?5:7,;:“'01) s e e

\'I’ ION PAG E READ DNSTRUCTIONS

BEFORE COMPLETEDNG FORM

AD-AZOQ 138 12. GOVT ACCESSION NO. |3. RECIPIENT'S CATALOG NUMBER

e 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: SoftTech} g 3,1y 1988 to 8 July 1988

. 6, V i 3.21, VAX 11/780-11/785 (Host) to
izze]’_ ﬁ;xasc’)%:;stgrgec) / (6. PERFORMING DRG. REPORT NUMBER

1. AUTHOR(s) 8. CONTRACT OR GRAN™ NUMBER(s)

National Bureau of Standards
Gaithersburg, MD

9. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards
Gaithersburg, MD

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
Ada nggt Program Office ¢ e
Unite tates Department of Defense hr—wowm
Washington, DC 20301-3081 - NORses OF FAGES
14, MONITORING AGENCY NAME & ADORESS(I/f different from Controlling Office) 15. SECURITY CLASS (of thus report)
) UNCLASSIFIED
National Bureau of Standards T5a. gESES&EE”C”m“/m“"“‘““

Gaithersburg, MD

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Biock 20 If different from Report)

UNCLASS:IFIED U l l(}

ELECTE
18. SUPPLEMENTARY NOTES JUNO S 1989D

h '

yi
19. KEYWORDS (Conuinue onreverse side if necessary and identify by block number) - / _\,

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler vValidation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facxlxty, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO '

20. ABSTRACT (Continue onreverse side if necessary and (dentify by block number)

Ada 86, Version 3.21, SoftTech Inc., National Bureau of Standards, VAX 11/780-11/785
under VAX/WS Version 4.7 (Host) to Intel iAPX 80386R under Bare machine (Target),

ACVC 1.9

DO Fuws 1473 €DITION OF 1 NOV 65 IS OBSOLETE
1 Jax 73 $/N 0102-LF-014-6601 UNCLASSIFIED

89 6 05 158 g~ -

3

AVF Control Number: NBSS88VSOFS35_5

Certificate Number: 880708S1.09151
SoftTech, Inc.
Ada 86, Version 3.21
VAX 11/780 - 11/785 Host and Intel iAPX 80386R Target

Completion of On-Site Testing:
‘July 8, 1988

Prepared :)

Software Standards Validation Group
Institute for Camputer Sciences and Technology
National Bureau of Standards
Building 225, Roam A266
Gaithershurg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense

washington, D.C. 20301-3081

Ada Campiler Valldata.on Summary Report:

Campiler Name: Ada 86, Version 3.21
Certificate Number: 880708S1.09151

: Target:
VAX 11/780 - 11/785 urcer Intel iAPX 80386R urder
: Bare machine

Host:

’
Version 4.7

Testing Completed July 8, 1988, using ACVC 1.9

This report has been reviewed ard is approved.

Ada Validation Facili
Dr. David K. Jefferson
Chief, Information Systems
Ergineering Division
National Bureau of Standards.
Gaithersburg, MD 20899

Gl Ll

/Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexardria, VA 22311

A s

Ada Joint Program Office
Virginia L. Castor
Director

Department of Defense
washington DC 20301

%

e & & o 8 & 0 s
NNNSOOMeeWWNPE

WWLWWWWLWWLwWLWWLW

AFPENDIX B

APPENDIX C

APPENDIX D

_ TABLE OF CONTENTS

INTRODUCTTON

PURPCSE OF THIS VALIDATION SUMMARY REFPORT
USE OF THIS VALIDATION SUMMARY REPCRT

m.:-.-..........
DEFINITION OF TERMS « ¢ ¢« o ¢ & o o o«

ACVC TEST CIASSES . & ¢ ¢« « « &

CONFIGURATION INFORMATION
CONFIGURATION TESTED « « « . . &
IMPLEMENTATION CHARACTERISTICS .
TEST INFORMATION

TEST RESULTS . ¢ ¢ « ¢ ¢ o o « &

SUMMARY OF TEST RESULIS BY CIASS .

SUMMARY OF TEST RESULIS BY CHAPTER

WITHDRAWN TESTS . &« 4 o & o o &

-

mmm . L] - L] * L] L] L] -

TEST, PROCESSING, AND EVAIUATION MODIFICATIONS

ADDITIONAL TESTING INFORMATION . . .
Prevalidation . . . ¢« ¢« ¢« ¢« ¢ « &
Test Method . . « + & ¢ ¢ ¢ o o «
Test SIte . ¢ ¢« ¢ ¢ ¢ 4 o o « o »

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

.
.
.
»
.

*e o o o

* o o & @

e o o o

NTIS GRA&I ﬂ?’!
DTIC TAB O
Unannounced 0
Justification__________
!
By __ —
J)," stribtutien/
__ﬁvailnhtlity Codss]

1-2
1-2
1-3
1-3
1-4

e s o s
* » 8 e
. L 3 L] L]
® & ¢ o @

e o o o o 31
. e e « 3=1
« o o o o 32
e s e s« 372
e s 0 e s 32

.« 3-4
e o o« o « 355
e+ o ¢ « 35
« o o « « 3-5

3-6

Accession For

.
Vet wlfon

Sev3al

- CHAPTER 1
' INTRODUCTION

I Ny
This Validation Summary Report (VSR) describes the extent to which a
specific Ada campilar conforms to the Ada Standard, ANSI/MIL~STD~1815A.
This report explains all techmczlte.rnsusedw:.thm it and thoroughly
reports the results of this campiler using the Ada Compiler
Validation Capability ¢ (A€VC)}>— An Ada campiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Stardard. The Ada Standard
nustbemplanentedmltsentlrety, ard nothing can be implemented that
is not in the Standard.” :
e
Even though all validated Ada campilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
deperderm.as—for example, the maximm length of identifiers or the
maximm values of integer types. Other differences between campilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies cbserved
during the process of testing this camwpiler are given in this repoy

-
This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, asupn:stoanpda
compiler and evaluating the results. ~ The purpose of validating is to
ensure conformity of the campiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at campile time, at link time, and during
execution.

1-1

1.1 PURFPOSE OF THIS VALIDATION SUMMARY REFORT

This VSR documents the results of the validation testing performed on an
Ada campiler. Testing was carried cut for the following purposes:

To attempt to icientify any language constructs supported by
the campiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-deperdent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by the Naticnal Bureau of
Standards according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was campleted July 8,
1988, at SoftTech Corporation, Boston, Mass.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedam of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and camwpiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject ocompiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSCRE

The Pentagon, Rm 3D~139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Camputer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersbury, Maryland 20899

1-2

\
)

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
JInstitute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES
1. Reference Mamual for the Ada Programming_lanquage,

ANSI/MIL~STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 Jamuary 1987.

3. 2Ada Compiler Validation Capability Implementers' Guide.,
December 1986. :

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada campiler to
the Ada programuing language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a cament on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANST/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
cawpilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Campiler A processor for the Ada language. In the context of
this report, a campiler is any language processor,
including - cross-compilers, translators, and

interpreters.

Failed test -Ah ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The ourp.rteron which the campiler resides.

Inapplicable An ACVC test that uses features of the language that a

test campiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Language The langquage Maintenance Panel (IMP) is a committee

Maintenance established by the Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MII~STD for Ada.

Passed test An ACVC test for which a campiler generates the expected

result,
Target The computer for which a campiler generates code.
Test An Ada program that checks a campiler's conformity

regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may camprise one or more files.

Withdrawn An ACVC test fourd to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect
because it has an invalid test cbjective, fails to meet
its test objective, or contains illegal or erroneous use
of the lamguage.

1.5 ACVC TEST CLASSES

Conformity to the Ada Stardard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce campilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
ard executed. There are no explicit program camponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of ancther language (other than those already reserved in
. the Ada language) aremttreatedasreservedmxdsbyanl&dacarpuer
AClassAt&tlspassedlfmermrsaredetectedatcmpuetmeam
meprogmexeaxtstopmduoeaPASSEDmssage.

Class B tests check that a campiler detects illegal language usage.
Class B tests are not executable. Each test in this class is campiled
and the resulting campilation listing is examined to verify that every
syntaxorsemarrtlce.mrmthetastlsdetected A Class B test is
passedlfeverylllegalconstzuctthatltcontan'slsdetectedbythe

campiler.

Class C tests check that 1e§alMapmgransmnbecorrectlycanpiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABIE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
campiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for sane parameters—for example, the mmber of
identifiers permitted in a compilation or the mmber of units in a
library—a compiler may refuse to campile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to campile
because the capacity of the campiler is exceeded, the test is classified
as inapplicable. If a Class D test camwpiles successfully, it is
self-checking ard produces a PASSED or FAILED message during execution.

Each Class E test 1is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is campiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during campilation. Therefore,
a Class E test is passed by a campiler if it is camwpiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are cawpiled separately amd execution is
attempted. A Class L test passes if it is rejected at link time—that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure (HECK FILE,
support the self-checking features of the executable tests. The package
REFORT provides the mechanism by which executable tests report PASSED,
FAIIED, or NOT APPLICABIE results. It also provides a set of identity
functions used to defeat some carpiler optimizations allowed by the Ada
Standard that would circumvent a test abjective. The procedure CHECK
FILE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Stardard. The operation of

1-5

REPORT and CHECK FIIE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the- tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximm length of 72 characters, use small mmeric
values, and place features that may not be supported by all
implementations in separate tests. However, same tests contain values
that require the test to be customized according to
implementation-specific values—for example, an illegal file name. A
list of the values used for this validation is provided in Apperdix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erronecus language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in

Apperdix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 OONFIGURATION TESTED
The cardidate campilation system for this validation was tested urder
the following configuration:

Campiler: Ada 86, Version 3.21

ACVC Version: 1.9

Certificate Number: 880708S1.09151
Host Campater:
Machine: VAX 11/780 - 11/785

Operating System: VAX/VMS

Version 4.7

Memory Size: 12 megabytes
Target Camputer:
Machine: Intel iAPX 80386R

Operating System: Bare machine
Memory Size:

Coammunications Network: DECNET*
Ethemet

*DECNET for this implementation represents the use of VAX 11/780-
11/785 as host.

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating campilers is to determine the behavior
ofacarpllermthoseareasoftheAdaStam!azdthatpe.nut
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an J.nplanerrtatlon. The tests demonstrate the following
characteristics:

Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, ard recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a campilation
containing 723 variables in the same declarative part. (See
test DSS5A03A..H (8 tests), D56001B, D64005E..G (3 tests), ard
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation 64 bit integer calculations. (See tests D4A002A,
D4A00Q2B, D4ACC4A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER ard LONG FIOAT in the package STANDARD. (See
tests B86001BC ard B36001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during campilation, or it may
raise NUMERIC ERRCR or GDNSI‘RMNI‘ ERROR during execution. This
mplarentatxon raises NUMERIC ERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently all dJdefault initialization expressions or record
canpenents are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

2=2

Assigrmments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation .uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.) :

Sametimes NUMERIC ERROR is raised when an integer 1literal
operard in a camparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operard in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z2.)

Rounding.

The method used for rounding to integer is apparently roumd to
even. (See tests C46012A..2Z.)

The method used for rounding to longest integer is apparently
rourd to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round toward zero. (See test C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT camponents raises NUMERIC ERROR. (See test
C36003A.)

NUMERIC_FRRCR is raised when an array type with INTEGER'IAST + 2
camponents is declared. (See test C36202A.)

NUMERIC_ERRCR is raised when an array type with SYSTEM.MAX INT +
2 conponents is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'IAST
raises no exception. ‘See test C52103X.)

A packed two-dimensional BOOLEAN array with more than

2-3

INTEGER'IAST camponents raises CONSTRAINT ERRCR when the length

of a dimension is calculated and exceeds INTEGER'IAST. (See
test CS52104Y.)

A mull array with: one dimension of length greater than
INTEGERIAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Altermatively, an J'erlanentation may
accept the declaration. However, lengths must match in array
slice assigrments. - This implementation raises CONSTANT ERROR
when array cbjects are assigned. (See test ES2103Y.)

In assigning one-d.l.mensmnal array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two—dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is campatible
with the target's subtype. (See test CS2013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incamplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype indications
during compilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
campatible with the target's subtype. (See test CS52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bourds.

(See test E43212B.)
Not all choices are evaluated before OCONSTRAINT ERROR is raised

if a bourd in a nonmull range of a nonmull aggregate does not
belong to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by same of the tests. If a
representation clause is not supported, then the implementation
mist reject it. :

Emmeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests (C35502I..J, C35502M..N, ard
A39005F.) :

Emumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J3, C35507M..N, and CS5Bl6A.)

Emmeration representation clauses for boolean types containing
representational values other than (FAILSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Lerngth clauses with SIZE specifications for emmeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Iength clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.
The pragma INLINE is supported for procedures. The pragma

INLINE is supported for functions. (See tests LA3004A, LA3004B,
FA3004C, EA3004D, CA3004E, and CA3004F.)

Input/ocutput.
The package SEQUENTIAL IO cannct be instantiated with

unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D and EE2201E.)

