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Chapter 1

Introduction

Functional languages support a powerful programming methodology based on higher-order func-
tions and infinite objects. Furthermore, they admit diverse implementation strategies. While
lazy functional languages have more expressive power than eager languages, eager functional
languages are more amenable to parallel execution. The goal of this thesis is to extend the power
of the dataflow language Id (37], a non-strict eager language, and its implementations (7, 38] by
introducing a limited form of lazy evaluation; lazy data-structures allow the evaluation of the
contents of a data structure slot to be postponed (perhaps forever) until a consumer reads the
slot, thus extending the expressive power of Id.

Several terms require clarification. Section 1.1 discusses what we mean by the terms “strict”,
“non-strict”, “lazy”, and “eager” as ways of describing functional languages and interpreters.
Section 1.2.1 presents two interesting programming paradigms that are facilitated by lazy data-

structures, and Section 1.2.2 discusses the costs of lazy evaluation.

1.1 Terminology

Most programming languages are strict (i.e., have strict semantics). This means that the
arguments to a procedure are evaluated before the procedure is called. Consider the following
expression that constructs a pair using the cons procedure and selects the first element of the

pair using the head procedure:
head (cons expi exp2)
Since the argument expressions expl and exp2 are evaluated before calling cons, exp2 is

evaluated even though the result of the evaluation is not needed to produce the overall result.
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If the evaluation of either exp1 or exp2 diverges (goes into an infinite loop), evaluation of the
overall expression diverges too, and the overall expression never produces a result. Termination
and producing a result for the entire expression depend on the termination of exp2, even though
the result is not needed.

One exception to the “arguments first” rule is allowed. The consequent and alternate of
a conditional expression, which can be syntactically identi User not logged in or not receiving messages. 1.
the predicate is resolved only one of them is evaluated. This is necessary to permit recursive
definitions. It is not possible for users to define conditionals with procedures, however, as we
discuss in Section 1.2.4.

Lazy functional languages are a subset of non-strict functional languages. Computation
is never performed unless the result is required to produce the overall result. In the example
above,in a lazy functional language, the overall result does not depend on exp2, and exp2 would
not be evaluated. This is accomplished by calling procedures before evaluating arguments: the
evaluation of an argument is delayed until its value is found to be required to produce the
result. A technique for delaying the evaluation of an expression is described in Section 1.2.2.

Lazy functional languages have an inherently sequential aspect, too: procedures are called
before arguments are evaluated. The compiler may compile code to evaluate an argument before
or in parallel with calling a procedure, for example, as long as it can be sure that the semantics
of the program are the same. Strictness analysis, a technique for accomplishing this type of
optimization, is discussed in Section 1.2.3.

Since an expression is evaluated only if its result is required to produce the overall result,
an unbounded amount of computation is never performed once the answer has been computed.
Said another v.y, producing a result and termination are inextricably tied. If a computation
does not terminate, no result will be produced.

Lazy functional languages do not cover all non-strict functional languages. 1d ! [37] is a non-
strict non-lazy language. Producing the result of an Id program does not imply termination.
In the above example, in Id, production of a result depends on termination of the evaluation of
expl, and overall termination depends on the termination of both exp1 and exp2. “Non-lazy”
is called “eager”, the complement of “lazy”. An expression might be evaluated even if its result

is not a prerequisite for the overall result.

'Id is not a functional language, but a large subset of Id is functional. When the non-functionality is an issue,
it will be pointed out.
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Just as non-strict functional languages subsume lazy functional languages, eager functional

languages subsume strict functional languages as seen in Figure 1.1.

strict non-strict
/_/\F /\
N\
strict eager / non-strict lazy
\ J\/_/
N
eager lazy

Figure 1.1: The Functional Language Spectrum

So far, we have talked about attributes of languages. These qualifiers can also be applied to
interpreters, machines on which programs can be run. An eager interpreter naturally supports
the interpretation of an eager language, etc. That is not to say that a lazy functional language
cannot be implemented on an eager interpreter, as we will see in several examples.

In the rest of this chapter, we discuss the motivation for our lazy/eager mixture, and we

discuss other dataflow approaches for achieving laziness.

1.2 Lazy Evaluation Reconsidered

In this section, we consider various aspects of lazy evaluation. We begin with some programming
paradigms available in lazy functional languages but not eager functional languages. Then, we
consider the cost of lazy evaluation and how that cost is avoided (to some extent) in lazy
functional languages. Finally, we discuss why we chose an eager language rather than a lazy

language as a starting point, and we present our approach.

1.2.1 Two Interesting Programming Paradigms

Lazy functional languages facilitate programming paradigms not available in eager languages.
Two such paradigms are considered in this section: programming with conceptually infinite
data-structures and programming with data structures with slots that are expensive to compute.

Streams are classic examples of infinite data structures. These conceptually infinite lists
expand only as far as their consumers require. As long as consumers only traverse a finite

prefix of a stream, only a finite prefix is computed. More generally, very large or infinite

13




data structures can be traversed while newly explored sections are generated automatically as
needed.

Sometimes particular data structure positions are expensive to compute, but we might
ignore the value of the position. Consider, for example, a memoization table for a complex
function. For every position that we avoid computing, significant savings are realized. We call
this paradigm “programming with expensive slots”.

Both of these paradigms, which are closely tied to data-structures, are made available by

the system developed in this thesis.

1.2.2 The Cost of Lazy Evaluation

When an expression is evaluated, the interpreter (machine) has some state associated with it.
In particular, the free variables of the expression are available. In order for the evaluation of
the expression to be delayed, provision must be made to make the values of the free variables

- available when the expression is eventually evaluated. One technique for packaging a delayed
expression with its environment is called thunks®. A thunk is a piece of code to evaluate the
delayed expression after “restoring the expression’s environment”.

Many efficiency issues arise when thunks are used to implement delayed computation. First
we consider the general issues of sharing the result of a delayed expression and of having more
thunks than necessary to achieve desired program behavior.

If two computations have independent copies of a thunk and both computations evaluate
the thunk, the computation will be performed twice. Sharing computation is so important that
any realistic approach must incorporate it. Any implementation which does so must provide
storage for the result of each thunk. The need for a shared location motivated our restriction
(to be presented) that delayed expressions sit in data structures.

Coordination of a shared resource requires synchronization; in a sequential machine, where
only one process is active at a time, the synchronization and coordination that surrounds
a shared thunk are straightforward. In a parallel machine, however, managing any shared
resource is complex. The embodiment of the required synchronization mechanism will emerge
as the basis for our approach.

Most expressions are always computed and need not be delayed. Strictness analysis and

*The term thunk comes from Algol60, where it was the mechanism used to pass call-by-name parameters.
Although the value was not computed yet, the compiler had already “thunk” how it would be done when the
time came (18). Each time the variable was needed, the value was computed.

14




similar techniques optimize the implementation of lazy functional languages by eliminating as
many superfluous thunks as can be identified. Since the starting point is far from the target,
these techniques must be excellent to provide reasonable efficiency. We shoot for the target
from close range. Annotations point to the few lazy exceptions.

The cost of thunks can be broken up into three categories: the cost of building thunks, the
cost of the first reference, and the cost of successive references.

When an expression is delayed, the environment must be saved. In a system where environ-
ments are manipulable (such as Scheme [41]), the thunk for the delayed expression can simply
record a pointer to the delayed expression’s lexically enclosing environment. This environment,
however, is likely to contain much more information than we need to evaluate the expression.
Since the shared environment already exists, using it makes the construction of the thunk fast,
but the lifetime of the entire environment is now tied to the thunk. The environment (which
is actually a sequence of frames in Scheme) cannot be reclaimed until the delayed expression
is evaluated or discarded. This is known as dragging: the thunk is dragging the environment.
Another alternative is to copy the subset of the environment corresponding to the free variables
of the delayed expression into an independent environment. Building a new environment takes
more time, but dragging is avoided.

The first time the value of a delayed expression is requested, the expression must be evalu-
ated. Assuming that we do not wish to recompute the expression, we must keep track of both
the value of the expression the fact that the expression has been evaluated. All references,
both initial and successive, must check a flag to determine if the delayed expression has been

evaluated. We would like to minimize the cost of this recurring expense.

1.2.3 Decreasing the Cost of Lazy Evaluation in Lazy Functional Languages

The lazy functional languages community has developed techniques to abate the cost of lazy
evaluation. Strictness analysis and strictness annotations allow some expressions to be evaluated
eagerly. Path analysis [48] uses several different kinds of thunks, allowing various special cases

to be optimized.

Strictness Analysis and Strictness Annotations

Every time an expression is delayed, there is a cost. Strictness analysis is an automatic technique

and strictness annotations is a programmer controlled technique to decrease the cost of lazy
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evaluation by computing some expressions eagerly.

Most functional languages have lazy semantics, and the compiler is expected to determine
which expressions can be evaluated eagerly. Progress has been made in the area of strictness
of higher order functions [25] and non-flat domains [20], but the problem is far from solved.

A function is said to be strict in an argument if the value of that argument is required for
the function to produce a value. Notationally, the function € is strict in its second argument if
for all x, £(x,L) = L. where L denotes an undefined or non-terminating computation.

Hudak and Young show that the problem of first-order strictness analysis is complete in
exponential time and attribute the result to Meyer [25]. They go on to explain that, since “the
size of most functions is small, the complexity seems to be tractable in practice.”

It is worth noting that any programmatic strictness analysis technique must be an approxi-
mation. Determining the strictness of a function asks a question about the termination behavior
of the function and is clearly undecidable, in general. In their section on the correctness of their
algorithm, Hudak and Young explain that their technique is safe as it never declares a func-

tion strict that is not. So, even approximate techniques are complex. We give an example

demonstrating the difficulty of strictness analysis in Section 5.2.

To assist the compiler, annotations are sometimes provided to the programmer to declare
strictness properties that the compiler would otherwise have to deduce. In the remainder of
this section, we will discuss the use of strictness annotations in Miranda® [44] and FLIC [39].

Miranda allows the programmer to annotate algebraic type constructor definitions to be
strict in particular arguments. In the following type specification, streams of numbers are
defined to have strict heads and lazy tails. The head is strict by virtue of the ! annotation,

and the tail is lazy by default. scons stands for stream cons.

stream ::= empty | scons num! stream
Miranda

The strict/lazy argument pattern establishes a calling convention for each data-structure
constructor. The caller is compiled to pass certain arguments as values and the rest as delayed
expressions, and the constructor is compiled to receive that pattern. No provision is available,
however, to annotate general procedure definitions as having strict arguments. This is probably

because strictness analysis for procedures was better understood at the time that Miranda was

*Miranda is a trademark of Research Software Ltd.
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designed than was strictness analysis for data structures, a more recent development. However,
it is not possible to annotate built-in data type constructors such as cons, the list constructor.
Although the user can define new algebraic types with any strictness pattern desired using
the built-in types, the special syntax for supporting lists is lost, including dotdot notation
for constructing arithmetic sequences and recurrences; and list comprehension for generating,
mapping, and filtering lists. Dotdot notation and list comprehension, based on Zermelo-Frankel
set notation, are expressive ways to specify lists. Furthermore, Miranda provides no facility to
annotate actual parameter expressions as strict. We will return to this prospect presently.
Warren Burton proposes a variation of Miranda [15]. Procedures are called with strict
semantics, and data structure are constructed with lazy semantics. “Partially strict pseudo-
constructors” are procedures with annotations attached to their type specifications. The an-
notations indicate varying degrees of laziness. The following code defines the constructor for a
stream of numbers with strict heads and lazy tails. The head is strict by default (procedures

have strict arguments by default), and the tail is lazy by virtue of the name annotation.

scons :: * -> name [*] -> [x]
scons a b = a:b

Warren Burton’'s Miranda

Since the annotations are attached to procedure definitions, which are strict by default, the
annotations should probably be called laziness annotations. Three modes are established for
passing procedure arguments. Call by value is the default and requires no explicit annotation.
Call by speculation is an eager variation for parallel machines, where the argument and
procedure can be evaluated in parallel. Call by name is a lazy evaluation technique, but values
are not memoized. Burton argues that it may be cheaper for a different processor to recompute
a value rather than to send the computed value from one processor to another, especially in
the case of a data structure. Besides, the programmer can provide for sharing explicitly.

FLIC (Functional Language Intermediate Code), as its name indicates, is not intended to
be a front-end language. As FLIC is intended to support any number of functional languages
targeted at any number of sequential or parallel architectures, complete facilities are available

for indicating strictness*. A procedure can be marked as strict in its argument (FLIC procedures

*FLIC defines an annotation to contain purely pragmatic information which can be deleted to derive the
semantics (meaning) of a program. We will take a looser interpretation of the term to include proper programming
constructs.
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have only one argument), covering both general procedures and data structure constructors.
Closely related (and equivalent) is a sequentialization function that takes two expressions and
returns the second, but not until the first completes. The STRICT and SEQ primitives are defined

by the following equations:

STRICT f L = L
STRICT f x = f x

SEQ L b= 1 -
SEQab=0>»

FLIC

The following code® defines scons as a stream constructor that has strict heads and lazy
tails. The strict function ensures that all first actual parameter expressions of scons are

reduced to values before scons is applied.

scons = STRICT (\x\y cons x y)

FLIC

We will consider sequences of reductions that demonstrate the use of the scons and strict

functions. head and tail are stream selectors.

head (x:xs)
tail (x:xs)

fl
]

Xs

FLIC

In the following sequences, expressions that are underlined are about to be rewritten.

head (scons 5 1)

= head (STRICT (\x\y cons x y) § 1)
= head ((\x\y cons x y) § L)

= head (cons § 1)

= 5

FLIC

tail (scops 1 5)

= tail (STRICT (\x\y cons x y) L §)
= tail (L_5)

= tail 1

= 1

FLIC

Backslash is FLIC’s symbol for lambda.




