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1. INTRODUCTION

Artificial Intelligence (AI) technology promises to
solve many knowledge-intensive problems that cannot be
solved in conventional ways. Knowledge-based (KB) systems
technology (also referred to, popularly, as "expert systems"
technology) represents the first AI technology to be used
with success in commercial and military applications, both
in prototype and in some restricted operational
environments. KB systems have been used extensively in the
AI community for modeling "intelligent" behavior.
Developers built early KB applications using specialized
languages (e.g., Lisp) and special-purpose processors (e.g.,
Lisp machines). The first widely available KB applications
were built using "expert system shell" tools, which allowed
development of "rule bases" in a generalized, non-procedural
English-like language format, and provided a generalized
"inference engine" to interpret those rule bases. Large
organizations, including various DoD agencies, are currently
debating how to integrate successful KB application
prototypes into operational and next-generation
environments. Most KB systems are compute-intensive, and
consequently operate relatively slowly. This has prevented
the use of such applications in operational environments
requiring high performance or real-time response.

One of the major influences on the requirements for
next-generation real-time systems is the (perceived) need
for KB capabilities. Next-generation real-time systems will
continue to be developed for application domains similar to
those of current-generation systems. However, these new
systems are expected to be capable of exhibiting
intelligent, adaptive, and highly dynamic behavior, and will
probably have long system life-cycles. Failures in these
new systems will have catastrophic consequences. This
compounds the already difficult engineering problems faced
in building current-generation real-time systems. As an
example, advanced KB systems are characterized by their
adaptability and complexity, making it effectively
impossible to precalculate all possible combinations of
tasks that might occur. This precludes use of static
scheduling policies common in current-generation real-time
systems [37].

One of the primary goals of introducing KB subsystems
into embedded real-time (weapons) systems applications is to
maintain, and hopefully improve, the "situation awareness"
of the human component of the system by reducing the human's
detail-level workload, enabling him to concentrate on more
global tasks. Many of the assorted independent details of
operating a weapon system, currently dealt with by the
human, would be integrated by an KB subsystem, and perhaps



summarized for the human on demand or continuously.
Examples of the types of tasks which have been suggested
include:

- intelligent navigation;

- mission planning and dynamic re-planning;

- intelligent internal system monitoring;

- emergency procedure aids;

- standard procedure monitoring;

- threat assessment; and

- tactical consultation.

The thesis of this SBIR project was that the
constraints of real-time applications cannot be satisfied
simply by choosing a faster execution environment or a more
efficient implementation of "classical" KB techniques, as
have been the primary approaches to date. The use of
generalized KB structures and reasoning paradigms cannot
meet real-time performance requirements, especially on
conventional, standard military hardware. Real-time KB
applications must be explicitly analyzed, designed and built
for real-time performance, as opposed to attempting to
migrate existing implementation strategies into the real-
time environment.

This research project produced no results warranting
the preparation of a SBIR Phase II proposal. The ideas
contained in the proposal were not proven to be useful for
various reasons; the fundamental drawback was ultimately
recognized to be a lack of proper understanding by the
author of the research area at the time the proposal was
prepared. Consequently, this project ended up as "pure
research" (emphasis on the "re" prefix), with no significant
-oiginal idea development. However, with the better
understanding and appreciation of the research area of
real-time AI that this project enabled me to develop,
directions for future investigation have been identified
that should prove more productive.

Section 2 contains a general review of the "state-of-
the-industrial-art" of real-time, AI, and real-time AI
systems; Section 3 contains a synopsis of the proposed
research program; Section 4 discusses the results, such as
they are, of the research project; and Section 5 presents a
synopsis of directions for future investigation in the area
of real-time AI systems.
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2. ANALYSIS

Over the past few years, especially since the
initiation of DARPA's Strategic Computing Initiative, there
has been a growing assumption that "real-time AI systems"
will be able to do all sorts of wonderful things for
military weapons systems. To date, the development of these
systems seems to be taking the "traditional" AI ad-hoc
approach, wherein a system is built, tried out, discovered
to not work in real time except for toy problems, and then
another system is built. The "lessons learned" reported
from these prototype projects seem to be, in general, that
either faster computers, or parallel processing, or some
combination of both, will solve the real-time performance
problems. There does not seem to be much work being done in
examining the fundamental algorithms being used to build
these prototypes [23).

