Implementation

of an Integrated Circuit Global Router

Jonathan Rose
Computer Systems Laboratory,

The Center for Integrated Systems.
Stanford University, Stanford, CA 94305

Abstract The advent of usable commercial multiprocessors, with
potentially enormous aggregate computation power may

Better quaity automatic layout of integrated circuits can change this view if automatic routing can be
be obtained by combining the placement and routing decomposed into tasks that can be efficiently run in
phases so that routing is used as the cost function for parallel. The aim of the Locus Project at Stanford
placement optimization. Conventional routers are too University is to combine placement and routing into one
slow to make this feasible, and so this paper presents a optimization process, and to do this 1: using
paralel decomposition and implementation of an multiprocessing to increase the speed of the routing.
integrated circuit global router. The LocusRoate router is
divided into three orthogonal "axes" of parallelism: This paper presents the parallel decomposition and
rmuting several wires at once, routing segments of a wire implementation of the LocisRoure global router for
in parallel, and dividing up the potential routes of a integrated circuits. The goal of the router is to make the
segment among different processors to be evaluated, average routing time for one wire dose to the time that it
The implementation of two of these approaches achieve takes to recalculate more conventional cost functions.
significant speedup - wire-by-wire parallelism attains This means that the routing time must be on the order of
speedups from 6.9 to 13.6 using sixteen processors, and one to five milliseconds per wire on a VAX 11/780-class
route-by-route achieves up to 4.6 using eight processors. machine [Sech85]. The intention is for the global router
When combined, these approaches can potenaiy to be invoked to zip-up and re-route wires whose end
provide speedups of as much as 55 times. points ave changed when one or more cells am moved

in an iterative improvement placement scheme.

1 Introduction Nrior work on parallel routing (see (Blang4] for a

survey) has been done in isolation from the placement

Tbe task of automatic layout of integrated circits problem and has generally focused on the Lee routing
has traditionally consisted of two pans: automatic algorithm (Lee61]. In most cases the algorithm has been
placement where the circuit modules are positioned and fixed in hardware and as such lacks the flexibilky that is

automatic routinS in which the paths of the connecting always required in practical CAD software such asihe
wires are determined. The objective of both tasks is to global router described in [Yama85]. A far more
result in a layout with as little area as possible. The best versatile approach is to use general purpose parallel
way to evaluate the "goodness" of a placement is to processors, which allow an application to be tuned in a
route it and determine its final area. Up to now this has manner similar to uniprocessors. Using the flexibility of

ot been feasible because routing itself is a difficult a general purpose multiprocessor, several "axes" of

combinatorial optmization problem and common parallelism can be exploited. If these axes ae
heuristics have been too slow to be used in this way. orthogonal to each other then when used together they

can provide significant speedup. Two approaches to
parallelirang an algorithm are said to be orthogonal iff
when used together, the resulting speedup is the product
of the speedup of the individual methods.

The basic idea of the LocusRoute algorithm is to
investigate a subset of the two-bend routes between pairs
of pins to be routed. The uniprocessor LocusRoute
program can route wires in average times from 45 ms to

-1-

935 ms on a DEC Micro Vax]D depending on the size of "built-in feedthrough") is used.
the circuit. The routing speed is increased by
parallelizing the algorithm in three ways: routing several 2.1 Problem Definition
wires at once. routing several two-point segments
simultaneously, and evaluating possible two-bend routes Global routing for standard cells decides the
m parallel. The wire-by-wie parallel approach achieves following for each wire: Fist, for each pin duster it
speedups ranging from 6.9 to 13.6 using sixteen decides which of the physical pins are actually to be
processors. The route.by.route approach achieves connected. Second, if there is no path between channels
speedups of up to 4.6 using eight processors. These two when one is required, it must decide either which built-in
axes of parallelism am orthogonal to each other. feedthrough to use or when to insert a feedthrough cell

Lastly, it must decide which channel to use in the route
This paper is orgaized as follows: Secdo 2 fom a pad into the core cells. The objectve is to

describes the standard cell layout methodology and minimize the sa of the maximum widths of each
defines the associated global routing problem. Section 3 routing channel (hereafter called the total density), and
describes the uniprocessor LocusRoute algorithm, in so doing minimize the final area.
Section 4 presents thre approaches for speeding up the
roter using parallel processing, and gives performance In this discussion of global routing there will be no
nsults, differentiation between feedthrough cells and built-in

feedtiroughs - they are referred to jointly as vertical
2 Standard Cell Layout hops. The decision to insert a feedthrough cell or use a

built-in feedthrough is deferred to a post-processing step
The standard cell-style layout is a common circuit (Rose88b].

design methodology in which all circuit modules ar of
equal height and are "butted" together to form rows as 3 A Standard Cell Global Router
shown in Fpigure 1.

Standard Coll Pin Cluster his section gives a brief description of the
*To b RouteW" LocusRoute global router. A mom complete discussion

sW d. 4a be found in [Rose88b].

_ _ _ _ --- F 3.1 Routing Model

4 The LocusRoute algorithm uses the following muting
model: Each possible routing position in a channel (also[I called routing grid of that channel) is represented as one

,hanel .-. - -element of an array as shown in Figure 2. The array,
called the Cost Array, has a vertical dimension of jhe

number of rows plus one, and a horizontal dimension of
the width of the placement in routing grids. Each
element of the Cost Array contains two values: Hj and

Figure 1 - Standard Cell Layout V. Hi, contains the number of of wire routes that pass
horizontally through the grid at channel i in position j.

Power and ground wires inn horizontally through the V*j i the cost, assigned by parameter, of traversing I
cells and are connected by abutmen. Cells have row in travelling from channel i to channel i + I at grid
connection points on their top and bosom and typically position J. The routing problem for a wire is
one logical pin has two physical pins on each. This represented as a list of (i , j) pairs of locations in the
goup of pins is called a pin cluster. Connections Cost Array, corresponding to the locations of pins to be
between adjacent rows are made by routing wires in the joined.
borizontal routing channels as shown in Figure 1. If a
connection is required between two non-adjacent rows Under this model, the objective is to find a
then either feedthrough cells are inserted in the minimum-cost path for each wire. The wire's cost is
intervening rows to make room for vertical connections given by the sum of all of the Hq and Vi, that it
or an uncommitted path in an existing cell (called a traverses. After a wire is routed through location (i, j)

-2-

I, V , , S. Win lay down. The presence of the newly routed

wire is put into the Cost Army by incrememing the
char.w s aay elements where de new win resides. Once

______ __ ___ I Iithere, other wins cam take it into account.

Ca",' 3
11 1 3.3 Route Evaluation

11 The LocusRoute algorithm seahes for a low-cost/Aw*'W I .path for a permutation by evaluating a number of
MV different routes. The idea is to determine the cost of A

subset of all two-bend routes between the two pint, and
then choose the one with the lowest cost. Figure 3
illustrates three possible two-bend (or less) routes inside

Figure 2. Routin8 Model a representation of the Cost Array as a small example.

its presence is recorded in the Cost Array (i.e. Hij is
incremented, as is Vj if the direction is vertical) so that
subsequent wires can take it into account. Thus the mome~I~ ~' ~ I
wires going through a particular location in a channel,
the less likely it is that area will beud. u s eIl

3.2 The Global Routing Algorithm
(a) (b) ()

There are five main steps in the LocusRoute global
routing algorithm for standard cells. They ame:

Figure 3 - Sample Two.Berd Roaaes

I. A multi-point wire is decomposed into two-poF ,

segments, by finding its minimum spanning te
using Kruskal's algorithm (Knrus6]. If-ihe horizontal distance between the two pins is H

routing grids, and the vertical difference in channels
2. The segments are further decomposed, if necessary, between the pins is C. then the total number of two-bend

into permutations. which ae the set of possible routes is C+H. A parameter, called the two bend
routes between each pin in a pin cluster. 'iere are percent ('BP) dictates the percentage of the total
four possible routes, one between each of the two number possible two-bend routes to be evaluated. Thus
physical pins in each pin duster. It has been the total number of routes evaluated is given by
experimentally determined that only when the TPx(C+H). When "BP is less than 100, thedtbe
cluster am greater than a certain horizontal distance 1 .
apart (about 300 routing grids) is it necessary to routes am evaluated in a priority order [Rose88b].

evaluate all four permutations. Less than this Experimentally, it was determined that a TBP of 20%

distance, only the closest pin pair need be evaluated. would result in a path as good as that found by an
exhaustive man router, as compared on the basis of total

3. A low-cost path in the Cost Array is found for each density for the entire circuilt.

permutation by evaluating a subset of the two-bendroutes between each pin pair. The permutation with The LocusRoute algorithm makes use of a general
ruthe betw o sseche pia . e erut atin wh iterative technique in the manner described in [Nair87].
the best cost is selected as the route for that segment. Briefly, this means that after the first time all wires ateSection 33. routed, each is sequentially ripped up from the CostArray, and then re-routed. By routing each wire several

4. Traceback. This is a cleanup step that provides times (typically four is sufficient), the wine order-

enough information for later detailed routing. dependency is reduced and the final answer is improved
by five to ten percent.

-3-

The uniprocessor LocusRoute algorithm compares the total routing time, so that some amount of speedup
favorably with & widely used placement and global from route-based parallelism can be expected.
routing package [SechS5J, and with a good quality
industrial global router (Rose88b]. To date, we have not considered pipelining as an axis

of parallelism. A pipeline implementation would have
4 Parallel Decomposition & Implementation the same stages as the basic algorithm described in

Section 3.2. To some extent, pipelining uses the same
In this section several ways of parallelizing the axis of parallelism as wine-based parallelism since it also

LocusRoute router are proposed and implemented. routes several wires at once. The best use of pipelining
Figure 4 illustrates several such axes of paralelism: would be to execute the first two stages, segment and

permutation decomposition, for all wires in parallel since
I. Wire-based Parallelism. Each processor is given an these stages have no data dependencies on the routing of

entire multi-point wire to route. other wires. In the context of iterative improvement
placement, however, the wir positions will not be

2. Segment-based Parallelism. Each two-point segment known in advance as they are when considering the
produced by the Kruskal decomposition can be routing problem in isolation.
routed in parallel.

Each of the following sections discusses the details
3. Permutation-based Parallelism. Each of the four of the axes of parallelism that have been implemented.

possible permutations, as discussed in Section 3.2, In the case where the quality of the answer of the
can be evaluated in parallel, parallel program is worse than the sequential program, a

quantitative measure of the anotmt of degradation is
4. Route-based Parallelism. Each of the possible two- given. This section is concluded by a discussion of the

bend routes for every permutation can be evaluated combination of two of the axes of parallelism. All
in paralleL decompositions assume a shared-memory

multiprocessor.
1,Wtre-Balse P~ra~ilisry/

3) /.,mt.,r 4.1 Wire-Based Parallelism

) SgmtI •' In Wire-Based parallelism. each multi-point wire is
a". B given to a separate processor, which runs the

LocusRoute routing algorithm as described in Section 3:
prior to decomposition, if the iteration technique is used.

A the wi must be "ripped up" out of the Cost Array.
... . Nexi, each wire is decomposed into two-point wires, and

possibly further into permutations. A subset of the,A, potential two-bend routes is generated, and tienevaluated by traversing the Cost Array. When a final
route is cbhosen, the Cost Affay is updated to refhect the

Figure 4 - Parallel Decomposition of LocusRoute new presence of that mute.

Note that these are only potential axes of parallelism. The Cost Array is a shared data structure to which all
It is possible to eliminate some of them as uneconomical processors have rad and write access. Other than a task
by using statistical run-time measurements of the queue, the cost array is the only shared piece of data.
sequential router. For example, the number of two- This is an excellent axis of parallelism: if the sharing of
point segments that actually need to have all four the Cost Array does not caus performance degradation
permutations evaluated is quite small with respect to the due to memory contention, the speedup should simply be
total. Thus, permutation-based parallelism is not going the number of wires that are muted in parallel. The
to provide significant speedup and isn't worth the time it resulting parallel answer, however, will not necessarily
requires to develop. On the other hand, other be the same as the sequential answer. The problem is the
measurements show that the time spent evaluating the sequential router has complete knowledge of all wires
cost of two-bend routes ranges from 50 to 90 percent of that have already been routed, by virtue of their presence

-4-

in the cost array. The parallel router has less the wires. The speedup ranges from 5.4 for a smaller
information because it doesn't we the wires that are circit to 7.6 for the largest. using 8 processors. It
being routed simultaneously. The more wires routed in ranges from 6.9 to 13.6 using 15 processors. The
parallel, the less information each processor has to speedup is less for smaller circuits because they ae done
choose good routes that avoid congestion and hence the in such a short time, and the suanup overhead becomes a
total density increases. Thus the total &nsity will factor.
increase as the number of processors increases. The
measued effect ontotal denity is discussed below, in-
Section 4.1.1. cirllt * I 1P r a P IsP a Pr IsPr

Nun. Wb.o T (a) T (a) T (e) Spdup Sodup

4.1.1 Wire-Based Parallel Results 4 1 .o 13.0 10.2 S 5-4

Figure S is a plot of the speedup versus number of .5 79.3 14.3 11.2 S.L .
processors for a 3029-wire example nunning on an BNn 774 139 21.0 16.0 6. A .7
sixteen-processor shased-memory Encore MULTIMAX. " - . ..1
The Encore uses National 32032 chip sets which, in our ahy1 904 279 1 43.4 .8
benchmarks, timed out slightly faster than a DEC Micro 3NAC 937I 19 305 21.4 _ .±J
Vax II. The speedup for p processors, S. is calculated 146 63.

as V , where T, is the execution time on one processor 9NA 1634 725 112 77.8 .M 9.3
and Tr is the execution time using p processors. The
execution time measured does nor include the time for Tin. 1673 684 797 465 7 J 12.2
input of the circuit, only the actual routing computation prb 3029 3950 517 290 7A 13.6
time. For this circuit the increase in total density due to
the missing "knowledge" effect described in Section 4.1
from I to 16 processors is 6%. and the number of Table2-PerformanceofWire-BasedParallelisn
vertical hos increass 2%. Table 3 gives the total density and vertical hop

16- X 4 counts using 1, 8 and 15 processors. 7he increase in
14. . da .total #wsity ranges between 1% to 7% for 15
12d 10 - ..d processors. The increase in vertical hops is ranges from

Speed 10 -1% to 9% but is generally less than 4%. In the
UP 4-" placement context this level of degradation is tolerable.

6- In the future, however, on machines with moe
4- processors, it will likely become more of a problem. We
2-, have considered three ways of reducing the effect of the

I I I I t I I missing knowledge due to simultaneous routing of wires.
2 4 6 8 10 12 14 16 The firm is to try to ensure that the different procesrs

Number of Processors only deal with wires that are in distinct physical areas, so
that the wires routed simultaneously do not interact. The

Figure 5 - Wire-Based Speedup for 3029-Wire Circuit second way to reduce processor interference is not to rip
up a route until the new route is determined. In this way
there is a much shorter period of time in which the cost

The program was run on several other circuits, which aray does not contain the presence of the wire. This
are from several sources: The standard cell benchmark severely degrades the new route of the win itself.
suite (Primaryl, Primary2, Test06 [Prea87]), Bell- however, since it sees the old copy of itself while
Northern Research Ltd. (BNRA.BNRE). and the evaluating potential routes. Experimentally, the
University of Toronto Microelectronic Development degradation was sufficient to nullify any gain fm the
Centre (MDC). The placement for all of the circuits was approach. A third method not yet implemented is to
done by the ALTOR standard cell placement program route the wires in a different order for each iteration.
(Rose85.Roseg8a]. Table 2 gives the execution time and (iteration is described in Section 3.3) so that the
speedup using 1. 8 and 15 processors, for all the test knowledge missing in one iteration is different from that
circuits. The execution time is for four iterations over all in another.

-5-

quality in both cases is very neady the same. Note that
STin a placement context in which many mor wims wi
Ckcutt I Tota I enrst VuIttoet Hop be ripped up and re-routed, the effect of these small
, . errors would be cumulative and so an occasional

ENRE 130 134 % r 449 490 9. corm.ction step may be necessary if locks am not used.

MDC I 134 142 % 241 243 IS
BIRD 176 ia) 3% 530 M as Crcua a Avg Dernwy Vertical HopS

-LockType T(a) A_. _0 Avg I SD

PAAWv1262 2691 3 940 9 3.% .Prbmnyl Lock& 432 269 2.0 962 4.9

9NRC 191 193 1% 739 772 4% Prlimaryl NO Locks 33.7 272 3.0 _ 4 3A

GNRB 307 325 64 1904 1974 4% PrknwyL Lcks 321591 I.9 3126 17.5

ENdRA_ !98 32D 7 2106 2197 4%. Phrlmay2 NO Lock. 303 591 4.9 3122 4.0
__.a6 18 3381 69. 31 386 21
TarM 3 - 6, 3 2 29. Table I - Speed A Quality Using and Not Using Locks

lPrhnarv2 .560 _92 6%__ M 31261 2592 ,I ______ ,145

Table 3 - Quality of Wire-Based Parallelism 4.2 Segment-Based Parallelism

In segment-based parallelism,,.each two-point
4.1.2 Gain Due to Removal of Locks segment of a wire is given to a diffore.t processor to

route. Ihis is the stage follovng the Kruskal
An interesting issue is whether or not each processor decomposition, but prior to the evfuazon of different

ahould lock the Cost Array as it both rips up and re- two-bend routes. Measurements of the sequental router
routes wims in the Cost Array. The act of ripping up showed that about 60% of the routing time was spent on
route is essentially a decrement, and re-routing is wires with mom than one segment. On the suface this
increment on a set of cells in the Cost Array. Lokig Implies that a speedup of about two c6 be achieved
the Cost Array during these operations ensures that two using tree processors. UnfonunjIy, this is no the
simultaneous operations on the same element does not cas. Even though thereaan many wimis that provide
prevent one of the operations from being lost. It does, two or three-way parallel tasks, the size..,of those tasks
however, cause a significant performance degradation. am not necessarily equal. The amount of tme taken by
For example, for the Primaryl ciruit the speedup LocusRoute to route two poiws is prppmona to the
decreased from 8.3 to 6.4 using 15 processors when Cost manhattan distance between the two kints. If, in a
Array locking was used. For the Primary2 circuit the three-point wire, two of the points ae close. together and

speedup for 1S processors was reduced to 12.1 from 13.0 the &i is far away, it will then take.uipcb looger to
due to locking, route one segment than the other. "liui te processor

assigned to the short segment will .kldle while the
The final routing quality, however, does not decrease longer one is being routed. This unequal loid prevents a

when locking is omitted. The reason for this is that the reasonable speedup. On the test cirvuitia speedup of
probability of two processors accessing the same Cost about 1.1 using two processors was mepw d-
Array element (of which there am on the order of 10000)
at the same instant is very low. Even if very few It is fairly dear, however, that an era processor
increment or decrement operations are lost, the effect on cold be assigned to a number of procepors that me

final quality is negligible since only a few elements routing different wires. It is likely that t any given
would be wrong by a small amount. This was shown time, one of them will be able to use the wxu processor
experimentally by performing ten rum with 15 to route multiple segments. though eveg processor
processors on each of the above circuits, for both the won't be able to use a second processor all the time,
locking and non-locking cases. Table 1 gives for the two some number of processors can be use4,in this way.
circuits the average running time, and the average and Tis technique would become essential if many
standard deviation of the total density and number of processon were used in wire-based parxlism, at the
vertical hops. Fty'm this table it can be seen that the point where the number of processors was close to the

-6-

number of wires. In that case the load balance would and the fact that some segments have only a few
become a problem in wire-based parallelism because potential routes.
wires with many segments take much longer than wines
with few segments. Hence segment-based parallelism P
could be used to speed up the routing of the larger wires.

4.3 Route-Based Parallelism ONRE_ 1.22

In route-based parallelism all of the two-bend routes MDC 13/2
to be evaluated am divided among separate processors. _NR I .A12
Each finds the lowest-cost path among the set of two-
bend routes that it is assigned. When all processors P__nryl .8/
finish, the route with the best overall cost is selected. In sNwC 1.6/
this case the processor loads will be well-balanced .
because the routes am all of the same length, and the SNRS
number of mutes is evenly divided among the BNRA 2.0/4
processors.

Tiro06 I 4.6/5

Figure 6 is a plot of the speedup versus number of Primy2 33/5
processors for the circuit TestO6, a large circuit. It
achieves a speedup of 4.6 using 8 processors. Table 4 - Performance of Route-Based Parallelism

7- ... 4.4 Combining Two Axes of Parallelism
6- mueured

Speed 5 - The wire-based parallel ad route-based parallel
Up 4- approaches an perfectly orthogon4 hence their

3- speedups should multiply. Assume, for a given circuit

2- .that a speedup of S. is achieved using win-based
I- ,d parallelism on W processors, and a speedup of S, is

achieved using route-based parallelism on R processors.
1 2 3 4 5 6 7 8 Then, because the two approaches are orthogonal, the

Number of Processors resuling speedup wben they are used together should be
S. x S, using W x R processors. This model neglects

Figure 6- Rowe-Based Speedup for Circuit TesiO6 the effect of memory contention that may occur when
the number of processors is increased dramatically.
Table 5 shows the best predicted speedyp for the test

Table 4 gives the best speedup achieved for all of the circuits. Combined speedup ranges fromf 8.3 using 30
test circuits, ranging from 1.2 using 2 processors to 4.6 processors to 55 using 120 processors. The smaller
using 8 processors. The number of processors given for circuits are routed very quickly and so it is difficult to
each circuit in the table are chosen by eye as to which get speedups greater than 10 due to the startup overhead.
number gives reasonable efficiency. It is clear that only The larger circuits benefit gready from the combination
the larger circuits benefit from more processors. The of the approaches.
principal reason for the limitation in speedup is the
sequential portion of the muting: the wire Table 5 also contains the average routing time per
decomposition and the post-route processing that places wir on one processor, A ,. and what the the average
the presence of the route into the Cost Army. On the ruting time per win would be under the maximum
small circuits that have lesser speedup, the sequential speedup. Aaw. a = A I,. Tbe average
portion is about 50% of the total routing time, while on
the larger circuits which have beter speedup the routing times for all circuits, under the various speedups
sequential portion ranges from 10-15%. Other minv. range from 4.Oms to 17ms, and approaches our goal of
effects which degrade performance am the imbalance of one to five milliseconds per wire. It is interesting to note
processor task sizes due to integral numbers of routes that even though the unipmcessor times ae widely

-7-

quality in both cases is very nearly the same. Note that

CrcT in a placement context in which many more wires will
C I Total Osney I erta I Iorel be ripped up and re-routed, the effect of these small

NamIlr~lPrI Mor1 ltjl~rI M I errors would be cumulative and so an occasional
S [130 134 3% 449 490 9 corection step may be necessary if locks me not used.

MC 1211 142 64 241 U3 11%1 3W, 23 - Circuit & Avg Donelty AVertic Hope
NRD 176 11 3 530 572 ' 9 3%

PhmI2i Lock* T3pe 16 2Av 962 4.9

NFC j191 1931 739 772 46 Prnamry NO Locke 33.7 f272 3. o 964 3.4

ONO 307 35 6% 1104 1974 414 Prrnwy2 Locko 325159111.9 3126 7.5

9NRA_ 298 320 7% 2106 2197 441, Primrny2 NO Locke 303 591 4.9 3122 4.0

Teetft 313 331 646 13221 326 2% Table 1 - Speed & Quality Using ad Not Using Locks
Primar2 560 592 6%. .3053 3126 12%

Table 3 - Quality ofWire-Based Parallelism 4.2 Segment-Based Parallelism

In segment-based parallelism, each two-point

4.1.2 Gain Due to Removal of Locks segment of a wire is given to a different processor to
route. This is the stage following the KIuskal

An interesting issue is whether or not each processor decomposition, but prior to the evaluation of different
should lock the Cost Army as it both rips up and re- two-bend routes. Measurements of the sequential router
ruites wires in the Cost Army. The act of ripping up showed that about 60% of the routing time was spent on

route is essentially a decrement, and re-routing is X wires with more than one segment. On the surface this
increment on a set of cells in the Cost Array. Locking Implies that a speedup of about two could be achieved
the Cost Array during these operations ensures t two using tree processors. Unfortunately, this is not the
simultaneous operations on the same element does not case. Even though there are many wires that provide
prevent one of the operations from being lost. It does, two or three-way parallel tasks, the size of those tasks
however, cause a significant performance degradation. are not necessarily equal. The amount of time taken by
For example, for the Primaryl circuit the speedup LocusRoute to mute two points is proportional to the
decreased fom 8.3 to 6.4 using 15 processors when Cost manhanan distance between the two points. If, in a
Array locking was used. For the Primary2 circuit the three-point wire, two of the points are dose together and
speedup for 15 processors was reduced to 12.1 from 13.0 the third is far away, it will then take much loogert to
due to locking, route one segment than the other. Thus the processor

assigned to the short segment will be idle while the
The final routing quality, however, does not decrease longer one is being routed. This unequal load prevents a

when locking is omitted. The reason for this is that the reasonable speedup. On the test circuits a speedup of
probability of two processors accessing the same Cost about 1.1 using two processors was measured.
Array element (of which there are on the order of 10000)
a the same instant is very low. Even if very few It is fairly dear, bowever, that an extra processor
increment or decrement operations am lost, the effect on could be assigned to a nmber of processors that ae
final quality is negligible since only a few elements routing different wires. It is likely that at any given
would be wrong by a small amount. his was shown time, one of them will be able to use the extra processor
experimentally by performing ten rins with 15 to route multiple segments. Though every processor
processors on each of the above circuits, for both the won't be able to use a second processor all the time,
locking and non-locking cases. Table I gives for the two some number of processors can be used in this way.
circuits the average nning dime, and the average and This technique would become essential if many
standard deviation of the total density and number of processors were used in wire-based parallelism, at the
vertical hops. From this table it can be seen that the point where the number of processors was close to the

-6-

General Compiled Electrical Simulation

Daniel Weise
Stanford University

Computer Systems Laboratory
Center for Integrated Systems 207

Stanford, California 94305
(415) 725-3711

Scott Seligman
Stanford University

Computer Science Department
Margaret Jacks Hall

Stanford, California 94305
(415) 723-3088

Abstract: This report describes the initial results of our research into General Compiled
Electrical Simulation. We use advanced compiler techniques to speed up electrical level
simulation such as the type performed by SPICE. Our system creates a simulation program
by compiling together a simulator and the circuit to be simulated. Our approach results
not only in substantial speedups, but also in simpler simulators. An added benefit is that
simulation programs can be parallelized much more effectively than a simulator can be
parallelized.

Submitted to the 1989 Design Automation Conference

This research was supported by a CIS Seed Grant and Darpa Contract N00014-87-K-0828.

. .. . i nm~i im mm.., mnmmuimlnmn lnlm == uumu n 1

I Introduction

Circuit simulation is vital to creating correctly functioning VLSI circuits. The advent of
SPICE [Nagel] and other circuit simulators was a boon for circuit designers. Unfortunately,
accurate electrical level simulation requires prohibitive amounts of computation for moderate
or large circuits. Even when a given circuit takes an acceptable amount of time to simulate,
it must be simulated many times before its design is finished, and the total simulation time
can be very large. Most importantly, as circuit sizes increase, the size of circuits we wish to
simulate grows as well. [White] recounts that at one major IC house more than 70% of an
IBM 3090 is devoted to circuit simulation, and that at another house SPICE is run more
than 10,000 times a month. Faster simulators will reduce the cost of designing functional
silicon and improve the designs.

We are designing and building an interactive system for high speed electrical simulation
of digital and analog circuits that is simple to use, programmable, much faster than any
highly optimized simulator, capable of hierarchical and mixed mode simulation, and able to
produce efficient code for parallel processors. We are employing four important ideas in the
design of the system: general compiled simulation, embedded operation, object orientedness,
and standard interfaces. Our ultimate goal is a software/hardware system costing around
$15,000 that can sustain 100 MFLOPS oursimulation problems.

This paper discusses the first of these ideas, 'general compiled electrical simulation. Stan-
dard circuit simulators accept a circuit and its input waveforms, and return the circuit's
output waveforms. In general compiled electrical simulation (Figure 1), a simulator and
a circuit are together compiled into a simulation program that, when run, has exactly the
same behavior as running the simulator over the circuit, but runs many times faster. The
simulation program's increased speed comes from compile-time unfolding of all constant data
structures (such as the structure of the circuit itself) and from optimization of the unfolded
code. Component values can be left symbolic during compilation so that recompilation isnit
necessary when component values change. This feature increases the speedups for What-If?
simulation and Monte Carlo analysis.

A simulation program consists of mostly straight line arithmetic code which uses few,
if any, structured values. All opportunities for parallelism are explicit. A compiler can
plan the spatial and temporal use of nearly every value, i.e., where the value is stored and
when the value is computed. Therefore a simulation program will make very efficient use of
heavily pipelined and parallel machines. A compiler will also be able to optimize register
and data cache usage. Because the dynamic behavior of the simulation program is statically
determined and all parallelism is explicit, economical special purpose hardware for executing
the simulation program is feasible.

2

OUTPUTCIRCUIT SIMULATOR SIGNALS

INPUT
SIGNALS

SIMULATOR

CIRCUIT PARTIAL . OPTIMIZED OUTPUT
%,EVALUATOR SIMJLATION L SIGNALS

+ PROGRAM
OPTIMIZER

T
INPUT

SIGNALS

Figure 1: Normal Simulation and General Compiled Simulation. Normal simulation is de-

picted in the top figure. In normal simulation a simulator accepts a circuit and its input
signals, and returns the circuit's output signals. In general compiled simulation, shown in
the bottom figure, a partial evaluator accepts a simulator and a circuit, and produces a

simulation program that, when applied to input signals, produces output signals.

3

A prototype of our system is implemented for linear circuits1 . The simulation programs
we produce run at least five times faster than [Spice3J.

This paper has six sections. Background and related work are presented next, in Section
2. Section 3 describes simulation programs and the benefits of compiled simulation. Section
4 discusses general compiled simulation and presents our partial evaluator. Our results are
given in Section 5. The last section presents a summary and outlines our future research.

2 Background and Related Work

The creation of simulation programs for faster simulation has been successfully implemented
at the switch level, logic level, and behavioral level. Some work has begun at the analog
level.

[Bryant] has written COSMOS, a program for compiled switch-level simulation. Not
counting compilation time, COSMOS runs about ten times faster than its cousin MOSSIM.
The speedups come from processing structure only once and from optimizing the resulting
simulation program (actually, a system of boolean equations). At the logic level [Barzilail
describes a program called HSS that compiles logic expressions into System/370 assembler
code. HSS can simulate around 240 milon gate-patterns per second, a fairly respectable
speed. [Hansen] has implemented a compiled' simi~tion system called Terse for behav-
ioral/logic simulation. Terse employs a rich set of symbolic input types to provide as much
compile-time optimization as possible. Hansen doesn't quote specific speedups, but claims
that Terse is instrumental in daily design work at MIPS.

Some compiled simulation was performed in early versions of SPICE [Nagel), where some
of the matrix LU decomposition routines were turned into assembly code for each circuit.
Considering that model evaluation was the CPU intensive part of his system, Nagel shoulY
have investigated compiled simulation for model evaluation. Unfortunately, he didn't haie
the technology for doing so. Another program that produced assembly code for matrix
operations was [ASTAP). More recently [Vladimirescu] reported on a more modern system
that also compiles away the control portion of matrix solution.

[Lewis] has proposed compiled simulation and special purpose hardware for electrical
simulation. He intends to build special purpose hardware that can perform simulations
500 times faster than uniprocessor systems. Our research differs from his in three major
respects. First, we are interested in automatic general methods for compiled simulation
whereas Lewis writes his simulation compilers by hand. Second, we are interested in designing

'Results and timings for non-linear circuits will be ready by the time final versions of papers axe due for
the inclusion in the proceedings.

4

+ K
Figure 2: A simple RLC circuit

the cheapest, simplest hardware possible. Our goal is to sustain 100 MFLOPS for around
$15,000. Third, we also want our compiler to produce efficient code for commercially available
parallel processors. This paper addresses only the first difference.

3 Simulation Programs

Compiled simulation produces simulatzon programs that run much faster than an equivalent
simulator simulating a circuit. We expec1. a tenfold speedup over a simply written simulator
and a fivefold speedup over an optimized simulator. Two factors contribute to the speed of
the simulation program: constant folding of the topdlogy of the circuit, so that the topology
is processed only at compile time, and optimizing the resulting program using techniques
such as common subexpression elimination and dead code elimination. Constant folding the
topology at compile time unfolds the loops that tranverse the structure of the circuit so that
the circuit structure is embedded in the resulting program. This process yields virtually
straight line code. For example, for a simple transient analysis simulator only two loops
remain: the Newton-Raphson iteration for nonlinear analysis and the outer integration loqp.

As an example of the power of compiled simulation we present a fragment of our transient
analysis simulator (Figure 3) and the code produced ior that fragment (Figure 4) when com-
piled against an RLC circuit (Figure 2). The simulator uses nodal analysis and trapezoidal
integration. To generate the state at time t + h from the state at time t, it creates a matrix
M to be solved for node voltages at time t + h. From the node voltages at time t + h and
the state at time t it computes the branch currents at time t + h. The simulator computes
matrix M by summing into it the current and conductance contributions of each component.
The simulator is object oriented: each time.varying and reactive component carries its own
function for computing its contribution to the matrix M. The methods must be retrieved
and invoked at each time step.

Figure 4 depicts the simulation program that results from partially evaluating the func-

5

(dofino (noxt-stato state)

(lot* ((matrix (*matrices

matrix
(croato-intogration-matrix circuit state h parameters)))

(nov-voltagos (solvo-matrix (trim-ground matrix)))

(nov-currents (computo-b-curronts
circuit nov-voltagos state h parameters)))

(croato-nov-stato now-voltages now-currents (+ h (stato-time state)))))

(dofino (croato-intogration-matrix circuit state h parameters)

(lot ((voltages (stato-voltagos state))
(currents (stato-curronts state)))

(lot loop ((components (circuit-compononts circuit))
(matrix (croate-nxn#1-matrix (circuit-number-of-nodes circuit))))

(if (null? components)

matrix
(loop (cdr components)

((2%-componont-intogration-mothod (car components))

matrix voltages currjts h parameters))))))
I

Figure 3: Scheme Code Fragments for Transient Analysis. These two routines constitute the

inner loop of transient analysis for linear circuits. The first function accepts a state at time

t and returns the state at time t + h. It first calculates the node voltages by solving the ma-

trix which is the sum of the "DC matrix" (the current and conductance contributions from

resistors and time-invariant current sources) and the "integration matrix" (the current and
conductance contributions from time varying and reactive elements). Once the voltages aje

computed the branch currents are computed. The function croato-intogration-matrix

uses object oriented techniques to collect the conductance and current contributions of the

reactive components to the admittance matrix. It retrieves the function for computing an
element's contributions from the element and then invokes the function. We show these

fragments to emphasize the amount of work the simulator must perform to compute the

next state. Function retrieval and invocation occur for each component. A rmatrix is cre-

ated and inverted for each time step. Figure 4 shows the power of compiled simulation by
presenting the result of compiling this code for the simple RLC circuit of Figure 2. All inter-
mediate structured values and control constructs completely vanish leaving only straightline
arithmetic code.

6

(LAMBDA (STATE)
(LET*

((TEMPI (VREF STATE i))
(TEMP2 (VREF STATE 0))
(TEMP3 (VREF TEMPI W)
(TEMP4 (VREF TEMP2 0))
(TEMPS (* TEMP4 .00005))

(TEMP6 (+ TEMPS TEMP3))
(TEMPS (VREF TEMPI 2))
(TEMP9 (* TEMP4 .02))
(TEMPIO (+ TEIIP9 TEMPS))
(TEMP12 (- TEMP1O TEMP6))
(TEMP13 (VREF STATE 2))
(TEMP14 (. TEMP12 49.6277915633))
(TEMPIS (- TEMP14 TEMP4))

(TEMP17 - TEMP15 .02)) X

(TEMP18 (- TEMP17 TEMPS)) s
(TEMP19 (+ TEMP14 TEMP4))
(TEMP21 (* TEMP19 .00005))
(TEMP22 (TEMP21 TEMP3))
(TEMP23 (* TEMP12 4.96277915633e-3))

(TEMP24 (+ .1 TEMP13)))
(VECTOR (VECTOR TEMP14) (VECTOR TEMP23 TEMP22 TEMP18) TEMP24)))

Figure 4: Compiled code for the transient analysis of the simple RLC circuit. This function
accepts a state at time t and returns the state at time t+h. In this code h is 0.1 seconds. Not
counting creating the next state, there are 20 instructions, of which 14 perform computation
and 6 destructure the input state.
This code is optimal. Dead code elimination, constant folding, sign targeting, and arithmetic
simplification are the major optimizations. For example, constant folding collapsed R, L,
C, and H into constants such as .02 and 49.6278. Sign targeting eliminated TEMP7 and
TEMP1l. Arithmetic simplification eliminated TEMP16 and TEMP20.

7

tion next-state for the RLC circuit. The straight-lineness, compactness, and lack of struc-
tured values are the striking attributes of this code. No vestiges of the matrices produced
or consumed during compilation, or of the control structures for doing so, or of the matrix
inversion, or of the function retrievals and applications, appear in the final code. All ad-
dress calculations vanish. There are many ramifications of the simplicity of the simulation
program:

All uses can be planned. All values are explicit and can be explicitly planned. The com-
piler decides where in memory everything will reside. Heavily pipelined machines
will be used very effectively. Also, state variables will be held in registers. Regular
simulators cannot assign state variables to registers, which results in extra memory ref-
erences and slower performance. (This drawback of normal simulators becomes worse
and worse as processors get more and more registers.)

The program can be further optimized. Many opportunities for optimization arise be-
cause all values and their uses become explicit. Our system produces optimal code for
the RLC circuit, an amazing result given our very inefficient prototype simulator. The
most important optimizations are dead code elimination, sign targeting, arithmetic
simplification, constant folding, andjommon subexpression elimination. It is virtually
impossible for a human coding in assembler to create code as good as our system can
create.

The program can be efficiently parallelized. As a corollary of being able to plan the
use of all values, a compiler can also plan the efficient parallel use of the code for either
tightly coupled or loosely coupled parallel systems. This ability is to be compared with
the extremely hard task of producing good parallel code for a simulator itself, as we
mentioned in the introduction. Because we parallelize the simulation program, not t le
simulator, we avoid many of the problems associated with attempting to paralleliie
simulators.

Component models are programmable with no overhead penalty. Today's simula-
tors execute user-defined models less efficiently than they execute built-in models. The
overhead comes from repeatedly looking up the model at simulation time. Compiled
simulation performs the lookup once, at compile time, so that there is no cost difference
between built-in and user-defined models.

Special purpose hardware. We can design extremely economical special purpose hard-
ware for executing simulation programs. We anticipate that a machine that sustains

8

100 MFLOPs can be built for between $10,000 and $20,000. We believe we will keep
five 20MFLOP ALUs busy with very little supporting hardware. Much of the hardware
in existing "minisuper-computers" such as the Stellar and Ardent is support hardware.
For example, in the Ardent, 30% of the gates are devoted to the scoreboard alone
[Ardent]. In our proposed system we offload the function of such extra hardware into
the compiler.

100 MFLOPS is a lot of power. If we pessimistically assume each timestep computation
devotes 2000 floating point operations to each device, we can still comfortably simulate
circuits which contain 50,000 devices.

4 General Compiled Simulation

In general compiled simulation we employ a program, called a partial evaluator, that accepts
a simulator, a circuit, and a description of the data, and produces the simulation program.
This is simpler and better than implementing a specific compiler for a specific simulator.
General compiled simulation has many benefits:

Simulators become simpler to writefBecause the circuit compiler does our optimiza-
tions for us, we need not waste our time trying-Ob accelerate simulators. We will write
coherent, simple, easily understood textbook style simulators. The importance of this
should not be underestimated.

Component values can remain unspecified while compiling. When component val-
ues are unspecified during compilation the simulation program accepts the component
values as parameters. A circuit isn't recompiled when these values change. This feature
allows super-fast "What-If . " simulation. Also, Monte Carlo analysis and sensitivify
analysis are speeded up dramatically. We see this super-amortization of the compila-
tion time as a major strength of general compiled simulation.

Simulation programs can be recompiled for known component values. A Simula-
tion program can be recompiled for given component values to constant fold those
values into the program for even greater speedup. Therefore late binding of values
need not have an effect on runtime speed. Note that once we have our partial evalua-
tor, we get this added feature for free.

" • . . , , l I I l l9

The Partial Evaluator

We feed the partial evaluator a function F, some real and some symbolic parameters, and
we get out a new function G which accepts a parameter for each symbolic parameter to F.
The function G returns a result as if we had called F on all its parameters at once.

The partial evaluator is an interpreter that handles symbolic values. Whenever the
argument to a primitive function such as + is encountered, the partial evaluator adds an
instruction to the program being created and returns a new symbolic value. Symbolic values
carry information about the object they stand for. For example, a symbolic value can
indicate it is a number, a string, or a vector or list of a certain length. The partial evaluator
uses this information for several different tasks. For example, it performs compile-time type
checking with this information. The partial evaluator also associates information with the
symbolic values it creates. For example, when removing the head of a symbolic list that it
knows contains five elements, it will create a symbolic list containing four elements. This
methodology fully unrolls loops over lists whose lengths are known at compile time (such as
a list containing the capacitors of a circuit).

For example, to create the compiled version of transient analysis upon circuit C with
stepsize .1 seconds we type2

(define
simulation-program Af

(partially-evaluate transient-analysis c symbolic-value .1))

This call returns a simulation program that accepts component parameters and then performs
a transient analysis.

The partial evaluator operates in three phases (Figure 5). The first phase builds a
dataflow graph, the second phases optimizes the graph by applying graph transformations,
the third phase allocates registers and produces code. For example, the first phase produces
the dataflow graph shown in the top half of Figure 6, and the optimized version of this
flowgraph appears in the bottom half. The code produced by the third pass was presented
in Figure 4.

The first pass operates as described above, but symbolic values are augmented to be
nodes of the dataflow graph. When a primitive such as + or * receives a symbolic value as an
argument it creates a new node (symbolic value), sets up links in both directions between the
incoming symbolic value and outgoing symbolic value, and then returns the new symbolic
value.

20f course, the system hides this ugliness from the user.

10

SIMULATOR

PARTIAL OPTIMIZER RGSE

co UTDATA FLOW OPTIMIZED JALLOCATORI--*,,SIMULATION
J#GRAPH DATA FLOW + 71.POGA

GRAP GE[EATOR

Figure 5: The partial evaluator. It has three phases. The first phase maps a simulator and
a circuit into a dataflow graph. The second pass optimizes the datafiow graph. The third
phase produces code. Fi gure 6 presents example outputs from the first two phases.

0 SYTI Ia CPSTAT I

C VK VRF VEF 201 VREF IVW REF1 0

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~~VE 6: The 5aafo Wrph prdcdbVheprileauao ncmplnF h L
circuit. F The F grphon$ the lNeft steotu ftefrtpae h rp tergtih

outpu oftescodpae

1 062M1 n

#Components Spice3 Simulation Program Speedup
25 30s 2s 15
49 60s 5s 12
73 lOOs 7s 14
97 130s los 13
121 164s 12s 14

Figure 7: Speed of our system versus Spice3. All timings are reported in seconds. These
experiments were performed on an HP9000/350 with 16MB. The circuits are all ladder net-
works. The circuits were simulated for 1000 timesteps. The numbers indicate that simulation
programs run about 13 times faster than Spice3.

The second pass performs optimizations such as common subexpression elimination, dead
code elimination, sign targeting, and constant folding. It implements these optimizations
via graph transformations. Because it operates directly on the dataflow graph it can per-
forms these optimizations very efficiently. Efficiency is very important: if the optimizer
executes 5000 instructions to eliminate a given instruction, then, for the optimization to be
worthwhile, the eliminated instruction w6uld htve had to been executed at least 5000 times.

The third pass performs register allocation and code generation. We are actively working
on this part of the system. The code generator produces C code, which precludes any
meaningful register allocation. We need to produce machine code to reap the full benefits of
compiled simulation. We anticipate noticable improvements in our speedups once the code
generator produces machine code. The most important issue for serial machines is better
register allocation to minimize memory traffic.

These three passes are implemented in only 800 lines of code. Pass 1 is 400 lines, Pass 2 is
200 lines, and Pass 3 is 200 lines. These numbers will grow as we make the system run faser
and as we move to more complex simulators. Nonetheless, we believe that outperforming
Spice by at least a factor of five using only a 800 line compiler is a very interesting result.

5 Results

We have tested our system on circuits of up to 120 devices. The results are shown in
Figure 7. To ensure that both simulators ran the same number of iterations we performed
these experiments using a maximum step size much smaller than that needed for complete
accuracy. Our system produced a simulation program written in C which was then compiled

12

with the same compiler used to compile Spice3. (A future version of our system will have
an integral assembler.) For both simulators we counted the time to perform the simulation,
not the time taken to read or write files.

Our results show our system running 13 times faster than Spice3. This speedup number
is misleading and will change as our research progresses. First, we have not accounted for
circuit compilation time in these figures. Because our partial evaluator is not coded for speed,
and because it is running interpreted rather than compiled, circuit compilation time swamps
simulation time. We have run experiments that indicate we can make the compilation time
be equal to the time it takes to simulate ten timesteps.

Second, we aren't sure if our algorithms match Spice3's algorithms. In particular, Spice3
may be performing Newton-Raphson iterations. If so, it may be doing up to twice the
necessary work. Once we start simulating non-linear devices the comparisons against Spice3
will be much fairer.

Third, because the partial evaluator emits C code rather than machine code, the speedups
are not what they could be. We can achieve substantial reductions in memory accesses
by using all available floating point registers. This is an important issue: floating point
coprocessors are developing more and more registers.

For these reasons we have been conservatively stating that our system runs at least five
times faster than Spice3. 4

There are two issues in scaling up our results to lrge non-linear circuits. The first issue
is evaluating non-arithmetic functions such as exponentials and logarithms. These functions
take longer to compute than arithmetic functions, so that as they become a larger fraction
of the compute stream our speedups will decrease. We don't believe the decrease will be
large. Offsetting this decrease is the time to solve the matrix, which dominates component
evaluation time as circuit size grows.

The second issue is exponential blowup in compiled code size with respect to the number
of nodes. Because the code for solving matrices is explicit, if there are A arithmetic operatics
in solving a matrix, then there will be at least A instructions in the simulation program.
If we accept the experimental evidence that the complexity of matrix solution for electrical
simulation is N1 .24 [Nagelj where N is the number of nodes, and pessimistically assume a
five-fold space overhead factor, then, if one million instructions (4MB) were committed to
solving the matrix, a circuit up to 88346 nodes could be handled. Since we don't anticipate
simulating a circuit that large on a single processor, code blowup is not a problem.

13

6 Summary and Future Research

We have built a prototype general circuit compiler for linear circuits. It outperforms Spice3
by at least a factor of five. We are confident that we can extend the system handle Spice

level simulation of large non-linear time-varying systems with equivalent speedups and no

loss of accuracy.
Our novel contribution is the use of a partial evaluator to create simulation programs.

This approach yields benefits on the compiler front, the simulator front, and the performance

front. It wins on the compiler front because it has been very simple to create - a mere 800
lines of code produces exceptionally good results. It wins on the simulator front because we

aren't tied down to a particular simulator. To speed up other types of simulations or to take

advantage of special structures, such as those that arise in switched capacitive networks,

we need only write a simulator and let the partial evaluator do the rest. It wins on the

performance front because we are dramatically outperforming Spice3.
We have 6 tasks before us:

1. Implementing simulation of non-linear devices. This is straightforward and will

yield more meaningful comparisons against Spice.

2. Improving our code generation techniques. The system outputs C code to be
compiled, which incurs both an overhead tix:e penalty and a performance penalty

because C compilers are generally very stupid. We will gain performaince by having
an integral assembler. We will lose portability, but simulation programs are so simple
that porting the assembler will be a simple task.

3. Improving the speed of the partial evaluator. We need to get the time cost of
compilation below the time it takes to simulate 10 timesteps. 1

4. Producing code for parallel architectures. We will investigate both tightly cou-
pled and loosely coupled architectures.

5. Designing economical hardware. This hardware will execute our simulation pro-

grams at a sustained rate of 100 million floating operations per second. We want to
keep five 20MH floating point chips busy with as little supporting hardware as possible.

6. Generalizing our techniques to other scientific computations. We believe our

approach will work superbly whenever the structure of the data can be compiled away.
We will have source code whose clarity and elegance is matched only by the speed of

14

the compiled system. Once we have Spice under our belt we will investigate using our
techniques for the standard benchmarks of parallel scientific systems.

References and Bibliography

[Ardent] Lecture by Glen Miranker of Ardent at the EE380 seminar.
[ASTAP) W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mebta, H. Qassemzadeh, and
T. R. Scott, "Algorithms for ASTAP - A Network Analysis Program," IEEE Trans. on
Circuit Theory, Vol. CT-20, No. 6, November 1973, pp. 628-634.
[Barzilai] Z. Barzilai, J. L. Carter, B. K. rosen, and J. D. Rutledge, "HSS - A High-Speed
Simulator," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 6-4, July 1987, pp. 601-617.
[Bryant] Randal Bryant, Derek Beatty, Karl Brace, Kyeongsoon Cho, Thomas Sheffler,
"COSMOS: A Compiled Simulator for MOS Circuits," in Proceedings of the 24th Design
Automation Conference, June 1987, Miami Beach, Florida, pps 9-16.
[Lewis] David Lewis, "A Programmable Hardware Accelerator for Compiled Electrical Level
Simulation," in Proceedings of the 25th Design A utomation Conference, June 1988, Anaheim
California, pps, 172-177. X
[Hansen] Craig Hansen, "Hardware Logic Simulatiom by Compilation," Proceedings of the
25th Design Automation Conference, June 1988, Anaheim California, pps, 712-715.
[Nagel] Laurence Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits,
Electronics Research Laboratory Report No. ERL-M520, University of California, Berkeley,
May 1975.
[Spice3] need this reference.
[Vladimirescu] Andrei Vladimirescu et. al., "A Vector Hardware Accelerator with Circuit
Simulation Emphasis," in Proceedings of the 24th Design A utomation Conference, June 19ti,
Miami Beach, Florida, pps 89-94.
[White) Jacob K. White, The Multirate Integration Properties of Waveform Relazation, with
Applications to Circuit Simulation and parallel Computation, Ph.D. Dissertation, University
of California, Berkeley, Electronics Research laboratory, November 18, 1985.

15

at

I'

Exploring the Benefits'of Multiple Hardware Contexts in a //
Multiprocessor Architecture: Preliminary Results

Wolf-Dietrich Weber and Anoop Gupta
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Working Draft - NOT for general distribution

November 16, 1988

Abstract

A fundamental problem that any scalable multiprocessor must address is the ability to
tolerate high latency memory operations. This paper explores the extent to which multiple
hardware contexts per processor can help to mitigate the negative effects of high latency. In
particular, we evaluate the performance of a directory-based cache coherent multiprocessor
using memory reference traces obtained from three parallel applications. We explore the
case where there are a small fixed numbSf (2-4) of hardware contexts per processor and
the context switch overhead is low. In contrast tb previously proposed approaches, we also
use a very simple context-switch criterion, namely a Ache miss or a write-hit to shared
data. Our results show that the effectiveness of multiple contexts depends on the nature
of the applications, the context switch overhead, and the inherent latency of the machine
architecture. Given reasonably low overhead hardware context switches, we show that two
or four contexts can achieve substantial performance gains over a single context. For one
application, the processor utilization increased by about 65% with two contexts and by about
100% with four contexts.

I4

..... u d nm ~ u =m wmumnnn nnnnmn ~ mu ml~mmN mu 1

Exploring the Benefits of Multiple Hardware Contexts in a
Multiprocessor Architecture: Preliminary Results

Wolf-Dietrich Weber and Anoop Gupta
Comlptlter Systenis Laboratory

Stanford Universitv
Stanford. CA 94305

November 1G. 19SS

Abstract shared data or when a watchdog coner of MODU ex1 Te.
This simple scheme helps keep context switch overhead low.