-

As a more complex example consider the definition of strict_cons, the pair constructor

that is strict in both arguments:

strict_cons = STRICT (\x (STRICT (\y cons x y)))
FLIC

FLIC also provides facilities for evaluating an expression before applying a procedure. The
following let expression binds the value of the argument expression arg_exp to the name arg._val

and applies the procedure foo only after arg.val reduces to a value.

= arg.val arg.exp (SEQ arg.val (foo arg.val))

FLIC

FLIC also provides annotations (as opposed to the preceding, which were proper language
constructs) to indicate both formal and actual argument strictness. These annotations are to
be used by the compiler after performing strictness analysis, for example.

FLIC takes a general approach. Not only can a particular procedure be established with
a mixed strict/lazy calling convention, but actual parameter expressions can be marked in-

dependently, providing additional opportunities for savings. In conventional implementations,

the various mixed calling conventions are necessary as values and delayed expressions cannot
be freely interchanged. A function has to know what was potentially delayed, and what was
a value. Even so, an actual parameter in a position that is normally passed as delayed can
be marked as strict to some advantage. The delayed structure (that contains a flag and the
delayed expression or the value of the expression) can be marked “evaluated” and the value can
be computed directly and stored. A delayed structure still has to be allocated to satisfy the
calling convention, but the expression need not be delayed, and can even be computed inline,
providing additional savings. In this way we have a hierarchy of mechanisms corresponding to

increasing efficiency.

1. lazy: all arguments are passed unevaluated

2. definitions are annotated: a procedure call is established for each strict /lazy combination,

and some arguments are passed evaluated, some, unevaluated

3. applications are annotated: more arguments may be strict but still packaged as evaluated

delayed-expressions
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4. strict: all arguments are evaluated

Bloss, Hudak, and Young [14] develop an infrastructure which can take advantage of these
kinds of situations which we discuss briefly in the next section.

In a lazy functional language, it is particularly effective to annotate definitions as most
expressions can be eagerly evaluated and one definitional annotation covers an entire class of
instances. In an eager language, however, we do not wish to proliferate laziness casually, as it
is rarely needed. For this reason, we use annotations only in actual expressions.

If values and unevaluated expressions can be freely interchanged (which implies implicit
forcing), as they can be in Multi-Lisp {21], annotations at the definition and at the application
are equivalent, the former being an abbreviation for many of the latter. As a result of the
interchangeability, no special calling conventions are necessary. Such a design decision, however,
requires architectural support for an efficient implementation, lest we require repeated explicit
checks. In an implementation on stock hardware with no architectural support, such as Multi-
Lisp on Concert {22] or Mul-T {30] (a dialect of Multi-Lisp and T compiled for the Encore
Multimax), this turns out to be quite expensive.

When designing hardware, however, providing support for trapping delayed expressions is
usually an easy extension. Consider Lisp machines, for example, which trap to microcode on
all sorts of exceptional cases, or SOAR [45] (Smalltalk on a RISC) or SPUR [19] which trap to
software in exceptional cases. The idea is to handle common cases quickly while trapping and
paying a penalty in the less frequent exceptional cases.

We restrict our attention to data structures and develop a mechanism that is transparent to
the consumer and depends on hardware support for an efficient implementation. Annotations

will always be always associated with the actual construction of data structures.

Path Analysis

Hudak et al. develop a technique called path analysis for optimizing implementations of lazy
functional languages [14]. The compiler [48] tries to determine that a particular use of a
thunk is the first or the last, or that it cannot be the first (i.e., the delayed expression is
already evaluated), by tracing the path through the sequential execution. Each special case has
opportunities for optimization.

Four ways of forming thunks for procedure arguments are described. The list includes the

standard Henderson-style seif modifying procedure, two forms of flag and procedure/value cells,
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and, for completeness, a non-delayed mechanism. The four methods, or modes are:

1. Closure Mode: A delayed expression is wrapped in a procedure. The procedure may
or may not cache the value when it gets evaluated. In this mode, the compiler can
rewrite (DELAY (FORCE x)) as x, for example. Two disadvantages are pointed out. Each
use of the thunk requires a general procedure call, which is expensive. Context specific

optimizations such as order of evaluation with respect to the caller are not available.

2. Cell Mode: A thunk is represented as a pair, a flag and a closure or value, depending on
the flag. The closure mode problems vanish, but some optimizations are precluded due

to their interaction with even other optimizations®.

3. Optimized Cell Mode: The delayed function’s arguments are guaranteed to be unevalu-
ated on entry. While (DELAY (FORCE x)) can no longer be rewritten as x, other opti-
mizations are enabled. The assertion about the function’s arguments increase greatly the

opportunities for using path analysis.

4. Value Mode: The value is computed directly. This mechanism is included for complete-

ness.

Ordering in a parallel system, however, is much less restrictive, and opportunities for such
optimizations are significantly diminished. In a dataflow system, for example, the program

captures only a partial order of the operations.

1.2.4 Why Not Laziness

Some proponents of lazy functional languages argue that lazy functional languages support
equational reasoning, but strict functional languages do not. Equational reasoning allows func-
tion definitions to be treated as equations or identities in the sense that a compiler can substitute
them without changing the meaning of programs. Consider the following definition of the pair
selector head. We would like to be able to view it as an equation also, relating head with the

pair constructor cons,

head (cons x y) = x

® An example demonstrating this point would take a great deal of development. The interested reader should
consult [14].
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In a lazy functional language, this equation holds even if the evaluation of y diverges; since
y is not needed, it would never be evaluated. Whenever the compiler sees the expression head
(cons x y) in a program, it can substitute y without changing the meaning of the program.
In a strict functional language, however, both x and y are evaluated before cons or head are
applied. If the evaluation of y diverges, we cannot proceed, even though the value of y will be
discarded. If the compiler substitutes y for head (cons x y), it might change the termination
behavior of the program.

All non-strict functional languages, not just lazy languages, support equational reason-
ing [11]. In an eager non-strict functional language, the argument expressions can be evaluated
in parallel with each other and in parallel with procedure application. Furthermore, the notions

of “getting an answer”

and “terminating” are separated, and, as a result, the equation makes
sense. The interested reader is referred to [33] for additional details.

Some proponenis of lazy evaluation claim that lazy evaluators are more efficient than eager
evaluators [11} because they perform the minimum number of reduction steps to find normzl
form. But more interpretation is required to decide which reduction is next, and to decide if
a particular expression has already been evaluated. A converse claim is of interest: if a lazy
interpreter and an eager interpreter take the same number of reduction steps to reach an answer
(normal form), then the lazy interpreter did at least as much total work as the eager interpreter.
Work includes both reduction and interpretation.

A lazy evaluator is necessarily more complex and therefore more expensive than an eager
evaluator, as pointed out in [13]. This expense is reduced by strict.aess analysis [25], and other
similar techniques [14]. Most programs need none of that power, however. Even programs

requiring lazy evaluation need it for only a small fraction of the program. This assertion will

be demonstrated by overwhelming evidence.

Control Structures Versus Data Structures

Lazy evaluation might leave expressions unevaluated in two ways — both arguments to proce-
dures and data structure slots may be left unevaluated. The computation of an actual argument
to a procedure may diverge, yet the value of that argument may not be needed. This is the
situation if we treat conditionals as procedures and consider recursive definitions. Consider the

7

following Id definitions’. typeof declares the type of an identifier. No type declarations are

"All code in this document is written in Id unless otherwise marked.
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required by Id; they are included for documentation purposes.

typeof my_if = B -> *0 -> *0 -> *0;
def my_if p ¢ a = if p then ¢ else a;

typeof fact = N -> N;
def fact n = if n<2 then 1
else n * fact (n-1);

If we replace if by my_if in the preceding definition of fact, calls to fact will not terminate.

In the case of data structures, an “infinite object” can never be fully expanded, yet these
objects are sometimes convenient for programming. With the notable exception of the condi-
tional construct, we hypothesize that the lazy evaluation of control structures is rarely needed,
and the lazy evaluation of data structures is needed infrequently. Tle utility of our approach,
which disallows the former and facilitates the latter, can only be measured by its practical
effectiveness. Chapter 4 examines the strengths and weaknesses of this choice.

In concentrating our effort on data structures, we are not alone. Miranda’s strictness an-
notations apply only to data structures. In Warren Burton’s variation of Miranda where pro-
cedures are called :trictly and data structures are constructed lazily to varying degrees, based

on annotations. Conversely, Multilisp’s futures are oriented around expressions.

Explicit Allocation of Storage

While the producer and consumers of the value of an expression have no storage automatically
and naturally associated with them, the producers and consumers of a data structure meet at
the data structure itself. The data structure provides a meeting place, and the data structure

operations provide a point in time for orchestrating the delaying and forcing of expressions.

Sequentialization and Parallelism

The main source of parallelism in functional languages is the ability to evaluate all arguments
to all procedures in parallel. Strict functional languages require barrier synchronization to
insure that all arguments are computed before a procedure is called. Similarly, lazy functional
languages apply procedures before evaluating arguments, a different form of sequentialization.
In both of these cases, a compiler can relax ordering restrictions if it can prove that the semantics
of the program are the same. Both ends of the spectrum, however, are inherantly sequential,

and sequentialization comes at the price of parallelism.
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1.2.5 Our Approach

On one extreme is dataflow, an eager approach amenable to parallel execution. On the other
extreme is the more powerful lazy approach. We examine an intermediate approach on the
eager/lazy spectrum that offers most of the power of lazy evaluation, and the efficient parallel
implementation that comes with dataflow.

If we only delay expressions explicitly associated with data structures, an interesting com-
promise is achieved. The TTDA, the first architectural model for dynamic dataflow, already
synchronizes array producers and consumers in hardware using I-structure memory (9, 10, 23].
A similar synchronization mechanism is required to support delayed expressions that sit in
data structure slots. By generalizing I-structures, we can support both demand propagation
and producer/consumer synchronization in hardware.

We develop lazy data-structures for the dataflow language Id. An expression destined
for a lazy data-structure slot remains unevaluated until the slot is read, i.e., until the value
of the expression is requested. Lazy structures in an otherwise eager system thus provide
a combination of eager and lazy evaluation. Lazy data-structures admit programming with
infinite data-structures and programming with data structures with expensive slots.

The language we develop in this thesis, which we name Id#, is eager and non-strict. The
evaluation of certain expressions which are always associated with data structures can be de-
layed.

The language, compiler, and run-time system extensions discussed in this thesis have been
implemented®. Our graph interpreter [33] has been extended as well, providing an opportu-
nity for experimentation. These extensions are currently being installed on our first hardware

prototype processor [38].

1.3 Force and Delay

In this section, we discuss the applicability of Henderson’s Force and Delay model, a language
level solution that is the basis for many lazy interpreters. Force and delay are sufficient to
implement a lazy functional language over an eager interpreter [24], and Id can accommodate
these with higher-order procedures. However, there is no natural way to provide “memoization”

within a functional framework.

®There are a small number of exceptions.
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Procedural abstraction cannot be used to define delay in an eager interpreter, as the ar-
gument would be evaluated before it were passed to the delay “procedure”. “=>” represents
a macro-style source-level program transformation. A macro or special-form would be used in
Scheme to achieve the desired behavior. Consider the following Scheme definitions of delay

and force which, in Hudak’s terminology, stores thunks in cell mode:

; delay and force in Scheme
(delay <exp>) => (cons ’delayed (lambda () <exp>))

(define (force delayed-exp)

(if (eq ’evaluated (car delayed-exp)) ; test flag
(cdr delayed-exp) ; get memoized value
(let* ((delay-function (cdr delayed-exp)) ; get thunk
(evaled-exp (delay-function))) ; evaluate thunk
(set-cdr! delayed-exp evaled-exp) ; memoize result
(set-car! delayed-exp ’evaluated) ; set flag

evaled-exp)))

Scheme

A thunk is stored in a cons cell. The car indicates whether or not an expression has been
evaluated. The expression is captured in an unapplied function and stored in the cdr part. The
first time a delayed expression is forced, the value is remembered, and the flag is changed.

There are several problems in implementing such a scheme on a parallel machine as syn-
chronization is required: the force procedure must manipulate the delayed object atomically,
and the flag and data change. There are no facilities to support this behavior in Id - - the
model must be extended to allow the desired behavior.