2.1. Real-Time Application Technology

A real-time application must not only perform the right
action, but must do it on time and often within severe time
constraints. In the real-time environment, in general, a
correct answer is wrong if it is given too late. There is
often a distinction made between "soft" and "hard" real-time
systems. The main distinction seems to be that "soft real-
time" applications accept that some tasks will not always
meet the timing constraints, and attempt to ensure that
those tasks that do miss are the lowest priority tasks.
"Hard real-time" applications admit no such leeway. This
means that the real-time application implementor needs to
know exactly how the software system works, and how lonq it
takes to perform a given task. Deterministic behavior is an
essential requirement of an embedded real-time system.
Random timing failures may lead to catastrophic situations.
To meet tight timing requirements, current practice in
real-time programming relies heavily on manual machine-level
optimization techniques. These techniques are labor
intensive and tend to introduce internal instruction
sequence timing assumptions on which the correctness of an
implementation depends. Reliance on clever hand-coding and
implicit timing assumptions is a major source of bugs in
real-time programming. A primary objective in real-time-
systems research is to automate the synthesis of highly
efficient code and customized resource schedulers from
real-time performance specifications by exploiting
sophisticated optimization techniques and scheduling theory
[37).
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2.2. KB Application Technology

Most work in the development of KB inferencing
technology has been devoted to knowledge representation
schemes and inference algorithms that provide simpler,
easier to use, or more accurate techniques for modeling a
problem domain. The issue of efficiency has been primarily
related to computational feasibility. These algorithms have
been designed, for the most part, to deliver a "near
optimal" response, given the extent of knowledge provided,
with performance a secondary consideration. The performance
bottleneck has traditionally been addressed by manual local
optimization and by resorting to lower level implementation
languages that more closely map to the underlying hardware.
These approaches are not desirable because of high
development costs and portability considerations. Another
approach has been to develop specialized hardware that more
closely maps to the application functionality. This
approach is not desirable, at least in the short run, due to
the military's requirement for standard hardware.
Furthermore, this approach will not solve the fundamental
problem in the long run. The short history of computing
demonstrates, as has been noted by many, including [37],
that the availability of increased computing functionality
results mostly in demand for applications requiring even
greater functionality.

KB technology offers a body of techniques for the
manipulation and use of symbols representing "knowledge".
Many of these techniques have been encapsulated into
software tool environments, referred to as "expert system
shells". While these tools are extremely useful for rapid
prototyping of KB applications, they have flaws rendering
them unsuitable for real-time processing.

Existing expert system tools contain a generic facility
that performs symbol manipulations, referred to as the
"inference en~ine". These facilities operate on the domain
knowledge, which is represented by instantiations of generic
data structures, in an interpretive fashion at run-time.
The consequences are that:

(1) the domain knowledge consumes more memory than
absolutely necessary due to use of generic data
structures,

(2) computation takes longer than necessary due to the
interpretive implementation, and

(3) the symbol manipulation facilities are not optimal, in
general, for a particular knowledge base due to the
generic nature of the implementation.
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A second problem with existing expert system tools is
that their reasoning is inflexible and unresponsive in a
dynamic environment. Many tools rely exclusively on
production-rule-based reasoning, an approach which has many
limitations both in the maintenance phase and at run-time,
in addition to its advantages during initial development.
Existing expert system tools also have no knowledge of
history, and so are doomed to recommend the same response
over and over again. Even if a response is "near optimal",
repetitious behavior may fail in a tactical environment
against a competing opponent. Intelligent tactical systems
must retain knowledge of previous actions and weigh current
decisions in light of this memory. This lesson has already
been learned in attempts to build intelligent chess
programs. In a series of matches against a single opponent,
programs with superior ratings will tend to lose
consistently to humans who detect a predictability to the
program's behavior.