A fundamental problem that any scalable multiprocesor because the decision to switch or not can be made in a single
must addre-- i, the ability to tolerate high latency memory cycle.
operation-. This paper explores the extent to which multi- Our multiple context scheme is evaluated using multipro-
pie hardware contexts per processor can help to mitigate the cessor memory-reference traces obtained from three applica-
negative effects of high latency, In particular, we evaluate tions (13.16.201. The results indicate that multiple contexts
the performance of a director.i-based cache coherent multi- can achievesubstantial gains in processor utilization. In some
processor using memory reference traces obtainied from three cases processor utilization is increased by 65% with two con-
parallel applications. We explore the case where there are texts and by 10fl'Z with four contexts.
a small fixed number (2-4) of iardware contexts per proces- The rest of the paper is organized as follows. The next
sor and the context switch overhead is low. In contrast to section presents the arcltitecture and simulator used in this
previously proposed approaches. we also use a very simple study. We also introduce the applications and te method
context-switch criterion, namely a cache miss or a write-hilt tud. \Ve to trodue ee acetion 3 ghe meo
to shared data. Our results show that the effectiveness of employed to gather the reference traces. Secon 3 gives gen-
multiple contexts depends on the nature of the applications eral results for the three applications. After that we present
the context switch overhead and the inerent latency of the a number of issues concerning multiple contexts. This section
tche arc titechu. ovenrea, a y the in erentlate o t also gives the results of the simulations. Finally, we have the
machine arclhitecture. Given reas onablyv lows overhead hardyf related work. discussion and conclusion sections.

ware context swt bes. we show that two or four contexts caV r

achieve sub-tantial performance gains over a single context. ,
For one application the processor utihization increased by
about 65'A with two contexts and by about 100O with four 2 .rchitectural Assumptions
contexts. and Simulation Environment

1 introduction In this section. we discuss the architectural assumptions tOat
we make and describe the simulat. - environment that we
used to obtain our results. We also describe the applications

As shared-memory multiprocessors are scaled (the number of used in this study and the performance metric employed to
processors is increased), there will invariably be an increase evaluate the multiple context sheme.
in the latency of memory operations. While local memory I
references need not have higher latency, remote memory op-
erations will encounter higher latency because of the larger 2.1 Base Architecture and Simulator
physical size of the machine, if not for any other reason. Con-
sesquentlv. there will always be times when a processor sits Figure 1 shows the basic arcitecture that we assume in this
idle. waiting for some remote operation to complete 12.1 1. If paper. The architecture consists of several nodes linked to-
more than one context resides on each processor, and con- gether hy an interconnection network. Each node has, a pro-
text switch overhead is low. this idle time can be used by cessor, a physical cache. and its share of the global memory.
additional contexts. Typically each context corresponds to a It is connected to the network through the directory (DIR)
process froit one parallel program. and network interface (N.I.). The processors may have one

In this paper. we evaluate the utility of multiple contexts or more contexts. The caches are kept consistent using a
directorv-haed cache coherence protocol a.s disciused in N1].

per procesor for a directory%-based cache coherent multipro- W\e stud' the performance as a function of several parameters
'essor 11]. While the idea of using multiple hardware con- such as the number of contexts. the context switch overhead.
Itxts per processor i' itself not new. we believe our scheme is te latency of te network. atd so on. Performance results
-impler to implement than other proposals (4.8.11.19.211 (dis- As a function of the above parameters are given in Sectiotn 4.
cussed iii Section l). In our scheme. each processor contains
a small hxed number (2-4) of hardware contexts with inde- ITh" watrhidg eouuner is intrwdu'id to prevent one e(-ntext
Iwndent register sets to enable short context switch times. from h,,gging a parirular prfc*,'.tr. Tis esurp thfat n'. C4,it 1
W\e also use a very simple context switch criterion. which is rims fr l,-nimr than 1O(JO vcl-s at a time. preventing tiarvai,,m
to switch contexts on a cache miss or on a write-hit to read- awl rleadh,ck,.

NriviirorN Lmec I Ii. , c%. (j.-

ltof. 'F,14' 4 ri cl-s
CACHE ~~~CACHE r'tlLa.rc 2C'is

Bus MEOY es U MMR witch Transfer 4 cvci's.
3t EMRY 0 0BU I)rritor' Lookurp r c'~o lI-

ARaN.1 IR AN.1

Tabhlv I [Default J'aramrre er for Siiultr~or

NEWR lext, per ice-or. For run's withr fewer r itan forir 'a?'. s

otrl% somet of ft, ehr.r.sreams, were use-d. \\.- inodr-i tlip

Figure 1 Arclni'-ct iral tiodi 'c-li of ft- iaciit atcirtectiure to a iarrgr trniidr of pro-
cessors Ir icreasmrg thre latenrY in tile utrleHrl 11 n-t work
(see Section 4.3). We also vary tile context switch o%-ri.-ad

W~e rise a t race-rix'err simulrrator. wit en hrv Trurmanr Ie arid tire nrumbrier of conlexts pier Jrrocess.or. 'Sectrota 4 will
at St airford. t hat etnurates tire aibove arciajirci tire to evarait present tire issures irnvoived and tire results obt ainred

tire elfr-ctrvere-s of inultiple corrtexts. lit lte srtrgle context Oue inaccuracyv in our simulator is that we assumne air fi-
per processor case, tirt- simulator weork, a,. followes. Before frtrite cache for each proc('.sor.' Thus, we do riot nrodcl tirt
,tarting ft sirrttlat iota. we first diide tire interleaved refer- interferetce in file cacres. when there are multiple contexts
circe streami getierated by tire tracing~ program into separate per processor. It is not clear. though. whrethrer thle -hraratrg
streatis for ind~ividuial processors. Thren. onre refereirce streatm of cache- is ati advantage or a disadvatage. If tire- cadres
is a~sited to tacit of tire proce'sors. At everY simulated clock are small, interference migiht he a serious probloem. With I
cvcie. eacit active processor rea& iste nrext referenrce front its fairly large cacre,.. hrowever. tire pre-fetch aciriered by con-
a'-sociated referetnce stream. If tire reference hits in tire cachre 2 texts working otr the same shared data could actually be
tire p~rocessor remains active ajid wvill isuie anothier e, feretrce benreficial." Tire caches in the architecture presented here
from lte stream on lte trex clock tick. However, if .t misses are expected to be large as tiley- serve &s tire mainr source of
or a write to read-lired data UCCUr'.. it context switches, remote code and data.
Tire cache sends a request over tire network to fetchrfthe miss-
inig line and/or utpdate tire state of tire other cacres in the
system. During tire period of time that lte cache request is 2.2 Traces and Applications
%%aiting to be satisfied. tire processor remains in a suspetnded Temlircso rcsue norsmltoswr ah
state and dot, trot genrerate ani more refertrnces. Temlircso rcue norsmltoswr ah

In cse f mrltpie ontxtsperprocsso. w hae ~ ered on a VAX 8350. using a combined hard ware/soft ware
In as ofmutipe onixi pe poctso. w hvemuitoF scheme [5). Basically thre tracing works as follows. We

ple memorY reference mtreams associated withI each processor spawn AP many processes as the application desires under
- one for each context. At any' given time otri. one of tirest the control of a master process. Tire master process then
contexts is active and tire memory references come from that single steps tire application processes in a round-robini man-
Stream. However. wrhen tile active context enters tire sus- tner. After each step, it records all references made by the
pended stlate due to a cache miss or a write hit on read-shared application processes. For each reference. the number of thle
data. a context switch occurs. Tire processor stay' s idle for processor producing it. the address of the refereirce and its
tile time required to perform the context switch. After that, type (read/ writ e/ifetch) are recorded. The traces that we use
memory references are issued from the newly activated con- correspond to 16-processor runs.
text. If more than one context is ready' when tile active con- h rcsue eeotie rmtreapcios otext blocks, a round-robin scheduling scheme decides whichThtrcsuewreoaidfomheeppctiisL-
context is to be activated next. cusRoute. NM and P-Thor. LocusRotite 116.17) is jistan-

dard cell global router. While the task-, spawned by it are
The simulator that we use is quite detailed in that it models quite coarse in granularity (each may execute around '100.000

contention for tire memorv moduiles. for the bits on which instructions), its central 'data structure (a global cost array)
the memory modtules reside, for tire directory associated with is shared at a finte granularity. NP3D [13) is a 3-dimensional
each node. and for ire interconnection tnet work. It is also particle simtulator that determines the shock wvaves gerrerated
pos-sible to %arv tire dela 's associated wvitht each of thre above by a body flying at high speed in the upper atmiospihere. It
module,. We- note that the ilterconi'ectiott network assumted llssdistributed ioops for parallelizatior (each loop executes
iii our simulations is a crossbar switch. hut it could ire any aroutnd _150 inistructionts) anrd it is a typical example of par-
point-to-point miwork (#- I.. grid [Ifc]. butterfly [3]. oinega allel scicirtific code. P-Thor [20) is a parallel logic simulator
[I-,]) depending ott ltre nutnlwr of processors we wished to t hat ises lte Chiandy-NMisra dist ribtuted simulat iotn aicorithim.
iwierconnect. For the delfault piaramteter% that we Utsedl (shown Each parallel stbtask (a componenit evaluation) itr P-Thor
iii Table ItI. a remim read takes j7 cy' cles and a remote write take% abotit 3tIt iitrtrctionrz to execute.
rakts 19e cycles with ito conitenrtiotn. The local ohieratiow. take
Ih andi 13 cycle-. respectivei ' . WtithI contention tht liseiumblers 2We are % likitig on anl a new versirn of thle sinrtilatror t hat %% ill
cart growv to as large as 11utt1 cvcles ini our sitnulatiotns. renmove this re-4ttictiorr.

'Note that in r-trr execution nv-del. several Proces-~ from tire
Tire sitmulator is driven by niv ult iprocessor tteinorv refer- saynt application are rtig the flip uitiple cowrexis. Thus ctre aurrowit

ence traces. Since tire, traces iclude I G reference strvains. we rof shared clag, calt heP signuiirairt.
are limited to fouir processors if we wish to explore fotur coir-

'For 'Ir- t ii. ic-ca Ila% orsi, t,e owned ill adri,,n to I~eiim
pm-sent in tlie carlio-.

2p

2.3 Performrance Measure p1.,. lile to afl-w x et loll" rillts Ili a..' I. t, ll

lieu~~~~~~~~~~~~~~~~~~~~ ofhol-..O ots. i. taxuutt '.ot gitiuih to frIuI- uimsss. ii thot irnleiIt.Lcisot i
It-inamo fietr ct-oftIt 1 lit tllaii ii1- iutild ori lt01hrIauolawxibg ti-eu.,ls Ilt lt' .i

procts-or'~~~~~~~~~~ Pjvt idI Dva It Au'. foI Ciito Si- Ord.aul vir~le sat I heir rie jdif -1-i-; iue llo - for I;, r'-,
[III Ipl~t I 4of (I,#, IilY. his s d fi wd a I i pr tej Iout l of l ob a dta t t fi ofi t\1P cali' 4 tt loot Itod

1 li -o e r \ ie , set- oi ng t- sr -lfti i work oe r f i ttlo t iis.o f e u n i s s ~ . s o t n i l ig l , o t~ i u e (i
Iv- o ra l e Oft '''I li ot ta mf aimumttt -~ om, r tvi ii i-uis. pe t e the hati cis aery- longe to the rrtalnuuu TllI- d for-iz

pio v~s r),- r. .cle fo 1((17 vf cic r\. 1 h itor- i iii t f- f i - rli aicu u t -hei r elat iiv ee in e teit l w , tf-o t li':..r
Proct- cir, ' ello ill(,. ailill for l illolt rtitd ittid %yrite p ioi of l c od th at e etlo t of telsl- w th w ii

lit lo e lie overall latt-o efiuct~l Ilrasi oure it1d atiuwrt'-oiti-i.
cfsgrwaiwll,,s. laece at- clre att' tortt- intin txl-ri-d tflo-

we Generat fl oaleut rfeujI l(hr (I- n IIi it, aire c a f two-a PTrasto l sohr tlit-I - I tle - out 11tic"
(~ ~ ~ ~ ~ ~ ~ ~ icre twice.d Iu lieghi imiould lif uiia1 fecte .\ theviitr toillitdfo h w -lia

lii hi st- lin ut Pr~~-n '-ltits a w~ creasedl lateincy. bill in fact we 10 stee a slight dt-cr'-a-e Ii
b) ill setiol e peset oicgenieral results obtiniid with ruff lefigt us As' the s.wi t ch latenici iticrea.se . This i, pro),;,-

Ilic siitiul~iow. Thiese reus-i'gu ail o'trail ildea of lite differ- hiv due to a cold-start effect of tilie cachtes. Ru it-It-ti neIi ltar
eices itt behavior of the thtree alpi~icatilolls. Thet- also show lrite begining of file refereuuct gtreatuti art- shorter out aiera.t-.
thei effect of inceta-tug thet switch iatenitv oit the read and because more cache misses are incurred.
write lateticies, seen b 'y tife proces~ors. The numbkers are for
a 4-itrocessor s"semn with one- context per processor. Tue
tables bl-ow iiv data about the runl Ilgj),h an~d lateiicies 4 Issues and Results
for lie thlree apjiiicatioiis. Puil jengtIti is dntied as the num-
ber of simulator cvcles bet weeii tacit cache miiss.' Read atid
Wurite latejicies are lte numbier of cYcles required to satisfy We wvish to explore several questions coitcernitig lite perfor-

lihe cache mis. mance of multiple contexts:

Result for switch lateitcies of*-, atid lb cy.cles are presented. o How many co'ruexts are required to achieve good pro-
A switch fientc * of only two cycles is close to tile minimum cessor utilization.
hat call bie achieved with any aItvtpe of net work, The switchaHodestecnxtwihovradfetflep-

latency of 16 represents the latencies that might be expected f owmadoes"h otx wthoeha fetdepr
in a larger multiprocessor with man' more nodes.-omne

. Whtat is the effect of increasing the switch latency?

Run Lenaili flRead Ltnc\ \i te Linocu * WN-len to switch contexts?

[_Appicationi A~ MiZ el jAu Med Aivz \ed 9H v much does the performance vary wvith applicat ion:'

f P TI or 01 Is 2 -1 T- I -. 1 This section explores all of these issu es and presents resulit.

Locusl-ouit 17 j -4 -71h 1 i 1 We show graphs of processor efficiency. In each graph. -we are
"-~------~ plotting the number of active cycles over the total number of

Tabl 2:Geneal pplcatin rsult wih sitchlatncy cycles against the switch latency- of the architecture. We show
Tabl 2 eneal apliatin reult wih s'tchlatncy efficiencies for one. two and four contexts. Different context

of 2 Cvcles switch overheads are presented on different graphs. Figures
2-4 show results for MP3D, Figurts 5-7 give results for P-

RunLenth eadLtnY 1 Wrte ncy Thor and Figures 8-10 showu results for LocusRoute.

Application 'fAvg Med jAu g Med Avg Med 4.1 Number of Conext
If.t D F[14 51 TV .55 33 .33J .O~~e

P- I -o- i---IT-4 -i5-5-31 --33 Depending oin the single context processor efficiency, v it may'
Locuskoitc 100 44 71 .2±L. J 372 30 or may not be wvorthiwhile to use two. four or more contexts.

Note that the single-processor efficiency is basicall y a func-
Table 3: General application results with] switch latency tion of thle cache miss rate and the read and write lateincy for
of Kf Cycles the(architecture. For LocusRoute (Figures 6-10) thle proces-

sor efficiency is already ' cvry high (about 907t I withI a siitgle

Bothavea-' an nidia vau" re ive toconey ore context and little performance can be gained by addiing nmore

infrmaioncon-Lriii, te dstrbuton f fle ulllenths contexts. As a matter of fact. if the context swvitch overhead

antI latetici".\Median values are more representative li char- i ih orcnet owreta ae(ineII.M
acleiziirfiletypcalrunlengh. li ocuRout. fr eam- on ltfe ot her]land (Figure 2). has single context performance

near .507i and achieves sub-t amtiaJ gains with imore contexts
bothi here atid in the r~t 4Ifipi Paver. b, '-ache muss w~e ar- lefhicieutci is 777s with -1 4'7, with 4)-

luall , nicai referene-.s that can not Ibe satisfied' by the# rache aliie As expected. lie graphs show dinminishing mnarginal retinrit,
ant i nedt I(, ;s-c^u thle m itror Ite net aii.or bItt Ih. 1 lil- aslt ubrofcnet siiiad(e Fgr o x
ritithe reziilar rat-be nii~.ses bt~u al- tiieliio read-sliareul data. iStennbro otxsi iirae seFgr o x
Ili Iii Waier rase. fli iteiairk ne-1 , t. . arcc,4ell it iit-ajiilat aniuplel. In cevcry case going from one to two conttext, vields a
Ihlot I'.cmvti'. frtoin --di er ach.- and3 I. gaint twiteriip thau it cache greater blttit t t iatu going from two to four con texts. At siliall

hit-. nitmtbe.r of coil exts is ;,lso prefe-rall btecause it allows sipler

3

10 -l0 os
90 .. so..

so

I. 50 ",.

40 -0
30 0

20 2 Cooes 20 2 Comeors

C - I Colex - - -- .4C0 ojt

10 10
I I I I o I I I :

0 2 4 6 5 10 12 14 16 0 2 4 8 5 10 12 14 16

Switch Latency (bus cycles) Switch Latency (bus cycles)

Fi,.urp 2 \II' D: (otox1 Swit ch Ovprhead I C'.cl Fi- ur, 5 P-Thor: (otxt %,witch O rir-ad I).,-

100 1oo

so 6

sao OD

70;U70 - ,

ogo s. e o --

Sa -- ".- 0

* 0 so oS

40 - -.. "' 40

30 30

C-
, 4Conm

s20 .. C2Oormonxs 2 .. oI
-. I- - Context C- - -: lonies

!0O (,,I ; l I I . , I ; ; I

0 2 4 6 a 10 12 14 0 2 4 6 6 10 12 14 16

Switch Latency (bus cycles) Switch Latency (bus cycles)

Fi-_ure 3: P.I3D: Conme'x Switch Overhead 4 Cycles Figure 6: P-Thor: Context Switch Overhead 4 Cycles

100 - 100

.............................

4-- -......... 40

30 -

4com-m 4 ConteXtS
20 . 2 Cofflxl 20 2 Conems

C - CorOldC -- I Context
10 1o

0 2 4 6 a 0 12 1 0 2 4 6 a 10 12 14 if;

Switch Latency (but cycles) Switch Latency (bus cycles)

Figuir-- 4: NI13D: oiutoxt Sivtch Overhead 1(6 (vcles rigtiro 7: P-Thor: (onitet t li 0 clrleai 16(ocles

1S0 ha ir (I a r,- \\' It I i I a I r iit it II -rt of , iixit 1- i I\Iit 11,

so-rviitnw of tli 1wti o-i 01 4 iti're4et~ gOit, xi %viil
U

2 0 ovilii'A~ilila' I.% ifiaiilf .\i-o. it lirgi i mli (if (ojiteisi

-7 reqi-ijti a idrgi- iiinir of jliou---- Mato~ ajijil atioti- 1114

inoi bet abie to u.pporl unch a liirg- tiiniher of jiroct-".s

.0 4.2 Context Switch Overhead

20 -< 4CflisThe ront ext swvitcii overhead cl-eiidn Ong thle wi0n~ihr of con-

20 ~ ~ ~ ~ 2 omtexts kept ti hiardlware. lie amnount of state kept fur eal]

C Co n context. atnd tit- amomit of hardware dledicate-d to context
10 switching. We explore coiot ext switch overlwadl- of I . 4 aiid

1 210 2 4 (cycles. A iigle cycle overhef.ad can he acliui-v-d by Li..1
Switch Latency (bus cycles) iog Multiple Copies of tike pipeline registers mtid beig aldle

to swap in lte whole state in a sinkgle cy' che.' If the pipelinke
rPitire ,: Lociuiflomte: Coutext S'vtt ci Overltetd I Cicle hias to be draitied and filled. a 4-cYcle overhead I- re&soija lie

Botllt of these opt ions retuire mult iple repikter batik-,. otte for
tacit context. If we want to load and store the register, to
some fast local mentor\, we have to allow at least I6 cycles.
It is clear that the hardware is more complex if we require tit-
context switch to he faster. Of course. beyond some overhtead

101)o value, multiple contlexts do not help an .% more. since a lOng

go - --- - ----- aei '.. % oprto ii complete before the context switch is

achived
As expected. the results. show that the effect of incre&-ing

70 -the context switch overhead reditces the benefit achieved by

so having multiple contexts. Note that the single context grapht

so -line is identical for various cotttext switch overheads Isee Fig-
U ures 2-4 for example), since there is no context switching in

60 -that case. When the context switch overhead is 16. none of

30 -the programs are gaining much processor efficiency with in-
0- 4 0w-i creased contexts. MP.3D achieves a 12'X increas e in efficiencY

20 .. 2Contem with 4 contexts (Figure 4). P-Thor gains only . (Ftgure 7)

-10iS and LocusRoute actually. looses 3.2 V (Figure 30). For mu)-
~01 ;1 ~ tilple copexts to be usefttl. the context switch overhead will

0 2 6 11 1 12 14 1 hae tomI6kept low. preferabhv on tite order of a few cycles-
Switch Latency (u yls

Figure 9: LocusRoute: Context Switch Overhead 4 Cy- 4.3 Latency
c les The amount of latency incurred in remote operations is im-

portant for the effectiveness of processors wvith multiple con-
texts. With ver% low latencies. context switch overhead may'
be too large to allow multiple contexts to achieve any per-
formance gain. As the latency increases. the single cAntext

100 processors do increasingly poorly because more and more pro-
- --- cessor lime is spent idle.' This is whtere mttltiple contexts can
..............- help. As seen in Figttres 5-7. the relative value of mtiltiple

contexts increases as the latency increases. In other words.

M 70 -a processkor with mttltiple coittextr will suffer less efficienicy
- (l~~~egradation due to high latencies than a singlecnetpo

* cessor.
o Omie reason for varying, switch latency in ottr evaluation of

40 -mtultiple cotitexts is- to explore different ty vper of a rcltte-ct itres .
30 -A grid network. fot example. is expected to have a itici

<(-0 4 Com larger ltetic *v t hatn a cro'shar switch. At lite same time lte
20 L' 2 COntxAU higher latenicies cant corres pond to larger totitiproce-ssors. A,

tome more processors are added to a parallel machine. lte latenies
Lo I iiicreas;e due to deeper ietwork-. or mtore coitilex switches-

0 2 4 6 a 0 1 14 16Larger latenes premi a greater opportuittyv for mttitij~e
Switch Latency (bus cyclos) coiiexts. hecaii-e lte sitigle cotitext efficiency. is lower. At

te site tittte we note, thlat it is !.till possi ble to achiieve verY
Figure 10i: Lociut-ltte: Cowt xt Switcli Overhead 16 high eftciencies wvith just a few contexts. For example. withI

(vcle. ' Alt -riai iv'-IY mtiit ,pisiu- cid t,r it-d I~ - ich 1-t1u-11

a -witch lal.,gco of 1i, cr'li.s. hitellive ate- iii Illi, otilr of ',[5 Relatedl W ork
aiid tt c%' e... fot I eid-. and writ.., risiu-ttvI~ (-Is- I loll

:3A netwark large eiiolih to) ha'et ii'. loi a laiciir% (otild 'Fle lita of iniltiipl'' lardwvar.- cowtexts 1-r pr(cesor Ili 11It
elSiliport seve-ral ilttldtcd jitocessols)1-t prW('oI elli- j5 1101 it II I tII sertioji we discuss how ofir al'p'loich i tff-r,

cieicie.; Slt% v Ii for t his tati-tic' (1-0.t7 for NIT ID1. X47% for froin eal her proposals and pres-iti Somte ad vawat a At ~id (it,-
P'.Thor anid 947f for Locti-lotit.I: 'he(potint ti, that evf'tt a. ad vanti .-. Wes hwi-u wit ilt, h Alto persotial (Ottpi r froin
tonliiprocissors gt ow atid iait etit.- increase:. processors with N erox [J 1) whitchi provided in itltipde hit!ware mirrocod1-li-vel
just a few cont extIs acliie~ evr 9~o illtaCOwext s. allowinig Ihle C TI' to be Share-d beit i Oile inii iric-

I ion sei interpreter anid Ihle 1/0 devices. 'Fie cottit-xit w-re

4.4 'Whn to S itch C ntextsStatical]i'e assignted to dlei-ices ant) wo-re jiot availoahi'- to tzeli*

4.4~Vhi~ o S it li ontxtsera! user processes. The aim of Ithe multiple contexts. wasi_ to

hleallN. one would like to switch coiiiexi, tileeer Ill(c~v make tile powver of thle processor readilY availall. for Iin,

text s %vit cl overhead II- thi 1lt lIa teinc' of tilie olierat i01 critical 1/0 processinig. a lask t hat is freq-eiitlk ilel.'ait d to

litzitz performed. Of course external opierationts ma% take S. p aterososinmercntdigVAouio-
vat ton. the is-tut was it to hide memory la eticY from a %ervloner or shiorter de-itiig out thlecoitgestilott ill thle machuitie. fast processor.

a til t here is nto ea,- ' wea ' to predict hiot%- longi a 6% eti opt-rat on
will take. Wt thums choose Itle vaite-I context Switch criterion: The HEP multiprocessor from Denelcor [PI also pro' il.'d
switch oit artY operation that requtire- a niatt niteitorv access. Multiple hardware comtexts pler processor. Unllike ilie- Alto.
eithlii in lie samte cluster or remotely%. Swit clting oi1lY oil the cotntext., were available to arbitrar 'y us'er processes,. Tht-
,fmtiolf Operaionms requires extra htardware. bitt is a feasible prcse Shared a large (et of registers anid oti each rc'ycle aii
altertiative if cottext Switch overhead is relatively high. If a intstructiorn from a different process was executed. A itini-
conttext -witch takes l6 c 'ycles. anud local 03ttratioiis, also take mum of 8 actie processes (those processes that art not wvatt-
ott the order of 16 cyvcles to complete. it does Itot make sense ing for a memory reference to complete) were needed to keel,
to initiate a context swvitch on every' local op~eration. the executtiont pipelinie full. The HEP machine tolerated ment-

Two of the applications had frequent memory accesses. bitt oylinYwl.btismandabc a htaSnl

LocusRoute processes had lontg streaks of executing out of process could get at most 1/8 of the pipeliited processor. lit
the ach. I orer o pevet on cotex frm hggig a order to keep the pipeline full. a large ntumber of processes

particular processor we introduce a watchdog counter tltat were needed. This is in stark contrast to modern pipelined
pre-mpt th curentconem fter300 cyl". hisensres processors (6.14] where a single process almost full.% utilize'

pre-e m pis~~~~ t e c r e t c n e t a t r t to c c . Th s e s r s th e pipe lined processor. N ow the H E P schem e w ~ould not be
tht ito context ruits for longer titan ltttifl cy' cles at a time. a rbe falapplications could be split into an arbitrarily
thtus allowing all contexis onl a particular processor to Make large number of processes. However, this is often not possible
progress. in practice as there may not be enough intrinsic parallelism

iii (lie application 17) or because doing so greatly increaases

4.5 Applications the amiount of overhead.
More recently. lannucci [1i] has proposed using multi-

The three applications exhibited very different behavior. Lo- pie contexts for his hybrid data-flow/von N\eumann machinie.
cu5Route atid P-Thor have relatively little global traffic. Each processor consists of a hardware qtueue of enabled con-
wvhereast MP3D has a lot. While 1.8V of LocusRoute instruc- tinuatorts. The continuations are very small in size lcontain-
tions cause references to Shared data. this number is close to ing just the program counter and the frame base-registerl.
127t for NP3D. This explains why the run-lengths presented and the hardware can switch between them in a single cycle.
in Section 3 are so different for the three applications. At the However. to make tltis single cycle switch possible. processor
same time LocusRoute has v'ery good caching behavior and registers are not saved on a context switch. Consequentl.
lerv little interferentce between processes. Thtus LocusRoute the softwvare is structured so tltat it does not rely op reg.
achtieves very high efficiencies (arounmd 90'7). even with sin- isters being valid between potential context switch lons
gle context processors (see Figures 8-10). Very little can be The switch points are syinchronizing references. wvhere a read
gained hi adding extra contexts. to a location tagged emnptyi results in tltat contintuation being

P-Thor achieves .50-70'7 utilization with single contexts -suspeitded. In our view. the disadvantage,, of laiticci's ap-
(See Figures .5-71. This catt he boosted effectively by adding proach are the following. First. processes can not make full
nmore contexts. Not otiy is efficientcy increased s more con- use of tlte register sets. givent tltat thie riit-lettgt It, It lie itum-
te xts, are added, bitt the processors also become more immunte ber of instructions executed between switch poiits are very'
to the effect of high latency operations. This is seen by the small [H1] and registers are not preserved itt betiween. We
sjirtadiutg of Ilie curves as the latency increases, believe that extentsive use of registers is absolutelY critical to

Whenthethe performnce of modernt proces'ors (6]l. Secotid. a proces-
M P.31 hats aI large aitoti it of global traffic. %hen tha liersalreimne fcniuaiu cltm.

swich lati-tic% iiicreases. tlie switch becomes tle hot tletieck srthtspot ag tiie fcnita osioiet
atidit ini, te rins.acheve b\mulipleconext. Wile in hardware, keeps track of which ones% are entabledl aid iti-es

til it ltim i lie gai i s aci eved. i lt rpli v ot et. iile o a complex criterioni for deciding which countinuatont to iSsue
-ite peformncegainis ahieed. ie rlatve bnefi of lie ntext instructiott from [1-11, is very coniplica-d, We lie-

ttmltipl.- roitexts is greater for lower laten~cies. Note Ito%\ tilie lieve such a processor wvill have a sigtiiftcanitt li more comtplex
tlmhfereni context lites converge as, te swvitchi laieiicY icreases pilielihie mtid inuch larger area thlani a Simiple RISC' proces-
Iii Figures 2~ aiid 3. SOT. ('oiequeli ly. thle cycle tiie of sticit a itiacli iie 'votltd be

Slower than t hat of niohe-rit RISC processors. Thu.' thle Ili~-
brid imiachtite has to make up tlt large factor t hat it loses o'er
coltm-lit riia I iticroprocessors. huefore it becomie, rottuiet it '.
Oit thIe otheir hianid. thle SchIemtet that we plropose doe" not lose-

6

a nvi Iliti. o% er itodtiti Ii l"(' pioct-ors. Ilit fact. i i possi ble pointi ALU,. Fiirt ieritiure. varli ii-vi processor ii-d aii -x1 ra
to t ake tm Iltiple roineicia I I a vail abI hlt (roce',.or (-llis port to tile net work, or to lb.# bit' that it is placed oti.
fe.t;.. Mototola NXttttii 1)roc(ss-ot andI rache rhi'-) amnd connectl extra poll inciea- fte deptili of flt e et work. or flit- lomiipi
them so a, to sitiilate tuttiltipli CUIIIC-XI'. oil thW bils. ti u- ltiCle4Sillg 114 li' aeicv 'f-raI rotit'xt- pe~r

Wte nlow coitsitler flit MA!-.\ architecturet proposed Ijv Bert processor call share these expenisive resouirces. thtus makinig

Hjalstead IN). It thlis' architecti we c plocec-or has, a fixed miore efficieuit list- of thben),

itnlveb(r of hardware t(14 framne ;. Each task framte is cajlable Another nuestioni that aris.es is]low the muttiple rolit(xt,
of kitoritic a coniplt - prore-.' context and coiistls :of a set shioutld be im plenlewied. The multiple context, ho tiot t'-'re-
of auixiliary' reui~lvrs. Ilike thke prorami couinter I anld a set of saril *v have to be implem.-tied on a single chitp.]it I he cas'-
geiral ptirpoi-(rimeS. ice flthe number of ioce s"e mnay where lI I(size of each pirocessiny, iiode is small oil 0wi order
excee-d tile titier of ltask fratmes. thet procv-- contexts- are of a it-I chip, [9,). we ijeed to have several colitxit' onl a sin-
allowed to riveifiuuw in to tttemoiry,. Oil eacht cycle, a cotntext gle chip usinug duplicated register sets. However. luaviiiug to
ilk tilie I tifibit(I or itfcl'III late titay i-tile al ti i istruct iou. llow- designi a spectal process.or for a given architctiure make,- tIiiat

ever. onice a proce-ss isstues att inI;1rutctioli. it call not issue archtitecture less' practical. So for larger process'it; nodes, for
aiotler intstrutctioni ututil flthe previotts lttstrtctlon htas corn- examplle where each processor occupies a whole hoard. ti niav
pleted. rFlit'. it its cttrrewn form. a piocess oil MASA calt bie qiitie feasible to lise separate processor chip,. for t lie differ-
get oidiy]/.1I jiinvere of pipl)Citie depthIt) of filie liipeliiied pro- ent contexts. While siinplify ittg the hardware desigti effort.
4(e%%or'.S perforniatice. As dlisctussedh above for HERt this is a this approach duplicates not just fite register set hut all of
Major drawback. Halstead atnd group recogntize it [) and are tie data path anid cotntrol as well."
exploring wrays to remove this restriclion. There are sotne software issues to he resolved. Ilk partic-

Wenovi dis-cuss a more subtle bitt fundamental difference ular. how do *you choose which processes to put on a single
bet weenith latinucci and Hlalstead schemies and our scheme. processor? Since tite progress of contexts on anl' otne proces-
Itt our schleme. tlie sole purpose of the multiple hardware %or is mutually exclusive, the correct placement of processes
conttexts if. to miiicait tike Ite-atite effects of mneiorY latency, onl processors may h e important. If a given prograiti sec-
The ntumber of hardware contexts needed for a particular ma- tiomi requires several contexts, to be active in order to make
chine is fixed anid dlepends mainly\ on thle expected cache hit progress. it is best to place these on separate processors.
ratio atid tilie memtory' latency'% for that architecture. In the
lannutcci aid Halstead schemes. the context mechanism is in-
stead made to serve two purpose!. at the same time. It is 7 Conclusions
ttsed to ma-k memnory latency as in our scheme. but it is also
used a,% a hardware task queue. Thus when a parallel subtask In scalable multiprocessor architectures. processors with a
is created. it manifests itself a-, a new context that is then smlfienubrocntxsanchveusataJ v
managed and scheduled bY' the hardware. Since thle number smeallr fienumer ofnin context anceessta ntiaole
of parallel suhtasks can he arbitrarily large. mechanisms arer grae'fiinceAhnsnlecnetpoesosnsm

ite--dd iidproidd t hadl ovrflw fcolexs.Als. te caises efficiexicies increased 6VA wvith two conitexts aiid 1(001
ti~-dd aidprvidd o ande veflo o cntets Aso.th smli fou~~otxs Best improvements are found in archi-

number of contexts that are needed is large. In our scheme. 4ect cn~texig tenyoeainsn.lwcnetsic
tlit issue of subtask management is completely seI parated and tcuetoihhg aec prtos.adlwcnetsic

is atdhd i 'ftwar. hi prmis ret fexbiity icld- overheads. Such high latency'N operations are to be expected
ic hiided n sftwre.Thi pemit grat lexbiltiincud- in large-scale multiprocessors. Low context switch overheads

ing the possibility to schedule tasks in a manner similar to
the anncci tidHalteadproosas. i a artcula apui- can be achieved by having a small fixed number of contexts

ch atinnu 'o arand'. Hu inastead osf asingifull/em p is in hardware and by using a simple switch criterion: the cache

and hardware queu ing in I-structure memory [10). we mayOnimottdfercebwen urotxtsth
simulate full/empty bits in software and switch to a different On imottdfercebwen urotxtsth
subtask if a piece of data is not read'I-. It is not obvious which scheme and those proposed in [8.11.19) is that in our scheme
scheme works better. We will be able to tell only when such the context switch mechanism is separated from thl sub-
maclines actually get built, task management mechanism. This makes for simplat and

faster hardware and allows greater flexibility and application-
dependent performance tuning.

6 Discussion We are currently workitng on more detailed simtulatiotn-. in-
cluding the effects of finite caches and cache contention when

This section contains the discussioin of several topics that re- a miss is satisfied from memory' . We are also lookiiig fur-

late to ft- evaluation of multiple contexts, as presented in this thiey into the issues and details. of implementing our multiple
paper. conttext scheme.

Oue httle'tion that wve must ask is. wvhat are tile real ad-
vantage,- of huaviiig nmultiple conitexts? Sitnce processors are 8 A k o ld e e t
cheap. nh tot simiplY have a larger tuimlier of processors 8 A k o ld e e t
ill f lie itultuprocessor? The fallacy.I in tlis argument(is thtat.
while CPU chips (eg.. MCb'80.10 chips) are relatively* cheap, a We would like to thatnk Trumait Joe for allow its to le his
fa-t proce.sor is not - a fa-st processor nowaday' s has a large simulator alnd for helviiitg us understatnd it and tnodify.I it . We
ainotint of cache built. oitt of expensive and fast SRAA~s: in also wish to thiank Richiard Sites at Digital Equipmient Cor-
additioni. there are expetiive functiotnal tunits stich as floatiiig poration. Hludson MA. for stipporting \Voif-Dietrich Weber.

-Sitdi *.v-rflom- and underflow nperations rare quite expensive. 'Aii .alterntiv it thitls schemet Itliicli uses midiiple CPU Chips
anid rare lilist lie taken to iniirnize ubein. for contexts ib ito let all ilies citips be active anl tibe t imue. sharing

^\VP %%,,,id ii,rmuiAllvI expert t here t. L~e wn- '.orl of a dis-- an' l tallmg otn tile cache as thlie pr..ced. We~ hae. as yet. iior
I rilii ed t ask (i irie to. baiulle I lie 4s- irhiI u ot asks. d. .n al-cf 'eri-iwe evaiat up f. 'r suchi a schleme.

.Aiiciii , ii Ir ts a~ r~iiri 1,% 11\ \ cour Iiv Now)iu 1-),7. [17) Joijlai ho-' T'li laralfi I l'-ornporio ii and lilt-

1f1'Ir -I.arid Ili a fariuir alsuii horn l'iwrdf I tillIi;'iit ('()I- ;iI.-riwiiratioii of imr jwiiiraoil- Cirriti (dIol,al Hu(tiruerr

poralion. Thank, aI~el to fli-luir lDa~i is.. ~ i NIiru l Niiiuul. Ii it .4- ('1/ .SlGlL.V N 'lEA.4 . paL',- H *-- 147) litI%
lolrial Irrrfus... Hidh Siiiiioiii. Lii r% soril. adi MIike "ir11r1I1 for Il

revi-wiirg tanY %ers~iotii oif fi tt llapi. UIS] lr-. L. Setz . \\illietni C. AlbIa'.. Chladl-. M Ffai,.

Alain .1. MIarriii. Likov Seizovic. t-raj; s. and-.r. ,,
\f-i-1 lig i. Tit, Architetiure arid Prorrrunrzrrz of

References tilt Arrorek ,series 2(1](1 Multicomputer. lit 1illjp rc,

Co nor it(Cmplet Y r (id .pplrcal-tuo J. I ,S

[1 ii rart Arzarit l. Hirfiarif ''unioni Jhii livniuir''. -)till [11] H. .1. ',irnirlh Aicliririrurl arid applicaion' of iii- IfE!'
Miark liti owvirz. Ai EK~afriarioii of I)ior,.ori dhliqir inuirrf proce'.sor compiurter system. lit SPIL. Jiav-' -41-
for (arlit- (*owfirv. lit 1 ;1/1 lote ront'i,,,ootl _S,,,1s.o,,* 9 I.

Ur Cmpet? lcll(ite.[21] Larrv Soile arid Tom Blank. Parallel Lozncimsato
2]Ar~inid anti R, A. I aninricci. A ('ri triii. of MI rifts iirocc.s- url (;enreral Pu rp~o'. MIacin"e. lit Die signi A4itoiIiotii'Ti

tri %oil Neuiniin St *h- lii I ;Ih lehrtilntil -Synwo'ii ('ofi- ientu psages 166-171 . June I !R$5

sillll il oolitter rchlicity. pgt-42613G 11ii. [21] C. P). Thacker. E. NM. NlcCreigfrt. et af. Alro: A Ptr'.oncil
l.3] W. (rowr lien. .1. (uorf hrr. E. St air. R. Tltoirra.'. W. Mil- Computrer. lii C. Gordon Beff Daniel P. Si,-\iorek muidi

liken, mrid T. fillckadar. Performiarnce NMea~rrrernuirr OIl Afleun Newell. editors. Comnputfr .Sritr P.frnirfpbs

ait 21-1loufe 13rir terfilr Paral)-f 1Pnores'or. Inr]tllu~ arid £.r'rnph ~. pages 549Y-57.! McGraw- Hiff. 1 ''.2.
of) Poired/c Pyn(xtqqrrgy. p ans 3:31- 5401. 19x~l.

(4] William .1. Dal' yet al. Arclitrtureof a Mes.'.age-Driierr
Pnoces %or. The 141, .4Annual mU rinotloncu .'.ynrposrrion
nn~ Comnputer A4rchift~ trrt. IK9- I 1r(. June l9k7.

~]Stephen R. (iold-chimid t. Simurlatriung MIurltiprocessor
Memory' Traces. December]967. EE390 Report. Starr-
ford Uii ersi iv.

(6] T. Gros s. J. Hlenne'ssy. S. Prz ' h 'lski. arid C. Rowen.
Mea.suremerir and Evaluationr of lit-NMIPS. Archritecturre
arid Processor. A4CM TOCS. 6. August 1988.

[7] Anoop Gupta et al. Parallel Implementation of OPS5 on
thre Encore Multiprocessor: Results and Analysis. inter-
national Journal of Peiralktl Prngjrarwmrny. 17. 1488. f

[83 R. H. Hafsitad arid T. Fujita. NIASA: A MIultithreaded
Processor Architecture for Parallel SYmbolic Comput-
ing. In I.51h Intern atinil .Symnpos im on Computer Ar-
chatturt. pages 44:3-451. 19M8.

[9) J. P. Hayes et ad. A Microprocessor Based Hybrid Su-
percomputer. IEEE Mifcro. 6. October 1986.

[10] S. K. Heller. .4n I.Structure Memory Cont roller (J..1fC).
Technical Report. Massachusetts Iurstitute of Technol-
ogy. June 1983.

(11] R. A. lannucci. Toward a Dataflow / von Neumann H -
brid Architecture. In 1.521. International .Symiposium on
Computer .4rchitacture. pages 331-1410. 1988.

[12] Robert A. lanniucci. A4 ilaflorr / tont A'erumen fly.
bid A4rchitecture. PhD thiesis. NI a.sacliuse: ts Institute
of Technology. 1988.

[1-3] lefire, D. McDonald and Donald Baganroff. Vectoriza-
tion of a Particle Simnulation Mlethod for HYpt-isoiric Pan-
ifted Flow. lit .41.4.4 Tln itodyntrri cs. Ple titidyntircs
and Lwttrr (onftrcrrce. luire I 8.

1141 D. Par rersoui. Re~duced hint rorriv Set (onupri ens.
Conin,. A4CM. -8. Ila rirar' Y 13

[I] I ;F. Pfister. XVC.Irarrtle-. et al. 'Fit(- IB 131lRekearclr
Parallel Proceskor ProirotYpe Mll P): hit roti cticson arid
A rch i ctu ue. lit In t rritioo () Conie tr)u oir Put ncr It
Prnh'r44un9. IEEE. 1Vi85-

f16 Jonbrathair io-e. Locnrslorire: A Parallel (;llal Rower1(
for Strandiiardl Cells. lii Deignrr' .4 iltlii uoo (ft r ifirti
Pat".I9~ii little 19M8k.

HARDWARE C - A LANGUAGE FOR

HARDWARE DESIGN

David C. Ku and Giovanni De Micheli

Technical Report No. CSL-TR-88-362

August 1988

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

Abstrac

High-level synthesis is the transformation from a behavioral level specification of
hardware to a register transfer level description, which may be mapped to a VLSI
implementation. The success of high-level synthesis systems is heavily
dependent on how effectively the behavioral language captures the ideas of the
designer in a simple and understandable way. This paper describes HardwareC,
a hardware description 'anguage that is based on the C programming language,
extended with notions of concurrent processes, message passing, explicit
instantiation of procedures, and templates. The language is used by the
HERCULES High-Level Synthesis System.

Key Words and Phrases: High-level synthesis, hardware description languages.

Copyrigh Q 1988

by

David C. Ku and Govanni De Micheli

HardwareC - A Language for Hardware
Design

David C. Ku Giovanni De Michelb

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

1 Introduction

High-Level synthesis is the transformation from a behavioral level specification
of L_:dware to a register transfer level description, which may then be mapped
to a VLSI implementation. The success of high-level synthesis systems is heavily
dependent on how effectively therehavioral language captures the ideas of the
designer in a simple and understandableway. This paper describes HardwareC.
a behavioral hardware description language tAkt is used by the HERCULES
High-Level Synthesis system [1,2].

The input to HERCULES consists of two sets of specifications - a description
of the functionality and a set of design constraints. The functionality is described
in a C-based language extended for hardware description called HardwvareC. The
design constraints specify the timing and resource limitations that are imposed
on a given design. The HadwareC description is parsed and translated into
a parse tree abstraction called the behavioral intermediate form, which is the
basis for behavioral synthesis. Behavioral synthesis performs transformations
similar to those found in optimizing compilers. Upon completion of behavioral
synthesis, the optimized intermediate form is mapped to a register transfer level
implementation.

2 Motivations

Many hardware description languages have been proposed and used in both
academia and in industry. Most hardware description languages are oriented
towards simulation. As high-level synthesis systems mature, a need arises for
languages that aid not only in the simulation of hardware, but also in its design
as well.

. m m m m lmnn ln I i l

Several criteria must be met by a language for hardware design, they are
described below.

1. Supports full spect rum of design styles.

The language should support readily the varying spectrum of design styles
of the designer, ranging from a pure behavioral description that is inde-
pendent of the structural implementation. to a mixture of behavior and
structure, to a pure structural description of the interconnection and in-
stantiation of hardware modules.

This criterion is crucial in a design environment since very often the de-
signer has a particular structure in mind when designing hardware. This
partial structure should be captured by the language. and reflected in
the results of synthesis. A design often requires interfacing to an existing

hardware unit, such as an ALU or incrementer. The ability to interface
with external structure is of utmost importance in automated synthesis.

Many synthesis systems and hardware description languages support only
a specific design style, either pure structure or pure behavior. We believe

a more effective approach to design is to use a flexible underlying language
that captures the essence of the design from the designer, whether that

essence be behavioral or structural.

2. Supports smulaion. If
The language should support simulation i order to ascertain the correct-
ness of a given description. As designs become bigger and more complex.
it becomes more important to be able to simulate at all levels of synthesis.

from behavioral to structural to logic to gate level.

3. Simple to learn and use.

The language is a tool that the designer uses to capture and transform
abstract ideas into complete designs. The tool must therefore be simple
to learn and easy to use. Specifically, the language should contain the
most basic constructs that are needed to describe a design. Details such
as timing and delay should be left out of the language.

HardwareC attempts to satisfy the requirements stated above. As its name
implies, it is based somewhat on the C programming language. However, several
enhancements are made to increase the expressive power of the language. as
well as to facilitate hardware description. The major features of HardwareC are

described below.

" Notions of concurrent processes and message passing,

" Templates that allow a single description for a group of similar behavior
(polymorphism). For example, an adder template describes all adders of
any given size,

' _I~ I II iII 2

* Injstartzahon of procedures, similar to instantiating objects in object ori-
ented languages, and

" Explicit Input/Output commands that access the ports of a given model.

HardwareC cat be linked to the THOR simulation environment, which is
also based on a C-like simulation language 4).

3 Modeling Hardware Behavior

Hardware behavior is modeled as a collection of concurrent and interacting pro-
cesses. Each process consists of a hierarchy of procedures, and the processes
interact and synchronize with each other through the use of inter.process com-
municatson mechanisms. This model is appropriate since hardware modules are
allocated resources which continuously operate on a time varying set of inputs.
A process upon completion will automatically restart execution with a new set
of inputs.

The concept of processes and inter-process communication is powerful for
both hardware and software models. In both domains, it allows the designer to:

I. Specify the parallelism betvwien interacting modules at a high level, and

2. Isolate the communication and synchronliation points between the pro-
cesses in an explicit manner.

As an illustration of the use of processes and inter-process communication.
consider the Intel 8251 UART (Figure 1). The UART is modeled as four concur-
rently executing processes. The main process accepts commands from the micro-
processor and coordinates the execution of the other processes. The transmitter
process writes data out on the serial interface, and the two receiver processes.
sync hronousreceiver and asynchronous.receier, reads data from the serial in-
terface. Note that the execution of each process is independent with respect to
each other. and is synchronized through the use of inter-process communication.
Inter-process communication is discussed further in Section 12.

HardwareC is a hardware description language for synchronous digital cir-
cuits. This is a reflection of the hardware model assumed by the HERCULES
Synthesis system. Therefore, there is the notion of a cottrol state that is some-
times used to describe the language. A control state is defined as an interval of
time that corresponds to a system clock cycle in a synchronous system. When
a particular operation is said to take one or more states, it means that the ex-
ecution of the operation requires one or more clock cycles to complete before
other operations that depend on it can begin.

The HardwareC language is described in the ,'ctions that follow.

3

---- ----- -----

I Main Process I <---> microprocessor
+ --

/ I \
/ I \

+ .. -- +- + +-...--+

I Imt I I Synclcv I I Asyncacv I
+ + , -+ + -4

I-- - - - - - -- --- - - - -

V I I

Serial Interface

Figure 1: Hardware model for Intel 8251 UART

4 Program Structure

In HardwareC. there are two funamental functional abstraction mechantisms
- process and procedure. A procis conlists of a hierarchy of procedures. and
executes concurrently and independently withtspect to the other processes in
the system. Similarly, a procedure is also a hierarchy of procedures. However.
a procedure executes whenever it is called by another procedure or process.'

The transfer of data to and from a process is accomplished through the
use of either parameters to the process or through message passing mechanisms
(Section 12). The transfer of data to and from a procedure. on the other hand. is
accomplished solely through the use of parameters to the procedure (Section I I).
A procedure can neither return a value as the result of its invocation, nor use
message passing to communicate with other procedures. The major differences
between a process and a procedure are summarized below.

a Process. A process continuously operates on a time-varying set of input
data. Upon completion of the last statement in its body, a process will
restart its execution, operating on a possibly different set of inputs. An
example of the definition of process procA is shown below. Note the use
of the keyword process which prefixes the name of the process.

process procA(a, b, c
in boolean a;
out boolean b;

'No rec-,iivc procedures are allowed

4

inout boolean c[21;
{

/- body of process 3/}

e Procedure. A procedure can either be combinational or sequential. de-
pending on whether the procedure requires any control states to execute.
A sequential procedure begins execution whenever it is called by another
procedure. Upon completion of execution, a procedure places valid data on
its output ports, and returns control to the calling routine. For combina-
tional procedures, execution involves propagating the input data through
a network of combinational operations. An example of the definition of
procedure procB is shown below.

procB(z, y, :)
in boolean z;
out boolean y,
inout boolean :21;{
/- body of procedure jf}

A procedure cannot be defined within the body of another procedure.
This restriction follows the C language, which disallows nested procedural
definitions. The resulting flattening of the procedural definition is appro-
priate since for hardware description, it is more convenient and secure to
identify explicitly all inputs and outputs to a given procedure. A proce-
dure defined within the scope of another allows access to all variables that
are defined within the scope of its definition. As a result, a procedure's
boundary is not well defined if nested procedural definitions are allowed.

Nested procedural definition is different from nested procedural invoca-
tion, the latter of which is both permitted and encouraged. For example,

* invalid procedure * valid procedure
* definition a definition

procA(a, b) validproc(x, y)

.o . .o

{ {
invalidproc(x, y)
{ I

I procA(a. b)

±nvalidproc(...) {
validproc(...

4.1 Statement Block

Statement block, more commonly known as compound statement. is used to
group variable declarations and statements together so that they are syntac-
tically equivalent to a single statement. A statement can either be a variable

assignment, an if-then-else statement, a switch statement, a while statement.

a for statement, an input/output statement, a message passing primitive, or a
block. Semi-colons are used as terminators to statements. A semicolon by itself

represents a null statement.
Har'dwaweC supports two type of statement blocks - paralleiz:able blocks

and ser-al blocks. Parallelizable Z ocks tre encapsulated using curly braces ({
and }). whereas serial blocks are encapsulatedsing square brackets (' and).

The differences between the two types are:

e ParaDelizable Block (I- The statements within a parallelizable block can

all execute in parallel, subject to the data dependencies that exist between
the statements. For example,

vartable.declarations;

stalemenfl;
staement;

means that statemenil can be executed concurrently with siaiementO. The
degree of parallelism is determined by the synthesis system.

* Serial Block I] - The statements within a serial block are guaranteed to
execute in serial order, starting from the first statement in the block. For

example, stalementl will always execute before satement!, regardless of
their data d,pendencies.

6

vanable.declartions;

statementl;
statementt,

Serial block allows the designer the ability to specify control dependencies
between otherwise data independent statements.

A description written using only serial blocks is always guaranteed to be
correct - that is, the control dependencies between the statements are fully
described. However, the description may not be efficient, since inter-statement
parallelism is not exploited. In order to specify such parallelism, the designer
should use whenever possible parallelizable blocks ({ }) in describing hardware.

4.2 Parameter Classes

The parameters to processes and procedures are categorized into three differ-
ent classes: in, out, and inout. I,.put (in) parameters can only be referenced
within the body of a routine: assignments to input parameters are illegal. Out-
put (out) parameters can be modified within aWe body of a routine; references
to output parameters are illegal. Input/output (inout) parameters are bidirec-
tional lines that can be either referenced or assigned. The access protocol to
this bidirectional line is left to the designer, and specified as part of the high-
level description. Note that an inout parameter is not simply data that will
both be read and modified in the routine. It is reserved for the description of
bidirectional lines.

For example, Busy is an in parameter that controls the access to an inout
parameter Data. AllZero is an output parameter that returns a flag on whether
Data is all zero.

process test(Busy, Data, AllZero
in boolean Busy;
inout boolean Data[8);
out boolean AllZero;

while (Busy)

/o write to Data *1
Data = newdata;
write Data;
AllZero = (Data == 0);

7

Notice the use of the serial block ([]) to ensure that the write to Data occurs
after the busy waiting while loop, which does not have any data dependencies
with respect to the write.

4.3 Declare Before Use

Whenever a procedure is called, the arguments to the invocation are checked
for both compatibility in the variable size and type, as well as for compatibility
in the parameter classification. For instance, an input parameter cannot be
used as the argument to a procedure call that requires an output parameter.
Similarly, an output parameter cannot be used as the argument to a procedure
call that requires an input parameter. This compile time consistency checking
improves the security of the language.

In order to provide this information to the parser, it is necessary to declare
a procedure before it can be called. The declaration of a procedure involves
specifying:

1. Name of the procedure - cani/e any -alphanumeric string beginning with
a character. V

2. Number and order of parameters - only Efolean parameters are allowed.

3. Sies of the parameters - the size of a parameter can be specified in terms
of a constant, or an expression that evaluates to a constant.

4. Classes of the parameters - in, out, or inout.

An example of the declaration for a procedure is shown below.