The package DIRECT IO cannot be instantiated with with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101H, EE2401D and EE4201G.)

The director, AJPO, has determined (AI-00332) that every call to

2-5

OPEN and CREATE must raise USE ERROR or NAME ERROR if file
inmput/oatpat is not supported. This implementation exhibits
this behavior for SEQUENTIAL IO, DIRECT IO and TEXT IO.

- Generics.

Generic subprogram declarations and bodies can campiled in
separate campilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be campiled in
separate campilations. (See tests CA2009C, BC3204C, ard
BC3205D.)

Generic unit bodies and their subunits can be campiled in
separate compilations. (See test CA3011A.)

o . CHAPTER 3
TEST INFORMATION

3.1 TEST RESULIS

Version 1.9 of the ACVC camprises 3122 tests. When this camwpiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 412 tests were inapplicable to this implementation. Aall
inapplicable tests were processed during validation testing.
Mcdifications to the code, processing, or grading for 25 tests were
required to successfully demonstrate the test cbjective. (See section
3.6.) ‘

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULIS BY CIASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 105 1048 1454 17 12 46 2682
Inapplicable 5 3 399 0 5 0 412
Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3.3 SUMMARY OF TEST RESULTS BY CGHAPTER

RESULT ' CHAPTER TOTAL
2_3_4_oS5_6_7_8_9 .10 11 12 13 14
Passed 190 498 535 245 165 98 141 327 137 36 234 3 73 2682

Inapplicable 14 74139 3 0 O 2 0 0 0 O 0180 412
Withdrawn 2 14 3 0 1 1 2 0 O o0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn fram ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H 72133 C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87B04B CC1311B
BC3105A AD1AO1A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all cawpilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of ancther test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 412
test were inapplicable for the reasons indicated:

C35702A uses SHORT FIOAT which is not supported by this implementaticn.

A3S801E At the case statement (lines 54-63), the optimizer tries to
identify which of the cases will be done during execution. The
ocptimizer recognizes that the variable "I" which is of type integer, is

3-2

not mlt:.allzed and appmpnately raises a PROGRAM ERROR exception.
NOTE: 'nuststpassasmthmtthe/op'rmzrzcgtmn.

A39005G uses a record mpment.atmn clause which is not supported by
this campiler.

The following (14) tastsuseSHOR!‘INI‘EGER which is not supported by
this campiler.

CAS5231B C45304B 'C45502B C45503B C45504B
C45504E C45611B -C45613B C45614B C45631B
C456328B B52004E BS5B0OSD

(CS5BO7B

C45231D requires a macro substitution for any predefined mumeric types
cther than INTBGER, SHORT_ INTBEGER, IONG INTEGER, FLOAT, SHORT FIOAT, and
IONG_FIOAT. MScaxpllerdoesmtsupportanysxmtyp&

C45304A, C45304C and C46014A expect exceptions to be raised as the
result of performing "dead assigrments® (assigmments to a variable whose
value is never used in the program).

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this campiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this cawpiler.

B86001D requires a predefined mumeric type other than those defined by
the Ada language in package. STANDARD. There is no such type for this
implementation.

C86001F redefines package SYSTEM, but TEXT IO is made cbsolete by
this new definition in this implementation and the test cannot be
executed since the package REFORT is dependent on the package TEXT IO.

AE2101C, EE2201D, and EE220lE use instantiations of package
SEQUENTTAL IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AF2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this campiler.

The following 174 tests are inapplicable because sequential, text, and
direct access files are not supported.

CE2102C CE2102G..H(2) CE2102K CE2104A. .D(4)

CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)

TE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)

CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)

CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)
3-3

CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2411A
AE3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A.B(2) CE3109A
CE3110A CE3111A..E(S) CE3112A..B(2) CE3114A..B(2)
CE3115A " CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE340SA..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603a CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A. .E(5)
CE3804G CE3804T CE3804K CE3804M
CE380SA..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 201 tests require a floating-point accuracy that exceeds
the maximm of 15 digits supported by this implementation:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..2 (15 tests)
C45321L..Y (14 tests)
C45521L..2 (15 tests)

C45621L..Z (15 tests)
C46012L..2 (15 tests)

CA5524L..Z (15 tests)
C45641L..Y (14 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of ocde,
processing, or evaluation in order to camensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and oconfirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of ancther).

Mcdifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B2AOO3A..C (3 tests) B33201C B33202C B33203C
B33301C B37106A B37201A B37301I B373078B
B38001C B38003A..B B3800%A..B B44001A BS1001A
B54A01C B54A01L B95063A BC1008A BC1201L
BC3013A

3-4

CAAO12B requires that a CONSTRAINT ERROR be raised in a context where a
NUMERIC_ERRCR is relivant on line 35, etc. The test has been evaluated
ard recammended to be graded as passed.

3.7 ADDITIONAL TESTING DIPOMTION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the Ada 86 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the campiler successfully
passed all applicable tests, and the camwpiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Ada 86 using ACVC Version 1.9 was conducted on-site by a
validation team from the AVF. The configuration consisted of a VAX
11/780 - 11/785 host operating under VAX/VMS, Version 4.7, and an iAPX
80386R target operating under bare machine. The host and target
computers were linked via DECNET.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were customized on-site after the magnetic tape was loaded. Tests
requiring modifications during the prevalidation testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host camputer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the VAX 11/780 - 11/785, and all executable tests
were run on the iAPX 80386R. Object files were linked on the host
computer, and executable images were transferred to the target computer
via DECNET. Results were printed from the host camputer, with results
being transferred to the host camputer via DECNET.

The campiler was tested using cammand scripts provided by SofTech,
Incorporated and reviewed by the validation team. The campiler was
tested using all default option settings without exception.

Tests were compiled, linked, and executed (as appropriate) using a
sirgle host coamputer and a single target camputer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

Testing was conducted at SofTech, Incorporated, Boston,
and was canpleted on July 8, 1988. _

Massachusetts

DECTARATION OF CONFORMANCE

A-1

Compiler Implementer:

APPENDIX A

DECLARATION OF CONFORMANCE

SofTech Inc.
460 Totten Pond Road
Waltham, MA 02254

Ada validation Facility: National Bureau of Standards (NBS)

Institute for Computer Sciences and Technology (ICST)
Software Standards Validation Group

Building 225, Room A266

Gaithersburg, MD 20899-9999

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Tacget Architecture

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

BASE CONFIGURATION(S) -

Adasgé Version: 3.21

ISA: VAX 11/780 - 11/78S OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 8086 OS&VER #: (bare machine)
Adags Version: 3.21

ISA: vax 11/780 - 11/785 OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Adasgs Version: 3.21

ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80286 real mode OS&VER #: (bare machine)
Ada8é . Version: 3.21

ISA: vAaxX 11/780 - 11/785S OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80286 protected mode
OS&VER #: (bare machine)

Ada8é Version: 3.21
ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7
ISA: Intel iAPX 80386 compatible real mode
: OS&VER #: (bare machine)

Ada8eé Version: 3.21
ISA: VAX 11/780 -~ 11/785 OS&VER #: VAX/VMS 4.7
ISA: Intel iaPX 801386 compatible protected mode

. s tee.mnern -, . OSG&VER #: (bare machine)
e 0, 4T SNTOLIIRAY AT by TP, Prad W0 20 i

DERIVED COMPILER ‘REGISTRATION
EQUIVALENT CONFIGURATION(S)

Base Compiler Name: . ' Adags - - Version: 3.21, 1.59, 1.70
Host Architecture - ISA: VAX 700 and 8000 Series OS&VER $: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 8086 OS&VER §: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80286 Teal mode .OS&VER $: (bare machine)
Target Architecture - ISA:.Intel iAPX 80286 protected OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OSsVER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp prot OS&VER #: (bare machine)
Base Compiler Name: Adasgs Version: 3.21, 1.59, 1.70
Host Architecture -~ - ISA: MicroVAX II . OS&VER #: MicrovMs 4.7
Target Architecture - ISA: Intel iAPX 8086 OS&VER #: (bare machine)

Target Architecture - ISA: Intel iAPX 80186 OS&VER
Target Architecture - ISA: Intel iAPX 80286 real mode OS&VER

#: (bare machine)

#
Target Architecture - ISA: Intel iAPX 80286 protected OSSVER #

#

#

: (bare machine)
: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER #:
Target Architecture - ISA: Intel iAPX 80386 comp prot OS&VER #:

(bare machine)
(bare machine)

DECLARATION OF CONFORMANCE Ada86 3.21 page 2.

Implementer's Declaration

I, the undersigned, representing SofTech, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s)- listed in this declaration. I declare that the
SofTech Inc. - “"is the owner on record of the Ada language compiler(s)
listed above and, as such, - is responsible for maintaining said
compiler(s) in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations £for Ada language compiler(s) . listed -“in this declaration
shall be made only in the owner's corporate name.

‘Implementer's Sjfgnature‘and Title -

Implementer's Declaration -
Owner's Declaration

I, the undersigned, representing SofTech Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target performance
are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.
I have reviewed the Validation Summary Report for the compilers(s) and
concur with the coantents.

%J@ﬁm\” NI | s/ vy
Owner'szfygnature and Title AZY ! Date

—— e B bl

nparn FT eI o '—A.'.-M’ A M@ § Sre ey

' APPENDIX B

- APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspord to
implementation-dependent pragmas, to certain machine-deperdent
caventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
‘implementation~dependent characteristics of the Ada 86, Version 3.21,
ared&scnbedmthefollowmsectmnswmd\dlsoasstopms mApperﬂJx
F of the Ada Standard. Implenentatlon— specific portions of the package
STANDARD are also included m this apperdix.

package STANDARD is

type INTEGER is ramge -32_768 .. 32_767;
type LONG_INTEGER is range -2_147_483 648 .. 2_147_483_647;

type FIOAT is digits 6 range =(2#1.111_(5)11114E+127) ..
(2#1.111_(5) 11114E+127) ;

type LONG_FIOAT is digits 15 range
-(2#1.111_(12)1111_14E+1023 ..
(2#1.111_(12)1111_1#E+1023;

type DURATION is delta 2.0%*(-14) range -131_072.0 ..
131_072.0;

end STANDARD;

B-1

APPENDIX F

APPENDIX F OF THE Ada STANDARD for SofTech's Ada86 toolset

-—

The only allowed 1mplementation dependencies co::espond to implementation- -
dependent pragmas, to certain machine_dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain ‘allowed restrictions on .
representation clauses. The implementation-dependent characteristics are
described in the following sections which discuss topics one through eight
as stated in Appendix F of the Ada Language Reference Manual (ANSI/MIL-~STD-

1815A). Two other sections, package STANDARD and file naming conventions,
are also included in this appendix.

VYYVVVYVVVYVVYVVVVYYYVYVVVVVVVVVVVYVVVVV VYV VY VYUY VYV VY VYV YV Y YV IV VY VYV VY VY Y Y YUY
(1) Implementation-Dependent Pragmas

ARAAAAAAAAAAARAAARAAAARAAMAARRPAAANARARARAARAARAAAAANAAAAARARLDRAARDAAAARAAADANAAADNRANAANMD

N S a R N S eSS LR SRR R L L T e R s s I s
This section may be copied from the applicant's documentation, but make
sure it covers all the items below.
+++

—-—

The pragmas described below are implementation-defined.

Pragma TITLE (arg);

This is a listing control pragma. “Arg" is a CHARACTER
string literal that is to appear on the second line of
each page of every listing produced for a compilation
unit in the compilation. At most, one such pragma may
appear for any compilation, and it must be the first unit
in the compilation (comments and other pragmas excepted).

For many real time applications, fast software reaction to hardware
interrupts is important. A group of pragmas is provided in
recognition of this requirement.

If an Ada task entry has been equated to a hardware interrupt through

an.address .clause .{(c.f...LRM 13.5.1), .the occurrence of the hardware
nterrupt‘ih*question"is'lnte:preted by the RSL as an entry call to
the corresponding task entry. The object code generated to implement
interrupt entries includes some overhead, since the Ada programmer

is allowed to make use of the full Ada language within the accept
body for the interrupt entry.

The'pragmas described below let the user specify that interrupt
* . entries, and the tasks that contain them, meet certain restrictions.

The restrictions speed up the software response to hardware
interrupts.

Pragma FAST_INTERRUPT_ENTRY (entry_simple_name,
SYSTEM.ENTRY_KIND literal)

This pragma specifies that the named task entry has only
~ accept bodies that execute completely with (maskable)
interrupts disabled, and that none of these accept bodies

performs operations that may potentially lead to task
switches away from the accept body.:

Pragma INTERRUPT_HANDLER TASK

This pragma specxfxes that the task at hand is degenerate
in that the whole task body consits of a single loop, which
in turn contains one or several accept statements for fast
interrupt entries, and which accesses only global variables.

Pragma TRIVIAL_ENTRY (entry simple_name)

This pragma specifies that all accept statements for the
named entry are degenerate in that their sequence of state-
ments is empty. Moreover, all entry calls to such an entry

- —are conditional entry calls, and they are issued only from
within accept bodies for fast interrupt entries.

vv
(2} Implementation~-Dependent Attributes

AAAAARAAAARAMAAAAAAAAAAMAAAAANAAARAAAAANAAAAAAMAAARAAARAARAAAAARAAANACAAMARAARARAAAAAAAARAAAAN

The predefined attribute, X'DISP, is not supported.