The "classical" KB inferencing techniques which can be
used to automate knowledge-intensive tasks are in the class
of "hard" problems referred to by mathematicians as "NP
complete." Problems in this class are all characterized by
having a time-order complexity that is exponential in the
number of components of the problem that must be considered.
Solutions to these problems, in the general case, involve
exhaustive enumeration of all potential solutions. In
general, these computations have potentially unbounded
requirements for processor cycles and memory.

The classical formulation of these alvorithms is as a
search of a decision tree. Unfortunately, it is easy to
specify knowledge in ways that lead to infinite search
sequences. The classical solutions to this problem have
involved techniques of using knowledge to prune the search
tree dynamically at run-time (selective search), manual
reprogramming by rewriting the knowledge specification, or
alternative search strategies, such as forward (data driven)
versus backward (goal driven) and breadth-first (parallel
evaluation) versus depth-first (sequential evaluation)
strategies. While these techniques may work for a
particular subset of problems, none provide general
solutions: selective search may miss the solution; forward
and breadth-first search strategies may result in
computation and storage of irrelevant information; and
reprogramming may be arbitrarily difficult for certain
knowledge and may result in the implicit embedding of
control information to the detriment of future knowledge
specification maintenance.

Many workers in the field have begun to explore the
possibility of using parallel processing techniques to
minimize the elapsed time computational costs. However, it
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has been shown [23) that the maximum speedup due to parallel
processing, in the ideal case, is absolutely bounded by the
number of processors which a problem can effectively
support, so that distributing an intractable (exponential
time-order complexity) problem over many processors is
unlikely, in general, to result in a tractable (polynomial
time-order complexity) problem.

2.3. Real-Time KB Application Technology

Real-time AI research currently emphasizes reasoning
about time-constrained processes and using heuristic
knowledge to control or schedule these processes [37]. The
fundamental requirement to be addressed is the development
of application algorithms that can guarantee satisfaction of
resource constraints, while also delivering acceptable
answers. The obvious constraint is, of course, that a
response must be produced within some time interval that may
not be known in advance, although a worst-case value will
either be known or assumed. Time, however, is not the only
constrained resource. Such resources as memory and external
devices may be scarce in general or may become scarce. An
essential aspect of the problem is that, in typical real-
time applications, there are many independent processes
which interact or compete with each other for the same pool
of resources. These issues are generally applicable to any
real-time application. However, the non-deterministic
nature of "classical" AI algorithms makes these requirements
particularly difficult. For example, the dynamic nature of
symbolic systems has lead to development of implementation
approaches that require automated memory management.
Current garbage collection techniques make it difficult, to
guarantee a maximum system latency [37], although there has
been some work done in an attempt to alleviate this
difficulty [121. Furthermore, symbolic systems are typified
by opportunistic control strategies that provide the ability
to dynamically direct program execution in response to
(real-time) events. This contrasts sharply with the current
real-time systems assumption of a statically determined
"decision tree" control sequence. The implication here is
that the sequences of processes can not be predetermined
[37].
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3. PROPOSED APPROACH

In the proposal, I state that real-time KB system
problems must be approached from a software engineering
perspective, which is slightly different from that found in
the literature or as presented by many current government-
sponsored projects. The use of veneralized KB structures
and reasoning paradigms cannot, in general, meet real-time
performance requirements, especially on conventional,
standard military computer systems. A change in emphasis
for developing real-time KB systems is needed. The
generalized symbol manipulation facilities must be abandoned
in favor of operations which are specialized to the
particular domain knowledge itself, avoiding costly run-time
generality.

3.1. Phase I Technical Objectives

The scope of the proposed Phase I investigation was to
explore the feasibility of possible software architectures
and strategies for implementation of real-time symbolic
computations. The class of computations to be addressed
were those which are implemented as search-intensive, NP-
complete algorithms. The necessity to use algorithms of
this type raises the question of whether real-time
performance can ever be reliably realized by KB
applications.