0 define MAX 4

declare example(a, b. c)
in boolean a;
out boolean b[MAX];
inout boolean c[MAX+1);

The actual names of the parameters are irrelevant; they are used only for
the purpose of specifying the classes and sizes of the corresponding parameters,
Another example is shown below.

declare sum(z, y, z)
in boolean z;
out boolean y(2];

8

inout boolean z;

foo(...)
{

/...../
sum(a. b, c

}

If the declaration of sum is not supplied, then the subsequent caln in foo
will be invalid. Similarly, for inter-process communication through message
passing, it is necessary to predeclare a particular process before sending or
receiving messages from it. The declaration for a process is exactly similar to
the declaration for a procedure, with the sole exception of the keyword process
that prefixes the name. For example, the declaration for a process named foobar
is as follows.

declare process foobar(a, b, c
in boolean at3);

out boolean b4C;
inout boolean c[2 ;

5 Data in HardwareC

There are two types of data entities in the language - constants and variables.
They are described in the folowing sections.

5.1 Constants

There are two types of constants in the language - integer constants and hez-
adecimal constants. Integer constants are positive numbers described in the
decimal notation. For example, 5 and 223 are integer constants. Hexadecimal
constants are numbers described in the hexadecimal notation. They are pre-
fixed by Oz, followed by a string of hexadecimal digits { 0 - 9, a, b, c, d. e. f
). For example, Oxf represents 15, and OzlO represents 16. Binary constants
are subsets of hexadecimal constants, where 1 is represented as Ozl, and 0 is
rep.esented as OzO.

Negative constants are not represented in the language. This restriction
stems from the independence of HardwareC to a particular style of complemen-
tation. Therefore, if the designer wishes to 5pecify -3 in one's complement
notation, then he should specify the bit-wise representation of the value using

9

hexadecimal constants. For an 8-bit number in one's complement notation. -3
is represented as 0z8.

5.2 Variables

There are two variable types in the language - Boolean and integer. Boolean
variables are mapped to wires or registers in the final hardware, whereas integer
variables are provided for the convenience of the description, and will be resolved
at compile time during behavioral synthesis.

A variable may be declared within any block ({ } or (]) of any arbitrary
nesting. The semantic follows that of block structured languages, where a vari-
able is visible only within the scope of its definition. A variable with the same
name at a deeper nesting block level will override any current definition of the
variable.

For instance, all declarations in the following example are valid.

int i:
boolean x:
{

int i: /- new integers'
boolean x, y: 7

/ y is not defined here */

No global variables are allowed in HardwareC. This restriction is due to the
fact that global variables allow side effects that are not explicitly identified.
This is undesirable from the standpoint of security, verifiability, and program
readability. If some data must be shared between two routines, then the data
should be explicitly specified as common parameters to the two routines.

Integer Integer variables can only be scalar quantities. Integer variables may
be used in any arithmetic, Boolean, and relational expressions. They can also
be used as indices to constant iteration loops (for loop), and as indices for
accessing components of Boolean vectors and matrices. The following example
demonstrates the use of integer variables and expressions in accessing compo-
nents of a Boolean vector.

'-

* svaps the two nibbles in "a" to "b"
-/

10

swap(a, b)
in boolean a[81;
out boolean b[83;

{

int i, J. k;

k = 3;

/. copies LSB nibble to b ./

for i a 0 to k do
b[i*4:i+4] a[i:i 3;

/- does exactly the same thing -/
i X0;
j 3;

b[i+4:j+4 I z a[i:j J;

/. copies MSB nibble to b ./

b[i:j I a a[i*4:j+4];

write b; X

The exact syntax on accessing components of a Boolean vector is discussed
in the next section. The example below shows the use of integer expressions
and values in control structures.

int i;
boolean vec [243;

for i z 0 to 7 do {
switch i) {
case 0:

wec[3-i:3*i+2 3 : Ox7; /w binary 111 /

break;
default:

vec[3"i:3*i+2 I i;
break;

I

/* vec should have the following value:

111 110 101 100 Ol 010 001 111
MSB LSB

S-

lI

Boolean A Boolean variable represents one or more signals, where each bit of
the variable corresponds to a signal that can be either 0 or 1. Boolean variables
can be scalar, vector, or matrix. For example, the following declarations are all
valid Boolean variables. In particular, a is a scalar, b is a vector of five elements
starting from index 0, and c is a matrix of 25 elements, with the rows starting
from 0 to 4, and columns starting from 0 to 4.

boolean a; /- scalar -/
boolean b[S]; /0 vector */
boolean c[S]S); /" matrix */

In Boolean vectors, specifying the variable name without brackets, or with
empty brackets, represent the entire vector. For example, b and bE[are equiv-
alent to b[0:43. Columns of a Boolean matrix can be accessed similarly. For
example, c [2) and c [2) 0 are equivalent to c [2J (0:4]. Since assignments to
matrices are not permitted, a reference to c will automatically be converted to
c [01 [0:4], the first row of the matrix.

For Boolean vectors and matrices, it is also possible to access a subrange of
values. This is specified by the colon (:) notation. For example, b[2:3) repre-
sents a vector of two values that corresponds to the third and fourth element
of b. The most significant bit (MSB) is always the higher index, with the least
significant bit (LSB) being the sm2er inkex.

Integer variables and expressions can'be used in variable declarations to
specify the dimensions of the variable, or they caFbe used to access components
and subranges of Boolean variables. For example,

int i;

i = 3;
c[i][i:i 1] r. b[O:.1];

boolean q[i+l); /* q has 4 elements e/
}

Boolean variables are further classified as local, static, and register.

" boolean - Local Boolean variables are the default. A local boolean is
initialized to zero, and its value is not saved across procedure invocations.
For example,

boolean flag;
boolean vectorflag[2), matrixflag[2J [3);

" static - Static Boolean variables are similar to local Boolean variables,
with the semantic difference that their values are retained across proce-
dural invocations. For example,

12

static internal-state[2J;

Static variables will always be implemented with storage elements such as
registers.

register - Register Boolean variables are architected registers that are
specified by the designer. Similar to static variables, they also retain
their values across procedural invocations. Every assignment to a register
variable immediately loads the corresponding register with a new value.
For example,

register status [8);

The difference between register and static variables is in how assign-
ments are handled, which is discussed next.

Assignments to boolean and static variables are resolved during behavioral
synthesis, and hence do not require any control states for run-time execution.
In contrast, each assignment to a register variable corresponds to the loading
of the register with a new value, and hence requires a control state at run-time.

To demonstrate the differences between static and register variables, consider
the two examples below. In procdaure foo, each assignment to the static
variable c will not consume a control state'at run-time. This is due to the fact
that the assienment only changes subsequent rAerences to c. and hence does
not imply loading the register that implements c with a new value.

foo()
{

static C;

C a 1; / change reference only */
C z 0; /* change reference only ./ I
c = 1; /* change reference only *I
C = 0; / last value of c is 0 ./

Similarly, the register variable c in procedure bar also has a final value
of 0. The difference is that during the execution of bar, the register is loaded
with 4 values, corresponding to each assignment to the variable. Therefore, the

procedure requires four control states to execute.

bar()
{

register c;

13

c a 1; /* register has 1 */
c = 0; I* registex has 0 ./
c = 1; /* register has 1 again .1
c = O; /* last value of c is 0/

In terms of port behavior, static and register variables perform the same
action - retain values across invocations. Architected registers allow the designer
explicit control over the contents of the register. They are useful for testability
purposes where the designer wishes to check the contents of a particular register

during execution. For example, architected registers are often used as a status
register in a processor description.

5.3 Variable Declaration

The dimension of a Boolean variable may be specified as either a constant. an
integer variable, or an integer expression. For instance, consider the declarations
for Boolean variables a and b.

int i;

i=3;
*

boolean a i); /- a has 3 elements -/

i=8;

boolean b~i+3); / b has 11 elements '/

In fact, even the dimensions of the parameters can be specified as arbitrary
integer expressions. The delayed binding of variable dimen-ion to variable def-
inition greatly increases the expressiveness of the language, and improves the
flexibility and adaptability of an input description. An illustration of the use of
integer expressions in parameter declaration is shown below.

S define MAX 8

declare foo(a, b)

in boolean a[MAX+.1;. /* 9 elements ./

14

out boolean b[MAX+2); /- 10 elements -/

Note that the integer expressions (MAX*!) and (MAX+2) are used to declare
the dimensions of the parameters.

6 Control Flow Constructs

BardwareC supports a single-in, single-out control flow, similar to the Pascal
programming language. This implies that no gotos and returns are allowed in
the language. Such restriction is appropriate since by supporting a single-in,
single-out control flow, the semantics of the language is made simpler. which
greatly aids in the correctness verification of programs. The four major control
flow constructs are :f, switch, for, and whtle; they are described below.

. if
selects among two alternatives, depending on whether the conditional ex-
pression evaluates to TRUE or FALSE. non-zero or zero. respectively. The
conditional expression can be any arithmetic, Boolean. and relational ex-
pression that involves both integer and Boolean variables. The else part
may be unspecified. For exapple.

if (' b a chipselect)A
a 0; I- any statement =I

else
a a 1; 1- any statement '/

" switch

selects among one or more alternatives, depending on the value of the
switch conditional expression. The individual cases in the switch state-
ment may be cascaded, and are delimited through the use of break state-
ments.

switch (<switch expr>) {
case uml :

<statement>

case num2:

case num3:
<statement>

break;

default:
break;

)

15

break statements are illegal in any other contexts, such as for premature
exits from while loops.

0 for

is a constant bound iteration on a given integer variable. The exact syntax
is as follows,

for <int var> a expri {toldonto) expr2 [stoep expr3)
do <statement>

where exprl, expr2, and expr3 can be any constant or integer expression.
The step clause is optional, and has a default of one.

* while

is a data dependent iteration on a given Boolean expression. The syntax
of the while loop is as follows.

while (loop-expr)
<statement>

f
loop-expr can be any integer, relatiobal. or Boolean expression.Aw

There are only two types of iterative loop constructs in HardwareC - for
loops and while loops. For loops are deterministic iteration loops, whose bounds
are known at compile time. A while loop is a non-deterministic iteration whose
exit condition can be data dependent, and hence is in general unknown at com-
pile time. Whereas there are many variants of data-dependent loops, such as
do-while and repeat-until, they can all be written in terms of while loops.
Including the many variants of data-dependent loops does not increase the ex-
pressive power of the language. Therefore, for reasons of simplicity, HardwareC
supports only one style of data-dependent loops - the while loop.

7 Assignments

When a program references a particular variable at different locations in the
code, it may reference different values. depending on whether the variable has
been re-assigned between the references. The value of a variable is defined to
be the data most recently assigned to it. 2 An assignment to a variable modifies
the value of the variable.

Both Boolean and integer variables, as well as inout and out parameters,
can be assigned. Note that an assignment is not an expression that returns a

2 Da is dehned to be the resuJts of procedure call, binary and unary operators. or messase

passing,

16

value. For example, a = a + 1 does not return the new value of a, which is in
contrast to the C programrming language.

The semantics of assignment to different types of variables are described
below.

" out or inout parameters.

Assignments to an output or input/output parameter will update the value
of the port. The actual reflection of the port values to externally visible
signals is performed explicitly through the use of input/output commands,
discussed in Section 11.

" in, boolean, or static variables.

Assignments to these variables will be resolved and removed during be-
havioral synthesis. Therefore, the assignments serve only to update the
value of the variable for subsequent references, and do not consume any
control states at run-time. Only constants or integer expressions can be
assigned to integer variables. There is no restriction on the values that
can be assigned to Boolean variables.

" register variables.

An assignment to an architected register loads the register with a new
value. Therefore, every assjnment requires a control state for execution
at run-time.

8 Templates

Very often two descriptions differ in only very restricted ways. For example.
they are the same with the sole exception that the variable sizes are different.
as illustrated below for a four-bit and a five-bit adder.

'-

* Four-Bit adder
a'

adder4(a, b, c, cin, cout)

in boolean a[4), b[4J. cin;
out boolean c[4], cout;

/* 4 bits add ./
I

/9

* Five-Bit adder
'/

17

adderS(a, b, c, cin, cout)

in boolean aWS), b(51, cin;
out boolean c[S], cout;

{

/I same as above, but for S bits */
}

It is much simpler and expressive if only one description is given for the adder
function which takes an argument specifying the size of the operation. This
approach offers the advantages of (1) consistency of descriptions, (2) economy of
code. which decreases design time, and (3) reusability of code (polymorphism).

In HardwareC. the mechanism which supports parameterized descriptions is
a template. A template can either be used to generate a procedure or a process.
Templates are similar to generic packages in ADA, or generic classes in several
object oriented languages. A template takes one or more integer arguments
as parameters. and given a particular mapping of integer values to the integer
parameters. a corresponding instance can be obtained. A good analogy can be
made between templates and module generation; in fact. a template is a form
of high-level module generation. The exact syntax of templates for procedures
and processes is given below. 1'

4.

* Procedure Template definition: d

template <procedure_name> (<parameters>
with (<integer.parameters>

<parameter declarations>
{

<body>
}

" Process Template definition:

template process <procedure.name> (<parameters>)
with <integer-parameters>

<parameter declarations>
{

<body>
I

The keyword template prefixes the name of the template, and the keyword
with separates the Boolean parameters from the integer parameters. The in-
teger.parameters are the names of the integer parametets, and are separated
by commas (,) if more than one is present. These integer parameters can be

18

used in both parameter declaration and the body of the template as integer
constants. Specifically, assignment to an integer parameter is not allowed.

Let us consider the description of a template for the ripple-carry adder func-
tion.

/-

ripple carry adder
-/

template adder(a, b. c, cin, cout) with (size)
in boolean a[size], b[size], cin;
in boolean c[size, cout;

{

unt i. J;
boolean t ep;

tamp a cin;
j a size -1;

for i = 0 to j do {
c[i:i) - a[i:i] xor b[i:i zor temp;
tamp = a[i:i] & b[i:i] I

tamp & (a[i:i] I b[i:i]);

cout t temp;
write c, cout;

Templates can be used in two ways, corresponding to the environment level
and the language level.

1. Envtronment Level - The HERCULES Synthesis system can create any
number of instances of a given template. This is useful for example in
generating library units such as adders or incrementers.

2. Language Level - Within the description, the designer can make refer-
ences to particular instances of a template through mnstanthating templates.
Template instantiation is described next.

9 Instances

HardwareC supports ezplicri instantiation of procedures and procedure tem-
plates in the description. A instance of a procedure represents an object that
encapsulates both behavior and state. In a similar manner, a Boolean vari-
able is also an object whose behavior is specified by the language in terms of
the semantics of accessing and modifying the variable. Instances can therefore

19

be treated as :nstance variables that are declared and used in the scope of its
definition. The syntax of procedure instantiation is described below.

instance <procedure.name> instl, inst2, ... , instn;

The keyword instance prefixes the name of the procedure, followed by the
names of the instances to be created, separated by commas. If a template is
instantiated, the syntax is described as follows.

instance <template.name>(<integer.arg>) tl,... ,tn;

the arguments to the integer parameters should be specified. separated by
commas. The integer arguments must be constants, and cannot be any variables
or expressions. Note that the scoping rules for variable visibility also apply to
instances. Consider the example below, where counter is a procedure that
increments an internal variable each time it is called.

instance counter a;
instance adder(4) o4; / 4 bit adder s/

instance counter a, b; q

a(...); /. new counter .1

/* can access o4 also ./

a(...); /* old counter */

/* b is undefined here re

The instance a of counter is different for each different nesting of the block.

9.1 Calling a Procedure

A procedure may be called by another process or procedure. This is accom-
plished by specifying the name of the procedure to be called, along with the
arguments to the procedure separated by commas and enclosed in parentheses.
A procedure must be declared or defined before it can be called, otherwise the
call will result in an error.

Valid arguments to a procedure call depend on the particular class of the
corresponding parameters. Specifically,

20

" In Parameter - AD in parameters, inout parameters. local boolean.
static. and register variables and expressions axe allowed to be used
as arguments in the procedure call.

" Out Parameter - All out parameters. inout parameters, local boolean
variables, and static variables are allowed. No register variables are
allowed.

" Inout Parameter - Only inout parameters are allowed.

There are two types of procedure calls - generic or instaniated calls. A
generic call is a call made to a given procedure type. The particular instance of
the procedure type that is used to implement the call is not specified. To invoke
a particular instance of a procedure, the name of the instance simply replaces
the name of the procedure in a procedure call. This style of procedure call is
called an instantiated procedure call. For example,

instance counter x;

counter(...); /- generic call 0/
X(...); /* 4stntiat~d call .

counter(...); /* generic call /

X(...) instantiated call -1

All the calls to x will invoke the same instance. However, if a procedure
is invoked without specifying the instance (generic procedure calls), then the
synthesis system is free to determine whether the call can be shared with other
generic calls. or whether to allocate an instance to the call.

9.2 Advantages of Instantiating Procedures

There are several advantages in supporting both generic and instantiated pro-
cedure calls. They are briefly described below.

1. Resolves Ambiguity in the behavior. The designer can completely describe
the behavior that is intended without relying on hidden assumptions.

2. Access to both State and Behavior. The designer can access not only
behavior through procedure calls, but also internal state information as
well.

3. Supports Spectrum of Design descriptions. Depending on the style of the
designer, hardware can be described in a spectrum ranging from pure

21

behavior that is free from structural implications to pure structure that
describes the interconnection and instantiation of hardware components.
A procedure instantiation is similar to instantiating a hardware module.
and therefore Hardwar-C supports fully the spectrum of design description
styles.

4. Specifies Resource Sharing at descript:on leveL Although it is not required
by the synthesis system, it is possible for a designer to specify the sharing
of resources (procedure instances) through the use of instantiating pro-
cedures. For example, the designer can specify whether only one adder
should be used to implement a description verses one that uses two adders.

9.3 Motivation and Example

A major drawback with many languages is the inability to specify exactly which
instance of a given procedure is invoked in a procedure call. This restriction is
reasonable for procedures that describe only the functionality without internal
state information. However, if a procedure has internal state associated with
it (through the use of either static or register variables), such restriction sev-
erly handicaps the usability and expressiveness of the language. In fact. the
such deficiency can result in either inefficient or even incorrect implementation.
depending on whether the assumpons made by the synthesis system matches
those made by the designer. $

Consider the description of a counter belowOO

/=

* each call to it increments by 1
-/

counter(value)
out boolean value(8J;

static state 8)

state a state + 1;
value = state;
vrite value;

Every call to the counter module will increment the corresponding internal
state variable by one. If a call is made to counter without specifying the
particular instance that is to be invoked, then one of two situations will arise.

I. Single instance assumption - If the synthesis system assumes that one and
only one instance is associated with a procedure, then a call to counter

will always increment the same internal state (corresponding to the single
instance).

However, this approach is overly restrictive since one of the powers of
synthesis systems is to explore the spectrum of design tradeoffs between
parallel and serial implementations, and by always assuming one instance
per procedure this exploration is not possible.

2. No assumption on the invoked instance - On the other hand, if no assump-
tions ame made on which instance a given call will invoke, the synthesis
system will then have the flexibility to either dedicate an instance to the
call. or share several procedure calls onto the same instance, however.
if the procedure has internal state information, then the description can
be incorrect, dependent on the particular mapping of procedure calls to

procedure instances.

The assumptions that are made by the synthesis system may not be what
the designer had in mind when writing the description. For instance, in the
code segment below, counter is called twice.

counter(sul),

counter(sum2);

The designer can either view the two calls as incrementing the same value
twice, or he can view the two calls to be distinct, each incrementing a value
independent of the other. Through instantiation oi procedures, the designer
can explicitly specify the exact semantics of a procedure call. For example. if
the designer wishes to increment a single value twice, then the corresponding
code is given below.

instance counter value;

value(...); /- increment *I

value(...); /w increment agairk,./
}

On the other hand, if the designer wishes to increment two different values,
then the code is as follows.

instance counter valuel, value2;

valuel(...) /. increment valuel o/

23

value2(...) /' increment value2 0/
valuel(...) /* increment valuel again 6/

The designer can instantiate not only procedures, but also procedure tem-
plates. This is accomplished by supplying the values to the integer parameters
to the corresponding template, separated by commas if more than one value
is required. The example below makes use of the adder template described in
Section 8.

instance adder(4) o4; /0 4 bit adder
instance adder(S) o5; /* 5 bit adder -/

o4(...,;
oS(...

10 Operators

HardwareC supports all Boolean aj relational operators available in the con-
ventional C programming language. It also supports all arithmetic operatorsL
The operators can be unary or binary, and take,.oth integer and Boolean vari-
ables as operands. Mixed operations between Boolean and integer variables are
also allowed if it makes sense. For instance. Boolean inversion on an integer
variable is illegal.

The operators are summarized below.

Arithmetic { -, -, -, / } Applies to both integer and Boolean variables and
expressions.

Boulean { !. L. ;, zor } bitwise Boolean operators, shift left (<<), shift right
(>>), vtate left (rl), and rotate right (rr). Applies to only Boolean
variables and expressions.

Relational { ! =, ==, <=, >=, <, > } Applies to both integer and Boolean
variables and expressions.

Auto-Increment/Auto-Decrement { -- +, -- } Applies to both integer
and Boolean variables "ind expressions. For example, a + + and - - a
are equivalent to a = a + 1, whereas a - - and - - a are equivalent to
a = a - 1.

24

11 Input/Output

HardwareC has explicit input and output commands to allow reading from and
writing to the ports of a process or procedure. The three main commands are
iWntne, free, and read, and are described below.

write writes the most recently assigned 'value' of an output or inout parameter
onto the corresponding ports. Different semantics exist for different types
of parameters; they are summarized below.

" No write is specified for an inout o, out parameter - any chanee
made to that parameter will not be visible. In the example below.
the assignments to the inout parameter a do not affect the value
of the port; they only serve to alter the value of a for subsequent
references.

inout boolean a;

a = 1; I. port unaffected ./
a 0; /m port unaffected s/

a = 1; Ij- port unaffected a/

" Singe write to an out parameter - in many situations, the desizner
wishes to connect an output port directly to the result of a particular
operation. There are two advantages for using direct connection.
First, it does not waste a state at run-time. Second. direct connection
allows external visibility of a particular operation.

Direct connection is achieved by specifying a single write for an
output parameter in the body of the routine. For instance, the output
parameter : is connected directly to the output of the adder in the
example below.

while (run) {
temp a temp + 1;
Za temp;
write z; /. direct connection ./

}

Any value written to a port will be retained until either the next write or
free statement. In the example below, the out parameter c will generate
a pulse on the ports.

out boolean c;

25

C= 0

write c; /e port has 0 o/

C = 1;
write c; / port has I1

C Z 0
write c; / port has 0 again *[

free sets the corresponding output or inout port to high impedance float value.
For both free and write, the effect of the change on port boundary wil
take place exactly one cycle after the statement begins execution. Any
w&,te to a port that has been set to float state will overwrite it with the

new value. For example,

out boolean d;

I
d=
write d; /= port has I•

free d; / port has high-Z w/

write d; /0 port has I again 0/

read samples the corresponding in or inout port into a register, and returns
the output of the sampling register. Execution of a read statement will
take one cycle to complete. For example.

y = read(x);

/* y is sampled version of x -/

12 Inter-Process Communication

There are two paradigms for inter-process communication - shared medium and
message passing. Shared medium communication refers to the transfer of infor-
matiou between modules through a common set of ports. The protocol which
governs correct handshaking between the modules is provided by the designer,
and is described as an integral part of the high-level description. Message pass-
ing communication, on the other hand, utilizes explicit send and receive opera-
tions to synchronize between the two concurrent processes.

26

Each approach has its advantages and limitations. For example, in com-
munication through shared medium. the performance advantage is offset by an
increase in the complexity of the resulting high-level description. Likewise, the
conceptual elegance of message passing solves both synchronization and commu-
nication in systems, but may result in unacceptable implementation complexity
if it is used without restraint.

HardwareC offers both approaches. First, it allows shared medium commu-
nication through the use of parameters to processes or procedures. Second. it
allows a synchronous send-receive message passing scheme with fixed-size mes-
sages. The size of a message represents the number of bits that is communicated
between the processes, and may be specified by the designer in the input descrip-
tion. Synchronous message passing provides a simple yet powerful approach to
inter-process synchronization and limited data transfer without incurring the
cost of message buffering.

12.1 Message Passing Primitives

There are three primitive operations in message passing: send. receive, and
msgwai . Only processes can use the message passing primitives, send transmits
a ftxed size message to another process. The current process will wait and
synchronize until the corresponding process issues a receive, whereupon the
transfer of information wil take 4lace. For example, targetprocess is the
receiving process, and message is the me'ssage t be sent.

send(targetprocess, message);

receive accepts a message from a given process, and will wait and synchronize
until the corresponding process issues a send. For example, sourceprocess is
the sending process, and buffer is the message received.

receive(sourceprocess, buffer);

msgwait is a query that returns a scalar Boolean flag signifying whether
the specified process is currently sending to the current process. For example,
Producer and Consumer are two processes that synchronize with each other
using message passing.

process Producer(...)

/* generate item '/
send(Consumer, item);

I

process Consumer(...)

{

27

it (msgwait(Producer))

receive(Producer, item);

/I consume item */

else
/a producer not ready ./

There is a system wide message size, which is the bandwidth of the commu-
nication channel between the processes. The default is 8 bits wide, and it can
be changed by specifying the size in the description as follows.

/- <num> is new message size .1
ipcsize = constant-number;

ipcsize is a keyword in the language, and constant-number is a positive
integer constant. The message size change must be done before any message
passing operation takes place, as the parser will check to ensure proper size
messages and buffers are used in the send and receive operations. The assign-
ment should not be within the body of any particular process or procedure. and
should lie between procedural definnions.

13 Miscellaneous

HardwareC relies on the C preprocessor during parsing to handle macro defi-
nition (#define) and file inclusion ({include) facilities. The designer is free to
use any C preprocessor commands in the description.

14 Appendix

Four detailed examples of hardware description using HardwareC are described
below. The first is a four bit carry look-ahead adder. The second is a counter
process that uses the four bit adder. The third is the traffic light controller
described in the Mead-Conway book. The final example is the Intel 8251 UART
description.

Four-Bit Adder

add4bU(a, b, carryin, result, carryout

in boolean a[4);
in boolean b[4);
in boolean carryin;
out boolean result[4];

28

out boolean carryout;

in% i;
t:oolean P[4], G[4), new;

calculate propagate and generate
.1

for i = 0 to 3 do
P(i:i] = [6i:i] zor b(i:i';

for i = 0 to 3 do
Gli:i) = aji:iJ & b[i:ii;

/.
* calculate carryout
3/

carryout = G.3:3] I (P3:3] & G,2:2,)
I (P[3:3] & P'2:2] k- G(I:I)

(P'3:3] & P,2:2 & PT1:1- & G'0:0I)
(Pi3:3] & P'2:2) k- P 1:1' & Pk:0 & carryin);

/.

* calculate sum
./X
new = carryin;
for i = 0 to 3 do

result'i:i; = Pii:i' xor new:

new = G6i:i(Pfi:i. & new);}

write result, carryout;

Counter

process counter(run, load, updovn, data, sum)
in boolean run,

load, updovn,
data [4);

out boolean sum[4);

boolean temp(S];

while (run) {
it (load)

temp a data;

29

else {
if (updown)

add4bit(temp, 1, 0, temp[O:3], temp[4:4]);

else
add4bit(temp, Oxf, 0, t mp[0:3], teup[4:4]);

)

sum = temp[0:3];
write suam;

Traffic controller

/-

H Head/Conway Traffic Light Controller
-/

x define HIWAT.GREE 0
* define HIWAY-TELLOW 1

* define FARM.GREEN 2

8 define FARN.YELLOW 3

x define GREEN 1

x define YELLOW 2

S define RED 3

a define TRUE 1
8 define FALSE 0

process traffic (run, Cars,

TimeoutL, TimeoutS,

HiWayL, FarmL, StarTimer

in boolean run;
in boolean Cars,

TimeoutL,
TimeoutS;

out boolean HiWayL[2J,

FarL[2],
StartTimer;

static state[2];
boolean newstate [2);

while (run) {

30

/* combinational logic
to determine nexstate

'/

switch (state) {
case HIWAITGREEN:

HiWayL - GREEN;

FarmL * RED;

if (Cars & TimeoutL) {

newstate = HIWATYELLOW;
StartTimer = TRUE;

} else {
newstate = HIWATGREEN;
StartTimer = FALSE;

}

break;

case HIWATTELLOW:

HiWayL : YELLOW; I

FarmL = RED;

if (TimeoutS) {

newstate = FkRMGREEN;

StartTimer = TRUE;

} else {
nestate = FARM-YELLOW;

StartTimer % FALSE;
I

break;

case Fi&IMGREEN:

HiWayL : RED;

FarmL GREEN;

if (! Cars I TimeoutL) {
newstate • FARM-TELLOW;

StartTimer a TRUE;

} else {
newstate z FARM-GREEN;

StartTimer = FALSE;
I

break;
case FARM-YELLOW:

31

HiWayL = RED;

FarmL = YELLOW;

if (TimeoutS) {
newstate = HIWAYGREEN;
StaztTimer = TRUE;

} else {
newstate = FIRM-TELLOW;

StartTimer = FALSE;
}

break;

state = newstate;

write HiWayL, FarmL, Startimer;
}

Intel 8251 UART There are four processes - main, xmit. sync.recv. and

async-recv. They communicate through send/receive message passing primi-

tives. f
q

* i8251 UART - HardwareC version

* Written by David Ku

* Stanford University
a/

S define DataSize 8

0 define forever 1

define wait(f) while (f)

X define TRUE 1

s defi.ne FALSE 0

/0

* field definition
./

0 define eh control[7:7)

8 define ir control[6:6]

32

x def ine rts control[5:S]

8 define or coritrol[4:4)

0 define sbrk control[3:3]

S define rxE control[2:2)

* define dir cozxtrolil:li

S define txen con~trol[0:OJ

define dir status[7:7]

8 define syndet s-tatuu(6:6J
8 define fe status (S:S)

a define oe status[4:4)

4 define p. status[3:3)
* define txe status[2:2J

s define rxrdy status[i:i)

8 define txrdy status(Q:OJ

S define scs mode[7:7]

2 define nsbits mode(6:7)

I define esd uode[S:5)

a define op ~ iode(4:4)
I define pen J-mode j3:31
8 define nbits modeti :2)e

8 define brate mode[0:0)

* hunt-mode()

* searches in synchronous
* receive mode for sync chars

hunt..mode(rxd. drdy, synci. sync2, mode)
in boolean rxd;
in booleai drdy;
in boolean sync2 (DataSize),

sync2(DataSizel ,

mode [DataSize);

boolean done;
boolean data (DataSize];
boolean ncount[3);

done = FALSE;

33

while (done){

data = Oil I;
uhile (data != syncl

wlait (ddy);
4&taC7:7] z read (rxd)

data zdata >> 1;

done %TRUE;

if (iode[7:7) =2 0){

ncount[2:2) 1;

ncounttO:1) nbits;
while C ncount) I

wait (dxdy)
data(7:7) = rxd;-

data =data >> 1;

ncouflt =ncount - 1;

done =(dal(a == sync2);

x i2t -transmit process

declare process i82S1(ChipSelect,

WriteEnable, ReadEnable, ChipData,

data, valid, synci, sync2, mode.

control, status)
in boolean ChipSelect;
in boolean WriteEnable;

in boolean ReadEnable;

in boolean ChipData;
inout boolean data (DataSize);

out boolean valid;

out boolean sync! [DataSize);

out boolean sync2(DataSizeJ;

out boolean modeEDataSize);

out boolean control[DataSize);

34

in boolean status[DataSize);

process xuit(cts, txd, xdrdy, valid,
mode, status, control,
syncl. syrxc2)

in boolean cts;
out boolean txd;

in boolean zdzdy;
in boolean valid;
in boolean sync 1[Dat aSize),

sync2[DataSiza);
in booleai mode CDataSize),

control [DataSize);
out boolean status [DataSize),

mnt i;
boolean sync-mode; /.sync mode .
boolean sync.f lag;
boolean data-ready;
boolean paxr;
boolean ncount[3); /S #)its M/
boolean dbul [DataSize);

boolean xdata[DataSize);
boolean okay [DataSize);

free status;

* initialization - valid
* true when syncl/sync2 is ready

if (valid) f

tid =1; txe =0;
write txd;

sync-mode =(rnode[6:73 0);

w. ait f or enable .

wait (txen & cts)

35

/0 check for sbrk 0/

if ('sync-miode & sbrk)

£ txdO0;
write txd;

gait (!(sbrk) I (!txen) I(cts))

txd =1;
write txd;

* wait if in async mode,

* or send sync char if sync

txe =1;
write txe;
free txe;

it sync-mode)
{ /* check it message are pending .

if (msgwaiting(i8251))
recq I we(i8251, xdata);

else
{if (sync-flagle

xdata =syncl;

else

xdata =sync2;

sync-f.!lag 'sync-flag;

else
receive(i825 l, xdata);

* send start bit

if (sync-mode)
(wait (xdrdy);

txd =0;
write txd;

36

* send data
S/

ncount[2:2] 1 ;
ncount[0:13 x nbits;
while (ncount)
[wait (zdrdy);

txd z dbu.f[0:OJ;
write txd;
ncount a ncount - I;
dbu. a dbu. >> 1;

/•

* send parity bits if required
S-

if (pen)
(

par a xdata[O:O];
for i z 1 to 7 do

par Zrar xor xdazali:il;

if (! ep) A
par * ' par;

wait (xdrdy);

txd = par;
write txd;

/-

* send stop bits
5/

if C! sync-mode)
[wait (xUdrdy);

txd x 1;

write txd;
)

write status;

I

* rcvr.sync -

37

* receiver synchronous process

process rcvr-SynC(rzd. drdy. valid.
mode, control. status,

synci, sync2)

in boolean rxd; /e receive serial *

in boolean drdy; I. data ready .

in boolean valid;
in boolean mod*CDat&Siza6

3

in boolean controlCDataSize3;

in boolean synci(DataSizeJ;

in boolean sync2CDataSizeJ.

out boolean statusEDataSize);

boolean sync..uod*;
boolean par;

boolean ncount[3);

booleai data[DataSize);

* free up line

free status;

* determine initialization

it (valid)

sync-mode = (uode(6:7J xv 0);

if (sync-mode)

w ait for mode

th

hunt-.mode(rxd, drdy.
syncl, sync2, mode)

38

* start shifting data in
*/

ncount[2:2) a 1;
ncount[O:-1 a nbits;

while (ncount) [
wait (drdy);

data[7:7] x read (rxd);
data z data >> 1;
ncount x ncount - 1;

)

/o

* send data to main process
-/

send(i82S1, data);

write status;

I€

- rcvr-async -
S

* receiver asynchronous process
S/

process rcvr-async(rxd, dxdy, valid,
mode, control, status)
in boolean rxd; /* receive serial data S/

in boolean drdy; /* data ready ./

in boolean valid;
in boolean mode[DataSize);
in boolean control[DataSize);
out boolean status[DataSize);

int i;

boolean sync-mode;

boolean par;
boolean ncount (3);
boolean data[DataSize];

39

/o

* determine initialization
-/

free status;
if (valid) {

/a assume mode is stable now a!

sync-mode = (mode [6:7) an 0);

if (sync-mode) [

/-

* wait for start bit
=-

wait C rxd);
ait C ! rxd);

/-

* stajt shifting data in

ncount[2:2) = 1; ,
ncount[0:1) z nbits;
while (ncount) C

wait (drdy);

dataT:?] = read C rxd);
data = data >> 1;

ncount % ncount - I;
)

/. a

* sample parity bit
-/

i f pen) [

par = data[0:0];
for i = 1 to 7 do

par = par xor data[i:i];

if (op)
par = ! par;

wait (drdy);

if (par != rid) {

40

/* parity error -/
pe = 1;

write pe;

* sample stop bit
-/

wait (drdy);
it (rxd =0) {

/- framing error
fe= 1;
write te;

I

/3

* send data to main process
U/

send(i8251, data);

ld

write status;

• main process for intel 8251
-/

process i8251 (ChipSelect, WriteEnable.

ReadEnable, ChipData, data, valid,
syncl, sync2, mods, control. status)

in boolean ChipSelect;
in boolean riteEnable;
i boolean ReadEnable;
in boolean ChipData;
inout boolean data[DataSize];

out boolean valid;
out boolean syncl[DataSize;
out boolean sync2[DataSizej;
out boolean mode(DataSize];

41

out boolean control[DataSizel;
in boolean status(DataSize);

boolean modebuf [DataSize];
boolean dbuf [DataSize];

boolean decode[3);
boolean sync-mode;

valid a 0;

write valid;

/o

- reset sequence: read mode character
./

wait (ChipSelect & WriteEnable k ChipData);

modebuf = read (data);

mode a modebuf;
valid = 1;

sync-mode = (modebuf[6:7 ==%,O);

/o

* read sync characters if necessary
o/

syncl z 0;
sync2 a 0;

it (sync-mode)
E /° read first sync char '/

wait (ChipSelect&Write-nable&ChipData);

synci a read (data);

/* read second sync char w/

if C ! modebuf[7:7))
(wait (ChipSelect&WriteEnable&ChipData);

sync2 = read (data);
J

/' uite to output port 5/

write valid, mode, syncl, sync2;

42

* main interp loop
.1/

decode[O:OJ a ChipData;

decode1:1J z ReadEnable;

decode[2:2 z WriteEnable;

while (ChipSelect)

{ switch (decode) {
case Ox2: /s read data ./

C
if (sync-.ode)

receive(rcvr.sync. dbuf);

else

receive(rcvr-async, dbut);

wait (, riteEnable);

data z dbul;
write daty

break; d
case Ox3: /* read status ./

C
data : read (status);

wait ! WriteEnable);

write data;
J
break;

case OxC: /* write data .1
dbul a read (data);

send(xmit, dbut);
break;

case OxD: / vrite control .1
dbuf a read (data);

control = dbul;

write control;

break;

4

43

References

[1 David C. Ku, G. De Micheli, HERCULES - A System for Htgh-Level
Synthesiu Proceedings of the 25 ' h ACM/IEEE Design Automation Con-
ference, Anaheim, 1988.

[2] David C. Ku, G. De Micheli, Using the HERCULES Htgh-Level 5yn.
thesu System Internal report, 1988

[3) Frederic Mailhot, G. De Micheli, Structural/Logzc Intermediate Form
Specification Internal report, 1988

(41 Robert Alverson, Tom Blank, et. al., THOR User's Manual: Tutorial
and Commands Stanford Technical Report CSL-TR-88-348, January.
1988

44

accepted for publication in

journal of Systems and Software, 1989

The Hermod Behavioral Synthesis System
Masayasu Odani, Sun Young Hwang, Tom Blank,

-. and Tom Rokidcki

Center for Integrated Systems
Stanford University

Abstract

Hermod is an interactive behavioral synthesis program developed at Stanford University.
Using a combined control and data flow graph (C/DFG) as an intermediate representation,
Hermod generates functional blocks and their interconnection from behavioral descriptions.

Hermod supports a menu-driven interface, displaying the control and data flow graph with a

set of legitimate timing-cuts and its hardware representation. Emphasizing user

participation, the system allows the user to control state partitioning and resource sharing

through a graphical interface to explore the maximal design space. Written in an object-

oriented language C++, Hermod generates a hardware representation in several minutes
from a behavioral description of practical size on a VAXstation IIIGPX.

4-

Indexing Terms: behavioral synthesis, structural synthesis, control and data flow graph,

register-transfer level description, design space exploration.

* Note: Revised Copy for "Journal of Systems and Software".

--8 June 1988

The Hermnd Behavioral Synthesis System

C1. Introduction

Silicon compilation is the process of automatically mapping an abstract design
representation to a physical structure [19]. Depending upon the input language, silicon
compilers are classified into behavioral compilers (or behavioral synthesizers) and structural
compilers. A behavioral synthesizer translates a behavioral description into a structure,
creating structural designs consisting of functional blocks and their interconnection. In a
behavioral synthesis system, the design is specified by a functional relationship between
input and output ports described in a hardware description language [4, 11, 26]. The
behavior of output ports is specified in terms of input ports and internal state. The output
from a behavioral synthesizer contains hardware modules (data paths) required to

implement the given behavioral specification, and their scheduling (control).

The synthesis task includes generation of data paths and their control blocks. Data path
synthesis consists of the following subtasks: module bindings, state bindings (control step
partitioning), and register and connection bindings. In the module binding process, a
functional module is assigned to each abstract operation, and a register is assigned to data
carried across state transitions. The functional modules (or registers) can be shared among
more than one abstract operation (or variable). Further, the binding process relies on library,
which may contain structural modules at several abstraction levels [9]. The module binding

(process has a great impact on the system cost and performance, since an abstract operation
can be realized in many ways. The mole binding process is performed before control
logic synthesis, even though the process can be iteratel later if imposed constraints are not
met. State binding implies assignment of each operation to a machine state. Machine states
are created depending on the clock period of the system and the delay of hardware modules.
Based on the clock period and the number of maximum allowed states, the system assigns
each abstract operation to a machine state such that maximum parallelism can be achieved
within available hardware modules. Connection bindings imply the interconnection between
functional modules and registers, creating the data transfer paths between them.1

Connections can be implemented using bus structure or multiplexors.

Control synthesis creates the finite state machine that controls the data path units for the
proper execution of code sequences. The goal is to define the sequence of the micro-
operations and the timing of the control signals to the data path. To generate the control

block, the data path must be fully defined, and the required operations must be specified as a
linear ordered list of micro-operations which affect either the control flow or data path. Two
different design styles have been used for control block implementation: structured and

lin this paper, a functional module represents a hardware block which can execute an operation like addition
and subtraction, while a hardware module is used to represent a functional module, register, or wire.

The H raied Dehaviordn Systhk Systm

custom implementations. In a structured implementation, the next state information and
C signals for data path selection are encoded in a structured array. This implementation is

flexible and easy to modify. A custom implementation uses random logic for efficiency,
exploiting the particular features of the data path. Detailed description of various algorithms
for control synthesis can be found in [7, 14, 18, 24].

Automatic synthesis from behavioral specifications is an exploratory area for design
automation. A number of behavioral compilers have been reported that generate structural

descriptions from behavioral level descriptions [6, 8, 14, 16, 17, 20, 23, 25]. Those systems

automatically generate a structural description from a behavioral description using the
design constraints given by a designer. However, supported design styles arm limited in

most systems, giving few chances for the designer to change what the system generates.
Thus, designer may feel alienated from the system with no choices other than to accept the
machine-generated designs, even if he is not satisfied with the output.

This paper describes the Hermnod behavioral synthesis program that gives a hardware

designer full system control to select the design style he likes through a menu-driven
graphical interface. The system is not intended for use with design descriptions which
would require thousands of components for realization, but for designs at high abstraction
levels where design space exploration is of primary concern in the early stage of design.

(The Hermod program is included in an integrated environment for hardware simulation and
synthesis under development at Stanford#University. The functional models written in a
behavioral description language ILSP [15]' ca% be simulated on the THOR

logic/functional/behavioral simulator [2] without translation. The behavioral models that
have been verified through the THOR simulator are input to Hermod to generate RTL
descriptions, which can be again simulated by THOR simulator for verification purposes.
Efficient algorithms are incorporated in Hermod for generating timing-cuts for state
partitioning, checking consistency after modifications to the system-generated designs, and
optimizing through resynthesis.

The He.nwd Behavioral Syasthas System 3

2. Input Language and Internal Representation

2.1 ILSP: Behavioral Description Language for Hermod
I1SP (Input Language for Synthesis Program) is used to describe the function or behavior

of the hardware to be designed. Based r I the C-language, LSP has conditional (if and
switch), and loop (while- and do-loop) control constructs, and allows explicit specification
of the actual hardware interface to the outside world. Many features of the C language
considered redundant or unnecessary for behavioral representation of a hardware module are
omitted in 11SP. For instance, only integer type variables are supported, and parameter
passing is handled through interface declarations. Compared to the ISPS (Instruction Set
Processor Specifications) [4] which describes the behavior and structure of the design at
register-transfer and behavioral levels, the ILSF description is purely procedural. The
features of ILSP are briefly reviewed next A detailed description can be found in [15].

Signal Declarations: Three fundamental object types art supported. The objects
declared as integers arm local variables to the procedure in which they are declared. The
objects declared in the signal declaration sections (INU_L/ST, OUT UST and STLIST
sections) as signals (SIG) are one-bit-signal variables and those declared as groups (GRP or
BUS) are multiple-bit-signal variables. The SIG- and GRP-type objects are the abstract
representations of registers in hardware realization. An integer object may be realized by a
register, or just as a wire depending on its usage and lifetime.

Control Constructs: Most control constructs in the C language are supported:
conditional statements (if- and switch-statements) and loop (while- and do-loop) constructs.

Expressions and Statements: Expressions and statements supported in IISP are a subset
of those in the C language. Arrays of complex data structure (like arrays of structure with
several data fields) are not supported. Array structure is allowed only to represent a groups
of signals, which will be realized by registers or memory modules. The differences from the
C language in expressions and statements are summarized as follows:

9 Structures and pointers are not allowed. An exception is that a pointer is passed
to a subprocedure as an argument for a GRP-type object in a procedure call.

* Array structures are used to specify bit position for group signals. A GRP-type
object followed by a range in square brackets specifies a portion of group
signals. The expression x[J implies the entire signal group of x will be treated
as an integer. The expression x[3] represents the signal value of the third bit of
x, and x[7:4J means the partial signal group between the seventh bit and fourth
bit of x treated as an integer.

e Increment expressions (++ and --) are allowed for integer variables only.

Tbe Herwead behavioral Syftbesis System 4

. Procedure calls that return one or more values am supported. The
"(receiver-list) - procedure-call-epresion;" form is used for procedure calls
that return multiple outputs and distribute the values to the variables and group
signals in the receiver-list.

" A break statement is allowed only in a switch statement to eliminate abrupt
iop exits.

* Parameter passing in a procedure call is handled through the hardware interface
mechanism. That is, the input and output parameters are declared in the
interface declaration sections (IN_LJST and OUT LIST declarations), unlike C
procedures.

* A return statement is allowed only at the end of procedure. No expressions are
allowed after a return statement. Instead, a procedure can return values by
assigning values to the variables declared in the OUTUST section.

Figure 1 shows a procedure describing the design that takes two groups of signals, in and

enable, and calculates the summation of the value of in, setting the signal group out and

signal line valid. The objects declared in the IN LIST section represent input signals or

ports. Enable represents one signal line, and In represents a group of signals consisting of 8

signal lines. Likewise the objects in the OUTLIST section represent output signals or ports

set by the procedure. The statement "r - inO" means that the signals grouped as in are

packed into an integer (r). The statement "out(] = s" sets the group of output signals, out, by

(unpacking the integer (s).

2.2 Graph Representation
In the behavioral synthesis process, a behavioral representation is translated into an

intermediate representation in graph form, which is subsequently transformed and translated

into a structural description. In Hermod, a graph representation is chosen that reflects both

the control sequencing and the data flow in the program. In the graph, a node can represent

a data carrier, an abstract operation, or a control construct. An edge can be a control edge

representing control sequencing in the behavioral description, or a data edge representini

data usage or data flow depending on the types of the nodes connected by it. The graph

consists of several data flow subgraphs corresponding to basic blocks of the behavioral

description, each of which consists of straight line codes and control nodes connecting them.

The graph shows not only the dependency or parallelism of each operation but also the

global control and data flow in the model. The C/DFG allows hierarchical design by

incorporating a procedure-call node. A procedure-call node representing some hardware

block can be specified by another graph. This graph representation is similar to the

McFarland's Value Trace [12]. However, unlike VT, nested loop constructs are used in the

representation, which is a natural way to handle loops.

(,,_ There are five types of nodes: data, constant, operation, control, and temporary nodes.

The Hermod Behavioral Synthesis System 5

(
sumO{

INLIST /* declare input ports */
SIG(enable);
GRP(in, 8);

ENDLIST;

OUT LIST /* declare output ports 0/
SIG(valid);
GRP(out, 16);

ENDLIST;

int r, s; /* declare local variables *I

valid = 0;
if (enable) {

r inO;
s 0;
while (r >. 0) {

a = s + r;

r -;
out[] - s;
valid - 1; /* set the flag/d

return;

Figure 1: A behavioral model calculating the summation of a given integer. 4

TM e Hrmod Behavioral Synthesis System

Each node has one or more input ports and output ports. Each port is identified by its io-
attribute and po(-id. Data, constant, temporary, and operation nodes (together with directed

edges into and out of the nodes) reflect the data flow and data dependencies, while control
nodes are used for control sequencing and to mark the boundaries of basic blocks.

" Data/ConstantTemporary Nodes: A data (or constant) node corresponds to an
object (variable or constant) in the behavioral description. Basically, for each
appearance of a variable, there is a corresponding data node in the graph.
Temporary nodes are used to represent the data produced by an operation and
used by another operation or control node.

" Operation Nodes: An operation node corresponds to an abstract operation in the
description. A procedure call is considered an operation with multiple inputs
and outputs.

" Control Nodes: A control node shows the beginning and end of a basic block.
There are seven different control nodes: start, end, fork (for if-statements),
sfork (for switch statements), join, loop, and loop-end nodes.

An ILSP procedure consists of three types of blocks: straight line code, conditional
statements, and while- and do-loops.

Straight Line Code: A block of straight line code consists of expressions and(assignments. Expressions are realized in such a way that operation nodes take edges from
operand data nodes. Assignment is normjply realized by the edge from an operation node to
a data node, which means that the result of the operagpn is stored in the variable represented
by the data node. Temporary data nodes are inserted if necessary. Retrieving data from or
assigning values to a subset of group signals is allowed. To construct the subgraph showing
such a partial retrieval or assignment, the fpack and fiunpackrocedure-call nodes are used
as shown in Figure 2.

27bese arm intrinsic library functions in the THOR simulation system [3]. Fpack converts a group signal of
specified bit width into an integer andfunpack converts an integer into a group signal.

Tb. Henwvd Dehavioral Synthesis System 7

(x=aR3:51 a[3:51 x

Figure 2: Graph representation. for the functions (a) fpack (b)fivnpack.

(0

The Hemwd Behavioral Synthesis System

Conditional Statements: The if block consists of two sub-blocks corresponding to the
then-pan and else-part, respectively. The then-part (else-part) sub-block starts from the
TRUE (FALSE) port of a fork node and ends at a join node. The subgraph corresponding to
the conditional expression is connected to the CONTROL port of the fork node.

While/Do Loop Constructs: A while-loop subgraph is also constructed with join and
fork nodes. In this subgraph, the join node is followed by the subgraph corresponding to the
conditional expression of the while statement, which is connected to the CONTROL port of
the fork node. The subgraph of the while-loop body starts from the TRUE port of the fork
node, and ends at the join node through BACK edges to show the iterative nature of the

block. A do-loop subgraph consists of one block which starts from a loop node and ends at
a loop-end node. The output of the conditional expression is connected to the CONTROL
port of the loop-end node. The loop-end node has two output ports: the TRUE port

connected to the loop node by a BACK edge, and the FALSE port from which a new basic

block begins after the do-loop statement.

Figure 3 shows the graph representation of the procedure shown in Figure 1. Rectangles

represent operation nodes that will be mapped into structural components in the module

binding process, and circles represent variables and constants (data nodes). Control nodes

are represented by trapezoids (fork and join nodes) or hexagons (start and end nodes). The
(outer fork-join node pair corresponds to the if-statement that is controlled by the value of

enable. The inner join-fork pair correspofds to, the while-loop statement. The control input

to the fork node is from the condition expression. d

The Hennod Behavioral Synthesis System 9

0

3(START 3

enable 0
*3 33

True:

27 24

C)

26 2

121

1i 2 , 20(19.

Figure 3: Graph representation of the procedure of Figure 1,
gTnerated by Hermod.

11
•~~~ ~ -r.- I I II

The Hemad Behavioral Syathesis System 10

(" 3. The Synthesis Process in Hermod

3.1 System Overview
Figure 4 shows an overall picture of Hermod. Taking a procedure describing the desired

behavior of a design, Hermod converts it into the intermediate graph form (C/DFG), then
builds the hardware realizing the behavior in two passes. In the rust pass, the operations in
the graph are assigned to machine states and the initial hardware is created by allocating
functional modules to the operation nodes, and wires or registers to the arcs. Two graphs
are produced as a result of the first pass. One is a data path graph that consists of nodes
representing functional modules or data storage and edges representing interconnections.
The other is a state transition diagram in which each node corresponds to a machine state
and each edge shows a state transition and its conditions. In the second pass, functional
modules and registers are merged, if they have no usage conflicts. Those optimization
processes can be performed automatically by the system using the information on number of
available modules and their functionality, or can be directed by the user through a graphical
interface. As a final result, Hermod produces a netlist of the created data path and a control
unit specification in the truth table format (a format) for PLA descriptions [5].

3.2 Initial Synthesis Process(,
3.2.1 Functional Module Binding

The module binding process transforms the functnal block representation provided by
the data path allocator to a hardware-bound level of description [9]. In Hermod, the module
binding process is embedded in data path synthesis in the initial synthesis process. During
initial synthesis, no restrictions are imposed on the number of hardware modules used. The

system assigns hardware modules to each node and timing-cut edge. Hardware modules are
selected from a module library. Module selection specifies the type, functionality, and othei
attributes (such as delay, area, control setting, and io-ports) for each abstract operation. A
dedicated module is assigned to each abstract operator during the initial synthesis phase.
This can exploit the parallelism inherent in the original behavioral description. However, it
would be desirable to share functional modules among operators to reduce the overall
hardware requirements for implementation. In Hermod, the resource sharing is handles
during optimization phase.

3.2.2 Control Step Partitioning and State Binding
When the C/DFG is generated, only control and data dependencies are represented in the

graph. The state binding process partitions the graph into machine states. Each operation
node in the graph is assigned to a particular state. Thus state binding determines the
parallelism of the generated design.

• . . i===mom,

The Hemmod Behavioral Synthesis System 11

(

lib tech-independent
Transformation & Parser

Optimization

lib-o Hardware . 7K M n-i

(W'' :'"I {ransition

(1
Datapath lb Hardware -- i oto

Synthesizer OptimizerSyteir

NetlistFSM Spec. &
Sim. Model

Figure 4: System overview.