= IOE FE A T TONPI
m

- AR P @ B N 2 o TV
Btba. or ot w5 =o' 5 ru R .

,//,, ———
VVVVVWVVWVVV
(3) Package SYSTEM Coee . .) . N

AﬁA-A&ApAA&AAAAhAAAAAaAaaAAAaAaAAAagAAAQAAAAu\AAAAAAAAAAAA.AAAAAAgAA.AAAAAAAAAAAA

-~% Copyright 1986 Softech, 1Inc., all rights reserved.
-~ Copyright (C) 1987, SofTech, Inc.
package SYSTEM is -—{LRM 13.7 and F]
type WORD is range 0..l6#FFFF#;
for WORD'SIZE use 16; -—see[LRM 3.4(10)]
—- Ada SIZE attribute gives 16 but machine size is 32.
type - BYTE is range 0..255;
for BYTE'SIZE use 8; . " . L

~—~ Ada SIZE attribute gives 8, but machine size:is 16.

subtype REGISTER is SYSTEM.WORD;

~-§START iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS
subtype SEGMENT_REGISTER is SYSTEM.REGISTER;

NULL_SEGMENT: constant SYSTEM.SEGMENT_REGISTER := 0:
-—§STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

--#START iAPX286P, iAPX386P

~-§ type SEGMENT LENGTH-IN_ BYTES is range 1..65536;

~-—# -— Gives the range the length an iAPX286 memory segment can be.

At ~- The hardware deals with segment limits which is the length

--§ -- of the segment relative to the base minus one.

-4 -- It is more convenient to use the length of the segment

-4 -- so this type is provided.

A -— See page 7-13 of the Intel iAPX286 Programmer s Reference Manual.

- type PRIVILEGE_LEVEL is range 0..3;
—# for PRIVILEGE_LEVEL'SIZE use 2;

-—# -— Privilege level as defined by the iAPX2B6 hardware.

-—§ ~- The following types form an iAPX286 selector as described on page 7-11
-- of the Intel iAPX286 Programmer's Reference Manual.

'-~§ type DESCRIPTOR_TABLE_INDEX is range 0..8191;
-~ for DESCRIPTOR_TABLE_INDEX'SIZE use 13;
-——# -~ Index into the global or local descriptor table.

==# type -DESCRIPTOR_TABLE_INDICATOR iS§ ..o —rucimmmar cpore - —
P S § v (USE_GLOBAL DESCRIPTOR _TABLE, ~USE_LOCAL_DESCRIPTOR_TABLE);

Bl SR WA

--% for DESCRIPTOR_TABLE_INDICATOR use
-~ (USE_GLOBAL_DESCRIPTOR_TABLE => 0, USE_LOCAL_DESCRIPTOR_TABLE => 1):

-—% for DESCRIPTOR_TABLE_INDICATOR'SIZE use 1:
-—~# -- Indicates whether to use the global or the local descriptor table.

-~ type SEGMENT_REGISTER is
-4 record

-—4 -- This is a segment selector as defined by the iAPX286 hardware.

-3 ~- See page 7-1l of the Intel iAPX286 Programmer's Reference Manual.

--§ DESCRIPTOR_INDEX: DESCRIPTOR_TABLE_INDEX;

-3 -=- This is an index into either the global or the local

g | -- descriptor table. The index will select one of the 8 byte
-3 -~ descriptors in the table.

-—3 -- The table to use is given by the TABLE_INDICATCR field.

-3 == NOTE: -

e -- Even if an index is in the proper range, it might not refer
—3 == to an existing or valid descriptur. See page 7-5 of the

-3 -- Intel 1APX286 Programmer's Reference Manual.

-—3 TABLE_INDICATOR: DESCRIPTOR_TABLE_INDICATOR;

e | ~= Whether the index is an index into the global or the local
-3 ~- descriptor table;

-—% REQUESTED_PRIVILEGE _LEVEL: PRIVILEGE_LEVEL;

-3 ~- The requested privilege level reflects the privilege level of
~—# ~= original supplier of the selector. Needed when addresses are
~—} —- passed through intermediate levels. See page 7-14 of the

~— -- Intel iAPX286 Programmer's Reference Manual.

~-—# end record; B

-=# for SEGMENT_REGISTER'SIZE use 16;

--#¢ for SEGMENT_REGISTER use

-—3 record

-3 . -+ REQUESTED_PRIVILEGE_LEVEL at 0 range 0..l;
-3 TABLE_INDICATOR at 0 range 2..2;
-3 .. DESCRIPTOR_INDEX . at 0 range 3..1l5;
-4 end record; ’

. NULL_SEGMENT : constant SYSTEM.SEGMENT_REGISTER :=

-4 (0, USE_GLOBAL_DESCRIPTOR_TABLE, 0):

-3 ~= Index of the IDT descriptor in GDT

--# IDT_INDEX : constant DESCRIPTOR_TABLE_INDEX := 2;
--# ~- Size in bytes of the descriptors in IDT

--4# IDT_ENTRY_SIZE : constant := 8;
--§STOP 1APX286P, iAPX386P
subtype OFFSET_REGISTER 1s SYSTEM.REGISTER;

type ADDRESS is

record
SEGMENT: SYSTEM.SEGMENT_REGISTER;
OFFSET._:.SYSTEM,OFFSET_REGISTER; .

TRRPMAY end record;

e =T

for ADDRESS'SIZE use 132;
for ADDRESS use ~-see{ UMB3 4-10, ASM86 6-57,
record - Ada Issue 7)

OFFSET at 0 range 0..15:
SEGMENT at 2 range 0..15;
end record;

--4¢START iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

T
NULL_ADDRESS : constant SYSTEM.ADDRESS := (0, 0): .
--4STOP iAPX86, iAPX186, 1APX286R, iAPX386R, PC_DOS
~-#START iAPX286P, iAPXBBGP

--# NULL ADDRESS : constant SYSTEM.ADDRESS := (SYSTEM.NULL_SEGMENT, 0);
~-§STOP iAPX286P, iAPX386P. .

subtype IO_ADDRESS. : . is SYSTEM. REGISTER,

~-—-#START iAPX86, iAPXlBS. iAPXZBGR, 1APX386R, PC_DOS
type ABSOLUTE_ADDRESS is range 0..16#FFFFFS,
for ABSOLUTE. ADDRESS'SIZE use 20;
-— Ada SIZE attribute gives 20, but.machine size 'is 32,
-—§STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

~—§START iAPX286P, iAPX386P
-—§ type ABSOLUTE_ADDRESS is range 0..16#FFFFFF#.
--% for ABSOLUTE_ADDRESS'SIZE use 24;

-4 —- Ada SIZE attribute gives 24, but machlne size is 32.
~-$STOP iAPX2B6P, iAPX386P -

type NAME is (VAX780_VMS, iAPXB6, iAPX186, iAPX2B6R, iAPX286P,
. - PC_DOS, iAPX386R, iAPX38B6P);

--$START iAPX86 =~ ~ ...
SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX86);
-~Intel 8086 in real address mode. - -
-—-4STOP iAPXBG :
--§#START iAPX186
-—% SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX186);
-—-4 -—~Intel B0186 in real address mode.
-—$STOP iAPX186 .
~-#START iAPX286R
- SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX286R };
--$ --Intel 80286 in real address mode.
~-§STOP iAPX2B86R, iAPX386R

~--#START iAPX286P
--§ SYSTEM NAME : constant SYSTEM.NAME := (SYSTEM.iAPX286P });
~-% --Intel 80286 in protected virtual address mode.

--#STOP iAPX286P

--#START iAPX386R

~-§ SYSTEM NAME : constant SYSTEM.NAME := (SYSTEM.iAPX386R);
~—§# =-Intel B0386 in real address mode.
4.............-_-..#_5'.1‘99 i.Al?.X386R - rarms s
Mot o v e = T el . AL €S Beb s o o e smam

S Pyleutugt g 2eld

‘#START 1APX386P
-3 SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM, iAPX386P);

-—~# -~-Intel 80386 in protected virtual address mode (iAPX2B6P subset).
-~-$STOP iAPX386P

-~#START PC_DOS

-4 SYSTEM_NAME ¢ constant SYSTEM.NAME := (SYSTEM.PC_DCS)i
~=~% =-Intel 8086 in real address mode.
--#STOP PC_DOS

. STORAGE_UNIT: constant := 8;

--$START iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS
MEMORY_SIZE : constant := (2**20)-1 ; -= 1 _048_575
--3STOP 1iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

~——$#START iAPX286P, iAPX386P
~-§ MEMORY_SIZE : constant := (2**24)-1 ; - 16_777_215
--#STOP iAPX286P; iAPX386P

MIN_INT : constant := =(2**31) -— =2_147_483_648

. MAX_INT : constant := (2**31l)-1 ; ~~ 2_147_483_647

MAX_DIGITS : constant := 15; --Changed from 9 to 15 to match
--change to LONG_FLOAT in package
==STANDARD

-~-Note that the Intel 8087 Numeric Data Processor HAS dictated the
-~value of MAX DIGITS.

MAX_MANTISSA: constant
FINE _DELTA : constant

mso

S6_612_873_077_392_578_125E-10; == 2.0**(-31);

type INTERRUPT TYPE_NUMBER is cange 0..255;

--Interrupts having the following Interrupt Type Numbers are specific to the
~-iAPX86, {APX186, and iAPX286 CPUs:

~—(Note that the following are declared as CONSTANT universal integers rather
~-than CONSTANT SYSTEM.INTERRUPT_TYPE NUMBERs. This is so that they can be
~-used in MACHINE_CODE statements, which require all expressions to be static.
--At least in our implementation, conversions such as
~--"MACHINE_CODE.BYTE_VAL(SYSTEM.DISPATCH_CODE_INTERRUPT)* are not considered
~—to be static.

DIVIDE_ERROR_INTERRUPT : constant := 0;
--Ada semantics dictate that this interrupt must be interpreted as the
-—exception NUMERIC_ERROR.

SINGLE_STEP_INTERRUPT : constant := 1;
--The non-maskable internal interrupt generated by the CPU after the
--gxecution of an instruction when the Trap Flag (TF) is set.

NON_MASRABLE_INTERRUPT : constant := 2;
--The hardware~generated external interrupt delivered to the CPU via the
s SMI . pin. This_interrupt can never _be disabled by soﬁtwa:e and can
mpenetrate critical ILRG L ONS ;TS RIIAD ro 1S MIIPN NI 0 AR g Wm0 05 St

OVERFLOW_INTERRUPT ¢ constant := 4;

--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERIC_ERROR.

--Interrupts having the following Interrupt Type Numbers are specific to the
--actual configuration of the iSBC 86/30 board rather than just its CPU:

--4START 1APX36, iAPX296R, 1APX386R, iAPX286P, iAPX186P

RSL_CLOCR_INTERRUPT : constant :
R -~—#STOP-. LAPX8B6, iAPX286R, iAPX386R, iAPX286P, iAPX1386P
~-#START PC_DOS _
-—%# RSL_CLOCK_INTERRUPT T : : constant
~-#STOP PC_DOS . NP
~-#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P, PC_DOS
-~This interrupt is reserved for the use of the RSL in maintaining the
--real-time clock and fo: the support of DELAY statements. ‘
-—— 2, 0
--tSTOP 1APX86,—1APX285R, 1APX386R, iapx28sp, iAPXBBGP. PC_DOS
--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--Upper S bits, supplied by PIC, are 2#01000%,
--§STOP iAPX86, -iAPX286R, iAPX386R, iAPX286P, iAPX386P
--#START PC_DOS
-=-4 ~=Upper 5 bzts, supplied by PIC, are 2#00001%,
--4%STOP . PC_DOS .- .. :
-—3§START iAPXBS, iAPX286R, 1APX386R, iAPX286P, iAPX386P, PC_DOS
--lower 3 bits, derived from PIC input number (IRQ), are 2§000%.

—-— et

--By default, this interrupt is the highest in priority.

= 64;

P

s 8;

--Assumption: The OUTO output of the PIT (alias "TIMER 6 INTR") is
--connectad to the PIC input IRO.
--4STOP iAPX86, iAPX286R, iAPX386R, 1APX286P, iAPX386P, PC_DOS

--$START iAPX186
-—% RSL_CLOCX_INTERRUPT - ’ : constant := 18;
--% --This interrupt is reserved for the use of the RSL in maintaining the
-—-# --real-~time clock.

R T Aad

-—# DELAY_EXPIRY_INTERRUPT ¢ constant := 8;
-- --This interrupt is reserved for the use of the RSL in implementing delays
--4 ~—of less than a full RSL clock cycle.

--#STOP 1iAPX186

--#START iAPX86 .
NUMERIC_PROCESSOR_INTERRUPT : constant := 71;
~-This interrupt must be interpreted as the exception NUMERIC_ERROR.
~--Upper 5 bits, supplied by PIC, are 2401000#,
~-lower 3 bits, derived from PIC input number (IR7), are 241llls,

~-By default, this interrupt is the lowest in priority.
--Agssumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--connected to the PIC input IR7.