The objectives of the Phase I work were to:

(1) Investigate the potential for use of constrained
versions of the "classical" KB paradigms (in tactical
weapons systems).

(2) Investigate the potential for speedup of KB paradigms
on conventional hardware architectures through the
application of the "compilation paradigm". The essence
of this approach is to generate specialized
instantiations of gereric data structures and
interpretive algorithms that are tuned to a particular
(KB) problem.

3.2. Constrained Inference

I suggested two possible approaches to the development
of "constrained" versions of classical KB paradigms. The
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essential question that I hoped this research might shed
some light on was whether, assuming that these ideas had any
merit, such constrained paradigms could be scaled to perform
realistic and useful problem solving. The first suggestion
drew on an analogy with results in Operations Research (OR)
research. Many of the underlying algorithms that are used
in the solution of KB problems appear to be very similar to
algorithms that have been developed in the field of OR. The
idea was that examination of approaches to efficient problem
solving through imposition of constraints on the problem
space, as has been done in the field of OR, might lead to
similar results with KB problems. Another approach
suggested for some problems was the utilization of
"feedback" techniques, such as has been done in the field of
robotics. Assuming that a simplified model of the problem
can be developed, it is possible to arrive at an approximate
solution quickly, take initial action based this approximate
solution, and then monitor the success of that solution
while possibly incrementally adjusting it.

3.3. The Compilation Paradigm

I suggested application of what I term the "compilation
paradigm" as a means to achieve more efficient
implementation of classical KB technology. This suggestion
was based on the following analogy. In time critical
emergency situations, humans tend to rely on "standard"
procedures, rather than on inferring an appropriate course
of action from an examination of some "deep knowledge" of
the world. Such procedures can be invoked quickly, with
little or no thinking, in a properly trained human. In
essence, the "thinking" was done in advance, or by someone
else and learned by rote. This is analogous to the
difference between an interpreted and a compiled
implementation of a computer program. An interpreter
chooses the particular sequence of hardware instructions to
be executed for each program dynamically at program run-
time, while a compiler allocates the necessary hardware
instructions once in advance of program run-time.

An interpreter carries around a complete model of the
semantics of the programming language it implements. A
compiler also contains a complete model of the semantics of
the programming language. However, in this case, the
execution of a particular program is planned in advance of
the actual execution. The program is analyzed and a
specialized implementation containing only those hardware
instructions necessary is generated. The result is faster
execution of the program because of the elimination if the
dynamic instruction selection. Furthermore, there is plenty
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of time to perform extensive static analyses in order to
infer special case constraints met by the program at
execution time that permit selection of more efficient
.xecution plans.

A generalization of the idea of "compiling a program"
leads to the following notion of a "compilation paradigm":

(1) Given a particular instance of some high level abstract
or non-procedural computational specification, perform
an analysis of that specification to determine its
particular execution requirements prior to its actual
execution.

(2) From a sufficiently detailed analysis, a specialized
execution plan can be generated in a lower level, less
abstract, more procedural, more detailed specification
language.

(3) If the output of this "compilation" is not yet at the
level of the hardware on which the computation is to be
executed, repeat at step (1) for this new computational
specification.

(4) (Optimization) A more extensive and detailed analysis
will permit a more specialized and efficient execution
plan; for example, exploiting parallelism.

These ideas are loosely based on work done during the 1970s
on compilation of very high level languages (e.g., see
[34]).

An expert system consists of a specification of a
knowledge base, together with an inference engine that
interprets that knowledge base in the context of external
input data, to arrive at some external output data. In
essence, then, the knowledge specification is an abstract
computational specification, or "program," that "executes"
on the virtual machine implemented by the inference engine.
Application of the compilation paradigm would transform a
particular knowledge specification into an execution plan
for the inference engine's virtual machine. Since this
virtual machine is not directly implemented by current
generation computer hardware, at least another application
of the compilation paradigm is needed to reach an execution
plan for a conventional machine architecture.

