
., ,," ar3(",, fe .d Y' L" I " '" 14, ,,

4. - ---

T ION, PAGE B sxF C"Nox

A A,13JZ. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

S. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: SoftTech 8 July 198R ,to 8 July 1988
Inc., Ada 86, Version 3.21, VAX 11/780-11/785 (Host) to 6. PERFORMINMGORG. REPORT NUMBER

Intel iAPX 80386R (Target)

7. AUTHOR(s) 8. CONTRACT OR 6RAM" NUMBER(s)

National Bureau of Standards
Gaithersburg, MD
2. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

National Bureau of Standards
Gaithersburg, MD

it. CONTROLLING OFFICE NAME AND ADDRESS 1Z. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13. NUMtrt U A Ar
Washington, DC 2D301-3081

14. MONITORING AGENCY NAME & ADORESS(Ifdifferentfrom Controlling Office) I. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

National Bureau of Standards ISa. JESLASEJFICATION/DOWNGRAOING

Gaithersburg, MD OU N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrart enteredin Block 10 Itfdifferent from Report)

ELECTE
18. SUPPLEMENTARY NOTES JUNO 6 1989

19. KEYWORDS (Continue on reverie side if necessary and identfy1 by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS T RAC T (Continue on reverse side if necessary and identify by block number)

Ada 86, Version 3.21, SoftTech Inc., National Bureau of Standards, VAX 11/780-11/785

under VAX/VMS, Version 4.7 (Host) to Intel iAPX 80386R under Bare machine (Target),

ACVC 1. 9

OD "" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAM 7 S/N 010Z-LF-014-6601 UNCLASSIFIED

.89 6 05 158

S

AVF Control. Number: NBS88VSOF535_5

Ada campiler
VALIDTION SLIM RdaE:

Certificate Number: 880708S1.09151
Softrech, Inc.

Ada 86, Version 3.21
VAX 11/780 - 11/785 Host and Intel iAPX 80386R Target

Campletion of On-Site Testing:
July 8, 1988

Prepared By:
Software Standards Validation Group

Institute for Compter Sciences and Technology
National Bureau of Stardards

Building 225, Roam A266
Gaithershurg, Marylard 20899

Prepared For:
Ada Joint Program Office

United States Departnent of Defense
Washington, D.C. 20301-3081

Ada Compiler Validation Summary Peport:

Coupiler Name: Ada 86, Version 3.21

Certificate Number: 880708S1.09151

Host: Tatget:
VAX 11/780 - 11/785 under Intel iAPX 80386R under
VAX/ , Bare machine
Version 4.7

Testing Completed July 8, 1988, using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Faci i -
Dr. David K. Jeffe n

Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersbuzrg, MD 20899

Validation Organization

Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

TAKEZ OF COtMMTS

QIAPIER 1 INiRDUCTICN:

1.1 PURPOSE OF TMS VAIIATICK SHM Y REPORT . . 1-2
1.2 USE OF TS VALI= N SUMMARY .EP 1-2
1.3 REFERENCES * .. 1-3
1 4 D'FlIIc OF TERMS . o . . o 1-3
1.5 ACVC TEST CISE o.. 1-4

2.1 ONFIGURATON TESTED 2-1
2.2 nPLEON CMRACEISl2-2

CHAFPER 3 TEST INFOR04TION

3.1 TEST RESLoS - 3-1
3.2 SE20MY OF TEST RESULTS BY CLASS3-1
3.3 SUMR OF TEST RESULTS BY CPTER 3-2
3.4 WITIEPAN TESTS 3-2
3 .5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVAI.IATION MODIFICATIONS . . 3-4
3.7 ADDITIONAL TESTIM INFOFATIO o3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method o3-5
3.7.3 Test Site3-6

APPENDIX A CONMOVNCE STATEMENr

APPENDIX B APPENDIX F OF TIHE Ada STANDARD cp

APPENDIX C TEST PA E Acession For

NTIS GRA&I

APPENDIX D WITHDRAWN TESTS DTIC TAB o
Una LouLneed El
Justlifoat lo

CByoc

Di a'..r ,", t 0 r!. .

° OCAPIRM 1

This Validation Summry Report (VSR) describes the extent to whiih a
specific Ada crpilar conform to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughy
reports the reslts of-tit this capiler using the Ada Comiler
Validation Capability i An Ada capiler must be implemented
according to the Ada Standard, and any iplementation-deperdent features
mmst conform to the requirements of the Ada Stardard. The Ada Stardard
must be implemnted in its entirety, and nothing can be implemented that
is not in the Standard.

Even thmgh all validated Ada ccmpilers conform to the Ada Stardard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits same implementation
dependencies-for example, the maximu length of identifiers or the
maximn values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this ccmpiler are given in this report.

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of stardardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. --,The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1.

1. 1 FJRPOSE OF TIS VALIDATCN StMKRY REPMU

This VSR documents the results of the validation testing performed on an
Ada ocmpiler. Testing was carried cut for the following purposes:

To attempt to identify any language constructs supported by
the coupiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the itplemintation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by the National Bureau of
Standards according to policies and procedures established by the Ada
Validation organization (AVO). On-site testing was canpleted July 8,
1988, at SoftTech Corporation, Boston, Mass.

1.2 USE OF THIS VALIATION SUMW REP

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public fran:

Ada Information Clearinghouse
Ada Joint Program Office
CUSM E
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or fran:

Software Standards Validation Group
Institute for Ccaputer Sciences and Tectilogy
National Bureau of Standards
Building 225, Rom A266
Gaithersbrg, Maryland 20899

1-2

Questions rearding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
_Trstitute for Defense Analyses
1801 North Beauregad Street
Alexardria VA 22311

1.3 REF 2C S

1. Reference Manual for the Ada =MMIM LanguaQe,
ANSI/IIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TOM

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programmir language.

Ada Comentary An Ada oamnentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-dddd.

Ada Standard ANSI/MIL-STD-18l5A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations accordir to procedures
contained in the Ada Comiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
oampilers. The AVO provides administrative and

technical support for Ada validations to ensure
consistent practices.

1-3

Cmpiler A processor for the Ada language. In the context of
this report, a ompiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test -An ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the ompiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (IMP) is a comuittee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/,'L-STD for Ada.

Passed test An ACVC test for which a capiler generates the expected

result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a copiler's conformity
rearding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Stardard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce cmpilation
or link errors.
Class A tests check that legal Ada programs can be successfully compiled

and executed. There are no explicit program components in a Class A

1-4

test to check semantics. For example, a class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are riot treated as reserved words by an Ada aimpiler.
A Class A test is passed if no errors are detected at compile time and
the program exectes to produce a PASSED message.

Class B tests check that a ccpiler detects illegal lauage usage.
Class B tests are not executable. Each test in this class is coupiled
and the resulting compilation listirq is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
ccpiler.

Class c tests check that legal Ada programs can be correctly cuiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the cmpilation and exection capacities of a
compiler. Since there are no capacity requirements placed on a cpiler
by the Ada Standard for same parameters-for example, the number of
identifiers permitted in a cpilation or the number of units in a
library--a compiler may refuse to capile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to campile
because the capacity of the ccupiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is ccmpiled and executed. Hawever,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during ompilation. Therefore,
a Class E test is passed by a ompiler if it is cimpiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that inccuplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are ccmpiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program mist generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHE FILE,
support the self-checking features of the executable tests. The package
REPOR provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some ccapiler optimizations allowed by the Ada
Standard that woild circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by scar of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REP=OK and CiECK FILE is checked by a set of executable tests. Tese
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attenpted.

The text of the- tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable withot modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maxim=m length of 72 characters, use small ntmeric
values, and place features that may not be supported by all
imple tations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values-for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A ccwpiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implawentation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
ccupiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-I

CHAPIR 2

2.1 CNFIGURAION TESTED

The candidate carpilation system for this validation was tested under
the following configuration:

Coupiler: Ada 86, Version 3.21

ACVC Version: 1.9

Certificate Numtber: 880708S1.09151

Host c:puter.

Machine: VAX 11/780 - 11/785

Operating System: V
Version 4.7

Memory Size: 12 megabytes

Target Ccmarpter:

Machine: Intel iAPX 80386R

operating System: Bare machine

Memory Size:

Camunications Network: DECNET*
Ethernet

*DEQ,4T for this implementation represents the use of VAX 11/780-
11/785 as host.

2-1

2.2 IML4MENTOH CHAPACTR=CS

one of the purposes of validating copilers is to determine the behavior
of a carpiler--in those areas of the Ada Standard that permit
inplementations to differ. Class D and E tests specifically check for
such implementation differences. Hcever, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

- capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately ompiled as subunts
nested to 17 levels. It correctly processes a ccupilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEK.MAX INT. This
implementation 64 bit integer calculations. (See tests D4AO02A,
D4A02B, D4A04A, and D4A004B.)

- Predefined types.

This izplementation supports the additional predefined types
LNG _ and LONG FLOAT in the package STANDARD. (See
test B8600lBC and B .001D.)

- Based literals.

An irplementation is allowed to reject a based literal with a
value exceeding SYSITh.MAX INT during copilation, or it may
raise NU fRICERROR or C0NSIAINTERRR during execution. This
implementation raises NUMERICERRO during execution. (See test
E24101A.)

- Expression evaluation.

Apparently all default initialization expressions or record
conponents are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

2-2

Assigrments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Soetimes NLERIC ERROR is raised when an integer literal
cperand in a Dparison or memberslup test is outside the range
of the base type. (See test C45232A.)

Apparently NtURIC ERROR is raised when a literal operarxi in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
rxnd to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round toward zero. (See test C4AOI4A.)

- Array types.

An implementation is allowed to raise NUMERICERROR or
CONSIRA! T ERROR for an array having a 'LI1[that exceeds
STANDARD. INTEGER ' LAST and/or SYSrfM.MAX_In. For this
implementation:I

Declaration of an array type or subtype declaration with more
than SYSTE1.MAX_NT components raises NUMERIC_ERPOR. (See test
C36003A.)

NL4ERIC ERROR is raised when an array type with INTER' LAST + 2
camponents is declared. (See test C36202A.)

NUMERIC ERROR is raised when an array type with SYSE.MAX_ INT +
2 capo--rents is declared. (See test C36202B.)

A packed BOOLEAN array having a ULMIEI exceeding ITER' LAST
raises no exception. 'Fee test C52103X.)

A packed two-dimensional BOOLEAN array with more than

2-3

INI ' LAST caziponents raises C20TRAIT ERROR when the length
of a dimension is calculated and exs IN 'I'AST. (See
test C52104Y.)

A null array with one dimension of length greater than
NEGERUASr my raise NUMERICERROR or aztSmAIN ERROR either

when declared or assigned. Alternatively, an implementation may
accept the declaration. Haoever, lengths nust match in array
slice assigrments. Tds implementation raises NSTA ERROR
when array objects are assigned. (See test E52103Y.)

In assigning ore-dimensional array types, the expression appears
to be evaluated in its entirety before OSIRAIN ERROR is
raised when checking whether the expression's sbtype is
compatible with the target's subtype. In assigning
t-o-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONS hA T_ERROR is raised
when checking whether the expression's subtype is cmpatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During cmpilation, an iplementation is allowed to either
accept or reject an inccmplete type with discriminants that is
used in an access type definition with a ccupatible discriminant
constraint. This impleLentation accepts such subtype indications
during compilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAn ERROR
is raised when checking whether the expression's mtype is
conpatible with the target's subtype. (See test C52013A.)

A gregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

Not all choices are evaluated before CONS AINERROR is raised
if a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

- Representation clauses.

2-4

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enmieration representation clauses ontaining noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C35502..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containinr nonomrtgux.s
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, ME -> 1) are
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with SIRAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma INlINE is supported for procedures. The pragira
In=NE is supported for functions. (See tests 1A3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

-input/outpuit

The package SEQUENTIAL IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D and EE2201E.)

The package DIn=C 10 cannot be instantiated with with
nstrined array types and reord types with discriminants

without defaults. (See tests AE2101H, EE2401D and EE4201G.)

The director, ATPO, has determined (AI-00332) that every call to

2-5

OPEN and CPEATE must raise USE ERRR or NAME EYWR if file
irpt/.output is not supported. This implementation exhibits
this behavior for SED=MJFAL_I0, DECT_10 and TEXT 10.

Generics.

Generic subpragram declarations and bodies can cpiled in
separate ompilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate carpilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be capiled in
separate conpilations. (See test CA3011A.)

2-6

3.1 '1 RSULTS

Version 1.9 of the ACVC cczprises 3122 tests. When this ompiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 412 tests were inapplicable to this impleentation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 25 tests were
re'ire to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results deonstrate acceptable
conformity to the Ada Starnaxd.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1048 1454 17 12 46 2682

Inapplicable 5 3 399 0 5 0 412

Withdrawn 3 2 21 0 2 0 28

TAL 113 1053 1874 17 19 46 3122

3-1

3.3 SrM1MZZ OF TEST RESULTS BY CHAPTER

RESULT CERTOMA
______ 3_4 5 6 7_8_-9_ 1_ -_L3 -14 _

Passed 190 498 535 245 165 98 141 327 137 36 234 3 73 2682

Inapplicable 14 74 139 3 0 0 2 0 0 0 0 0 180 412

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHI AW TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87BO4B CX1311B
BC3105A AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 412
test were inapplicable for the reasons irdicated:

C35702A uses SHOR_FLOAT which is not supported by this implementation.

A35801E At the case statement (lines 54-63), the optimizer tries to
identify which of the cases will be done during execution. The
optimizer recognizes that the variable "I" which is of type integer, is

3-2

not initialized and appropriately raises a PRGRAMERROR exception.
NOTE: This test passes without the /OPrfZE cption.

A39005G uses a record representation clause which is not supported by
this oaupiler.

The following (14) tests use SHO_INTEER, which is not supported by
this cmiler.

C45231B C45304B .C45502B C45503B C45504B
C45504E C45611B :C45613B C45614B C45631B
C45632B B52004E C55BO7B B55B09D

C45231D requires a macro substitution for any predefined nmeric types
other than NlMG, SH IR M, L =R, FLOAT, SW FLAT, and

NG FLAT. This ccpiler does not support any such types.

C45304A, C45304C and C46014A expect exceptions to be raised as the
result of performing "dead assigrments" (assigmwnts to a variable whose
value is never used in the program).

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this cmpiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
inplementation.

C86001F redefines package SYSM, but T= Io is made obsolete by
this new definition in this inplenextation and the test cannot be
executed since the package REPORT is dependent on the package T=CT_10.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUERAL_To with uncnstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECTIO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this compiler.

The following 174 tests are inapplicable because sequential, text, and
direct access files are not supported.

CE2102C CE2l02G..H(2) CE2102K CE2104A..D(4)
CE21OSA..B(2) CE2106A..B(2) CE2107A. .I1(9) CE2108A..D(4)
:E2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)

CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)

3-3

CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE241A CE2411A
AE31lA C3102B EE3102C CE3103A
C3104A CE31O7A CE308A.B(2) CE3109ACE3110A CE3111A..E(5) CE3112..B(2) CE3114A..B(2)
C35A - CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A..E(5)
CE3804G CE3804I CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TST, PCCESSIG, AND EVAUJATIC& MDIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to omapensate for legitimate
inplementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confinming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the conailer not detecting other errors in the test:

B2AO03A..C (3 tests) B33201C B33202C B33203C
B33301C B37106A B37201A B373011 B37307B
B38001C B38003A..B B38009A..B B44001A B51001A
B54AO1C B54AOIL B95063A BC1008A BCI201L
BC303A

3-4

C4A012B requires that a CZONSTRITIWADR be raised in a context where a
NUMERIC ERR is relivant on line 35, etc. The test has been evaluated
and r ScArMerxied to be graded'as passed.

3.7 ADDITIONAL TESTING INFORAION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the Ada 86 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the capiler successfully
passed all applicable tests, and the ompiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Ada 86 using ACVC Version 1.9 was conducted on-site by a
validation team from the AVF. The configuration consisted of a VAX
11/780 - 11/785 host operating urder VAX/VM, Version 4.7, and an iAPX
80386R target operating under bare machine. The host and target
computers were linked via DECNEr.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were custcnmized on-site after the magnetic tape was loaded. Tests
requiring modifications during the prevalidation testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host caqputer.

After the test files were loaded to disk, the full set of tests was
campiled and linked on the VAX 11/780 - 11/785, and all executable tests
were run on the iAPX 80386R. Object files were linked on the host
computer, and executable images were transferred to the target ccmputer
via DECNET. Results were printed from the host cmpzter, with results
being transferred to the host cmputer via DECNEr.

The cmpiler was tested using cmrnand scripts provided by SoeTech,
Incorporated and reviewed by the validation team. The ompiler was
tested using all default option settings without exception.

Tests were cmpiled, linked, and executed (as appropriate) using a
single host computer and a single target cmqmter. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation
team were also archived.

3-5

3.7.3 Test Site

TestirM was ccrxjucaed at SofT~eh, Irxcrporated, Boston, Vassadc1usetts

and was cxmnpled on July 8,.1988.

3-6

DMcAPATICtK OF atwFoRwicE

A-1

APPENDIX A

DECLARATION OF CONFORMANCE

Compiler Implementer: SofTech Inc.
460 Totten Pond Road

- " Waltham, MA 02254

Ada Validation Facility: National Bureau of Standards (NBS)
Institute for Computer Sciences and Technology (ICST)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, MD 20899-9999

Ada Compiler Validation Capability (ACVC) Version: 1.9

BASE CONFIGURATION(S)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 4: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 8086 OS&VER 4: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 0: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80186 OS&VER 0: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 1: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80286 real mode OS&VER 0: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 9: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80286 protected mode

OS&VER 0: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 4: VAX/VNS 4.7
Target Architecture - ISA: Intel iAPX 80386 compatible real mode

OS&VER 0: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 4: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80386 compatible protected mode

... _____ _. . .. OS&VER 4: (bare machine)

DERIVED COMPILER-REGISTRATION
EQUIVALENT CONFIGURATION(S)

Base Compiler Name: Ada86 - Version: 3.21, 1.59, 1.70
Host Architecture - ISA: VAX 700 and 8000 Series OS&VER #: VAX/VMS 4.7
Target Architectur'e- ISA: Intel iAPX 8086- OS&VER 4: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80286 real mode OS&VER t: (bare machine)
Target Architecture - ISA:.Intel iAPX 80286 protected OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER I: (bare machine)
Target Architecture - ISA: InteliAPX 80386 comp prot OS&VER %: (bare machine)

Base Compiler Name: Ada86 Version: 3.21, 1.59, 1.70
Host Architecture - ISA: MicroVAX Ii OS&VER #: MicroVMS 4.7
Target Architecture - ISA: Intel iAPX 8086 OS&VER *: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80286 real mode OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80286 protected OS&VER *: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER 4: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp prot OS&VER #: (bare machine)

-7-

DECLARATION OF CONFORMANCE Ada86 3.21 page 2.

Implementer's Declaration

I, the undersigned, representing SofTech, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s). listed in this declaration. I declare that the
SofTech Inc. "is the owner on record of the Ada language compiler(s)
listed above znd, as such,. is responsible for maintaining said
compiler(s) in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s), listed in this declaration
shall be made only in the owner's corporate name.

Implementer's Sgnature and Title .

Implementer's Declaration

Owner's Declaration

I, the undersigned, representing SofTech Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target performance
are In compliance with the Ada Language Standard ANSI/MIL-STD-1815A.
I have reviewed the Validation Summary Report for the compilers(s) and
concur with the contents.

Owner's nature and Title "Date

-.m - -

APPENDIX B

-APPENDIX F OF TiE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
inplementation-dependent characteristics of the Ada 86, Version 3.21,
are described in the following sections which discuss topics in Appendix
F of the Ada Standard. Implementation- specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type NTGER is range -32768 .. 32767;

type IONG IN1BSER is range -2147483648 .. 2_147_483_647;

type FWAT is digits 6 range -(2#1.111 (5)1111#E+127)
(2#1.112. (5) 111#E+27);

type LCG FLOAT is digits 15 range
-(2#1.111-(12)1111#E+1023

(2#1.111(1,2)1111 _1#E+1023;

type DURATION is delta 2.0**(-14) range -131_072.0 ..
131_072.0;

end STANDARD;

B-I

APPENDIX F

APPENDIX F OF THE Ada STANDARD for SofTech's Ada86 toolset

The only allowed implementation dependencies correspond to implementation-.
dependent pragmas, to certain machine dependent conventions as mentioned in
chapter 13 of MIL-STD-18l5A, and to certaLn allowed restrictions on
representation clauses. The Implementation-dependent characteristics are
described in the following sections which discuss topics one through eight
as stated in Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-
1815A). Two other sections, package STANDARD and file naming conventions,
are also included in this appendix.

vv

(1) Implementation-Dependent Pragmas

This section may be copied from the applicant's documentation, but make
sure it covers all the items below.
+++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++ +++

The pragmas described below are implementation-defined.

Pragma TITLE (arg);

This is a listing control pragma. "Arg" is a CHARACTER
string literal that is to appear on the second line of
each page of every listing produced for a compilation
unit in the compilation. At most, one such pragma may
appear for any compilation, and it must be the first unit
in the compilation (comments and other pragmas excepted).

For many real time applications, fast software reaction to hardware
interrupts is important. A group of pragmas is provided in
recognition of this requirement.

If an Ada task entry has been equated to a hardware interrupt through
an.address.clause.(c.f...LRM 13.5.1), the occurrence of the hardware .

nterrUpt"in'question"is interpreted by the RSL as an entry call to
the corresponding task entry. The object code generated to implement
interrupt entries includes some overhead, since the Ada programmer
is allowed to make use of the full Ada language within the accept
body for the interrupt entry.

The pragmas described below let the user specify that interrupt
entries, and the tasks that- contain them, meet certain restrictions.
The restrictions speed up the software response to hardware
interrupts.

Pragma FASTINTERRUPTENTRY (entry simple name,
SYSTEM.ENTRY KIND literal)

This pragma specifies that the named task entry has only
-accept bodies that execute completely with (maskable)
interrupts disabled, and that none of these accept bodies
performs operations that'may potentially lead to task
switches away from the accept body.-

Pragma INTERRUPT HANDLER TASK

This pragma specifies that the task at hand is degenerate
in that the whole task body consits of a single loop, which
in turn contains one or several accept statements for fast
interrupt entries, and which accesses only global variables.