--#STOP iAPX86

-=3START_PC_DOS P S e
'ﬂ‘!ﬂ!ﬁ;'- NUWERIC g&gs’§SOR INTERRUPT gfffvrﬁr*ﬂ*constant ¢= NON MASKABLE INTERRUP ’ o
-~4 -- This interrupt must be interpreted as the exception NUMERIC_ERROR
--4 -- When bits 6 and 7 of port 16400C2#% are zero. OQtherwise it indicates
--¢ =-- an I/0 Channel Check or a Read/Write Memory Parity Check.
-—¢ -- The IBM-PC delivers the numeric processor exceptions via the
--§ -- non-maskable interrupt.

--4STOP PC_DOS

-=#START iAPX186

-4 NUMERIC_?ROCESSOR_INTERRUPT : constant := 15;
--% --This interrupt must be interpreted as the exception NUMERIC_ERROR.
-; -—— - . .
-—% ——Upper 5 bits, supplied by PIC, are 24000013,
--% =-lower 3 bits, derived from PIC input number (IR7), are 24111%.
--i - .
-~% --By default, this interrupt is the lowest in priority.
-—i - - . . .
-~-#% ~-Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--% =~-connected to the PIC input IR7.
-=3STOP LAPXLBS
--#START 1APX286R, iaPX386R, 1iAPX286P, iAPX386P
--§ NUMERIC_PROCESSOR_INTERRUPT : constant := 16;
-3 ~=-—alias Processor Extension Error ([PRM Numeric Supplement 1-37]
--#STCP 1iAPX286R, iAPX386R, iAPX286P, iAPX3186P

--*** The following RSL internal interrupt type numbers must be changed
- when the compiler interface has been changed.

--3START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX186P

--The software interrupt having the following Interrupt Type Number is use

d
--internally and exclusively by the RSL to check if the current stack
--has enough space.
CHECK. STACK_INTERRUPT =~ - - : constant := d48;
--The software interrupt having the following Interrupt Type Number is use
d

--internally and exclusively by the RSL to effect switching between tasks:

DISPATCH_CODE_INTERRUPT ¢ constant := 32;

--Interrupts having the following Interrupt Type Numbers (all
--software-~generated) are used internally and exclusively by the generated
--code for effecting subprogram entry sequences where there is no SFDD:

ENTER_SUBPROGRAM_WITHQUT_LPP_INTERRUPT : constant := 49;
--The generated code uses this interrupt to effect a subprogram entry
--sequence without a Lexical Parent Pointer.

ENTER_SUBPROGRAM_INTERRUPT : constant := 50
~--The generated code uses this interrupt to effect a subprogram entry
-~gsequence with a Lexical Parent Pointer.

-y Wl et § v s Pt Bm -+

AP t-=Interrupts ‘having 'the-following Inte::upt Type Numbers (all software-

~-generated) are used internally and exclusively by the generated code to
~-cause certain Ada exceptions to be forced:

PROGRAM_ERROR_INTERRUPT : constant := 53;
--This interrupt must be interpreted as the exception PROGRAM_ERROR.

CONSTRAINT_ERRCR_INTERRUPT : constant := 54;
~~This interrupt must be interpreted as the exception CONSTRAINT_ERROR.

NUMERIC_SERROR_INTERRUPT ! constant := 55;

-

~-This interrupt must be interpreted as the exception NUMERIC_ERROR.

-~Interrupts having the following Interrupt Type Numbers (all software-
~~generated) are used internally and exclusively by the generated code to
~~cause certain RSL services to be invoked:
ALLOCATE_OBJECT_INTERRUPT : constant = 56;
~-=-This interrupt causes an object to be allocated in the heap of the .
-=anonymous task. . .

~-The software interrupts having the Eollowxng Intezrupt Type Numbers are
used Lo
—-1nte:nally and exclusively by the RSL to effect entry to and exit from
--Innocuous Critical Regions:

ENTER_INNOCUOUS_CRITICAL REGION_INTERRUPT: constant := 33; .

LEAVE_INNOCUOUS CRITICAL_REGION_INTERRUPT: constant :z= 34;

--The software interrupts having the following Interrupt Type Numbers are
-~defined (and used) by the RSL and can be used by the user:

-- Used to halt. the execution of the program f£rom any point.

EALT_INTERRUPT : constant := 36;
END_OF_PROGRAM-_ INTERRUPT : constant.:=.37; :
STORAGE_ERROR_INTERRUPT ... ¢ constant := 38

--This interrupt must be interpreted as the exception STORAGE ERROR.
-~§STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX186P

-~ ~—-=§START iAPX286P, iAPX386P
-~ LOAD_TASK_REGISTER_INTERRUPT : constant :
-- CLEAR_TS_FLAG_INTERRUPT : constant :
-~ HALT_INTERRUPT : constant :
-~ —-—§STOP iAPX286P, iAPX]86P

37
38
39

e we we

--Interrupts having the following Interrupt Type Numbers are specific to the '
-~-Intel iAPX 186 and iAPX 286 CPUs: :

BOUND_EXCEPTION_INTERRUPT : constant := 5;
-~This interrupt will be interpreted as the exception CONSTRAINT_ERROR.

UNDEFINED_OPCODE_EXCEPTION_INTERRUPT : constant := 6;
-~This interrupt will be interpreted as the exception PROGRAM_ERROR.

o O R L L T A - -

:z!gazzzggpczsson_sxxzusION_NOT_AVAILABLE;INTERRUPT:zconstant-:=-W7: s T e e
; ~~This interrupt will be interpreted as the exception PROGRAM_ERROR.

--3START PC_DOS

-3 -—-The software interrupt having the following Interrupt Type Number is use
4 ' -

—3 --internally and exclusively by the RSL to check if the current stack

-—3 --has enough space: :

.
. ’

-—-§ CHECX_STACK_INTERRUPT : constant := 96
-3 ~-The software interrupt having the following Interrupt Type Number is use

--# --internally and exclusively by the RSL to effect switching between tasks:

-3 DISPATCH_CODE_INTZRRUPT : constant

:=_§9:

-—% -~Interrupts having the following Interrupt Type Numbers (all
-—4% --software-generated) are used internally and exclusively by the generated
--% --code for effecting subprogram entry sequences where there is no SFDD:

-—% ENTER_SUBPROGRAM_WITHOUT_LPP_INTERRUPT : constant := 97;

~-4 --The generated code uses this interrupt to effect a subprogram entry
--§ --sequence without a Lexical Parent Pointer.

--% ENTER_SUBPROGRAM_INTERRUPT. vevime. .. 3 constant := 98;

--4 --The generated code uses this interrupt to effect a subprogram entry
--4 -~sequence with a Lexical Parent Pointer.

-=3% --Interrupts having the following Interrupt Type Numbers (all software-
-4 --generated) are used internally and exclusively by the gererated code to
k] —-cause certain Ada exceptions to be forced:

-% PROGRAM_ZRROR_INTERRUPT : constant := 102;

-4 --This interrupt must be interpreted as the exception PRCGRAM_ZRROR.

-% CONSTRAINT_ERROR_INTERRUPT : constant := 103;
-4 -~This interrupt must be interpreted as the exception CONSTRAINT_ERROR.

1 NUMERIC_ERROR_INTERRUPT : constant := 104;
} =-This interrupt must be interpreted as the exception NUMERIC_ERROR.

--Interrzupts having the following Interrupt Type Numbers (all software-
--generated) are used internally and exclusively by the generated code to
--cause certain RSL services to be invoked: IR - e e

M?:.ﬁmq““‘.w T
ALLOCATE_OBJECT .INTERRUPT amyre="""7 constant := 105;

,:This‘inte:rupt causes ‘an object to be allocated in the heap of the
—-anonymous task.

--The software interrupts having the following Interrupt Type Numbers are

--internally and exclusively by the RSL to effect entry to and exit from
--Innocuous Critical Regions:

SVTER_INNOCUOUS_CRITICAL_REGICN_INTZRRUPT: constant := 106;

A LEAVE_INNOCUQUS_CRITICAL_REGION_INTERRUPT: constant := 107;

-=—% HALT_INTERRUPT : constant :
~--% END_OF_PROGRAM_INTERRUPT : constant :

-~ we

109
110
--§STOP PC_DOS

--Intel "reserves™ ‘interrupts with Interrupt Type Numbers in the range 0..31,
--with 32..255 available to the user. We allow the user to equate interrupts
--in the range 72..,103 to entries of task via Ada address clauses. We also

--allow such use of interrupts 1, 2, and 3, as well as interrupts arriving at

--$START iAPXB6, iAPX286R, iAPX386R, 1APX286P, iAPX386P
--PIC inputs IR1l, IR2, IR3, IR4, IR5, and IR6 (Interrupt Type Numbers 65..
70).
--$STOP 1APX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

-—#START iAPX186
-=% --iAPX186 inputs INTOQ, INTl, and INT2 (Interrupt Type Numbers 12..14).
-~#STOP iAPX186 -

-~#START PC_DOS
-~-% -~ IBM-PC DOS reserves interrupts with Interrupt Type Numbers in the
-—# -~ range 0..95. We allow the use of 1, 3, 6, 7, as well as
-~-% . -- interrupts arriving at PIC inputs IR2,.IR3, IR4, IRS (Interrupt
-~%. . =-.Type Numbers 10, 11, 12, and 13).

--#STOP - PC_DOS c

pragma PAGE;
--The enumeration literals of type ENTRY_XIND distinguish between entries of
-~-goftware tasks and interrupt entries, and identify different varieties of
--the latter when used as the second argument in a FAST_INTERRUPT_ENTRY

--pragma:

type ENTRY_KIND is

-—ORDINARY INTERRUPT ENTRY--

ORDINARY_INTERRUPT_ENTRY,
--This is not a Fast Interrupt Entry. It is invoked by an interrupt
--other than NMI. This entry may be called by a software task as
--well as by interrupt.

- ROt e ettt b i i # wns o

-If an interrupt-is eqrated to an entry by means of an address
--clause. and the FAST_ INTERRUPT_ENTRY pragma is not given for that
~-entry, the entry will be treated as an ORDINARY_INTERRUPT_ENTRY by
~-default.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the intercupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

: . "-~This is a Non-Maskable Interrupt Entry invoked only by NMI whose
Lo ~-accept body makes no entry calls.

NO_NDP_NON_MASKABLE
-~This is a Non-Maskable Interrupt Entry invoked only by NMI whose
--accept body makes no entry calls.

-~It differs from NON_MASRABLE only in that the state of the 8087

--Numeric Data Processor is neither saved nor restored durzing
-~interruptTdelivery. :

):

pragma PAGE;

-- NOTE: Be sure to compute TICX and TICKS_PER DAY by hand, as the roundoff -
-- errors introduced in computer arithmetic are unacceptably inaccurate. -

~-#START iAPX86
-~If one loaded the Programmable Interval Timer (PIT) clock counter with t

he

~--shortest possible delay, namely 1, TICK is the amount of time, in second
s,

--which. would pass between- the loadzng and the interrupt which the PIT wou
id e e e . e e

--issue upon counting down and reaching zero.

TICK : constant := 6.510_416_6566_666_666_666_667E-6;
--roughly 6.5 microseconds
-—§STOP 1APX86

~-#START 1APX186
--% --For the system clock counter of the iAPX186's Internal Timer Unit, TICX
is
el | --the amount of time, in seconds, that it takes to count from ¢ to 1.

-4 --IMPORTANT: The iSBC 186/03A runs at 8 MHz, and its Internal Timer Unit's

-—4 --base clock rate is 8 MHz divided by four, or 2 MHz.

--4 --Therefocre one counter tick =1 sec. / 2_000_000 = 0.000_000_5 sec.

-——% --One major clock cycle = 2**16 * one counter tick

65_536 * 0.000_000_5 sec.)
0.032_768 sec.

-—4 --We would like a greater time interval between counter interrupts used fo

-—’ -

-—’ -

-4 ~--timekeeping. In fact, we would like about one second, or as close as
==% ~-possible. _This means that we must prescale our system clock counter. . .
m-] qgg—wmm ke LT e e I IL I . -
T72=34 "™<-To find prescale factor, solve for X:
-~ - X * one major clock cycle = 1 second
-=4 -= X * 0.032_768 sec. 1 sec,

—4 - X =1/ 0.032_768 N
——y - X = 30.517_578_125
—-‘ - X T= 30 *

-~ --S0 SYSTEM.TICX = a prescaled counter tick
= 30 * 0.000_000_5 sec.
0.000_015 sec.