We can introduce a semaphore and the ability to change the flag and data. The semaphore
would be acquired before manipulation of the delayed expression began. Unfortunately, this
requires extra time to manipulate the semaphore as well as space to maintain it. The time
overhead could be eliminated by using the flag for synchronization as well as indicating the
evaluation status of the expression. This is possible if we allocate space for both the delayed
and the evaluated expressions, as expressed in Id below. Exchange is an atomic operation that
places a value in a structure slot and returns the previously stored value. evaluation_flag is
a new enumerated type. Consider thie following exiended id definitions of delay and force.
The bodies of both delay and force are let expressions, consisting of bindings and a result
expression (after the in). All variables bound in a let expression are lexically scoped, as are all

variables in Id.
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% force and delay using the flag for synchronization
% We use => since there are no macros or special-forms in Id

type evaluation_flag = delayed | evaluated;

delay <exp> =>
{delayed_exp

I_array (0,2);

delayed_exp[0] = delayed; % flag stored
def delay trigger = <exp>; % thunk created
delayed_exp[1] = delay % thunk stored
in

delayed_exp};

def force delayed_exp =
{flag = exchange delayed_exp O evaluated ¥ set and test flag

in
if flag == evaluated then
delayed_exp[2] % get memoized value
else
{delay_function = delayed_exp[1]; ¥ get thunk
evaled_exp = delay_function O; % evaluate thunk
delayed_expf2] = evaled_exp % memoize result
in

evaled_expl}};

This solution is very close to the standard one, and, as such, has the standard inefficiencies.
We have not taken advantage of our ability to influence the architecture. A similar synchro-
nization problem has already been solved by I-structure memory in synchronizing producers
and consumers of data structures. Since a small number of states are required to capture the
above behavior, we can solve our new problem efficiently by augmenting the hardware.

We do not adopt a source-te-source Henderson-style system. The framework we develop,
however, is powerful enough to embed such a system, and we will discuss this embedding in

Section 5.3.2.

1.4 Background: Id and Dataflow

We assume the reader is familiar with functional languages and graph reduction. In the following

sections, we give a brief introduction to the language Id and dataflow computing.
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1.4.1 The Id Language

Id was developed at the University of California at Irvine [5] and has evolved through several
revisions at MIT’s Laboratory for Computer Science. The research in this thesis was coincident
with the development of the latest version [34] and, as a result, some of the “new ideas”
presented herein are already in the current language document.

Id is an eager non-strict declarative language that supports higher-order procedures. Id’s
single assignment syntax will be introduced as we proceed.

Id programs are compiled into dataflow graphs which capture the data dependences of the
program [43]; nodes correspond to operations, and arcs correspond to data dependences. The

dataflow graphs can be executed directly on dataflow machines.

1.4.2 Dataflow Machines

Dataflow machines provide a vehicle for the execution of dataflow programs. Parallel architec-
tures designed to provide cheap synchronization and tolerate long memr .y latencies, TTDA (7]
and Monsoon, an Explicit Token Store machine [38], are tagged token dataflow machines as
they support general purpose computation.

Values travel along arcs of the dataflow graph as tokens, and the machine enables operation
nodes for execution by detecting the arrival of a matching pair of tokens.

TTDA and Monsoon support data structures with I-structure memory [9] which provides, in
addition to the usual memory operations, operations that are useful for parallel computing. For
example, producers and consumers can be synchronized on a per element basis: if a consumer

arrives before a producer, the consumer is delayed automatically until a value arrives.

1.5 Other Dataflow Approaches

We discuss two other approaches, Pingali’s and Amamiya’s, for achieving laziness in a dataflow
environment.
1.5.1 Pingali’s Demand-Driven Interpreter

Pingali proposes a source-to-source program transformation for achieving lazy behavior within
an eager interpreter [40]. Although we take a different direction, Pingali’s work provided both

the seniantic base and the motivation for the work in this thesis.
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Pingali’s approach offers the power of a lazy interpreter within the framework of dataflow,

but it is difficult to implement in practice. We briefly describe Pingali’s approach and the
problems that arise from it.

Each program graph is overlaid by a complementary demand graph that propagates tokens
representing demands explicitly. A fork in a dataflow graph duplicates a token so that it may be
sent to more than one consumer. In Figure 1.2, which depicts a transformed fork (a fork along
with its demand graph), the program graph “points down” and the demand graph “points up”.
The bow-tie shaped nodes pass along the data tokens (the ones going down) when both the
data and demand tokens arrive. The d-union node is a consuming merge: it forwards the first
token it receives and discards the rest.

Suppose the result of a subexpression is shared, but not all consumers demand the value.

The fork that distributes the value is left with residual tokens — one for each inactive fork arm.

yl=y2=1x input: x outputs: y1, y2 input-demand: x-d output-demands: y1-d, y2-d

vl yl-d y32-d y2 ¥yl y3-d y3
phase 1: phase 2: phase 3: phase 4:
demand arrives demand propagated value arrives value propagated

Figure 1.2: Dynamic Behavior of a Demand-Driven Fork

Figure 1.2 illustrates the fork problem. In Phase 1, a demand arrives for y2 on y2-d. The
demand token is duplicated; one copy waits at the gate on the right, and the other propagates
through the d-union to x-d (Phase 2). Eventually x arrives (Phase 3). The value token is
duplicated; one copy meets its partner at the right hand gate and passes on as y2, and the
other waits at the left hand gate, in case y1-d ever arrives (Phase 4). If y1 is never demanded,
a token remains in the graph. A residual token in a dataflow graph acts like a pointer to the
enclosing procedure invocation frame and prevents it from being reclaimed.

The repercussions of the unclaimed resources are more severe than they may seem at first.
The delaying environment must be maintained until the delayed expression is evaluated. Even

if it is evaluated at some point, the lifetime of the delayed expression may be independent of
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the lifetime of the environment in which it was generated, in which case, the delayed expression
will drag the delaying environment.

This lifetime coupling problem cannot be ignored: if values are always demanded by all
possible consumers, lazy evaluation saves us nothing. Similarly, infinite streams always have

unevaluated tails. By taking a restricted view of lazy evaluation, we can deal with these issues.

1.5.2 Amamiya’s Approach

Amamiya implements lazy data-structures by putting gates at the inputs of the subgraphs to
be delayed [2]. When the slots are demanded, a token is sent back into the graph, allowing the
computation to proceed. Amamiya’s graphs also suspend indefinitely when a delayed slot is
never demanded.

Amamiya also describes a mechanism [3] very similar to the lazy data-structures presented
in this thesis. However, he seems to imply a stronger result. In our system, data structure slots
are evaluated when a value is requested, but not necessarily required. In a lazy system, which
Amamiya is claiming his to be (it appears, although his terminology is confusing), the contents
of a data structure slot can be read and then thrown away without causing the evaluation of
the delayed expression. We stress the importance of the distinction.

Amamiya also indicates that cells used to provide demand synchronization can be allocated
statically and “... be free of the runtime memory allocation ...”, implying static deallocation.
But, this is not statically determinable in general. If we can tell when a delayed expression is

evaluated, we can deduce that it is evaluated, and need not be delayed.

1.6 Overview of Thesis

In the remaining chapters of the thesis, we develop lazy data-structures, a limited form of
lazy evaluation that extends the programming language Id, along with an implementation that
naturally and efficiently employs architectural support. The language will not be as expressive
as a lazy functional language, and we will consider the limitations.

In Chapter 2, we present Id#, Id plus lazy data-structures. We discuss the implementation
in Chapter 3. Chapter 4 presents the programming methodology for using lazy data-structures,
and discusses the expressive power and shortfalls. Chapter 5 concludes with discussions of the

presented system and future work.

29




30




Chapter 2

Id#: A Language with Lazy
Data-Structures

Id# extends Id [37] by introducing lazy data-structures!. Delayed expressions are always asso-
ciated with data structure slots.

Most non-strict functional languages use a lazy evaluation rule as the default, and some
allow the user to specify eager evaluation for certain function arguments. We take a converse
approach, assuming eager evaluation, and allowing the producer of a data structure to indicate
by explicit annotation that certain slots are to be assigned lazily. No annotation is required
when a data structure is consumed; it is transparent to the consumer of a data structure whether
the slot was assigned eagerly or lazily.

In this Chapter we present our approach to lazy evaluation, the syntax and semantics of

our language, and the language-related (abstract) costs and benefits.

2.1 Approach

In Id#, the producer of a data structure can delay the evaluation of the expression that defines
the contents of particular fields of records and the contents of individual slots of arrays. The
consumer of a lazy data-structure does not know if a slot has been delayed, and has no way of
telling if a slot has been delayed. The contents are automatically forced if necessary, and the
computed value is stored for later use.

It is worth discussing what is meant by if necessary. A delayed expression resident in a data

structure slot is evaluated whenever the contents are requested through a fetch, regardless of

'Lazy data-strnctures have already been incorporated into “current Id”. We use “Id” to refer to the language
with no lazy data-structures, and “Id#” to refer to the language cum lazy data-structures.
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whether or not the value is actually thrown away or used in the computation. This point will
be expanded presently by example.

Assignments to individual slots are annotated by the programmer for lazy evaluation, and
all assignments to unmarked slots are evaluated eagerly.

As we have noted, Id is not a functional language. A large subset of Id is functional, though.

The only non-functional construct in Id is the I-structure?

. Note, however, that I-structures
preserve the determinacy of Id. Although we are mostly interested in the functional subset of
Id, we also include I-structures in Id# for completeness. The consequences the non-functional

aspect will be discussed.

2.2 Syntax

There are four types of data structures in Id#: tuples, algebraic types® (including lists), arrays
(these first three types are functional), and I-structures (non-functional). We consider syntax
for creating each of these with lazy components. After discussing algebraic types, but before
discussing arrays, we present two syntactic sugars for producing lists: arithmetic sequences and

list comprehension.

2.2.1 Tuples

An expression in a tupling construct can be preceded by a “#” to indicate that it is to be

delayed. In the following binding, the second and third tuple slots are delayed:
a_tuple = expl, # exp2, # exp3, exp4;

Tuples are accessed by pattern matching, and lazy slots are evaluated when tuples are
destructured. Consider the following definition that contains a let block that returns a three-
tuple. Underscore (“.”) is used in a destructuring pattern as a place holder when the value

associated with a position is to be ignored.

consume_tuple =
{ el1,e2,_,e4 = a_tuple
in
el,e2,e4};

2The term “I-structure” refers both to a language construct and to an implementation level construct. In this
chapter, “I-structure” refers to the language construct, unless otherwise noted.
3Technically, tuples may be considered algebraic types. We separate them for expository purposes.
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e1, o2, and e4 all need values, and, as a result, exp2 is evaluated, while exp3 remains
delayed. Even if 2 did not appear in the return expression or if e2 were not used by the caller

of consume_tuple, exp2 would be evaluated.

2.2.2 Algebraic Types

The other heterogeneous, unsubscripted types are collectively called algebraic types. Cons (the
list constructor) is an example of a built-in algebraic type. Conses are constructed with an infix
“:” By using the “#” annotation, either the head or tail (or both) can be delayed. Consider

the following code:

some_conses =
{cl= expl : exp2;
c2 = exp3 : #exp4;
c3 = #exp5 : exp6;
c4 = #exp7 : #exp8
in
c1,c2,c3,c4);

c1 is a normal cons: both the head and tail are evaluated eagerly. c2 has an eager head
and a lazy tail, and c3 has a lazy head and an eager tail. c4 is a lazy cons: both the head and
tail are evaluated lazily.

Eager and lazy slots of cons cells are accessed uniformly by pattern matching, oblivious

to the method of assignment. When a lazily assigned slot is accessed, the computation is

performed and the value is returned. Consider the following binding;:

consume_conses =
{ c1,c2,c3,c4 = some_conses;
e3:e4 = c2;
- :e6 = c3;
e7:_ = c4
in
e3,e4,e6};

e3, e4, @6, and e7 all need values, and, as a result, exp4 and exp7 are evaluated (even
though e7 is not returned), but exp5 and exp8 remain delayed.
Similarly, user-defined algebraic types can have lazy slots. Expressions in algebraic type

constructors can be preceded by a “#”. In the following code, the foo type is introduced with
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two constructors, Bar and Baz. The call to make_complex_foo, which is destined for the first

slot of a Baz type foo, is delayed. “#” binds less tightly than procedure application.

type foo = Bar | Baz foo N;

Baz (# make_a_complex_foo a b ¢) 17

The first component of the above expression is delayed. This technique is especially useful
for defining recursive data structures. And, once again, algebraic types are accessed using
pattern matching, with delayed slots being forced implicitly on selection.

Since cons is such an important constructor, we introduce special syntax for delaying its
arguments. The “#” that would normally precede the first argument to cons may succeed it as

follows:

same_conses =
{ cil =expl : exp2;
€2 = exp3 :# exp4;
c3 = oxp5 #: exp6;
c4 = oxp7 #:# exp8
in
c1,c2,c3,c4};
This variation allows us to think of four infix cons operators: normal cons (“:”), stream

cons (“:#”, i.e., tail-lazy cons), head-lazy cons (“#:”), and head-lazy stream cons (“#:4”, i.e.,

fully-lazy cons).

2.2.3 Arithmetic Sequences and List Comprehension

Id# has special syntax for generating lists called arithmetic sequences and list comprehension.
Arithmetic sequences (like Miranda’s dotdot notation [44]) are convenient ways of expressing
a range of integers. List comprehension (based on Miranda’s list comprehension [44]) provides
a compact way of specifying more complex lists. Arithmetic sequences and list comprehension

are based on Zermelo-Frankel set notation.