Pragma TRIVIAL-ENTRY (entry_simple name)

This pragma specifies that all accept statements for the
named entry are degenerate in that their sequence of state-
ments is empty. Moreover, all entry calls to such an entry

........ -are conditional-entry calls, and they are issued only from
within accept bodies for fast interrupt entries.

vvvVvvvvvvvvvvvvvvvvvv
(2) Implementation-Dependent Attributes

The predefined attribute, X'DISP, is not supported.

vv
(3) Package SYSTEM . ,

-- * Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

package SYSTEM is --[LRM 13.7 and F]

type WORD is range 0..16#FFFF#;
for WORDISIZE use 16; --see[LRM 3.4(10)

-- Ada SIZE attribute gives 16, but machine size is 32.

type BYTE is range 0..255;
for BYTE'SIZE use 8;

-- Ada SIZE attribute gives 8, but machine sizesis 16.

subtype REGISTER is SYSTEM.WORD;

--#START iAPX86, iAPXl86, iAPX286R, iAPX386R, PCDOS
subtype SEGMENTREGISTER is SYSTEM.REGISTER;

NULL SEGMENT: constant SYSTEM.SEGMENTREGISTER 0;
--#STOP iAPX86, iAPXl86,- iAPX286R, iAPX386R, PC DOS

--#START iAPX286P, iAPX386P

-- # type SEGMENT LENGTH-INBYTES is range 1..65536;
--I -- Gives the range the length an iAPX286 memory segment can be.

-- The hardware deals with segment limits which is the length
-- of the segment relative to the base minus one.
-- It is more convenient to use the length of the segment
-- so this type is provided.

--I -- See page 7-13 of the Intel iAPX286 Programmer's Reference Manual.

-- # type PRIVILEGELEVEL is range 0..3;
-- # for PRIVILEGE LEVEL'SIZE use 2;

-- Privilege level as defined by the iAPX286 hardware.

-- The following types form an iAPX286 selector as described on page 7-11
--I -- of the Intel iAPX286 Programmer's Reference Manual.

--1 type DESCRIPTORTABLEINDEX is range 0..8191;
-- # for DESCRIPTOR TABLE INDEX'SIZE use 13;

-- Index into the global or local descriptor table.

- -.- #,..type.DESCRIPTORTABLEINDICATOR - .
-V #P (USEGLOBALDESCRIPTORTABLE,-USELOCALDESCRIPTORTABLE);

-- * for DESCRIPTOR TABLE INDICATOR use
(USEGLOBALDESCRIPTORTABLE => 0, USELOCALDESCRIPTORTABLE => i);

-- # for DESCRIPTORTABLE INDICATOR'SIZE use 1;
-- Indicates whether to use the global or the local descriptor table.

-- # type SEGMENTREGISTER is
record

-- This is a segment selector as defined by the iAPX286 hardware.

--# -- See page 7-11 of the Intel iAPX286 Programmer's Reference Manual.

--4 DESCRIPTOR INDEX: DESCRIPTOR TABLE INDEX;
--4 -- This is an index into either the global or the local

-- descriptor table. The index will select one of the 8 byte
--4 -- descriptors in the table.
--4 -- The table to use is given by the TABLE INDICATOR field.
--4 -- NOTE:
--4 -- Even if an index is in the proper range, it might not refer
-# -- t' an existing or valid descriptor. See page 7-5 of the

-- Intel iAPX286 Programmer's Reference Manual.

--4 TABLE INDICATOR: DESCRIPTOR TABLE INDICATOR;
-- Whether the index is an index into the global or the local

-t -- descriptor table;

--4 REQUESTED PRIVILEGE LEVEL: PRIVILEGE-LEVEL;
--4 -- The requested privilege level reflects the privilege level of
--4 -- original supplier of the selector. Needed when addresses are
--4 -- passed through intermediate levels. See page 7-14 of the
--4 -- Intel iAPX286 Programmer's Reference Manual.
--4 end record;

-4# for SEGMENTREGISTER'SIZE use 16;

--4 for SEGMENTREGISTER use
--4 record
-- REQUESTED PRIVILEGE LEVEL at 0 range 0..1;
--4 TABLE INDICATOR at 0 range 2..2;
--4 DESCRIPTORINDEX at 0 range 3..15;
--4 end record;

--4 NULL SEGMENT : constant SYSTEM.SEGMENT REGISTER
--4 (0, USEGLOBALDESCRIPTOR TABLE, 0);

--4 -- Index of the IDT descriptor in GDT
--4 IDT INDEX : constant DESCRIPTOR TABLE INDEX 2;

--4 -- Size in bytes of the descriptors in IDT
--4 IDTENTRYSIZE : constant := 8;

--#STOP iAPX286P, iAPX386P

subtype OFFSETREGISTER is SYSTEM.REGISTER;

type ADDRESS is
record

SEGMENT: SYSTEM.SEGMENTREGISTER;
OFFSET..:.SYSTEM. OFFSET REGISTER;.

for ADDRESS'SIZE use 32;

for ADDRESS use --see[UM83 4-10, ASM86 6-57,
record -- Ada Issue 7]

OFFSET at 0 range 0..15;
SEGMENT at 2 range 0..15;

end record;

--4START iAPX86, iAPXI86, iAPX286R, iAPX386R, PC DOS

NULL ADDRESS : constant SYSTEM.ADDRESS (0, 0);
--#STOP iAPX86, iAPXl86, iAPX286R, IAPX386R, PC DOS

--#START iAPX286P, iAPX386P
-- # NULL-ADDRESS : constant SYSTEM.ADDRESS := (SYSTEM.NULLSEGMENT, 0);
--#STOP iAPX286P, iAPX386P

subtype IOADDRESS is SYSTEM.REGISTER;

--#START iAPX86, iAPX186, iAPX286R, iAPX386R, PCDOS
type ABSOLUTEADDRESS is range 0..16#FFFFF#;
for ABSOLUTE.ADDRESS'SIZE use 20;

-- Ada SIZE attribute gives 20, but-machine size is 32.
-- #STOP iAPX86, iAPXl86, iAPX286R, iAPX386R, PCDOS

-- #START iAPX286P, iAPX386P
--# type ABSOLUTE ADDRESS is range 0..16#FFFFFF#;
--# for ABSOLUTEADDRESS'SIZE use 24;

-- Ada SIZE attribute gives 24, but machine, size is 32.
--#STOP iAPX286P, iAPX386P

type NAME is (VAX780_VMS, iAPX86, iAPXl86, iAPX286R, iAPX286P,
PCDOS,-iAPX386R, iAPX386P);

--#START iAPX86
SYSTEMNAME constant SYSTEM.NAME = SYSTEM.iAPX86);
--Intel 8086 in real address mode.

--#STOP iAPX86........

--#START iAPX186
--# SYSTEMNAME : constant SYSTEM.NAME := (SYSTEM.iAPX186);
--# --Intel 80186 in real address mode.
--#STOP iAPXl86

--#START iAPX286R
-- # SYSTEMNAME : constant SYSTEM.NAME := (SYSTEM.iAPX286R);
--# --Intel 80286 in real address mode.
--#STOP iAPX286R, iAPX386R

--#START iAPX286P
--# SYSTEM NAME : constant SYSTEM.NAME : (SYSTEM.iAPX286P);
--# --Intel 80286 in protected virtual address mode.
--#STOP iAPX286P

--#START iAPX386R
--# SYSTEM NAME : constant SYSTEM.NAME := (SYSTEM.iAPX386R);
-- # -- Intel 80386 in real address mode.

- r #ATP.,APX386R...

:-#START iAPX386P
-- # SYSTEMNAME constant SYSTEM.NAME : (SYSTEM.iAPX386P);
--# --Intel 80386 in protected virtual address mode (iAPX286P subset).
--#STOP iAPX386P

--#START PCDOS
--# SYSTEM NAME : constant SYSTEM.NAME := (SYSTEM.PCDCS);
-- # --Intel 8086 in real address mode.

--#STOP PC DOS

STORAGE-UNIT: constant : 8;

-#START iAPX86, iAPX186, iAPX286R, IAPX386R, PC-DOS
MEMORY SIZE : constant := (2*'20)-l ; -- 1048575

--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC DOS

-#START IAPX286P, iAPX386P
-- # MEMORYSIZE : constant := (2**24)-l ; -- 16777215

--#STOP iAPX286P, iAPX386P

MIN INT : constant := -(2'31) ; -- -2_147_483_648
MAXINT : constant : (2**31)-. ; -- 2147_483_647

MAX DIGITS : constant :: 15; --Changed from 9 to 15 to match
--change to LONGFLOAT in package

--STANDARD
--Note that the Intel 8087 Numeric Data Processor HAS dictated the
--value of MAXDIGITS.

MAX MANTISSA: constant := 31;
FINE DELTA : constant 4.656_612_873_077_392_578_125E-l0; -- 2.0"*(-31);

type INTERRUPT TYPE NUMBER is range 0..255;

--Interrupts having the following Interrupt Type Numbers are specific to the
--iAPX86, LAPX186, and iAPX286 CPUs:

--(Note that the following are declared as CONSTANT universal integers rather
--than CONSTANT SYSTEM.INTERRUPTTYPENUMBERs. This is so that they can be

--used in MACHINECODE statements, which require all expressions to be static.
--At least in our implementation, conversions such as

--"MACHINECODE.BYTEVAL(SYSTEM.DISPATCHCODEINTERRUPT)" are not considered
--to be static.

DIVIDE ERROR INTERRUPT : constant := 0;

--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERICERROR.

SINGLESTEPINTERRUPT constant := 1;

--The non-maskable internal interrupt generated by the CPU after the
--execution of an instruction when the Trap Flag (TF) is set.

NON MASKABLE INTERRUPT : constant := 2;

--The hardware-generated external interrupt delivered to the CPU via the

--NMI,pin.-.This-interrupt can never be disabled by software and can

Igo1j;i enette.cr it ical -r.. "

OVERFLOW INTERRUPT : constant := 4;

--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERICERROR.

--Interrupts having the following Interrupt Type Numbers are specific to the

--actual configuration of the ISSC 86/30 board rather than just its CPU:

--#START iAPX86, iAPX286R, IAPX386R, iAPX286P, iAPX386P

RSLCLOCKINTERRUPT constant := 64;
---#STOP- iAPX86, iAPX286R; IAPX386R, iAPX286P, iAPX386P
-- #START PC DOS

-- # RSLCLOCKINTERRUPT constant := 8;
--#STOP PC DOS
-#START iAPX86, iAPX286R,.iAPX386R, iAPX286P, iAPX386P, PCDOS
--This interrupt is reserved for the use of the RSL in maintaining the
--real-time clock and for the support of DELAY statements.

1--TOP. i ,-.AP.- .R i . iP

--#STOP IAPX86,-iAPX286R, iAPX386R, iAPX286P, iAPX386P, PC-DOS
--ISTART iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--Upper 5 bits, supplied by PIC, are 2#01000#,
--#STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--#START PCDOS

--# -Upper 5 bits, supplied by PIC, are 2#00001#,
--4STOP. PC DOS .
--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P, PC DOS
--lower 3 bits, derived from PIC input number (IRO), are 2000#.

--By default, this interrupt is the highest in priority.

--Assumption: The OUTO output of the PIT (alias *TIMER 0 INTR") is
--connected to the PIC input IRO.

--4STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P, PCDOS

--#START iAPXl86
--4 RSL CLOCK INTERRUPT constant := 18;
--4 --This interrupt is reserved for the use of the RSL in maintaining the
--4 --real-time clock.

-- 4 DELAY EXPIRY INTERRUPT constant := 8;
--4 --This interrupt is reserved for the use of the RSL in implementing delays
--4 --of less than a full RSL clock cycle.
--#STOP iAPXl86

--#START iAPX86
NUMERICPROCESSORINTERRUPT : constant := 71;

--This interrupt must be interpreted as the exception NUMERIC-ERROR.