-..‘ -

-—— -

-—#
he
-4
S,
-~
1d
-4

-4
-3
-~
—#
-4
-4
.
-4

--¢ =-—and a prescaled majbr clock cycle = 2**1§ * one prescaled counter tick
-~ - T S : ='65_536 * 0.000_015 sec.
~-—# - ~z 0.983 sec.
-—’ - .
~-4 ~--There are 66_666 + 2/3 ticks in a second. : -
-—% --The number of ticks per second must be used to calculate the values of t
he ’
- --ADA_RSL constants CLOCK_TICRS_PER DAY, TICKS_PER_HALF DAY, and INT_CHUNK_
-—# ~=RAW_ TIHE. ' : '
--¢ TICK : constant := 0.000_015; --15 microseconds
--3STOP iAPX186
--$START iAPX286P, iAPX386P, 1APX286R, iAPX386R

~-If one loaded the Programmable Interval Timer (PIT) clock counter with t

--shortest possible delay, namely 1, TICK is the amount of time, in second

--which would pass between the loading and the interrupt which the PIT wou

--issue upon counting down and reaching zero.

--The CLRO input to the 8254 PIT on the iSBC 286/10 is 1.23 MHz.

--50 one

--One major clock cycle

-~There are 1_230_000 (in hex,

-~is not

counter 0 tick = 1 sec. / 1_230_000 =

2**16. * one counter tick

e , Q. 0535 sec.

prescaled.

0. oooo_ooau_ooan_. ..

sec.

= 65_536 * 0.0000_00813_00813_... sec.

1640012_C4B0#) ticks in a second if

-~The maximum recommended value of the smallest delay duration (LRM 9.6) i

--50 microseconds.
-—-interrupts.

To achieve this, another counter is needed as

--prescale factor {X) is calculated as follows.

- X =
- X
- X
- x =

[}

-=Therefore

--One major clock cycle

0.0000_5 / One counter 0 tick
0.0000_5 / 0.0000_00813_008L13_....
61.5
61 (nearest rounded off value)

SYSTEM.TICX = 61 * counter 0 tick

61 * 0.0000_00813_00813_... sec.
0.0000_49593_49593_49593_... sec.
49,593_49593_49593_19593_...
2**]16 * SYSTEM.TICK

65_536 * 0.0000_49593_49593_49593_
3.2501_59349_59349_59349_...

[}

[/}

“TEEEOPEL § TETICK YyWemmme—mere-constant “i =" 0. oooo 19593_4959) 49593-

oo W e

--about 49.59 mi

This will give the lowest possible frequency of timer

a prescaler.

microseconds

second

saconds

-~approxima

and INT_CHUNK_

croseconds
-—4 TICKS_PER_SECOND : constant := 20163.93442_62209_52836_06557;
te
- ~-TICKXS_PER_SECOND must be used to calculate (by hand!) the values of the
-4 ~-ADA_RSL constants CLOCK_TICXS_PER DAY, TICKS_PER_HALF_DAY,
--4 ~-~RAW_TIME.
--4STOP 1APX286P, iAPX336P, iAPX2836R, 1APX386R

an

--#START PC_DOS
-—@ -=-If one loaded the Programmable Interval Timer (PIT) clock counter with t

he

-—3 --shortest possible delay, namely 1, TICKX is the amount of time, in second
S,

-3 --which would pass between the loading and the interrupt which the PIT wou
1d . .

-3 -=-igsue upén counting down and reaching zero. The clock input to the

--§ ——PIT is 1.19318 MHZ, so a tick is 1/1.19318 MHZ or approximately

--4 =-0.8380965E-6 seconds .

--4 TICR : constant := 0.83809651SE-6;

--# -~roughly .83 microseconds
--#STOP PC_DOS

type TIME is private;
NULL_TIME : constant TIME;

type DIRECTION_TYPE is(AUTO_INCREMENT, AUTO_DECREMENT):;
type PARITY_TYPE is(ODD, EVEN):

type FLAGS_REGISTER .is.: . . N
record ’

--%START iAPX286P, iAPX386P
-—3 NESTED_TASK : BOOLEAN := FALSE;
.=-—# .. IO_PRIVILEGZ_LEVEL : NATURAL range 0..3 := 1;
--3STOP 1iAPX286P, iAPX386P

OVERFLOW : BOOLEAN := FALSE;
DIRECTION : SYSTEM.DIRECTION_TYPE := SYSTEM.AUTO_INCREMENT;
INTERRUPT : BOOLEAN := TRUE;
TRAP : BOOLEAN := FALSE;
SIGN : BOOLEAN := FALSE;
ZERO : BOOLEAN :+= TRUE; --nihilistic view
AUXILIARY : BOOLEAN 1= FALSE;
PARITY : SYSTEM.PARITY_TYPE := SYSTEM.EVEN;
CARRY : BOOLEAN := FALSE;
end record;
for FLAGS_REGISTER use -
record

--#START iAPX286P, iAPX386P

-~# NESTED_TASK at 0 range 1l4..14;

—-~# I0_PRIVILEGE_LEVEL at 0 range 12..13; e = .

W'STOP ,..1APX286?,_,1APX386P W-‘m«-uv L rveett -
’ L s s L 2 e rpat it . 8 (e Lol o TRV

QVERFLOW at 0 range 11..1l1l;
DIRECTION at 0 range 10..10;
INTERRUPT at 0 range 9.. 9:
TRAP at 0 range 8.. 8; -
SIGN at 0 range 7.. 7:
ZEROQ at 0 range 6.. 6;
AUXILIARY at 0 range 4.. 4;
PARITY at 0 range 2.. 2;
CARRY at 0 range 0.. 0:

end record;

NORMALIZED_FLAGS_REGISTER : constant SYSTEM.FLAGS_REGISTER
(

--#START iAPX286P, iAPX386P
-~4 NESTED_TASK => FALSE,
-~4 IO_PRIVILEGE_LEVEL => 1,

--4§STOP iAPX286P, iAPX386?

OVERFLOW => FALSE,

DIRECTION => SYSTEM.AUTO_INCREMENT,
INTERRUPT => TRUE,

TRAP => FALSE,

SIGN => FALSE,

ZERO => TRUE, --nihilistic view
AUXILIARY => FALSE,

PARITY => SYSTEM.EVEN,

CARRY => FALSE

subtype PRIORITY is INTEGER range 1..1l5;

UNRESOLVED_REFERENCE: exception; --see Appendix 30 of A-spec
SYSTEM_ERROR ~ ° -~ : exception;

function EFFECTIVE_ADDRESS e
(A: in SYSTEM.ADDRESS - ~ 7~ S e s
)

return SYSTEM.ABSOLUTE_ADDRESS;

~--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
~- specified by the segment/offset register pair A.

pragma INTERFACE(ASM86, EFFECTIVE_ADDRESS):

function FAST_EFFECTIVE_ADDRESS
-- (A: in SYSTEM.ADDRESS
--found in DX (segment part) and AX (offset part), NOT on stack
--)
return SYSTEM.ABSOLUTE_ADDRESS;
-=-in DX:AX:

--PURPQSE:

-=- This function, written in ASM86, returns the 20~-bit effective address
z—-—Specified by.the segment/offset register pair DX:AX. s
fﬂ!ﬂﬂgggr-?'This function -is ‘intended for use by ASM routines. -It does not observe

-=- Ada calling conventions and therefore does not make a null SFDD. It
-~ does save and later restore all those registers that it uses
-- internally.

pragma INTERFACE(ASMB86, FAST_EFFECTIVE_ADDRESS);

function TWOS_COMPLEMENT_OF
(W: in SYSTEM.WORD
)

recurn SYSTEM.WORD:

e’

-—PURPOSE:
-- This function, written in' ASM86, returns the two's complement of the
~-— given argument.
--ASSUMPTIONS:
== 1) CRITICAL REGION INFORMATION:
- This procedure makes no assumptions about critical regions.
- It neither enters nor leaves a critical tegxon.
pragma INTERFACE(ASMBS, TWOS_COMPLEMENT_OF);

procedure ADD_TO_ADDRESS
(ADDR : in out SYSTEM.ADDRESS;
OFFSET: in SYSTEM.OFFSET_REGISTER);

--PURPQSE:
-~ This procedure, written in ASM86, adds OFFSET to the offset part of
~— ADDR. If overflow occurs, NUMERIC_ERROR is raised.
~-SIDE EFFECTS:
~- Raising of NUMERIC_ERROR.
pragma INTERFACE(ASM86, ADD_TO_ADDRESS)};

procedure SUBTRACT_FROM_ADDRESS
(ADDR : in out SYSTEM.ADDRESS:;
OFFSET: in SYSTEM.OFFSET_REGISTER),

~-PURPOSE:
~- This procedure, written in ASM86, subtracts OFFSET from the offset part
~— of ADDR. If underflow occurs, NUMERIC_ERROR is raised.
~-~SIDE EFFECTS:
~- Raising of NUMERIC_ERROR.
pragma INTERFACE(ASM86, SUBTRACT_FROM_ADDRESS);

function INTERRUPT_TYPE_NUMBER_OF
(A : in SYSTEM.ADDRESS

)
return SYSTEM.INTERRUPT_TYPE_NUMBER;

--PURPOSE:
-- This function, written in ASM86, returns the Interrupt Type Number that
-~ uniquely identifies the interrupt whose interrupt vector is located at
-- the specified address. If this address is not the address of an
-- interrupt vector, CONSTRAINT_ERROR is raised.
--SIDE EFFECTS:
-- Raising of CONSTRAINT_ERROR.
pragma INTERFACE(ASM86, INTERRUPT_TYPE_NUMBER_OF y:

e o handot vt T - - e
el .
» A g Ralipreew & VR Y PRI

procedure GET ADDRESS _FROM_INTERRUPT_TYPE_NUMBER
(A : out SYSTEM.ADDRESS:
ITN : in SYSTEM.INTERRUPT_TYPE_NUMBER

)i

--PURPOSE:
-~ This procedure, written in ASM86, returns the address of the interrupt
-= vector numbered ITN.

pragma INTERFACZ(ASM86, GET_ADDRESS_FROM_INTERRUPT_TYPE_NUMBER)

. function GREATER_THAN
(AL : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

)
return BOQOLEAN;

--PURPOSE: :
-- This function, wtztten in AS%BS, returns the value of the expression
—— A1>A2: —.'

pragma INTERFACE(ASM86, GREATER_THAN):

function MINUS . Coeat
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS
) . . -) . . "'
return LONG_INTEGER; -

--DURPOSE: .
-- This function, written in ASM86, returns the signed value of Al - A2.
pragma INTERFACE(ASM86, MINUS):

function "*>* . - -
(AL : in SYSTEM. ADDRBSS, ST -
A2 : in SYSTEM.ADDRESS

) .
return. BOOLEAN. renames SYSTEM.GREATER_THAN; -

Eunction "-"
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

)
return LONG_INTEGZR renames SYSTEM.MINUS;

- procedure ADJUST_FOR_UPWARD_GROWTH

- (OLD_ADDRESS : in SYSTEM.ADDRESS;

- ADJUSTED_ADDRESS: out SYSTEM.ADDRESS):
-- Transforms the given SYSTEM.ADDRESS into a representation yielding
-- the same effective address, but in which the SEGMENT component is
-- as large as possible.

-~ procedure ADJUST_FOR_DOWNWARD_GROWTH
== (OLD_ADDRESS : in SYSTEM.ADDRESS:;
— ADJUSTED _ADDRESS: _.out SYSTEM.ADDRESS)} memuiver.—w..
¢u!r-zh?:§r:ng:ansto:ms -the given SYSTEM.ADDRESS into a representation yieldxng
the same effective address, but in which the OFFSET component is as
~-— large as possible,

~--private

~- pragma INTERFACE(ASM86, ADJUST_FOR_UPWARD_GROWTH):;
~- pragma INTERFACE(ASM86, ADJUST_FOR_DOWNWARD GROWTH);

private

type LONG_CYCLE is array(l..3)of SYSTEM.WORD;
- pragma PACK(LONG_CYCLE); --Make this type occupy 64 bits.

type TIME is --This may be viewed as a single 64-bit integer
record --representing a quantity of SYSTEM.TICKsS.
CYCLES : LONG_CYCLZ;
TICRS : SYSTEM.WORD:;
end record; :

for TIME use record
CYCLES at 0 range 0..47;
TICXS at 6 range 0..l15;
end record;

--A TIME variable may be viewed as a 64-bit integer, or as a record with a
--more significant CYCLES part and a less significant TICXS part. Whenever
~~the TICKS part is incremented, the addition may carry over into the
~-adjacent CICLEs part.

~~Storage layout of a variable of type TIME:

- increasing addresses

- >

- | cxcres(1) | cycrzs(2) | CYCLES(3) | - TICKS {
-~ \ /

- \/

- one word

NULL_TIME : constant TIME := ((OTHERS => 0), 0):

end SYSTEM;

2D U i - heras Pese TTTA 6 Ll
P) Py SRR ALY 2= o - e

. .

WWWVVWVVWWVVVWWVWVVWVVWWWVVVVVVVVVVVVVVWVWWVVVVVWWVWVVVVVVVVV
. (4) . Representation Clause Restrictions’

AARAMAARAAAAAARARAARAAAARMARAARARAARAAAAAAAAARAARAAABANARAANAARAANAARARDRANARAARNARNARRRAAANARARAN

R n T 5. & 2 R A

Representation clauses specify how the types of the language
are to be mapped onto the underlying machine. The following
are restrictions on.representation clauses.