Arithmetic Sequences

Arithmetic sequences are language idioms which denote ascending or descending lists of numbers

with a constant first-difference. Consider the arithmetic sequence for generating the list of
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integers from one to ten, and the arithmetic sequence for generating the list of integers from
ten to one. Each binding is followed by a pseudo-Id expression that gives its meaning (after

the “%="). “§” is Id’s comment character. “:” associates to the right.

typeof one2ten = list N;
one2ten = 1 to 10;
Y=1:2:3: ... : 10 : nil

typeof ten2one = list N;
ten2one = 10 downto |I;
%=10:9:8 : ... : 1 : nil

The “<exp> to <exp> by <exp>” idiom allows arithmetic sequences with a computed first

difference to be specified conveniently.

typeof odds_between_1_and_ 20 = list N;
odds_between_1_and_ 20 = 1 to 20 by 2;
%=1 :3:56: ... :19 : nil

These behaviors can be captured in Id# “library routines” as follows. An “_” is prefixed to

all functions to preclude confusion with any keywords.

typeof _to = N -> N -> (list N);
def _to lo hi =
if 1o > hi then
nil
else
lo : _to (lo+1l) hi;

typeof _to_by = N => N -> N -> (1list N);
def _to_by lo hi step =
if 1o > hi then
nil
else
lo : _to_by (lo+step) hi step;

These facilities existed in Id. Now we extend them to allow us to conveniently express infinite
arithmetic sequences. upfrom <exp> and downfrom <exp> are new idioms that denote infinite
arithmetic sequences of integers, the former ascending, and the latter descending. Consider the

following binding for the integers. “:#” associates to the right.
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typeof ints = list N;
ints = upfrom 1;
%=1 :%# 2 :# 3 :% ...

Both upfrom and downfrom can be used in conjunction with the by keyword to vary the

step size of the sequence. Consider the stream of odd integers:

typeof odds = list N;
odds = upfrom 1 by 2;
%=1 :#3 :#5 :% ...

These behaviors can be expressed in Id#. Each succeeding recursion is buried in the de-
layed tail of a stream cell. Consider the following definitions for _upfrom and for _upfrom by.

Definitions for _.downfrom and for .downfrom.by are similar.

typeof _upfrom = N -> (list N);
def _upfrom n = n :# _upfrom (n+1);

typeof _upfrom_by = N -> N -> (list N);
def _upfrom_by n step = n :# _upfrom_by (n+step) step;

Even though the “by expression” can be variable, it is constant with respect to the sequence;
it is evaluated once, and the value is used repeatedly.

Infinite arithmetic sequences point to a new opportunity, the possibility of performing spec-
ulative computation. Each time we reach “the current end” of an infinite arithmetic sequence,
we can extend it by more than one element. The unwind keyword gives the programmer control
over the amount that the stream expands each time its tail is forced. Consider the following

binding for the integers that expands three slots at a time.

typeof ints_unwind3 = list N;
ints_unwind3 = upfrom 1 unwind 3;
%=1 :2:3 :%#4 :5:6 :% ...

Abstractly, if we are unwinding an infinite arithmetic sequence by three, each time the
delayed tail of the sequence is reached, three elements are produced. By default, arithmetic

sequences unwind by one.

typeof _upfrom_unwind = N -> N -> (list N);
def _upfrom_unwind lo unwind =
{def _upfrom_unwind_ lo count =
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if count == 1 then
lo :# _upfrom_unwind_ (lo+1) unwind
else
lo : _upfrom_unwind_ (lo+1) (count-1);
in
_upfrom_unwind_ lo unwind};
It is possible to apply unwinding to finite arithmetic sequences as well, but there is a
small complication, as the unwinding may not be finished when the list ends. Suppose we are
unwinding a finite arithmetic sequence by three elements at a time. Each time the delayed tail

of the stream is reached, up to three elements are produced. Fewer than three elements are

produced if the list ends, as we see in the following example:

typeof one2four_unwind3 = list N;
one2four_unwind3 = 1 to 4 unwind 3;
%=1 :2 : 3 :# 4 : nil

Unwinding can be used in combination with the by keyword. Id definitions for _to_unwind,
-downto_unwind, -to_by.unwind, etc., are omitted.

All of the previous “library routines” were defined in terms of recursive procedures. When-
ever unwinding is present, a routine can be defined more efficiently using Id#’s looping construct
in conjunction with a data structure called an “open list”. Open lists (similar to Prolog’s “dif-
ference lists” [17]) use I-structures to define a list by successively appending elements to the
“open slot” at the end?. Arithmetic sequences that unwind one element at a time such as

upfrom 1 do not benefit from this opportunity.

List Comprehension

List comprehension is based on Zermelo-Frankel set notation and allows the programmer to
conveniently express lists that are generated by mapping and filtering over other lists.

In a list comprehension, an expression is evaluated in a sequence of binding environments,
and the results are collected in order. A list comprehension begins with “{:”. The following

list comprehension denotes the list of integers from one to ten.

typeof one2ten = list N;
one2ten = {: i || i <- 1 to 10};
%=1 :2:3: ... :10 : nil

*Examples of the use of open lists as well as additional discussion can be found in [6].
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i <- 1 to 10 generates a sequence of binding environments in which i is bound to 1, 2,
..., 10 and is called a generator.
More generally, any expression can be evaluated in the sequence of generated binding envi-
ronments. “:” binds less tightly than procedure application.
{: £1illi<- is}

%= (£ i1) : (£ i2) : (£ 13) : ... : (f in) : nil
%= f£i1 : f£i2 : £i3 : ... : f in : nil

where ij is the jth element of the list is.

Filtering can be accomplished by associating the when or unless keywords with a generator.
The following list comprehension, which assumes the existence of a predicate to test integers
for primality, denotes the list of primes below twenty:

typeof prime? = N -> B;

typeof primes_below_20 = list N;

primes_below_20 = {: i || i <~ 1 to 20 when prime? i};
=2 :3:5: ... :19 : nil

Several generators may be present, in which case the sequence of binding environments is
given by a row major order traversal of the cross product of the generated environments. Each
inner environment can use names defined in an outer scope. The following list comprehension
denotes the lower right triangle of a three-by-three grid:

typeof grid = list (N,N);
grid = {: (4,j) Il i <~ 1 to 3 & j <~ 1 to i};
%= (1,1):(2,1):(2,2):(3,1):(3,2):(3,3) ni

Just as the generation of lists is supported with list comprehension syntax, the generation
of streams is supported with stream comprehension syntax. A stream comprehension begins
with “{:#”, as a stream is a tail-lazy list, and “:#” is tail-lazy cons (stream cons). Consider

the following stream comprehension for the stream of integers from one to ten:

typeof one2ten = list N;
one2ten = {:# i || i <~ 1 to 10};
%=1 :# 2 :#3 :# ... :# 10 :# nil

As in list comprehension, any expression can be evaluated in the sequence of generated

binding environments. “:#” binds less tightly than procedure application.
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{:# £1i]ll i<~ is}
%=f i1l :# £ i2 :# £ i3 :# ... :# f in :# nil

where ij is the jth element of the list is.
As in list comprehension, filtering can be accomplished by associating the when or unless

keywords with a generator. The following stream comprehension denotes the stream of primes

below twenty:

typeof prime? = N -> B;

typeof primes_below_20 = list N;

primes_below_20 = {:# i || i <- 1 to 20 when prime? i};
h=2 :# 3 :#5 :# ... :# 19 :# nil

Stream comprehension offers several opportunities that are not available to list comprehen-
sion. The first new opportunity is the application of program controlled unwinding. Consider

the following definition which maps a function over a stream, and unwinds two elements at a

time:

typeof smapl_unwind2 = (N->N) -> (list N) -> (list N);
def smapl_unwind2 f is = {:# f i unwind 2 || i <- is};
h=f i1 : £ i2 :# f i3 : f i4 :# ... :# f in : nil

By default, a stream comprehension unwinds by one. Suppose we are unwinding a stream
comprehension by three elements at a time. Each time the delayed tail of the stream is reached,
up to three elements are produced. Fewer than three eleinents are produced if the sequence of

binding environments ends, as we see in the following example:

typeof one2four_unwind3 = list N;
one2four_unwind3 = {:# i unwind 3 |] i <- 1 to 4};
%=1 :2: 3 :# 4 : nil

Variable unwinding is also possible:

typeof ints_with_varied_unwinding = list N;
ints_with_varied_unwinding = {:# i unwind i || i <- 1 to 10};
%=1 :#2 :3 :#4 :5:6 :7 :#:8:9:10: nil

Exactly in which binding environment the unwinding expression is evaluated is very impor-

tant, as the value of the “unwind expression” can change. The “unwind expression” is evaluated
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in the first binding environment, and reevaluated each time the stream suspends and resumes.
In other words, the “unwind expression” is evaluated once for each “forced tail”.

A new type of unwinding is also possible. The while and until keywords allow the stream
to unwind while or until a predicate is satisfied. The following stream denotes the integers from

one to ten, and unwinds until it finds a prime element:

typeof prime_unwinder = list N;
prime_unwinder = {:# i until prime? i || i <- 1 to 10};
#=1 : 2 :#3 :#4 :5 :#6 :7 :#:8:9:10 : nil

The expression associated with while or until is evaluated in every binding environment.
The predicate acts as a post-test, i.e., it specifies whether the next element should be produced
eagerly. At least one stream element is produced, regardless of the unwinding controls, unless
the generators run out of binding environments.

Numerical unwinding (using the unwind keyword) and boolean unwinding (using the while
and until keywords) can be combined, in which case the stream suspends if either the unwind
count dips below one, or the boolean test indicates that a suspension is in order.

A list comprehension can be viewed as a stream comprehension with infinite unwinding.
Conversely, a stream comprehension can end up producing a data structure of finite length, as
does a list comprehension.

The most interesting new opportunity still remains: a stream comprehension can have
infinite generators. Consider the following stream comprehension for the squares of the integers,

which lias an infinite arithmetic sequence as a generator:

typeof squares = list N;
squares = {:# i“2 || i <- upfrom 1};
%=1 % 4 :#9 % .

We could enumerate the first octant (the grid points with integer coordinates in the first

quadrant, above and including the z-axis and below the 45° line) as follows:

typeof octantl = list (N,N);
octantl = {:# (x,y) |l x <- upfrom 1 & y <- 0 to x-1};
%= (1,0) :# (2,0) :# (2,1) :& ...

Me might try naively to enumerate the first quadrant similarly:
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typeof quadrantl = list (N,N);
quadrant! = {:# (x,y) || x <- upfrom 1 & y <- upfrom O};

h= 777

Diagonalization (i.e., fairly producing the cross-product) is not automatic. The stream
quadranti will climb the grid along the vertical line z = 1, and never enumerate any other

points.
quadranti = (1,0) :# (1,1) :# (1,2) :# (1,3) :#% ...

Conversely, Miranda provides an idiom for automatic diagonalization. In Miranda, brackets

(“[” and “]7) set off lists, and two dots (“..”) indicate an integer range.

quadrantl = [(x,y) // x<-[1..]; y<-[0..]1]
..= [(1’0)’(1’1)’(2’0)’(1’2)’(2’1),(3.0)’ .. ]

Miranda

In the following example, the unwind expression is variable:

typeof octantl_a_column_at_a_time = list (N,N);
octantl_a_column_at_a_time =
{:# (x,y) unwind x || x <- upfrom 1 & y <- 0 to x};

Each time we consume a vertical column of the triangle, the next column is computed
eagerly. The unwinding facility is thus a tool for speculative computation.

Two more variants of list comprehension are of interest: head-lazy list comprehension,
and head-lazy stream comprehension, corresponding to the the following analogy: “:7”:“#:”

“:#7:“#:4”. Put another way, head-lazy list comprehension is the head-lazy version of
list comprehension, and head-lazy stream comprehension is the head-lazy version of stream
comprehension. Head-lazy lists are built with cons cells with the head being evaluated lazily
and tail being evaluated eagerly. Head-lazy streams are built with cons cells with both the head
and tail being evaluated lazily.

A head-lazy list is a list where the spine (skeleton) of the list is expanded eagerly, but
the elements are only computed on demand. The head-lazy list comprehension, like the list
comprehension with the initial “:” being replaced by “#:”, is a convenient way to express
head-lazy lists. In the following code, the spine is expanded immediately, but the function £ is

not applied to any elements until they are requested by a consumer:
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{#: £f x|l x <- 1 to 10}
Y=f 1 #: £ 2 #: ... #%: £ 10 #: nil

Suppose the function fis very expensive to compute; the list produced is short; we only need
some list elements; but we cannot tell in advance which elements are needed. The head-lazy
list comprehension is designed for this scenario, the “expensive slots” programming paradigm.

A head-lazy stream is one in which both the elements and the spine are expanded on demand.
The head-lazy stream comprehension, like the stream comprehension with the initial “: #” being
replaced by “#:#”, is a convenient way to express head-lazy streams. In the following code, the
head-lazy stream is lazy in the head and tail. The function f is not applied to any elements

that are not needed, and the tail expands on demand.

{#:# £ x || x <- upfrom 1}
b= f 1 #:% f 2 #:8 1 3 #:% ...

Suppose the function f is very expensive to compute; we need only a fraction of some finite
prefix of the elements; but we cannot tell in advance which elements are needed. The head-lazy
stream comprehension is designed for this scenario, which combines the “expensive slots” and
“infinite structures” programming paradigms.