--Upper 5 bits, supplied by PIC, are 2401000#,

--lower 3 bits, derived from PIC input number (IR7), are 241114.

--By default, this interrupt is the lowest in priority.

--Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--connected to the PIC input IR7.

--#STOP iAPX86

_iR--iSTART PCDOS.-. . .

Z!E!RUTRIC PROCESSOR . -:constant : NON MASKABLE INTERRUP

--4 -- This interrupt must be interpreted as the exception NUMERIC ERROR
--4 -- When bits 6 and 7 of port 16400C24 are zero. Otherwise it indicates

--4 -- an I/O Channel Check or a Read/Write Memory Parity Check.
--4 -- The IBM-PC delivers the numeric processor exceptions via the
--4 -- non-maskable interrupt.

-- #STOP PCDOS

--#START iAPXI86

NUMERIC PROCESSORINTERRUPT : constant := 15;

- --This interrupt must be interpreted as the exception NUMERIC-ERROR.

-- # --Upper 5 bits, supplied by PIC, are 2#00001#,
-- j --lower 3 bits, derived from PIC input number (IRT), are 2#111.

--i --By default, this interrupt is the lowest in priority.

--4 --Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--# --connected to Ehe PIC input IR7.

--#STOP iA2XI86

--#START iAPX286R, iAPX386R, iAPX286P, iAPX386P
-# NUMERICPROCESSOR INTERRUPT : constant := 16;
-- # --alias Processor Extension Error [PRM Numeric Supplement 1-371
--#SToP iAPX286R, iAPX386R, IAPX286P, iAPX386P

_**t The following RSL internal interrupt type numbers must be changed

-- when the compiler interface has been changed.

--#START iAPX86, iAPX186, iAPX286R, iAPX386R0 iAPX286P, iAPX386P

--The software interrupt having the following Interrupt Type Number is use
d

--internally and exclusively by the RSL to check if the current stack
--has enough space:

CHECKSTACKINTERRUPT .. constant : 48;

--The software interrupt having the following Interrupt Type Number is use
d

--internally and exclusively by the RSL to effect switching between tasks:

DISPATCHCODE INTERRUPT : constant := 32;

--Interrupts having the following Interrupt Type Numbers (all
--software-generated) are used internally and exclusively by the generated
--code for effecting subprogram entry sequences where there is no SFDD:

E%,TER SUBPROGRAMWITHOUTLPPINTERRUPT : constant := 49;
--The generated code uses this interrupt to effect a subprogram entry
--sequence without a Lexical Parent Pointer.

ENTER SUBPROGRAM INTERRUPT constant := 50;
--The generated code uses this interrupt to effect a subprogram entry
--sequence with a Lexical Parent Pointer.

Interrupts-having!thefollowing Interrupt Type Numbers (all software-
--generated) are used internally and exclusively by the generated code to
--cause certain Ada exceptions to be forced:

PROGRAMERRORINTERRUPT : constant := 53;
--This interrupt must be interpreted as the exception PROGRAMERROR.

CONSTRAINT ERROR INTERRUPT constant := 54:
--This interrupt must be interpreted as the exception CONSTRAINTERROR.

NUMERICERROR INTERRUPT : constant := 55;

--This interrupt must be interpreted as the exception NUMERICERROR.

--Interrupts having the following Interrupt Type Numbers (all software-
--generated) are used internally and exclusively by the generated code to
--cause certain RSL services to be invoked:

ALLOCATEOBJECT INTERRUPT constant i= 56;

--This interrupt causes an object to be allocated in. the heap of the
--anonymous tas-. .

--The software interrupts having the following Interrupt Type Numbers are
used o.

--internally and exclusively by the RSL to effect entry to and exit from
--Innocuous Critical Regions:

ENTER INNOCUOUS CRITICALREGIONINTERRUPT: constant 33; .

LEAVE INNOCUOUS CRITICALREGIONINTERRUPT: constant : 34;

--The software interrupts having the following Interrupt Type Numbers are
--defined (and used) by the RSL and can be used by the user:

-- Used to halt. the execution of the program from any point.
HALTINTERRUPT : constant := 36;
END OF PROGRAWINTERRUPT : constant :.=...37;

STORAGEERRORINTERRUPT : constant := 38;

--This interrupt must be interpreted as the exception STORAGEERROR.
--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--#START iAPX286P, iAPX386P
-- LOAD TASK REGISTERINTERRUPT : constant : 37;

-- CLEAR TSFLAGINTERRUPT : constant 38;

-- HALT INTERRUPT : constant 39;

--#STOP iAPX286P, iAPX386P

--interrupts having the following Interrupt Type Numbers are specific to the
--Intel iAPX 186 and IAPX 286 CPUs:

BOUND EXCEPTIONINTERRUPT : constant := 5;

--This interrupt will be interpreted as the exception CONSTRAINT ERROR.

UNDEFINEDOPCODE EXCEPTIONINTERRUPT : constant := 6;
--This interrupt will be interpreted as the exception PROGRAM ERROR.

CPOC.ESSOR EXTENSION NOT AVAILABLE INTERRUPT: .constant: --7; - '- -'

-This interrupt will be interpreted as the exception PROGRAM ERROR.

-- #START PC-DOS

-- # -The software interrupt having the following Interrupt Type Number is use

d
-- # --internally and exclusively by the RSL to check if the current stack

-- t --has enough space:

-# CEECK_STACK INTERRUPT constant := 96;

--I --The software interrupt having the following Interrupt Type Number is use

d
-- # --internally and exclusively by the RSL to effect switching between tasks:

-- * DISPATChCODEINTERRUPT : constant 99;

-- # --Interrupts having the following Interrupt Type Numbers (all

--4 --software-generated) are used internally and exclusively by the generated

--4 --code for effecting subprogram entry sequences where there is no SFDD:

--I ENTER SUBPROGRAMWITHOUTLPPINTERRUPT : constant := 97;

--4 --The generated code uses this interrupt to effect a subprogram entry

--4 --sequence without a Lexical Parent Pointer.

--4 ENTERSUBPROGRAMINTERRUPT. constant := 98;

--4 --The generated code uses this interrupt to effect a subprogram entry

--4 --sequence with a Lexical Parent Pointer.

--4 --Interrupts having the following Interrupt Type Numbers (all software-

--4 --generated) are used internally and exclusively by the generated code to

--4 --cause certain Ada exceptions to be forced:

-4 PROGRAMERRORINTERRUPT : constant := 102;

-4 --This interrupt must be interpreted as the exception PROGRAMERROR.

-4 CONSTRAINTERRORINTERRUPT : constant := 103;
-4 --This interrupt must be interpreted as the exception CONSTRAINTERROR.

NUMERICERRORINTERRUPT : constant := 104;

--This interrupt must be interpreted as the exception NUMERICERROR.

--Interrupts having the following Interrupt Type Numbers (all software-

--generated) are used internally and exclusively by the generated code to

-- cause certain RSL services to be invoked: . * -.--.--.'

ALLOCATE OBJECT .INTERRUPT constant = 105;

-Th islnterrupt.;causes an object to be allocated in the heap of the

;anonymous task.

--The software interrupts having the following Interrupt Type Numbers are

--internally and exclusively by the RSL to effect entry to and exit from

--Innocuous Critical Regions:

ENrERINNOCUOUSCRITICALREGICN_:NTE'RRUPT: constant := 106;

-4 LEAVEINNOCUOUSCRITICAL REGIONI INTERRUPT: constant : 107;

-- HALT INTERRUPT : constant 109;

--$ END.OFPROGRAMINTERRUPT : constant : 110;

-- #STOP PC DOS

--Intel "reserves" interrupts with Interrupt Type Numbers in the range 0..31,
--with 32..255 available to the user. We allow the user to equate Interrupts
--in the range 72..103 to entries of task via Ada address clauses. We also
--allow such use of interrupts 1, 2, and 3, as well as interrupts arriving at

--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--PIC inputs IRI, IR2, IR3, IR4, IRS, and IR6 (Interrupt Type Numbers 65..

70).
--#STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--#START iAPXl86
--# --iAPXl86 inputs INTO, INTI, and INT2 (Interrupt Type Numbers 12..14).
--#STOP iAPXl86

--#START PCDOS
---4 -- IBM-PC DOS reserves interrupts with Interrupt Type Numbers in the
--4 -- range 0..95. We allow the use of 1, 3, 6, 7, as well as
-- .. -.interrupts arriving at PIC inputs IR2, IR3, IR4, IRS (Interrupt
--..--..Type Numbers 10, 11, 12, and 13).

-- #STOP--PC-DOS .

pragma PAGE;

--The enumeration literals of type ENTRY_KIND distinguish between entries of
-- software tasks and interrupt entries, and identify different varieties of

--the latter when used as the second argument in a FAST INTERRUPT ENTRY

--pragma:

type ENTRY-KIND is
(

--ORDINARY INTERRUPT ENTRY--

ORDINARY INTERRUPT ENTRY,
--This is not a Fast Interrupt Entry. It is invoked by an interrupt
--other than NMI. This entry may be called by a software task as
--well as by interrupt.

an interrupt -is eq'1ated to an entry by means of an address
--clause, and the FAST INTERRUPTENTRY pragma is not given for that
--entry, the entry will be treated as an ORDINARYINTERRUPTENTRY by
--default.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context

--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

--This is a Non-Maskable Interrupt Entry invoked only by NMI whose
-accept body makes no entry calls.-

NO NDP NONMASKABLE
--This is a Non-Maskable Interrupt Entry invoked only by NMI whose
--accept body makes no entry calls.

--It differs from NONMASKABLE only in that the state of the 8087

--Numeric Data Processor is neither saved nor restored during
--interrupt-delivery.

pragma PAGE;

-- NOTE: Be sure to compute TICK and TICKS PERDAY by hand, as the roundoff --

-- errors introduced in computer arithmetic are unacceptably inaccurate. --

--#START iAPX86
--If one loaded the Programmable Interval Timer (PIT) clock counter with t

he
--shortest possible delay, namely 1, TICK is the amount of time, in second

S,
--which would pass between the loading and the interrupt which the PIT wou

ld

--issue upon counting down and reaching zero.

TICK constant := 6.510416_666_66_666 666_667E-6;

-- roughly 6.5 microseconds

--#STOP IAPX86

--JSTART iAPXI86
--4 --For the system clock counter of the iAPX186's Internal Timer Unit, TICK
is
--4 --the amount of time, in seconds, that it takes to count from 0 to I.

--4 --IMPORTANT: The iSBC 186/03A runs at 8 MHz, and its Internal Timer Unit's
--4 --base clock rate is 8 MHz divided by four, or 2 MHz.
--4 --Therefore one counter tick = I sec. / 2_000_000 = 0.000_0005 sec.
--# --One major clock cycle = 2**16 * one counter tick
-- -- = 65_536 * 0.000_000_5 sec.

--4 -- = 0.032_768 sec.

--4 --We would like a greater time interval between counter interrupts used fo
r

--4 --timekeeping. In fact, we would like about one second, or as close as
.. po-sl.. ..ossible.-This.means that we must prescale our system clock counter.

-- '-To find prescale factor, solve for X:
-- X -- * one major clock cycle = 1 second
- -- X * 0.032768 sec. = I sec.
--4 -- K = 1 / 0.032 768

4 -- x = 30.517_578_125
--4 -- K "=O3
--_4 ---

--# --So SYSTEM.TICK = a prescaled counter tick

--4 -- = 30 1 0.000_000_5 sec.