R e man s L n s

Address Clauses
Address clauses are supported for the following items:
1. Scalar or composite objects with the following restrictions:

(a) The object must not be nested within a subptogram or
task directly or indirectly.

(b) The size of the object must be determinable at time of
compilation.

2. Subprograms with the following restrictions:

(a) The subprogram can not be a library subprogram
{LRM requirement).

(b) Any subprogram declared within a subprogram having an
address clause will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt
with which the entry is to be associated.

Length Clause

T*'STORAGE_SIZE for task type T specifies the number of bytes
to be allocated for the run-time stack of each task object of
type T.

Enumeration Representation Clause

In the absence of a representation specification for an
enumeration type T, the internal representation of T'FIRST is
0. The default SIZE for a stand~alone object of enumeration
type T will be the smallest of the values 8, 16, or 32, such
that the internal representation of T'FIRST and T'LAST both
Eall_ thhxn the range. e PP Kb bt e s S0 08 1o

o rhady @ o P, ¢

AN s o e o it M BT T T . padantnti Tt Yoo w7
—2"(T'SIZE -1 .. 2"(T SIZE - 1)~1.

e

Length specifications of the form:
for T'SIZE use N;
and/or enumeration representations of the form:

for T use aggregate

Are pe:mitéed for N in 2..32, provided the representations

. and the SIZE conform to the relationship specified above,

or else for N in 1..31, provided that the internal
representation of T'FIRST > = 0 and the rep:esentation of

T'LAST = 2*'(T SIZE) - 1.

- For components of enumeration types within packed composite

Record

- objects, the smaller of the default stand-alone SIZE and the

SIZE from a length specification i{s used.

In accordance with the rules of Ada, and the implementation of
package STANDARD, enumeration representation on types derived

from the predefined type BOOLEAN are not accepted, but length
specifications are accepted.

Representation Clause
A length specification of the form
for T'SIZE use N;

Will cause arrays and records to be packed, if required, to
accommodate the length specification.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements
are minimized at the-possible- expense of -data-access.time and
and code space. - R e

A tecord type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..7 from the right. (Bit 8 starts at the right of
the next higher-numbered byte.)

The alignment clause of the form:

at mod N

can specify alignment of 1 (byte) or 2 (word).

. . OV

o d s e T " awe N M PRI JRLE TS L R

-~

VVVVVVVVVVVVVVVYVVVVVVVVVVVVVVVVVYVYYV VYV YV VYVVVVVVVVVYVY VY YV VYV YV YU VYV VYUY YY
(S) . Conventions - .

aaaaaaaaaaaaQAAaaaaaanangaaaaanaaaanaa.aaanaaanaaaa—aaaaaaaaanaaaaaaanaaaanaa.aa

T S T L oL T T Y U oweee
The following conventions are used for an implementation-

generated name denoting implementation-dependent components.
a2 S e o]

NONE -

t .

VVVVYVYVVVVYYYVYVVVVVYVYY VYV VYV VYV VYV VYV VYV VYV VYV YTV VYV VY YV VY VYV YUY VYV Y Y YOy
(6) Address Clauses

nannga-naaaanaaa.aaanaaaaaanaAAAAAnanaaaaaAAaa--a.aaaanaan.a-aaaah—Aaaaaanaaaaaa

S oo T R et e e R e S s
The following are conventions that define the interpretation
of expressions that appear in address clauses, including
those for interrupts.

D st s a s S R S N e a

NONE

vv
(7) Unchecked Conversions - .= =-vi o w0 v 2’ L F L0 4 enwi e e s e

AAAAAAAAARAAARAARAAAARAAAARAANRARAARAARARARARANAADARAANAAAARAAARAAAANAAAAAAARAAAARAANAARNAAARAAN

L e e S R R LT e e e R eT

The following are restrictions on unchecked conversion,) R
including those depending on the respective sizes of objects

of the source and target. .

O LS I T R R R A R A R T T ¥ S i S AT R rare

A program is erroneous if it performs UNCHECKED-CONVERSION when
the size of the source and target types have different.

AAIATATATATAIATA AT ATATAT A ATATAS A ATASATATA A AP A AP A AR A A AA A A AP A A A AATATAA A AVA AT ATATATEIATATAT AT AT ATATAVATAVAY AT TAVAVAVAVAVAVAYAVAVAIVATS
(8) Input-Qutput Packages

AAAAMAAAAAAAARAAAAAAAAAAAARAAAAAAAAAAAAMAAAAMARAAAAAAAMARAAAAAAAAAAAAAMAAAAARARAAAARARAA

PPNV DU SRS erg e R R R ST S A S G S
The following are implementation-dependent characteristics
of the input-output packages.

T SO GO arrp S e S Y e a S A s 2 T T L TR TS P

SEQUENTIAL_IO_Package e

e =

NOT SUPPORTED

S A s Baree -

T e

e T Ty e e R LI L R R T R R T X PP PSP
Declare file type and applicable operations for files of
this type.

S R S T e I e L R LIS S L IL R 2 2 TR LR FPUYeY

DIRECT_IO Package

NOT SUPPORTED

R

TEXT_IO Package

ok

~—* PACRKAGE SPECIFICATION FOR TEXT_IO

(2222222222 X2 R22222222 2222222 2220 s2 i 2z i i R 2 R R R R R E R R R R R Y R 2R R R 2R B)

The Specification of the Package TEXT_IO contains the following
(implementation specific) definitions in addition to those specified
in 14.3.10 of the LRM:

-

(A2 22222 222222222 R 22 2 2 2Rl L Y R N Y S Y R R AR Ry

--% Copyright 1986 Softech, Inc., all rights reserved.
-=- Copyright (C) 1987, SofTech, Inc.
with ADA_RSL, IO_EXCEPTIONS:

-~3START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P
with SYSTEM, IO_DEFS;
-~$STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

-~#START PC_DOS
-~% with SYSTEM, IO_DEFS, BASIC_IO;
--#STOP PC_DOS

~~%* PACKAGE SPECIFICATION FOR TEXT_IO

——-* PURPOSE:- " :
--3 This package provides input and output services for textual files

--3

-—3 including creation,deletion,opening, and closing of said files.

-3 This package is as specified in the Ada Reference Manual (1982).

--3

--3 And here a word about primary and secondary routines. A primary routine

is

--13 always visible outside the package. If it references a file, it will

--3 attempt to gain exclusive access to that file descriptor. (The term

-=3 "exclusive access" is used with reqgard to tasks.) All modifications or

-1 tests on file descriptor FIELDs must be made only if the current task

--3 has exclusive access to that descriptor. 1In every case where a primary

-=3 routine gains exclusive access to a file descriptor, that routine must

-=% release the file descriptor beFORE exiting. Primary routines may call

--3 pcimary or secondary routines. Secondary routines are never visible

-3 outside the package. If a secondary routine references a file descriptor

’

-=3 that routine assumes exclusive access for that descriptor. Secondary

g | toutines may only call other secondary routines. _All calls to BASIC_IO
m—-\ e for reading or-writing are made by secondary routines. All other

-3 BASIC IO calls are made by primacry routines.

-

PRAGMA PAGE:;
--* SPECIFICATION:

PACRAGE text_io IS
USE ada_rsl;

TYPE file_type IS LIMITED PRIVATE;

TYPE file_mode IS (in_file, out_file);

TYPE count IS RANGE 0 .. integer'LAST:

SUBTYPE positive_count IS count RANGE 1 .. count'LAST;

unbounded : CONSTANT count

:= 0; -- line and page length

SUBTYPE field IS integer RANGE 0 .. integer'LAST;

SUBTYPE number_base IS integer RANGE 2 .. 16;

TYPE type_set IS (lower_case,upper_case);

-— File Management
PROCEDURE create (file
mode
name
form
PROCEDURE open (file
mode
name
form
PROCEDURE close (file
PROCEDURE delete (file

PROCEDURE reset (file
mode

PROCEDURE reset (file

FUNCTION mode (£ile

e oo

'y

es e¢ eo se

IN
IN
IN
IN
IN
IN
IN
IN
IN

IN

IN

IN

IN

evotomrorarse 2 Ul "TION_name . (_file :_ IN

OUT file_type:

file_mode := out_file;
string := "";

stcing = "");

OUT file_type:
file_mode;

string;

string = "");

OUT file_type):
ouT file_type):

OUT file_type:
Eile_mode);

OUT file_type):
file_type) RETURN file_mode:

file_type) RETURN string:;

v wea e T

L >4

“FUNCTION form

FUNCTION is_open (file

ol Tohnl '_‘m-—".v B
(file : IN

IN

(Al aaps a b S A RRr LR S e T O R T R RO

file_type) RETURN string;

file_type) RETURN boolean:

-- Control of default input and output files --- - ———

PROCEDURE set_input
PROCEDURE set_output

FUNCTION standard_input

(file : IN file_type);:
(file : IN file_type);

RETURN file type:

FUNCTION

FUNCTION
FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

FUNCTION

== Column, Line,. and Page Control

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDU#E
FUNCTION
FUNCTION
PROCEDURE
PROCEDURE

PROCEDURE

standard_output

current_input
current_output

~- Specification of line and

set_line_length

set_line_ledath

set_page_length
set_page_length

line_length
line_length
page_length

page_length

new_line

new_line

skip_line

skip_line
end_of_line
end_of_line
new_page
new_page;

skip_page

RETURN file_type;

RETURN file_type;
RETURN file_type:

page lengths

(file : IN f£ile_type:

to ¢ IN count);
(to s IN count); -- for default output file
(file : IN file_type;

to ¢ IN count);
(to : IN count); ~= for default output £il
(£ile : £N file_type) RETURN count;
RETURN count; -— for default output file
(file : IN file_type) RETURN count;
RETURN coﬁnt:

- £ile

IN file_type:

spacing'; IN positive_count := 1);
(spacing : IN positive_count := 1 };
(£ile : IN file_type:

spacing : IN positive_count := 1);
(spacing : IN positive_count := 1);

(file : IN file_type) RETURN BOOLEAN;
RETURN boolean;
(file : IN file_type);

(file

== default output file

: IN file_type);

L I .

manEDQRE ;p-y_sll.d.p_page:_m-v—.-.amhm-—w-u-ma-w--n-- defauit input file

FUNCTION
FUNCTION
FUNCTION
FUNCTION

PRCCEDURE

end_of_page
end_of_page
end _of_file
end_of_file

set_col

(€ile : IN file_type) RETURN boolean;
RETURN boolean; -- default input file
(file : IN file_type) RETURN boolean;
RETURN boolean; -~ default input file
(€ile : IN file_type:

PROCEDURE
tput file

PRCCEDURE

PROCEDURE
tput file

FUNCTION

FUNCTION
tput file

FUNCTION

FUNCTION
tput file

FUNCTION

FUNCTION
file

-= CHARACTER

set_col

set_line

set_line

col

col

line

line

page

page

get

input_output

to

(£ile
to

{ file

RETURN

(file

RETURN

(£ile

RETURN

o oo o

IN positive_count
IN positive_count
IN file_type;

IN positive_count

IN positive_count

IN file_type) RETURN

positive_count;

IN file_type) RETURN

positive_count;

IN file_type)

positive_count;

RETURN

—-~ for default ou

-- for de2fault ou

positive_count;

-~ for default ou

positive_count;

-~ for default ou

positive_count;

-~ default output

(f£ile

PROCEDURE : IN file_type;

e T - item : OUT character):
PROCEDVRE get (item : OUT character);
PROCEDURE put (£Eile : IN file_type:

item : IN chacacter);
PROCEDURE put (item : IN character);
-= STRING input_output =—=—=-—==-=—ee—cceaao—————oao
PROCEDURE get (£ile : IN file_type;
‘ item : OUT string };
PROCEDURE get (item : OUT string);
PROCEDURE put (£ile : IN file_type:
item : IN string);
e T ROCCEDURE put (_item _:_IN string);
W'r- - '1.:-’!1 el ‘.‘-‘-‘.".‘.‘m-\g-«--v-a*‘c Cem L m awy
= PROCEDURE get_line (file : IN file_type;
item : OUT string;
last : OUT natural };
PROCEDURE get _line (item : OUT string;
last : OUT natural);
PROCEDURE put_line (file : IN file_type;
item : IN string);:

PROCEDURE put_line (item : IN string):

-~ Generic package for Input_out of Integer Types

GENERIC
TYPE num IS RANGE. <>;

PACKAGE integer—io IS —~-INTEGER __1I10
default_width : field := num'WIDTH;
default_base number_base :=-10;

PROCEDURE get (file IN file_type:

item : OUT num;
width : IN field := 0);
PROCEDURE get (item : CUT num;
width : IN field := 0);
PROCEDURE put (file : IN file_type;
item : IN num;
width : IN field := default_width;
base : IN number_base := default_base);
IN num;

PROCEDURE put (item
L. e .. width
base

IN field := default_width;
IN number_base := default_base);

IN.string;
OUT num;
OUT positive);

PROCEDURE get (from
item
last

PROCEDURE put (to OUT string:
item : IN num;
base : IN number_base := default_base):

END integer_io:

- ————— —— — -

- — - ——— - ——— > — - -

~-- Generic packages for Input_ouput of Real Type

GENERIC
TYPE num IS DIGITS <>;