9



4. RESEARCH RESULTS

This section attempts to review the results of the
research project. In general, the proposed research
directions did not yield any useful new ideas. As I
discovered during the project, my original understanding of
the area of real-time and KB systems proved to be naive. I
discovered that I was trying to address what amounted to the
wronq set of fundamental problems. I have since come to the
realization that the real solutions to development of
successful real-time KB applications are not going to be
found by pursuing versions of existing KB algorithms that
run faster. Instead, new algorithms are needed that are
based from their initial conception on principles of
conservative use of resources rather than on extravagance,
and new approaches to knowledge engineering are needed that
are oriented toward providing quick approximate solutions
which can be incrementally improved.

Current generation "state-of-the-industrial-art" KB
technology is characterized by:

(1) standalone processing, even in those cases where a KB
subsystem has been embedded within another application,

(2) human interaction orientation ("man-in-the-loop"),

(3) single-thread, synchronous processing,

(4) a "timesharing" mentality (resources can be waited
for), and

(5) exhaustive analysis, with heuristic "tricks" to avoid
complete enumeration where possible.

Any one of these characteristics causes a problem for
incorporation into real-time systems. The totality makes it
extremely difficult, if not impossible, to utilize KB
technology as it stands today int hard real-time systems.

4.1. Operations Research

I proposed to perform a survey of the OR literature in
an attempt to identify constrained problem solving paradigms
that are analogous to classical KB problem solving
paradigms, and then to explore the applicability of those
approaches to the reformulation of typical KB problems to
yield more efficient algorithms. This proposal was made
without having first done more than a cursory review of
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survey-level OR literature. With a somewhat more in-depth
survey, we came to the realization that the type of problems
addressed with KB technology are fundamentally different
from the problems usually considered in areas of OR. In
most OR problems, there is a fixed system having completely
specified and static characteristics. The goal is to find
optimal static solutions that minimize or maximize some
attributes of the solution. Most real KB applications are
highly dynamic, requiring on-line, adaptive algorithms. As
has been mentioned earlier, current algorithms are based on
heuristics, since complete, deterministic algorithms, where
known, are NP-complete. This line of research was dropped,
once the incommensurable problem characteristics were fully
appreciated.

4.2. Incremental Approximations

One of the solutions often proposed to real-time
performance problems is to use more powerful processors, or
massively parallel processor combinations, which are
becoming increasingly available. Unfortunately, a review of
the history of computing demonstrates that the demand for
more computing power has always outstripped the supply. If
the past is any indications of what will occur in the
future, the availability of more computing power will only
result in new real-time applications, requiring greater
functionality, possibly making the timing problems even
worse. There is no substitute for intelligent allocation of
finite resources [37].

In (20], an approach to real-time KB processing is
described that requires that the system's control component
reason about its overall objective relative to its current
state, where the objective defines the criteria for
acceptable solutions. This research has concentrated on
incorporation of approximate reasoning into the planning
facilities of a problem solver's control component, with the
goal of efficiently constructing acceptable solutions within
time constraints. This is the only published work I was
able to find that even dealt with the ideas of incremental
approximations in any depth. However, the approach of
making a rough pass at solving the problem and then using
the remaining time to incrementally refine the solution was
abandoned in this published work due to the claim that
refining parts of a solution and then propagating the
changes throughout the solution state to arrive at the new
solution was too costly.

This paper ([20]) makes a good case for the
incorporation of domain or problem specific alternative
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solution strategies which approximate the "optimal" solution
stra~egy, and point out that the approach does not obviate
the incremental refinement approach as an additional aspect
of problem solving. However, this approach requires that
the problem solver be able to perform temporal reasoning in
the problem domain to decide when to switch to approximate
processing and which approximation to pursue, which requires
a sophisticated control component that also needs to manage
its own "solution" to the control problem (introspection).
This appears to be a viable approach, but it is clearly a
long way from being useable in hard real-time environments.