C

Te Harmod Behaviord Synthesis System 12

A. Automanc Operanon Scheduling Process

Timing-cus are used in Herm6d for control step partitioning. A timing-cut is a set of

edges that forms a cut-set of the subgraph corresponding to a basic block of code. A set of
timing-cuts divides the graph into several data flow subgraphs each of which forms a
machine state. For example, refer to Figure 5. The graph is divided into five subgraphs.
Note that states 2 and 4 overlap. It is due to the loop construct in the graph. At state 2,
values are assigned to the symbols r and s, which occurs when entering the while-loop. At
State 4, condition variable is checked after each iteration of the loop. Timing-cuts are
generated depending on the system clock period and the module delay. In this process,
Hermod employs the as soon as possible (ASAP) scheduling algorithm that schedules each
operation in a greedy fashion [16,25]. It schedules as many operations as possible in each
machine state as long as the delay does not exceed the clock period. Tuning-cuts are
inserted in the following two cases;

" When the delay exceeds the clock period. (Hermod supports chaining and

multi-cycling [16].)

" In front of a fork/sfork node (starting node of if/switch statements). In a
conditional statement, only one of the branches is executed in the next machine
state. To determine which branch should be taken, the previous state must end
at the fork/sfork node regardless of4he execution delay. This also FixAnts the
race condition of the loop constructs. 4' s aliwi,,es

The automatic timing-cut generation process is based on the longest path search. Starting
from the start node of the graph, the system calculates the maximum execution delay for
each node reachable from the start node until a fork/sfork node or end node is encountered.
Then, each node on the path is assigned to a particular machine state according to their
maximum delay. The edges connecting operation nodes in different machine states form %
timing-cut. When a fork/sfork node is encountered during the search, a timing-cut is created

consisting of the edges connected to the node. Then, all the branches from the fork/sfork

node are put in a branch queue. While the branch queue is not empty, the process retrieves

the frust entry of the queue and resumes the search. The search continues until another

timing-cut or fork/sfork node is encountered. The state binding process determines the

values to be stored for use in the next control steps. In the hardware implementation, latches

are inserted in the data transfer paths where timing-cuts are generated.

m Cnmu I l ll

The Hernmed Behavioral Synthesis System 13

(STAR

enable 0

*statelI

T1ue

JOIN state 2

state 4

state3 T state 5

Figure S: noe intermediate graph representation with timing-cuts.

The Hennod Behavioral Synthues System 14

(B. Mauaal Timing-cut Modificadors

To maximally utilize hardware resources, modifications are allowed on the C/DFG such
as adding, deleting, and moving timing-cuts. Through a graphical interaction tool, the graph
is displayed in a window and the user is allowed to pick up the edges to construct a new
timing-cut, or pick up an existing timing-cut to add, delete, or move it by clicking the
mouse. If the user defines a new set of edges as a timing-cut, the system checks if those
edges forms the cut-set of a basic block subgraph. If the changes are legal, that is, they
don't violate the behavioral specifications and design constraints, the system accepts the
changes. When the user deletes or moves some timing-cuts, the clock period may be
changed (become longer) and the execution delay of each state is recalculated. If the
maximum delay exceeds the clock period in any state, Hermod asks the user if the clock
period may be increased. Those modifications may change the state binding of some
operations. Once the modifications are accepted, the system generates a new state transition
diagram based on the new state binding, and the new data path.

C. Example

Figure 6 shows the data path for the behavioral description in Figure 1. It is generated

(using the state binding of Figure 5. The design is obtained by setting the clock period to be

the module delay (all the functional modules used here have the same delay). It consists of
five machine states, and uses four dedicaed fuactional modules. The registers available in
the module library have only -,eset and load control inotts.

The Hennod Behavioral Synthesis System i

enable In

re)I re 2 reR3 r

nabi In a
reset

P1

re 5 re 6

reset

to controller to controller _____ _____

(cirll) (ctrl2)

out valid

Figure 6: A hardware representation of the graph in Figure 3.

The Henned Behavioral Synthesis System 16

3.2.3 Register Binding
Registers are assigned to store the temporary results generated by the operators in a state

when these results are used in the following states. The system assigns a register to each
edge belonging to a timing-cut, unless the edge comes from a constant node. The system
also allocates registers to the data nodes connected to timing-cut edges. The registers
allocated to the same variable are merged into one in the optimization phase. Caution must
be taken when the same variable appears more than once in a timing-cut edge. For example,
in Figure 7, edges e2 and e.3 are connected to the data nodes representing the same variable
a. Since the data node connected to the edge e3 is the last definition of the variable a in that
state, the register associated with the edge e3 must be associated with the variable a. The
register associated with the edge e2 becomes the temporary register. In order to deal with
this problem, the register binding routine first determines the last definition node for each
variable in each state. Then it assigns a temporary register to the timing-cut edge connected
to the data node which is not the last definition node. In the optimization pass, registers
allocated to different symbols that have non-overlapping lifetime are merged.

3.2.4 Connection Binding
Allocation of hardware resources (functional modules and registers) implies that there

exist physical paths among them. These paths can be obtained by analyzing the paths
between the abstract operations. The connection binding routine analyzes the connections of
each machine state one by one. First, thSconnection binding routine extracts the data flow
subgraph corresponding to the currently prodessed machine state. Then, it creates the
connections between the functional modules and reglters by tracing the edges connected to
the operation and data nodes. If an operation uses inputs or produces outputs across the state
boundary (e.g. timing-cut), a connection wire is created between the functional modules
corresponding to the operation nodes and the register corresponding to the timing-cut edge.
Each time a new connection wire is created, the system encodes the currently processed state
into the wire data structure for later use during the control generation process.

To allow the maximum sharing of functional modules and registers, multiplexors/busses
are created and inserted wherever necessary to transfer data between operands (registers)
and operators (functional modules).

The Heamod Behavioral Synthesis System 17

T22

(tmpa

elS

T1 -- ----

3

Fiur 7:Rgse+idngfrtmn-us

5 4

The Reanwd BehavWona Systbuas Sytm 18

3.2.5 Control Generation
Controt t',-cture is not specified in the behavioral description. Instead the control block

is automaic Jly generated from the description using the information on available resources
(library modules) used in the data path synthesis process. The control block can be
generated at the same time as the data path. However, it is straightforward to generate the
control block after the data path structure is determined, since the timing and sequencing of
the control signals are embedded in the state transition diagram and the data path graph. In
other words, the control signals are determined by the state binding and resource allocation.

The result of data path synthesis (module/state/connection bindings) is a symbolic

microcode for control generation. The control model in Hermod is a finite state machine

followed by an encoder for generation of control signals for particular data path modules. A
finite state machine for the control of the data path in Figure 6 is specified in a format [5] in

Figure 8.

3.3 The Design Optimization Process
Although the hardware built in the initial synthesis pass realizes the behavior of a given

description and satisfies the user-defmed timing constraints, it may use more hardware

resources than necessary, increasing the wiring and routing complexity. Basically, two

hardware modules (functional modules, registers, or connection wires) can be merged if

(there are no usage conflicts among them in any machine state. Several hardware
optimization procedures have been propofed baed on the above principle [25]. In Hermod,

optimization is performed separately for functional iffodules and registers in a pre-defined
order. Although reducing the number of those hardware resources is the main concern of
the optimization process, the numbers of interconnections (nets) and multiplexers should
also be taken into account, because those interconnections usually take a large portion of the
realized chip area (13). The final optimization results including the interconnections and

multiplexers depend heavily on the execution order and technique of each optimization

process.

The Hermod hardware optimizer takes two inputs generated during initial synthesis, the
data path graph and the state transition diagram, and produces an optimized data path. The
optimizer consists of a rebinding process for each type of hardware resources: functional

modules, registers, and connection wires. (The connection rebinding process is currently
under development.) The rebinding processes provide menu-driven graphical user
interaction tools so that the user can specify the pre-bindings for several hardware modules.

The user can also unbind the old module bindings partially or totally and re-optimize the
data path using the remaining bindings. The user is allowed to pick functional modules or
registers by clicking mouse on them to force them to be merged or split. The user-directed
bindings are checked if they have usage conflicts. Once a rebinding process is done, the
system reconstructs the data path using the new binding information to rebuild the data path.

The Hernmd Behavioral Synthesis System 19

(
. 5

.0 19

.AbI s2 91 *0 ctrl ctr12

.ol s2 al sO regl_ re.glr rsg2l rg2r rg31 r*g3 r

reg4_1 r*g4rreg51_ regSrrg61 zog6 rr muxlctrZ mux2_ctrl

000- 0011010-1-10000-

0010- 0000000-10000-1-

0011- 0100000-10000-1-

010-0 10100001010000000

010-1 01100001010000000

011- 10000001010000011

100-0 101000000000000-

100-1 011000000000000-

101-- 000000000001010-

Figure 8: Control block in t formint for the data path in Figure 6.

,

h Henvd Behavioral Syntbess System 20

J

The rebuilt data path is displayed on the screen so that the user can evaluate the automatic
(rebinding faults.

3.3.1 Functional Module Rebinding
Two functional modules in a data path can be merged into one if they are not activated

simultaneously in any machine state and they can be realized by a library module. (The
second condition is not strict, because a library module that can execute those operations
may be added later.) Let Cc be the usage co 'patbility graph consisting of nodes
representing the functional modules of the data path and edges connecting the functional
modules that satisfy the above conditions. Then, finding the minimum number of functional
modules necessary to realize the data path is reduced to clique partitioning problem of the
graph Ge [25].

Figure 9 shows the functional module rebinding procedure in Hermod. The procedure is
based on the cluster development method.

Step 1: Build the usage compatibility graph G. for the data path graph.

Step 2: Determine the kernel functional modules.

Step 3: While compatibility graph Oc is not empty, do the following:

(Step 3.1: Calculate the cost functio for each edge of Gc.
4.

Step 32: Choose edge e with minimal cost. A

Step 3.3: Merge two functional modules connected by e.

Step 3.4: Update the graph G .

Step 4: Generate the new data path.

FIgure 9: Functional module rebinding procedure.

In the procedure, kernel functional modules are determined first. The kernel functional
modules are the modules that construct the maximum independent set of the graph Gc. Let N
be the number of the kernel functional modules. Then, N gives the minimum number of the
functional modules necessary to realize the data path. Finding the maximum independent set
of the given graph is NP-complete [10). However, the maximum independent set of the
graph Gr can be determined using the following heuristics. Suppose the data path is realized
by library modules Lt , 1,2,..., Lm. First, count the number of functional modules realized by
the library module Li in each machine state. Then, for each library module I., find out the
machine state Si that requires the maximum number of functional modules realized by Li. If

(more than one state requires the maximum number of the module Li, then one is chosen

Theb Hened Behavioral Synthesis System 21

arbitrarily. Finally, collect the functional modules realized by Li in Si. The collected
(functional modules form the maximum independent set of the graph G. and become the

kernel functional modules.

Once the kernel functional modules are determined, the modules other than the kernel
modules are merged into one of the kernel modules one by one. The interconnections (wires
and multiplexers) are taken into account when functional modules are merged. Among pairs
of functional modules that can be merged (connected by edges in the usage compatibility
graph), one is selected with minimal cost. The cost function for the edge connecting
mcdules ui and uj is

- c number of multiplexors required to merge ui and uj
+ c2 * number of wires added
- c3 * area reduction due to merging of two modules,

where cI, c2, and c3 are constants determined empirically.

After merging a pair of functional modules ui and uj, the compatibility graph is updated.
If either one of them is a kernel functional module, say u, then Uj is removed from the
graph. Then, the edge (uk, ui) is removed from the graph, unless there was edge (uk, uj) in
the compatibility graph before merging. Figure 10 shows the results of automatic functionalC module rebinding on the initial design offigure 6. Three functional modules are merged
into one, and one three-input multiplexor il addS4 due to the merging. This new
configuration is reflected when generating the control block for this data path.

3.3.2 Register Rebinding
Two registers can be merged into one if and only if they are not simultaneously live at the

entry and exit points of any machine state. The register allocation based on this property has
been employed in behavioral synthesis systems as well as in optimizing compilers (1].
Tseng and Siewiorek reduced the register optimization problem into the clique partitioning
problem (25]. The algorithm is implemented in Hermod supplemented with menu-driven
interactive tools. Using the tools, the user is able to interact with the system in the register
rebinding process by picking particular registers for merging. Or the user can ask the
system to retract a particular merging to further explore the alternatives. Figure 11 shows
the results of register rebinding on the partially optimized design of Figure 10. Two
registers are saved after register rebinding for this particular example, i.e., registers In and r
are merged, as are out and s registers.

The Henmod Behavioral Synthesis System 22

(

enable In

nabi
reset

(4. + out valid e

to controller out valid

Figure 10: Hardware representation of the procedure in Figure 1
after functional module rebinding.

Tb* Hemd Bebavior Sysihais System 23

enable In

nabi r s s/out In/r

01

to controller out valid

Figure 11: Hardware representation after register rebinding
on the data path of Figure 10.

The Hennld Behavioral Synthesis System

(. 4. Synthesis Examples

The Hermod behavioral synthesis program is implemented in C++, an object-oriented
extension of the C language, and runs on a VAXstation I/GPX under UNIX"'. This section
shows the synthesis results by Hermod for two CPU chips: FRISC microprocessor, a stack-

based 16-bit microprocessor [22], and PDP-8 CPU [21].

4.1 FRISC Design
The top-level description of the FRISC processor is given in the Appendix. Here,

memory read/write is simulated by the procedures mread and mwrite. One variable is
used as a dummy output of the procedure mread. The data path synthesis routine ignores
the dummy variable and no registers are assigned to it, since it is never referenced in the
main procedure.

Figure 12 demonstrates the schematic of the data path synthesized by Hermod. The
design was done automatically except for slight manual modifications in state bindings to
avoid memory access conflicts. In this design, four functional modules (two ALUs, one
shifter, and one comparator) and six registers are used. One ALU is used to perform
increment and decrement operations for stack pointer S and program counter P. The other
ALU performs plus, minus and logical operations. Two registers A and B are used as
operand registers for the ALU, while register B is also used as memory buffer. Register I is
the instruction register, and register M is used for subretitine calls.

4.2 POP-8 Design
The second example is taken from the ISP behavioral description of the PDP-8 in [21].

Figure 13 shows the data path generated by Hermod. In this design, several 1-bit inverters
and gates are used, as well as 12-bit functional modules such as ALU, shifter, and
comparators. Those 1-bit logical operators are employed to realize the expressions of the
if-constructs. After initial data path is generated by the system, manual optimization tools
are invoked to optimize the 1-bit modules in the design, because better optimization results
can be obtained by considering the logical meaning and structure of the circuit. The

remaining portions of the data path are optimized automatically. It took less than 20
minutes to finish the data path design using manual and automatic optimization tools in

Hermod. Of course, the control FSM is automatically generated.

0
EE

LDGD

CDD

00

wUcr-

(L

12L2

2,

MB cMgrolA
C1,1,1, coi12,12

toco1ole

Figur12 13AC11aapthds1)datmtial y emd

The Hmend Behavioral Syntesis System 27

(5. Concluding Remarks

Hermod is a behavioral synthesis system developed to provide designers an interactive

environment within a graphical fame, thus to equip them with tools for direct control of

synthesis process. From behavioral descriptions, Hermod generates and displays the control

and data flow graph (with a set of legitimate ming-cua) and its hardware reprsentation.

Unlike the other synthesis systems, Hermod allows the designer to control the synthesis
process in state partitioning and resource sharing through a menu-driven graphical interface

to explore the maximal design space. When the designer wants changes in a machine-
generated hardware, the system checks the legitimacy of a user's request, then generates a

new hardware representation that results from the changes. This system gives designers a
clear view of the synthesis process, and suggests a systematic way to create and modify the
designs.

Hermod provides a framework for tool development. It is simple to hook up new tools
into the system to upgrade its synthesis and verification capabilities. Hermod is not
intended for use with design descriptions which would require thousands of components for
direct hardware realization. Instead, the system can be effectively used for design
descriptions at high abstraction levels in the early stage of design, where (1) the desired
behavior is normally described in a hierarchical fashion and (2) design space exploration is
of primary concern. Further, it has no prederined data paths, thus does not impose any
particular design style for hardware generation. , d

Although Hermod has some limitations in its capabilities in the current implementation, it
can be extended without major modifications in the program. Future extension will include
the interconnection hardware optimization and development of more tools for intelligent
hardware synthesis.

Acknowledgement

This material is based upon work supported partly by ONR/DARPA under Contract
N00014-87-K-0828 and partly by Toshiba Corporation. The authors would like to thank

Professor Giovanni De Micheli for his helpful discussion and suggestions. Finally, the

authors are grateful to the referees for their valuable comments.

Te Henmod Behaoral SyMtbhas Sm. 2

(References
[11 A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley,

Reading, MA, 1979.

[2] R. Alverson, T. Blank, K. Choi, S. Y. Hwang, A. Salz, L. Soule, and T. Rokicki,
THOR User's Manual: Tutorial and Commands, Technical Report CSL-TR-88-348,
Stanford University, Stanford, Calif. , January 1988.

[31 R. Alverson, T. Blank, K. Choi, S. Y. Hwang, A. Saz, L. Soule, and T. Rokicki,
THOR User's Manual: Library Functions, Technical Report CSL-TR-88-349,
Stanford University, Stanford, Calif. , January 1988.

[4] M. R. Barbacci, "Instruction Set Processor Specifications (ISPS): The Notation and
its Appications", IEEE Trans. Computers, Vol. C-30, No. 1, January 1981, pp.
24-40.

[5] K K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L Sangiovanni-Vincenteli,
Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers,
Boston, MA, 1984.

[6] R. Camposano, "Synthesis Techniques for Digital Systems Design", in Proc. 22nd
Design Automation Conference, ACM/IEEE, June 1985, pp. 475-481.

[7] G. De Micheli, "Synthesis of Control Systems", in Design Systems for VLSI
Circuits: Logic Synthesis and Silicon Compilation, G. De Micheli,(A. Sangiovanni-Vincenteli, and P. Antognetti, (editor), Martinus Nijhoff Publishers,
1987, pp. 327-364.

[8] S. W. Director, A. C. Parker, D. P. Siewiovek, and D. E. Thomas, "A Design
Methodology and Computer Aids for Digital VLSI Systems", IEEE Trans. Circuits
and Systems, Vol. CAS-28, No. 7, July 1981, pp. 634-645.

[9] E. Dirkes, A Module Binder for the CMU-DA System, Technical Report
CMUCAD-85-43, Carnegie-Mellon Univ., Pittsburgh, PA, May 1985.

[10] M. R. Gamy and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman and Company, San Francisco, Calif., 1979.

[111] D. D. Hill, Language and Environment for Multi-Level Simulation, Technical Report
185, Stanford University, Stanford, Calif., March 1980.

[12] M. C. McFarland, The Value Trace: A Data Base for Automated Digital Design,
Master's Thesis, Carnegie-Mellon Univ., Pittsburgh, PA, December 1978.

[13] M. C. McFarland, "Using Bottom-Up Design Techniques in the Synthesis of Digital
Hardware from Abstract Behavioral Descriptions", in Proc. 23rd Design
Automation Conference, ACM/IEEE, June 1986, pp. 474-480.

[14] A. W. Nagle, R. Cloutier, and A. C. Parker, "Synthesis of Hardware for the Control
of Digital Systems", IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems., Vol. CAD-i, No. 4. October 1982, pp. 201-212.

[15] M. Odani, S. Y. Hwang, T. Blank, and T. Rokicki, The ILSP Behavioral Description

The Henmwd Behavioral Synthesis System 29

Language and its Graph Representation for Behavioral Synthesis, Technical Report
CSL-TR-88-350, Stanford University, Stanford, Calif. , March 1988.

[16] B. M. Pangrle and D. D. Gajski, "Design Tools for Intelligent Silicon Compilation",
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems., Vol.
CAD-6, No. 6, November 1987, pp. 1098-1112.

[17] N. Park and A. Parker, "Schwa: A Program for Synthesis of Pipelines", in Proc.
23rd Design Automation Conference, ACM/IEEE, June 1986, pp. 454460.

[18] A. C. Parker, "Automated Synthesis of Digital Systems", IEEE Design and Test of
Computers, Vol. 1, No. 4, November 1984, pp. 75-81.

[19] A. C. Parker and S. Hayati, "Automating the VLSI Design Process Using Expert
Systems and Silicon Compilation", Proceedings of IEEE, Vol. 75, No. 6, June 1987,
pp. 777-785.

[20] P. G. Paulin, J. P. Knight, and E. F. Girczyc, "HAL: A Multi-Paradigm Approach to
Automatic Data Path Synthesis", in Proc. 23rd Design Automation Conference,
ACM/IEEE, June 1986, pp. 263-270.

[21] D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples, McGraw-Hill, New York, NY, 1982.

[22] J. R. Southard, "MacPitts: An Approach to Silicon Compilation", IEEE Computer,
Vol. 16, No. 12, December 1983, pp. 74-82.

[23] H. Trickey, "Flamel: A High Level Hardware Compiler", IEEE Trans. Computer-
Aided Design of Integrated Circui6 and Systems., Vol. CAD-6, No. 2, March 1987,
pp. 259-269. ,0

[24] C. J. Tseng, A. M. Prabhu, C. Li, Z. Mehmood, and M,. M. Tong, "A Versatile Finite
State Machine Synthesizer", in Proc. Int. Conf. Computer-Aided Design, IEEE,
November 1986, pp. 206-209.

[25] C. J. Tseng and D. P. Siewiorek, "Automated Synthesis of Data Paths in Digital
Systems", IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems.,
Vol. CAD-5, No. 3, July 1986, pp. 379-395.

[26] R. Waxman, "Hardware Design Languages for Computer Design and Test", IEEE
Computer, Vol. 19, No. 4, April 1986, pp. 90-97.

•Q' .. i |

TMe Hermod Behavioral Synthesis System 30

(A. Behavioral Description of FRISC
/0
* FRISC - 16-bit Microprocessor
*1

#def'mn CPUSIZE 16

friscO

IN UST
SIG (RESET);
SIG (IRQ);

ENDUST;

OUT UST
SIG (LACK);

ENDLIST;

ST LIST
GRP (P, CPUSIZE);
GRP (S, CPUSlZE);
GRP(M, CPUSIZE);
GRP(A, CPUSIZE);
GRP (B, CPUSIZE);(GRP (I, CPUSIZE);

ENDLIST;
int dum, dum2, T; /V]ocal variables */

IACK = IRQ;

if (RESET){
P[= mread (0);
So - mread (1);

else if (IRQ) * Interrupt request? */
{

So = S] + 1;
dum = m write (S B) ;
SO = SOf+ 1;
dum2 = m write (S, A);B[] - M[] "

A[] = P[l;
MD = SO + 1;
PD = m_ read (2);
LACK = 0;

(ll=m read(P);

The Hemod Behavioral Synthesis System 31

PD -PO + 1; /* Increment program counter */

while(10)
{ /* Until no opcodes left in buffer, decode ops. */

if (1[3:0) == 1){
switch (1[7:4]) {

case 0: /* Nand */
A(- -(Al & BO);
BE-mread(S);
so = s0- 1;
break;

case 1: /* Subtract *1
AO BO -A;
B[] mread (S);
SO = sU -1;
break;

case 2: /* Shift right *1
A0 = AO >> 1;
break;

I
I0 = I[<< 8; /* Shift out opcode*/

else P Normal op code *I

-(switch (I[4:0]) {
case 2: • I* Constant *I
SO =SO+ 1;
dum = rnwrite (S ,B);

ED = A[];
A =m Mread (P);
PD = P[] + 1;
break;

case 3: /* Get S */
SO =SO + 1;
dum = mnwrite (S ,B);
BO = AO;
A[) = SO;
break;

case 4: /* Set S */
SO = AO;
BU - inread (S);
SO = S[]- 1;
AO = BO;
BO]= mread(S);
SO = S[] - 1;

break;
case 5: /* Get M *1
SO = SO + 1;
dum = mewrite (S, B);

Tme Remnod lkavioral Systheds System 32

BO-=AO;
BE A []Mf;
break;

case 6: /* Load *1
A[] - _vnrd (A);
break;

case 7: 1* Store */
dum = m write (B, A);
A(] B[;
B[]m,_ read (S);
SO S -1;
break;

case 8: /* Go to */
P0 -AO;
A[] = B[I;
B[] - inread (S);
SO =SO - 1;
break;

case 9: /* if*
if(B]>0)

Pa - A[];
All = BE];
B[] = m read (S);
SO = SO -1;
break;

case 10: /* End */
A[) = BO;
B[] = rnead (S);
S) = S] -1;
break;

case : I* Mark*I
SO = SO + 1;
dum-m write (S, B);
ACI AMO;A[] -M[];
Ma = S0+ 2;
break;

case 12: /* Call
T - PO;
Pa - A[];
All - T;
break;

case 13: /* Return*/
PC = BO;
SO - MO;
BE] - mread (S);
SO SO -l;ME] = B11;

B[]= reead (S);
SO - S[] -1;

The Henmod Behavioral Synthesis System 33

break-,
case 14: /* Add*1

AD - BO + AD;
B[]I-mrad(S);
SO - S[] - 1;
bweak;

case 15: I* Increment *1
AD - AG + 1;
break;

default :
break;)

10 - 1[] << 4; /* Shift out opcodel
}I

return ;

C I.

d/

Q

Parallel Global Routing for Standard Cells

Jonathan Rose
Computer Systems Laboratory
Center for Integrated Systems

Stanford University, Stanford CA 94305

Abstract

Standard cell placement algorithms have traditionally used cost functions that poorly predict the final area of the
circut, and so can resuilt in placements with good wire length but large final ares. A good estimaon of the aea can
be obtained by global routing the placement, but routing has been considered too slow to be used as the placement
metric. This paper presents a new, fas global muting algorithm for standard cells and its parallel implementation.
The roUter is based on enumerating a subset of all two-bend routes between two points, and results in 16% to 37%
fewer total number of tracks than the TimberWolf global router for standard cells [Sech85]. It is comparable in
quality to a maze router and an industrial router, but is faster by a factor of 10 or more. Three axes of parallelism
ae implemented: wire-by-winr, segment-by-segmem and route-by-route. Two of these approaches achieve
significant speedup - route-by-route achieves up to 4.6 using eight processors, and wire-by-winr achieves from 10
to 14 using 15 processors. Because these axes are orthogonal, when combined we demonstrate that their respective
speedups multiply each other. A simple model is used to predict speedups of up to 61 using 120 processors.

1 Introduction

The best way to evaluate a placement of circuit modules is to route it and determine the final area.
Since routing is a time-consuming task typical placement algorithms (Hana72,Breu77] use other metrics
such as total wire length or crossing counts that are easier to calculate. With the advent of usable
commercial multiprocessors it is possible to cesider using more compute-intensive cost functions if
efficient parallel algorithms can be developed. The aimlof thekocus Project is to integrate placement and
routing into one optimization process, and to do this in a practical way, by using multiprocessing to
increase the speed of the routing.

This paper presents the first step in the Locus Project: LocusRoute, a new global routing algorithm
for standard cells, and its parallel implementation. Our goal is to make the recalculation time of an area-
based cost function on a multiprocessor the same as conventional cost functions on a uniprocessor. The
intention is for the global router to be invoked to rip-up and re-route wires whose end points hav
changed when one or more cells have been moved. This goal implies that routing time must be about one
to two milliseconds per net on a VAX 1 lT80-class machine.

The routing performance of LocusRoute, as measured by total number of routing tracks, is better
than that of TimberWolf 4.2 [Sech85] and is comparable to a maze router and an industrial router. It is
fast because it investigatbs only a subset of two-bend routes between pairs of pins to be routed. The
routing speed is increased further by parallelizing the algorithm in three ways: routing several wires at
once, routing several two-point segments simultaneously, and evaluating possible two-bend routes in
parallel. The wire-by-wire parallel approach achieves speedups ranging from 10 to 14 using 15
processors. The route-by-route approach achieves speedups of up to 4.6 using 8 processors. These two
"axes" of parallelism are orthogonal to each other, and so when used in tandem their speedups will
multiply. This is demonstrated on 15 processors, and used to predict speedups in excess of 60 using 120
processors for standard benchmark circuits.

-1-

Previous work on parallel routing [Breu81, Blan81, Adsh82, Nair82, Rute4, losu86, Won87] has
generally focused on a fixed hardware mapping for the Lee routing algorithm [Lee6l1. As such they lack
the flexibility that is required in practical CAD software such as the global routers described in
[Kamb85,Yama85]. Another drawback'of special hardware for the Lee algorithm is that a uniprocessor
implementation can be made very efficient using special software data structures that cannot be put easily
into fixed hardware.

There have been few publications on global routing for standard cells, other than [Kamb85] and
[Yama85] which give little detail of the process. The cost-model used in (PateS5] is similar to that used
in LocusRoute. A survey of global routing that touches on standard cells appears in [LoregS]. An early
version of this work was presented in [Rose88b].

This paper is organized as follows: Section 2 defines the global routing problem for standard cells
and describes the serial LocusRoute algorithm. Section 3 gives performance comparisons with the
Timberwolf 4.2 global router [Sech8S], a maze router, and the UTMC Highland Router [Robe87].
Section 4 presents three approaches for speeding up the new router using parallel processing, and
performance results. Section 5 presents experiments with combining two of the approaches which are
then used to model and predict speedups for larger numbers of processors.

2 The LocusRoute Algorithm

This section defines the standard cell global routing problem, and describes the new LocusRoute
approach to solving it.

2.1 Problem Definition 44'

Global routing for standard cells decides the following for each wire in the circuit:

I. For each group of electrically equivalent pins (pin clusters) it determines which of those pins are
actually to be connected.

2. If there is no path between channels when one is required, it must decide either which built-i
feedthrough to use or where to insert a feedthrough cell.

3. It decides which parts of a channel to use for a wire, including the use of two distinct wires in the
same channel if this is desirable.

4. It must determine the channel to use in routing from a pad into the core cells.

In this discussion of global routing there will be no differentiation between feedthrough cells and built-in
feedthroughs - they are referred to jointly as vertical hops. The decision to insert a feedthrough cell or
use a built-in feedthrough is deferred to a post-processing step. This does result in some inaccuracy in the
track count, and is discussed further in Section 3.4.

-2-

I I

The objective of a global router is to minimize the sum of the channel densities of all the channels
(hereafter called the total density). It is important to note that the total density can be traded off with the
number of vertical hops, so to compare he total density of two global routings fairly they should both use
the same number of vertical hops.

2.2 The Basic LocusRoute Algorithm

In the LocusRoute algorithm, each wire sequentially goes through the following five steps:

1. Segment Decomposition. A multi-point wire is decomposed into a minimum spanning tree of two-

point segments, using Kruskal's algorithm [Krus56]. This algorithm has running time O(n 2) in the
number of pin clusters. The effect of the sub-optimality of this decomposition is discussed in
Section 3.2 below.

2. Permutation Decomposition. The segments are further decomposed, if necessary, into
permutations, which are the set of possible routes between each pin in a pin cluster.

3. Route Generation and Evaluation. A low-cost path is found for each permutation by evaluating a
subset of the two-bend routes between each pin pair. The definition of the cost of a wire is given
below, in Section 2.2.2. The permutation with the best cost is selected as the route for that segment.

4. Reconstruct. This step joins all the segments back together, and assigns unique numbers to distinct
segments of the same wire in each channel. This is so that a channel router can distinguish between
two segments and will not inadvertently joifthem logether.

d
5. Record. The presence of the newly routed wire is recorded so that later wires can take it into

account.

In addition, LocusRoute uses the iterative technique described in (Nair87]. Briefly, this means that after
the first time all wires are routed, each is sequentially ripped up and then re-routed. By routing each wire
several times (typically four is sufficient), the final answer is improved by five to ten percent because later
wires can take earlier wires into account after the first iteration. This also reduces the effect of the wirE
order dependency.

The details of the second, third and fifth steps above are described in the following sections. The
others are simple enough that the above description suffices.

2.2.1 Decomposition into Permutations

Each two-point segment consists of pairs of pin clusters that contain electrically equivalent pins.
The LocusRoute algorithm considers routes between every pin in one cluster and every pin in the other
cluster. Each such route is called a permutation. Figure I illustrates three of the four possible
permutations between clusters A and B, which have two pins each. The four possible permutations are:
(A ,B 1) , (A I,B 2), (A 2 ,B 1) , (4 2,B2). If clusters A and B are separated by only a short horizontal
distance, then the (A I, B 2) permutation is most likely the least-cost path of the four. If the horizontal

distance is large then it is possible that any one of the four permutations could have the low-cost path, and

-3-

hence all should be investigated. This has been conhnned experimentally, and a constant horizontal
separation (300 routing grids) has been determined beyond which total density will improve if all four
permutations am evaluated.

.12

V A
2

PoMe Permutato A2 -3. 2

Figure 1 - Permutation Decon osidon of Segment

2.2.2 Route Evaluation

The route evaluation step introduces two crucial notions of the LocusRoute algorithm: the cost
model, which dictates the cost assigned to a path chosen for a wire, and the basic method of choosing
routes based only on paths that have two or less bends.

X
Cost ModeL Each possible routing position in a chahnel (also called routing grid of that channel) is
represented as one element of an array as shown in Figure 1 . The array, called the Cost Array, has a
vertical dimension of the number of rows plus one, and a horizontal dimension of the width of the
placement in routing grids. Each element of the Cost Array contains two values: Hij and V. Hij
contains the number of wire routes that pass horizontally through the grid at channel i in position j. This
value changes as wires are routed. Similarly, Vii is the cost, assigned by parameter, of traversing a row in
travelling from channel i to channel i + I at grid position j. A wire is represented as a list of (i, j)
pairs of locations in the Cost Array, corresponding to the locations of pins to be joined.

This model implies that more than one vertical hop can exist in one grid location, and that the
assignment of a vertical hop does not disturb the placemenL While these assumptions are strictly
incorrect, their effect is minimal as discussed in Section 3.4.

Under this model, the objective is to find a minimum-cost path for each wire. The wire's cost is
given by the sum of all of the Hij and Vj that it traverses. After a path is found for a wire that goes
through location (i j) its presence is recorded in the Cost Array (the appropriate Hij and Viq are
incremented) so that subsequent wires can take it into accounL The more wires going through a particular
location in a channel, the less likely it is that area will be used. Note that in this model the total density is
not directly minimized, but rather a combination of average density and wire length.

Two-Bend Route Generation and Evaluation. The LocusRoute algorithm searches for a low-cost path

-4.

H II Rout i Pin

Channel 5______

Channel 4I'° I IIi l I=IIIIIII
.11 1 1 1 T 1

Channel 2I _______

chann I ---_ I-----------

Standard Cell Placement Cost Aray

Figure 2 - Cost Model

for a permutation by evaluating the cost of a number of different routes and choosing the best. The basic
approach is to evaluate a subset of all two-bend routes between the two pins, and then choose the one
with the lowest cost. Generation of two-bend routes is discussed in (Ng86]. Figure 3 illustrates three
possible two-bend (or less) routes inside a representation of the Cost Array as a small example.

(a) (b) (c)

Figure 3 -Sample Two-Bend Routes

If the horizontal distance between the two pins is H routing grids, and the vertical difference is C
channels then the total number of possible two-bend routes is C+H. In the LocusRoute algorithm th&
percentage of all the possible two-bend routes to be evaluated is a parameter. I fewer than 100% of all
the routes are to be evaluated, the set of all possible routes is prioritized as follows: first all principally
horizontal routes (those with bends only at the left and right extremes) are evaluated. Then the
principally vertical routes (those with bends at the upper and lower extremes) are evaluated. Horizontal
routes are evaluated first because it is important that all of the potential channels for the route be
examined at least once. Within the horizontal and vertical groups, routes are searched in bisection order.
i.e. if the limits of the group span are normalized to [0.1] then the routes are prioritized as

1 3 10,1, - , T ._9 . and so on. This ensures that the possible space of routes is evenly spanned.

-5-

To calibrate the number of two-bend routes to be evaluated the two-bend router was compared
against a least-cost path maze router. Both routers were not allowed to go beyond the bounding box of
the two end points of the segment. Experimentally, it was determined that if only 20% of the two-bend
routes were evaluated, then this would result in a path as good as that found by the maze router, as
compared on the basis of total density for the entire circuit. On all of the test circuits used in the
experiments discussed in the Section 3, the LocusRoute router's total density was within 2% of that
obtained by the two-point maze router, with one exception of 3.3%. Most of the differences were below
1%. This is surprising in that the maze router looks for not only two-bend routes but for three or more
bend routes. It implies that two-bend routes provide a sufficiently rich route set for the standard cell
routing problem.

2.2.3 Recording A Wire

The last step in the algorithm is to :ecord the presence of the wire's route in the Cost Array, so that
the cost of using any part of that path will increase for other wires. This is done simply by incrementing
the appropriate cells of the cost array. In the next iteration, the wire is "ripped up" by decrementing those
same cells of the Cost Amy.

3 Performance Comparisons

This section compares the quality and execution time of LocusRoute with three other routers.

3.1 Comparison with TimberWolf I
9.

Table I shows a comparison between the LocusRoup global router and the TimberWolf 4.2
[Sech85] global router for several industrial circuits. These circuits are from several sources: The
standard cell benchmark suite (Primaryl, Primary2, TestO6 [Prea?]), Bell-Northern Research Ltd.
(BNRA->BNPRE), and the University of Toronto Microelectronic Development Centre (MDC). The
placement for all of the circuits was done by the ALTOR standard cell placement program [Rose85,
Rose88a]. Table I gives the number of wires in each circuit, the total density achieved by LocusRoute
and Timberwolf, and the percentage fewer tracks LocusRoute achieved over Timberwolf. LocusRoute
achieves significantly better total density than does the TimberWolf global router, ranging from 16% t6
37% fewer tracks. The principal reason is that the TimberWolf global router is constrained to use only
the minimum number of vertical hops, whereas LocusRoute uses considerably more. This is a
reasonable practice in current technology because many standard cells contain "free" built-in
feedthroughs. The execution times of LocusRoute and TimberWolf are comparable for most of the
examples, though TumberWolf is faster by a factor of 8 and 3 respectively for circuits TestO6 and
Primary2. This is due to the fact that the LocusRoute algorithm increases in running time proportional to
the area covered by the wire, which is much larger in these two circuits, and the inefficiency of the
segment decomposition for large wires.

-6-

Circuit # Total Density
Name Wires LocusRoute TimberWolt % Fewer
BNRE 420 135 179 22%

MDC 575 150 179 16%

BNRD 774 188 225 16%

Primaryl 904 262 316 17%

BNRC 937 202 247 18%

BNRB 1364 320 "442 27%

BNRA 1634 315 432 27%

TesOt6 1673 335 537 37%

Primary2 3029 563 702 20%

Table 1. Comparison of LocszRoute and TimberWolf

3.2 Comparison with Maze Router

For comparison purposes a maze router [Lee6l] was developed, using the same cost model as
LocusRoute, that exhaustively determines the optimal solution to the two-point routing problem. It also
determines a good approximation to the minimum-cost Steiner tree for multi-point wires using the
approach described in [Aker72). The maze router was carefully optimized for speed. Table 2 shows the
comparison of total density and execution time for the maze router and the LocusRoute router, for all of
the test circuits. The comparison is made on 4ie basis of roughly equal numbers of vertical hops.
Execution times are for four iterations over aU wires on a DEG,~icro Vax I.

Circuit Total Density Time (Micro Vax II a)
Name Locus Maze I Duff Locus Maze I Factor

BNRE 138 129 7% 88 2378 27z

MDC 150 141 6% 178 3173 lIz

BNRD 188 182 3% 167 3306 2ht

Primaryl 262 255 3% 325 6534 20z

BNRC 202 189 7% 363 7250 20z

BNRB 320 308 4% 599 15116 2Sz

BNRA 315 294 7% 769 19652 26x

Test6 335 316 6% 5137 92272 lSI

Prlmar2 563 549 3% 3758 48295 13x

Table 2 - Comparison of LocusRoure and Maze Router

-7-

For all circuits the LocusRoute total density (total number of routing tracks) is no greater than 7%
mom than that achieved by the maze touter, and in some cases is as little as 3% more. Most of this
difference is due to the sub-optimality of dividing the wires up into two point nets. LocusRoute ranges
from 13 to 27 tines faster than the mazerouter. Since the purpose of this work is to use the router as an
area-based cost function for a placement algorithm, we will always be willing to trade this slight loss in
quality for such a large gain in speed. This will allow many more potential placements to be evaluated.

3.3 Comparison with the UTMC Highland Router

For two of our circuits, we can also compare the total routing density with the United Technologies
global router used in the recent benchmark effort at the 1987 Physical Design Workshop
[PreaS7,Robe87j. The placements used above for circuits Primaryl and Primary2 were also routed by the
UTMC router. Table 3 shows the comparison of total density for both circuits, with each Touter using
roughly the same number of vertical hops. The total density of the UTMC router for circuit Primaryl is
notably less than for the LocusRoute router. This is probably due to the fact that the UTMC router also
performs neighbour exchanges and cell orientation changes on the placement in order to reduce the total
number of tracks. The LocusRoute total density for circuit Primary2 is slightly less than that achieved by
the UTMC router. We have no information on the execution time of the UTMC router, except that for
circuits near the size of Primary2, it would take roughly 10000 Vax 11f780 seconds [Robe87] which is
about three times slower than LocusRoute.

Circuit Name # Wires Total Density
LocusRoute Highland

Primaryl 9A s 253 194
Primary2 3029 55602

Table 3 -Comprison of LocusRoute and UTMC Highland Router

3.4 Effect of Vertical Hop Approximation

As discussed in Section 2.1, the abstraction of vertical hops (representing both feedthrough cells and
built-in feedthroughs), and the fact that they overlay active cells, causes an inaccuracy in the track counts
reported here. The difference is small, however. The 904-wire Primaryl circuit global routed to 249
tracks, using 995 vertical hops under the LocusRoute algorithm. The actual, post-process track count
using 10 feedthrougb cells and 985 built-ins was 253, only 1.6% more tracks. For the 3029-wire
Primary2 circuit with 3424 vertical hops (287 feedthroughs, 3137 built-ins) the approximate track count
was 546 and the post-process count was 590. an increase of 8%.

4 Parallel Decomposition and Implementation

As mentioned in the introduction, previous parallel routers have focused on fixed hardware
imp'ementations of the maze routing algorithm [Lee61]. A more flexible approach is to use general
purpose parallel processors, which can be adapted to many applications. Using the flexibility of a general
purpose multiprocessor, several "axes" of parallelism can be exploited. If these axes are orthogonal to

-8-

each other then when used in tandem they can achieve significant speedup. Two approaches to
paraHlelizng an algorithm are said to be orthogonal if, when used together, the resulting speedup is the
product of the speedup of the individual methods. In this section several ways of parallelizing the
LocusRoute router are proposed and implemented:

1. Wire.based Parallelism. Each processor is given an entire multi-point wire to route.

2. Segment-based Parallelism. Each two-point segment produced by the minimum spanning tree
decomposition is routed in parallel. .

3. Permutation-based Parallelism. Each of the four possible permutations, as discussed in Section
2.2.1, are evaluated in parallel.

4. Route-based Parallelism. Each of the possible two-bend routes for every permutation are evaluated
in parallel.

Note that these are only potential axes of parallelism. It is possible to eliminate some of them as
uneconomical by using statistical run-time measurements of the serial router. For example, the number
of two-point segments that actually need to have all four permutations evaluated is quite small with
respect to the total. Thus, permutation-based parallelism is not going to provide significant speedup.
Other measurements show that the time spent evaluating the cost of two-bend routes ranges from 50 to 90
percent of the total routing time and so reasonable speedup from route-based parallelism can be expected.

The following sections gives the details & thref axes of parallelism, their performance and a
quantitative measure of the degradation in quality if there is ne. All decompositions assume a shared-
memory multiprocessor.

4.1 Wire-Based Parallelism

In Wire-Based parallelism, each multi-point wire is given to a separate processor, which runs the
LocusRoute routing algorithm as described in Section 2. The Cost Array is a shared data structure to
which all processors have read and write access. This is an excellent axis of parallelism: if the sharing ci
the Cost Array does not cause performance degradation due to memory contention, and there are enough
wires to provide good load balance, then the speedup should simply be the number of wires that are
routed in parallel. The resulting parallel answer, however, will not necessarily be the same as the
sequential answer. The problem is that the sequential router has complete knowledge of all wires that
have already been routed, by virtue of their presence in the cost array. The parallel router has less
information because it doesn't see the wires that are being routed simultaneously. The more wires routed
in parallel, the less information each processor has to choose good routes that avoid congestion and hence
cause an increase in total density. Thus the total density will increase as the number of processors
increase. The measured effect on total density is discussed below, in Section 4.1.1.

-9-

4.1.1 Wire-Based Parallel Performance

Figure 4 is a plot of the speedup versus number of processors for the 3029-wire (Primary2) example
running on an sixteen-processor Encore MULTIMAX. The speedup for p processors, Sp is calculated as

where T I is the execution time on one processor and 7. is the execution time using p processors.

The Encore uses National 32032 chip sets which, in our benchmarks, timed out slightly faster than a DEC
Micro Vax U.

16 -

Speedup 10- -------

for 3029-Wire 11-
Circuit 6-

4-
2-

I I I I I I I I
2 4 6 8 10 12 14 16

Number of Processors

Flgure 4. Wire-Based Speedp for Circit PrzMry2

It is clear from the figure that the wire-basedjpproach achieves excellent speedup. Note that the
execution time is only the actual routing computation *time, Jxcluding input time. For this circuit the
increase in total density (between I and 16 processors) is negligible, and the number of vertical hops
increases about 3%.

Table 4 gives the speedup using fifteen processors for the other test circuits. The speedup ranges
from 10.1 for a smaller circuit to 14.1 for the largest. The speedup is less for smaller circuits because they
are done in such a short time, so that the startup overhead and load balance become factors. The
execution time is for four iterations over all the wires. It was discovered that very large global wires
such as TRUE or FALSE that have up to 150 pins, caused a severe degradation in speedup. This is
because our system handles those nets just like any other, and the O(n 2) nature of the minimum spanning
tree algorithm causes load balancing problems. Since most production systems beat TRUE and FALSE
signal nets differently (usually tapping directly into the power lines with special cells) these were
eliminated under the assumption that they could be handled quickly that way.

Table 5 gives the density and vertical hop counts for both 1 and 15 processors using wire-based
parallelism. The degradation in total density ranges between 1% to 7%. The increase in vertical hops is
6% or less. Again, in the context of using the router as a placement cost function, it is worthwhile to
trade a small loss in quality for a large gain in speed, so that many more placements may be evaluated.

-10-

Circuit 1-Processor 15-Processor 15-Processo,
Narme ime (a) Time (a) Sp dup
BNRE 67 6.5 10.4

MDC 76.6 7.5 10.1

BNRD 136 11.8 11.

Primaryl 275 24.9 11.0

BNRC 196 16.9 11.6

BNRB 553 48.6 11.4

BNRA 713 54.9 13.0

Tet6 5654 425 13.3

Prlmary2 3934 279 14.1

Table 4. Wire-Based Parallelism Speedup

Circuit Density Vertical Hops
Name 1-Proc 15-Proc %increase 1-Proc 15-Proc %Increase

BNRE 130 137 5% 449 474 6%

MDC 134 142 6% 241 249 3%

BNRD 176 182 3% 530 574 6%

Primaryl 262 271 73% 940 947 1%

BNRC 191 192 1% a625 739 2%

BNRB 307 328 7% 1904 1990 5%

BNRA 298 312 5% 2106 2198 4%

TestO6 318 339 7% 3221 3309 3%

Primary2 560 593 6% 3053 3133 3%

Table 5- Wire-Based Parallelism Quality

4.1.2 Gain Due to Removal of Locks

An interesting issue is whether or not each processor should lock the Cost Array as it both rips up
and re-routes wires in the Cost Array. The act of ripping up a route is essentially a decrement, and re-
routing is an increment on a set of cells in the Cost Array. Locking the Cost Array during these operations
ensures that two simultaneous operations on the same element does not prevent one of the operations
from being lost. It does, however, cause a significant performance degradation. For example, for the

Primaryl circuit the speedup decreased from 8.3 to 6.4 using 15 processors when Cost Array locking was
used. For the Primary2 circuit the speedup for 15 processors was reduced to 12.1 from 13.0 due to

locking.

-11 -

The final routing quality, however, does not decrease when locking is omitted. The reason for this is
that the probability of two processors accessing the same Cost Array element (of which there are on the
order of 10000) at the same instant is very low. Even if very few increment or decrement operations are
lost, the effect cn final quality is negligible since only a few elements would be wrong by a small amount.
This was shown experimentally by performing ten runs with 15 processors on each of the above circuits,
for both the locking and non-locking cases. For the two circuits table 6 gives the average running time,
and the average and standard deviation of the total density and number of vertical hops. From this table it
can be seen that the quality in both cases is very nearly the same. Note that in a placement context in
which many more wires will be ripped up and re-routed, the effect of these small errors would be
cumulative and so an occasional correction step may be necessary if locks are not used.

Circuit & Avg Density Vertical Hops
Lock Type T (s) Avg. SD Avg I SD
Primaryl Locks 43.8 269 2.0 962 4.9
PrImaryl NO Locks 33.7 272 3.0 964 3.4
Primary2 Locks 325 591 1.9 3126 7.5
Prlmary2 NO Locks 303 591 4.9 3122 4.0

Table 6- Speed & Quality Using and Not Using Locks

4.2 Segment-Based Parallelism

In segment-based parallelism, each two-poil segment of a wire is given to a different processor to
route. This is the stage following the minimum spanning tree decomposition, but prior to the evaluation
of different two-bend routes. Measurements of the sequential tuter showed that about 60% of the routing
time was spent on wires with more than one segment. This means that a speedup of about two might be
expected using three processors. Even though there are many wires that provide two or three-way parallel
tasks, however, the size of those tasks are not necessarily equal. The amount of time taken by the
LocusRoute router to route two points is proportional to the Manhattan distance between the two points.
If, in a three-point wire, two of the points are close together and the third is far away, it will then take
much longer to route one segment than the other. The processor assigned to the short segment will bj
idle while the longer one is being routed. This unequal load prevents a reasonable speedup. On the test
circuits a speedup of about 1.1 using two processors was measured.

It is fairly clear, however, that an extra processor could be assigned to a number of processors that
are routing different wires. It is likely that at any given time, one of them will be able to use the extra
processor to route an extra segment. his technique would become essential in wire-based parallelism if
the number of processors were increased much beyond sixteen. In that case, the load balance becomes a
problem because wires with many segments take much longer than wires with few segments. Hence
segment-based parallelism could be used as a method to balance those loads and speed up the routing of
larger wires.

-12-

4.3 Route-Based Parallelism

In route-based parallelism all of the two-bend routes to be evaluated are divided among the
processors. Each finds the lowest-cost path among the set of two-bend routes that it is assigned. When all
processors finish, the route with the best overa cost is selected. In this case the processor loads are well
balanced because the routes are all of the same length, and the number of routes is evenly divided among

the processors.

Figure 5 is a plot of the speedup versus number of processors for the circuit TestO6, a large circuit.
It achieves a speedup of 4.6 using 8 processors.

7 idea.
6 - measured

Speedup
4-
3-
2-

1 2 3 4 5 6 7 8I

Number of Processors

Figure 5- Route-Based Speedup for Tes106

Table 7 gives the best speedup achieved JeT all of the test circuits, ranging from 1.2 using 2
processors to 4.6 using 8 processors. The principal reason for the limitation in speedup is the sequential
portion of the routing: the wire decomposition and the post-1'ute processing that places the presence of
the route into the Cost Array. On the small circuits that have lesser speedup, the sequential portion is
about 50% of the total routing time, while on the larger circuits which have better speedup the sequential
portion ranges from 10-15%. Another reason is that some segments have only one potential route,
limiting the available parallelism.

5 Combining Two Orthogonal Axes of Parallelism

The wire and route axes of parallelism introduced above are orthogonal, and so when they are
combined we can expect a multiplication of their respective speedups. In this section experiments are
performed to demonstrate this effect on the Encore MULTIMAX. Using a simple model, the speedup for
a larger number of processors is then predicted.

5.1 Implementation on the MULTIMAX

Because there are different kinds of tasks to be executed, the major challenge of combining the wire
and route axes of parallelism is the scheduling of those tasks. An obvious static scheduling strategy is
implied by the notion of orthogonality: for each wire that is being routed simultaneously by one
processor in the wire-based approach, we now statically assign a constant number of processors to that
wire to aid in the parallel execution of the route-based tasks. This situation is depicted in Figure 6. These

-13-

Circuit Best Route-based Speedup
Name (Sp.edup/#ProceM.or)
BNRE 1.212

MDC 1.3/2
BNRD 1.3'2

Prmaryl 1.8/3
SNRC 1.6/3

BNRB 2.1/4
BNRA 1.9/4
Test06 4.6/8

Primary2 3.3/5

Table 7. Performance of Route-Based Parallelism

extra processors are used only during the two-bend route evaluation.

/-- -- 0 D

M Wie Wire El. LiD 0i

N Route Proe

Figure 6 - S&atic Scheduling Policy

Several experiments were performed to show that the combined speedup of the wire and route-basi
approaches will indeed be the multiplication of the individually measured speedups. Table 8 gives the
result of those experiments for the 3029-wire Primary2 circuit. For each experiment it gives the number
of wires being touted in parallel (M), the number of processors assigned to each wire to do the routing
tasks (N), the total number of processors (MxN), the speedup predicted by multiplying the wire-based
speedup using M proce~sors and the route-based speedup using N processors, and the measured
combined speedup. From this table it is clear that the speedups very nearly multiply, as expected. The
small difference is due to increased contention for shared memory and the central bus, and the fact that
two processors contend for one cache in the Encore MULTiMAX.