The properties of lists (streams) produced by any of these varieties of list comprehension
are determined by the type of the constructor, not by the type of an embedded generator. A
list (as opposed to a stream) with an infinite generator will diverge, as we see in the following

example:

typeof diverge = list N;
diverge = {: x || x <~ upfrom 1};
%=1 :2:3:

All the facilities described in this section can be mixed and matched. As comprehension
is syntactic sugar, all combinations can be expressed directly in Id. This is most easily done
in terms of recursive procedures, but, as we indicated at the end of the previous section, more
efficient techniques are available. Streams with unwinding as well as streams with filters (when
and unless) are prime candidates for loop-style implementations. Unwinding can proceed
eagerly until it is time to suspend. If an environment is discarded by a filter, the next one can

be generated eagerly. An array of optimizations are possible, and a few are described in the

remainder of this section.




If a generator is an arithmetic sequence, no intermediate stream need be generated. The
state of the environment can be passed directly from one recursion (iteration) to the next. This
is especially important when generating cross products, and many streams can be avoided.

Lists that are passed in (a <~ as) and finite generators require a test for the end. Some
generators, however, are known to be infinite, and an end test can be avoided.

Arithmetic sequences and list comprehension provide support mainly for the “progiamming
with infinite data-structures structures” paradigm. The next two section, on arrays and I-

structures address the “programming with expensive slots” paradigm.

2.2.4 Arrays

In Id#, an array is functional indexed data-structure. Each slot of an array may be assigned
at most once, and arrays can be constructed with lazy slots.

Arrays are produced using array comprehension. An array comprehension declares the
bounds of the array and has clauses that specify the elements for regions of the array. Both
the index expression and the actual expression are evaluated in the specified sequence of bind-
ing environments. In the following array comprehension, the array is filled with integers in

descending order:

typeof al = array N;
a = {array (1,n) | [i] = n-i+1 || i <- 1 to n}

The index expression can also be non-trivial. The following array comprehension produces

an array identical to the preceding one: -

typeof a2 = array N;
a2 = {array (1,n) | [n-i+1] =i || i <- 1 to n}

Several clauses can be given to fill several regions. The procedure identity.matrix uses

array comprehension to produce the identity matrix of size n by n:

typeof identity_matrix = N -> (I_matrix N);
def identity_matrix n =
{matrix ((1,n),(1,n))
| [i,j71 =0 Il i<-1ton-1& j < i+l ton % above the diagonal
} [i,i] =1 || i <- 1 ton % the diagonal
l [i,jl] =011l i<-2ton & j<-1to i-1}; ¥ below the diagonal
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To have a lazy slot, “#” replaces “=" as follows:

typeof edge = N -> N;
typeof middle = N -> N;
typeof an_array = N -> (array N);
def an_array n =
{ array (1,n)
| [1] = edge 1
| [i] # middle i || i <- 2 to n-1
| [n] # edge n };

Slot 1 is assigned eagerly, and the rest of the slots are computed only after being selected

by an array selection operation.

typeof consume_array = N -> N -> N;
def consume_array n i =

{ a = an_array n

in

alil};

2.2.5 I-structures

I-structures, as we have noted, are non-functional data structures. They are indexed and may
have distributed definitions. Each slot of an I-structure may be assigned at most once. I-
structure slots behave something like Prolog’s “logic variables”[4]. I-structures, like all data
structures in Id, can be constructed with lazy slots.

I-structures can be created in one place and filled in any number of places, very much like
Fortran arrays. I-structures slots are assigned lazily by, once again, replacing the “=" by “#”,
an_I_structure has a for loop that is run purely for side effect>. Note how the loop index i is

enerated from an arithmetic sequence in the “comprehension style”.
g q P y

typeof an_I_structure = N -> (I_array N);
def an_I_structure n =
{ a = I_array (1,n);
af1] = edge 1;
{ for i <- 2 to n-3 do a[i] # middle i};
aln] # edge n
in

a};

5Id# loops can also return a result.
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Slot 1 is assigned eagerly, slots 2 through n-3 and the last slot are assigned lazily, and slots
n-2 and n-1 are left unassigned. The contents of the delayed slots are computed only after
being selected by an I-structure selection operation. In the following code, slots n-2 and n-1
are filled in, the former, eagerly, and the latter, lazily. Then a slot is selected, which may or
may not cause a delayed expression to be evaluated, depending on whether or not the selected
slot was assigned lazily or eagerly. The let expression in consume_I_structure contains one

binding, and two I-structure assignments.

typeof consume_I_structure = N -> N -> N;
def consume_J_structure n i =
{ a = an_I_structure n;
a[n-2] = middle (n-2);
al{n-1] # middle (n-1)
in

alil};

2.3 Operational Semantics

A small extension to the rewrite rules found in [9] allows us to capture the operational semantics
of our new constructs. Rewrite rules are described in a two column format. The left column
corresponds to an expressions and its binding environment (listed below the expression), and
the right side is the rewritten expression along with its bindings. The expression may change
as may the bindings, and new bindings may be introduced.

expression = expression’
bindingl ; ... ; bindingn bindingl ; ; ... ; bindingm

The rewrite rules given in [9] are context sensitive. For example, a sub-expression may
not be evaluated “within the Then or Else arms of a conditional expression”. The rewrite
rules may not look inside certain expressions, and we make this behavior explicit by enclosing
any opaque ezpressions in double quotes (“"”). When a conditional is first written down, the
consequent and alternate clauses are surrounded by quotes and are opaque. After the boolean
value is determined, the conditional is contracted, the quotes are removed, and the rules are
allowed to perform reductions within the previously protected expression. A conditional is
rewritten as follows:

(If true Then "E1" Else "E2") = (E1)
Bl ; ... ; Bn Bi; ... ; Bn
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We only need one rewrite rule to support all of our constructs. First, we note that all
expressions preceded by a “#” start off as opaque (enclosed in double quotes). Wherever an
identifier is selected as a redex, if it is bound to an opaque expression the quotes are removed.

An identifier may not be taken as a redex if it is within an opaque expression, or in a data

structure.
X - X
Bl ; ... ; Bnh ; X = "E1* Bl1 ;... ; Bh ; X = E1

This rule applies to conses, tuples, algebraic types, arrays, and I-structures.
Consider the following definition:
typeof ints_from = N -> (list N);
def ints_from n = n : #ints_from (n+1);
As an example rewrite sequence, consider the evaluation of an expression. We begin with
a query for the second element of a stream and an empty environment. Expressions that are
underlined are about to be rewritten.
hd (tl (ints_from 1))
<no bindings>
The application of ints_from is expanded, introducing formal parameter n1. A binding for

ni appears in the binding list. Note the opaque expression: we substitute for the exposed nt,

but the n1 buried in the opaque expression may not be rewritten.

=>

hd (t1 (nl : "iuts_from (ni+1)"))
nl =1

¢ .

hd (t1 (1 : "ints_from (n1+1)"))
nl = 1;

Apply the cons, introducing new names for the parts.

=

hd (tl <cons x001 x002>)
nl = 1; x001 = 1; x002 = "ints_from (ni+1)"

Apply the tail function.

=
hd x002
nl = 1; x001 = 1; x002 = "ints_from (ni+i)"
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Use the new rule to expose the opaque expression.

=
hd x002

nt = 1; x001 = 1; x002 =

ints_from (ni+1)

Apply ints_from again, introducing formal parameter n2 and another opaque expression.

=
hd x002
nl = 1; x001

=
hd x002
ni = 1; x001

=
hd x002
nl = 1; x001

1; x002

1; x002

1; x002

Substitute for the exposed n2.

be rewritten.

=
hd x002

nli = 1; x001 = 1; x002 =

= n2 : "ints_from (n2+1)"; n2 = pni+l
=n2 : "ints_from (n2+1)"; n2 = 1+1
= n2 : "ints_from (n2+1i)"; n2 = 2

As before, the n2 buried in the opaque expression may not

2 : "ints_from (n2+1)"; n2 =

Applying another cons operator, we introduce two more new names.

=
hd x002
nli = 1; x001 = 1; x002 = <cons x003 x004>; n2 = 2;
x003 = 2; x004 = "ints_from (n2+1)"

Lookup x002 in the environment.
=
hd <cons x003 x004>
nl = 1; x001 = 1; x002 = <cons x003 x004>; n2 = 2;
x003 = 2; x004 = "ints_from (n2+i)"

Apply the head function.
=
x003
nl = 1; x001 = 1; x002 = <cons x003 x004>; n2 = 2;
x003 = 2; x004 = "ints_from (n2+1)"
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Finally, lookup x003 in the environment.

=

2

nl = 1; x001 = 1; x002 = <cons x003 x004>; n2 = 2;
x003 = 2; x004 = "ints_from (n2+1)"

Although there are slight variations on the reduction order for the above example, there are
no essential differences from the preceding reduction order.

Removing the quotes and exposing an opaque expression is analogous to enabling the eval-
uation of a delayed expression. According to our new rewrite rule, a delayed expression is
evaluated at most once, as soon as its value is needed.

Arithmetic sequences and stream comprehension are syntactic sugars and are thus defined

within the language. They need no special treatment here.

2.4 Abstract Costs and Benefits

There are several abstract costs to our approach. The first is expressive clarity., What are
the repercussions of sprinkling our programs with hash marks? Can annotated programs be
understood clearly and intuitively? Next is expressive power. Can we code all the programs we
would like in a straightforward manner? This is an obvious question, since we cannot express all
the programs that can be expressed in a lazy functional language. We consider these potential
problems in detail in Chapter 4.

Are there advantages to explicit annotations? Laziness is expensive, and annotations prevent
us from ignoring the expense by sweeping it under the rug.

The first and foremost advantage of our approach is the fact that it adds a power to the
language that it did not formerly possess. We can now express infinite data-structures and data

structures with expensive slots directly.

2.5 Summary

This chapter extends Id to incorporate lazy data-structures. When constructing any data
structure in Id#, the expression destined for any slot may be annotated with a “#” to indicate

that the evaluation of an expression should be delayed until a consumer requests the value of the
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slot. Using lazy data-structures, we can write programs using both the infinite data-structures
programming paradigm and the data structures with expensive slots programming paradigm.
Arithmetic sequences and stream comprehension provide special syntax for stream program-

ming. Explicit control over unwinding allows the programmer to express speculative computa-

tion.
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Chapter 3

Implementation of Id#

In order to implement the language extensions described in the previous chapter, support
is required both in compiler and architecture. In this chapter we describe our approach to
implementation, support from the architecture, compilation techniques, and the concrete costs

and benefits of our approach.

3.1 Approach

The compiler generates dataflow graphs to build thunks which embed the delayed expressions,
and the architecture provides synchronization for triggering the delayed expressions and read-
ing the results. We have already presented the language extensions, i.e., the system at the
highest level. Now we present the support structure from the bottom up. First, we p._sent the
architectural extensions that provide the necessary hardware support. Then, we present the

compiler extensions needed to reduce our language to architectural primitives.

3.2 Architectural Extensions

Several architectural extensions are needed to support lazy data-structures. First, we extend
I-structures® [10, 23] to L-structures (lazy structures), which provide the synchronization re-
quired to support lazy data-structures. Next, we provide support for suicide procs, procedures
embedding delayed expressions that are invoked by the memory system rather than by an ex-
plicit procedure call. And finally, we introduce a new manager (dataflow run-time system call)

to invoke suicide procs.

1Unless otherwise noted, in this chapter the term “I-structure” refers to the an implementation mechanism,
not a language construct.
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3.2.1 L-structures

Tuples, algebraic types, I-structures (the language “I-structure”), and arrays will all be imple-
mented using L-structures. An L-structure is like an array in any programming language, but
each slot has synchronization built into it. L-structures are a variation on I-structures [9]. We
begin our development of L-structures by first presenting I-structures.

Each slot of an I-structure has status bits associated with it. If a consumer arrives before
the producer, the fetch is remembered locally by the I-structure slot in a list until the value is
stored. The state of the slot is recorded by the status bits. Figure 3.1 is the state transition
diagram for an individual I-structure slot (as opposed to the entire I-structure). Activity caused

by a transition is indicated after the slash.

fetch/start
deferred list

fetch/push ‘

deferred list

deferred

I-array

store/send data

fetch/send data
Figure 3.1: State Transition Diagram for an I-structure Slot

There are three operations on I-structures, as we have seen in Figure 3.1. I-array takes an
integer argument and returns an empty I-structure of corresponding size. store places data in
an empty slot, satisfying any deferred fetches. fetch returns the data if it is present; otherwise,

it registers a deferred fetch. These operations are summarized in Table 3.1.

I-array size = <I-structure-address>
store <I-structure-address> value = <acknowledgment>
fetch <I-structure-address> destination = value

Table 3.1: I-structure Operations

Two paths through the state transition diagram are possible. Both paths are demonstrated
in parallel in the following simulation:

Simulation Step 1: Allocate x, an I-structure of size two. Both slots start in the empty
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state. The state of each slot appears below the data.

X

x = I-array 2 >

Figure 3.2: Simulation Step 1: Allocate an I-structure of Size Two

empty empty

Simulation Step 2: Simultaneously store the number 5 in the first slot x(0] (I-structures
are zero-indexed) and fetch the contents of x{1] for reader r1. x[0] enters the present state
as it now holds valid data, and x[1] enters the deferred state and contains a pointer to the
deferred fetch list containing r1 (the slash in the right half of the deferred fetch list indicates
the end of the list).