4.3. Exploitation of Parallelism

There are a number of aspects of typical KB systems
that limit the amount of potential parallelism. One of the
reasons for using KB technology in the first place is to
make use of the KB application paradigm, wherein large
amounts of "knowledge" are used to determine each action of
the application. An individual "knowledge source" (e.g., a
rule) typically does very little "processing" by itself when
activated. In typical existing KB applications, only a very
small percentage of the "working memory" will change during
the knowledge activation step of each cycle of the inference
algorithm. Potential parallelism could be increased by
performing more "processing" within each knowledge source's
activation, but this would also undermine the whole point
(and power) of the paradigm. Another aspect of the problem
is that knowledge bases typically must contain a wide range
of "knowledge" in order to solve "interesting" tasks. The
various knowledge sources in the system relate to different
situations that may arise. The small number of changes to
"working memory" at any cycle of the inference algorithm, as
mentioned above, will not relate to more than a few of the
knowledge sources. Hence, there is very little potential
for increasing the exploitable parallelism with current KB
technology.

4.4. KB Application Architecture

Thanks to the now classical architecture of KB systems
-- separate working memory (data, or facts), knowledge base,
and inference engine -- the KB application designer is able
to concentrate on developing, in the knowledge sources
within the knowledge base, the different relations and
constraints of the problem, while leaving to the inference
engine the task of linking these relations in order to

12



produce the results from data stored at a given moment in
the working memory. This is an early example of a software
development principle now referred to as "information
hiding". A major advantage, from the point of view of KB
application development, of this structure is that a KB
system transfers responsibility for execution sequence
control from the programmer to the KB system. Each
knowledge source is regarded, in effect, as an individual
"program" to be called up when needed, based on changes to
data in the working memory. In conventional programs,
subroutine structure and control flow must be designed
explicitly to accommodate all potential operational
situations. In contrast, control flow in KB systems is
fluid; execution sequences may not be precisely known in
advance. Many of the concepts behind this system
architecture come from the time-sharing environment that was
common during the early AI research projects, where one can
wait for resources, where requests for resources can be
resubmitted and where collection of "garbage" is desirable.
This environment is diametrically opposed to the perspective
of the real-time designer, where the software and system
properties must be fixed, reliable and known ahead of time
[24].

The strict separation (i.e., information hiding) of
control, knowledge, and data that is the basis of the
classical KB systems architecture represents a set of
software design decisions that are optimized in ways that do
not readily fit the needs of real-time application
developers. The notable problem areas include the
following:

(1) KB systems architecture has evolved, especially in the
expert system shell tools, to the point where the
control component is "standard", and consequently non-
configurable by the application developer. This often
results, for real applications, in the developer having
to resort to "tricks" in the implementation of the
knowledge sources and data in order to surreptitiously
influence control decisions made by the inference
engine. In effect, the technology as evolved in such a
specialized way that it has reached the point where it
is more often than not too restrictive. If a
particular problem doesn't exactly fit the inference
engine's control regime, the tool ends up getting in
the way more than it helps in implementation of the
application.

(2) KB systems technology has evolved through applications
designed to respond with the best possible solution
derivable from the knowledge base. This has resulted
in development of what are basically exhaustive search
solution strategies, with subsequent development of
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heuristic search strategies which attempt to limit the
search to profitable paths. The whole strategy of
discovering the "best" solution through a search
algorithm is a monolithic, "all or nothing" approach to
the problem. What is really needed in the real-time
environment is approximate and incremental multi-agent
approaches.

(3) Typical KB applications are "man-in-the-loop"
applications that respond to an initial stimulus from
the human, and then run until the solution has been
reached, requesting additional input (e.g., external
data) when deemed necessary by the inference engine.
This synchronous nature of the inference algorithm is
perhaps the major stumbling block to utilization of KB
technology in real-time systems. Real-time systems
need to be able to deal with asynchronous events, and,
more importantly, asynchronous events need to be able
to immediately affect the control flow of the
application. Some current expert system shell tools
have attempted to allow the application developer to
model asynchronous events, through such techniques as
"daemons", but the underlying implementation is still
synchronous, only dealing with the "asynchronous
events" at well-defined points in the inference cycle.
The major issue that needs to be addressed here is that
an asynchronous event may need to redirect the current
search path of the inference process before it has
completed. This would require fairly major changes to
current inference algorithm designs. In general,
current KB technology is based upon centralized,
synchronous control, whereas real-time KB technology
needs to be able to utilize decentralized asynchronous
control.