-14-

Wire #Route Procs Total Speedup
(M) (N) (M x N) Predicted Mfeasured
3 4 12 9.0 8.7

4 3 12 9.9 9.6
6 2 12 10.8 10.3

3 5 15 10.4 9.9
5 3 15 12.4 11.7
7 2 14 12.6 12.0

Table 8 - Static Schedule Experimenu for Circuit Prinia'y2

A drawback of the static scheduling policy is that it cannot assign processors where they will be of
best use. If one wire has very few routes while another has many, the processors assigned to the first are
not used by the second. In addition, there is a portion of the wire routing procedure that only uses one
processor, so the others will be idle. A dynamic scheduling approach allows any idle processor to be used
by any wire that has a need for it. This was implemented as a single task queue. Wire processors add
tasks to the queue, and other processors remove and execute tasks. The granulariy of the routing tasks in
the dynamic scheme, the number of two-bend mutes assigned to one processor to evaluate per task, was
tuned to achieve the best speedup. The best performance was achieved when the number of tasks was
several times the number of available processors, indicating that the load balance effect was more
significant than the overhead of starting up a task.

Experiments have shown that the dynamic approach cazt'oth obtain the same speedup as the static
approach using fewer processors, or better speedup using the same number of processors. For example,
for Primary2 the static approach attained a measured speedup of 9.9 using 15 processors, while the
dynamic approach achieved 10.8.

5.2 Predicting Performance on More Processors

Since we have observed that the static schedule performance of the combined approach does indeeA
nearly multiply the speedups attained by the individual methods, it is possible to predict the performance
of that schedule on many more processors. Assume, for a given circuit that a speedup of S. is achieved
using wire-based parallelism on W processors, and a speedup of S, is achieved using route-based
parallelism on R processors. Then, because the two approaches are orthogonal, the resulting speedup
when they are used together should be S, x S, using W x R processors. This model neglects the effect of
memory contention that may occur when the number of processors is increased dramatically. Table 9
shows the best predicted speedup for the test circuits. Combined speedup ranges from 13 using 30
processors to 61 using 120 processors. The smaller circuits are routed very quickly and so it is difficult to
get speedups greater than 13 due to the startup overhead. The larger circuits benefit greatly from the
combination of the approaches.

-15-

S. I I tCrcit W T - -W-- A ARw

BNRE 10:4 1.2 12.5 46ms 37nu1 T -W _

MDC 10.1 1.3 13.1
BNRD 11.5 1.3 15.0"-T5- --I -IT .

Prlmaryl 11.0 .9 M* 89ms 4.5ms

BNRC 11.6 1.6 18.6 5
______ -5 -3 W ______

BNRB 11.4 2.1 24.0 127ms 5.3.5

BNRA 13.0 1.9 24.7 134ms 5.4ms

TWOS 13.3 4.6 61.2 935ms 15.29U
__M_ -IF T __

Prlmary2 7FL I~ F 358ms 7.7=s

Table 9 - Predicted Combined Speedup of Wire and Route Parallelism

Table 9 also contains the average routin/iime per net on one processor, A 1, and what the the

average routing time per net would be under the maximum sledup. ARw. That is, Ajtw = A . The

average routing times for all circuits, under the various speedups range mostly from 3 to 6ms, (with one at
15ms) and approaches our goal of one to two milliseconds per net. If more processors were used under
the wire-by-wire axis, this goal could definitely be achieved.

6 Conclusions

A new global routing algorithm for standard cells and its parallel implementation has been
presented. The LocusRoute algorithm uses significantly fewer tracks than the TimberWolf standard cell
global router, and is comparable to a maze router and an industrial router. It is more than a factor of 10
faster than either of the two latter routers. Three axes of orthogonal parallelism were developed to speed
up the LocusRoute router further. Two of the three axes that were implemented achieved significant
speedup - up to 14.1 using fifteen processors and 4.6 using eight processors. They should produce
combined speedups of up to 61 times.

The Locus placement environment is currently being developed, and in the future will be combined
with the parallel LocusRoute global router. Our aim is to achieve smaller final area by using the global
routing as a better measure of each placement.

Acknowledgements

-16-

The author is girateful to John Henneusy for the encouragement and support of this work. Thanks to
Tom Blank who provided many good suggestions for an earlier version of this paper. Thanks also to
Grant Martin of BeU-Northern Reseairch for the use of company circuits and to the people involved in the
standard cell benchmark effort for supplying those test circuits. Carl Sechen provided version 4.2 of
TimberWolISC.

7 References

[AdahS2)
FtG. Adshed "Employing a Disibuted Army Pmcessor in a Dedicated Gate Amy Layout System," Proc. ICCC,
Septenber 192. pp. 411-414.

[Aker721
S. B. Akin, "Routing." Chapter 6 of Design Automaton of Digital Systems; Trne7 and Techniques, M.A.
Beuer, Ed.. Englewood Cliffs. W, Piutice-HalL, 1972.

(Blanll
T. Blank, M. Stek, W. VanCeemput, "A Parallel Bit Map Processor Architecture POR DA ALGOR]THMS." Proc.
18th Design Automation Conference, June 1981. pp. 837-845.

(Bmu77]
M.A. Breuer. "Min-Cut Placement," Journal of Design Automation and Fault-Tolerant Computing. Oct 1977. pp 343-
362.

[Breusl]
M.A Breuer, K. Shmna, "A Hardware Router," Journal of Digital Systems, Vol IV, Issue 4,1981. pp. 393-406.

(Han&72]
M. Hanan, I.M. Kutzberg, "Placement Techniques," Chapter 4 of Design Automation of Digital Systems; Theory
and Techniques, MA. Breuer, Ed.. NJ. Pwrntice.HalI. 1972.

Coas6]

A. losupovici, "A Cus of Array Amhitectures fh iardware Grid Routers." IEE Transactions on CAD. Vol. CAD-
5, No. 2, April 1986, pp. 245-255.

PCma,,j
T. Inambe, T. Okada. T. Chibs. L Nishioka, "A Global Routing Scheme for Polycell LS," Proc. ISCAS 1985, pp.
187-190.

(Kru&561
J.3. Kruskal, "On The Shortest Spanning Subtree of a graph and the Traveling Salesman Problem," Proc. Amer. Math.
Soc,7, 1956, pp. 48-50.

[L,61)
C.Y. Lee, "An Algorithm for Path Connections and Its Applications." IRE Transactions on Electronic Computers, Vol

EC-10, pp 346-365 1961. a

M.J. Lorenzeui, D. S. Baeder, "Routing", Chapter 5 of Pbydcal Deign Automaton of VLSI Systems. B. Press and
M. Lomnzeti Ed., Menlo Park. Benjamin)Cumnings Publishing. 1988.

(NairB2]

R. Nair, S.J. Hong. S. Liles, Rt. Villani, "Global Wuni on a Wiue Routing Machine," Proc. 19th Design Automation
Conference, June 1982. pp. 224-231.

[N"ll71
R. Nair,"A Simple Yet Effective Technique for Global Wiring." IEEE Transactions on Computer-Aided Design, Vol
CAD-6, No. 2, March 1987, pp. 165-172.

NXS861
A P-C Ng, P. Raghavan, C.D. "Tompson, "A Language for Describing Rectilinear Steiner Tree Con gurauions," Proc.
23rd Design Automation Conference, June 1986. pp. 659-662.

(PaieSS)
A.M. Patel, N. Soong. LK. Korn, "Hierarchical VLSI Routing - An Approximate Routing Procedure," EE

-17 -

Transactions an Compuar-Aided Design. Vol CAD-4. No. 2. April 1965.pp. 121-126.
(Pzed7l

B.T. Pass. 'Berencmts for Cell-Band Layout Symms," Proc. 24rd Deip Automaion Conference, Jue 1967. pp.
319-31).

IRobe87]
Ken Roberts used the United Technolopes Standard Cell global router an the tandaxd cell benchmak placemnte .
Resds ere discussed at die 1967 DAC.

[Rose8s]
J.S. Rose, W.M. Sneirove, ZG. Vrnec, "ALTOR: An Autowmnaic Standard Ceu LAyout Program." Proc. Canadian
Conference on VLSL November 1985. pp. 169-173.

(Rowsal
J.S. Ros, W.M. Sneigrove. ,G. Vraneac, "Parallel Standaurd Cte Placement Algorthms with Quality Equivalent to
Simulated Annealing." IEEE Trans. on CAD, Vol. CAD-7, No. 3, March 1988, pp. 387-396.

[RceeSgbJ
J.S. Row, "'LocusRoute: A Parallel Global Router for Standard Cells," Proc. 25th Design Automaion Conference,
June 196. pp. 189-195.

[Rute94]
LA. Rutenbar, T.N. Mudge, D.E. Atkins, "'A Class of Cellular Architectures to Support Physical Design
Automation," IEEE Trans. on CAD, Vol. CAD-3. No. 4, October 1984, pp. 264-278.

ISech85]
C. Sehei, A. Saniovanni-V'mcenlli. "The Tmberwolf Placement ad Routng Package," IEE JSSC. Vol. SC.20,
No. 2, April 1985. pp 510-522 pp. 432-439.

IWo87)
Y. Won, S. Sahni, Y. E1-.Zq, "'A Hardware Accelerator for Maze Routing." Proc. 24th Design Automation
Conference. June 1967, pp. 500-806.

rYamass]
M. Yamada. T. Hiwaashi, T. Mitsuhashi, L Yo dak "A Multi-Layer Router for Standard Cell LIis," Proccedings
ISCAS 1985. 191-194.

-18 -

To appear in International Journal of
Parallel Programming, Volume 17, Issue
#2, 1988

Parallel Implementation of OPS5
on the

Encore Multiprocessor: Results and Analysis

Anoop Gupta
Depament of Computer Science, Stanford University, Stanford, CA 94305

Milind Tambe, Dirk Kalp, Charles Forgy, and Allen Newell
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

Abstract

Until now, most results reported for parallelism in production systems (rule-based systems) have been simulation
results - very few real parallel implementations exist. In this paper, we present results from our parallel
implementation of OPS5 on the Encore multiprocessor. The implementation exploits very fine-grained parallelism
to achieve significant speed-ups. For one of the applications, we achieve 12.4 fold speed-up using 13 processes.
Our implementation is also distinct from other parallel implementations in that we pamllelize a highly optimized
C-based implementation of OPSS. Running on a uny'rooessor, our C-based implementation is 10-20 times faster
than the standard lisp implementation distributed by Carnege Mellon University. In addition to presenting the
performance numbers, the paper discusses the details of the paralleloinplementation - the data structures used, the
amount of contention observed for shared data structures, and the techniques used to reduce such contention.

Keywords: Production Systems, Rule-based Systems, OPSS, Parallel Processing, Fine-Grained Parallelism, Al
Architectures.

1. Introduction
As the technology of production systems (rile-based systems) is maturing, larger and more complex expert

systems are being built both in industry and in univetsities. Often these large and complex systems am very slow in
their execution; and this limits their utility. Researchers have been exploring many alternative ways for speeding up
the execution of production systems. Some efforts have been focusing on high-performance uniprocessor
implementations [3,12]. while others have been focusing on high-performance parallel implementations
[2,4.7, 13, 10, 15, 16, 18]. This paper focuses on parallel implementations.

Until now, most results reported for parallelism in production systems have been simulation results. In fact, very
few real parallel implementations exist. In this paper, we present results from our parallel implementation of OPS5
on an Encore Multimax shared-memory multiprocessor with sixteen CPUs. The implementation, called PSM-E
(Production System Machine project's Encore implementation), exploits very fine-grained parallelism to achieve up
to 12.4 fold speed-up for match using 13 processes. Our implementation is distinct from other parallel
implementations in that we parallelize a highly optimized C-based implementation of OPS5. Running on a
uniprocessor. our C-based implementation is 10-20 times faster than the lisp implementation of OPS5 distributed by
Carnegie Mellon University. A consequence of parallelizing a highly-optimized implementation is that one must be

I I I I I I I I

very careful about overheads, else the overheads may nullify the speed-up. One need not be as careful when
parillelizing an unoptimized implementation. In this paper, we first discuss the design of an optimized
implementation of OPS5, and then discuss the additions that were made for the parallel implementation. For the
parallel implementation, we discuss the synchronization mechanisms that were used, the contention observed for
various shared data structures, and the techniques used to reduce such contention.

The paper is organized as follows. Section 2 presents some background information about the OPS5 language,
the Rete match algorithm, and the Encore Multimax multiprocessor. Section 3 gives an overview of the parallel
interpreter and then goes into the implementation details describing how the rules an compiled and how various
synchronization and scheduling issues are handled. Section 4 presents the results of the implementation on the
Encore multiprocessor. Finally, in Section 5 we summarize the results and conclude.

2. Background
This section is divided into three parts. The fist subsection describes the basics of the OPS5 production-system

language - the language which we have implemented in parallel. The second subsection describes the Rete
algorithm - the algorithm that forms the basis for our parallel implementation. The third subsection describes the
Encore Multimax computer system - the multiprocessor on which we have done the parallel implementation.

2.1. OPS5
An OPS5 [1] production system is composed of a set of if-then rules called productions that make up the

production memory, and a database of temporary assertions called the working memory. The assertions in the
working memory are called working memory eleme (wines). Each production consists of a conjunction of
condition elements corresponding to the (fpart of the Ifle (atO called the left-hand side of the production), and a set
of acdons corresponding to the then part of the rule (also called they'ghi-hand side of the production). The actions
associated with a production can add, remove or modify working memory elements, or perform input-output. Figure
2-1 shows a production namedfind-colored-block with two condition elements in its left-hand side and one action in
its right-hand side.

(p Lind-coloried-block
(goal "type find-block "color <c)
(block "id <1> "color <.>)
(color "code <a> "name <al>)

(write *Fouid Block of Color <xl>"))

Trgure 2-2: A sample production.

The production system interpreter is the underlying mechanism that determines the set of satisfied productions
and controls the execution of the production system program. The interpreter executes a production system program
by performing the following recognize-act cycle:

" Match: In this first phase, the left-hand sides of all productions are matched against the contents of
working memory. As a result a cofl7ict set is obtained, which consists of instandadons of all satisfied
productions. An instantiation of a production is an ordered list of working memory elements that
satisfies the left-hand side of the production.

* Conflict-Resolution: In this second phase, one of the production instantiations in the conflict set is
chosen for execution. If no productions ae satisfied, the interpreter baits.

2

* Act: In this third phase, the actions of the production selected in the conflict-resolution phase are
executed. These actions may change the contents of working memory. At the end of this phase, the
fist phase is executed again.

A working memory element is a parenthesized list consisting of a constant symbol called the class of the element
and zero or moe atribute-value pain. The attributes are symbols that amn preceded by the operator A. The values
are symbolic or numeric constants. For example, the following working memory element has class CI, the value 12
for attribute attrl and the value 15 for attribute atar2.

(Cl Aattxl 12 "attr2 15)

The condition elements in the left-hand side of a production ae parenthesized lists similar to the working memory
elements. They may optionally be preceded by the symbol -. Such condition elements are then called negated
condition elements. Condition elements ae interpreted as partial descriptions of working memory elements. When
a condition element describes a working memory element, the working memory element is said to match the
condition element. A production is said to be satisfied when: (1) For every non-negated condition element in the
left-hand side of the production, there exists a working memory element that matches it; (2) For every negated
condition element in the left-hand side of the production, there does not exist a working memory element that
matches it.

Like a working memory element, a condition element contains a class name and a sequence of attribute-value
pairs. However, the condition element is less restricted than the working memory element; while the working
memory element can contain only constant symbols and numbers, the condition element can contain variables,
predicate symbols, and a variety of other operators as well as constants. Variables are identifiers that begin with the
character "c" and end with ">" - for example, <6 T" <c> are variables. A working memory element matches a
condition element if they belong to the same class and if The value of every attribute in the condition element
matches the value of the corresponding attribute in the working~bemory element. The rules for determining
whether a working memory element value matches a condition element value are: (I) If the condition element value
is a constant, it matches only an identical constant. (2) If the condition element value is a variable, it will match any
value. However, if a variable occurs more than once in a left-hand side, all occunences of the variable must match
identical values. (3) If the condition element value is preceded by a predicate symbol, the working memory element
value must be related to the condition element value in the indicated way.

The right-hand side of a production consists of an unconditional sequence of actions which can cause inpub
output, and which am responsible for changes to the working memory. Three kind of actions are provided to effect
working memory changes. Make creates a new working memory element and adds it to working memory. Modify
changes one or more values of an existing working memory element Remove deletes an element from the working
memory.

2.2. The Rete Match Algorithm
In this subsection. we describe the Rete algorithm used for performing the match-phase in the execution of

production systems. The match-phase is critical because it takes 90% of the execution time and as a result it needs
to be speeded up most. Rete is a highly efficient algorithm for match that is also suitable for parallel
implementations. (A detailed discussion of Rete and and other match algorithms can be found in 14, 14).) The Rete
algorithm gains its efficiency from two optimizations. First, it exploits the fact that only a small fraction of working
memory changes each cycle by storing results of match from previous cycles and using them in subsequent cycles.
Second, it exploits the similarity between condition elements of productions (both within the same production and
between different productions) to reduce the number of tests that it has to perform to do match. It does so by

3%

performing common tests only once.

The Rete algorithm uses a special kind of a data-fow network compiled from the left-had sides of productions to
perform match. The network is generated at compile time, before the production system is actually run. Figure 2-2
shows such a network for prnduction pi and p2, which appear in the top pan of the figure. In this figure, lines have
been drawn between nodes to indicate the paths along which information flows. Information flows foa the
top-node down along these paths. Tbe nodes with a single predecessor (near the top of the figure) ame the ones that
we concerned with individual condition elements. The nodes with two predecessors are the ones that check for
consistency of variable bindings between condition elements. The terminal nodes ame at the bottom of the figure.
Note that when two left-hand sides require identical nodes, the algorithm shams pan of the network rather than
building duplicate nodes.

(p pl (Cl -attri <x> Aattr2 12) (p p2 (C2 ^attrl 15 ^attr2 <y>)
(C2 -attrl 15 -attr2 <x>) (C4 ^attrl <y>)

- (C3 attrl <x>) ->
(modify I Aattrl 12))

(remove 2))

root

constant- class-Cl class-C2 cla-C4

test/

nodess

L attr2-12 attrl-15 lass-C3

mem-node me~node

me--node

twm- o woip-nod

mean-node mean-node tlfoifp-no~de

terminal-node
An| p2

twin-node
p

terminal-node
pI

Figure 2-2: The Rete network.

To avoid performing the same tests repeatedly, the Rete algorithm stores the result of the match with working
memory as state within the nodes. This way, only changes made to the working memory by the most recent
production firing have to be processed every cycle. Thus, the input to the Rete network consists of the changes to
the working memory. These changes filter through the network updating the state stored within the network. The

output of the network consists of a specification of changes to the conflict set.

The objects that are passed between nodes am called tokens, which consist of a tag and an ordered list of
working-memory elements. The tag can be either a +. indicating that something has been added to the working

4

memory, or a -, indicating that something has been removed fom it. No special tag for working-memory element

modificatio is needed because a modify is treated as a delete followed by an add. The list of working-memory
elements associated with a token corresponds to a sequence of those elements that the system is trying to match or
has already matched against a subsequence of condition elements in the left-hand side.

The data-flow network produced by the Rete algorithm consisu of four different types of nodes. These are:
1. Constat-test nodes: These nodes ae used to test if the attributes in the condition element which

have a constant value ae satisfied. These nodes always appear in the top part of the network. They
have only one input, and as a result, they are sometimes called one-inpaut nodes.

2. Memory nodes: These nodes store the results of the match phase from previous cycles as state within
them. The state stored in a memory node consists of a list of the tokens that match a pan of the
left-han side of the associate production. For example, the right-most memory node in Figure 2-2
stores all tokens matching the second condition-element of production p2.

3. Two-input nodes: These nodes test for joint satisfaction of condition elements in the left-hand side of
a production. Both inputs of a two-input node come from memory nodes. When a token arrives on the
left input of a two-input node, it is compared to each token stored in the memory node connected to the
right input. All token pain that have consistent variable bindings ae sent to the successors of the
two-input node. Similar action is taken when a token arives on the right input of a two-input node.

4. Terminal nodes: Them is one such node associated with each production in the program. as can be
seen at bottom of Figure 2-2. Whenever a token flows into a terminal node, the corresponding
production is either inserted into or deleted from the conflict set

The most commonly used interpreter for OPS5 is the Rete-based Fnmz lisp interpreter. In this interpreter a

significant loss in the speed is due to the interpretation overhead of nodes. In the OPS5 implementation we present
in this paper, the interpretation overhead has been eliminated by compiling the network directly into machine code.
While it is possible to escape to the interpreter for 4mplej operations during match or for setting up the initial
conditions for the match, the majority of the match is done without j intervening interpretation level. This has led
to a speed-up of 10-20 fold over the Franz Li.p interpreter (see Table 4-4). In addition to this speed-up, our parallel
implementation gets further speed-up by evaluating different node activaions in the Rete network in parallel

2.3. Encore Multimax
In this subsection, we describe the Encore Multimax shared-memory multiprocessor - the computer system on

which parallel OPS5 runs. The Multimax consists of 2-20 CPUs, each of which is connected to the shared-memor
through a high performance bus. The shared-memory is equally acssible to all of the processors, in tha eact
processor sees the same latency for memory accesses.

The processors used in our Encore Multimax are National Semiconductor NS32032 chips along with NS32081
floating point coprocessors, each processor capable of approximately 0.75 million instructions per second. Tbere
we two processors packaged per board and they share 32 Kbytes of cache memory. The processor boards use a
combination of write-through strategy and bus-watching logic to keep the caches on different processor boards
consistent. The bus used on the Encore Multimax is called the Nanobus. It is a synchronous bus and it can transfer

8 bytes of new information every 80 nanoseconds, thus providing a data transfer bandwidth of 100 Mbytes/second.

The version of Encore Multimax available to us at CMU has 16 processors, 32 Mbytes of memory, and runs the

MACH operating system developed at Carnegie Mellon University. The operating system provides a UNIX-like
interface to the user, although the internals are different and several extensions have been made to support the
underlying parallel hardware. It provides facilities to automatically distribute processes amongst the available
processors and it provides facilities for multiple processes to share memory for communication and synchronization
purposes. The results reported in this paper correspond to this configuration of the Encore Multima.

5

3. Organization and Details of the Parallel Implementation

3.1. High-Level Structure of the Parallel Implementation
The parallel OPS5 implementation on the Encore (PSM-E) consists of one control process and one or monm match

processes. The number of match processes is a user specified parameter, but it is fixed for the duration of any
particular run. The system is generally used in a mode where the computer contains at least as many free processors
as there are processes in the matcher this permits each process to be assigned to a distinct processor for the duration
of the run (provided the operating system is reasonably clever about assigning processes to processors).

The control process is responsible for performing conflict resolution, evaluating the right-hand side of rules,
handling input/output, and all the other functions of the interpreter except for performing match. It is also
responsible for starting up the match processes at the beginning of the run and killing them at the end of the run.
The match processes do nothing except perform the match. The match processes pipeline their operation with the
control process. Thus when RHS evaluation begins, the match processes are idle. However, as soon as the first
working memory change is computed, information about that change is passed to the match processes and they start
to work. "he control process continues evaluating the RHS, and as more changes are computed, the information is
passed immediately to the match processes for them to handle as soon as they are able. When the control process
finishes evaluating the RHS, it becomes idle and waits for the match processes to finish When the last match
process finishes, the control process performs conflict resolution and then begins evaluating the next RHS, thus
starting the cycle over again.1

To perform match, the match processes use the Rete algorithm described in Section 2.2. The match processes
exploit the dataflow-like nature of the Rete algorithm to achieve speed-up from parallelism. In particular, a single
copy of the Ret network is held in shared memory The qiatch processes cooperate to pass tokens through the
network and update the state stored in the memory nodes as indicateA by the tokens. The match is broken into fairly
small units of work called tasks, where a task is an independently schedulable unit of work that may be executed in
parallel with other tasks. In our parallel implementation:

* All of the constant-test node activations constitute a single task. All these contwant-test nodes am
processed as a group, because individual constant-test node activations take only 2 machine instructions
to execute (see Figure 3-1), and that is too fine a granularity.

" The memory nodes in the Rete network are coalesced with the two-input nodes that are below them.
Each activation of these coalesced two-input nodes constitutes a single task. Tbe reasons for this
coalescing ame discussed in [5]. As an example, the task corresponding to the left activation of a
two-input node involves: (i) the addition/deletion of the incoming token to the left memory node; (ii)
comparison of this token with all tokens in the opposite memory node checking for consistent variable
bindings; and (iii) scheduling of matching token pairs for execution as new tasks. Note that multiple
activations of the same two-input node constitute different tasks and these can be processed in parallel.

i Each individual terminal node activation constitutes a task.

In our current implementation, each task is represented by a data object called a token. The token in the parallel
implementation is essentially the same as that used in the sequential Rete matcher (as described in Section 2.2),
except that it has two extra items of information: the address of the node to which the token is to be sent, and if that
node is a two-input node, an indication of whether t send it to the left or right input. Te list of tokens that are

IFer simplicity, we we ignoring two kind& of optimizations that ae possible. First, it is possible to overlap conflict-resolution with match.
Second,,. if wuiv parallelism is used (we am willing to be wrong in our prediction sometimes and know how to recover from the error), it is
possible to make a Sues about the production that will fiue next and to evaluate its riprt-hand side before conflict-rcsolution is completely
finished. We choose to ignore these two optimizations for the present. because conflict-msolution and RHS evaluation we not the bottlenecks i
ow cwent implementation,

6 %

awaiting processing is held in a central data stucture called a wsk queue. The individual match processes perform
match by executing the following loop.

1. Remove a token from the task queue. If the queue is empty, wait until something is added.

2. Process the token. If new tokens are to be sent out, push them onto the task queue.

3. Go to step 1.

3.2. Implementation Details
When studying parallelism in production systems (or in any other application for that matter), it is important to

compute the speed-ups with respect to the performance of the most efficient uniprocessor implementations. It is
indeed quite easy to obtain large speed-ups with respect to inefficient implementations of the application, but such
results have little practical utility. In the case of OPS5, the most efficient uniprocessor implementations are
currently based on the Rete algorithm and they compile the Rete network directly into machine code and use global
register allocation. Such compilation into machine code gives approximately 10-20 fold speed-up over Ree-based
lisp implementations of OPS5 (see Table 4-4). For this reason, our parallel implementation of OPS5 on the Encore
is also Rete-based and compiles the Rete network directly into machine code.2 Another effect of parallelizing a
highly efficient implementation versus an inefficient one is that the number of instructions executed in each parallel
subtask (for the same task decomposition) is smaller in the highly efficient implementation. This is equivalent to
exploiting parallelism at a finer granularity, and as a result, the issues of synchronization and scheduling are mor
critical.

As staied in the previous paragraph, the nodes in the Rete network are compiled directly into NS32032 machine
code. Some of the operations performed by the nodes are too complex to make it reasonable to compile the
necessary code in-line. For these operations, subron cas are compiled into the network. The subroutines
themselves are coded in C and assembler. For example, a two-Wrut node is compiled into a combination of
subroutine calls for modifying and searching through the node memories plus in-line code to perform the node's
variable binding tests. The OPS5 compiler uses global register allocation to make the code significantly more
efficient. For example, register r6 always contains the pointer to the working-memory element currently being
matched. The NS32032 assembly code generated to perform match for a simple production is shown in Figure 3-1.
The code is presented here to provide a feel for the compiler and the level of optimization. For example, it shows
that to evaluate a constant-test node it requires only 2 machine instructions, a compare followed by a branch. It is
not essential to understand the code to understand the rest of the paper. 4

All communication between processes (both the match processes and the control process) takes place via shared
memory. The virtual addres spaces are set up so that the objects in shared memory have the same virtual address in
every process. Hence processes can simply pass pointers around in essentially the same way routines within a single
process can. For example, the tokens am created in shared memory, and the address of a given token is the same in
every virtal address space in the system. Thus when a process places a token onto the central task queue, all it
really has to do is to put the address of the token into the task queue. Figure 3-2 shows how the shared-memory is

used to communicate between the various processes.

Synchronization within the program is handled explicitly by executing interlocked test-and-set instructions. The
synchronization primitives provided by the operating system (for example, semaphores, barriers, signals, etc) are not
used because of the laige overhead associated with them. When a process finds that it is locked out of a critical

2Note t the argument in the beginning of this paragraph does nag ay that one has to use the tame algorithm (as the most efficient

unixpocesor one) for the paraUll implernentatson. It just tums out m our case, that the efficient uniprocessor algonthm a also very good for
parallel ianiementatko i51.

7-

!!Rule for which code is presented below
(p p2

(ci ^&1 7 ^a2 <x> Aa&3 <y>)
(c2 as <z> Aa2 15 A&3 <Cy>)

(write fired successfully)

-ops-rote coot:
movd :6, r4 Register V4 gets pointer to '.me
movd IQcurdir, 0_sucedir !Successor direc -Current di-rge
cmd 4(r6),Qops_:xymbolst4 !Test if class w c2
bne .LIl! If test fails try next node
cmpd 12(rG), $30 !Test if "a2 = 15
bne .Lll ! if test fails try next node
addz @.L13, rO ! Push task on to task,_queue to
bar _ PushTaskQueue ! begin evaluation at .L13
br .1 Start evaluating next node

.L13: movd $0, r3 v v------------------------------v
zord 16(r6), r3 1Compute hash index for
zord S(r6), r3 1 token
andd $Oxfff, 03 ! A -------------- A

movd 0 curdir, _sucedir 1 v ----------------------------- v
movd $0, tos 1 Code + procedure call to add/
bar ?- del token to right memory node
adjspb $-4 !A-- A

cmqd $0, :0 -AC ! Done with node activation if
bne OLeaveS~taTask Vmatching conjugate token found.
cmpqd $0, 0(_ltokNT)[r3:d] Dodt with node activation if
beq eLeaveaetaTak Iopposite mom-nodoem~pty

.Ltop0: movd $0, r2 ILev-of-node-actvn as param in r2
bsr _ops lnext 1 Locate next token in opp a
czapqd $0, z5 ! If all tokens have been examined
beq SLeaveSetaTask 1 then exit
bar .L12 I Zvaluate two-inp node tests
br .Ltopo I Loop back to get next token

.1.11: cmd 4(r6),9ops symbols 1 Test if class - ci

.1,12: maiwd 0(r4), r2 v v-----------------------------v
novd 8(rS), :1 Perform tests to check if vars
cmpd 16(r2),12(rl) 1 are consistently bound. if tests
bne .L16 ! fail, then return inmdiately,
aapd 6(r2),S(rl) 1 else push successor nodes on
bne .1,16 Itask queue and then return
br .L17

.L16: ret $0 ----------------------

.L17: addr .LIS, rO 1Push address of successor node
bsr PushTaskQueue Iactivation on to task queue
rot TO and return

Figure 3-1: Code generated for matching a production.

8

match processes

control

m m shared copy
working conflict of the
memory Rete network

task
queue

left rightk" hash hash
locke table

llock
token memories

sharei memory

Figure 3-2: Use of shared-memory by various processes.

region it spins on the lock, waiting for a chance to enter the region. In order to minimize the amount of bus traffic
generated by the spinning processes, a "test and test-and-set" synchronizatioo mechanisn is used. In this scheme, a
process uses ordinary memory-mad instructions to test the status of a lock until it finds that it is free; then the
process uses a test-and-set interlocked instruction to re-read the lock and set it if it is still free). Note that while thj
lock is busy, the process spins out of its cache and does not use the bus. This is mor efficient than using only the
"test-and-set" interlocked instruction for the lock. In this case, the process generates bus traffic to perform the
writes while it is busy waiting.

The control process communicates with the match processes primarily through the shared task queue. Whenever
the evaluation of an RHS results in a change to working memory, a token is created and marked as being destined
for the root node of the network. The control process pushes these tokens onto the task queue in exactly the same
way as the match processes push the tokens they create. The tokens are picked up and processed by waiting match
processes. When the evaluation of an RHS begins, the match processes ae idle. The fir token created by the
control process causes the match processes to start up. After the first token, the control process proceeds in parallel
with the match processes.

Depending on O granularity of tasks (number of insructions executed per task) that am scheduled using the task
queue and depending on the number of processors that are trying to access the task queue in parallel, it is quite
possible that a single task queue would become a bottleneck. For this reason, Gupta [5] proposed a hardware task
scheduler for scheduling the fine-grained tasks. So far we have not implemented the hardware scheduler, and in this

9

paper we present results only for the case when one or more software task queues are used.

After the control process finishes evaluating the RHS, it must wait for the match processes to finish before it can
perform the next conflict resolution operation. A global counter, TaskCount, is used to determine when all the
match processes have finished. This counter contains the sum of:

* the number of tokens that are currently on the task queue, and

" the number of tokens that are being processed by the match processes.
This count is maintained quite simply. Every time a token is put onto the task queue, the counter is incremented.
Every time a match process finishes working with a token, the counter is decremented. The match phase is finished
when the counter goes to zero.

Shifting our focus back to the evaluation of individual two-input node activations, we note that instead of having
separate memories for each two-input node, the matcher has two large hash tables which hold all the tokens for the
entire network. One hash table holds tokens for left memories of two-input nodes, and the other for right memories
of two-input nodes. An alternative scheme is to have separate hash tables for each two input node, but such a
scheme was considered to be wasteful of space. The hash function that is applied to the tokens takes into account:

" The values in the token which will have equality tests applied at the two-input node, ad

" The unique identifier of the two-input node which stored the tokens. The unique identifier is
randomized to minimize the number of hash-table collisions.

This permits the two-input nodes to locate any tokens that are likely to pass the equal-variable tests quickly. It
also permits multiple activations of the same two-input node to be processed in parallel.

The processing performed by the individual noddactivations in the parallel implementation is similar to the
processing done in the sequential matcher with two exceptions: d

" Code has been added to the two-input nodes to handle conjugate token pairs.

* Sections of code that access shared resources are protected by spin locks to insure that only one process
at a time can be accessing each resource.

A conjugate pair is a pair of tokens with opposite signs (an add token request and a delete token request), but
which refer to the same working memory element or list of working memory elements. Conjugate pairs arise in the
match operation for a variety of reasons, which ae too complex to go into here (see (5]). They occur in bolh
sequential and parallel implementations of Rete, but they present much greater problems in a parallel system. The
reason for this is that in a parallel system it is not possible to insure that the tokens will be processed in the order in
which they are generated, and consequently in some cases a token with a - (delete) flag will arrive at a two-input
node before the corresponding token with the + (add) flag. The parallel matcher code handles this by saving the -
tokens that arrive early on an cxtra-deletes-list without otherwise processing the tokenL When the corresponding +
token arrives both tokens are discarded.

Many resources in a parallel system have to be protected with mutual-exclusion locks - the task queues, the
count of the number of active tokens, the conflict set, etc. Most of these are relatively straight-forward to protect
and a simple variation of standard spin locks is used. The exception is the locks used to control access to the token
hash tables. There are several different operations that are performed on the token hash tables, for example,
searching for matching tokens, adding and removing tokens, adding and removing conjugate tokens, and we would
like many of these operations to proceed in parallel without having any undesirable effects. Because of the
importance of the hash tables to the performance of the system, several locking schemes were implemented and
tried. Two of these schemes are described here.

10

The first scheme, the simple one, is easy to describe and it provides a departure point for describing the second
more complex one. We define a "line" as a pair of corresponding buckets (buckets with the same hash index) from
the left and right hash tables along with their associated extra4eletes lists. In this scheme, each line in the hash
table has a flag controlling its use. 3 The flag takes on two values: Free and Taken. When a process has to work
with the hash table, it examines the flag for the line it needs. If the flag is Free, it sets the flag to Taken and
proceeds to perform the necessary operations; when it finishes, it sets the flag back to Free. If a process finds the
flag set to Taken, it waits until the flag is set to Free. Of cre, the act of testing and setting the flag must be an
atomic operation. This synchronization scheme works, but it is • potential bottleneck when several tokens arrive at

a node about the same time, and if all of them require access to the same hash table line.

The second scheme is a complex variant of the multiple-reader-single-writer locking scheme. It permits several
tokens to be processed in the same line at the same time, though even here, some serialization of the processing is
necessary when destructive modifications to the lists of tokens are performed. This scheme requires two locks, a
flag, and a counter for each line in the hash table. The flag takes on three values: Unused, Left. and Right, to
indicate respectively that the line is not currently being processed, that it is being used to process tokens arriving
from the left, or that it is being used to process tokens arriving from the right. The counter indicates how many
processes are using that line in the hash table; it is needed only so that the last process to finish using the line can set
the flag back to Unused. The first lock insures that only one process at a time can access the flag and the counter.
When a process first tries to use a line in the hash table, it gets this lock, and checks the flag. If the flag indicates
that tokens from the other side are being processed, the process releases the lock and tries again. If the flag allows

the process to continue, it sets the flag if necessary, increments the counter, and releases the lock. For the remaining
time that the process uses this line in the hash table, it leaves the flag and the counter untouched, finally, when the
process finishes using the line it decrements the counter and if appropriate sets the flag to Unused (again, all within a
section of code protected by this lock). AlD this is to sure dig tokens from two different sides are not processed at
the same time. The second lock is used to insure that only one prtess at a time can be modifying the token lists.
Recall that the first task in processing a two-input node is to update the list of tokens stored in the memory node. To
do this, the process gets the modification lock, searches the conjugate or regular token list, and it either adds the
token to or deletes it from one of these lists. When it has finished, it releases the modification lock and proceeds
with searching the tokens in the opposite hash-table bucket to find those that satisfy the variable binding tests.

More complex locking schemes can be devised and, in fact, were implemented and tested. One other scheme that
was tried permitted more than one process to search the token lists to find tokens to delete; in this scheme the onr
serialization of the tasks occurred when the actual destructive modification of the token list was performed. As in
all implementations, the main tradeoff to keep in mind is that in an attempt to speed-up the rare cases, one should

not slow-down the normal case.

3.3. RHS Evaluation and Conflict Resolution
In our system, the rules' RHSs are compiled into a form of threaded code which is interpreted at run time [9].

Figure 3-3 shows a small piece of such threaded code. Interpreting the threaded code is slower than executing the
compiled code, but since RHS evaluation is not a bottleneck to the performance, threaded code, which is simpler to
compile was considered fast enough. Conflict resolution in the system is handled by code written in the C language.
This code is executed by the control process.

SNote that any given operation on the token hash tables requires access to only a single line of the hash tables. In other wordh processing a
single node activation never requires access to multiple hash table lines.

11

pi: # -- p1 -- Begin code for RRS of rule pl
double hmake B egin a make-,ms action
double symcon ! ---------- ------------------- V
double opssymbols ' Set class of w to c€
double rzal 0 -.. A

double tab -v.... - --. V
double I
.double fizcon Set 4th field of use to 5
.double S
.double rval--------------- A-

.double tab -----------------------------

.double 3

.double _fxcon . Set 3rd field of vue to 10

.double 10

.double rval -A-----------------

.double _ aake . End of make-was action

.double opsret ! End code for RES of rule pl

Figure 3-3: Threaded code used to execute RHS actions.

4. Results and Analysis
In this section, we present results obtained from the execution of three production-system progrms. We first

present some statistics from our uniprocessor impleipwtation, tad we then present the speed-ups obtained by our
parallel implementation. We also present a detailed analysis'of the **-piups observed. The three programs that we

have studied are:

" Weaver [8], a VLSI routing program by Rostom Joobbani with 637 rules.

* Rubik. a program that solves the Rubik's cube by James Allen with 70 rules.

" Tourney, a program that assigns match schedules for a tournament by Bill Barabash from DEC with 17
rles.

We have chosen Weaver because it represents a fairly large program and it demonstrates that our parallel OPp5

can handle real systems. Rubik is a smaller program that demonstrates some of the suengths of our parallel

implementation and the Tourney program demonstrates some of the weaknesses of our parallel implementation.

4.1. Results for the Uniprocessor Implementations of OPS$
Before we did a parallel implementation on the Encore, we initially did several uniprocessor C-based

implementations of OPSS. In this subsection, we present results for two of these uniprocessor implementations, vsl

and vs2, for the Microvax-II workstation.4 The performance results for vsl and vs2 implementations are shown in
Table 4-1. The base version is vsl, and it is characterized by the use of linear lists to store tokens in node memories,

just as uniprocessor lisp implementations do.5

'The results are presented for Microvax-1 and not for Encore, because the uniplocessor implementations were done on the Microvax and only
one of these was later taken over to the Encore.

SNote that memory nodes are not shared in either vsl or vs2 versions of OPSS. unlike in the Franzl-p version of OPSS. This optunization was
not used in vs or vs2 because it is not possible to share memory nodes in the parallel impleentations of OPS5 (see 1SJ). and we did not went to
spend the effort just for the uniprocessor impiementaiom.

12

Table 4-1: Uniprocessor versions on icrovax-II.

VSl VS2 Total number Total number
PROGRAM List-based " Hash-based of WM-changes of node

memories memories processed activations
(sec) (see)

Weaver 101.5 85.8 1528 371173

Rubik 235.2 96.9 8350 554051

Tourney 323.7 93.5 987 72040

The second version, vs2, uses a global hash table to store all memory-node tokens, as discussed in the previous
section If there are equality tests at the two-input node, the hash-table based scheme (i) reduces the number of
tokens that have to be examined in the opposite memory to locate those that have consistent varable bindings, and
(ii) for deletes, it reduces the number of tokens that have to be examined in the same memory to locate the token to
be deleted. The statistics for the reduction in tokens examined in the opposite memory for the three programs are
given in Table 4-2. Note the statistics are computed only for those node activations where the opposite memory is
not empty. The statistics for the reduction in tokens examined in the same memory for delete requests are given in
Table 4-3. As can be seen from the two tables, the savings are substantial, especialy for the Tourney program. The
time-saving effect of hasb-based memories can be seen from numbers in Table 4-1.

Table 4-2: Number of tokens examined in opposite memory.

t k_

Tokens in opp me pTokens in opp mem

for left actvns for right actvns
PROGRAM

fin mem hash mem fin mer hash mew

Weaver 10.1 7.7 5.2 1.0

Rubik 31.0 3.8 1.6 1.8

Tourney 47.6 5.9 270.1 23.3

Table 4-3: Number of tokens examined in same memory for deletes.

Tokens in same mew Tokens in same mewe
for left actvns for right actvnsPROGRAM ________

1in mem hash mem 1in mem hash mew

Weaver 6.2 3.6 7.0 5.1

Rubik 23.5 2.6 8.1 3.7

Tourney 254.4 40.1 3.8 2.9

The second last column in Table 4-1 gives the total number of wine-changes processed during the run for which

13

data ae presented, and the last column gives the total number of node activations processed during the run (this is
also equal to the number of tasks that are pushed/popped from the task queue in the parallel version). Dividing the
time in column vs2 by the number of tasks, we get the average duration for which a task executes. This has
implications for the amount of synchronization and scheduling overhead that may be tolerated in the parallel
implementation. Doing this division we get that the average duration of a task for Weaver is 230 microseconds (or
approximately 115 machine instructions, as the VAX executes about 500,000 instructions per second), for Rubik is
175 microseconds, and for Tourney is 1300 microseconds.

Finally. Table 4-4 gives the speed-up that our uniprocessor C-based implementation achieves over the widely
available Franzlisp-based OPS5 implementation when running on the Microvax-UI. As the table shows, we get a
speed-up of about 10-20 fold over the Franzlisp based implementation. The problem in the past has been that due to
lack of availability of better uniprocessor performance numbers, researcbers have ended up comparing the
performance of their highly optimized parallel OPS5 implementations with the slow Franzlisp-based
implementation. We think that such apples to oranges comparison can be misleading.

Table 4-4: Speed-up of C-based over Franzlisp-based implementation.

VS-lisp VS2
PROGRAM Lisp-based Hash-based Speed-up

implemen. memories VS-1isp/VS2
(sec) (sec)

Weaver 1104.0 85.8 12.9

Rubik 1175.0 96.9 12.1

Tourney 2302.0 . 93.5 24.6

4.2. Results for the Multiprocessor Implementation of OPS5
While the uniprocessor C-based implementations of OPS5 were done on the Microvax-U, the parallel version was

done on the Encore multiprocessor. In this subsection, we present speed-up numbers for our implementation on the
Encore as we vary (i) the number of task queues that am used and (ii) the locking structures used for token
bash-table buckets. The speedups reported here ae with respect to a parallel version of the program running on#
uniprocessor. We also present a detailed analysis of the speed-ups observed.

Figure 4-1 shows results for the case when a single task queue is used and when simple locks (described in
Section 3.2) are used with the token hash-table buckets. The figure also shows the uniprocessor times (w seconds)
for the three programs. Note that the numbers along the X-axis represent the number of match processes; they do
not include the control process. The speed-ups for all three programs are quite disappointing. This is especially true
for Tourney, where the maximum speed-up is 2.6-fold with 5 match processes and it decreases even further as the
number of match processes is increased.

There ae several possible masons for the low speed-up: (i) contention for access to the single task queue, (ii)
contention for access to the hash-table buckets, (iii) low intrinsic parallelism in the programs, (iv) contention for
hardware resources, and so on. We now explore the effects of removing the first two bottlenecks and provide some
data on the intrinsic parallelism in the programs.

14

j 14.00

*Rubil'Un roc. Tim a 257.2s
12 .00 m@W Tn~ I Inipra., n Tim e

*Weaver: L nproc. Twoe 119.6.

20.00

6.00

2.00

0 0 12 14

Number of Match Procees

Figure 4-1: Speed-up for single task queue and simple hash-table locks.

4.2.1. Reducing Contention for the Centralized Task Queue
The contention for the single task queue can be reduced by the introduction of mulaple task queues. Every

process has its own queue, onto which it pushes and pps tasks. If it runs out of tasks then it cycles through the other
processes' task queues, searching for a new task. Figure 42 pnfnts the speed-up obtained when multiple task
queues ae used, while still using simple hash-table locks. The spee-up increases significantly for both Weaver and
Rubik, indicating that the contention for pushing and popping task queues must have been a bottleneck. The
speed-up for Weaver for 13 processes goes up from 3.9-fold to 8.2-fold and that for Rubik goes up ftom 6.3-fold to
11.4-fold. The speed-up for Tourney remains about the same at 2.4-fold

To get more insight into these results, we instrumented the task queue to get data on contention. The results are
shown in Figure 4-3. Here we plot the number of times a process spins on the task-queue lock as a function of the
number of match processes. We see from the figure that as the number of processes is increased, there is indeed
significant contention for the single task queue in case of Weaver and Rubik. For Tourney, there does not seem to

be as much contention for the task queue, and that is why the speed-up does not increase when multiple task queues
are used. Since the speed-up is stMi very low for Tourney (only 2.4-fold with 13 processes), in the next subsection
we will explore if contention for the hash-table buckets is causing the poor speed-up.

Another question that arises when using multiple task queues is: "How many task queues should one use to
maximize speed-up". For example, when using 12 match processes, should we have 2, 4, 8, or 12 task queues.
Too few task queues have the disadvantage that the contention for the task queues may still be a bottleneck. An
excessive number of task queues has the disadvantage that most of the task queues will be empty, and the processes
will waste time scanning several empty task queues before finding one with a task. Figure 4-4 plots the speed-up

obtained for 12 match processes, as the number of task queues is increased. What the graph shows is that the
optimal number of task queues varies for different programs. For Rubik, the more the task queues the better the
speed-up. For Weaver, the speed-up increases up to 4 task queues, then remains the same up to 8 task queues, and
then decreases slowly. For Tourney, the number of task queues really does not seem to maner. However, as a
design decision, it seems that erring on the side of too many task queues is better than having too few task queues.

14. OC

2 2.0 JJu y Iip ,~n 27 7z~ ____

iavr npo.Tie 18 r

20.00

0.00

6.or

2 2 2 22

Number of Match Processes

Figure 4-2: Speed-up for multiple task queues and simple hash-table locks.

IS0

Number of processe

Figure 4-3: Contention for tbe cenutalized task queue. Measured by the number
of times a process spins on the lock before it gets access to the task queue.

Finally, examining the speed-up for Rubik in Figure 4-2, it is interesting to note that we get 3.9-fold speed-up
using only 3 match processes. This apparently anomalous behavior of the speed-up being greater than the number of
match processes can be explained as follows. When the Rete network is evaluated in parallel, it is quite possible
that the total number of node activations evaluated and their complexity is less than that of the sequential
implementation, Of course. the final result of the match is still the same as the sequential implementation.

16

3 4.or,

0.0

6.00 i

•.00 1]

2.00'1
0 2 46 10 Is 14 is

Number o Ouuess (12 procesm)

Figure 4-4: Speed-up with 12 match processes as the number of task queues is varied.

4.2.2. Reducing Contention for the Hash-Table Buckets
As discussed in Section 3.2, tokens associated wi~ memory nodes in the Rete network am stored in two largeq

hash tables. These hash tables are shared among all the processes. § single lock controls the access to a line, i.e., a
pair of corresponding buckets from left and right hash tables. This lock provides a spot of contention for the various
processes. The contention for a hash bucket lock can be measured by the nmnber of times a process spins on a lock
before it gets access to a line of hash table buckets. For right tokens, that activate the two-input nodes along the
right inputs, the contention for the lock is very low - I or 2 spins per access - for all three programs, and it does
not change as the number of processes is increased. This is because the right tokens are distributed evenly and most
right tokens typically require very little processing [53. The right and the left tokens do not typically contend with
each other, as the right tokens are evaluated in the beginning of the cycle; while the left tokens an evaluated o4
later in the cycle.

For the left tokens, which activate the two input nodes from their left inputs, the contention is much higher.
Figure 4-5 shows the contention observed by left tokens when the per-bucket lock used is a simple one (an ordinary
spin lock), as discussed in Section 3.2. With 11 match processes, Rubik processes spin 23 times, Tourney processes
spin 377 times, and Weaver processes spin 51 times on average before getting access to the hash-table bucket.
While the contention for Rubik and Weaver is quite high and it is enormous for Tourney, given that each spin takes

several microseconds.

In Figure 4-7 we present results for the case when multiple task queues an used and when complex
multiple-reader-single-writer locks (described in Section 3.2) an used for controlling entry to the token hash tables.
We expected the complex locks to benefit those programs that (i) generate cross-products, that is, there are multiple
activations of the same two-input node from the same side that need concurrent processing, and (ii) have long lists
of tokens in hash-table buckets, where the complex locks help by allowing multiple processes to read the opposite
memory at the same time. However, programs for which the above two conditions are not true may slow down
when complex locks an used, because of the extra overhead that they incur due to complex locks. Figure 4-6

17

*Tourney

.0 zoo.or AWI~

200.00 -

150.00

100.00r
so. cc

$0.00

2I 3 "4 5 1 9 10 11

Number of procesem

Figure 4-5: Contention for bash-table locks for left tokens. Measured by the number of
times a process spins on a lock before it gets access to the hash-table bucket.

presents some results about contention when complex locks are used. Comparing with Figure 4-5, we see that the
contention for the hash-table buckets decreases for all three programs, although the contention for Tourney is still
very high in absolute terms. Analyzing the Tourney pfograr in more detail, we found that the large contention for
the hash-table locks is resulting from multiple node activations uyi&.Io access the same hash-table bucket This, in
turn, is the result of a few culprit productions in Tourney that have condition elements with no common variables.
By modifying two such productions using domain specific knowledge, we could increase the speed-up achieved
using 13 processes from 2.7-fold to 5.1-fold.

4.2.3. Other Causes for Low Speed-Up
In this subsection, we explore reasons other than contention for shared-memory objects that limit the speed-up

achieved by our implementation. To this end, we examine the speed-ups obtained in individual recognize-act cycler
for the programs. (Recall that the computation of an OPS5 program involves a series of recognize-act cycles.)
Figure 4-8 presents the speed-ups obtained in each cycle as a fiction of the number of tasks (node activations)
executed in that cycle 6. These numbers are presented for Weaver, but they are representative of other OPS5
programs too. The speed-ups were measured with 11 match processes and the implementation used multiple task
queues and simple hash-table locks. The 7.5-fold speedup obtained for weaver (shown in Figure 4-2), is a weighted
average of the speedups for individual cycles shown in Figure 4-8.

The data points in Figure 4-8 can be divided into two regions:
" Short Cycles Region: Points in the left quarter of the graph (corresponding to cycles with less than 250

tasks), generally achieving a speed-up of 2 to 7-fold.

" Long Cycles Region: Points in the right three quarters of the graph (corresponding to cycles with
250-1000 tasks), generally achieving a speed-up of 6 to 10-fold.

*For presenttion purposa the cycles with mom than 1000 tasks am shown as containing 1000 tasks.

18

400.0

3"0.00 RU-

T1ourney
300.00' ~ a,

W 10.00

2 3o~o 4 5"

I

110.00 •! ..
100.00

Number of prcesses

Figure 4-6: Contention for hash-table locks when multiple-reader single-writer locks are used.

I14.00 J
1 Rubik Un pre. Time a 28.3s

10.00 - Tnuray- Jni, a Tir .a 100 7a_-,
Weaver., ro .m 134.9s

1.00

2.00

0 6 1I to 12 14

Number of Match Process

Figure 4-7: Speed-up for multiple task queues and multiple-reader-single-writer hash-table locks.

Let us first look at short cycles more closely. To understand the speed-up achieved, we plot the number of tasks

in the system (which is the sum of the number of tasks waiting to be processed and those being processed) as a
function of time during a cycle. Figure 4-9 shows such a plot for one of the short cycles in Weaver with about II)0
tasks. The graph is plotted for 11 match processes and the time is measured in units of 100 microseconds. The
graph may be interpreted as showing the number of processors that can be kept busy if infinite processors were

19

14.00 - . -

Ix:. Of-- . -

0%

(1 0

4 0

0.0 0-

i100 200 300 400 S0 G o00O SOCo I OC

Number d T&a*WCyc*

Figure 44: Weaver. Speed-up as a function of tasks/cycle.

present 7 Tbe average height of this graph (about 6.5 for this cycle) indicates the maximum speed-up that we should
expect. In general, the smaller cycles tend to provide such low available parallelism.