- -- = 0.000015 sec.

--4 --and a prescaled major clock cycle 2**16 * one prescaled counter tick
--4 .. ."='65 536 * 0.000_015 sec.

-- 0.983 sec.

--4 --There are 66 666 +2/3 ticks in a second.
--4 --The number of ticks per second must be used to calculate the values of t
he
--# --ADARSL constants CLOCKTICKSPERDAY, TICKSPER-HALFDAY, and INTCHUNK_

- -- RAW TIME.

--4 TICK constant 0.000015; --15 microseconds

--#STOP iAPXl86

--#START iAPX286P, iAPX386P, IAPX286R, iAPX386R

--# --If one loaded the Programmable Interval Timer (PIT) clock counter with t

he
--# --shortest possible delay, namely 1, TICK is the amount of time, in second
5, .1

--# --which would pass-between the loading and the interrupt which the PIT wou

ld
--_4 --issue upon counting down and reaching zero.

--_4 --The CLKO input to the 8254 PIT on the iSBC 286/10 is 1.23 Mi.z.
--4 --So one counter 0 tick = I sec. I 1_230_000 = 0.000000813_00813_... sec.
--4 --One major clock cycle = 2**16. one counter tick

=-- 65 536 * 0.0000 0081300813_... sec.
- -- "= 0.0535 sec.

--4 --There are 1_230_000 (in hex, 16#0012 C4B0#) ticks in a second if
--4 --is not prescaled.

--4 --The maximum recommended value of the smallest delay duration (LRM 9.6) 1

--4 --50 microseconds. This will give the lowest possible frequency of timer
--4 --interrupts. To achieve this, another counter is needed as a prescaler.
The
--4 --prescale factor (X) is calculated as follows.
--4 -- = 0.0000_5 / One counter 0 tick
--4 -- = 0.0000_5 / 0.0000_00813_008L3_....

-- x = 61.5
--4 -- X 61 (nearest rounded off value)

--4 --Therefore SYSTEM.TICK = 61 * counter 0 tick
--4 -- = 61 * 0.0000 00813 00813 ... sec.
--# -- = 0.0000_49593_49593 49593 ... sec.
-- 4 -- = 49.593_49593 49593_49593_... microseconds
--4 --One major clock cycle = 2*'16 * SYSTEM.TICX

--4 -- = 65_536 * 0.0000_49593_4959349593... second
4 -- = 3.250159349_59349_59349_... seconds

T I *9593 4593; --about 49.59 mi

croseconds

--4 TICKSPERSECOND : constant := 20163.93442_62209_52836_06557; --approxima
te

--4 --TICKSPER SECOND must be used to calculate (by hand!) the values of the

--4 --ADA RSL constants CLOCK-TICKSPER DAY, TICKSPERRALFDAY, and INTCHUNK_
--4 --RAWTIME.

--#STOP iA2X296P, iAPX336P, iAPX2S6R, iAPX386R

-#START PC-DOS
--# --If one loaded the Programmable Interval Timer (PIT) clock counter with t
he
--# --shortest possible delay, namely 1, TICK is the amount of time, in second

s,
-- # --which would pass between the loading and the interrupt which the PIT wou

ld
--# --issue upon counting down and reaching zero. The clock input to the
--4 --PIT is 1.1-9318 MHZ, so a tick is 1/1.19318 MHZ or approximately
--# --0.8380965E-6 seconds

--# TICK constant 0.838096515E-6;
--# --roughly .83 microseconds
--#STOP PCDOS

type TIME is private;
NULL-TIME : constant TIME;

type DIRECTIONTYPE is(AUTO_INCREMENT, AUTO-DECREMENT);
type PARITYTYPE is(ODD, EVEN);

type FLAGSREGISTER is.:
record

--#START iAPX286P, iAPX386P
--4 NESTEDTASK : BOOLEAN FALSE;

1 -- 10_PRIVILEGE..LEVEL : NATURAL range 0..3 := 1;
--#STOP iAPX286P, iAPX386P

OVERFLOW : BOOLEAN FALSE;
DIRECTION : SYSTEM.DIRECTIONTYPE SYSTEM.AUTOINCREMENT;
INTERRUPT : BOOLEAN TRUE;

TRAP : BOOLEAN FALSE;
SIGN : BOOLEAN FALSE;
ZERO : BOOLEAN TRUE; --nihilistic view
AUXILIARY : BOOLEAN FALSE;
PARITY : SYSTEM.PARITYTYPE SYSTEM.EVEN;
CARRY : BOOLEAN FALSE;

end record;

for FLAGS-REGISTER use
record

--#START iAPX286P, iAPX386P
--4 NESTEDTASK at 0 range 14..14;

10 PRIVILEGELEVEL at 0 range 12..13;, , .
-- -_#STOP A X 8P=A X8P. .,

OVERFLOW at 0 range 11..11;
DIRECTION at 0 range 10..10;
INTERRUPT at 0 range 9.. 9;
TRAP at 0 range 8.. 8;
SIGN at 0 range 7.. 7;
ZERO at 0 range 6.. 6;
AUXILIARY at 0 range 4.. 4;
PARITY at 0 range 2.. 2;
CARRY at 0 range 0.. 0;

end record;

NORMALIZEDFLAGSREGISTER : constant SYSTEM.FLAGS REGISTER
(
--#START iAPX286P, iAPX386P

--# NESTED TASK => FALSE,
-- * IOPRIVILEGE-LEVEL => 1,

--#STOP iAPX286P, iAPX386P

OVERFLOW =" FALSE,
DIRECTION => SYSTE.'.AUTOINCREMENT,
INTERRUPT => TRUE,
TRAP => FALSE,
SIGN => FALSE,
ZERO => TRUE, --nihilistic view
AUXILIARY => FALSE,
PARITY => SYSTEM.EVEN,
CARRY => FALSE

subtype PRIORITY is INTEGER range 1..15;

UNRESOLVEDREFERENCE: exception; --see Appendix 30 of A-spec
SYSTEM ERROR : exception;

function EFFECTIVE-ADDRESS .

(A: in SYSTEM.ADDRESS

return SYSTEM.ABSOLUTEADDRESS;

--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address

-- specified by the segment/offset register pair A.
pragma INTERFACE(ASM86, EFFECTIVEADDRESS);

function FASTEFFECTIVE ADDRESS
-- (A: in SYSTEM.ADDRESS

--found in DX (segment part) and AX (offset part), NOT on stack
--

return SYSTEM. ABSOLUTEADDRESS;
--in DX:AX;

--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
-- specified by.the segment/offset register pair DX:AX.

.O-.This-functon -s -intended for use by ASM routines. -It does not observe
-- Ada calling conventions and therefore does not make a null SFDD. It
-- does save and later restore all those registers that it uses
-- internally.

pragma INTERFACE(ASM86, FASTEFFECTIVEADDRESS);

function TWOS COMPLEMENTOF
W: in SYSTEM.WORD

)
return SYSTEM. WORD ;

-PURPOSE:
-- This function, written in ASM86, returns the two's complement of the
- given argument.
--ASSUMPTIONS:
-- 1) CRITICAL REGION INFORMATION:
-- This procedure makes no assumptions about critical regions.
-- It neither enters nor leaves a critical region.

pragma INTERFACE(ASM86, TWOSCOMPLEMENTOF);

procedure ADD-TOADDRESS
(ADDR : in out SYSTEM.ADDRESS;
OFFSET: in SYSTEM.OFFSETREGISTER);

--PURPOSE:
-- This procedure, written in ASM86, adds OFFSET to the offset part of
-- ADDR. If overflow occurs, NUMERIC ERROR is raised.
--SIDE EFFECTS:
-- Raising of NUMERICERROR.

pragma INTERFACE(ASM86, ADD TO ADDRESS);

procedure SUBTRACTFROMADDRESS
(ADDR : in out SYSTEM.ADDRESS;
OFFSET: in SYSTEM.OFFSETREGISTER);

--PURPOSE:
-- This procedure, written in ASM86, subtracts OFFSET from the offset part
-- of ADDR. If underflow occurs, NUMERIC-ERROR is raised.
--SIDE EFFECTS:
-- Raising of NUMERICERROR.

pragma INTERFACE(ASM86, SUBTRACTFROMADDRESS);

function INTERRUPT TYPE NUMBEROF
A ! in SYSTEM.ADDRESS

return SYSTEM.INTERRUPT TYPE NUMBER;

--PURPOSE:
-- This function, written in ASM86, returns the Interrupt Type Number that
-- uniquely identifies the interrupt whose interrupt vector is located at
-- the specified address. If this address is not the address of an
-- interrupt vector, CONSTRAINTERROR is raised.
--SIDE EFFECTS:
-- Raising of CONSTRAINT-ERROR.

pragma INTERFACE(ASM86, INTERRUPTTYPENUMBEROF);

procedure GET_ADDRESS_FROMINTERRUPTTYPE_NUMBER
A : out SYSTEM.ADDRESS;
ITN : in SYSTEM.INTERRUPTTYPE NUMBER

--PURPOSE:
-- This procedure, written in ASM86, returns the address of the interrupt
-- vector numbered ITN.

pragma INTERFACE(ASM86, GET ADDRESS FROMINTERRUPTTYPE NUMBER

function GREATER THAN
Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

)
return BOOLEAN;

--PURPOSE:
-- This function, written in ASM86, returns the value of the expression
-- A > A2; -

pragma INTERFACE(ASM86, GREATER-THAN);

function MINUS
(Al : in SYSTEM.ADDRESS;

A2 : in SYSTEM.ADDRESS

return LONGINTEGER;

--PURPOSE:
-- This function, written in ASM86, returns the signed value of Al - A2.

pragma INTERFACE(ASM86, MINUS);

function ">"

Al : in SYSTEM.ADDRESS; -

A2 : in SYSTEM.ADDRESS
)

return.BOOLEAN. renames. SYSTEM.GREATER THAN;-

function -"

Al: in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

)
return LONG INTEGER renames SYSTEM.MINUS;

-- procedure ADJUSTFORUPWARDGROWTH
-- (OLDADDRESS : in SYSTEM.ADDRESS;

-- ADJUSTEDADDRESS: out SYSTEM.ADDRESS);
-- Transforms the given SYSTEM.ADDRESS into a representation yielding
-- the same effective address, but in which the SEGMENT component is
-- as large as possible.

-- procedure ADJUST FOR DOWNWARD GROWTH

-- (OLD ADDRESS : in SYSTEM.ADDRESS;

--A DJUSTED ES SADDRESS:-outSYSTEM.ADDRESS); .

w%-T-wTransforms the given SYSTEM.ADDRESS into a representation yielding
-- the same effective address, but in which the OFFSET component is as

-- large as possible.

--private

-- pragma INTERFACE(ASM86, ADJUSTFORUPWARDGROWTH);
-- pragma INTERFACE(ASM86, ADJUSTFORDOWNWARDGROWTH);

private

type LONGCYCLE is array(l..3)of SYSTEM.WORD;
pragma PACK(LONGCYCLE); --Make this type occupy 64 bits.

type TIME is --This may be viewed as a single 64-bit integer
record -representing a quantity of SYSTIM.TICKs.
CYCLES : LONGCYCLE;
TICKS : SYSTEM.WORD;

end record;

for TIME use record
CYCLES at 0 range 0..47;
TICKS at 6 range 0..15;

end record;

--A TIME variable may be viewed as a 64-bit integer, or as a record with a
--more significant CYCLES part and a less significant TICKS part. Whenever
--the TICKS part is incremented, the addition may carry over into the
--adjacent CYCLEs part.