(4) Current KB technology is heavily oriented to
interactive development and use. Major features of
importance in current-generation expert system shell
tools are those oriented toward explanation and
justification of questions and answers. All of this is
just excess baggage in most real-time systems, where
there will either be no human interaction, or else no
time to waste on such frivolous tasks. Redesign of
run-time knowledge representation data structures and
inference algorithms omitting these requirements may
help solve some of the run-time memory requirements of
KB applications.
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4.5. Classification vs. Constructive Reasoning

Two general classes of problems have been addressed by
KB applications. The first class of problems are those that
utilize what has been termed "classification reasoning" [8].
Problems successfully approached with classification
reasoning are those in which all solutions can be feasibly
exhaustively enumerated in advance. These are typically
well-defined problems from which a single answer must be
selected. These problems involve minimal search, and often
rely on an exhaustive search through a well-defined space.
Most of the more well known KB systems (e.g., Mycin, Sacon,
Sophie) fall into this category. This class of problems is
generally what is solvable using the expert system shell
tools currently found on the commercial market.

The second class of problems are those in which the
solution space is much too large to exhaustively enumerate.
Therefore, candidate solutions must be generated and
evaluated at run-time. These types of problems are often
game playing type scenarios (e.g, chess or command and
control). Here, efficient generation and evaluation of
possible solutions is of paramount importance. This is what
is referred to as heuristic search in the literature. These
types of systems perform what has been referred to as
"constructive reasoning" [8]. Constructive reasoning
requires larger knowledge bases and more difficult software
development efforts. It is likely that any truly useful
tactical real-time problems requiring KB solution techniques
will fall into this class, which does not bode well for any
short term successes, as there have not been many successful
industrial or DoD applications using this paradigm; Xcon
being the prominent exception. There have been some
attempts to develop efficient "real-time" versions of
classical heuristic search algorithms, (e.g., [151), but
these have not as yet been tried in real applications.

4.6. Compilation Paradigm

My ideas on what I term the "compilation paradigm"
still seem viable, although I was not able to make any
progress in developing them. Several references, notably
[9] and [26,27,29), have had some successes in applying
related ideas to the construction of more efficient
implementations of particular AI algorithms. The main
difference between what I was attempting to do, and what
these other efforts were doin' is that they developed a
specific approach to a specific AI algorithm, while I tried
to get my arms around a more general approach to the class
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of KB algorithms. I eventually recognized that there is no
straightforward approach here, although I suspect that I can
eventually prevail by changing my tactics. My naive
assumption was that there was an underlying, well-defined
common representation in which any inference technique could
be described. This may be true, but I was not able to
identify it during the performance period of this contract.

The tactic that I should have used from the start on
this project was to pick a particular instance of some
inference technique, together with several realistic non-
trivial KB applications built using that instance, and
investigate the "compilation paradigm" approach within that
more restricted context. I did, in fact, decide to switch
to this approach near the middle of the performance period,
but not long after I also had begun to realize that I was
not addressing the real problem. At that time, I chose to
try to define what the research direction really should be
rather that pursue my original ideas. My thoughts on this
are presented in Section 5 below.