X

store 5 in x[0] 5 ./‘
rl
fetch x[1] for ri T/

present | deferred

Figure 3.3: Simulation Step 2: store in x[0], fetch from x[1]

Simulation Step 3: fetch the contents of x[0] for reader r2 and fetch the contents of
x[1] for r3. Since x[0] has valid data, r2 is sent the stored value 5. Since x[1] has already
been deferred (no data), r3 is pushed onto the deferred fetch list for x[1].

X

fetch x[0] for r2 5 ./
r3 G-—DITI

fetch x[1] for r3

present | deferred

<send 5 to r2>

Figure 3.4: Simulation Step 3: fetch from x[0], fetch from x[1]

Simulation Step 4: store the value 10 in x[1]. x[1] makes the transition to the present
state as the deferred fetches are satisfied by sending the value to r3 and ri.

The two slot I-structure we have been modeling could have been a 2-tuple, a cons cell, an
[-structure of size two (the language “I-structure”), or a variety of other data structures. All

data structures look the same at this level: in Id, all data structures are implemented using
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store 10 in x[1] 5 10 <send 10 to 3>

present present <send 10 to ri>

Figure 3.5: Simulation Step 4: store in x[1]

I-structures, which provide the low-level synchronizaiion needed to support producer/consumer
synchronization in a multiprocessor.

Now we introduce L-structures to provide a substrate for implementing lazy data-structures.
L-structures provide support for producer/consumer synchronization and, additionally, for ex-
plicitly delaying and implicitly evaluating the contents of individual slots.

I-structures synchronize readers and writers; readers are stalled until the value is written.
L-structures also synchronize readers and writers, and, in addition, they synchronize the eval-
uation of delayed expressions. Evaluation is stalled until there is a reader (a request for the
value), and readers are stalled until the value arrives.

L-structures have four memory operations: L-array, store-thunk, store-data, and fetch.
L-array takes an integer argument and returns an empty L-structure of corresponding size;
store-thunk places a thunk in an empty slot; fetch ejects any thunk that is present, causing
the thunk to be evaluated, and registers a deferred fetch; and store-data places data in a slot,

satisfying any deferred fetches. L-structure operations are summarized in Table 3.2.

L-array size = <L-structure-address>
store-thunk <L-structure-address> thunk = <acknowledgment>

store-data <L-structure-address> value => <acknowledgment>
fetch <L-structure-address> destination = value

Table 3.2: L-structure Operations

When used to delay computation, an L-structure slot is “written twice”: first with the
thunk, then with the value the thunk computes. We add the delayed and evaluating states
to the I-structure state transition diagram to achieve lazy behavior, as shown in Figure 3.6.
Figure 3.6 is the state transition diagram for each slot of an L-structure.

Five “memory snapshots” of a single slot of an L-structure corresponding to the five states

of Figure 3.6 are arranged in Figure 3.7. The state of the slot appears in the lower box, and the
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fetch/start
deferred list,

store-thunk eject thunk
to manager
delayed

store-thunk/

fetch/start eject thunk
deferred list deferred to manager evaluating
eferre thunk
fetch/push ‘
defer{ed list store-data/send data fetch/push

deferred list

store-data/

store-data send data

fetch/
send data

Figure 3.6: State Transition Diagram for an L-structure Slot

data can be found in the upper box. The slot starts in the empty state (on the left). Suppose a
store-thunk operation is the first to arrive. The thunk (delayed expression and environment)
is stored in the slot as shown at the top. Note the pointer from the thunk back to the delayed

slot. When a fetch operation arrives, the delayed expression is spawned (by magic, for now).

The star-burst at the lower right represents the spawned process. The fetch is put on a deferred
fetch list, along with any other fetches that arrive. r1 and r2 represent readers of the slot that
have been deferred. Eventually, the spawned computation will finish evaluating the delayed
expression and issue a store-data for this slot. The value of the previously delayed expression
is stored, and deferred fetches are satisfied.

Suppose a fetch reaches the slot first. The status of the delayed slot starts in the empty
state, moves to the deferred state, where more fetches may be queued, to the evaluating state,
where the delayed expression is spawned, and down to the present state, where the value of the
previously delayed expression sits, awaiting other readers.

L-structure operations are a superset of (and consistent with) I-structure operations. Corre-
spondingly, the L-structure transition diagram embeds the I-structure transition diagram, and
as a result, I-structure behavior can also be achieved in an L-structure.

There are two remaining paths through the snapshots which correspond to I-structure be-
havior (no delayed computation, just producer/consumer synchronization). If a fetch arrives

before the store-data, the status of the slot moves from the empty state to the deferred state




delayed
expression
*r— —) pa.n 1
store-thunk environment
delayed
fetch
deferred fetch list deferred fetch list
12| N r1 r2| o4 r1
fetch
\. store-thunk ’. \.
: fetch
empty deferred evaluating
store-
fetch data
store- \ /
data
\ 4 ~— & proces
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store-data data expresion
value
present

fetch
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Figure 3.7: State Transition Memory Snapshots

56




where more readers may be deferred, and down to the present state when the data arrives on
a store-data operation. If the store-data precedes any fetches, the status of the slot simply
moves from the empty state to the present state, where the data waits for any readers.

In Id#, tuples, algebraic types, arrays, and I-structures (the language “I-structure”) can all
be implemented using L-structures.

Minimal changes are needed in the TTDA’s I-Structure Memory Controller [23] to ac-
complish the desired new behavior on the TTDA. Also, this behavior is simple to achieve on

Monsoon [38].

3.2.2 Thunks

A thunk embeds the delayed expression and its environment. The delayed expression is embed-
ded (at compile time) in a dataflow graph that fetches its free variables from the environment
and stores the result in the slot containing the thunk. This dataflow graph (along with the
dataflow graph to compute the delayed expression itself) is known as a suicide proc. When
a slot containing a thunk is read, the memory system sends the thunk to a thunk invocation
manager, which invokes the suicide proc.

The detailed structure a thunk is presented in Section 3.3.1.

3.2.3 Suicide Procs

Normally, parent and child procedures must communicate to pass arguments and to return
results. Delayed expressions, however, are passed their arguments implicitly, and store the
result themselves. Thus, the processing of a delayed expression needs no direct linkage with
either the process that created it or the processes that are consuming its result. A new procedure
call/return mechanism to support this behavior is developed. Procedures that are invoked using
this new mechanism are called suicide procs.

A suicide proc is invoked by the thunk invocation manager, not by an explicit procedure
call. A potential problem, however, is that a thunk generates an independent thread, i.e., a
procedure without a parent. This may affect the policy for resource allocation. Currently,
running a procedure unfolds into a single execution tree. Once we start spawning processes,
there will be an execution forest, and trees will have independent lifetimes. It is likely, however,
that the run-time system will deal with this complexity for other reasons. For example, the

storage manager and other run-time systems will run independently.
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The detailed structure a suicide proc is presented in Section 3.3.2.

3.2.4 The Thunk Invocation Manager

In a dataflow system, a globally defined set of routines known as managers form the run-time
system [8]. We need a new manager for spawning suicide procs, the thunk invocation manager,
similar to the manager for invoking procedures. In our system, this manager would work as
follows.

The thunk invocation manager is passed a thunk. The thunk contains a pointer to a suicide
proc, which the thunk invocation manager manager must fetch. The thunk invocation manager
must also acquire a new invocation frame for the suicide proc, and send the thunk to the suicide
proc. The suicide proc can then read the free variables from the thunk, compute the expression,
and store the result back into the delayed slot. Since the suicide proc will deallocate its own

invocation frame, no thunk termination manager is needed.

3.3 Compilation Techniques

This section concentrates on the details of compiling lazy data-structures. The detailed struc-
ture of a thunk is presented as well as the dataflow graph required to build it. The structure

of a suicide proc, the dataflow graph embedding the delayed expression, is also presented.

3.3.1 Thunks

In this section, we make the following conventions:

e is the delayed expression
e Vi, ... , Vn are the free variables of e

¢ Se is the suicide proc that embeds e

result-address is a pointer to the delayed slot

A thunk contains a pointer to its suicide proc (Se, which embeds delayed expression e), the
result-address, and the values of all the free variables (V1, ... , Vn) of the delayed expression,

as shown in Figure 3.8.
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delayed slot thunk

1 d

suicide proc

result-address

Figure 3.8: A Delayed Slot and its Thunk

At this point we are ready to look at our first dataflow graph. In our figures, every dataflow
graph node is labeled with the type of operation executed by the node (in the larger box)
and an instruction number (in the smaller box). Immediate constants associated with nodes
are written in irregular pentagons above the nodes. Data paths correspond to arcs; inputs
correspond to arcs with dangling tails; and outputs correspond to arcs with dangling heads.

The dataflow graph to build a thunk is shown in Figure 3.9. The nodes are numbered z to
z+ 2n + 5; a total of 2n + 6 operations are required to construct a thunk corresponding to a
delayed expression that has n free variables. The numbering does not start at zero to remind

us that this dataflow graph is part of a larger dataflow graph.

trigger
result LH 4_’
<address Farray Vi

, D
Bl vovds

store form-address form-address form-address form-address
thunk ' store-data store-data store-data |eee| store-data
z+1: £4+2:; g+3: s+4: s+n+3:
o o+
s+n+4:
33
through n+3 input
5+2n+5: signal
tree

+ gignal

Figure 3.9: The Dataflow Graph to Build a Thunk
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Node z (the node labeled z) allocates the thunk as soon as a trigger is arrives. (Almost any
token could be used for a trigger. The result-address could be used, for example.) The thunk is
sent to node z + 1 which stores the thunk in the lazy slot (at result-address). The thunk is also
sent to nodes z + 2 through 2 + n + 3 which store data at various offsets in the thunk. Node
2+ 2 stores the result address in the thunk at offset zero. form-address store-data is similar
to store-data, but it accepts accepts structure pointer, offset, and value as inputs instead of
an address and a value. An address (like the result-address) can be computed from a structure-
pointer and an offset. z + 3 stores a link to the suicide proc Se in the thunk at offset one. The
right constant input to node z + 3 (the link to Se) will ultimately get patched at load time to
have the proper value. Nodes z 4+ 4 through z + n + 3 store the free variables of e at offsets two
through n + 1 respectively. All store nodes produce a termination signal (n + 3 altogether)
which are combined into a single signal by the signal tree. In the TTDA, signal trees are built
with binary nodes, so the signal tree in Figure 3.9 would require (n + 3) — 1 = n + 2 nodes.
Monsoon is likely to support higher fan-in for signalling, so fewer nodes would be required.

Note that the thunk is stored at the result-address (node z + 1) in parallel with the free
variables being stored (nodes z + 4 through z + n + 3). So if the thunk were spawned (which
could not happen before the link to Se were in place: node z +3 fires) because someone issued a
fetch at the result-address (which could not happen before the thunk were in place: node z + 1
fires), the suicide proc could begin executing before all the free variables are in place. In fact,
some free variables may not yet be computed.

The values of the free variables of the delayed expression, the result-address, and a trigger
are the inputs to the graph fragment, and the termination signal is the output. A copy of this
dataflow graph schema appears each time a slot of a data structure is assigned lazily. Since the
number of free variables depends on the expression being delayed, the size of the graph varies.

Some approaches to storage management insist that locatives (addresses of interior structure
words) such as the result-address not exist unless a full-fledged pointer to the object exists, and
some exclude locatives entirely. Both of these restrictions can be accommodated by expanding
the thunk with an additional slot, and storing the pointer to the L-structure and the offset of

the delayed slot instead of just storing the result-address.
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3.3.2 Suicide Procs

A suicide proc has a single entry point (standard Id procedures have additional entry points
which receive arguments). The thunk invocation manager sends the thunk to the suicide procs
entry point which is located at a fixed offset in the code for the suicide proc.

The suicide proc unpacks the free variables of the delayed expression as well as the result
address. The delayed expression can now proceed normally. When the delayed expression
produces a result, the result is stored at the return address, back in the previously delayed slot.
After the result is stored and all activity associated with the delayed expression has completed,
the suicide proc deallocates its invocation frame and terminates.

The schema for suicide procs is given in Figure 3.10.

0: | identity

/L

COicH

1: | form-address 2: | form-address | ® ® ® |n+1:| form-address

fetch fetch fetch
result Vi Vn
e —j eee F__
n+5: dataflow
AN
77 expression
+ ¢result signal
242 gtore-data

v
n+3: gate A—J

v

n+4: return
current
invocation
frame

Figure 3.10: Schema for a Suicide Proc

The dataflow graph in Figure 3.10 is numbered from zero to indicate that a suicide proc is
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not embedded in any larger graph. n + 5 nodes are drawn explicitly, and the rest belong to the
delayed expression.

Node zero is the entry point for a suicide proc and must ultimately be stored at a fixed offset
in the assembled code. Node zero, an identity, receives the thunk and distributes it to nodes
one through n+1. Like the form-address store-data nodes in the dataflow graph that loaded
the thunk with values (Figure 3.9), the form-address fetch nodes retrieve the data stored at
the indicated offset in the thunk. Node one fetches the result-address from thunk offset zero.
Nodes two through n + 1 fetch the values of the free variables V1 through Vn respectively, and
deliver them to the graph for the expression that was delayed. The expression graph is embedded
directly in the suicide proc (i.e., no additional procedure calls are necessary). The graph for
the embedded expression eventually produces a result and (optionally) a termination signal.
The result is sent to node n + 2, where the return address is also sent. Node n + 2 stores the
result at the result-address placing a value in the previously delayed slot. Node n + 2 produces
a termination signal which is combined with the signal generated by the embedded expression
(it it generated one) by node n + 3 (a gate, which was drawn as a bow-tie in Section 1.5.1).
A gate node passes on its “top” input when both the “top” and “side” inputs are received.
When node » + 3 produces a token, it is guaranteed to be the only remairing token associated
with the suicide prod invocation. Node n + 4 consumes this token as it deallocates the current

invocation frame.