--Storage layout of a variable of type TIME:

increasing addresses

------------ ---- --- ---- -- >

-- ..---------- 1--------------------+--------------------- .4---------------------

-- CYCLES(1) I CYCLES(2) I CYCLES(3) I TICKS I

--- V
-- one word

NULL-TIME : constant TIME : ((OTHERS > 0), 0);

end SYSTEM;

-.- -.- --_ T h , - - JC- - -- - = - '!?. ;id .B,- ._

- ~ -

* -mI ~m.-m m mm-mmmm.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvwvvvvvvv vvvvvV vvvvvv vvvvvvvvvVV
(4) Representation Clause Restrictions*

Representation clauses specify how the types of the language
are to be mapped onto the underlying machine. The following
are restrictions on representation clauses.
...

Address Clauses

Address clauses are supported for the following items:

1. Scalar or composite objects with the following restrictions:

(a) The object must not be nested within a subprogram or
task directly or indirectly.

(b) The size of the object must be determinable at time of
compilation.

2. Subprograms with the following restrictions:

(a) The subprogram can not be a library subprogram
(LRM requirement).

(b) Any subprogram declared within a subprogram having an
address clause will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt
with which the entry is to be associated.

Length Clause

T'STORAGESIZE for task type T specifies the number of bytes
to be allocated for the run-time stack of each task object of
type T.

Enumeration Representation Clause

In the absence of a representation specification for an
enumeration type T, the internal representation of TFIRST is
0. The default SIZE for a stand-alone object of enumeration
type T will be the smallest of the values 8, 16, or 32, such
that the internal representation of TFIRST and TILAST both

_fall.within the range: .-

-2**(T'SIZE - 1) .. 2**(T-SIZE l)-l.

Length specifications of the form:

for T'SIZE use N;

and/or enumeration representations of the form:

for T use aggregate

Are permitted for N in 2..32, provided the representations
" and the SIZE conform to the relationship specified above,
or else for N in 1..31, provided that the internal
representation of T'FIRST > a 0 and the representation of
TILAST = 2**(T'SIZE) - 1.

* For components of enumeration types within packed composite
* objects, the smaller of the default stand-alone SIZE and the
SIZE. from a length specification is used.

In accordance with the rules of Ada, and the implementation of
package STANDARD, enumeration representation on types derived
from the predefined type BOOLEAN are not accepted, but length
specifications are accepted.

Record Representation Clause

A length specification of the form

for T'SIZE use N;

Will cause arrays and records to be packed, If required, to
accommodate the length specification.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements
are minimized at the°possible expense ot-dat&.access.time and
and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..7 from the right. (Bit 8 starts at the right of
the next higher-numbered byte.)

The alignment clause of the form:

at mod N

can specify alignment of 1 (byte) or 2 (word).

vvvvvvvvvVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVvvvVVVVVVVVVVVVVVVVVVVVVVVVVVVV

(5) .Conventions
aaaM A a* A A* A AA A AA A AAAA AAA A..A A AAAAAAAA AAAAA AAAA MA AA A.

...

The following conventions are used for an implementation-

generated name denoting implementation-dependent components.
...

NONE -"

vvvvvvvvvvvvvvvvvvvvvvvvwvvvvvvvvvvvvvVVV vvvvvvvv vvvvvvvvvvvvvvvvvvvvvvvvv

(6) Address Clauses

............ A..

The following are conventions that define the interpretation
of expressions that appear in address clauses, including
those for interrupts.

NONE

vv
(7) Unchecked Conversions z...... ... : ." -

The following are restrictions on unchecked conversion,

including those depending on the respective sizes of objects
of the source and target.
...

A program is erroneous if it performs UNCHECKED-CONVERSION when
the size of the source and target types have different.

vvv

(8) Input-Output Packages
A A A A A A A A A A A A A A A A AA..............*A...~~

The following are implementation-dependent characteristics
of the input-output packages.
... +...

_ SEQUENTIAL-I P.ackage --

NOT SUPPORTED

...

Declare file type and applicable operations for files of
this type.
...

DIRECT IO Package

NOT SUPPORTED

TEXT 10 Package

-- ' PACKAGE SPECIFICATION FOR TEXT_10

The Specification of the Package TEXT 10 contains the following
(implementation specific) definitions in addition to those specified
in 14.3.10 of the LRM:

-- $ Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

with ADA.RSL, IOEXCEPTIONS;

--4START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P
with SYSTEM, IODEFS;

--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

-- #START PCDOS
-- # with SYSTEM, IODEFS, BASIC IO;
-- #STOP PC-DOS

............... °°,

-_ PACKAGE SPECIFICATION FOR TEXT 10

PURPOSE:-
-- % This package provides input and output services for textual files

--% including creation,deletion,opening, and closing of said files.
--1 This package is as specified in the Ada Reference Manual (1982).

-- % And here a word about primary and secondary routines. A primary routine
is
-- % always visible outside the package. If it references a file, it will
-- W attempt to gain exclusive access to that file descriptor. (The term
--% "exclusive access" is used with regard to tasks.) All modifications or
--I tests on file descriptor FIELDs must be made only if the current task
--% has exclusive access to that descriptor. In every case where a primary
--% routine gains exclusive access to a file descriptor, that routine must
--I release the file descriptor beFORE exiting. Primary routines may call
--% pcimary or secondary routines. Secondary routines are never visible
--I outside the package. If a secondary routine references a file descriptor

--% that routine assumes exclusive access for that descriptor. Secondary
-%.. routines may only call other secondary routines. -All calls to BASIC_I

-_1-:tfor reading or-writing are made by secondary routines. All other
--% BASIC_10 calls are made by primary routines.

PRAGMA PAGE;

-, SPECIFICATION:

PACKAGE textio IS
USE ada rsl;

TYPE file-type IS LIMITED PRIVATE;

TYPE file mode IS (in-file, outfile);

TYPE count IS RANGE 0 .. integer'LAST;

SUBTYPE positivecount IS count RANGE I count'LAST;

unbounded : CONSTANT count : 0; -- line and page length

SUBTYPE field IS integer RANGE 0 .. integer'LAST;

SUBTYPE number-base IS integer RANGE 2 .. 16;

TYPE type set IS (lower case,upper case);

-- File Management--

PROCEDURE create (file IN OUT file-type;
mode : IN filemode : out file;
name : IN string : "";

form IN string := " ;

PROCEDURE open (file : IN OUT file-type;
mode : IN filemode;
name IN string;
form : IN string " ;

PROCEDURE close (file : IN OUT filetype);

PROCEDURE delete (file : IN OUT filetype);

PROCEDURE reset (file : IN OUT filetype;
mode : IN filemode);

PROCEDURE reset (file : IN OUT filetype);

FUNCTION mode (file : IN filetype) RETURN filemode;

. .~2B7ENTION name (_._file...:._IN filetype).RETURN string;

FUNCTION form (file : IN filetype) RETURN string;

FUNCTION is-open (file : IN file type) RETURN boolean;

-- Control of default input and output files............................

PROCEDURE setinput (file : IN filetype);
PROCEDURE set-output (file : IN filetype);

FUNCTION standardinput RETURN file type;

FUNCTION standard output RETURN file-type;

FUNCTION current-input RETURN file type;
FUNCTION current.output RETURN file-type;

-- Specification of line and page lengths ----------------

PROCEDURE set-linejlength (file : IN filetype;
to : IN count);

PROCEDURE set)linejlength (to : IN count); -- for default output file

PROCEDURE set page length (file : IN file type;
to : IN count);

PROCEDURE setpagelength (to : IN count); -- for default output fil
e

FUNCTION line length (file : IN filetype) RETURN count;

FUNCTION line-length RETURN count; -- fordefault output file

FUNCTION pagelength (file : IN filetype) RETURN count;

FUNCTION pagelength RETURN count;

-- Column, Line, and Page Control--

PROCEDURE new line (file: IN filetype;
spacing : IN positivecount 1):

PROCEDURE new-line (spacing : IN positive-count I);

PROCEDURE skipline C file : IN filetype;
spacing : IN positive count I);

PROCEDURE skipjline (spacing : IN positive-count I);

FUNCTION endofline (file : IN filetype) RETURN BOOLEAN;

FUNCTION endofline RETURN boolean;

PROCEDURE new page (file : IN filetype);

PROCEDURE new_page; -- default output file

PROCEDURE skippage (file : IN filetype);

.....ROCEDURE default input file

FUNCTION end of page (file : IN filetype) RETURN boolean;

FUNCTION end of_page RETURN boolean; -- default input file

FUNCTION end offile (file : IN file type RETURN boolean;

FUNCTION end of file RETURN boolean; -- default input file

PROCEDURE set col (file : IN filetype;

to t IN positivecount);

PROCEDURE set col (to IN positivecount); -- for default ou

tput file

PROCEDURE setline (file : IN filetype;
to : IN positive_count);

PROCEDURE set-line (to : IN positivecount); -- for default ou
tput file -

FUNCTION col (file : IN file_type) RETURN positive_count;

FUNCTION col RETURN positive-count; -- for default ou
tput file

FUNCTION line (file : IN file_type) RETURN positive-count;

FUNCTION line RETURN positive count; -- for default ou
tput file

FUNCTION page (file : IN file_type) RETURN positivecount;

FUNCTION page RETURN positivecount; -- default output
file

-- CHARACTER input-output--

PROCEDURE get (file : IN file type;
item : OUT character);

PROCEDUJRE get (item : OUT character);

PROCEDURE put (file : IN file-type;
item : IN character);

PROCEDURE put (item : IN character);

-- STRING input-output---

PROCEDURE get (file : IN file type;
item : OUT string);

PROCEDURE get (item : OUT string);

PROCEDURE put (file : IN file type;
item : IN string);

S..PROCEDURE put.(..._..item _:,IN string);......

PROCEDURE getline (file IN file type;
item OUT string;
last OUT natural);

PROCEDURE getline (item OUT string;

last OUT natural);

PROCEDURE putline file IN file type;

item IN string);

PROCEDURE putline (item : IN string);

--

- Generic package for Input out of Integer Types

GENERIC
TYPE num IS RANGE-<>;

PACKAGE integer-io.IS -- I N T E G E R 1 0

defaultwidth : field := num'WIDTH;
defaultbase : numberbase :=.10;

PROCEDURE get (file : IN filetype;
item : OUT num;
width : IN field 0);

PROCEDURE get (item : OUT num;
width : IN field 0);

PROCEDURE put (file : IN filetype;
item : IN num;
width : IN field := defaultwidth;
base : IN number base := defaultbase);

PROCEDURE put (item : IN num;
....... width : IN field := default-width;

base : IN number base defaultbase);

PROCEDURE get (from : IN-string;
item : OUT num;
last : OUT positive);

PROCEDURE put (to : OUT string;
item : IN num;
base : IN number base default-base);

END integerio;

-- Generic packages for Inputouput of Real Type

GENERIC
TYPE num IS DIGITS <>;

PACKAGE floatio IS

defaultfore : field := 2;

.def ault aft ._:_ ield .,num'DIGITS :..; ..