I think that, given inference algorithms better suited
to real-time problem solving, this approach has merit in
realizing an efficient implementation. What will be
required in order to make any progress with this idea is a
way to define the behavior of an inference engine in terms
of a set of well-defined primitive operations, rather than
in terms of a high-level patterm match operation. This
mechanism would allow the behavior of the inference engine
to be specified in relation to a collection of particular
knowledge sources (e.g., rules) on which it is supposed to
operate. In other words, this would allow the semantics of
the knowledge source "language" to be defined with respect
to a particular inference engine. The main difference
between this situation and traditional programming language
compilation is that, in general, knowledge sources define
non-deterministic behavior. One of the goals of this
approach would then be to identify the deterministic sub-
behavior, for which straight-line code could be generated,
and encapsulate those sub-execution sequences within a
control mechanism to provide the non-deterministic
simulation, such as a multi-tasking real-time executive.
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5. CONCLUSION

Current-generation KB systems run-time implementations
are too abstract and non-deterministic for use in real-time
systems. The real-time applications designer just cannot
deal with systems that are non-deterministic and do not
provide explicit control. As discussed in the preceding
section, the proposed research ideas were either abandoned
or were not developed much beyond their initial conception.
However, the fundamental conclusion of this research is that
the proposed ideas were really attempting to tackle the
wrong problems.

The very essence of a real-time system is the
requirement for a deterministic response to an external
event. However, this does not explicitly include a
requirement for a fast response. In fact, many process
control applications only require response times on the
order of a second, and many electromechanical systems only
require response times on the order of a millisecond,
neither of which comes close to taxing the response time of
current generation microprocessors. The objective of fast
computing is to minimize the average response time of a
given set of tasks. However, the objective of real-time
computing is to meet the individual timing requirement of
each task. Rather than being fast (which is a relative term
anyway), the most important property of a real-time system
should be predictability; that is, its functional and timing
behavior should be as deterministic as necessary to satisfy
system specifications. Fast computing is helpful in meeting
stringent timing specifications, but fast computing alone
does not guarantee predictability [37].

Typical real-time application development attempts to
substitute speed for predictability (and comprehensibility),
on the theory that if everything can be done quickly enough,
it will vet done in time. This strategy has several
shortcomings. First of all, it fails to explicitly define
the behavioral specifications of the system. Without an
understanding of these specifications, maintenance and
evolution become increasingly difficult. Furthermore, it's
virtually impossible to predict how a change in one aspect
of the system's behavior will affect other aspects.

Another shortcoming is that this strategy provides only
one method for satisfying behavioral specifications: speed
up the components of the program. As a result, satisfying
specific behavioral specifications becomes a matter of "ad
hoc" experimentation rather than systematic engineering.
Because of the complex interactions between components in a
real-time system, this method provides no guarantee that the
behavioral requirements will continue to be satisfied over

17



the life-cycle of an application.

This suggests that research directions in the area of
real-time AI should not stress speedups of current-
generation inference algorithms, contrary to what is
suggested in [17]. While speed is important, we will never
achieve any real results if this is the main thrust of the
effort.

Instead, the following issues seem to be more
fundamentally important, and suggest that alternate
approaches to KB architectures and knowledge engineering
need to be developed:

(1) multi-agent, asynchronous inference algorithms and
architectures: The "black-board" architecture is a
relatively recent development that holds promise for
better integration into the real-time environment.
This approach is characterized by multiple cooperating
agents, rather than a single agent as is present for
most inference engines. This architecture was used in
the work reported in [20], and the RTEX system reported
in [10] utilizes a similar architectural style.

(2) incremental, approximate reasoning algorithms: This
must be accompanied by knowledge engineering
methodologies that provide the necessary knowledge
structures to support use of such algorithms. Current
methodologies are oriented to the monolithic approaches
used by expert system shell tools.

(3) inference algorithms exhibiting static or bounded
memory requirements: For example, current backward
chaining inference algorithms may follow unbounded
paths through the knowledge base, and realizations of
these algorithms tend to use recursion as the
implementation strategy, both of which consume memory
resources.

These issues need to be addressed first within specific
problem contexts, as suggested in [20], prior to attempting
to generalize the approaches. It may well be that there are
not any domain- or problem- independent approaches to the
development of real-time KB systems, but it seems clear that
the issues are too complex to solve in the abstract before
they have been solved for specific cases.
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