PACKAGE float_io IS
default_fore : field := 2;
meem————default_aft __: field := num'DIGITS =.1; _ —
pdefault_exp sw:<field $2. 3] R e N et ey s

PROCEDURE get (file : in file_type:

item : OUT num;

width : IN field := 0);
PROCEDURE get (item : OUT num;

width : IN field := Q);
PROCEDURE put (file : IN file_type;

item : IN num;

. fore : IN field := default_fore;
- aft : IN field := default_aft;
exp : IN field := default_exp);
PROCEDURE put (item : IN num;
fore : IN field := default_fore;
‘ aft : IN field := default_aft;
} exp : IN field := default_exp);
PROCEDURE get k from : IN string;
item : OUT num;
last. : OUT positive);
PROCEDURE put (.TO :+ QUT string;
item : IN num;
aft : IN field := default_aft;
exp : IN field := default_exp);
END float_io;
GENERIC
TYPE num IS DELTA <>;
PACKAGE fixed_io IS
default_fore : field := num'FORE;.
default_aft : field := num'AFT;
default_exp 1 field := 0;

PROCEDURE get (file : IN file_type:
item : OUT num;
width : IN field := 0);
PROCEDURE get (item s+ OUT num;
width : IN field := 0);
PROCEDURE put (file : IN file_type:
item : IN num;
fore : IN field := default_fore;
att : IN field := default_aft;
exp : IN field := default_exp);
PROCEZDURE put (item : IN num;
fore : IN field := default_fore;
att : IN field := default_aft;
exp : IN field := default_exp);
PROCEDURE get (from s IN strings L0 o o=
NN PP IR s item Lecme:-O0UT NUM; .crmesmatnas.cnme cormn o
amaetanktiet S st "7t last : OUT positive);
PROCEDURE put (to : OUT string;
item IN num;
afe IN field := default_aft;
exp IN field := default_exp);

END fixed_io;

GENERIC
TYPE enum IS (<>);-

default_width i
default_setting. :

PROCEDURE get (£file
item

PROCEDURE get (item

PROCEDURE put (file
item
width
set

PROCEDURE put (item
width
set

PROCEDURE get (from
- i item
last
PROCEDURE put { to
item
set

END enumeration_io;

PACXAGE enumeration_io IS

- -~ Generic package for Input_Output of Enumeration Types

field 1= 0;

type_set := upper_case:
: IN file_type;
¢ OUT enum);

: QUT enum);

IN
in
IN
: IN

IN
IN
IN

IN

o s

IN
IN

@ es e

file_type:
enum;
field
type_set

-
=

:= default_width;
:= default_setting
enum; o
field := default_width;
type_set := default_setting

string;

OUT enum;
. OUT. positive);

OUT string:

enum;
type_set := default_setting

-— Exceptions
status_error : EXCEPTION
mode_error : EXCEPTION
name_error : EXCEPTICN
use_error : EXCEPTION
device_error : EXCEPTION
end_errcor ¢ EXCEPTION
data_errort : EXCEPTION
layout_error : EXCEPTION

RENAMES
RENAMES
RENAMES
RENAMES
RENAMES
RENAMES
RENAMES
RENAMES

io_exceptions.status_error;
fo_exceptions.mode_error:
io_exceptions.name_error;
io_exceptions.use_error;
io_exceptions.device_error:
io_exceptions.end_error;
io_exceptions.data_error:
io_exceptions.layout_error;

2 e T [-

M ARE B e tp ms Ve s,

. > s = s T ————— Y — o

PRIVATE

PRIVATE

~- REPRESENTATION OF TEXT_ IO FILES:

~= Th
-=- in
- Fo

~-- of

is implementation of TEXT IO is for the Intel targets. For

put files, a variety of possible file formats are supported.

r output, a single canonical format corresponding to the format
DOS produced text files is used.

TEXT_IO OUTPUT FILE FORMAT

file ::= page {eop page} eof
page ::= line {eol line}
line ::= {character}

eol ¢:= ASCII.CR ASCII.LF
eop s3= ASCII:éF. o
eof -~ t¢= ASCII.SUB -

character ::= any ASCII character except CR, LF, FF, and SUB

Note that for an output file, a physical line terminator ends
every line except the last line in each page. A physical page
terminator follows every page except the last page which is
terminated by the physical file terminator. The final page
terminator is omitted in keeping with common practice.

An empty physical file logically consists of an Ada line terminator
followed by a page terminator, followed by a file terminator.

A physical file containing only a form feed character logically consists
of two pages, each containing a single line empty line.

TEXT_IO INPUT FILEZE FORMATS

The PHYSICAL syntax for an INPUT file is broad enough to accept a variety
of- possible .text -file forms including some which are not produced by
TEXT_IO. The following physical text patterns are interpreted as Ada
logical lines, pages and files by TEXT_IO when reading files:

file = page (eop page} eof
page ti= line {eol line}
line 1= {character}

1}

eol ASCII.CR ASCII.LF

- | ascII.cr

S - | ASCII.LF
- eQp 2= ASCII.F?
-~ eof s= ASCII.SUB
-— | (end of data condition)

— character ::= any character except ASCII: CR, LF, FF, SUB.

~- Thus for an input file, a line may be explicity terminated by a carriage
~- return/line feed pair, by carriage return alone, or by line feed alone.
~- An end of line is always implicit in a form feed or the physical end of
~=- file.

~-- A file may be explicitly terminated by a control Z character or

-— implicity when the end of input data is encountered. However, an

-- embedded control Z character will be treated as the end of file even

-- though it may not be the physical end of data. The end of file is

-- always preceded by an implicit logical line terminator and page terminator.

—-=- The procedure READ_CHAR generates a page_term character corressponding
-- tothe implicit page terminator which precedes the end for file.

-- The implicit LINE_TERMINATOR which precedes each page terminator is

-- not generated READ_CHAR. D

-— In the implementation of TEXT_IOQ, the code which interprets or
-- produces the physical file syntax has been isolated in the
-- following procedures: - - -

- read_char - gets the next input character or teminator.

- end_of_line =~ checks if a line, page or file terminator is next.
-— end_of_page - checks if a page or file terminator -follows.

- end_of_file =~ checks if a file terminator follows.

- txt_put_char - output a logical character.

- txt_new_line - starts a new line.

- txt_new_page - starts a new page.

- write_char - puts the next physical character.

-~ Private Data:
buffer_length : CONSTANT := 256;
max_line_length : CONSTANT := buffer_length;
TYPE char_buffer IS ARRAY (integer RANGE l..buffer_length) OF character;

APy cmmae otk Y L

<!u-gpgrtryps file rec' IS --“common file state desc:iption, actual FILE_TYPE
RECORD ~- declarations will be access types to this record.

--4START PC_DOS

-3 stream : basic_io.stream_type;

—4 ==~ BASIC_IO file handle.
--4#STC? PC_DQS

--#START iAPX86, iAPX186, iAPX286, iAPX236R, iAPX386R, iAPx286P, iAPX38
6P

stream : io_defs.stream_id_prv;

-—-$STOP iAPX36, iAPX186, iAPX286, iAPX286R, iAPX386R, 1APX286P, iAPX38
. 6P o .
mode : file_mode; -- IN_FILE or OUT_FILE.
curr_col : count := I; ~~ Next column to be read
-- or written.
curr_line : count := 1; -= Current line in page.
curc_page . : count := 1; == Current page in file.
line_len : count := unbounded:
‘ i "« == TEXT_IO line_length
page_len : count :=.unbounded;
: C == TEXT_IO page_length
curr_rec_length : integer := 0; —-- Index of last character in
: : = - == in TEXT_BUF (when reading)
text_index ~ 1 integer := 1; -- Index of next character in
-— TEXT_BUF to be read or
-=- written.
text_buf : char_buffer; -- Input/outpt buffer.
prev_char : character := ASCII.NUL;
-- Previous character returned
-- by READ_CHAR.
pending_terminator : character := ASCII.NUL;
nTmr s e e ~-- A terminator which has been
-=- passed to WRITE_CHAR but not
-- -- yet placed in the text buffer.
=— Value may be LINE_TERM,
-— PAGE_TERM or ASCII.NUL
-=- indicating no pending
== terminator.
back_up : boolean := false:;
== True if TXT_BACK_UP has been
-— called to cause PREV_CHAR to
-=- be re-read.
at_eof : boolean := false;
" -- Set true when READ CHAR sees
~= the end of file marker.
END RECORD:;
TYPE file_type IS ACCESS file_rec;
std_input : file_type; -- the standard and current file descriptors

std_output

file_type:;

-- should not be visible to the user except

e CUL L iNPUL =i £ile_tyPe; wwewwmeme—~=.through the provided procedure (see above).

S¥icurr_output™itfile_type; TeRRmMIm eI oot I i e e

~- Define logical file marker values.
line_ternm : CONSTANT character := ASCII.LF;
page_term : CONSTANT character := ASCII.FF;
Cs)

file_term :

Ag)

CONSTANT character

:= ASCII.SUB;

e wge s

form feed (ctrl-~-L) (1640

(ctrl-2) (l6#l

TYPE character_set IS ARRAY (character) OF BOOLEAN;

-— The TERMINATOR array is used to quickly determine whether a character is
-- is a physical terminator.

terminator : CONSTANT character_set := character_set'
(ASCII.CR |
ASCII.LF |
ASCII.FF.|
ASCII.SUB => TRUE,
OTHERS => FALSE);

-- The SPACE_ETC array is used to quickly determine whether a character is
-— to be skipped because its a space, tab, vertical tab, or terminator.

space_etc ¢ CONSTANT character_set := character_set’
¢ I
ASCII.HT
ASCII.VT
ASCII.CR
ASCII.LF
ASCII.FF
ASCII.SUB => TRUE,
OTHERS => FALSE);

END text_io:;

| LOW_LEVEL_IO

~ . . .
N . L . N . H t

+++
Include either the LOW_LEVEL_IO package specifzcatxon or the
following sentence:

Low-level input-ocutput is not provided.
T a2 2 2 e e e e e e n I II S SIS SIS S S

--¢ Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

with SYSTEM; use SYSTEM;
-~* PACRAGE SPECIFICATION FOR LOW_LEVEL_IO

-=* PURPQOSE:

-3 To support the programming of devxces that can be accessed through ports
-3 in the memory space and the I/O space of the iAPX186.. Specific devices
--3 or device types that cannot be assumed to be present in all iAPX186-based
-—3 targets should be supported by specific packages (e.g., MPSC).

prcagma PAGE; -- In package LOW_LEVEL_IQ

--#% SPECIFICATION:

package LOW_LEVEL_IO is

--Support for I/O-mapped input and output:

procedure SEND_CONTRQL (DEVICE in IO_ADDRESS; DATA
procedure SEND_CONTROL { DEVICE in IO_ADDRESS; DATA
procedure RECEIVE_CONTROL(DEVICE in JO_ADDRESS; DATA
procedure RECEIVE_CONTROL(DEVICE in IO_ADDRESS; DATA

in out BYTE):
in out WORD):
in out BYTE):
in out WORD)

-~Support for memory-mapped input and output:

procedure SEND_CONTROL (DEVICE in ADDRESS: DATA
procedure SEND_CONTROL (DEVICE
procedure RECEIVE_CONTROL(DEVICE
procedure RECEIVE_CONTROL(DEVICE

o

in out BYTE)
in ADDRESS; DATA : in out WORD }
in ADDRESS: DATA : in out BYTE):
in ADDRESS:; DATA in out WORD)

LT VY IR

end LOW_LEVEL_IO;

ey avwame— kYR e -

bd PR m a T MR ew eg e e PR S

.o

'JVVVWWVVVWWVVWVWVVVVVVVVVVVVVVWVVVVWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
. (9) Package STANDARD

. ARAAAAARAARARAARAAARAAAAAAAAAAAAAAAAAAAARAAAAAARAAAAAARARAAAAAAAAAARMMARAARAARAAMMARAAMA

-- Copyright (C) 1986, SofTech, Inc.
PACRAGE standard IS

AR RAS AR AR R AR il Rt i sl o s 2022222 R s Ry R Y R S R R R R Ry

The Package STANDARD contains the following (implementation specific)
definitions in addition to those specified in Annex C of the LRM:

RARR R RN R AN RN AR AR R R AR R R AR AR RN R RN R A AR R RN R AR RN RN R RN AN RN RN AR RN R RN AR AN R AR RN N

TYPE integer IS RANGE =-32_768 .. 32_767;
FOR integer'SIZE USE 16;
TYPE long_integer IS RANGE -2_147_483_648 .. 2_147_483_647;

TYPE float IS DIGITS 6 RANGE
-(2#1.111_1111 1111 1111 1111 _1111§E+127) ..
- v.ra (2410111 1111 1111 1111 1111 1111#E+127);

-- Type float is realized using the Intel machine type SHORT REAL.