Some additional speed-up losses occur due to the fixed 6verbeads associated with match cycles; for example,
having to check all the task queues to ensure that the match is actlly finished and to inform the control process
about the completion of the match. These almost fixed duration overheads affect the speed-up obtained by small
cycles much more than that obtained by large cycles, as they form a larger fraction of the small cycle processing
Cost.

We now explore speed-up limits in long cycles. In Figure 4-10 we show a plot similar to that in Figure 4-9,
except this time for a longer cycle with about 300 tasks. We see that in the early part of the graph (until time 30) the
potential parallelism increases slowly, then it rises very steeply peaking at the point (62,66), then it fails rapidy
(ntil time 65), and finally it has a slow spiky decline to the end of cycle (time 120). The portion of the graph that
buns the average speed-up most, however, is the portion from time 90 to time 120, where the system keeps
processing a few tasks; each time generating only a few new tasks. This behavior is caused by the presence of chains
of dependent node activations 15], which can get especially bad for productions that have a large number of
condition elements. The impact of long chains on speed-ups increases with increasing number of processes. With
more processes, the system can get through the earlier pan of the computation (the one marked up to the first 90
time units, in Figure 4-10) faster, but it cannot get through the latter pan much faster. To counter these long chains,
we plan to change the Rete network organization for productions with large number of condition elements. This new
network organization is called a contrained bilinear organization and it will allow us to reduce the dependencies
between tokens (see 15, 17] for details).

1This inerpretation is no totally coimt for pow'iom of the $mph when the height of the shaded region is greater than the number nf match
pro esss used to produce th saph.

20

14.00

0. 1400

0.00

12.00

.3

0.00

2 i
2.O

00c

0 S0 20 25 30 35

Tim.

Figure 4-9: Weaver Number of node activations available for parallel processing as a function
of time during a short cycle. Each unit of time on the X-axis corresponds to 100s.I

a
d

S. Conclusions and Future Work
In this paper we have presented the details of a parallel implementation of OPS5 running on the Encore Mulnmax.

The first observation is tha it is important to speed-up an optimized sequential implementation, otherwise most of
the benefits are lost. For example, speeding-up the Fnanzisp implementation by 10-20 fold from parallelism would
just bring us to the uniprocessor speed of the C-based implementation. Furthermore, the issues in parallelizing an
optimized implementation are different from those in an unoptimized implementation, because only very liite
overheads can be tolerated in an optimized implementation.

The second observation we make is that it is possible to obtain significant speed-ups for OPS5 using fine-pained
parallelism on a shared-memory multiprocessor. However, this does not work for all programs. The Tourney
program, because of the presence of short cycles and cross-products resisted all our attempts to obtain higher
speed-up.

Our third observation is regarding the contention for shared memory objects. The average length of the individual
tasks in our parallel implementation varies between 100-700 machine instructions for the three programs that we

studied. In trying to exploit this fine-grained parallelism, we found that scheduling tasks using a single task queue
formed a major bottleneck for the system. We found it essential to use multiple task queues (instead of a single task
queue) to obtain reasonable speed-up. For the Rubik program, going from one task queue to multiple task queues
increased the speed-up from 6.3-fold to 11.4-fold.

The other variation that we explored to reduce the contention for shared data structures was in the complexity of
locks used for hash-based memory nodes. We used both simple spin-locks and complex multiple-reader-single-

21

E 20.0 Pe at (62. 66)

I 10.00

2

-- 16.00

12.00

10.002. CC

0. 00
0 20 40 *0 so 100 120 140

Time

Figure 4-10: Weaver. Number of node activations available for parallel
processing as a function of time during a long cycle.

writer locks. We observed that special note must be taken of rarcjase versus normal-case execution Trying to

handle rare. cases efficiently can slow down the normal case, and can result in overall poorer performance. For

example, the provision of complex hash-table locks reduced the contention for the hash-table buckets, but it slowed

down the overall execution speed of the Rubik program.

In the future we plan to investigate alternative computer architectures for implementing production systems;

especially the message-passing architectures. Our analysis indicates that the message-passing architectures are quite
suitable for implementing production systems [6]. Currently, simulations of implementing production systems cr

such machines are in progress.

Our other direction of investigation has been an exploration of the parallelism in Soar [11], a learning production

system. The parallelism in Soar is expected to be higher than OPS5 [5]. Our current implementation of Soar on the

Encore Multimax has provided good speedups in the match [17]. The next step there is to parallelize other areas of

Soar besides match.

6. Acknowledgments
This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.

4864, monitored by the Air Force Avionics Laboratory under Contract N00039-85-C-0134 and by the Encore

Computer Corporation. Anoop Gupta is also supported by DARPA contract N00014-87-K-0828 and an award from
the Digital Equipment Corporation.

22

References
(1] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin.

Programming Epert Systems in OPS: An Int ,ducnon to Rule-Based Programming.
Addison-Wesley, 1985.

[2] P.L Butler, J.D. Allen, and D.W. Bouldin.
Parallel Architecture for OPS5.
In Proceedings of the Fifteenth International Symposium on Computer Architecture, pages 452-457. 1988.

[3] Charles L Forgy.
The OPS83 Report.
Technical Report CMU-CS-84-133, Carnegie-Mellon University, Pitsburgh, May, 1984.

[4] Anoop Gupta, Charles Forgy, Allen Newell, and Robert Wedig.
Parallel Algorithms and Architectures for Production Systems.
In 13th International Symposium on Computer Architecture. June, 1986.

[5] Anoop Gupta.
Parallelism in Production Systems.
PhD thesis, Carnegie-Mellon University, March, 1986.
Also available from Morgan Kaufmann Publishers Inc.

[6] Anoop Gupta and Milind Tambe.
Suitability of Message Passing Computers for Implementing Production Systems.
In National Conference on Artificial Intelligence. AAAI-88.

[7] Bruce K. Hillyer and David E. Shaw.
Execution of OPS5 Production Systems on a Massively Parallel Machine.
Journal of Parallel and Distributed Computing 3:236-268, 1986.

[8) Rostam Joobbani and Daniel P. Siewiorek. f
Weaver. A Knowledge-Based Routing Expert.
In Design Automation Conference. 1985.

[9] Peter M. Kogge.
An Architectural Trail to Threaded-Code Systems.
Computer March, 1982.

[10] Edward J. KraHl and Patrick F. McGebearty.
A Case Study of Parallel Execution of a Rule-Based Expert System.
International Journal of Parallel Programming 15(1):5-32, 1986.

[11] Laird, J. E., Newell, A., & Rosenbloom, P. S.
Soar:. An architecture for general intelligence.
Artificial Intelligence 33:1-64, 1987.

[12] Theodore F. Lehr.
The Implementation of a Production System Machine.
In Hawaii International Conference on System Sciences. January, 1986.

[13] Daniel P. Miranker.
TREAT: A New and Efficient Algorithm for Al Production Systems.
PhD thesis, Columbia University, 1987.

[14] Pandurang Nayak Anoop Gupta, and Paul Rosenbloom.
Comparison of the Rete and Treat Production Matchers for SOAR.
In National Conference on Artificial Intelligence. AAAJ-88.

[15) Kemal Oflazer.
Parallel Executica of Production Systems.
In Internanonal ' onference on Parallel Processing. IEEE. August, 1984.

23

116] Raja Raunarnyan. Gerhard Zimmerman. and Stanley Krolikoski.
PESA- 1: A Parallel Architectune for OPS5 Production Systems.
In Hawaii International Conference on System Sciences. January, 1986.

117] Milind Tambe, Dirk Kalp, Anoop Gopta, Charles Forgy, Brian Milnes, and Allen Newell.
Soar/PSM-E: Investigating Match Parallelism in a Le aming Production System.
In Symposium on Parallel Programming: Experience with Applications. Languages. and Systems, pages

146-161. July, 1988.

118] MY.M. Tenorio and DI. Moldovan.
Mapping Production Systems into Multiprocessors.
In Internanonal Conference on Parallel Processing. IEEE, 1985.

a i II

Experiences Implementing a Parallel ATMS on a
Shared-Memory Multiprocessor

Edward Rothberg and Anoop Gupta
Department of Computer Science

Staford University
Stanford. CA 94305

November S. 1988

Abstract

The Assumption-based Truth Maintenance System (ATMS) is an important tool in Al. So far
its wider ue has been limited due to the enormous computational resources which it requires. We
investigate the possibdity of speeding it up by using a modest number of processors in parallel. We
begin with a highlY efficient sequential version written in C and then extend this version to allow
parallel execution on the Encore Multimax. a 16 node shared-memory multiprocessor. Our parallel
implementation give, speedups of between 4.4 and 6.7 using 14 processors for the ATMS trace files
which we examine. We describe our experiences in implementing this shared-memory parallel version
of the ATMS. present detailed results of its execution, and discuss the factors which limit the available
parallelism.

1 Introduction

The Assumption-based Truth Maintenance System (ATMS) is an important tool in Al. It makes the
task of designing a problem solver much easier, removing the need for the problem solver to maintain
information concerning derivations which it makes. Without an ATMS, the problem solver must implicitly
record which of its assumptions it currently believes to be true and what these assumptions imply. When
it wishes to change its assumption set. it must also recompute the set of items which are implied. With
an ATMS, the problem solver explores the problem space, informing the ATMS of the assumptions it
makes, the items which it wishes to reason about, and the derivations which it makes concerning thesei
items. The AT.MS aids in the process by keeping track of which items hold under any given assumption
set, thus allowing the problem solver to freely change the set of assumptions which it currently believes.
A number of problem solvers have been built which use the ATMS in a number of Al subfields. The
ATMS provides a convenient level of abstraction, greatly simplifying the structure of the problem solver.

So far wider use of the ATMS has been limited due to the enormous computational resources which
it requires. The ATMS is often the bottleneck in the problem solving process, often having greater
computational requirements than the problem solver which it is collaborating with. We investigate the
possiblity of speeding up the ATMS by using a modest number of processors in parallel. We begin with a
hightly efficient C-based implemention of the ATMS based on the techniques described in [1]. Through a
number of modifications to the basic sequential ATMS, we obtain moderate speedup on the three exanple
problem solver trace files which we examine.

The paper is organized as follows. Section 2 presents backg-rund information about the ATMS and
introduces related terminology. Section 3 presents details of an efficient sequential implementation of the
ATMS. Section 4 presents the modifications to the seqtential implementation which were necessary to
allow parallel execution. Section 5 presents the results of executing the basic parallel implementation. WVe
discuss the bottlenecks encountered and introduce a number of modifications to the basic algorithm to
deal with these bottlenecks. Section 6 presents the conclusions which we arrive at based on the observed
results.

• , i II

2 The ATMS

The ATNMS ,,erves as a companion to a problem solver, acting as a sort of "truth database*. The problfni
solver feeds beliefs. contradict ions. and implications to the ATMS. The ATMS keeps track of what is true
tinder what assumption sets and why. In this section we illustrate how the ATMS is used and introduce
the terminology with a brief example. The example problem that we solve is the 3-queens problem. It
consists of finding placements for three queens on a 3 by 3 chessboard such that no queen can capture
any other.

Everything which the problem solver reasons about is assigned an ATMS node. In the 3-queens
example we use 10 nodes. one for each of the 9 squares on the chessboard and one goal node to represent
the solut ion. Each chessboard iode represents the placement of a queen on the corresponding chessboard
square. Some subset of the ATMS nodes are designated to be asstmptions. These are nodes which are
presumed to be true unless there is evidence to the contrary. In the example, the 9 nodes assigned to
chessboard squares are the assumptions. We assume that a queen can be placed at each square of the
board. Every important derivation made by the problem solver is recorded as a)ustification:

Z 1 .Z2,... :*fl

where z. .. are the antecedent nodes and n is the consequent node. In the example. the problem
solver tells the ATMS that any set of three queens placed on the board constitutes a solution. Thus. the
justifications take the form:

position,, position, , position3 =: goal.node

where position, is an assumption which corresponds to a queen being on a particular square on the
chessboard. An ATMS tni-tronment is a set of assumptions. A node n is said to hold in environment
E if n can be propositionally derived from the union of E with the current set of justifications. An
environment is inconsistent (called nogood) if ti distinguished node L (i. e. false) holds in it. In the
3-queens example. we declare any set of assumptions in *hich the corresponding board positions contain a
capturing pair to be nogood. The answer to the 3-queens prolbdm is the set of all consistent environments
in which the goal node holds.

In the ATMS, sets of environments play an important role in keeping track of the contexts under
which a given node holds. They are used extremely frequently, and consequently we need a concise
representation for a them. In our representation, we can take advantage of the fact that if a node holds
under environment E, then it also holds under any superset of E. We can therefore represent a set
of environments by its smallest members. We choose to represent a set S of environments as a list
(El, E2, .. .), which we call a minimal environment list. It has the following properties:

" Every environment in the set S is a superset of some Ei.

" No E, is a subset of any other.

* No E, is nogood.

The distinction between sets of environments and sets of assumptions presents a possible source of confu-
sion. For example, consider the environments {A, B) and {A, B, C). Clearly {A, B, C is a superset of
{A, B). Yet, the minimal environment list ({A. B. C) represents a subset of the minimal environment
list ({A. B)): the second contains environments which do not have assumption C in them, while the first
does not. Please keep this potential source of confusion in mind when we discuss environment supersets
and subsets in the remainder of this paper.

The problem solving process involves a dialogue between the problem solver and the ATMS. in which
the ATMS receives a stream of requests to create new nodes. new assumptions. new justifications. and 'o
provide information on the environments in which nodes hold. This information can be easily provided
if the AIMS maintains with each node n a set of environments, in mininmal environment list form. called
its label. In addition to the minimal environment list properties, each node's label has the following two
propert it:

• • . , , i I I I I 2

; an assumption for each board position

Create-Assumption "Queen at 1-1"

Create-Assumption "Queen at 3-3"

; and a node to represent a solution
Create-Node "Goal"

; all capturing pairs are inconsistent
Justify-Node "FALSE" by "Queen at 1-1" "Queen at 1-2"
Justify-Node "FALSE" by "Queen at 1-1" "Queen at 1-3"
Justify-Node "FALSE" by "Queen at 1-1" "Queen at 2-1"
Justify-lode "FALSE" by "Queen at 1-1" "Queen at 2-2"
Justify-Node "FALSE" by "Queen at 1-2" "Queen at 1-3"

Justify-Node "FALSE" by "Queen at 3-2" "Queen at 3-3"

; the goal node is implied by any set of 3 assumptions
; (the problem solver discards those sets which will
; obviously not lead to a solution)
Justify-Node "Goal" by "Queen at 1-1" "Queen at 2-3" "Queen at 3-2"
Justify-Node "Goal" by "Queen at 1-3" "Queen at 2-1" "Queen at 3-2"

Figure 1: A Simple FornAfationof the 3-Queens Problem

* Label soundness - Node n holds in every environment in the label set.

• Label completeness - Every environment E in which n holds is a member of the label.

2.1 The Interface Between the Problem Solver and the ATMS

The four basic operations which the ATMS makes available to the problem solver are:

" Create-Node n - create a new node.

" Create-Assumption n - create a new assumption.

" Justiy-Node n by Z-2... - add a new justification.

" Node-Query n - request the current label of node n.

The problem solving process is a collaboration between the problem solver and the ATMS. In solving
the 3-queens problem. the problem solver could indiscriminately feed all of the above n,c;,oned jus-
tifications and nogoods to the ATMS and let the ATMS sort through them. Because the AlI MS has
no problem-specific knowledge, though, this results in a great deal of avoidable work being done. For
example, the problem solver knows that a solution to the 3-queens problem will never have 2 queens
in the same column or the same row. so it could simply reject any justifications which would obviously
not result in a solution without passing them on the ATMS. To keep execution time to a ,ninimum the
problem solver must he careful about the commands it passes to the ATMS. Figure 1 illustrates how
the .3-queens problem might be formulated in the ATMS framework. DeKleer discusses in (2] how the
problem solser can efficiently interact with the ATMS. In this paper, however, we do not address this
issue. We simply deal with how the ATMS can efficient I. handle the commands which the problem solver
passes to it.

3

3 Sequential Implementation

We now examine how the sequential ATM.V is actually implemented. with emphasis on tho.e aspect" of
tile implenilention which are relevant to parallel execution. Since we will be computing the speedupi of the
parallel implementation based on the execution time of the sequential implementation. we must make sure
that sequential version is as efficient as possible. While it may be possible to obtain substantial speedups
as compared with an inefficient sequential implementation, such results give little information about how
much parallelism is available in the problem. The only way to get a true measure of how much parallelismi
in the problem is actually being exploiied is to begin with an efficient sequential implementation.

This section is organized as follows. Section 3.1 gives a general overview of an efficient ATMS mi-
plementation. Section 3.2 describes how set operations are done on minimal environment lists. Section
3.3 presents tile data structures used to represent environments, nodes, assumptions. and justifications.
Section 3.4 describes the three problem solver trace files which we will examine. We compare the per-
formance of our sequential implementation with the performance of an existing ATMS implementation
on these three trace files. Section 3.5 describes the environment database, the data structure which is
used to keep track of those environments which are consistent and those which are nogood. Section 3.6
then gives a detailed description of the steps involved in computing an environment list cross product.
Finally, Section 3.7 gives the details of how the union of two environments is computed.

3.1 Implementation Overview

The overall structure of the ATMS is as follows. The problem solver places Create-Node, Create-
Assumption. Justify-Node. and Node-Query messages on a shared command queue The ATMS repeatedly
removes available commands from the queue. Given a command, it performs the requested action. re-
stores node label soundness and consistency for all nodes in the inference graph, and is then ready to
perform the next command.

Of the four commands which the ATMS makes available to the problem solver, only Justify-Node
consumes significant amounts of time. The Create-Node coa~nand takes very little time. since at the
point at which the node is created it does not participate in any justifications. The Create-Assumption
command also takes little time for the same reason. In our 3-queens example, the one Create-Node and 9
Create-Assumption commands simply require the ATMS to initialize the appropriate data structures. The
Node-Query command is also computationally inexpensive because of the properties of label consistency,
soundness, completeness, and minimality. In order to process a Node-Query command, the ATMS simply
returns the current label of the appropriate node.

The ATMS spends the vast majority of its time in processing new justifications. A new justification
can cause an enormous amount of label updating and environment propagation. When a new justification$

Z,,Z2,... =.^- n1

arrives at the ATMS, the labels of node n and any nodes which depends on node n may no longer be
complete. Node n may now be derivable from a new set of assumptions not currently in node n's label
because of the new justification. If this is the case, node n's label must be updated. If node n's label
changes. then the label of every node which depends on node n may also change. Thus any change to
node n's label must be propagated to every successor of node n.

A new justification can as'o cause new nogood environments to be discovered, potentially causing
the node label of any node in the inference graph to become inconsistent. The simplest example of this
would be a justification whose consequent is the false node. Conceivably. however, any justification whose
consequent node n can derive the false node can cause new nogoods to be generated. In order to restore
node consistency, environments which become nogood must be removed from all node labels.

In order to handle propagation of node labels, the ATMS maintains an Update request stack. Any
time a node label is changed. Update requests are placed on the request stack. one for each justification
which has the modified node as an antecedent. The first step in the processing of a new justification is
tO push an Update request onto the request stack. The AT.MS continues popping Update requests off

4

of the Update stack.)roce'sing the requests. and potentially pushing more requests onlo the stack until
tile stack i,, empty This corresponds t.o a depth first propagation of labels.

A sitgle Update request is processed as follows:

" The set of consistent environments which derive the consequent using the new justification and tle
new label environments is computed. This set is the intersection of the new label environments of
the one antecedent with the labels of the other antecedents of the justification.

" If the cone(quent is the false node. then all of these environments are recorded as nogood anjd
removed from all node labels.

* Otherwise. thee environments are compared against the existing label of the consequent.

* If they are already there. then the propagation due to this justification is complete.

" Otherwise. the consequent node label is set equal to the union of the previous label and the new
set of environments.

" The changes to the consequent label. i.e. the set of environments in the label which were not
present in tile previous label, are propagated to all nodes which depend on the consequent. This is
accomplished by creating one Update request for each justification which has the current consequent
as an antecedent. The Update requests are pushed onto the request stack.

3.2 Set Operations on Minimal Environment Lists

Adding a new justification requires a number of set operations on sets of environments, including set union
and set intersection. The minimal environment list representation allows us to perform these operations
quickly. Given two environment sets. S and T, W€presented as (E,E 2) and (Fl, F2) respectively.
we perform set operation on them as follows:

When we wish to add a new set of environments to the lAel of a node, we must take the set union
of the existing label with the set of new environments. The set union of S and T, in minimal form is the
concatenation of the minimal forms of S and T, with all supersets removed. In other words, each E, is
checked against each F for subsumption. If some F is a subset of E,, then E, is not included in the
union. Similarly, if Ei subsumes some F, then F is also not included. All other E, and F, are included.

When we wish to compute the effect of a justification on its consequent node, we must find the set
intersection of all of the labels of the antecedent nodes. The set intersection of S and T is somewhat
more involved than the set union. If all supersets of Ej are in S and all supersets of F are in T, then
all environments which are supersets of both E, and F are in S n T. The set of all supersets of both
E, and F is the set of all supersets of the union of Ei and F (remember that environments are sets of
assumptions). For example, the intersection of the supersets of {A, B) with the supersets of { B, C) is the
supersets of {AB.C). which is the union of {A.B) with {B,C). Thus the intersection of S with T is
the set of all supersets of the pairwise unions of E with F. Thus, in minimal environment list form, this
is the- cross product of the minimal environment list forms of S and T, again with all supersets removed.

3.3 Data Structures

The efficiency of tile ATMS is highly dependent on tile data structures and algorithms used in the
implementation. A straightforward ATMS implementation can literally take days [8] to solve a problem
which a more sophisticated implementation solves in a few minutes. We first present the major data
structures used in our ATMS implementation. Tile data strucutures are simply laid out here with brief
descriptions: tile purpose of each individual field will be made clear in later sections.

The environment data structure has the following fields: (1) Prtsent: a bit vector representing the
set of assumptions pre,,ent in tie environment. (2) Constituents: a linked list of all assumptions present
in the environment. (3) Si:e: the number of assumptions present. (4) Contra: a flag indicating whether
the environment is consistent. (5) 1l'/cre. a linked list of all nodes which contain this en' ironment in

Tahle 1: Trace file .t ati.i is.

QPE B(; K-Q
Node,. 9" 1705 131
A , umpi ion. s 62 64
J. Ifial ons 2564 4165 1192
Run) time - (ielleer s on Explorer 1 116 1"2
-ours on MultiMax 4044 92.0 35.61
- ours on \'AX"20U 15.45 34.21 1:.NI

Table 2: Runtime breakdown - Our Implementation on MultiMax

QPE BUG x-Q
Run time is) 40.44 92.06 35.61
Time spent on Justifys 32.34 79.00 32.21
Time spent on file access 6.46 10.6 2.42
All other time 1 .64 2.42 0.98

their labels. (6) Orthogonal: a bit vector representing the set of assumptions which. if added to the
environment, would result in a nogood environment.

The node data structure has the following fields: (1) Label: the node's label. (2) Assumption: a pointer
to the node's assumption fields. if the node is an assumption. Empty otherwise. (3) Justifications: a
list of the justifications in which the node is the consequent. (4) Consequences: a list of justifications in
which the node is an antecedent.

The assumption data structure has the following fields, in addition to its node fields: (1) Binary: a
bit vector representing the set of all binary nogoods this assumption participates in. If bit j is 1 in the
Binary field of assumption i, then the environmnt {i. j} is nogood. (2) Nogoods: a table of all minimal
nogood environments in which the assumption Telong -

The justification data structure has the following fields*1) Antecedents: a list of antecedent nodes.
(2) Consequent: the consequent node.

3.4 The Trace Files

We present the results of executing three problem solver traces on our ATMS. These traces were given
to us by Johan deKleer. They were generated by monitoring the interaction between an actual problem
solver and an ATMS, and dumping the observed interaction into a trace file. The traces are: ji

" QPE, from a problem solver created by Ken Forbus 15] which solves Qualitative Physics problems.

" BUG, a trace which led to a bug in some ATMS implementation.

" 8-Q. from a problem solver which solves the 8-queens problem. This formulation of the N-Queens
problem differs somewhat from the one described earlier in this paper.

Table I provides information on the three traces. It also provides the runtime for the three traces.
both for the LISP-based ATMS implementation of deKleer (1] and for our C-based implementation. The
time quoted for deKleer's ATMS is from execution on a Texas Instruments Explorer I lisp machine.
The time quoted for our implementation is from execution on a single processor of an Encore Multimax
mIultiprocessor. The Encore MultiMax is a 16 node. shared-memory multiprocessor. with an NS 32032
(0.7.5 MIPS) |nicroproces.or at each node. We also include the runtime on a more widely available
machine,. a DEC VaxStation 3200, for reference purposes. These times include all costs involved in
processing the trace files from beginning to end. including the time spent processing the AT.MS commands
and the time ;rent rea-iing tht trace files from disk.

In Table 2 we -'"e a breakdown of where time is spent in our implementation. File access time
accounts for a substantial portion of the runtime, a portion which is not relevant whej measuring true

6

AT.MS perforniauce. \\e will therefore ignore file acces,! tinie in evaluating parallel AT.MS p'erformance.
Also. if we ignore file access time. all but an extremely small anmount of the runtime is spent proressing
.lustif -Node commands. Since they are the clear hottleneck. we will concern our.elves strictl% with
Justify-Node commands for the remainder of thif paper. All runtines cited in the future will measure
only the aniount of tine spent processi 'g Ju.tify-Node commands.

3.5 The Environment Database

An ATNIS environment has a large amount of information associated with it. The environment is either
consistent or nogood. It could appear in the labels of many nodes, or it could appear in none. When the
ATMS computes the union of two environments, it need, access to the information associated wit h the
resulting environment. The information could be recomputed each time the environment is encountered.
but sonie of the information is quite expensive to gather. In order to avoid having to recreate this
information, each encountered environment is given a unique physical representation in memory. In
other words. if two nodes have an envircnment E in their labels, they both really have pointers to the
unique structure representing the environment E. The unique representation. when combined with a
method for finding this representation for a given environment, allows us to do expensive checks once per
environment, not once per encounter.

The method we choose for quickly finding the unique representation of a given environment is an
environment hash table. Every environment which is encountered at any time in a problem execution is
stored in this hash table. When a new environment is encountered, the hash table is checked to see if the
environment has been encountered before. If it has not, the environment is added to the table. In this
way. the ATMS can store information about environments which can be quickly retrieved if needed.

When creating new consistent or nogood environments, the ATMS also needs quick access to large
sets of existing environments. For example. when a previously undiscovered environment is encountered,
it must be checked for consistency. The ATMN must check the new environment against all nogood
environments which are smaller than it. If th#'envirnment is subsumed by some nogood, then it is
clearly also nogood. Similaily, when a new nogood is discoved. all consistent environments which are
larger than this nogood must be checked for subsumption. Any consistent environment which is subsumed
becomes nogood.

The data structure which seems to best serve these purposes is a pair of tables. Each table consists
of an array of lists of environments, sorted by environment size. Thus to find all environments of size
n, we must simply traverse the list in position n of the array. One table, the Consistent table, holds all
consistent environments encountered. The other table, the Minimal NoGood (MNG) table, holds the set
of nogoods which are not subsumed by any other nogood. Minimal nogoods are kept in order to keep
environment consistency checks as quick as possible; an environment which is subsumed by a nogood is,
clearly also subsumed by any subset of that nogood.

We make two modifications to the simple MNG table for efficiency. First, we handle unary and binary
nogoods as special cases. The assumption data structure has a field entitled Binary which keeps track of
unary and binary minimal nogoods. If the environment i.j) is nogood. then bit i in the Binary field of
assumption j and bit j in the Binary field of i are set. If the environment {i) is nogood. then bit i of
the Binary field of i is set. The second modification involves the Nogoods field of the assumption data
structure. Any ninimal nogood environment in the AING table will also be in the Nogoods table of each
assumption in the environment. These two modifications allow the AThIS to find all minimal nogoods
containing a given environment extremely quickly.

The Consistent and MNG tables form what we call the (nu:ronment dotabase. The environment
database, together with the environment hash table. makes the following frequent operations extremely
fast:

" Find a particular environment, with all its associated information.

" Find all consistent environments smaller (or larger) than a gi\en environment.

" Finjd all minimal nogoods which are smaller than a given environment.

I lll~mI~ n~l~mll III7

Finally., tlie Imost prevaleiit operat ion ill ihe AT.MS is t lie subSet test. Telie emvirolnlnent repr e t t ion
must therefore be chosel so that sll'set leslting is extremely fast. A bit vector repres-.ntatioli works
extrenelv well. A oiie in bit i of the lector indicates the presence of assumption i in the environment
The hit lector repre-entat ion allows suhiet testing by simply ANDing the bit vector of one Pnvroninen
with the complement of Ille bit vector of the other environment. A bit vector rel ..,entation also allows
fast hash function computation.

3.6 The Cross Product

When we handle an Update request. we need to compute the cross product of a number of minimal
enlvironment lists. as was described previously. Assume we wish to take the cross product of n minimal
environment lists 11.1 I,. with 11 being the incremental update. We begin the cross product coni-
putation by first checking to make sure that each 1, is non-empty. If any list is empty. then the cross
product is empty.

Next we loop through each list. creating ni, the cross product of 11 through 1,. We begin with
in = 11. and at each iteration we will compute 1),+l = M, x 1,+,, where both in, and m,+i are il
minimal environment list form. We do this by taking the union of each environment E in in, with each
environment F in 1,+l. using the method for finding unions to be described in the next section. The
resulting list is then minimized.

We can greatly decrease the amount of time it takes to compute m, by using the following two
techniques. First. if some environment E in rn, is subsumed by some environment in the consequent of
the justification which we are updating. then clearly every environment in m,+, ... rn,, which is generated
from E will also be subsumed by this environment. We therefore check each environment in mi against
each environment in the label of the consequent and discard those which are subsumed. Line 13 in Table 3
shows the number of environments which are discarded in this way for the three trace files.

Second. consider taking the cross product of , with l,+l. If some environment E in M, is subsumed
by some F in 1,+,. then clearly E will be in m,+ijSince. all environments which would result from taking
the union of E with some environment in 1,+, are suplersetsf E and since E is in m,+l. none of the
resulting environments will be present in in,+,. We therefore Aeck each E in mi for subsumption against
each F in 1,+,. If E is subsumed. then we can simply place it into m,+,. and not take the union of E
with each environment in m,+,. Line 14 in Table 3 shows the number of times that this occurs for the
three trace files.

If we compute the cross product, using these two techniques, the result is a minimal environment
list which represents the change to the label of the consequent node n. If the consequent is not the
FALSE node, we add each environment in our cross product to the label of node n. We must now restore
minimality in the label by checking every environment previously in the label for subsumption against
every environment just added to the label. We '.hen propagate the cross product list, which represents
the changes to the label of node n, to every justification which has node n as an antecedent.

If the consequent is the FALSE node, then our cross product list is a set of environments which were
previously consistent but have just become nogood. We add them to the MNG table, and sweep through
the Consistent and MNG tables looking for subsumed environments. If an environment in the Consistent
table is subsumed, it is removed from the table and from the labels of all nodes which contain it (found
in the Where field of the environment). If an environment in the MNG table is subsumed, it is removed
from the table.

3.7 The Unioi of Two Environments

Computing the union of two environments is an extremely frequent and potentially extremely costly
operation in the ATM.NS. In most ATNMS problems. the vast majority of all unions result in a nogood
environment (94V. 97X. and 83(7 for QPE. BUG, and 8-Q, respectively). Table 3 shows the empirical
numhier. for tlle three trace files. Line 1 gives the total number of unions computed. with Liuies 2
and 3 giving the number of those which result in consistent and nogood environments, respectively. It
is therefore to our advantage to have a quick check to see if the result of a union is a nogood. The

Table 3: Results of environment unions.

QPE BUG __-Q

I. Total pliotis 44'9 13.tih51 16440
2. Consistent 2636 4.5U3 2776
3. Nogood 4396Y2 13134 1364

4. Total adds 46090 14176b 1644U
5. Ortho 40499 12to;7 0
". Binary 973 1149 13664
7. Same 1793 40U9 0
&. Exist OK 2326 3976 0
9. Exist NG 236 75. 0
10. Non-binary 2.54 .557 0
11. New env 826 2375 2776
12. imm. Ortho 39958 127050 0
13. Old 2.5U 256G 1
14. Bypass 1615 2 3 o0

method of union computation which seems to allow the fastest recognition of nogood environments is an
assumption by assumption method. That is, given two environments El and E2 . we compute the union
by successively adding the assumptions in E2 into El. computing an intermediate environment at every
step. The union function returns either a consistent environment E3, which is the union of El with E2.
or it returns nothing. indicating that the union of El with E. is nogood. Since nogoods can never appear
in node labels, they do not have to be retained. The union computation is therefore complete as soon
as we know that the union will be nogood. We begin the union computation by making El the larger
environment, the one with more assumptions. 'Ae environments are swapped if this is not true. If both
are the same size. we make the one with the larger hash func on El. This step decreases the number of
assumptions which need to be added. It also assures us thaT if we compute the same union more than
once, the steps we do the first time will be repeated each successive time.

The next step is to begin a loop through all n members of E2. At each iteration i of the loop, we
have an environment F, which represents the result of adding the first i assumptions from E! into El. If
F, becomes nogood at any point, we may break out of the loop and quit. We begin with F0 = El. At
the beginning of each iteration we have some consistent Fj and the ith assumption of E2, A,, which we
wish to add to it. At the end of the iteration we either know that the union is nogood or we have some
consistent Fj+, which is the union of F, with A,. F. is the union of El with E2. Line 4 in the tabled
gives the total number of iterations of this loop which are performed.

Our first step within iteration i of the loop is to do a quick check to determine whether the union
could possibly result in a consistent environment. We do this by doing a bitwise AND of the Present
field of E with the Orthogonal field of F (see section 3.3 for a description of these fields). If the result is
non-zero, then we know that some member of E2, when added to 1, would yield a nogood environment.
Since this nogood environment would clearly be a subset of El UE 2 , we then know that El UE2 is nogood
and we can quit (Line 5 in the table). If the result is zero, however, it tells us nothing and we proceed.

Next we check for binary nogood subsumption of F+4 . Since F is consistent, we only need to check
F,+ against those binary nogoods which contain assumption A,. Thus we can check binary subsumption
by taking the bitwise AND of the Present field of F, with the Binary field of.4,. If the result is non-zero.
then some assumption in F participates in a binary nogood wit. A,. and thus F,4+ is nogood (Line 6 in
the table). Since we also learn that adding A, to F yields a nogood. we set the bit corresponding to .4,
in the Oithogonal field of F,. If the result is zero, again we proceed.

Next we check to see if .4, is a member of F,. We do this by extracting the bit corresponding to A,
from the Present field of F,. If it is set. then F,+ = F, and this iteration is complete (Line 7 in the
table).

Otherwi..e w form a partial environment structure for F,+1 . with all fields except the C'on-tituent,

field complete. The Present field for F,+1 is equal the Preent of F, with the bit for .A, set We coi,ut'
tile ha~sh function for F,+4 . and tihen check for the exictence of thi. environnieit in Ilie jiviroi'ii
datalba,e. If it exii-t, and is consistent. then this iteration i,. complete (Li,,e 6 in the table). If it exit
aid i. nogood. then the entire loop is complete (Line 9 in the table). In tlki case, we may again ,.et ili,
bit for .A, in lie Orthogonal field of F,. If it does not already exist, theen we proceed.

If we've gotten this far. we know that our F,+ will be added to tie environment hash table. so we
fill i.! the Constituents field by adding A, to the Coiistituents field of F,. We now add this environment
to tile talie1

Next we check F,+1 for subsumption by a non-binary nogood. As with tie binary nogood ch,-ck.
since we know that F, is consistent we only need to check F,+ against nogoods which contain A,. We
check F,+ against every non-binary nogood smaller than it which contains A,. which can be found in the
Nogoods field of tile assumption data structure for A,. If it is subsumed by some nogood. then the loop
is complete (Line 10 in the table). Again, we may set the bit corresponding to .4, in the F,'s Orthogonal
field. Otherwise. we know that F,+I is consistent. We add it t.o the Consistent table and tile iteration is
complete (Line 11 in tile table).

While this qeems like a somewhat cumbersome way of computing the union. in practice it is extremely
effective in recognizing unions which will result in nogood environments quickly. Line 12 in Table 3 shows
tile number of unions which can be aborted after tile first test against the Orthogonal vector. One can
see that a simple bit vector AND successfully recognizes most unions which will result in a nogood.

This concludes our discussion of an efficient sequential implementation of the ATMS. As was dis-
cussed in section 3.4, our implementation is quite competitive with existing ATMS implementations. We
use the sequential implementation which we have described as the basis of comparison for the parallel
implementations which we describe in the remainder of this paper.

4 Modifications for Parallelfmplementation

We now discuss the modifications which are necessary to allw the preceding algorithm to be executed
in parallel. Our goal is to exploit as much parallelism as possible, but we can not afford to introduce
a large amount of redundant work in doing so. When designing algorithms for massively parallel pro-
cessors, it is possible and often necessary to radically change the data structures and algorithms from
those which would be used on a sequential implementation. The increase in available parallelism which
these changes bring about often outweighs the increased amount of work which is done. However, since
we will be executing this algorithm on a modest number of processors, our speedups will suffer if the
parallel implementation does a large amount of work which the sequential implementation does not do..
We therefore do not stray far from the data structures and algorithms used in the efficient sequential
implementation.

4.1 Division of Work

The overall structure of our parallel ATMS is quite similar to the structure of the sequential ATMS. The
ATMS and the problem solver run concurrently, sharing commands and data through a shared command
queue. The problem solver places Create-Node. Create-Assumption, Justiy-Node, and Node-Query
messages on the queue. The problem solver blocks and waits for a reply after it places a Node-Query
message on the queue. A number of processors are allocated to work on the ATMS. The ATMS processors
pull commands off the queue and perform the requested actioi.. In order to allow a greater amount of
parallelism. we no longer require that node labels be made sound and complete at the completion of each
command. This requirement would necessitate the synchronization of all processors after each command.
an operation which would greatly constrain our ability to distribute work among the processors. We
now only require that labels be made sound and complete before a Node-Query command is answered.
Thus. Node-Query commands are now somewhat expensive, since they require a global synchronization.
Create-Node and Assume-Node messages again require very little work to he done, and are dealt with
quickly. Justif.-Node messages are the source of almost all of our parallelism. Since they require hy

10

far the most computation time. the% are I he commands which afford the most oppurt unity to di~tribuwf-
work.

In order to decrease contention for tasks. each processor has its own Update request stack. When a
processor completes a task. it looks for a-new task in the following places. First. it checks it's own Update
request stack. If it is empty. then the processor checks the global command queue. if the next commajd
on the command queue is a Node-Query (or if the command queue is empty) the processor Pcomis
idle. When all processors are idle. one processor processes and removes the Node-Query conmmaiid.
thus unblocking the problem solver and allowing the problem solving process to proceed. We call this
Algorithm Al. We later provide variations of this basic algorithm.

4.2 Locks

In our shared memory implementation. all the processors access the same data structures. We therefore
need a number of mutual-exclusion locks to control simultaneous access to shared data. We begin by using
straightforward locking techniques, and later modify our approach based on the observed bottlenecks.

The environment hash table is locked by bucket. Whenever a processor wants to do either an en-
vironment lookup or an environment addition, it must obtain a lock on the appropriate bucket before
it may access anything in the bucket. Since there are thousands of buckets and. for now. at most 16
processors and very little time is actually spent inside the lock. contention for the hash table buckets is
not a problem.

Each environment has a lock to control access to its Contra flag and its Where field. The lock is used
to enforce the following conditions:

" No nogood environment may he added to a node's label.

* When an environment becomes nogood. if.nust be removed from the label of every node which
contains it.

The above conditions are also used to avoid redundant work. When a processor wishes to change an
environment's status to nogood. it first obtains a lock on the environment. It then checks the environ-
ment's Contra flag. If the flag is set (i.e. tae environment is nogood), then some other processor must
have already discovered that this node is nogood and the processor can stop: any work done with this
environment would be redundant. Otherwise. the Contra flag is set and the lock is released. The envi-
ronment is then removed from the label of every node in which it appears. When a processor wishes to
add an environment to a node label, it obtains the environment lock and checks the Contra flag. If the
flag is set, then another processor has discovered that the environment is nogood and it should therefore ,
not be added to the node label. If the flag is not set. the environment is added to the node label and the
environment lock is released. By using the lock in this way, we are assured that no node label can contain
a known nogood. Since a typical ATMS application generates thousands of environments, contention at
this point is usually not a problem.

Node labels are accessed and modified by many processors, thus we must provide locks to protect
them. When an Update request is being processed, and a node is an antecedent to the justification, the
node's label is accessed. Similarly, the label of the consequent of the justification is also accessed. Since
computing the label cross product could take an enormous amount of time, we would like to avoid holding
the node lock for the duration of the cross product. We therefore choose to lock the node, copy the label.
and imrmediatelv release the lock. An antecedent label can simply be copied because any change to the
label will be propagated to this justification. While this can create redundant work. the resulting answer
will still be correct. A consequent labd can be simply copied for the following reason. The only way in
which an environment is removed from the label of a node is if it becomes nogood or if it is subsumed
b% a new label. If an environment becomes nogood. then clearly anything subsumed by it also becomes
nogood. If an ejvironment is subsumed. then clearly anything subsumed by it will also be subsumed by
the new environment. In either case, it is valid to discard cross product environments which are subsumed
bv consequent label environments.

11

When revising the lahel of a node. tile node is locked, and the environmients in tie curr-,nt iiodr lal,,-l
are checked for subqumption against the new en\ironment, and vice-%ersa. The node label is revi',d.
any changes in the label are recorded, and the lock is release. Again. since there are thousands of nodes
contention is usually not a serious problem.

Contention for environment and node locks can be a problem. however, when many processors are
working in the same part of tile inference graph. Since environments are generated entirely by propaga-
tion. it is likely that if two processors are working on tasks which resulted from the samie node revisioi.
they will encounter identical environments more often than if they were working on unrelated activations.
Similarly. if two processors are working in the same part of the graph, they are more likely to want to
access the same node label. In order to avoid this type of contention, it is desirable for the processorc to
be well distributed throughout the inference graph.

4.3 The Environment Database

We now discuss the modification necessary to allow concurrent access to the environment dat abase. The
modifications we have discussed so far have been relatively local. They have involved such changes as
a lock on a bucket in a table. or a lock on a single environment or node. The environment database,
however, is a very global structure. It keeps track of the consistency of all environments in the entire
problem. A single change could conceivably affect every environment in the environment database. The
environment database must allow the following operations:

" Determine whether a new environment is consistent.

" Add a new consistent environment.

" Add a new nogood and find all previously consistent environments which are now nogood.

It must also keep the database self-consistent A'ile tlkese operations are occurring. Since the AT.MS
spends much of its time creating new environments and checki3 them for consistency. we cannot tolerate
a high latency on consistency checking. At the same time. however, most new environments which are
encountered are nogood, so to avoid superfluous work we want a new nogood to be recorded as soon as
possible.

We initially used a single global lock to control access to ooth the Consistent and MNG tables.
When an environment needed to be checked for consistency, the processor obtains the global lock. checks
the environment against the MNG table, and releases the lock. When a new consistent environment is
added, the processor obtains the lock, adds the environment to the Consistent table. and releases the
lock. When a new nogood is registered, the processor obtains the lock, checks all consistent environments
for subsumption, changes those which are subsumed into nogoods, and releases the lock. Since the ATMS
spends a substantial percentage of its time within this lock (3-15% for the three traces), this global locking
approach appears somewhat suspect.

5 Results

We now present the results of executing the three problem solver traces on our parallel AT.MS. Because
Node-Query information was not required when the traces were originall3 generated, these traces do not
record this command. The absence of this command does not affect th verformance of the sequential
ATMS significantl\. since Node-Query commands take so little time to -ecute. In our parallel ATNIS.
however, the lack of these commands obviates the need for global synchronization. Thus. the result" we
present here are optimistic. as the synchronization is done onl% at the completion of the entire trace In
applications where Node-Query commands are frequeni one would expect less available parallelism.

The ATMS traces we examine seem to present abundant opportunites for parallelism Their inference
graphs are extremely large, with thousands of justifications capable of being distributed among the
processors (see Tahle 1). The only linitiiig factor would appear to be tile global lock on the Consistent

12

Tahle 4: Task t.iles for algorithm Al
QPE BUG t.Q

Tasks.: 25M 416' 1192
Ave taisk time (s) 0.01T 0.01 0 02,
Max task time (s)- 2.42 35.31 0.36
Total runtime (s) 39.34 6.31 3:372

Table .): Task times for algorithm A2
QPE BUG s-Q

Tasks 1878U 16576 3308
Ave .ask length (s) 0.002 0.005 0.010
Max task length (s) O.i 6.68 0.34
Total runtime (s) 39.34 62.31 33.72

and NMNG tables. However, if we examine Figure 3 we see that the speedup obtained for Algorithm
Al is disappointing. The speedup is greatly below what one would expect, even given the global lock.
The sequential ATMS spends 3%. 1.5%,. and 6V of its time within the lock for QPE. BUG. and $-Q.
respectively. If this were the only parallelism limitation, we would expect speedups of 7 or more. Clearly.
parallelism is being limited in some other way.

The most serious bottleneck appears to be processor idle time. Figures 4 through 6 show the per-
centage of time each processor spends doing useful work as compared to the percentage spent waiting
on locks and the percentage spent idle. Note that the speedup obtained is not equal the product of the
processor utilization with the number of processors used. This is due to number of factors. First. o"
speedup numbers are obtained by dividing the pprallel execution time by the execution time of the I-
sequential implementation. There are a numb* of olerheads involved in the parallel implementa
such as environment list copying and redundant checks. whic an reduce the speedup when compared to
a sequential implementation without these overheads. Secon Ythe parallel ATMS does not necessarily do
the same amount of work that the sequential ATMS does. For example, the parallel ATMS can process
the justifications in a different order than the sequential ATMS. While the answer arrived is the same.
the amount of progation necessary to get to this answer may differ. Third, there a number of hardware
issues, including bus bandwidth and cache interactions, which can preclude linear speedups. These issues
are not reflected in the utilization graphs which we present.

From examining Figures 4 through 6, it becomes clear that we have a problem with the distribution
of work among the processors. Processors are spending a large amount of time idle, without a task tcl
execute. What we have here is essentially a bin-packing problem. Ve have a certain number of tasks of
varying size to execute, and we wish to divide them among a number of processors so that each processor
takes approximately the same amount of time to complete them. This near equal division of tasks is
normally quite possible given a large number of tasks to distribute; the large number of tasks serves to
smooth out the variations in grain size. However, two factors make this untrue in Algorithm Al, First.
the variation in grain size is enormous. In the BUG trace, for example, the processing of one single
justification accounts for more than 40% of the run-time of the trace (see Table 4). Second, as the trace
progresses the size of the inference graph increases. The amount of work required to process a single
justification depends heavily on how much label propagation must be done. In the early stages of the
trace, the small size of the inference graph limits the amount of propagation necessary. As the trace
progresses. however, the graph becomes larger, with the potential for more necessary propagation. The
grain size therefore grows as the trace progresses, and one would expect the enormous grains to be near
the end of the trace. The combination of some extremely large grains with the tendency for the large
grains to be towards the end of the trace combine to make it extremely likely that one processor will be
stuck witl a large grain while the other processors have nothing to work on.

In order to alleviate the grain size problem. we decrease the task size. Instead of each problem soker
issued command heing a single task. we now consider each Update request to be a task. In Algorithm
A) .once Ime coinniamd queue becomes empty the processor siniplv guits. Now. in Algorithm A2. ant idle

13

M. AN Oter Locks

MZ Node Locks

m,. Envvonm.t Database Locks

hq Processor UtIliation

02:

* BUG
S5-0

..............

11 i s 1 kSb fP

Fiur 4:a'. Prceso utiiztin fr P

forith AAoilm A Figure 5: Processor utilization for BUG.
Figue 3:Speeup F Algorithm Al

I1

proce'-.or atteipts to steal all |.pdate request from the Update stack-. of lIb- oilier I'roc--,ors II tills

way. work can he distributed among the processors even after the comland tl peie has beei enlptied
The only cost for this modification is the introduction of contention in the Updaie stacks. Comparing
Tables 4 and :j. we see that by decreasing the task size we have greatly increased the number of tasks
and greatly reduced both the average aiid maximuli task size. Figures through 10 show that while idle
time has been greatly decreased from that of Algorithm 1. it is still substantial for the BUG trace This
is mainly because the largest task still takes 6.68 seconds. which is S'Z of the total runtime. The ne-t
result of our modification (Figure 7) is that the speedup is greatly increased from that of Algorithm Al.
but it is still far from ideal.

The most serious bottleneck in our parallel implementation now appears to be the environment
database lock. In order to increase concurrency in the environment database, we introduce another
variation on our basic algorithm. In Algorithms Al and A2. only a single processor may access the
database at one time. Our modification. which we call Modal access, allows a number of processors
to access the table concurrently, while still maintaining the stringent consistency requirements of the
environment database.

The problem in allowing concurrent access to the database comes from the potential simultaneous
additions of a consistent environment and a nogood environment. In order to add the consistent environ-
ment to the database, we must know that it is not subsumed by any environment in the MNG table. To
add the nogood to the database, we must remove all environments which are subsumed by it from the
Consistent table. These requirements seem to place serious sequentiality constraints on modifications to
the database. In order to avoid these constraints, we add to the environment database a mode of access
indicator. The three access modes are:

* Mode 0 - No processor is currently accessing the database.

" Mode I - Only consistent environments may be added to the database.

* Mlode 2 - Only nogood environments mafbe added to the database.
I

In order for a processor to add a new consistent of nogog environment, the environment database
must be in the appropriate mode. If a processor needs the table to be in Mode 1. it calls a procedure called
Addero. Adder() waits until the database is in either Mode 0 or Mode 1. If the database is in Mode 0,
it changes the mode indicator to Mode 1. It increments a counter of how many processors are within the
database, and then proceeds. Once this processor is finished using the database, it calls the procedure
ReleaseAdder(). This procedure decrements the counter, and if the counter is now zero it changes the
mode indicator back to 0. The procedures Deleter() and ReleaseDeleter0 are defined identically except
that they move the database into Mode 2.

If a processor wishes to add a new environment to the database, it first calls Adder() to bring the'
database into Mode 1. It then checks the environment for consistency. If the environment passes the
check, it is added to the Consistent table. Since the environment database is in Mode 1, the processor
is guarenteed that no nogoods are being added. Thus if the environment passes the consistency check,
the environment will remain consistent until the Mode is changed. Once the consistency check has been
made, the processor is finished using the database and calls ReleaseAddero.

If a processor wishes to add a new nogood. it calls Deleter() to bring the database into Mode 2. The
processor then adds the nogood to the databa.e, and then it sweeps through the Consistent and NING
tables flushing out all subsumed environments. Since no consistent environments are being added, we can
be assured that we will check all consistent environments. While it is true that nogood environments can
be added at this point and we can consequently miss one which is subsumed, this situation is sufficiently
rare and harmless that we do not need to be concerned with it. Remember that the sweep through the
MING table is for efficiency reasons only. and it does not affect the correctness of the algorithm. Once
the sweeps through the two tables are complete. the processor calls ReleaseDeletero.

We can modify the above slightly to increase concurrency. When new nogood environments are
generated. they usually come in lists. We can therefore distribute the nogoods in a single list among a
itumber of processors. This is accomplished hy keeping a global list of nogoods to be added. When a
processor has a list of new nogoods to le added, it adds them to this list. calls Deleter(. and then goes

15

M AA Ow(. Locks
MNode Looks

ftEnwionmmt Database Locks
IWj IleTin"

M Praepsor UbImatgafl

'4na

*OPE

BU

IS

1 8 4 9 B 0 11 is is 14 ta~i@ ~~gu

Figure ocso S teedzatio Aforim A2 . Figure 90 Processor uilizaion for B-Q.

Algorithm A2 Algorithm A2

16

ji. 0OPE

m~~ is 11 12 is ! ! ! !

kurrsw of Pvomwo

Figure 2: Amount of work done (as a percentage of that for P=l)

into a loop. pulling off nogoods from this list until the list is empty. Now, when a processor calls Adder()
and finds the database to be in Mode 2. instead of simply waiting for the Mode to change, the processor
alr'o pulls nogoods off the global list and procesy.6 them.

The speedups obtained from Algorithm A3 (Figue 11) are still far from ideal. While contention
for the environment database is greatly reduced, it is still sistantial. We also still have a substantial
speedup reduction due to processor idle time.

We have yet to examine one possible cause of reduced speedup in the parallel implementation. re-
dundant work. In the ATMS, it is difficult to establish a measure of how much "work" is being done.
There are a number of routines which are called often and take large amounts of time, yet no one routine
dominates the others. One routine, the subset test routine, appears to be a reasonably accurate measure
of how much work is being done. Subset testing accounts for more of the runtime of the sequential ATMS
than any other routine. Also, many of the other routines which take time do large numbers of subsetI
tests. If these routines are being called more frequently, this would be reflected in the number of subset
tests done. Figure 2 gives a picture of how many subset test are done for the 3 traces. Though the subset
test numbers show interesting trends as the number of processors grows larger, the differences for less
than 14 processors are not significant. According to our subset measure of work, the parallel ATMS does
between 90% and 106% of the work of the sequential ATMS for 14 or fewer processors.

5.1 Other Approaches

Variation in grain size is still a problem in our implementation. Furthermore. the problem would be
much more severe if Node-Query commands were more frequent. One possible way to further decrease
the grain size would he to split Update requests into smaller pieces. In Algorithm A3. an Update request
contain- a list of new environments which have been added to the label of aln antecedent. In order to
decreas%4 the size of a single grain, we could split this list into many smaller lists. We could use a heurictic
to determine approximating how long an Update task will lake. Depending on tie estimate. the list can
be split so that other processors will not go idle while this task is being exectited. In the extreme. Update
requests can be split into single new antecedent environments.