... . .default exp . :.field :-3; - -

PROCEDURE get (file : in filetype;
item : OUT num;
width : IN field 0);

PROCEDURE get (item : OUT num;

width : IN field : 0);

PROCEDURE put (file : IN filetype;

item : IN num;

fore : IN field defaultfore;
aft : IN field default aft;
exp : IN field default exp);

PROCEDURE put. (item : IN num;
fore : IN field defaultfore;
aft : IN field defaultaft;

_ exp : IN field defaultexp);

PROCEDURE get - from : IN string;
item : OUT num;
last. : OUT positive);

PROCEDURE put (,TO : OUT string;
item : IN num;
aft : IN field default-aft;
exp : IN field default exp);

END float io;

GENERIC
TYPE num IS DELTA <>;

PACKAGE fixedio IS
defaultfore : field num'FORE;.........
defaultaft : field num'AFT;
defaultexp : field 0;

PROCEDURE get (file : IN file type;
item : OUT num;
width : IN field 0);

PROCEDURE get (item : OUT num;
width : IN field 0);

PROCEDURE put (file : IN filetype:
item : IN num;
fore : IN field default fore,
aft : IN field default aft;
exp : IN field default exp);

PROCEDURE put (item : IN num;
fore : IN field default fore;
aft : IN field default aft;
exp : IN field default exp);

,___ ,_PROCEDURE get rom :-IN string;
it em .,* " : OUT num;. -.

last : OUT positive):

PROCEDURE put (to : OUT string;

item : IN num;
aft : IN field default aft;
exp : IN field default exp);

END fixed io;

-- Generic package for Input Output of Enumeration Types

GENERIC
TYPE enum IS (<>);

PACKAGE enumerationio IS
default width field 0;
default-setting. : typeset upper case;

PROCEDURE get (file : IN file type;
item : OUT enum);

PROCEDURE get (item : OUT enum);

PROCEDURE put (file : IN file type;
item : IN enum;
width : IN field defaultwidth;

set : IN type set defaultsetting);

PROCEDURE put (item : IN enum;
width : IN field default-width;
set : IN type_set defaultsetting);

PROCEDURE get (from : IN string;
item : OUT enum;
last : OUT. positive);

PROCEDURE put (to : OUT string;
item : IN enum;
set : IN typeset defaultsetting);

END enumeration_io;

-- Exceptions

statuserror : EXCEPTION RENAMES ioexceptions.statuserror;
mode-error : EXCEPTION RENAMES io_exceptions.modeerror;
name_error : EXCEPTION RENAMES io_exceptions.nameerror;
use error : EXCEPTION RENAMES ioexceptions.use_error;
device-error : EXCEPTION RENAMES io_exceptions.device_error;
enderror : EXCEPTION RENAMES ioexceptions.end error;
dataerror : EXCEPTION NAMES io-exceptions.dataerror;
layout_error : EXCEPTION RENAMES ioexceptions.layout_error;

-.

-PRIVATE

PRIVATE

-- REPRESENTATION OF TEXT_10 FILES:

- This implementation of TEXT 1O is for the Intel targets. For
-- input files, a variety of possible file formats are supported.
-- For output, a single canonical format corresponding to the format
-- of DOS produced text files is used.

TEXT 10 OUTPUT FILE FORMAT

-- file = page (eop page) eof

-- page :: line (eol line)

-- line :: (character)

-- eol :: ASCII.CR ASCII.LF

-- eop : ASCII.FF

-- eof : ASCII.SUB

-- character :: any ASCII character except CR, LF, FF, and SUB

-- Note that for an output file, a physical line terminator ends
-- every line except the last line in each page. A physical page
-- terminator follows every page except the last page which is
-- terminated by the physical file terminator. The final page
-- terminator is omitted in keeping with common practice.

-- An empty physical file logically consists of an Ada line terminator

-- followed by a page terminator, followed by a file terminator.
-- A physical file containing only a form feed character logically consists
-- of two pages, each containing a single line empty line.

-- TEXT_10 INPUT FILE FORMATS

-- ThePHYSICAL ..yntax for an INPUT file.is broad enough to accept a variety

pmof-possible text file forms Including some which are not produced by
- .TEXT tO. 'The following physical text patterns are interpreted as Ada

-- logical lines, pages and files by TEXTIO when reading files:

-- file ::= page (eop page) eof

-- page ::= line (eol line)

-- line ::= (character)

-- eol ::= ASCII.CR ASCII.LF

- ASCII.CR

- ASCII.LF

-- eop ASCII.FF

-- eof :: ASCII.SUB

I (end of data condition)

-- characte: any character except ASCII: CR, LF, FF, SUB.

-- Thus for an input file, a line may be explicity terminated by a carriage
- return/line feed pair, by carriage return alone, or by line feed alone.
-- An end of line is always implicit in a form feed or the physical end of
-- file.

-- A file may be explicitly terminated by a control Z character or
-- implicity when the end of input data is encountered. However, an
-- embedded control Z character will be treated as the end of file even
-- though it may not be the physical end of data. The end of file is
-- always preceded by an implicit logical line terminator and page terminator.

-- The procedure READ_.CHAR generates a pageterm character corressponding
-- tothe implicit page terminator which precedes the end for file.
-- The implicit LINE .TERMINATOR which precedes each page terminator is
-- not generated READ_CHAR.

-- In the implementation of TEXT_10, the code which interprets or
-- produces the physical file syntax has been isolated in the
-- following procedures: .

-- readchar - gets the next input character or teminator.

-- end of line - checks if a line, page or file terminator is next.

-- end_of.page - checks if a page or file terminator follows.
-- endoffile - checks if a file terminator follows.

-- txtputchar - output a logical character.
-- txt newline - starts a new line.
-- txt_newpage - starts a new page.
-- writechar - puts the next physical character.

-- Private Data:

buffer length : CONSTANT := 256;

maxline length : CONSTANT := bufferlength;

TYPE charbuffer IS ARRAY (integer RANGE l..buffer_length) OF character;

!TYPE file'rec'IS -- common file state description; actual FILE TYPE
RECORD -- declarations will be access types to this record.

--*START PCDOS
--# stream basic io.stream type;

-- BASICIO file handle.

--*STCP PCDOS

--OSTART iAPX86, iAPXI86, iAPX286, iAPX2S6R, iAPX386R, iAPX286P, iAPXJ8
6P

stream io defs.streamid_prv;

--#STOP iAPX86, iAPXl86, iAPX286, iAPX286R, iAPX386R, iAPX286P, iAPX38
6P

mode : file-mode; -- INFILE or OUT-FILE.

currtcol : count 1; -- Next column to be read

-- or written.
curr line : count :1 1; -- Current line in page.
curr page : count 1; -- Current page in file.

line len : count unbounded;
I I -- TEXT 10 linelength

page len : count :-unbounded;
-- TEXT 10 pagelength

currreclength : integer : 0; -- Index of last character in
.. . . in TEXTBUF (when reading)

textindex : integer 1; -- Index of next character in
-- TEXTBUF to be read or
-- written.

textbuf : charbuffer; -- Input/outpt buffer.
prey char : character ASCII.NUL;

-- Previous character returned

-- by READ CHAR.
pendingterminator : character ASCII.NUL;
......... A terminator which has been

-- passed to WRITE CHAR but not

-- yet placed in the text buffer.
-- Value may be LINETERM,
-- PAGETERM or ASCII.NUL
-- indicating no pending

-- terminator.
backup :boolean :=false;

-- True if TXTBACKUP has been

-- called to cause PREV CHAR to
-- be re-read.

ateof : boolean false;
-- Set true when READ CHAR sees
-- the end of file marker.

END RECORD;

TYPE file type IS ACCESS filerec;

std_input : file type; -- the standard and current file descriptors
std output : filetype; -- should not be visible to the user except

-. wcurrinput-: filetype; .. -- -- through the provided procedure (see above).

-- Define logical file marker values.

lineterm : CONSTANT character ASCII.LF;
page term : CONSTANT character : ASCII.FF; -- form feed (ctrl-L) (1640
C#)
file term : CONSTANT character := ASCII.SUB; -- (ctrl-Z) (1641
A#)

TYPE character-set IS ARRAY (character) OF BOOLEAN;

-- The TERMINATOR array is used to quickly determine whether a character is
-- is a physical terminator.

terminator CONSTANT characterset := characterset'
(ASCII.CR I
ASCII.LF I
ASCII.FF-
ASCII.SUB => TRUE,
OTEEMS => FALSE);

-- The SPACE-ETC array is used to quickly determine whether a character is
-- to be skipped because its a space, tab, vertical tab, or terminator.

space-etc CONSTANT character set characterset'

ASCII.HT
ASCII.VT
ASCII.CR
ASCII.LF
ASCII.FF
ASCII.SUB => TRUE,

OTHERS => FALSE);
END text £o;

LOWLEVEL_1O

...

Include either the LOW-LEVEL 1O package specification or the
following sentence: 7

Low-level input-output is not provided.
++++++++++++ .++++++++++++++++++ +++++++++++++++++++

--0 Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

with SYSTEM; use SYSTEM;
-- PACKAGE SPECIFICATION FOR LOWLEVEL 10

PURPOSE:
-- % To support the programming of devices that can be accessed through ports

-- % in the memory space and the I/O space of the iAPXl86... Specific devices

-- % or device types that cannot be assumed to be present in all iAPX186-based

-- % targets should be supported by specific packages (e.g., MPSC).

pragma PAGE; -- In package LOW-LEVEL_10

--* SPECIFICATION:

package LOWLEVEL_10 is

--Support for I/O-mapped input and output:
procedure SEND CONTROL (DEVICE : in IOADDRESS; DATA : in out BYTE);

procedure SEND CONTROL (DEVICE : in 10_ADDRESS; DATA : in out WORD);

procedure RECEIVECONTROL(DEVICE : in 10_ADDRESS; DATA : in out BYTE);
procedure RECEIVE-CONTROL(DEVICE : in IOADDRESS; DATA : in out WORD);

--Support for memory-mapped input and output:
procedure SENDCONTROL (DEVICE : in ADDRESS; DATA : in out BYTE);
procedure SEND CONTROL (DEVICE in ADDRESS; DATA : in out WORD);
procedure RECEIVE CONTROL(DEVICE : in ADDRESS; DATA : in out BYTE);

procedure RECEIVE-CONTROL(DEVICE : in ADDRESS; DATA : in out WORD);

end LOW LEVELIO;

.- L.L -- , ... , , , - i-, , ' . - '. ' -... .." ... -

"IVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVWVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

(9) Package STANDARD

-- Copyright (C) 1986, SofTech, Inc.