=- SHORT REAL provides 24 bits of mantissa (one bit is implied),

-— and it provides 8 bits for a biased exponent. However only the values
== 1..254 are exponents of normalized numbers. The bias is 127, so the
-- exponent range is ~126..127. ‘

-- This leads to the following attributes for the type Eloat:

- float'digits =6 (LRM 3.5.7, 3.5.8]

- float'mantissa = 21 (LRM 3.5.7, 3.5.8]

- float'emax = 84 (LRM 3.5.8]

- float'epsilon = 2.0 *+ (-20) (LRM 3.5.8]

- = 241.000_0000_0000_0000_0000_00004%E-20

- = 1640.1000004E-4

- float'small = 2.0 ** (-85) [LRM 3.5.8)

-- = 2$1.000_0000_0000_0000_0000_00004E-8S

- = 1640.800_000_O#E~-21 .
- £loat'large = (2.0 ** 84) * (1.0 - 2.0 ** (-21)) [LRM 3.5.8]
- = 2#1.111 1111 1111 1111 1111 l#E+83

- = 1640.FFF_FF8_04E+21

- float'safe_emax = 127 [LRM 3.5.7, 3.5.8]

- float'safe_small = 2.0 ** (-126) (LRM 3.5.7]

= 2$1.000_0000_0000_0000_0000_0000#E-126 .. .
TN - OTTRIZE e, apzacrererengry: = +16 §0.400_000§E=-31 -memmmomemmerac: - cctmnpmenos come o -
- ~= T ™ float'safe_large = (2.0 ** 128) * (1.0 - 2.0 ** (-21)) (LRM 3.5.7)

= 24L.111 1111 1111 1111 1111 l§E+127

= 1640.FFF_FF84E+32

)
[}
]

== float'first = -float'last .
- float'last = (2.0 ** 128) * (1.0 =~ 2.0 *+ (-24))

== = 2#1.111_1111 1111 1111 1111 _11114E+127

- = 16#0.FFF_FFF#E+]2

- T 3.40_282_347E+38

--= float'machine_radix = 2

- float'machine_mantissa = 24

- float'machine_emax = 127
: - float'machine_emin = -126

-- float'machine_rounds = true

== float'machine_overflows = true

TYPE long_float IS DIGITS 15 RANGE
= 2$1.111 1112 1111 1211 1111 1111 1111 1111 1111 1111 1111 1111 1111 14E+1023
oo 2$1.111 1111 111} 1111 1111 1111 1111 1111 1111 1111 1111 1111_ 1111l 14E+1023;
-- Type long_float is realized using the Intel machine type LONG REAL.
~~ LONG REAL provides 53 bits of mantissa (one bit is implied),
-- and it provides 1l bits for a biased exponent. However only the values
~- 1..2046 are exponents of normalized numbers. The bias is 1023, so the
-- exponent range is -1022..1023.
~~ This leads to the following attributes for the type float:

- long_fleoat'digits
- long_float'mantissa
- long_float'emax
-— long_£float'epsilon

15 (LRM 3.5.7, 3.5.8]

51 (LRM 3.5.7, 3.5.8]}

204 (LRM 3.5.8]

2.0 *#* (-50) (LRM 3.5.8]
16#0.400_000_000_000_00#E-12

- 8.88_178_197_001_254E-16

- long_float‘small 2.0 ** (-205) [LRM 3.5.8)
241.000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_04E-205
-— : = 1640.800_000_000_000_00#E-S1

- co .7.1.94_469_227_433_l161E-16

- long_float'large = (2.0 ** 204) * (1.0 - 2.0 ** (-S51)) [LRM 3.5.8]
231 111 llll 21111, 1111 llll llll 11111111 1111 1111 1111 13111_1l110_0#E+204
. . 16#0 FFF_FFF_FFF_| FFF EO#E+51

- ' 2. 57_110_087_081_4382+61

- long_float'safe_emax = 1023 (LRM 3.5.7, 3.5.8] _

- long_float'safe_small = (2.0 ** (~1022)) (LRM 3.5.7]

-- =241.000_0000_0000_0000_0000_0000_0000_Q000_0000_0000_0000_0000_0000_0O#E-1022
- ' = 16#4.000_000_000_000_004E~-256

- < 2.22_507_385_850_720E-308

- long_float'safe_large = (2.0 ** 1024) * (1.0 - 2.0 ** (~51)) (LRM 3.5.7]
-- =241.111_1111_1111_1111_1111 1111 1111 _1111_1111_1111 1111 _1111_1110 O4E+1023
- = 16#0.FFF_FFF_FFF_FFF_C#E+256

- © 1.79_768_713_486 2323+308

- long_£fleat'first -long Eloat'last

- long_float'last

- =231.lll_llll_llll_llll_llll_llll_llll_llll_llll_llll*llll_llll_llll_l#E+1023
- = 1640.FFF_FFF_FFF_FFF_F#E+256

- 1.79_768_713_486_232E+308

]

- long_float’'machine_radix = 2

- long_float‘machine_mantissa = 53

- long_float'machine_emax = 1023

- long_£float'machine_emin__ = 71022 . fimerosmruamannes croruan -
gzggnhag.g,,.'!'lonq_floatLmachine_:ounds‘.f,t:ue Pv— T et Tt

Ye— “*“"long_£loat'machine_overflows = true

FOR character'SIZE USE 8;

TYPE duration IS DELTA 2.0 ** (~14) RANGE -131_072.0 ., 131_072.0 ;

END standard;

(vv
(10) File names . :

annaqaaaa-ahha.haha.aa—Anaaaaaaaaaa.AAAAA—QAAAAQAQAAAAQQAA.AAAAAAA.\A&AAQAA‘AQAAa

As SEQUENTIAL_IO and DIRECT_IO are not supported on the target(s),
there are no file name conventions on the target configuration(s).

oo WL Miie i a ¥4 s g v v .t md

(@D MaBe; PO rPomes=ulnt o TP B e N By L A Sesrp s > e .

-= FAST INTERRUPT ENTRIES --

——Prompt Interrupt Entry:

PRCMPT ' '
--This is a Fast Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body receives control after an
-—-interrupt more quickly than an ordinary interrupt entry but more
--slowly than a Quick or a Non-Maskable Interrupt Entry. The accept
--body may make conditional entry calls to entries that have been
--declared to be Trivial Entries by means of the pragma
--TRIVIAL_ENTRY.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

..==Note:. In the.following constant: names; "NDP" stands for "Numeric Data
--Processor,* i.e., the Intel 8087,

--Quick Interrupt Entries:

SIMPLE_QUICK ’ .
~--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

NO_NDP_SIMPLE_QUICK ,
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

--It differs from SIMPLE_QUICK only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
-=-interrupt delivecy.

SIGNALLING_QUICK - '
--This is a Quick Interrupt Entry, invoked by an interrupt other than
~-NMI or Single Step, whose accept body may make conditional entry
~-calls to entries that have been declared to be Trivial Entries by
~-means of the pragma TRIVIAL_ENTRY.

R E T S R R P L P e ol B 2] e . Terap, .-

-When-this kind of -interrupt entry occurs,-the state of the 8087
-—Numetic Data Processor will always be saved as part of the context
~-of the interrupted task, because the normal task~switching
~-mechanism will attempt to restore it before resuming the
~-interrupted task.

--Non-Maskable Interrupt Entries:

NON _MASKABLE ’

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
sudxasthenaximmlengthofanirpxtlineardimalidfilenams. a
test that makes use of such values is identified by the extension .TST
in its file name. Acmalvalu&stobesubstitutedarerepmsentedby
names that begin with a dollar sign. A value must be substituted for
eadxofthnsermmbeforethetestisnm. The values used for this
validation are given below.

Name and Meaning : Value

$BIG_ID1 <1..119 => 'a', 120 => 1t>
Tdentifier the size of the
maximm input line length with
varyirg last character.

$BIG_ID2 <1..119 = 'a', 120 => 12>
Jdentifier the size of the
maximm input line length with
varying last character.

$BIG_ID3 <1..59 = 'A', 60 => '3',
Tdentifier the size of the 61..120 => 'A'>
maximm input line lergth with
varying middle character.

$BIG_ID4 <1..59 => 'A', 60 => '4',
Identifier the size of the 61..120 => 'A'>
maximm input line length with
varying middle character.

SBIG__M_I.IT <1..117 = '0', 118..120 =>
An integer literal of value 298 1298'>
with enough leading zeroes SO
that it 1is the size of the
maximon line length.

SBIG_REAL__III' <1..114 => '0', 115..120 =>
A universal real literal of '69.0E1'>

value 690.0 with encugh leading
zerces to be the size of the
maximm line length.

c-1

$BIG_STRING1
A string literal wtuch when
catenated with BIG_STRING2
yields the image of BIG_IDl.

$BIG_STRING2 -
A string literal which when
catenated to the e of
BIG_STRING1 Yyields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

SOOUNT_LAST
A universal integer literal
whose value is
TEXT_IO.COUNTLAST.

SFIEID IAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFILE NAME WITH BAD CHARS
An extermal file name that
either contains invalid
characters or is too lorg.

SFILE NAME WITH WILD CARD CHAR
An extermal, file name that
either oontains a wild card

character or is too long.

SGREATER THAN_ DURATION
A universal real literal that
lies between DURATION'BASE'IAST
and DURATION'IAST or any value
in the range of DURATION.

SGREATER THAN_DURATICN BASE IAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SILIPGAL EXTERNAL FILE NAMEl

An external file name which
contains invalid characters.

c-2

<l..60 => ‘A'>

<1..59 => 'A', 60 => 'A'>

<1..100 => ' '>

2_147_483_647

2_147_483_647

BAD-CHARS " #.%!X

WILD-CHAR* . NAM

75_000.0

131_073.0

BADCHAR™@. ™!

$ILIEGAL EXTERNAL FILE] NAMEZ
An external file name which
is too larg.

SINTEGER FIRST -~
A universal -integer literal
whose value is INTEGER'FIRST.

SINTEGER IAST
A universal integer literal
whose value is mI'I-IEER'IASl‘.

SINTEGER IAST PIIUS 1
A universal integer 1literal
whose value is INTEGER'ILAST + 1.

$LESS_THAN DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of wRA'I'ION.

$LESS_THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

SMAX_IN LEN
Maximum input line length
permitted by the implementation.

SMAX INT
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

SMAX_LEN_INT BASED LITERAL
A universal integer based
literal whose value 1is 2#114#
with encugh leading zeroes in
the mantissa to be MAX _IN IEN
long.

THIS-FILE-NAME-WOULD~EE-PERFECTLY
~LEGAL~IF-IT-WERE-NOT-SO~LONG—
TT-HAS-NEARLY-ONE-HUNDRED-SIXTY-
CHARACTERS

-2_147_483_648

2_147_483_647

2_147_483_648

~75_000.0

~131_073.0

15

120

2_147_483_647

2_147_483_648

<l..2 => '2:', 3..117 =
‘0', 118..120 => '11:'>

SMAX_LEN RFAL BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zerces 'in the
mantissa to be MAX IN IEN long.

$MAX_STRING LITERAL ;
A string literal of size
MAX IN IEN, including the quote
characters. j

SMIN INT
A universal integer literal
whose value is SYSTEM.MIN_INT.

SNAME
A name of a predefined mumeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT_INTEGER,
LONG_FIOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

<1..3 => '16:', 4..116 =>
'0', 117..120 => 'F.E:'>

<L => "1, 2..119 => 'A',
120 => lll'>

-2_147_483_648

No_Such Type

164FFFFFFFE#

APPENDIX D

Same tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Cammentary.

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

C359048:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaration (line 36) wrongly follows a later
declaration.

This test requires that ‘PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous “pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expressicn in line 168 wrorgly yields a value outside of
the range of the target type T, raising CONSTRAINT ERRCR.

Equality operators in lines 62 & 69 should be inequality
operators.

Line 17's assigment of the nomimal upper bound of a
fixed-point type to an abject of that type raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

The elaboration of the fixed-point subtype on line 28 wrorgly
raises OONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that is expected to raise
CONSTRAINT _ERRCR when its campatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERRCR or CONSTRAINT ERROR for reasons not
anticipated by the test.

These tests assume that attrilute 'MANTISSA returns 0 when
applied to a fixed-point type with a mull range, but the Ada
Standard doesn't support this assumption.

The subtype declaration of SOCONS in line 100 is wrongly
expected to raise an exception when elaborated.

The aggragate in line 451 wrongly raises CONSTRAINT ERROR.

D-1

C37215C,
E, G, H:
c38102C:

C41402A:

C45332A:

C45614C:

E66001D:

A74106C,

C85018B,

C87B04B,
CCl311B:

BC3105A:

AD1AOlA:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incampatible w1th type OONS.

The fixed-point oonversion on 1line 23 wrongly raises
W_ERI?OR.

'STORAGE SIZE is wfongly applied to an cbject of an access
type.

The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFIOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE OVERFIOWS may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type
(LONG_INTEGER) .

Wrorgly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
erumeration literal; the function must be rejected (see
Commentary AI-~00330).

A bound specified in a fixed-point subtype declaration

lies ocutside of that calculated for the base type, raising
QONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, amd 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises OONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.

This test expects that an attempt to open the default ocutput
file (after it was closed) with mode IN FILE raises NAME_ERROR
or USE_ERRCR; by Commentary AI-00048, MODE_ERROR should be
raised.

D~2