3.4 Concrete Costs and Benefits

There are two sets of concrete costs to our approach. First are the additional hardware costs,
which, as we have seen, are minimal. Two additional states are required for the structure
transition diagram. Next is the cost of our thunk mechanism as measured in machine operations.
We will consider this cost in greater detail.

In traditional lazy interpreters, we can attribute a cost to each of the following:
1. creating a thunk

2. testing if a thunk has been evaluated

3. evaluating a thunk

4. reading the value
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Our hardware support allows for substantial savings. Creating a thunk, evaluating a thunk,
and reading a value are done in the usual way. But testing to see if a thunk has been evaluated
is better than free; it is implicit. That means that users spend no time or code space in testing
or invoking a thunk. The first read of a delayed slot implicitly spawns the corresponding
suicide proc, and all successive reads behave in the usual fashion. Conventional systems require
repeated checking to see if the thunk has been forced. Furthermore, we can traverse streams
exactly like lists, as long as we don’t traverse the spine eagerly looking for the end.

The power of our integrated mechanism should not be underestimated. Consider two stan-
dard ways of building streams without hardware support. The delayed cell might be explicit,
in which case the consumer must make two references each time the stream is walked one step.
This technique is pictured abstractly in Figure 3.11, which represents the stream of integers from
one, with the first three cell evaluated. The cons cells and the delayed cells alternate. Even if
the delayed cell is traversed implicitly, it must be traversed. Concert [22] has hardware support
to traverse futures (i.e., delayed cells) implicitly, and the garbage collector collapses evaluated
futures. Without implicit traversal of the delay (including implicit forcing) a consumer cannot

treat this structure as a list.

cons cell cons cell cons cell
IR R OCECR DGR CE Ak,

previously reviously currently
delayed elayed delayed
cell cell cell

Figure 3.11: A Stream with Explicit Delay Cells

Another possibility is that a flag can be embedded in the stream cell itself. This can be
accomplished by expanding the stream cell to a triple. This technique is pictured abstractly in
Figure 3.12, which represents the stream of integers from one, with the first three cell evaluated.
Unfortunately, we end up with a new the structure is fundamentally different from a list. This
technique does not extend easily to other data structures.

In both of these alternatives, primitives for synchronization must be provided, unless the

mechanism is implicit.
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Figure 3.12: A Stream with “Special Stream-Cons” Cells

3.4.1 In-Thunk Substitution

Id provides a facility for the inline substitution of procedures, allowing programs to use proce-
dural abstraction at no cost, simultaneously trading execution time for program-store space. A
programmer may use the defsubst keyword in place of the def keyword in defining a proce-
dure. Whether or not a procedure is substituted inline or not makes no difference to program
behavior; the procedure call version and the inline version have identical semantics. In Id, pro-
cedures are declared inlineable at the point of definition. It is also possible to make this decision
at the point of call. This possibility is particularly interesting when considered in conjunction
with our lazy data-structure mechanism.

A programmer declares a definition inlineable by using the defsubst keyword. In this way,
a single annotation corresponds to a potentially large number of procedure calls. Note that
tlie defsubst annotation is not a directive to inline a procedure, but merely a permission or
a suggestion. Consequently, recursive definitions can be marked defsubst-able without fear of
the compiler’s diverging. A recursive defsubst cannot be substituted repeatedly until steady
state is reached as an infinite chain of ever larger procedures would be generated. Now let us
consider the relationship of inlining to thunks.

Consider the process of extending the tail of a recursively defined stream, say the integers,
as defined using ints_from. Each time the stream is extended, there is a thunk evaluation, as
well as a call to ints_from. There is a mutual recursion between ints_from, a user-defined
procedure, and the suicide proc, created by the compiler, but there is only one suspension for
each cycle. The natural breaking point is at the suicide proc, for that is where the computation
is suspended. By substituting ints_from into the suicide proc code block, argument packing and
unpacking as well as a manager call to allocate an invocation frame can be avoided. ints_from
sets up the stream, and from there on the recursion is from suicide proc to suicide proc. Consider

the following definitions of ints and ints_from:
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typeof ints_from = N -> (list N);
def ints_from n = n:#ints_from (n+1);

typeof ints = list N;
ints = ints_from 1;

Each call to ints_from builds a thunk. When the thunk is spawned, all it does is call
ints_from and do some bookkeeping. That call to ints_from builds another thunk, with a
pointer to the same suicide proc as had the last thunk. All the calls to ints_from after the
first can be substituted inline.

We are inlining a procedure captured by a suicide proc. Alternatively, we are shifting a
procedural recursion broken by a suicide proc, into a suicide proc recursion. We can think of
this as unrolling the top half of the first iteration of a loop, and grouping the bottom half of
each iteration with the top half of the next.

This shifting of the procedure boundary greatly decreases the marginal cost of delaying
expressions. Infinite data-structures must be defined with some sort of recursion, and we
can replace the procedural recursion by suicide proc recursion, which is slightly more expensive
than procedure recursion, as it must access memory to pass arguments (building and unpacking

thunks), but cheaper than both suicide proc recursion and procedure recursion.

3.4.2 Unwinding

The unwinding facility allows the programmer to perform certain kinds of speculative compu-
tation. Suspensions are not free, and unwinding allows the programmer to trade suspensions
for the possibility of extra work. Consider a system that supports persistent objects. When
reconstituting an object (bringing it into the name-space) the entire object need not be recon-
stituted at once. If the object were a long list, for example, the system might reconstitute as

much as fit on one page of memory, and delay recorstituting the rest.

3.4.3 Fetch Elimination

In Id, if a data structure slot were fetched and discarded, the fetch would be discarded by the
compiler as well as dead code. Why read a value if it won’t be used? Now, reading a value
can cause a delayed expression to be evaluated. Can we still eliminate lone fetches? After all,

it is not possible for a consumer (the reader) to tell if the slot was delayed, in general. If the
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compiler can prove that the program behavior won't change, then fetch elimination is safe.
Fetch elimination is not always safe.

[n a functional language, it appears that fetch elimination is safe. If an expression is
discarded, we should not care if it got evaluated since there are no non-local effects. What
about I/O? Suppose an array is defined with several lazy slots. A programmer may wish to
force the evaluation of several positions before printing the array or before making the array a
persistent object. If the fetch elimination problem were not present, each relevant object could
be fetched and discarded as we do not want the values, at least for now.

And. of course, non-functional constructs may pose a problem. In Id#, any fetch operation
might now have a side effect as a result of the presence of I-structures in the language. We
alluded to this potential problem when presenting lazy tuples. In the following code, a store to
an I-structure is captured in the delayed head of a cons cell:

typeof a = I_array N;
a = {a = I_array (1,10);

al1] = 1;
al2] = 2
in

a);

typeof cons_cell = list N;
cons_cell = {a[3] = 3 in 10} #: nil;

Whether or not the head of cons_cell is evaluated effects whether or not a[3] is assigned,

a non-local effect, perhaps a multiple definition error.

3.4.4 Sequentialization Optimization

When a stream is defined recursively, as it must to be infinite, the size of thunks corresponding
to successive elements of the stream form a cycle. The integers, as defined in ints_from, require

thunks of uniform size. The following stream, however, requires thunks of two different sizes:

typeof needs_2_thunks = list N;
needs_2_thunks = two_free 1 2;

typeof two_free = N -> N -> (list N);
def two_free x y = x :# one_free (x+y); J thunk has 2 free vars

typeof one_free = N -> (list N);
def one_free y = y :# two_free y (y+1); J thunk has 1 free var

66




In many cases we can determine this structure statically. Consider the integers, once again.
Each thunk contains a pointer to code, a pointer to an L-structure slot, and the value of an
index. If we can reuse the thunk, we can avoid allocating and deallocating the thunk itself, and
we can avoid rewriting unchanging values. This can be done with some sequentialization, and
very little overhead.

Just as a signal tree is used in constructing a thunk (Figure 3.9) to detect when the store
operations have completed, additional nodes can usually be added to detect the completion of
various events.

Reusing thunk shells is easier than the general problem of rewriting locations in structures
since we can guarantee that only one code block points to the thunk at a time. This technique
would be restricted to strict expressions, since we must be sure that the last computation was
finished with the thunk. Interestingly enough, this reuse of thunks does not interfere with
unwinding. A stream can only be suspended in one place, so we never need more than one
thunk at a time.

Another possibility is for a stream to retain an invocation frame forever. The feasibility of

this depends on the scarcity of invocation frames as well as other engineering issues.

3.4.5 Explicit Deallocation

As we have noted, by the time a suicide proc has read all the thunk slots, it is the only one
with a pointer to the thunk. Hence, a suicide proc can always deallocate its thunk explicitly,

saving on garbage collection costs.

3.4.6 Unstructured Thunks

Our thunks are flat data-structures. We can take advantage of the particular lexical conditions
where the thunk is defined. Sometimes the environments, or parts of the environments can be
shared. Furthermore, since each thunk is used exactly once, a tailor made calling convention
can be used. Similar ideas were used in the Rabbit [42] and Orbit [29] compilers for specializing

procedure calls.
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3.5 Summary

This chapter presents the implementation of Id#. L-structures are developed as the implemen-
tation mechanism for all lazy data-structures. Then suicide procs (the code embedding delayed
expressions), and thunks (the data structures that collects a pointer to a suicide procs and its
environment) were presented along with their dataflow graph. The thunk invocation manager,
part of the run-time system is described.

Several concrete issues relating to efficiency are also discussed.
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Chapter 4

Methodology for Programming
with Lazy Data-Structures

Now that we have a mechanism for lazy data-structures, we will exercise it. Because we only
allow lazy expressions in certain contexts (the arguments to data constructors) our model is
not powerful enough to express all the programs expressible in a lazy functional language. In
this chapter we will demonstrate the expressive power and limitations of programming with
lazy data-structures.

This chapter is divided into two sections, what we can and can’t do with lazy data-structures.
We will consider many of the classic programs used by the functional languages community to

demonstrate the power of lazy functional languages.

4.1 What We Can Do with Lazy Data-Structures

In this section we show how to code many of the classic examples using lazy data-structures.
There are two reasons we have a chance of succeeding in this task, even though our language
has less expressive power than a lazy functional language. First, although non-strictness as
embodied in Id is weaker than laziness, quite often it will suffice. And second, laziness is
usually associated with data structures.

We consider streams, other lazy data-structures, and search programs.
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4.1.1 Streams

Streams are the most famous use of laziness!. Streams are potentially infinite lists that expand
on demand, and provide a uniform interface for controlling uniform data of unpredictable size.
In a lazy language, all lists behave like streams. In our language, however, special provisions

must be taken to define infinite objects. Consider the stream of positive integers:

typeof ints_from = N -> (list N);
def ints_from n = n:#ints_from (n+1);

typeof ints = list N;
ints = ints_from 1;
%=1 :# 2 :# 3 % .

Of course, we could have used the special syntax for arithmeti¢ sequences. The integers
might be consumed as follows. The definition of add_first uses pattern matching to destructure
arguments. The two dots (“..”) indicate that the second clause should only be considered if
the pattern in the first clause fails to match. Normally, all clauses can be considered in parallel.
Only one “..” clause is allowed, and is only considered if the patterns in all other clauses fail

to match.

typeof add_first_n = N -> (list N) -> N;
def add_first_n O 8 = 0
|..add_first_n n (x:x8) = x + add_first_n (n-1) xs;

typeof triangle = N -> N;
def triangle n = add_first_n n ints;

As compared to the equivalent program written in a lazy functional language, ints_from, the
producer, requires a single annotation, and add_first_n, the consumer, needs no annotation.
Functions that consume streams are identical to the functions that consume lists. The following
functions are standard stream producers, transformers, and consumers. Where appropriate, a

stream comprehension version is also given (indicated by a trailing underscore).

%%4% map a unary function over a stream
typeof smapl = (*0 -> *1) -> (list *0) -> (list *1);
def smaplt £ nil = nil

| smapi f (x:x8) = f x :# smapl f xs;

'We will not engage in a discussion of the utility of stream-style programming, but we will use it as a vehicle
for discussing our system.
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def smapl_f s = {:# f x || x < 8};
%=f s1 :# f 82 :# 83 :# .

%A% the squares of the integers

typeof squares = list N;

squares = smapl {fun x = x*x} (upfrom 1);
squares_ = {:# x*x || x <- upfrom 1};
h=1 :%4 :#9 :% ...

%4% scale a stream by a constant factor
typeof scale = N -> (list N) -> (list N);
def scale a s = smapl ((*)a) s;

def scale. a s = {:# a*x || x <- 8};

%= a*sl :# aks2 :# a*s3 :# ...