PACKAGE standard IS

The Package STANDARD contains the following (implementation specific)
definitions in addition to those specified in Annex C of the LRM:

TYPE integer IS RANGE -32_768 .. 32_767;

FOR integer'SIZE USE 16;

TYPE longinteger IS RANGE -2_147_483_648 .. 2147483_647;

TYPE float IS DIGITS 6 RANGE
-(2#1.111 1111_1111_1111_1111_1111#E+127)
.:::.(2#1.111_1111_1111_1111_1111_I111#E+127);

-- Type float is realized using the Intel machine type SHORT REAL.
-- SHORT REAL provides 24 bits of mantissa (one bit is implied),
-- and it provides 8 bits for a biased exponent. However only the values
-- 1..254 are exponents of normalized numbers. The bias is 127, so the
-- exponent range is -126..127.
-- This leads to the following attributes for the type float:
-- float'digits = 6 [LRM 3.5.7, 3.5.81
-- float'mantissa = 21 [LRM 3.5.7, 3.5.81
-- float'emax = 84 [LRM 3.5.81

-- floatlepsilon = 2.0 ** (-20) [LRM 3.5.81
= 201.000_0000_0000_0000_0000_0000#E-20

= 1640.100000#E-4
-- float'small = 2.0 ** (-85) [LRM 3.5.81

= 201.000_0000_0000 0000_0000_0000#E-85
= 1640.800_000_04E-21

-- float'large = (2.0 ** 84) * (1.0 - 2.0 ** (-21)) CLRM 3.5.81

= 2#1.111_1111_1111_1111_1111_1#E+83
= 1640.FFFFFS_04E+21

-- float'safe emax = 127 [LRM 3.5.7, 3.5.81

-- float'safe small = 2.0 ** (-126) (LRM 3.5.71
2# 21.000_0000_0000_0000_00000000#E-126

~~ ~~ ,.16#90. 400 000#IE-31 .. ~. .
- float 'safelarge = (2.0 ** 128) * (L.0 - 2.0 ** (-21)) [LRM 3.5.7]

- 241.111_1111_1111._1111_1111 I1E+127

- 16#0.FFFFF8#E+32

float'first = -float'last
-- float'last = (2.0 ** 128) * (1.0 - 2.0 ** (-24))

- 201.111_11111_llll.l1ll__1lllll#E4127

- 16#0.FFFFFF#E+32
- 3.40_282_347E 38

-- float'machine radix = 2
-- float'machine mantissa = 24

-- float'machine emax = 127

-- float'machine emin = -126
-- float'machine rounds = true
-- float'machine overflows = true

TYPE longfloat IS DIGITS 15 RANGE
- 2*1.111_iii1_1111 1111_1111_1111_1111_1111_1111_1111_1111_1111 1111 l*E+1023
.2*1.111 11 111111I11_1111_1111._11111i1111111_1111111_1111_11 1E+1023;

- Type long-float is realized using the Intel machine type LONG REAL.
- LONG REAL provides 53 bits of mantissa (one bit is implied),
-- and it provides 11 bits for a biased exponent. However only the values
-- l..2046 are exponents of normalized numbers. The bias is 1023, so the
-- exponent range is -1022..1023.

-- This leads to the following attributes for the type float:

-- longfloat'digits = 15 [LRM 3.5.7, 3.5.8]
-- long float'mantissa = 51 [LRM 3.5.7, 3.5.8]

-- long-float'emax = 204 [LRM 3.5.8]

-- longfloat'epsilon 2.0 ** (-50) [LRM 3.5.81
= 1640.400_000_000_000_00#E-12
- 8.88_178_197_001_254E-16

-- longfloat'small = 2.0 ** (-205) [LRM 3.5.8]
-- = 2#1.000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0*E-205

= 16#0.800_000 000 000 00#E-51
" - 1.94 469 227 433 161E-16

-- longfloat'large = (2.0 ** 204) * (1.0 - 2.0 ** (-51)) [LRM 3.5.81
-- = 2*1.111_1111.1111.1111i 11111i_1111111ll_I1111_1111_i11_1110_0*E+204

-- =--16*0.FFF FFF-FFF FFF EO#E+51
2.57_110_087_081_438E+61

-- longfloat'safeemax = 1023 [LRM 3.5.7, 3.5.81

-- longfloat'safe_small = (2.0 ** (-1022)) (LRM 3.5.71
-- =2#1.000 0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_O#E-1022

= 1644.000_000_000_000 00#E-256
--2.22_507_385_850_720E-308

-- long float'safelarge = (2.0 ** 1024) * (1.0 - 2.0 ** (-51)) (LRM 3.5.71
-- =2*1.11111i11_1111_1111_1111._i11_11111_1111_11111111_111_1IllO~lI_0#E+1023

= 16#0.FFFFFFFFFFFFC*E+256
- 1.79768713_486_232E+308

-- longfloat'first = -long_float'last

-- long_float'last
-- =2*1.11_11111iII_1111_1i11_1111_Iii11111111_1111_1111_111_111_I_1E+l023

= 1640.FFF FFF FFF FFF F#E+256

1.79_768_713_486_232E*308
-- long_float'machine radix = 2

-- long tloat'machine mantissa = 53
-- longfloat'machine emax = 1023

.-... ong f .loat'machine emin=.-1022

VW Xnf otmcierounds. true ~.-.c.
S-.. long float 'machine overflows = true

FOR character'SIZE USE 8;

TYPE duration IS DELTA 2.0 ** (-14) RANGE -131_072.0 .. 131_072.0

END standard;

.vv
(10) Pile names

As SEQUE MIALI10 and DIRECT_10 are not supported on the target(s),
there are no file name conventions on the target configuration(s).

Ik" 9M."M 0. 0

mum=!i~' -.

-- FAST INTERRUPT ENTRIES --

-Prompt Interrupt Entry:

PROMPT
--This is a Fast Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body receives control after an
--interrupt more quickly than an ordinary interrupt entry but more
--slowly than a Quick or a Non-Maskable Interrupt Entry. The accept
--body may make conditional entry calls to entries that have been
--declared to be Trivial Entries by means of the pragma
--TRIVIALENTRY.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

..--Note:. In. the. following constant--names, "NDP" stands for "Numeric Data
--Processor," i.e., the Intel 8087.

--Quick Interrupt Entries:

SIMPLE QUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

NONDP SIMPLE QUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

--It differs from SIMPLE_QUICK only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
--interrupt delivery.

SIGNALLINGQUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body may make conditional entry
--calls to entries that have been declared to be Trivial Entries by
--means of the pragma TRIVIALENTRY.

-When-this kind of -interrupt entry occurs,-the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

--Non-Maskable Interrupt Entries:

NONMASKABLE

APP4ENIX C

TEST PAPAMEM'E

Certain tests in the ACVC make use of implementation-dependent values,

such as the maxim= length of an input line and inwalid file names. A

test that makes use of such values is identified by the extension .TST

in its file name. Actual values to be substituted are represented by

names that begin with a dollar sign. A value mist be substituted for

each of these names before the test is run. The values used for this

validation are given below.

Name and Meaning Value

$BIG IDl
<1..119 -> 'A', 120 => Ill>

Identifier the size of the
waxim input line Iwgth with

varying last caracter.

$BIG ID2 <1..119 => 'A', 120 => '2'>

Identifier the size of the

maxiiu input line length with
varying last character.

$BIGD3
<1..59 => 'A', 60 => '3'

Identifier the size of the 61..120 => 'A'>

maximum input line length with

varying middle character.

S&G1DX
<1..59 => 'A', 60 => '4'

Identifier the size of the 61..120 => 'A'>

axim= input line length with

varying middle character.

$IG,_vT LIT <1..117 => 0', 118-120 =>

An integer literal of value 298 '298' >

with enot-gh leading zeroes so
that it is the size of the
mxium line length.

$BIG REAL LIT
<1..114 => '0', 115..120 =>

Suniv real literal of '69.OEl'>

value 690.0 with enough leading
zeroes to be the size of the

maximum line length.

c-1

SBIGSTR3NG1 <1..60 => 'A'>
A string literal which when
catenated with BIG_SRING2
yields the image of BIGIDI.

$BIG SrRIWN2 :<I. .59 => 'A', 60 => WA>
A string literal which when
catenated to the end of
BIG SIRING1 yields the image of
BIG_ID1.

$BLANIG <zl..00 => I'1
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$CCUTA 2_147_483_647
A universal integer literal
whose value is

TtIO.CUN' LAST.

$FIELDLAS 2 147 483 647
A universal integer
literal whose value is
TEXT 10. FIELD' LA.

$MIENAEWrnBAD CARSBDC%
An external file name that
either contains invalid
characters or is too long.

$FILE NAME_WIEWILD _CARD_CHAR WID-CAR* .AM
An external file rame that
either contains a wild card
character or is too long.

$GRFATER THAN DURATION 75_000.0
A universal real literal that
lies between DURATION'BASE'ILAST
and DURATION'LAST or any value
in the range of DURATION.

$GMATER A EURATICN _BASELAST 131_073 .0
A universal real literal that is
greater than DRATION' BASE' LAST.

$ILLEAL EXERMAL FILENAME1 BA-R @. "
An external file name which
contains invalid characters.

C-2

$ILLEXALEXIER.LFMENW4E2 THS-FIE--NAME4 JtBE-PERFECrrY
An external file name whidi -LZA.L-IF-I'-E-NOT-SO-rN-
is too iong. IT-HAS-NEARLY-ONE-HUN S ED-S=-

CHARACTES

$fIN FIRT -2147483_648
A universal integer literal
whose value is INTEGER'FIPST.

$INTELAST 2147483_647
A universal inteer literal
whose value is fNTEGR'LAST.

S NrER[LA.SPLUS 1 2147483_648
A universal- inteer literal
whose value is I ?LAST + 1.

$IESSTU N DURATION -75 000.0
A universal real literal that
lies between DRATION' BASE' FIFST
and DURATION'FIRST or any value
in the range of DURATION.

$LES_ THAN EURATIONBASE FIPIT -131 073.0
A universal real literal that is
less than DURATION' BASE' FIRST.

$MAX DIGITS 15
Maximm digits supported for
floating-point types.

$MAXIN_ 120
Mxxnm inqiz line length
permitted by the inplementation.

$MAX_DIN 2147483647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX_IN_PjLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTE.MAX INT#+1.

$MAXLEN_IR T_BASEDLITERAL <1..2 => '2:', 3..117 =>
A universal integer based '0', 118..120 => 'ii:'>
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LN
long.

C-3

.4

$MX_L_ REAL BSED_LrI'AL <1..3 => '16:', 4..116 ->
A universal real based literal '0', 117.120 => 'F.E: '>
whose value is 16:F.E: with
enough leadirq zeroes in the
mantissa tobe MAINLEN lon.

$MXSTRIN'~G t . <1 => "', 2-119 => 'A',
A string literal of size 120 => f"l>
MAX_INLE, incluing the quote
characters.

SMINfir -2_147_483_648
A universal integer literal
whcse value is SYSTM.MIN Dir.

$NoSuc_ Type
A name of a predefined numeric
type other than FLOAT, IGER,
SHOB_ FLOAT, SHOWWrEGER,
IONG FAT, or LOMDIE.

$NEG BASED INT 16#FFFFFFFE#
A basd inteer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYST!.MAXiT.

C-4

APPMDC D

WIHEAM TIS

Some tests are withdrawn fr the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons irdicated. A reference of the
form "AI-3dddd" is to an Ada Ccnentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'AGA' LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIS
(OFF) ;"; the Ada Stardard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSlRAnhT ERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assigrmlent of the ncmimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAMERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSIP AMERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSIRAINERROR for reasons not
anticipated by the test.

C35A03E, These tests assume that attribute 'MAITSSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONS1'AINr-TERRR.

D-1

C37215C, Various discriminant costraints are wrongly expected
E, G, H: to be incompatible with type CONS.

C38102C: The fixed-point corversion on line 23 wrongly raises
CONSTRAINT ERRR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type-

C45332A: The test expects that either an expression in line 52 will
raise an egetion or else m m is FALSE.
Hoever, an inplementation my evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MAa-UNE OVEfJS may still be TMJE.

C45614C: REPORT. IDENT INT has an argument of the wrong type
(mo INTG_).

E66001D: Wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
enumeration literal; the function mst be rejected (see
Couentary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87BO4B, CONSTRADIN ETR. Errors of this sort occur re lines 37 & 59,
CCI311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

AD1A01A: The declaration of subtype INT3 raises CONSTRAT_ERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an atterpt to open the default output
file (after it was closed) with mode IN_FILE raises NAME EPRR
or USE_ERROR; by Commentary AI-00048, -MDEERROR shovld be
raised.

D-2