Performing Updates with smaller lists of environments can generate a large amount of avoidable work.

17

CI AN OUwr Locks

wU Node Locks
UL Erwworimerd Database Locks
LW Ide Time

2%0 Processor UIlization

.OPE

0-

7ue f W*"

Fiue1:Sedpfr0grti 3 Fgue1:PoesruiiainfrBG

Figure Sroeed or uizatig orth A3 . Figure 13: Processor utilization for BU.

Algorithmn A3 Algorithmn A3

however. Consider the following cross product:

(1.4), B).J {C). JD})) ({D)

If we simply perform the cross product, we get the list ({D)). If we split the list ({A}. B). (). ID))

into two parts and perform se)erate cr ss products, however, we get ({A. D). {B. D}) from the first part
and ({D)) from the second. Now. instead of propagating a single list of length one t.o the successors of
the consequent. a list of length two and a list of length one are propagated.

We can see this happening in the BUG trace file. The largest Update task in the trace arises from a
just ificat ion:

X I , X'. -l X3, X4 , X s ==:p n

The Update request comes from x, with a list of 8 new environments. Nodes Z2. Z3, and z4 all have 8
environments in their labels, and node zs has 1 environment in its label. The resulting cross product
environment list could contain as many as 84 environments. It actually produces only 293 environments.
because of nogood subsumption and list minimali'y. If the incoming new environment list of 8 environ-
ments is split into two environment lists of 4 environments each, one resulting cross products has 367
environments and the other has .55. The net effect of splitting this single Update request into two smaller
requests is substantial. The sequential execution time for BUG increases from around 82.31 seconds to
119.96 seconds. an increase of 46%. While we could have all processors working on a single Update
synchronize and combine their results before propagating them on, the added synchronization combined
with the fact that the pieces of a split Update are not necessarily smaller than the whole Update combine
to make such an action unwise.

Due to the above reasons. our initial efforts to go to a smaller grain have not resulted in much success.
In order to get significantly more speedup from some ATMS instances, we need to find a natural task
grain which is smaller than that of an Update request. Unfortunately, no obvious alternative presents
itself.

6 Conclusions S

In this paper, we have presented the details of implementing both a serial and a parallel ATMS. The
results we obtained from executing the parallel implementation on an Encore MultiMax allow us to draw
a number of conclusions about executing the ATMS in parallel.

" The traces we examined seemed to present abundant opportunities for parallelism. They consisted
of thousands of relatively independent tasks, capable of being distributed among a number of
processors. However, this apparent abundance of parallelism proved to be somewhat elusive tci
exploit.

" The obvious source of parallelism in the ATMS, the thousands of justifications. generated grains
which varied enormously in size. In one trace, for example. a single justification accounted for 43%2
of the total runtime, making effective parallel distribution of grains impossible. In order to make
grain sizes more uniform, we were forced to decrease grain size by treating a single justification
update as a task. We also introduced the notion of modal access to the environment database in
order to alleviate the sequentiality constraints imposed by the global consistentency requirements.
Modal access requires that, at any one time, environments can be added in parallel or removed in
parallel, but not both.

" With these modifications. we were able to obtain speedups of between 4.4 and 6.7 using 14 processors
for the three trace files which we examined. Further speedups were limited by a number of factor%.
including still too large of a variation in t-ask grain size, processor contention for numerous mutual-
exclusion locks, and hardware contention issues.

" We further note that we examined the best case scenario. where Node-Query commands are infre-
quent and global synchronization is necessary only at the completion of the entire trace. While it's
not clear what the average case would be, it would almo-t certainly present fewer opportunities for
parallelism.

19

"*v cot hiting- a highly efficient C-ha.%ed implement ation svitli a modes, dlegree of 1paralll .w
have created an ATMS iniplemientation wich is significantly faster flan curreiirl\ mvaflljhh- LIST'-
lia.'d impllemient at ions.

" We believe that in order to aceiv-ei~ear-hniear speedup,. parallelism in the ATMIS must be exploited
at a finer grain than that used in the three algorithms pr~-.enied here.

While in this paper we have explored how ATIMS parallelism can he exploited on a shared-memnory
multiprocessor. a related question is how it can be exploited on other types of parallel macliime archi-
tectures. Michael Dixon and Johan de~leer [3] have studied the implementation of the ATNIS on the
Connection Machine, a massively parallel processor with between 16K and WE1 processor', [7). Their
implementation ha.' shown promis.e in the tests which they have tried, hut it remains to be seen whether
it will offer a dramatic speed advantage for a wide range of problem solver domains.

In the future. wve plan to investigate the tradeoffs between using a shared-memnory architecture versu'
a message passing or Connection Machine architecture for exploiting parallelism in the ATNMS. We plan
to investigate how the grain size can be reduced without introducing an enormous amount of extra work.
We also hope to integrate our parallel ATMIS with LISP-based problem solvers. allowing the exchange of
commands and data through inter-process communication.

7 Acknowledgements

We would like to thank Johan deKleer and Ken Forbus for providing us with problem solver trace files.
We would like to thank Hiroshi Okuno for his assistanice in the initial stages of this research. This research
is supported by DARPA contract N00014-87-K-OS28. Edward Rothberg is also supported by an Office
of Naval Research graduate fellowship. Anoop Gupta is also supported by a faculty award from Digital
Equipment Corporation.

20

References

[1) deKleer. J1.. *An A..suinptioii-based Truth Nlainienance System", A rtificral Intifligenhe. 28. 19869

[2] dekleer. .1.. -Problemn Solving wit h the ATNIS" Artificial iclagence, 28. 1986.

[-3) Dixon. NI. and deKlper. .1.. "Massively Parallel Assuniption-ha."ed Truth Maintenance~ Proce~dings
of thu AAA], 1. l b

[.4] Filman. R.E. -Reasoning WVith Worlds and Truth Maintenance in a Knowledge Based System-
Comunincations of the A4CMi. 31. 1988.

[5] Forbus. K.. -The Qualitative Process Engine". University of Illinois Technical Report No. UIU*CDCS-
R1-86-126. December. 198$6.

[6) Gupta. A.. For-y. C.. Ka~p. D.. Newell, A. and Tambe. M., -Results of Parallel Implemientat ion of

0PS5. Procttdngs of the JC'CP. 1988.

[7] Hillis. D.. The Connectimn Machine. MIT Press, Cambridge. Massachusetts. 1985.

f)Okuno. H.. -An Efficient Parallel Execution of the ATNIS". to appear.

21

Shared Memory vs. Message Passing Architectures:
An Application Based Study

Margaret Martonosi and Anoop Gupta
(Draft: Nov 9, 198g. 7:30 pmn)
Computer Systems Laboratory
Stanford University. CA 9430.5

Abstract

The diminishing differences between the hardware structure of shared memory and me.-
%age passing parallel computers mandate a new evaluation of the tradeoffs these architectures
impose on the development and performance of applications. In a message passing computer.
some message traffic is used to perform interprocessor updates which maintain consistency
between the various processors' data. We consider this traffic to be analogous to global bus
traffic needed in a shared memory computer for hardware cache consistency. Using Locus-
Route. a global router for standard cells. as a ca.se study. we investigate the le'el of traffic
required to maintain consistency of data with each of the two architectures. By explicitly
varying the frequency of interprocessor updates. the level of traffic in the message passing
approach can be reduced to as little as 1'7 of the traffic in the rhared memory approach
while still obtaining solution quality within 107(of the quality given by the shared memory
version. We show that exploiting locality, in the way wires to be routed are assigned to
processors. can further lower this message traffic by as much as 67%7. However, the degree
to which locality can be exploited may be limited by the opposing requirement that the
application be load balanced. as well as by limited locality in the data set.

1 Introduction

In recent years. there has been much debate about the relative merits of shared memory and
message passing parallel architectures. The previously large distinctions between the two ap-
proaches. however, are now diminishing. The main drawbacks of the early message passing
computers. such as the NC'UBE/ten [11) were the high network latency and the large message
reception overhead. These characteristics forced programmers to exploit only large grain par-
alelism. With the development of new message passing computers. such as the Ametek Series
2010 and the Message Driven Processor [3,9]. things are rapidly changing. Using specialized
routing chips and the technique of wormhole routing [6), the network latencies have been re-
duced by 2-3 orders of magnitude. Similarly, using dedicated hardware to copy messages to
and from the network and using innovative memory mapping techniques [10,181. the message
reception overhead has been cut down by 1-2 orders of magnitude. These reductions enable
current machines to exploit parallelism at a fairly fine grain. Furthermore, it is now possible to
approximate aspects of the shared-memory model. since sending a message to a remote processor
requesting an update of some global data is no longer an unreasonably long operation.

On the other hand. we see that efforts to scale shared memory machties led them to resemble
message passing computers in several ways. Traditional shared memory architectures used a
shared global bus to memory [5] and could only accommodate a limited number of processors
before the global bus connecting processors and memory became saturated. Because of the
limited scalability of these architectures. designers of shared memory machines are now turning
to architectures using processor clusters with directory-ba.sed cache coherence schemes between
the clusters 119.1]. hierarchical architectures with more than one level of shared buses such as
the Encore UltraMax [13.4). or architectures with multistage processor intercomection networks

like the BB.N Butterfly [12) and IBM RP3 [1]. In directory based approaches. coxsilelcy
operations betwc ,, clusters are performed on a point-to-point basis. with iinvalidations goimg
only to the rc'sters that need them. Also. the lalency of non-local communication can. he a,
much as a,' order of magniitude largerihan that of a local access in all of these machines. Tlp-,e
two characteristics, point to point communication and high non-local reference latecy. increaijs
the cost of non-local traffic in a shared memory approach. and force the programmer of the,

shared memory machines to consider more carefully the effect of locality.

While the gap between the two architectures is narrowing. there are still fundamental differ-
ences between the two which force tradeoffs between the two architectures. The shared memory
architecture considered in this paper has a single global address space with hardware to guar-

antee the consistency of data in the processor caches. In this case. cache coherence protocols

enforce consistency of data [2]. In tile message passing architectures, each processor has a sep-
arate address space. and exchanges of information occur by sending messages on the network.

One type of message passed on the network is for updating distributed data held by all the
processors to periodically make it consistent with the other processors* data. This message traf-

fic for updates in the message passing case is analogous to the cache coherence traffic used in
the shared memory case. In the message passing case. this traffic is explicitly controlled by the
application programmer. who decides when and how to perform updates between processors. hi
the shared memory case. the traffic is implicitly controlled by tile cache consistency hardware.

which relieves the programmer from tle process of maintaining data consistency.

In many cases. however, the level of consistency enforced by the shared memory computer

may be more that. is needed by a particular application. In such cases the message passing com-

puter may be superior, because it allows the application programmer to control the degree of
consistency explicitly. In this paper. we expjfre several such tradeoffs between shared-memory
and message passing architectures using the LocusRoute 117] application as a case study. (Lo-
cusRoute is a commercial quaihty routing program for sfandard cells and is now being widely
used at Stanford for para.lel processing studies.) Our results comparing network traffic show
that the message passing version of the program generates only I7 of the traffic that the shared
memory version does, while the degradation in the quality of the routing is less than 107. An-
other issue this paper addresses is the sensitivity of the network traffic to the exploitation of

locality in the data set. In our study. we exploit locality by assigning wires which are physically
close to each other in the circuit. to the same processor. Specifically, we show that message
passing architectures can reduce their network traffic by more than 50% by exploiting locality.
while also improving solution quality. The effect on shared memory architectures. while not so
large, is also significant. Some other issues regarding exploiting of locality and execution time
are also discussed.

The rest of the paper is structured as follows. The next section gives information about
the LocusRoute application and the simulation tools used to collect data for the architectural
comparison. Section 3 describes the changes made to the original shared memory LocusRoute
to convert it to a message passing style. Section 4 presents our results on network traffic for
the two architectures under varying assumptions, and Section .5 shows the reduction of network
traffic made possible by exploiting locality. Section 6 presents conclusions based on this data.
and suggests further areas to explore.

2

ChennW A
Ctannel 3

C0-W 21 I -=______

SdWrd e" Placement Com Army

Figure 1: Standard cell placement and corresponding cost array.

2 Applications, Tools and Methodology

To understand the architectural comparisons being made. one must understand the application
the data is based on. and the tools used to make the measurements. Our starting point was
the version of LocusRoute written for a shared memory machine. This code was converted.
as described in Section 3. to a message passing style. Because there was no message passing
computer available to run the code. we used cBS. a simulator for parallel message passing
machines. With CBs. detailed statistics on execution time and network behavior are readily
available. To make network traffic comparisons between the message passing version and the
shared memory version. another program. also described below, was written to estimate the
amount of bus traffic required by the sharedgiemory approach.

2.1 LocusRoute

LocusRoute [17] is an industrial quality router for VLSI standard cells developed by Jonathan
Rose at Stanford University. LocusRoute routes the wires of a given standard cell placement.
while attempting to minimize the overall circuit area. To do this. it maintains a global data
structure known as the Cost Array. The vertical dimension of the array is the number of
routing channels in the circuit. and the horizontal dimension of the array is the number of
routing grids. The Cost Array keeps a record of the number of wires running through each
sector of the circuit. Each wire is routed along the path with the minimal sum of the cost array
entries. Figurt I shows a standard cell circuit and one of its wires, with the corresponding Cost
Array. The highlighted portions of the cost array will be incremented if this route is chosen.

In addition to producing the routed circuit, LocusRoute also computes a measure of the
solution's quality. Quality, also referred to in this paper as the circuit height. is computed as
follows. For each channel, the number of wires using the channel will vary across the width
of the circuit. The number of routing tracks required by the channel is tile maximum number
of wires running through the channel at any point. The circuit height is the total number of
routing tracks required for all channels.

The Cost Array is the central data structure for the LocusRoute application, and it accounts
for almost all of the shared data references made by LocusRoute. Therefore. studying the
reference patterns to the cost array will provide an excellent approximation to the application's
memory reference behavior as a whole. Examining the references to the cost array for one wire.
we see that LocusRoute starts with a series of reads to explore possible routes for the wire.

3

LocusRoute read, every location, of the cost array along the paths beig cowiiidered. Tli, iV
followed by a smaller stream of writes, as the cosl array is updated alonig the final path of
the wire. This basic sequence of reads and writes occurs for each wire. %ith several proces.sor,
routing wires in parallel. Performing several iterations of routing improves the final solutioin
quality, but. before rerouting a wire for an iteration after the first one. the processor must *rip
up- the old routing of the wire by decrementing the cost array locations in its path. These rip
up operations are the second type of writes performed on the cost array.

Consistency of the cost array is an important issue in this paper. and one with serious inlj-
plications on the amount of traffic. so it is important to understand how. and to what extent.
consistency is maintained in the shared memory version of LocusRoute. To avoid the perfor-
mance bottleneck a lock would impose. accesses to the cost array are not locked. This implies
that simultaneous operations on the same element of the cost array may result in one of the
operations being lost. As previously stated, LocusRoute is a optimization problem. and can
tolerate a certain amount of inconsistency. With the number of processors the shared memory
version currently uses (up to 16). the probability of simulataneous writes is very low. and expel-
iments indicate that the quality is not degraded. Except for this. consistency in the cost array
is maintained at the hardware level, by the cache coherency hardware.

When running the experiments, two benchmark circuits were used. The first circuit. brnrE
has 420 wires. a size of 10 channels by 341 routing grids, and represents an actual standard
cell circuit developed at Bell-Northenl Research Ltd. The second circuit. MNDC. has .573 wires
with a size of 12 channels by 36 routing grids, and was designed at the University of Toronto
Microelectronic Development Centre.

2.2 CBS: A Message Passing Archiecture Simulator

Execution of LocusRoute on a message passing computef was simulated using a program called
CBS. CBS [15] is a C++ program written by Andreas Nowatzyk at Carnegie Mellon University
which simulates the behavior of a k-ary n-dimensional hypercube machine (with a total of k'
processors). For the experiments described here. cBs simulated a machine with deterministic
wormhole routing using the E-cube routing algorithm [14.21]. and with the dimension n. always
equal to two (mesh interconnection). The use of wormhole routing minimizes the effect of
the distance between destination and source. making the assignment of processes to processing
elements less critical. Research by Dally (7.8] indicates that low-dimensional networks have'
greater channel bandwidth. and better hot-spot throughput than do high-dimensional networks.
These two features give the simulated machine low-latency, high-bandwidth communication
performance which makes it competitive with the shared memory machine.

CBS uses a detailed simulation model to produce its network statistics. CBs simulates the
behavior of the processor interconnection network at the level of individual flow control units (in
this case. single bytes) flowing between processors. There are unidirectional channels connecting
a processor to its North and East neighbors. This means that a packet must travel all the way
around the network to talk to its Vest neighbor. The network performance is specified with
two parameters: t-delay and cdelay. T.delay is the time required for I byte to travel one hop
on the network. and c.delay, the time required for the entire packet to be copied down from
the processor node to the message network. or up from the message network to the destination
processor node. Assuming no delays due to contention. the total time required for a packet of
length L to travel D hops on the network is 2c.dtlay + tldtlay(D + L). To simulate the execution
time of the node processors. a dtlay statement is provided which blocks the running processor
for the number of time units specified. Timings obtained from the Encore inicrosecoiid clock

4

were used as arguments for the delay slalemeit.

For the purpose of concreteness. we chose to set the performance parameters to model the,
behavior of the Ametek Series 2010 Message Passing Multicolnputer 118.10). A packet of leitli
L travelling D hops on the Ametek requires CopyTini + HopTime(2D + L). CopyTime is the
time required to copy the message from the network to the node processor's address space. which
depends on the message length. This can be performed at about 50MB/s. Assuming an averag,
message length of 200 bytes. we chose CopyTime to equal 4000 ns, so c.delay was set to half
of that. or 2000 ns. I HopTime for the Anietek is defined as the time it takes for one b*vie
of a packet to advance one hop, assuming that the route has already been established. This
is stated to be .50 iis. (Establishing the route is slower, so the head of a packet requires two
HopTimes to advance one hop.) To make the Ametek packet latency equation conform to the
cs form. we factored out the 2 to get: CopyTime + 2HopTime(D + L/2). Now we can set
t.delay equal to 2l-opTime or 100 ns. When the simulation is run, the number of bytes ill a
packet is always cut in half. so that the L/2 term in the Ametek equation matches the L term
in the CBS equation. Also. since the Ametek 2010"s processing elements are about five times
faster than the Multiinax's processing elements. we divide the times obtained on the Encore
processing elements by a factor of five before using them as arguments to the delay statement.

2.3 Shared Memory Traffic Evaluation

While for the message passing implementation. the network traffic is directly given by cBs. there
is no simple way of estimating traffic for the shared memory implementation. In order to make
comparisons of the traffic required for message passing and shared memory approaches. we need
a method for measuring the traffic generate by j.ocusRoute on a shared memory machine.
Although we have the capability to directly trace all nWrnory references [20.22]. these direct
methods require a large amount of memory. which limits the portion of the program that can be
traced to about 1 wire per processor. As will be described in Section 3, updates in the message
passing approach can occur at time intervals greater than the total time being monitored by these
detailed trace methods. making traffic comparison difficult. Instead we have chosen to modify
the shared memory version of LocusRoute to record information about the memory reference
stream over the whole execution time and use this information to estimate total traffic.

Before explaining the traffic estimating program, we will first explain in detail the type of 4
machine to be simulated. This work considers a shared memory multiprocessor with a single
global bus that all processors use to access memory. Each processor has a private cache memory.
and consistency is maintained by dedicated cache coherence hardware using a Write Back with
Invalidate scheme. The traffic being measured in the shared memory version is the traffic on
the shared global bus. 2

With the above machine model in mind, we now describe a method for estimating the
bus traffic. The uniprocessor version of LocusRoute is modified to record memory reference
information. Data is printed to a trace file whenever one of four types of events occurs. The
four event types are described below:

1. Wire event: Whenever routing of a new wire is begun, the time and wire name are
recorded as a trire etent in the trace file.

'C..delay is a parameter set at the time the simulator is compiled. Therefore. one cannot compute c.delay
dynamically.

2Our traffic estimating program can simulate non-bus-oriented archilecturec as well. hut since we are only
considering 16 procebsing elements, we present data only for the bus-based scheme.

2. Iteration event: \Vhen a liew iteration is begun. the time at which it was begui is
recorded as an it rltion c,(t nt in the trace file. These first two events are needed by I 1w
traffic evaluator for interleaving the execution among several processors.

3. Read event: LocusRoute is structured so that a processor reads data from the cost array
when it evaluates possible routes for a wire segment. For each route considered. a processor
reads all the locations of the cost array along the path of the route. At the beginning of
each of these read sequences. a read tvent is recorded in the trace file. with the time. and
the locations affected by the reads.

4. Write event: A processor writes data at two times: (i) at the end of exploring alternative
routes. and (ii) when it does a rip-up before starting to explore routes. Both of these are
recorded as write events in the trace file along with the time at which they are begun. and
the locations affected by the writes.

All events are assumed to be atomic: one time is recorded in the trace file at the begillning
of the read or write sequence. and all reads or writes associated with that event are assumed to
occur at that time.

The trace file described above records the relevant memory access information about a
uniprocssor run of LocusRoute. The events recorded in the trace file give enough informa-
tion to interleave execution among more processors. so that multiprocessor traffic data can be
estimated using the steps described here. First. the simulator decides on an assignment of wires
to processors. using one of the heuristics from Section 3. At this point, each event in the trace
is associated with a certain wire. and each wire has now been assigned to a processor. so all the
events are now associated with the processoexecting them. Events for each processor can be
interleaved using the times recorded in the trace file. To sWulate the traffic, events are pulled off
the interleaved event queue and handled in order. The cache coherence protocol implemented
is \\'rite Back with Invalidate Scheme [2]. The first write to any cache line results in a bus
operation which causes all other caches to invalidate that line if it is present. Subsequent reads
or writes by that processor do not result in any bus traffic. A read or write by another processor
to that cache line causes that processor to become the owner. and forces the previous owner to
invalidate the line from its cache.

Like any such measurement system, ours has its inaccuracies, which we will list here. First. 41
the system simulates infinite caches. Lines are only written back to memory for coherency
reasons. never simply for replacement. Because the data structure we are studying is smaller
than most multiprocessor caches (about 8000 bytes), this is not a major flaw. Second. we assume
that read and write events, which are conglomerations of several read or writes, occur atomically.
In actual execution, these operations occur as sequences of operations in tight (single instruction)
loops. The atomic assumption only leads to inaccuracy when a read event and a write event, or
two write events, that should be occurring simultaneously become serialized by the simulator. If
these events were occurring in the same area of the cost array, then their simultaneous execution
would lead to multiple invalidations and refetches. If they are serialized. at most one invalidation
and refetch will occur. This will cause the simulator to slightly underestimate the total traffic.
This is not a major effect. because write operations are relatively infrequent, so simultaneous
reads and writes to the same cache line are hip.hly improbable. Both of the inaccuracies tend to
slightly underestimate the total traffic so that the numbers given in Section .5 may be considered

lower bounds on the actual traffic.

6

Owned Portmo of Cost Array

.. ,.ft, ,Unowrnd Poftion of Cost Arry

Figure 2: Division of the cost array among processors.

3 Implementing LocusRoute for a Message Passing Machine

Finally. before we go on to discuss the results. we need to specify how we mapped LocusRoute to
a message passing architecture. Because the message passing machine has distributed memory.
implementing LocusRoute required changes in the distribution and updating of information
between processors. To reduce message traffic on the network. a static method of assigning
wires to processors was used. rather than allowing processors to send requests out when they
need a wire. These changes are described below.

3.1 Distribution of Data Structurej
q

The most important data structure in the program, as pr 'iously stated. is the Cost Array. In
the shared memory version. all processors have access to a single copy of the cost array. The
message passing architecture forces the programmer to decide how the cost array should be
handled in a machine with distributed memory. We chose to divide the cost array into sections.
with each processor being the owner of one section. Each processor is. however, allowed to
have a view of the whole cost array. The portion that is owned by that processor will be as
consistent as possible. while the other portions of the cost array are less consistent. but still
usable. Consider. for example. a four processor case. Figure 2 shows each processor's cost array.
with the portion that it owns highlighted. Although. the unowned portions of each processor's
cost array may not be accurate. the processor is still allowed to make use of them. Thus. if there
are 4 processors. the bottom left processing element will own the bottom left fourth of the cost
array, but it will also have a copy of the rest of the cost array which it can use. In all future
discussion, the processor which owns a certain region of the cost array will be called the otcncr
processor for that region. and the region itself will be called the ou-ned region.

3.2 Maintaining Cost Array Consistency

No circuit is perfectly local, that is, wires assigned to one processing element will extend into
regions owned by other processing elements. Consequently. using the scheme discussed above
cost array updates between processors are needed. Many different methods of performing these
updates are possible: one can experiment with the frequency of updates. as well as how the
updates are initiated. The update frequency was allowed to vary. with updates occurring at
time intervals on the order of the time it takes to route one wire. The decision of whicli update

un/ii i m n Di

strategy to use depends heavily on the underlying computer archltecture. We laie considerod
two main types of updates. and variations on these. The two types of updates considerd are
tnhr initial(d updates. and fvci,'r initiated updates, as well as a mixture of these two.

With sender initiated updates. the processor which determines that an update is necessary
is the one to -end out the data. With receiver initiated updates. the processor which determines
that an update is necessary sends a request packet to another processor, and the destination
processor then sends back the requested update data. The architectural dependencies in these
schemes should be clear. For receiver initiated updates to be useful. the latency of the network
as well as the message reception time. must be low. so that the requesting processor spends a
minimal amount of time idle. waiting for the requested data. On the other hand. our results
shown in Section 4 indicate that sender initiated updates tend to send out more bytes than
receiver initiated, and therefore place a greater premium on high network bandwidth.

3.3 Wire Assignment

One advantage of the shared memory architecture is that the wires to be routed can be eas-
ily allocated to processors dynamically, using a distributed loop. ' In the message passing
architecture. dynamic wire allocation requires message transactions on the network. In our im-
plementation. processors only retrieve messages queued for them at the end of each wire routed.
Assuming that the processor receiving the task requests is also routing wires. the potential wait
for a wire task is large. because in this case. a processor may have to wait for an entire wire to
be routed before the wire assignment processor even receives the message. With this in mind.
a static method of wire assignment was used. Because of the division of cost array into owned
regions. the algorithm benefits from a metho, of wire assignment that attempts to assign wires
to the processor that owns the region they run though. We use a very simple heuristic devel-
oped to achieve this goal. We assign wires to the owneiprocessor of the lower leftmost pin of
the wire.

To control the amount of locality exploited, a parameter ThrfsholdCost is provided. If a
wire's "cost-, a function of its length. is less than the threshold, it will be assigned using the
heuristic described above. Otherwise. it is held in a pool of unassigned wires. and is assigned
to a processor at the end of the wire assignment phase. The processor it is assigned to is the
processor whose total wire cost is the current minimum. With this method. a high value of
ThresholdCost results in a wire assignment that is based primarily on locality, while a low value
of TbkresholdCost results in a wire assignment that is based mostly on load balancing.

4 Traffic in Shared Memory and Message Passing Architec-
tures

In this section, we present results on the traffic generated by shared memory and message passing

architectures. We think this is a useful measure because in both architectures overly high network
traffic results in a performance penalty. For example. since the message passing architecture
forces the cost array to be distributed across the processors. periodic update messages are needed
to keep the processors' views of the cost array consistent. There is computational overhead
associated with sending and receiving these messages, so one would like to update as infrequently

3 As,.ociated with a distributed loop is a locked index variable. To get the next wire to be routed, a processor
obtains the lock. reads and increments the index of the next wire to be routed. and release, the lock.

s

as possible. Similarly, in the shared memory architecture, hardware cache consistenicy protocol,
cause extra global bus traffic due to cache line invalidations and any subsequent refetches thal
may be needed. These operations cau.e the processor to stall, and also represent a performaiire
overhead. Although the degree to which network traffic translates to performance overhead
will be different for the two architectures, we contend that a comparison of the network traffic
between the two architectures is itself useful.

This section will show that traffic for the shared memory architecture is a strong funlction
of the cache line size. while traffic in the message passing architecture is explicitly controlled by
the programmer. This explicit control allows the traffic to be reduced by more than two orders
of magnitude compared to the shared memory traffic, and the program still gives comparable
solution quality.

4.1 Traffic in the Shared Memory Architecture

Here we consider traffic in the shared memory approach. Traffic in the shared memory, approach
is made up of 3 parts. First, the processor's very first access to a location always results in a
miss. and brings the line into the cache. Second, the first write to a clean location causes a
word write on the shared bus. The other processors see this write and invalidate that cache line
if it is in their cache. Third. once a line has been invalidated by a cache. it may need the line
again. This leads to refetches of data from memory. Traffic in the shared memory architecture
is. clearly, a function of the cache coherence protocol used. and the line size of the cache. For
all the results given here. the coherence protocol used was a Write Back with Invalidate scheme
[2]. The line size of the cache was allowed to vary.

Increases in the cache line size can have 4e effect of either increasing or decreasing traffic.
There are two factors which will increase traffic with incre*ing line size. First. with an increased
line size. data items that will never be used are more likely to be brought into the cache. This
will increase the traffic on the bus. Second. increasing the line size means there will be more
data in the cache (under the infinite cache assumption) and this means that processors are more
likely to interfere with each other. With more data in the caches. processors are more likely to
force invalidations in other caches. These invalidations, as well as the subsequent refetches. also
cause the traffic to increase. On the other hand. it is possible for a longer cache line to cause
a traffic decrease as well. If there are several shared data items stored relatively close to each
other, then a single invalidation of a long cache line could cause them to all be invalidated in one
operation. This can save bytes over the case of several individual invalidations, and cause the
traffic to decrease. Because this last situation happens infrequently, its effect is minor compared
to the first two. Thus, we expect that increasing the cache line size will lead to an increase in
the number of bytes transferred.

Table 1 shows the shared memory bus traffic as a function of the cache line size. As predicted.
the data clearly shows that the traffic increases significantly as the line size increases. For
example, in the MDC circuit, a cache line size of 4 bytes causes the total traffic to be 932.976
bytes while a larger cache line size of 32 bytes causes the traffic to increase sharply to 5,840.280.
more than five times as much.

Solution quality and execution time are not available for the wire assignments shown in
Table I because the actual shared memory implementation uses a dynamic wire assignment..
The simulator does not actually route wires, so it cannot output solution quality or execution
time values. However, for comparison with the message passing figures presented later in the
paper. the shared memory version of LocusRoute running on an Encore Multimax with 16

9

Table 1: Traffic as a function of cache line size in shared memory versioii.

Circuit 11 Cache Line Size I Bytes Transferred

bnrE 4 769.788
8 1.306.152

16 2.429.764
32 4.712.540

MDC 4 932.976
8 1.596.940

16 3.043.941
32 .5.840.280

processors can route the bnrE circuit in a time of 5.59 seconds with a height of 136. For MDC.
the solution quality is 144 in a time of 5.78 seconds.

4.2 Traffic in the Message Passing Architecture

Now that we have presented data from the shared memory architecture. we move on to the
data from the message passing architecture. comparing the two as we go. Traffic in the message
passing approach is determined by the programmer. subject to the constraint of acceptable
solution quality. The programmer controls the size of messages, as well as their frequency. The
results given in Table 2 show the traffic requ~ed bv the message passing approach with varying
update strategies. All the results given are for 16 proceilors. Because of the explicit tradeoffs
in the message passing approach between network traffic. solution quality, and execution time.
one cannot discuss the amount of network traffic required without also discussing the update
strategies used and the resulting solution quality and execution time. Table 2 shows data for
three different update strategies (discussed in Section 3.2). Recall that, in a sender initiated
strategy. it is the sender of the update that determines when the update should be sent. In the
receiver initiated strategy. the processor wishing to receive an update sends a request to another
processor. who then returns the data. The third strategy is a mixture of the other two. In this
third mixed approach, sender initiated updates occur with the same frequency as in the purely
sender initiated strategy. and receiver initiated updates occur with the same frequency as in the
purely receiver initiated approach.

4.2.1 Network Traffic

There are two points to be made about the message passing network traffic. First, there is a
large difference between bytes transferred for sender initiated and receiver initiated. Intuitively.
one would expect the receiver initiated approach to be more efficient in terms of network traffic.
because data is only sent when it is specifically requested. In contrast, in the sender initiated
approach, data is sent periodically, regardless of whether the destination processor is routing
wires in that area and needs that data or not. Consequently, one would expect a larger number
of bytes to be necessary to get the same quality as receiver initiated. The data. shown in Table
2 bears out this intuition. Receiver initiated transfers use anywhere from 44c(7 to 71'7 fewer
bytes than sender initiated to produce similar quality results. Because sending and receiving

10

Table 2: Traffic in the message passing version.

Update Circuit Execution BytIes
Circuit method Height Time Transferred

Sbn rE Sender Initiated 145 1.603 1.56468
bnrE Receiver Initiated 150 1.210 87572
bnrE i Mixed 146 1.519 245270

INMDC Sender Initiated 150 2.171 236304
MDC Receiver Initiated 156 1.635 85646
MD ' Mixed 153 2.208 324914

messages has a computational overhead, the savings in network traffic translate to time savings
as well. For all the trials given in Table 2, the receiver initiated method is about 20'7(faster
than the corresponding run using the sender initiated method.

The second point to note about the network traffic on the message passing architecture is
that. even with the less efficient sender initiated method. the message passing network traffic is
more than an order of magnitude less than that for shared memory. The huge difference may.
at first glance, be surprising. but it can be explained by two factors. First. the updates being
performed in the message passing version occur. at most. once per wire. In the data shown in
Table 2. they occur approximately every two wires. Second. these updates can be thought of as
constituting a very loose form of coherence pjotocol. There are several differences between this
protocol and the strict one implemented on the sha~ed memory system. Because updates occur
no more frequently than once per wire. the write perfor0rd at the wire rip up stage is handled
at the same time as the write performed at the wire routing stage. Because much of the wire's
path will remain the same after rerouting. these two writes will often cancel each other. and
many of the locations will not need to be updated at all. 4 This removes many of the write
operations. a significant accomplishment since writes are the cause for over 807 of the bytes
transferred in the shared memory version.

4.2.2 Solution Quality

A discussion of network traffic in the message passing approach is incomplete without also
discussing the solution quality and execution time required. The first point we note is that the
solution quality. that is the height of the circuit, has degraded slightly from the quality given
by the shared memory version, but is still acceptable. Recall that the solution quality for the
shared memory approach was 136 for bnrE and 144 for MDC.

Some quality degradation can be expected in the message passing approach, because less
information is available to each processor as it is routing. For example. the cache coherence
hardware on the shared memory machine guarantees a perfectly consistent view for all processors
at all times. The only inconsistency in the shared memory approach comes from not locking the
cost array. and as previously explained, this has no noticeable effect on the quality. By contrast.
in the message passing approach. updates occur only after the processors have each routed

'In the message passing implementation, a delta array is maintained which records change, made to the cost
array. If no changes are Yr-le to a location. or the changes cancel each other, updates for that location need not
be sent.

11

Ole or mnore wires. This leads to a much larger level of icoisistenvcy in the processors* cosI
arrays. In the worst case. the solution quality in the message passing approach hja' degraded
by I OV, from the shared memory solution quality. LocusRoute is intended to be used with
a standard cell placement program, so that once the placement program has decided on a
placement, LocusRoule performs the touting for that placement. LocusRoute returns the circuit
height as a measure of that particular placenurt "* quality. Thus, in this situation. slight declinjis
in the quality of the routing can be tolerated. However, if LocusRoute is used to produce
the final routing for a circuit that is to be mass produced. this increased area could become
quite significant. For these cases, this characteristic of the message passing implementation of
LocusRoute could make it undesirable.

Section 5 will discuss how the quality of the solution can be improved somewhat by exploiting
locality in the wires. However. another obvious way to improve the solution quality is by
increasing the frequency of updates. The best combination of execution time and solution
quality obtained for bnrE was a solution quality of 136 with an execution time of 1.7 seconds
and 813,542 bytes transferred. Note that the quality of this run equals the quality given by the
shared memory version. The bytes transferred, while much larger than any of those in Table 2 is
still about a factor of two less than those measured for the shared memory version. Results such
as this indicate the robustness of the LocusRoute algorithm to inconsistencies in the cost array.
For LocusRoute. and other applications like it. hardware cache consistency seems to impose a
large cost on the execution of the program. without giving compensating benefits.

4.2.3 Execution Time

Now. we turn to the execution time. Execution time for the message passing version of Lo-
cusRoute depends heavily on the wire assigment, strategy for two reasons. If the wires are
not assigned in a way that will balance the load on th rocessors. execution time will suffer
greatly. This is discussed in Section 5.3.2. On the other hand, if the wire assignment does
not exploit locality well. more update packets will need to be sent to get the same quality, and
the extra processing time spent sending and receiving messages will show up in the final exe-
cution time of the run. In general. the execution times given in Table 2 are much faster than
those for the shared memory runs. However. recall that CBS is simulating processors which are
five times faster than the processors used when timing the shared memory version. A rough
comparison can be obtained by multiplying the execution times of the message passing version
by five. The fastest execution time obtained overall is 0.97 seconds for the receiver initiated
scheme. Multiplying by five, the execution time becomes 4.85 seconds which is still 13 faster
than the execution time from the shared memory case. The quality obtained in the message
passing run being considered was only 7% worse than the shared memory quality. Note that
simple multiplication by a factor of five when comparing the execution times favors the shared
memory architecture. This is because if the processors in the shared memory machine really
were five times faster, there would be more contention on the bus. and the overall performance
would not improve by a factor of five.

5 Effect of Locality

The previous section compared the network traffic required by LocusRoute in the shared memory
and message passing architectures. Here we examine the effecliveness of exploiting locality to
reduce this traffic in both architectures. Locality. here. is a measure of how often a processor is

12

rouling wires within its owned region or regions close by. (A quantitative measure is described
in Section .3.1.) Both architectures benefit different]v from exploiting locality. Message passilig
architectures benefit from locality because the need for message traffic to produce a certail level
of solution quality is reduced. This is because improving the locality of the wires routed by each
processor means that each processor will have a better view of the part of the cost array it is
routing in. aid fewer updates will be needed. Shared memory architectures benefit from localit*
through better cache behavior. Specifically, shared memory architectures benefit because of two
factors-betler spatial locality, and less interference between processors causing cache coherence
traffic.

In the past. locality has not played a major part in the design of shared memory parallel
programs. In a traditional global bus shared memory computer, all memory is equally acces-
sible to all processors. However. as hierarchical approaches are used to scale shared memory
multicomputers, this is no longer true. The current trend towards hierarchical shared memory
machines. in which a local reference can be more than an order of magnitude faster than a non-
local reference implies that locality must become an important part of future program design.
In this section we present data that indicates that implementations taking advantage of locality
can reduce the total network traffic by as much as 67%.

5.1 Effect of Locality in the Shared Memory Architecture

In this subsection. we study the effects of locality on the interconnection network traffic generated
by a shared-memory architecture. Table 3 shows the amount of network traffic generated as a
function of differing amounts of locality exploited in the application. The extreme non-local
case is taken to be the round robin wire assnment to processors. ajid the extreme local case
(ThresholdCost = infinity) is taken to be the one *here each wire is assigned to the processor
whose owned region contains its lower left pin. We alsoconsider two cases with intermediate
localit'.

Table 3: Effect of locality in shared memory version.

I Allocation Total Wires Held for Bytes Reduction from
Circuit strategy Wires round robin asmt. Transferred round robin (7)
bnrE round robin 420 420 1,306,152 1

ThresholdCost - 30 209 1,299,580 0.5
ThresholdCost = 1000 25 1,275,492 2.3
ThresholdCost = inf 0 1.219.576 6.6

MDC round robin 573 573 1,596.940
ThresholdCost = 30 263 1.608.520 -0.7

ThresholdCost = 1000 38 1.593.104 0.2
ThresholdCost = inf 0 1,516.468 .5.0

For bnrE with 8 byte cache lines, total global bus traffic can be reduced 6.67 by taking
advantage of locality in the assignment of wires. It is clear that locality is not producing the
significant benefit we had expected. The reason for this is that cache lines contain too many
cost array entries. Since each cost array entry is one byte. a cache line holds eight cost array

13

entries. This means that for each byte accessed. seven of its neighbors are brought in as well.
The increa.e in traffic brought about by interference between the caches maintaining coherentce
is almost as big as the decrease in traffic due to locality. To check this theory, we increas- the
size of the coqt array entries to 4 byte integers, so an 8 byle cache line will hold only two of
them. In this case. the total traffic for a round robin wire assignment is higher- up to 1.799.9k4
bytes. but the percent gain from exploiting locality is higher as well. For 4 byte array entries
with an 8 byte cache line. changing to the infinite ThresholdCost wire assignment reduces the
traffic by 15.6%. The reason for this bigger reduction is the following. With a cache line that
holds more array entries, the probability of interference between processors causing invalidations
is higher. Intuitively with these 1 byte cache entries, it is harder for a processor to be active
in only a small section of the cost array. because every time an array entry is accessed. eight
entries are fetched into the cache. If each processor has many "extra" entries in its cache. the
cache coherence traffic will reduce the benefit possible from exploiting locality. Obviously. we
are not concluding that all variables be made as large as possible. so that they interfere less
with each other. Rather. the conclusion is that care must be used when allocating memory for
write-shared data items. The notion. stemming from uniprocessor caches. that dense data will
display bet ter locality, and therefore better caching behavior, is no longer true when speaking of
multiprocessor cache coherent systems. In multiprocessor cache coherent systems. the benefits
of data density must be traded off with the penalty of increased coherency traffic.

5.2 Effect of Locality in the Message Passing Approach

Having examined the traffic in the shared memory case. we move to the message passing case.
where the effect of locality is much more sign cant. Data in Table 4 shows the effect of various
wire assignment strategies on the quality o the routed circuit. the execution time. and the
number of bytes transferred. A4

One can see that in general. wire assignments which do not take advantage of locality, such
as round robin, result in poorer solution quality than those that do. such as assignments made
with infinite ThresholdCost. The average quality improvement due to locality over the cases
shown in Table 4 is about 4V. While small. this improvement is quite significant. because the
results given are all quite close to optimal anyway, so even a small percentage improvement is
difficult to achieve. This data indicates that it is best to have a single processor route the wires
in one area, because that processor will have more accurate information about the cost array in
that area.

Having seen that exploiting locality improves the solution quality, the next question is. what
is the effect of locality on the number of bytes transferred? This depends heavily on the type of
update strategy used. In the sender initiated scheme, updates are sent out for any owned region
in the sender's array that has changed, so the only reduction in traffic will be due to changes
being made in fewer and smaller regions of the cost array. The change in bytes transferred
for sender initiated updates from a round robin assignment to a local assignment with infinite
ThresholdCost is 11.4%. The receiver initiated scheme will be more sensitive to locality, because
in this strategy. low locality results in frequent interprocessor data requests. A processor only
requests an update if it has routed in a certain owned region a specific number of times. If.
by exploiting locality, we reduce the frequency with which update requests need to be made.
we can dramatically reduce the message traffic. The data bears out this prediction. with a
traffic reduction of more than a factor of two in both circuits. when going from a round robin
assignment policy to a local one. Because the mixed strategv is made up partly of receiver
initiated requests. which are highly sensitive to locality and partly of sender initiated requests.

14

Table 4: Effect of locality in the message passing version.

Update Wire Circuit I Exec. Bytes Reduc. fromi
Circuit method Assignment Height I Time Transferred rnd-rbn (V)

bnrE Sender Initiated round robin 145 1.603 156468 -

ThrCost = 30 138 1.467 149562 4.4
Thr.Cost = 1000 139 1.647 141206 9.8
Thr.Co.t = inf 135 5.073 13R636 11.4

bnrE Receiver Initiaed round robin 150 1.210 87572 -
Thr.Cost = 30 145 0.970 76334 12.8
Thr.Cost = 1000 139 1.217 51582 41.1
Thr.Cost = inf 140 4.043 398.58 54.5

bnrE Mixed round robin 146 1.519 245270 -
Thr.Cost = 30 141 1.411 218568 10.9
Thr.Cost = 1000 142 1.601 179372 26.9
Thr.Cost = inf 140 4.864 169992 30.7

MDC Sender Initiated round robin 150 2.171 236304 -

Thr.Cost = 30 149 1.789 231310 2.1
Thr.Cost = 1000 147 1.909 225912 4.4
Thr.Cost = inf 148 5.323 223004 5.6

MDC' Receiver Initiated round robin 156 1.635 8546 -

Thr.Cos5t = J 155 1.203 70236 18.0
Thr.Cost = 1000' 1.5 1.192 50308 41.3
Thr.Cost = inf 12 4.479 28132 67.2

MDC Mixed round robin 153 2.208 324914 -

Thr-Cost = 30 158 1.707 291428 10.3
ThrCost = 1000 150 1.850 249578 23.2
ThrCost = inf 150 5.429 236804 27.1

which are not very sensitive to locality, the reduction in network traffic is between the two other
cases. The benefit gained by exploiting locality in the mixed sender/receiver case is larger than
in sender initiated, and smaller than in receiver initiated.

Of course, locality also has an effect on the execution time of the application. As one improves
the locality of the application, fewer update messages are needed, and the time the processors
spend sending and receiving messages is reduced. This has a direct effect on the execution time.
Unfortunately, there is another opposing effect as well. If all wires are assigned to processors
strictly on the basis of locality, it is likely that the resulting wire assignment will not be load
balanced. This effect will be discussed in Section 5.3.2.

5.3 Limitations on Exploiting Locality

The previous subsections have shown that exploiting locality to reduce execution time and
increase quality clearly has some benefit. Unfortunately, there are several factors which limit
the amount to be gained by taking advantage of locality in a problem. First. the standard cell

15

circuits themselves have only a limited anount of localiiy. If the wires to be routed are long
enough to pass througli the owned regions of several processors. there is an unavoidable aniomit
of interprocessor communication that will take place to perform the necessary updates. Further.
as the number of processors increases, the region size will decrease. and the locality will decreav,
as well. Second. fully exploiting the'locality that does exist can often interfere with the load
balancing of the processors. If there are many wires within a single processor's region. then
considering locality alone, that processor should route them all. However, this may cause that
processor to have a disproportionate amount of work. resulting in a load imbalance and poor
performance. These two issues are treated in the sections below.

5.3.1 Limited Circuit Locality

To determine an upper bound on the degree to which LocusRoute can take advantage of localil.
we developed a measure of the amount of locality in the standard cell circuits being used. Using
this measure. we found that the degree to which locality can be exploited is, in part. limited by
the circuits themselves. This section will first describe the method of measuring circuit locality.
and then analyse the results for the two benchmark circuits.

The measure is computed in the following steps. First. wires are assigned to processors
using one of the methods already described. Next. for each processor. the program computes
the number of wire segments to be routed in each region of the cost array. and the distance in
hops from the region where the segment lies to the processor performing the routing. Locality is
considered to be the average distance between the routing processor and the processor that owns
a region. weighted by the number of wire segments routed at this distance. Thus. a low number
meanr good locality. For example. a locality measure of 0 indicates that all segments were
routed by the region owner. giving perfect fcaitX. Increases in the locality measure indicate
that the average segment is being routed at a distance f~tber from the owner. Note that when
a wire assignment with infinite ThresholdCost is used for this calculation. one end of the wire is
guaranteed to be in the owned region of the processor doing the routing. In this case. the degree
of locality is mainly a measure of the length of the wire. compared to the size of the individual
cost array regions because it measures how many hops the other end of the wire is from the
lower left end. which is certainly in the region of the routing processor.

Computing the locality for the two test circuits. using several wire allocation strategies.
gave the results shown in Table 5. These results are computed assuming 16 processors. The4

results indicate that the amount of locality to be exploited in these circuits is limited. For the
bnrE circuit, using a round robin assignment, the average segment gets routed by a processor
1.96 hops away from the processor that owns the region the segment lies in. When the wire
assignment method is changed to one with ThresholdCost equal to infinity, the average segment
is routed by a processor only 1.24 hops away. As the number of processors is increased, the
locality in the circuit will decrease because the size of each owned region, formed by splitting
the cost array into equal chunks, will decrease. This limited locality in the circuits indicates that
the message passing approach may require substantially more message traffic with very large
numbers of processors than it currently does, and that the solution quality will be degraded as
well.

5.3.2 Tradeoff between Locality and Load Balancing

The requirement that a parallel program be load balanced is also a limitation on the benefit
possible from methods which exploit locality. To some extent. a circuit with good locality will

16

Table 5: Circuit locality.

I Allocatiol] Total J Wires Held for Measure of I
Circuit strategy Wires Round.roin a.smt. Locality
bnrE round robin 420 420 1.96

ThresholdCost = 30 209 1.77
ThresholdCost = 1000 25 1.30
ThresholdCost = inf 0 1.24

MDC round robin 573 .573 2.05
ThresholdCost = 30 263 1.58

ThresholdCot = 1000 38 1.04
ThresholdCost = inf 0 0.99

require fewer updates. and therefore. less time to execute. However, the effect of a load imbalance
can outweigh the subtle effect of the difference in update time. Therefore. in terms of execution
time. the optimal point is neither a fully load balanced circuit, where the update time becomes
significant. nor a fuDy local circuit. where the load imbalances become significant. but rather a
point between the two.

The data from Table 4 shows this quite clearly, with the optimal execution time in almost
every case being the ThresholdCost = 30 wire assignment. The most obvious example of the
negative effect of locality on load balancing ifexhibted in the move from the point with infinite
ThresholdCost to the point with ThresholdCost equal to,000. For example in the MDC circuit.
this change in the way the last 38 wires are assigned gives as much as a 737 execution time
reduction. However. wire assignments which use the most locality generally give the best solution
quality. When processors route in localized regions., each has a fairly consistent view of the area
it is routing in. Ultimately, this is a more effective way to produce good solution quality than
rionlocalized routing with periodic updates.

6 Conclusions

The goals of this research were to re-evaluate the tradeoffs between shared memory and message
passing architectures in light of the new features becoming prevalent in the two architectures.
Specifically, we studied the level of traffic required by each approach to maintain consistency.
and the effect of exploiting locality on this traffic. Although this study provides data from a
single application, we feel that it is representative of a class of applications which do not require
the strict consistency enforced by hardware cache coherence schemes.

We show that implementing the LocusRoute application on a message passing machine can
result in a dramatic decrease in the amount of interconnection network traffic. with only a
small negative effect on the solution quality. This is especially impressive because LocusRoute
has been touted as an excellent application for a shared memory architecture. However. this
dramatic improvement did have a cost. The explicit control afforded, and in fact required. by
the message passing architecture requires significantly larger programming effort. The decisions
of how to partition the cost array among the processors, how to initiate updates. how frequently
updates should occur, and how to assign wires to processors. all involve complex tradeoffs and

17

much progranindng.

We further show that exploiting locality in the message passing cae can have a positive
effect on all three of the factors studied in this paper: solution quality., network traffic. alnd to a
lesser extent. execution time. What, then. is the cost of exploiting it? The answer. once again. is
that exploiting locality currently requires more programmer effort than using a simpler metlhod
which does not exploit it.

In this paper. we also studied the shared memory approach. examining the traffic necessary
to maintain cache consistency. We found that the bus traffic in a shared memory architecture
can be as much as two orders of magnitude larger than the network traffic in a shared memorY
approach. In an absolute sense, however, the amount of traffic is not excessive. For this rea.sor,.
in applications where the improved solution quality given by the shared memory implementation
is important. it appears to be the correct choice. Perhaps the most compelling benefit, however.
of the shared memory architecture is the easy and natural programming environment it provides.
The hardware cache coherence enforced enables programs to be developed and debugged more
quickly and easily.

We also presented data indicating that traditional bus-based shared memory machines are
not extremely sensitive to exploiting locality. In the LocusRoute application, this is in part due
to the difficulty of singling out the array elements needed by each processor. In general. even
in the most local wire assignment method. interference between processors is still a problem.
Sharing of cost array information leads to a large number of invalidations and refetches. However.
future machines relying on hierarchies to scale the total number of processors. are expected to
be more sensitive to locality. As these architectures become available, more research will be
needed to automatically detect and exploit locality in parallel programs.

7 Acknowledgements 40

We would like to thank Jonathan Rose for his patience in explaining the LocusRoute appli-
cation to us, and Andreas Nowatzyk for his prompt. helpful replies to questions about CBS.
Margaret Martonosi is supported by a fellowship from the National Science Foundation. Anoop
Gupta is supported by DARPA contract N00014-87-K-082B and by a faculty award from Digital
Equipment Corporation.

18

References

[1] Anan Agarwal. Richard Simoni. John Hennessy. and Mark Horowitz.
Scalable Directory Schemes for Cache Coherence.
In Proc. 15th Annual Internationial Symposium on Computer Architecture, June 19.8.

[2] James Archibald and Jeai-Loup Baer.
Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation Model.
A CM Transactions on Computer Systems, 4(4):273-298, November 1986.

[3] William C. Athas and Charles L. Seitz.
Multicomputers: Message-Passing Concurrent Computers.
IEEE Computer, 21(8):9-24. August 1988.

[4] David Cheriton. Anoop Gupta. Patrick Boyle, and Hendrik Goosen.
The VMP Multiprocessor: Initial Experience, Refinements. and Performance Evaluation.
In Proc. Fifteenth Annual Symposium on Computer Architecture, 1988.

[5] Encore Computer Corp.
Afultimax Technical Summary.
1986.

[6] W. J. Dally and C. L. Seitz.
Deadlock-Free Message Routing in Multiprocessor Interconnection Networks.
IEEE Trans. Computers. 36(5):547-553. May 1987.

[7] William J. Dally.
A VLSI Architecture for Concurrent Data Structures.
Kluwer Publishers, 1987. f

[8] William J. Dally. d
Wire Efficient VLSI Multiprocessor Communication Networks.
In Stanford Conference on Advanced Research in VLSI. pages 391-415, 1987.

[9] William J. Dally., Linda Chao, et al.
Architecture of a Message-Driven Processor.
In Proc. 14th Annual International Symposium on Computer Architecture. June 1987.

[10) Ametek Computer Research Division.
Series 2010 System General Description Issue 3.
1988.

[11] J.P. Hayes et al.
A Microprocessor-based Hypercube Supercomputer.
IEEE Micro, 6(5):6-17, October 1986.

[12] BBN Laboratories Inc.
Butterfly Parallel Processor Overview.
1986.
BBN Report No. 6148.

[13] Andrew W. Wilson Jr.
Hierarchical Cache/Bus Architecture for Shared Memory Multiprocessors.
In Proc. 14th Annual International Symposium on Computer Architecture, pages 244-251.

June 1987.

[14] C. R. Lang Jr.
The Extension of Object-Oriented Languages to a Homogeneous. Concurrent Architecture.

19

Depl. of Computer Science. California lnstitule of Teclmology. Technical Report 5014. May
1982.

[15] Andre,; Nowatzyk.
cBs: A Message Passing Cube Simulator.
Unpublished report. 1988.

116] G.F. Pfister. W.C. Brantley. el al.
The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture.
In Proc. International Confrrencf on ParalI Processing. 1985.

[17] Jonathan Rose.
LocusRoute: A Parallel Global Router for Standard Cells.
In De sign Automation Conferenct, pages 189-195. June 1988.

(18] Charles L. Seitz. William C. Athas: et al.
The Architecture and Programming of the Ametek Series 2010 Multicomputer.
In Hypmrcul, Concurrent Computer6 and Applications. ??? 1988.

[19] Richard Simoni.
Implementing a Direclory-Baqed Cache Consistency Protocol.
Unpublished report. July 1988.

[20, Richard L. Sites and Anant Agarwal.
Multiprocessor Cache Analysis using ATUM.
In Proc. 13th Annual International Symposium on Computer Architecture. June 1955.

1211 H. Sullivan and T.R. Bashkow.
A Large Scale Homogeneous Machine.
In Proc. Fourth Annual Symposium onfompgter Architecture. pages 10.5-124. 1977.

122] Volf-Dietrich Weber and Anoop Gupta. I

Analysis of cache invalidation patterns in multiprocessors.
To be published in Third Intl. Conference on Architectural Support for Programming Lan-

guages and Operating Systems, April 1989.

2

20

Experiences Implementing a Parallel ATMS on a
Shared-Memory Multiprocessor

Edward Rothberg and Anoop Gupta
Department of Computer Science

Stanford University
Stanford. CA 94305

November 8. 1988

Abstract
The Assumption-based Truth Maintenance System (ATMS) is an important tool in Al. So far

its wider use has been limited due to the enormous computational resources which it requires. We
investigate the possibility of speeding it up by using a modest number of processors in parallel. We
begin with a highly efficient sequential version written in C and then extend this version to allow
parallel execution on the Encore Multimax. a 16 node shared-memory multiprocessor. Our parallel
implementation gives speedups of between 4.4 and 6.7 using 14 processors for the ATMS trace files
which we examine. We describe our experiences in implementing this shared-memory parallel version
of the ATMS. present detailed results of its execution, and discuss the factors which limit the available
parallelism.

1 Introduction

The Assumption-based Truth Maintenance System (ATMS) is an important tool in Al. It makes the
task of designing a problem solver much easier, removing the need for the problem solver to maintain
information concerning derivations which it makes. Without an ATMS, the problem solver must implicitly
record which of its assumptions it, currently believes to be true and what these assumptions imply. When
it wishes to change its assumption set, it must also recompute the set of items which are implied. With
an ATMS, the problem solver explores the problem space, informing the ATMS of the assumptions it
makes, the items which it wishes to reason about, and the derivations which it makes concerning these
items. The ATMS aids in the process by keeping track of which items hold under any given assumption
set, thus allowing the problem solver to freely change the set of assumptions which it currently believes.
A number of problem solvers have been built which use the ATMS in a number of Al subfields. The
ATMS provides a convenient level of abstraction, greatly simplifying the structure of the problem solver.

SQ far wider use of the ATMS has been limited due to the enormous computational resources which
it requires. The ATMS is often the bottleneck in the problem solving process, often having greater
computational requirements than the problem solver which it is collaborating with. We investigate the
possiblity of speeding up the ATMS by using a modest number of processors in parallel. We begin with a
hightly efficient C-based implemention of the ATMS based on the techniques described in [1]. Through a
number of modifications to the basic sequential ATMS, we obtain moderate speedup on the three examnple
problem solver trace files which we examine.

The paper is organized as follows. Section 2 presents background information about the ATMS and
introduces related terminology. Section 3 presents details of an efficient sequential implementation of the
ATMS. Section 4 presents the modifications to the sequential implementation which were necessary to
allow parallel execution. Section .5 presents the results of executing the basic parallel implementation. We
discuss the bottlenecks encountered and introduce a number of modifications to the basic algorithm to
deal with these bottlenecks. Section 6 presents the conclusions which we arrive at based on the observed
results.

2 The ATMS

The ATMS serves as a companion to a problem solver, acting as a sort of "truth database-. The problem
solver feeds beliefs, contradictions,. and implications to the ATMS. The ATMS keeps track of what is true
under what assumption sets and why. In this section we illustrate how the ATMS is used and introduce
the terminology with a brief example. The example problem that we solve is the 3-queens problem. It
consists of finding placements for three queens on a 3 by 3 chessboard such that no queen can capture
any other.

Everything which the problem solver reasons about is assigned an ATMS node. In the 3-queens
example we use 10 nodes. one for each of the 9 squares on the chessboard and one goal node to represent
the solution. Each chessboard node represents the placement of a queen on the corresponding chessboard
square. Some subset. of the ATMS nodes are designated to be assumptions. These are nodes which are
presumed to be true unless there is evidence to the contrary. In the example, the 9 nodes assigned to
chessboard squares are the assumptions. We assume that a queen can be placed at each square of the
board. Every important derivation made by the problem solver is recorded as a justification:

X 1 X 2, .. n

where z 1. x_.... are the antecedent nodes and n is the consequent node. In the example. the problem
solver tells the ATMS that any set of three queens placed on the board constitutes a solution. Thus. the
justifications take the form:

position,, position,, position3 =: goal-node

where positioni is an assumption which corresponds to a queen being on a particular square on the
chessboard. An ATMS environment is a set of assumptions. A node n is said to hold in environment
E if n can be propositionally derived from the union of E with the current set of justifications. An
environment is inconsistent (called nogood) if the distinguished node I (i. e. false) holds in it. In the
3-queens example, we declare any set of assumptions in which the corresponding board positions contain a
capturing pair to be nogood. The answer to the 3-queens problem is the set of all consistent environments
in which the goal node holds.

In the ATMS, sets of environments play an important role in keeping track of the contexts under
which a given node holds. They are used extremely frequently, and consequently we need a concise
representation for a them. In our representation, we can take advantage of the fact that if a node holds
under environment E, then it also holds under any superset of E. We can therefore represent a set
of environments by its smallest members. We choose to represent a set S of environments as a list
(El, E2,.. .), which we call a minimal environment list. It has the following properties:

" Every environment in the set S is a superset of some Ei.

" No Ei is a subset of any other.

* No Ei is nogood.

The distinction between sets of environments and sets of assumptions presents a possible source of confu-
sion. For example, consider the environments {A, B) and {A, B, C. Clearly {A, B, C is a superset of
{A, B}. Yet. the minimal environment list ({A, B. C)) represents a subset of the minimal environment
list ({A, B)): the second contains environments which do not have assumption C in them, while the first
does not. Please keep this potential source of confusion in mind when we discuss environment supersets
and subsets in the remainder of this paper.

The problem solving process involves a dialogue between the problem solver and the ATMS, in which
the ATMS receives a stream of requests to create new nodes, new assumptions, new justifications, and to
provide information on the environments in which nodes hold. This information can be easily provided
if the ATMS maintains with each node n a set of environments, in minimal environment list form, called
its labil. In addition to the minimal environment list properties, each node's label has the following two
properties:

2

; an assumption for each board position
Create-Assumption "Queen at 1-1"

Create-Assumption "Queen at 3-3"

; and a node to represent a solution
Create-Node "Goal"

; all capturing pairs are inconsistent
Justify-Node "FALSE" by "Queen at 1-1" "Queen at 1-2"

Justify-Node "FALSE" by "Queen at 1-1" "Queen at 1-3"

Justify-Node "FALSE" by "Queen at 1-1.. "Queen at 2-1"

Justify-Node "FALSE" by "Queen at 1-1" "Queen at 2-2"

Justify-Node "FALSE" by "Queen at 1-2". "Queen at 1-3"

Justify-Node "FALSE" by "Queen at 3-2". "Queen at 3-3"

; the goal node is implied by any set of 3 assumptions

; (the problem solver discards those sets which will
; obviously not lead to a solution)
Justify-Node "Goal" by "Queen at 1-1.. "Queen at 2-3" "Queen at 3-2"
Justify-Node "Goal" by "Queen at 1-3". "Queen at 2-1" "Queen at 3-2"

Figure 1: A Simple Formulation of the 3-Queens Problem

" Label soundness - Node n holds in every environment in the label set.

" Label completeness - Every environment E in which n holds is a member of the label.

2.1 The Interface Between the Problem Solver and the ATMS

The four basic operations which the ATMS makes available to the problem solver are:

" Create-Node n - create a new node.

* Create-Assumption n - create a new assumption.

" Justify-Node n by xjz,... - add a new justification.

" Node-Query n - request the current label of node n.

The problem solving process is a collaboration between the problem solver and the ATMS. In solving
the 3-queens problem, the problem solver could indiscriminately feed all of the above mentioned jus-

tifications and nogoods to the ATMS and let the ATMS sort through them. Because the ATMS has

no problem-specific knowledge, though, this results in a great deal of avoidable work being done. For
example, the problem solver knows that a solution to the 3-queens problem will never have 2 queens
in the same column or the same row, so it could simply reject any justifications which would obviously
not result in a solution without passing them on the ATMS. To keep execution time to a minimum, the

problem solver must he careful about the commands it passes to the ATMS. Figure 1 illustrates how
the 3-queens problem might be formulated in the ATIMS framework. DeKleer discusses in [21 how the

problem solver can efficiently interact with the ATMS. In this paper, however, we do not address this
issue. We simply deal with how the ATMS can efficiently handle the commands which the problem solver
passes to it.

3

3 Sequential Implementation

We now examine how the sequential ATMS is actually implemented. with emphasis on those aspects of
the implemention which are relevant to parallel execution. Since we will be computing t lie speedups of the
parallel implementation based on the execution time of the sequential implementation, we must make sure
that sequential version is as efficient as possible. While it may be possible to obtain substantial speedups
as compared with an inefficient sequential implementation, such results give little information about how
much parallelism is available in the problem. The only way to get a true measure of how much parallelism
in the problem is actually being exploited is to begin with an efficient sequential implementation.

This section is organized as follows. Section 3.1 gives a general overview of an efficient ATMS im-
plementation. Section 3.2 describes how set operations are done on minimal environment lists. Section
3.3 presents the data structures used to represent environments, nodes, assumptions, and justifications.
Section 3.4 describes the three problem solver trace files which we will examine. We compare the per-
formance of our sequential implementation with the performance of an existing ATMS implementation
on these three trace files. Section 3.5 describes the environment database, the data structure which is
used to keep track of those environments which are consistent and those which are nogood. Section 3.6
then gives a detailed description of the steps involved in computing an environment list cross product.
Finally, Section 3.7 gives the details of how the union of two environments is computed.

3.1 Implementation Overview

The overall structure of the ATMS is as follows. The problem solver places Create-Node, Create-
Assumption, Justify-Node, and Node-Query messages on a shared command queue The ATMS repeatedly
removes available commands from the queue. Given a command. it performs the requested action, re-
stores node label soundness and consistency for all nodes in the inference graph, and is then ready to
perform the next command.

Of the four commands which the ATMS makes available to the problem solver, only Justify-Node
consumes significant amounts of time. The Create-Node command takes very little time, since at the
point at which the node is created it does not participate in any justifications. The Create-Assumption
command also takes little time for the same reason. In our 3-queens example, the one Create-Node and 9
Create-Assumption commands simply require the ATMS to initialize the appropriate data structures. The
Node-Query command is also computationally inexpensive because of the properties of label consistency,
soundness, completeness, and minimality. In order to process a Node-Query command, the ATMS simply
returns the current label of the appropriate node.

The ATMS spends the vast majority of its time in processing new justifications. A new justification
can cause an enormous amount of label updating and environment propagation. When a new justification

X1, Z2,... - : n

arrives at the ATMS, the labels of node n and any nodes which depends on node n may no longer he
complete. Node n may now be derivable from a new set of assumptions not currently in node n's label
because of the new justification. If this is the case, node n's label must be updated. If node n's label
changes. then the label of every node which depends on node n may also change. Thus any change to
node n's label must be propagated to every successor of node n.

A new justification can also cause new nogood environments to be discovered, potentially causing
the node label of any node in the inference graph to become inconsistent. The simplest example of this
would be a justification whose consequent is the false node. Conceivably, however, any justification whose
consequent node n can derive the false node can cause new nogoods to be generated. In order to restore
node consistency, environments which become nogood must be removed from all node labels.

In order to handle propagation of node labels, the ATMS maintains an Update request stack. Any
time a node label is changed. Update requests are placed on the request stack, one for each justification
which has the modified node as an antecedent. The first step in the processing of a new justification is
to push an Update request onto the request stack. The ATNIS continues popping Update requests off

4

of the Update stack. processing the requests. and potent.ially pushing more requests onto the stack until
the stack is empty. This corresponds to a depth first, propagation of labels.

A single Update request is processed as follows:

* The set. of consistent environments which derive the consequent using the new justification and the
new label environments is computed. This set is the intersection of the new label environments of
the one antecedent with the labels of the other antecedents of the justification.

" If the consequent is the false node. then all of these environments are recorded as nogood and

removed from all node labels.

" Otherwise. these environments are compared against the existing label of the consequent.

" If they are already there. then the propagation due to this justification is complete.

" Otherwise. the consequent node label is set equal to the union of the previous label and the new
set of environments.

" The changes to the consequent label. i.e. the set of environments in the label which were not
present in the previous label, are propagated to all nodes which depend on the consequent. This is
accomplished by creating one Update request for each justification which has the current consequent
as an antecedent. The Update requests are pushed onto the request stack.

3.2 Set Operations on Minimal Environment Lists

Adding a new justification requires a number of set operations on sets of environments, including set union
and set intersection. The minimal environment list representation allows us to perform these operations
quickly. Given two environment sets. S and T, represented as (El, E2, ...) and (F1 , F2 ,...) respectively.
we perform set operation on them as follows:

When we wish to add a new set. of environments to the label of a node, we must take the set union
of the existing label with the set of new environments. The set union of S and T, in minimal form is the
concatenation of the minimal forms of S and T, with all supersets removed. In other words, each E is
checked against each F for subsumption. If some F is a subset of Ei, then Ei is not included in the
union. Similarly, if E subsumes some Fj, then F is also not included. All other E, and F are included.

When we wish to compute the effect of a justification on its consequent node, we must find the set
intersection of all of the labels of the antecedent nodes. The set intersection of S and T is somewhat
more involved than the set union. If all supersets of Ei are in S and all supersets of F are in T, then
all environments which are supersets of both Ei and Fj are in S nf T. The set of all supersets of both
E. and F is the set of all supersets of the union of Ei and F (remember that environments are sets of
assumptions). For example, the intersection of the supersets of {A, B) with the supersets of {B, C) is the
supersets of {A, B, C), which is the union of {A, B} with {B, C). Thus the intersection of S with T is
the set of all supersets of the pairwise unions of Ei with F. Thus, in minimal environment list form, this
is the cross product of the minimal environment list forms of S and T, again with all supersets removed.

3.3 Data Structures

The efficiency of the ATMS is highly dependent on the data structures and algorithms used in the
implementation. A straightforward ATMS implementation can literally take days [8] to solve a problem
which a more sophisticated implementation solves in a few minutes. We first present the major data
structures used in our ATMS implementation. The data strucutures are simply laid out here with brief
des. riptions: the purpose of each individual field will be made clear in later sections.

The environment data structure has the following fields: (1) Presenl: a bit vector representing the
set of assumptions present in the environment. (2) Constituents: a linked list of all assumptions present
in the environment. (3) Size: the number of assumptions present. (4) Confra: a flag indicating whether
the -nvirooi-irnt is consistent. (5) j 'l ere: a linked list of all nodes which contain this environment in

i , , I I I l II I

Table 1: Trace file statistics.
QPE BUG 8-Q

Nodes 988 1705 131
Assumptions 36 62 64
Justifications 2584 4165 1192
Run time - deKleer's on Explorer 1 118 182 ?
- ours on MultiMax 40.44 92.08 35.61
- ours on VAX 3200 15.45 34.21 13.8

Table 2: Runtime breakdown - Our Implementation on MultiMax
QPE B UG 8-Q

Run time (s) 40.44 92.08 3.5.61
Time spent on Justif ,s 32.34 79.00 32.21
Time spent on file access 6.46 10.68 2.42
All other time 1.64 2.42 0.98

their labels. (6) Orthogonal: a bit vector representing the set of assumptions which, if added to the

environment, would result in a nogood environment.

The node data structure has the following fields: (1) Label: the node's label. (2) Assumption: a pointer
to the node's assumption fields. if the node is an assumption. Empty otherwise. (3) Justifications: a
list of the justifications in which the node is the consequent. (4) Consequences: a list of justifications in
which the node is an antecedent.

The assumption data structure has the following fields, in addition to its node fields: (1) Binary: a
bit vector representing the set of all binary nogoods this assumption participates in. If bit j is 1 in the
Binary field of assumption i. then the environment {i, j} is nogood. (2) Nogoods: a table of all minimal
nogood environments in which the assumption belongs.

The justification data structure has the following fields: (1) Antecedents: a list of antecedent nodes.
(2) Consequent: the consequent node.

3.4 The Trace Files

We present the results of executing three problem solver traces on our ATMS. These traces were given
to us by Johan deKleer. They were generated by monitoring the interaction between an actual problem
solver and an ATMS, and dumping the observed interaction into a trace file. The traces are:

* QPE, from a problem solver created by Ken Forbus [5] which solves Qualitative Physics problems.

" BUG, a trace which led to a bug in some ATMS implementation.

" 8-Q, from a problem solver which solves the 8-queens problem. This formulation of the N-Queens
problem differs somewhat from the one described earlier in this paper.

Table 1 provides information on the three traces. It also provides the runtime for the three traces.
both for the LISP-based ATMS implementation of deKleer [1] and for our C-based implementation. The
time quoted for deKleer's ATMS is from execution on a Texas Instruments Explorer I lisp machine.
The time quoted for our implementation is from execution on a single processor of an Encore Multimax
multiprocessor. The Encore MultiMax is a 16 node, shared-memory multiprocessor, with an NS 32032
(0.7.5 MIPS) microprocessor at each node. We also include the runtime on a more widely available
machine, a DEC VaxStation 3200, for reference purposes. These times include all costs involved in
processing the trace files from beginning to end. including the time spent processing the ATMS commands
and the time spent reading the trace files from disk.

In Table 2 we give a breakdown of where time is spent in our implementation. File access time
accounts for a substantial portion of the runtime, a portion which is not relevant when measuring true

6

ATMS performance. We will therefore ignore file access time in evaluating parallel ATMS performance.
Also. if we ignore file access time, all but an extremely small amount of the runtime is spent processing
Justifv-Node commands. Since they are the clear bottleneck. we will concern ourselves strictly with
Justifv-Node commands for the remainder of this paper. All runtimes cited in the future will measure
only the amount of time spent processing Justify-Node commands.

3.5 The Environment Database

An ATMS environment has a large amount of information associated with it. The environment is either
consistent or nogood. It could appear in the labels of many nodes, or it could appear in none. When the
ATMS computes the union of two environments, it needs access to the information associated with the
resulting environment. The information could be recomputed each time the environment is encountered,
but some of the information is quite expensive to gather. In order to avoid having to recreate this
information, each encountered environment is given a unique physical representation in memory. In
other words, if two nodes have an environment E in their labels, they both really have pointers to the
unique structure representing the environment E. The unique representation, when combined with a
method for finding this representation for a given environment, allows us to do expensive checks once per
environment, not once per encounter.

The method we choose for quickly finding the unique representation of a given environment is an
environment hash table. Every environment which is encountered at any time in a problem execution is
stored in this hash table. When a new environment is encountered, the hash table is checked to see if the
environment has been encountered before. If it has not, the environment is added to the table. In this
way. the ATMS can store information about environments which can be quickly retrieved if needed.

WV'hen creating new consistent or nogood environments, the ATMS also needs quick access to large
sets of existing environments. For example. when a previously undiscovered cnvironment is encountered,
it must be checked for consistency. The ATMS must check the new environment against all nogood
environments which are smaller than it. If the environment is subsumed by some nogood, then it is
clearly also nogood. Similarly, when a new nogood is discovered, all consistent environments which are
larger than this nogood must be checked for subsumption. Any consistent environment which is subsumed
becomes nogood.

The data structure which seems to best serve these purposes is a pair of tables. Each table consists
of an array of lists of environments, sorted by environment size. Thus to find all environments of size
n, we must simply traverse the list in position n of the array. One table, the Consistent table, holds all
consistent environments encountered. The other table, the Minimal NoGood (MNG) table, holds the set
of nogoods which are not subsumed by any other nogood. Minimal nogoods are kept in order to keep
environment consistency checks as quick as possible; an environment which is subsumed by a nogood is
clearly also subsumed by any subset of that nogood.

We make two modifications to the simple MNG table for efficiency. First, we handle unary and binary
nogoods as special cases. The assumption data structure has a field entitled Binary which keeps track of
unary and binary minimal nogoods. If the environment {i,j} is nogood, then bit i in the Binary field of
assumption j and bit j in the Binary field of i are set. If the environment {i} is nogood, then bit i of
the Binary field of i is set. The second modification involves the Nogoods field of the assumption data
structure. Any minimal nogood environment in the MNG table will also be in the Nogoods table of each
assumption in the environment. These two modifications allow the ATMS to find all minimal nogoods
containing a given environment extremely quickly.

The Consistent and MNG tables form what we call the environment database. The environment
database, together with the environment hash table. makes the following frequent operations extremely
fast:

* Find a particular environment, with all its associated information.

" Find all consistent environments smaller (or larger) than a given environment.

" Fied all minimal nogoods which are smaller than a given environment.

Finally, the most prevalent operation in the ATMS is the subset test. The environnent representation
must therefore be chosen so that subset testing is extremely fast. A bit vector representatioli works
extremely well. A one in bit i of the vector indicates the presence of assumption i in the environment.
The bit vctor repreqentation allows subset testing by simply ANDing the bit vector of one environment
with the complement of the bit vector of the other environment. A bit vector representation also allows
fast hash function computation.

3.6 The Cross Product

When we handle an Update request. we need to compute the cross product of a number of minimal
environment lists, as was described previously. Assume we wish to take the cross product. of n minimal
environment lists 11.1 1, with 11 being the incremental update. We begin the cross product com-
putation by first checking to make sure that each i is non-empty. If any list is empty, then the cross
product is empty.

Next we loop through each list, creating mi, the cross product of l through Ii. We begin with
in, = 1l, and at each iteration we will compute mi+ 1 = mi x 1j+I, where both ,ni and mi+I are in
minimal environment list form. We do this by taking the union of each environment E in rin with each
environment F in 1j+1, using the method for finding unions to be described in the next section. The
resulting list is then minimized.

We can greatly decrease the amount of time it takes to compute mn by using the following two
techniques. First, if some environment E in mi is subsumed by some environment in the consequent of
the justification which we are updating, then clearly every environment in mi+l . .. m,, which is generated
from E will also be subsumed by this environment. We therefore check each environment in mi against
each environment in the label of the consequent and discard those which are subsumed. Line 13 in Table 3
shows the number of environments which are discarded in this way for the three trace files.

Second. consider taking the cross product of mi with 1i+I. If some environment E in mi is subsumed
by some F in 1,+I. then clearly E will be in mi+i. Since all environments which would result from taking
the union of E with some environment in 14+. are supersets of E and since E is in mi+1, none of the
resulting environments will be present in rni+,. We therefore check each E in mi for subsumption against
each F in 1i+I. If E is subsumed. then we can simply place it into m,+ 1 , and not take the union of E
with each environment in m+I. Line 14 in Table 3 shows the number of times that this occurs for the
three trace files.

If we compute the cross product, using these two techniques, the result is a minimal environment
list which represents the change to the label of the consequent node n. If the consequent is not the
FALSE node, we add each environment in our cross product to the label of node n. We must now restore
minimality in the label by checking every environment previously in the label for subsumption against
every environment just added to the label. We then propagate the cross product list, which represents
the changes to the label of node n, to every justification which has node n as an antecedent.

If the consequent is the FALSE node, then our cross product list is a set of environments which were
previously consistent but have just become nogood. We add them to the MNG table, and sweep through
the Consistent and MNG tables looking for subsumed environments. If an environment in the Consistent
table is subsumed, it is removed from the table and from the labels of all nodes which contain it (found
in the Where field of the environment). If an environment in the MNG table is subsumed, it is removed
from the table.

3.7 The Union of Two Environments

Computing the union of two environments is an extremely frequent and potentially extremely costly
operation in the ATMS. In most ATMS problems, the vast majority of all unions result in a nogood
environment (94V. 97V. and 83%, for QPE. BUG, and 8-Q, respectively). Table 3 shows the empirical
numbers for the three trace files. Line 1 gives the total number of unions computed, with Lines 2
and 3 giving the number of those which result in consistent and nogood environments, respectively. It
is therefore to our advantage to have a quick check to see if the result of a union is a nogood. The

L , -,imim mil IIIII[] ll

Table 3: Results of environment unions.
QPE BUG 1

I. Total unions 4 45"96 1:3 56 51 16440
2. Consistent 2636 4503 2776

3. Nogood 41962 131348 13664

4. Total adds 46909 141768 16440
5. Ortho 40499 128887 0
6. Binary 973 1149 13664
7. Same 1793 4089 0
8. Exist OK 2326 3976 0
9. Exist NG 236 75,5 0
10. Non-binary 254 5-57 0
11. New env 828 2375 2776
12. Imm. Ortho 39958 127050 0

13. Old 2580 I 2566] 0
14. Bypass 1615 2853 1 0

method of union computation which seems to allow the fastest recognition of nogood environments is an
assumption by assumption method. That is, given two environments E1 and E2, we compute the union
by successively adding the assumptions in E2 into El, computing an intermediate environment at every
step. The union function returns either a consistent environment E3 , which is the union of E1 with E2.,
or it returns nothing. indicating that the union of E1 with E2 is nogood. Since nogoods can never appear
in node labels. they do not have to be retained. The union computation is therefore complete as soon
as we know that the union will be nogood. We begin the union computation by making El the larger
environment, the one with more assumptions. The environments are swapped if this is not true. If both
are the same size. we make the one with the larger hash function El. This step decreases the number of
assumptions which need to be added. It also assures us that if we compute the same union more than
once. the steps we do the first time will be repeated each successive time.

The next step is to begin a loop through all n members of E2 . At each iteration i of the loop, we
have an environment F, which represents the result of adding the first i assumptions from E 2 into El. If
F becomes nogood at any point, we may break out of the loop and quit. We begin with F0 = Ei. At
the beginning of each iteration we have some consistent F and the ith assumption of E2, A,, which we
wish to add to it. At the end of the iteration we either know that the union is nogood or we have some
consistent Fi+ 1, which is the union of F with A,. F. is the union of E1 with E2 . Line 4 in the table
gives the total number of iterations of this loop which are nerformed.

Our first step within iteration i of the loop is to do a quick check to determine whether the union
could possibly result in a consistent environment. We do this by doing a bitwise AND of the Present
field of E2 with the Orthogonal field of F (see section 3.3 for a description of these fields). If the result is
non-zero, then we know that some member of E., when added to Fi, would yield a nogood environment.
Since this nogood environment would clearly be a subset of E1 UE2 , we then know that El UE2 is nogood
and we can quit (Line 5 in the table). If the result is zero, however, it tells us nothing and we proceed.

Next we check for binary nogood subsumption of Fi+ 1.Since Fj is consistent, we only need to check
F,+i against those binary nogoods which contain assumption A;. Thus we can check binary subsumption
by taking the bitwise AND of the Present field of F with the Binary field of A. If the result is non-zero.
then some assumption in F participates in a binary nogood with A. and thus F,+1 is nogood (Line 6 in
the table). Since we also learn that adding A, to F yields a nogood, we set, the bit corresponding to A,
in the Orthogonal field of F,. If the result is zero, again we proceed.

Next we check to see if Ai is a member of F,. We do this by extracting the bit corresponding to .4,
from the Present field of F,. If it is set. then F,+, = F and this iteration is complete (Line 7 in the
table).

Otherwise we form a partial environment structure for F,+,. with all fields except the Constituents

9

field complete. The Present field for F,+j is equal the Present of F, with the bit for .4i set. We compute
the hash function for Fi+,. and then check for the existence of this environment in the environmnent
database. If it exists and is consistent. then this iteration is complete (Line 8 in the table). If it exist
and is nogood. then tie entire loop is complete (Line 9 in the table). In this case, we may again set the
bit for A, in the Orthogonal field of Fi. If it does not already exist. then we proceed.

If we've gotten this far. we know that our Fj+i will be added to the environment hash table. so we
fill in the Constituents field by adding Aj to the Constituents field of Fi. We now add this environment
to the table.

Next we check F+j for subsumption by a non-binary nogood. As with the binary nogood check.
since we know that F, is consistent we only need to check Fi+j against nogoods which contain A,. We
check F,+j against every non-binary nogood smaller than it which contains A,, which can be found in the
Nogoods field of the assumption data structure for A-. If it is subsumed by some nogood. then the loop
is complete (Line 10 in the table). Again, we may set the bit. corresponding to A in the Fi's Orthogonal
field. Otherwise, we know that F,+j is consistent. We add it to the Consistent table and the iteration is
complete (Line 11 in the table).

While this seems like a somewhat cumbersome way of computing the union, in practice it is extremely
effective in recognizing unions which will result in nogood environments quickly. Line 12 in Table 3 shows
the number of unions which can be aborted after the first test against. the Orthogonal vector. One can
see that a simple bit vector AND successfully recognizes most unions which will result in a nogood.

This concludes our discussion of an efficient sequential implementation of the ATMS. As was dis-
cussed in section 3.4, our implementation is quite competitive with existing ATMS implementations. We
use the sequential implementation which we have described as the basis of comparison for the parallel
implementations which we describe in the remainder of this paper.

4 Modifications for Parallel Implementation

We now discuss the modifications which are necessary to allow the preceding algorithm to be executed
in parallel. Our goal is to exploit as much parallelism as possible, but we can not afford to introduce
a large amount of redundant work in doing so. When designing algorithms for massively parallel pro-
cessors, it is possible and often necessary to radically change the data structures and algorithms from
those which would be used on a sequential implementation. The increase in available parallelism which
these changes bring about often outweighs the increased amount of work which is done. However, since
we will be executing this algorithm on a modest number of processors, our speedups will suffer if the
parallel implementation does a large amount of work which the sequential implementation does not do.
We therefore do not stray far from the data structures and algorithms used in the efficient sequential
implementation.

4.1 Division of Work

The overall structure of our parallel ATMS is quite similar to the structure of the sequential ATMS. The
ATMS and the problem solver run concurrently, sharing commands and data through a shared command
queue. The problem solver places Create-Node, Create-Assumption, Justiy-Node. and Node-Query
messages on the queue. The problem solver blocks and waits for a reply after it places a Node-Query
message on the queue. A number of processors are allocated to work on the ATMS. The ATMS processors
pull commands off the queue and perform the requested actions. In order to allow a greater amount of
parallelism, we no longer require that node labels be made sound and complete at the completion of each
command. This requirement would necessitate the synchronization of all processors after each command.
an operation which would greatly constrain our ability to distribute work among the processors. We
now only require that labels be made sound and complete before a Node-Query conunand is answered.
Thus. Node-Query commands are now somewhat expensive, since they require a global synchronization.
Create-Node and Assume-Node messages again require very little work to be done, and are dealt with
quickly. Justify-Node messages are the source of almost all of our parallelism. Since they require by

10

far the most computation time. they are the commands which afford the most oppurtunity to distribute
work.

In order to decrease contention for tasks. each processor has its own Update request stack. When a
processor completes a task. it looks for a new task in the following places. First. it checks it s own Update
request stack. If it is empty. then tile processor checks the global command queue. If the next command
on the command queue is a Node-Query (or if the command queue is empty) the processor becomes
idle. Wlien all processors are idle. one processor processes and removes the Node-Query command.
thus unblocking the problem solver and allowing the problem solving process to proceed. We call this
Algorithm Al. We later provide variations of this basic algorithm.

4.2 Locks

In our shared memory implementation. all the processors access the same data structures. We therefore
need a number of mutual-exclusion locks to control simultaneous access to shared data. We begin by using
straightforward locking techniques, and later modify our approach based on the observed bottlenecks.

The environment hash table is locked by bucket. Whenever a processor wants to do either an en-
vironment lookup or an environment addition, it must obtain a lock on the appropriate bucket before
it may access anything in the bucket. Since there are thousands of buckets and. for now. at most 16
processors and very little time is actually spent inside the lock, contention for the hash table buckets is
not a problem.

Each environment has a lock to control access to its Contra flag and its Where field. The lock is used
to enforce the following conditions:

" No nogood environment may be added to a node's label.

" When an environment becomes nogood, it must be removed from the label of every node which
contains it.

The above conditions are also used to avoid redundant work. WN'hen a processor wishes to change an
environment's status to nogood. it first obtains a lock on the environment. It then checks the environ-
ment's Contra flag. If the flag is set (i.e. the environment is nogood), then some other processor must
have already discovered that this node is nogood and the processor can stop; any work done with this
environment would be redundant. Otherwise. the Contra flag is set and the lock is released. The envi-
ronment is then removed from the label of every node in which it appears. When a processor wishes to
add an environment to a node label, it obtains the environment lock and checks the Contra flag. If the
flag is set, then another processor has discovered that the environment is nogood and it should therefore
not be added to the node label. If the flag is not set. the environment is added to the node label and the
environment lock is released. By using the lock in this way, we are assured that no node label can contain
a known nogood. Since a typical ATMS application generates thousands of environments, contention at
this point is usually not a problem.

Node labels are accessed and modified by many processors, thus we must provide locks to protect
them. When an Update request is being processed, and a node is an antecedent to the justification, the
node's label is accessed. Similarly, the label of the consequent of the justification is also accessed. Since
computing the label cross product could take an enormous amount of time, we would like to avoid holding
the node lock for the duration of the cross product. We therefore choose to lock the node, copy the label,
and immediately release the lock. An antecedent label can simply be copied because any change to the
label will be propagated to this justification. While this can create redundant work. the resulting answer
will still be correct. A consequent label can be simply copied for the following reason. The only way in
which an environment is removed from the label of a node is if it becomes nogood or if it is subsumed
by a new label. If an environment becomes nogood. then clearly anything subsumed by it also becomes
nogood. If an environment is subsumed, then clearly anything subsumed by it will also be subsumed by
the new environment. In either case, it is valid t.o discard cross product environments which are subsumed
by consequent label environments.

11

When revising the]abel of a node. the node is locked, and the environments in the current node label
are checked for subsumption against the new environiments and vice-versa. The node label is rvi'isf'd.
any changes in the label are recorded, and the lock is release. Again, since there are thousands of nodes
contention is usually not, a serious problem.

Contention for environment and node locks can be a problem. however, when many processors are
working in the same part of the inference graph. Since environments are generated entirely by propaga-
tion. it. is likely that. if two processors are working on tasks which resulted from the same node revision.
they will encounter identical environments more often than if they were working on unrelated activations.
Similarly, if two processors are working in the same part of the graph, they are more likely to want to
access the same node label. In order to avoid this type of contention, it is desirable for the processors to
be well distributed throughout the inference graph.

4.3 The Environment Database

We now discuss the modification necessary to allow concurrent access to the environment database. The
modifications we have discussed so far have been relatively local. They have involved such changes as
a lock on a bucket in a table. or a lock on a single environment or node. The environment database,
however, is a very global structure. It keeps track of the consistency of all environments in the entire
problem. A single change could conceivably affect every environment in the environment database. The
environment database must allow the following operations:

" Determine whether a new environment is consistent.

" Add a new consistent environment.

* Add a new nogood and find all previously consistent environments which are now nogood.

It must also keep the database self-consistent while these operations are occurring. Since the ATMS
spends much of its time creating new environments and checking them for consistency. we cannot tolerate
a high latency on consistency checking. At the same time. however, most new environments which are,
encountered are nogood, so to avoid superfluous work we want a new nogood to be recorded as soon as
possible.

We initially used a single global lock to control access to both the Consistent and MNG tables.
When an environment needed to be checked for consistency, the processor obtains the global lock. checks
the environment against the AING table, and releases the lock. When a new consistent environment is
added, the processor obtains the lock, adds the environment to the Consistent table, and releases the
lock. When a new nogood is registered, the processor obtains the lock, checks all consistent environments
for subsumption, changes those which are subsumed into nogoods, and releases the lock. Since the ATMS
spends a substantial percentage of its time within this lock (3-15% for the three traces), this global locking
approach appears somewhat suspect.

r7 Results

We now present the results of executing the three problem solver traces on our parallel ATMS. Because
Node-Query information was not required when the traces were originally generated, these traces do not
record this command. The absence of this command does not affect the performance of the sequential
ATMS significantly, since Node-Query commands take so little time to execute. In our parallel ATMS.
however, the lack of these commands obviates the need for global synchronization. Thus, the results we
present here are optimistic. as the synchronization is done only at the completion of the entire trace. In
applications where Node-Query commands are frequent, one would expect less available parallelism.

The ATMS traces we examine seem to present abundant opportunites for parallelism. Their inference
graphs are extremely large, with thousands of justifications capable of being distributed among the
processors (see Table 1). The only limiting factor would appear to be the global lock on tie Consistent

12

Table 4: Task times for algorithm Al
[ssQPE BUG 8-Q

s2584 4165 1192
Ave t.ask time (s) 0.015 0.019 0.028
Max task time (s) 2.42 .35.31 0.36
Total runtime (s) 39.34 82.31 33.72

Table 5: Task times for algorithm A2
QPE BUG S-Q

T'asks 1878U "16576 3308
Ave task leng h (s) 0'.002 0.00.5 0.010

Max task length (s) 0.86 6.88 0.34
Total runtime (s) 39.34 8:2.31 33.72

and MNG tables. However, if we examine Figure 3 we see that the speedup obtained for Algorithm
Al is disappointing. The speedup is greatly below what one would expect, even given the global lock.
The sequential ATMS spends 3%, 15%, and 6% of its time within the lock for QPE. BUG, and 8-Q,
respectively. If this were the only parallelism limitation, we would expect speedups of 7 or more. Clearly.
parallelism is being limited in some other way.

The most serious bottleneck appears to be processor idle time. Figures 4 through 6 show the per-
centage of time each processor spends doing useful work as compared to the percentage spent waiting
on locks and the percentage spent idle. Note that the speedup obtained is not equal the product of the
processor utilization with the number of processors used. This is due to number of factors. First, our
speedup numbers are obtained by dividing the parallel execution time by the execution time of the best
sequential implementation. There are a number of overheads involved in the parallel implementation.
such as environment list copying and redundant checks, which can reduce the speedup when compared Lo
a sequential implementation without these overheads. Second, the parallel ATMS does not necessarily do
the same amount of work that the sequential ATMS does. For example, the parallel ATMS can process
the justifications in a different order than the sequential ATMS. While the answer arrived is the same,
the amount of progation necessary to get to this answer may differ. Third, there a number of hardware
issues, including bus bandwidth and cache interactions, which can preclude linear speedups. These issues
are not reflected in the utilization graphs which we present.

From examining Figures 4 through 6, it becomes' clear that we have a problem with the distribution
of work among the processors. Processors are spending a large amount of time idle, without a task to
execute. What we have here is essentially a bin-packing problem. We have a certain number of tasks of
varying size to execute, and we wish to divide them among a number of processors so that each processor
takes approximately the same amount of time to complete them. This near equal division of tasks is
normally quite possible given a large number of tasks to distribute; the large number of tasks serves to
smooth out the variations in grain size. However, two factors make this untrue in Algorithm Al, First.
the variation in grain size is enormous. In the BUG trace, for example, the processing of one single
justification accounts for more than 40% of the run-time of the trace (see Table 4). Second, as the trace
progresses the size of the inference graph increases. The amount of work required to process a single
justification depends heavily on how much label propagation must be done. In the early stages of the
trace, the small size of the inference graph limits the amount of propagation necessary. As the trace
progresses. however, the graph becomes larger, with the potential for more necessary propagation. The
grain size therefore grows as the trace progresses, and one would expect the enormous grains to be near
the end of the trace. The combination of some extremely large grains with the tendency for the large
grains to be towards the end of the trace combine to make it extremely likely that one processor will be
stuck with a large grain while the other processors have nothing to work on.

In order to alleviate the grain size problem. we decrease the task size. Instead of each problem solver
issued command being a single task, we now consider each Update request to be a task. In Algorithm
Al. once the command queue becomes empty the processor simply quits. Now, in Algorithm A2. an idle

13

M ANt Other Locks

Node Locks

a~Environment Database Locks
tol Idle Time

Y-q Processor Utlizaion

141

of ml

..-.U...-o

A P-

B U

..

S 9 1 i s 1

4 01 1 31 ~o "ae

Of SrO W S 4 S S a S S 0 I I S 1

Figre : Pocsso utliztinwc QProcm

Floigure 3:Sedplo.lortmA Figure 6: Processor utilization for BU,
Algorithm Al

I1

processor at.t.emlts to steal an Update request from the Update stacks of tie other processors. In this
way. work can be distributed among the processors even after the command queue has been emptied.
The only cost for this modification is the introduction of contention in the Update stacks. Comparing
Tables 4 and 5. we see that by decreasing the task size we have greatly increased the number of tasks
and greatly reduced both the average and maximum task size. Figures 8 through 10 show that while idle
time has been greatly decreased from that of Algorithm 1, it is still substantial for the BUG trace. This
is mainly because the largest task still takes 6.88 seconds. which is 894. of the total runtime. The net
result of our modification (Figure 7) is that the speedup is greatly increased from that of Algorithm Al,
but it is still far from ideal.

The most serious bottleneck in our parallel implementation now appears t.o be the environment
database lock. In order to increase concurrency in the environment. database, we introduce another
variation on our basic algorithm. In Algorithms Al and A2. only a single processor may access the
database at one time. Our modification, which we call Modal access, allows a number of processors
to access the table concurrently. while still maintaining the stringent consistency requirements of the
environment database.

The problem in allowing concurrent access to the database comes from the potential simultaneous
additions of a consistent environment and a nogood environment. In order to add the consistent environ-
ment to the database, we must know that it is not, subsumed by any environment in the MNG table. To
add the nogood to the database, we must remove all environments which are subsumed by it from the
Consistent table. These requirements seem to place serious sequentiality constraints on modifications to
the database. In order to avoid these constraints, we add to the environment database a mode of access
indicator. The three access modes are:

" Mode 0 - No processor is currently accessing the database.

" Mode 1 - Only consistent environments may be added to the database.

" Mode 2 - Only nogood environments may be added to the database.

In order for a processor t.o add a new consistent of nogood environment, the environment database
must be in the appropriate mode. If a processor needs the table to be in Mode 1. it calls a procedure called'
Addero. Adder() waits until the database is in either Mode 0 or Mode 1. If the database is in Mode 0,
it changes the mode indicator to Mode 1. It increments a counter of how many processors are within the
database, and then proceeds. Once this processor is finished using the database, it calls the procedure
ReleaseAddero. This procedure decrements the counter, and if the counter is now zero it changes the
mode indicator back to 0. The procedures Deleter() and ReleaseDeleter0 are defined identically except
that they move the database into Mode 2.

If a processor wishes to add a new environment to the database, it first calls Adder() to bring the
database into Mode 1. It then checks the environment for consistency. If the environment passes the
check, it is added to the Consistent table. Since the environment database is in Mode 1, the processor
is guarenteed that no nogoods are being added. Thus if the environment passes the consistency check,
the environment will remain consistent until the Mode is changed. Once the consistency check has been
made, the processor is finished using the database and calls ReleaseAddero.

If a processor wishes to add a new nogood, it calls Deleter() to bring the database into Mode 2. The
processor then adds the nogood to the database, and then it sweeps through the Consistent and MNG
tables flushing out all subsumed environments. Since no consistent environments are being added, we can
be assured that we will check all consistent environments. While it is true that. nogood environments can
be added at this point and we can consequently miss one which is subsumed, this situation is sufficiently
rare and harmless that. we do not need to be concerned with it. Remember that the sweep through the
MNG table is for efficiency reasons only, and it does not affect the correctness of the algorithm. Once
the sweeps through the two tables are complete, the processor calls ReleaseDeletero.

We can modify the above slightly to increase cotcurrency. When new nogood environments are
generated. they usually come in lists. We can therefore distribute the nogoods in a single list among a
number of processors. This is accomplished by keeping a global list of nogoods to be added. When a
processor has a list of new nogoods to he added, it adds them to this list. calls Deletero. and then goes

15

M AN Other Locks
=Node Locks

M~ Environment Database Locks

LIJW Mde Time

2s? Processo Utiltion

OPF

B O U G

.. ..a

NuNunt. of PmCOGM

Figure 7: Speedup for Algorithm A2 Figure 9: Processor utilization for BUG.
Algorithm A2

Nsaiumbo of PmmeWB

Figure 8: Processor utilization for QPE, Figure 10. Processor utilization for 8-Q,Algorithm A2 Algorithm A2

16

I A &-aII i

I15 SU

I.

Number of Pcmws

Figure 2: Amount of work done (as a percentage of that for P=1)

into a loop, pulling off nogoods from this list until the list is empty. Now, when a processor calls Adder()
and finds the database to be in Mode 2. instead of simply waiting for the Mode to change, the processor
also pulls nogoods off the global list and processes them.

The speedups obtained from Algorithm A3 (Figure 11) are still far from ideal. While contention
for the environment database is greatly reduced, it is still substantial. We also still have a substantial
speedup reduction due to processor idle time.

We have yet to examine one possible cause of reduced speedup in the parallel implementation, re-
dundant work. In the ATMS, it is difficult to establish a measure of how much "work" is being done.
There are a number of routines which are called often and take large amounts of time, yet no one routine
dominates the others. One routine, the subset test routine, appears to be a reasonably accurate measure
of how much work is being done. Subset testing accounts for more of the runtime of the sequential ATMS
than any other routine. Also, many of the other routines which take time do large numbers of subset
tests. If these routines are being called more frequently, this would be reflected in the number of subset
tests done. Figure 2 gives a picture of how many subset test are done for the 3 traces. Though the subset
test numbers show interesting trends as the number of processors grows larger, the differences for less
than 14 processors are not significant. According to our subset measure of work, the parallel ATMS does
between 90% and 106% of the work of the sequential ATMS for 14 or fewer processors.

5.1 Other Approaches

Variation in grain size is still a problem in our implementation. Furthermore, the problem would be
much more severe if Node-Query commands were more frequent. One possible way to further decrease
the grain size would be to split Update requests into smaller pieces. In Algorithm A3. an Update request
contains a list of new environments which have been added to the label of an antecedent. In order to
decrease the size of a single grain, we could split this list into many smaller lists. We could use a heuristic
to determine approximating how long an Update tasl,. will take. Depending on the estimate, the list can
he split so that other processors will not go idle while this task is being executed. In the extreme. Update
requests can be split into single new antecedent environments.

Performing Updates with smaller lists of environments can generate a large amount of avoidable work,

17

M AH Other Locks

M Node Locks
w Environmert Database Locks

il! Idle Time

2%q Processor Utilization

I~ ~ ~ ~ ~ ~~il~ ~~~~ tli~itilltlilltlltillll~ i l

......
41- , I...............: o /

Figure 11: Speedup for Algorithm A3 figure 13: Processor utilization for BUG,
Algorithm A3

0d 9 it il 'I It 1'4 1 1

Figurith 12A.cesruilzto3frQ Figure 14: Processor utilization for 8-Q,
Algorihm A3Algorithm A3

118

10 OPEliiI il m

however. Consider the following cross product:

({A),{B),{C'),{D}) x ({D))

If we simply perform the cross product. we get the list ({D}). If we split the list ({AJ. {B). {C). {D})
into two parts and perform seperate cross products. however, we get ({A. D). {B. DI) from the first part
and ({D}) from the second. Now, instead of propagating a single list of length one to the successors of
the consequent, a list of length two and a list, of length one are propagated.

c ca,, .e this happeLing in the BUG trace file. The largest ttpdate task iii the trace arises froim a

justification:
X I, X2, X, X4,- X5 =:* 7

The Update request comes from x, with a list of 8 new environments. Nodes X.). X3, and x 4 all have 8
environments in their labels, and node x 5 has 1 environment in its label. The resulting cross product
environment list could contain as many as 84 environments. It actually produces only 293 environments,
because of nogood subsumption and list minimality. If the incoming new environment list of 8 environ-
ments is split into two environment lists of 4 environments each, one resulting cross products has 367
environments and the other has 55. The net effect of splitting this single Update request into two smaller
requests is substantial. The sequential execution time for BUG increases from around 82.31 seconds to
119.96 seconds. an increase of 46%. While we could have all processors working on a single Update
synchronize and combine their results before propagating them on, the added synchronization combined
with the fact that the pieces of a split Update are not necessarily smaller than the whole Update combine
to make such an action unwise.

Due to the above reasons, our initial efforts to go to a smaller grain have not resulted in much success.
In order to get significantly more speedup from some ATMS instances, we need to find a natural task
grain which is smaller than that of an Update request. Unfortunately, no obvious alternative presents
itself.

6 Conclusions

In this paper, we have presented the details of implementing both a serial and a parallel ATMS. The
results we obtained from executing the parallel implementation on an Encore MultiMax allow us to draw
a number of conclusions about executing the ATMS in parallel.

" The traces we examined seemed to present abundant opportunities for parallelism. They consisted
of thousands of relatively independent tasks, capable of being distributed among a number of
processors. However, this apparent abundance of parallelism proved to be somewhat elusive to
exploit.

" The obvious source of parallelism in the ATMS, the thousands of justifications, generated grains
which varied enormously in size. In one trace, for example, a single justification accounted for 43%
of the total runtime, making effective parallel distribution of grains impossible. In order to make
grain sizes more uniform, we were forced to decrease grain size by treating a single justification
update as a task. We also introduced the notion of modal access to the environment database in
order to alleviate the sequentiality constraints imposed by the global consistentency requirements.
Modal access requires that, at any one time, environments can be added in parallel or removed in
parallel, but not both.

* With these modifications. we were able to obtain speedups of between 4.4 and 6.7 using 14 processors
for the three trace files which we examined. Further speedups were limited by a number of factors.
including still too large of a variation in task grain size, processor contention for numerous mutual-
exclusion locks, and hardware contention issues.

" We further note that we examined the best case scenario, where Node-Query commands are infre-
quent and global synchronization is necessary only at the completion of the entire trace. While it's
not clear what the average case would be, it would almost certainly present fewer opportunities for
parallelism.

19

* By combining a highly efficient. C-based implmientation with a modest degree of parallelism, we
have created an ATMS implementation which is significantly faster than currently available LISP-
based implementations.

" We believe that. in order to acheive near-linear speedups, parallelism in the ATMS must he exploited
at a finer grain than that used in the three algorithms presented here.

While in this paper we have explored how ATMS parallelism can be exploited on a shared-memory
multiprocessor, a related question is how it can be exploited on ot.her types of parallel machine rchi-
tectures. Michael Dixon and Johan deKleer [3] have studied the implementation of the ATMS on the
Connection Machine, a massively parallel processor with between 16K and 64K processors [7]. Their
implementation has shown promise in the tests which they have tried, but, it remains to be seen whether
it will offer a dramatic speed advantage for a wide range of problem solver domains.

In the future, we plan to investigate the tradeoffs between using a shared-memory architecture versus
a message passing or Connection Machine architecture for exploiting parallelism in the ATMS. W\e plan
to investigate how the grain size can be reduced without introducing an enormous amount of extra work.
We also hope to integrate our parallel ATMS with LISP-based problem solvers, allowing the exchange of
commands and data through inter-process communication.

7 Acknowledgements

We would like to thank Johan deKleer and Ken Forbus for providing us with problem solver trace files.
We would like to thank Hiroshi Okuno for his assistance in the initial stages of this research. This research
is supported by DARPA contract N00014-87-K-0828. Edward Rothberg is also supported by an Office
of Naval Research graduate fellowship. Anoop Gupta is also supported by a faculty award from Digital
Equipment Corporation.

20

References

[1] deKleer. .,. "An Assu mption- based Truth Main~tenance System", .4rlificial InhIbigitf- 28. 1986.

[2] deKleer. .J., "Problem Solving with the ATMIS", Artificial Inkcligeiice. 28, 1986.

[.3) Dixon, Al. and deKleer. J.. "Massively Parallel Assumiption-based Truth Mlaintelance". Procetdigs

of the AAAI, 1988.

[4I] Filman. R.E. '-Reasoning With Worlds and Truth Maintenance in a Knowledge Based System-.
Comnications (,f the ACIL 31, 1988.

(.51 Forhus. K., "'The Qualitative Process Engine"'. University of Illinois Technica] Report No. UIUCDCS-
R-86-1288. December. 1986.

(6] Gupta. A.. Forgy. C.. Kaip. D.. Newell, A. and Tamnbe. M., "Results of Parallel Implementation of
OPS.Y, Proceedings of ithe ICC.P. 1986.

[7] Hillis. D.. The Copinection Machine, MIT Press, Cambridge#. Massachusetts. 198.5.

[8] Okuno. H.. "An Efficient Parallel Execution of the ATMS", t~o appear.

21