#4% the integers based on recursive stream mapping
typeof intsl = list N;
ints1t = {def suc x = x+1;

ints = 1 :# smapl suc ints

in ints};

There is no comprehension for the recurrence intsi. Consider the following function for

numerical integration:

%A% integrate a function using the rectangle rule
typeof integrate = (N -> N) -> N -=> N -> N -> N;
def integrate f lo hi dx =
{ x8 = smapl ((+) lo) (scale dx (upfrom 0));

ys = smapl f xs;

areas = smapl ((*)dx) ys;

n = £ix ((hi-lo)/dx);

in

add_first_n n areas};

typeof integrate_ = (N -> N) => N -> N -> N -> N;
def integrate. f lo hi dx =
{ xa = {:# lo+(dx*x) || x <- upfrom 0};

ys = {:# £ x || x <- x8};

areas = {:# dx*y || y <- ys};

n = fix ((hi-lo)/dx);

in

add_first_n n areas};

It is interesting to remove the intermediate streams from these definitions.

typeof integrate_i_liner = (N -> N) -> N -> N -> N -> N;




def integrate_1_liner f 1o hi dx =
{ areas = smapl ((*) dx)
(smap1l f
(smap1 ((+) lo)
(scale dx (upfrom 0))));
n = fix ((hi-lo)/dx);
in
add_first_n n areas};
typeof integrate_1_liner_= (N -> N) -> N -> N -> N -> N;
def integrate_1_liner_ f lo hi dx =
{ areas = {:# dx * f(lo+(dx*x)) || x <- upfrom O};
n = fix ((hi-lo)/dx);

in
add_first_n n areas};

The mapping version gets cumbersome quickly, but the comprehension version remains
compact. We still need to reduce the stream using a separate mechanism. We would like the
compiler to have the ability to remove intermediate lists and streams and compile integrate.
as efliciently as integrate_1.liner., but we will not deal with that topic in this thesis. We

continue developing our stream library.

%% map a binary function over two streams
typeof smap2 = (%0 -> *1 -> *2) -> (list *0) -> (list *1) -> (list *2);
def smap2 f (x:x8) (y:ys) = f x y :# smap2 f x8 ys
|..smap2 £ «x y = nil;
def smap2_ f xs ys = {:# £ x y || (x,y) <- lazy_zip2 xs ys};

zip2, which is part of the standard environment, turns a pair of lists into a list of pairs.

We must define library functions to do lazy zipping.

Wh% zip two streams lazily
def lazy_zip2 (x:xs) (y:ys) = (x,y) :# lazy_zip2 xs ys
l..lazy_zip2 x y = nil;

If we used zip2 instead of lazy zip2 in smap2, although the result would be generated

lazily the intermediate list of x’s and y’s would be generated eagerly.

W% first order recurrence given a seed and a recurrence relation
typeof sgenl = (*0 -> #0) -> *0 -> (list *0);
def sgenl f x0 = x0 :# sgenl f (f x0);

%%% the integers as a first order recurrence
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typeof ints2 = list N;
ints2 = sgenl ((+)1) 1;

%%% second order recurrence given two seeds and a recurrence relation
typeof sgen2 = (%0 -> *0 -> *0) -> *0 -> *0 -> (list *0);
def sgen2 f x0 x1 = x0O :# sgen2 f x1 (f x0 x1);

%% the Fibonacci numbers as a second order recurrence
typeof fibs = N -> N -> (list N);
def fibs a b = sgen2 (+) a b;

%%% filter a stream by a predicate
typeof sfilter = (%0 -> B) -> (list *0) -> (list *0);
def sfilter p nil = nil
| sfilter p (x:xs8) = if p x then x :# sfilter p xs
else sfilter p xs;
def sfilter_ p s = {:# x || x <~ 8 when p x};

%%% prefix computation (partial products) on a stream
typeof sexpand = (*0 -> *0 -> *0) -> *0 -> (list *0) -> (list *0);
def sexpand f z nil = nil
| sexpand f z (x:x8) = { val = f 2 x
in
val :# sexpand f val xs};

%%% stream of all triangle numbers
typeof triangles = list N;
def triangles = sexpand (+) O ints;

%%4% incremental dot product of two sequences
typeof dot = (list N) -> (list N) -> (list N);
def dot s1 s2 = sexpand (+) O (smap2 (*) si s2);

Streams have eager heads and lazy tails, and we can implement this behavior precisely
in our model. It is difficult and often impossible for a compiler to make such optimizations
automatically (in this case to recognize that the heads can be evaluated eagerly). This problem
is handled explicitly in our system, i.e., not automatically, but under programmer control.

It is interesting to note which programs have a comprehension syntax. Comprehension
handles simple generation and transforming, but not recurrence, compression, or expansion
(scanning).

A problem elegantly solved by streams is Hamming’s problem [27], generating the ordered

list of integers H containing exclusively 2’s, 3’s, and 5’s as factors.
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H = {2'375%}
The following recursive fact leads to the clever solution below:

H = {1} U2H U 3H U5H

typeof merge = (list N) -> (list N) -> (list N);
def merge (x:xs) (y:ys) = % merge two ordered streams; no dups.

if x<y then x :# merge xs (y:ys)
else if x>y then y :# merge (x:xs) ys
else x :# merge xs8 ys;

typeof hamming = list N;
hamming =
{ h235 = 1 : merge (scale 2 h235) h35 ;

h36 = 3 : merge (scale 3 h356 ) h5 ;
h8§ =5: scale 5 hS
in

h235};

This is our first example where conses with various degrees of laziness have been mixed and
matched. merge depends on laziness to break an infinite recursion, but hamming can safely call
the normal cons function, a more efficient call. If we replaced the “:” symbols in hamming with
“:#” symbols, the program would behave identically, although slightly less efficiently.

If we switched the stream-conses (“:”) in merge with the list-conses (“:#”) in hamming, the
program would diverge. How did we know when to use stream-cons and when to use list-cons?
The conses in hamming are only executed once, while the conses in merge break a recursion.

No collection of stream programs would be complete without a sieve of Eratosthenes for

generating primes.

%%% THE SIEVE OF ERATOSTHENES

typeof remove_multiples = N -> (list N) -> (list N);
def remove_multiples e s = sfilter {fun x = 0<>(rem x e)} s;

typeof sieve = (list N) -> (list N);
def sieve (x:xs8) = x :# sieve (remove_multiples x xs);

typeof primes = list N;
primes = sieve (upfrom 2);
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Or we can do it another way.

%4% THE PRIMES by FILTERING THE INTEGERS
%4% Use the prime stream being generated to filter [3 § 7 ...]

typeof prime_test_given = (list N) -> N -> B;
def prime_test_given (p:ps) x =
if (p*p) > x then true % tested to root x; prime
else if 0 == (rem x p) then false ’ a composite
else prime_test_given ps x;

typeof primesi = list N;

primesl =
{primes = 2 :# sfilter (prime_test_given primes) (upfrom 3 by 2)
in primes};

The prime test is strictly a consumer, ignorant of the fact that delaying may be going on.
The programs for generating the prime streams each require a single #.

A lazy system does not distinguish between lists and streams. We, on the other hand, con-
sume streams and lists similarly, but must produce them differently. By requiring annotations,

separate libraries (containing programs such as map) for lists and streams must be used.

4.1.2 Other Lazy Data-Structures

In this section we consider two other data structures that can be constructed lazily, trees and

memoization tables.

Trees

We define a tree as a leaf or a node with a value and two sub-trees. We also define a function
which lazily maps a unary operator over the elements of a tree , a function to add up the

numbers in the top few levels of a tree of numbers, and a sample infinite tree of numbers.

type tree *0 = leaf | node *0 (tree *0) (tree *0);

typeof map_tree = (%0 -> *0) -> (tree *0) -> (tree *0);
def map_tree f leaf = leaf

| map_tree f (node x t1 t2) =

node (f x) (#map_tree f t1) (#map_tree f t2);

typeof add_n_levels = N -> (tree N) -> N;
def add_n_levels n leaf = 0
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| add_n_levels O (node x t1 t2) =0
|..add_n_levels n (node x t1 t2) =
x + add_n_levels (n-1) t1 + add_n_levels (n-1) t2;

typeof funny_tree = tree N;
funny_tree =
{t = node 1 (map_tree ((+)1) t) (map_tree {fun x = x*x} t)
in

t};

The tree constructor map._tree requires a single annotation to delay the expansion of each
lazy child. But add_n_levels, a tree traversing procedure, requires none.

This scenario covers a wide variety of “Al search problems” such as mini-max and game
searching, where the item stored at the node describes a situation reachable from the parent in
one step. While the search tree may be finite, it may be enormous (for example, the number
of reachable chess positions), but only a small portion of it need be expanded at any time.

Searching large spaces fits into the “infinite structures” programming paradigm.

Memoized Functions

Suppose we have a function over a small discrete domain that is expensive to compute, and
suppose that we are not likely to need the value of the function for all values of the domain, but
we are likely to need some values several times. In such a situation If it may be worthwhile to
perform a small amount of work for each element of the domain in order to save computing a
few values in the range. The following routine memoizes any function over the specified integer

range. Notice that the result is a function.

typeof memoize = (N -> *0) -> (N,N) -> (N -> %0);
def memoize f (lo,hi) =
{ memo_array = {array (lo,hi)
I (i # £ i || 1 <- 1o to hi};
def memo_f i = memo_array[i];
in
memo_£};

This example, clearly in the “expensive slots” programming paradigm, allows the program-
mer to trade some implicit bookkeeping for potential efficiency. “Why”, one might ask, “doesn’t
the programmer simply manage the bookkeeping explicitly? Just keep a table of flags indicat-

ing whether or not the slot has been evaluated, and check that first before computing.” No
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problem, so far. But what happens when you need to change the value of a flag? That facility
is not available in a functional language. The technique demonstrated in this section allows the

programmer to associate the needed information with each slot, but no more.

4.1.3 Search

We have already mentioned a class of search problems which can be viewed as explicit tree

walks. Now we consider a couple of specific search problems.

Eight Queens

The eight queens problem [47] can be solved as a search problem. The problem is to place
eight queens on a chess board so that no queen can capture another queen in a single move.
Algorithms to generate the ninety-two solutions are well known. The idea is to build solutions
one column at a time. A partial solution is an eight row by ¢ column board (i < 8). Start
with an empty zero column solution, and extend all solutions with i — 1 columns to ¢ columns.
Partial solutions with ¢ columns are represented as partial permutations (lists of length 7) of
the integers from zero to seven. Each integer indicates the corresponding queen’s row.

To generate all solutions, the program below uses non-strict data-structures. Laziness is not
necessary. L!i selects the ith element from a list L (zero origin is used: L!0 is the first element
of list L).

The checks procedure determines if adding a queen in row q will endanger the queen already

in column i of partial-board board.

typeof checks = N -> (list N) -> N -> B;
def checks q board i =
{ board.i = board!i
in
q == board_i or abs (q-board_i) == i+1};

The safe procedure determines if it is safe to add a queen in row q to partial-board board.

safe calls checks on each column of board.

typecf safe = N -> (list N) -> B;
def safe q board = foldr_list (and) true
{: not (checks q board i)
Il i <= 0 to (length board)-1};
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The queens procedure sets up the partial solution table boards, with a single empty solution
with zero columns. \ll solutions with i-1 columns are extended to i columns for all safe

extensions.

typeof queens = N -> (list (list N));
def queens n =
{ boards = {array (O,n)
| [0] = nil:nil
| [i] = extend i ]} i <- 1 to n};
def extend i = {: q:board || board <- boards[i-1]
& qg<-0to?7
when safe q board}
in
boards[n]};

The reason we do not need laziness is that the search space is explored in its entirety.
Generating the first ten solutions, however, is not as simple, since we do not wish to exhaust
the search space. Nonetheless, we can find the solutions by replacing the list enumeration in
queens by stream enumeration. Then, only the desired number of solutions will be produced.

typeof lazy_queens = N -> (list (list N));
def lazy_queens n =
{ boards = {array (0,n)
| [0] = nil:nil
| (i) = extend i || i <- 1 to n};
def extend i = {:# q:board || board <- boards[i-1]
£ q<-0to?7
when safe q board}
in
boards[nl};

The Paraffins

Turner popularized the paraffins problem to demonstrate the power of lazy evaluation and
higher-order programming. Since we will refer to this problem several times in the remainder
of the thesis, this section is devoted to defining the problem.

A paraffin is a molecule with structural formula C, Hzn4+2. Paraffins, also known as the
alkanes, are acyclic and have no “double bonds”. Methane (C Hy4) and iso-butane (C4H,o) are
drawn in Figure 4.1.

A paraffin is isomorphic to an acyclic undirected graph, with the carbon atoms mapping to

internal nodes, and the hydrogen atoms mapping to leaf nodes. All internal nodes have degree
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Figure 4.1: Two Paraffins

four, and all leaf nodes have degree one. The graphs corresponding to methane and iso-butane
would look exactly like the molecules in 4.1.

Without losing any information, we can ignore the hydrogen atoms and the corresponding
leaf nodes, and map a paraffin to an acyclic undirected graph of bounded-degree four. Hydrogen
atoms (leaf nodes) are implied to bring the valence (degree) of each carbon atom (internal
node) to four. This common simplification makes the pictures less cluttered and is sometimes

convenient when discussing some aspects of the problem.

C
C C—C—¢C
methane iso-butane

Figure 4.2: Two Simplified Paraffins

If a graph isomorphism exists between the graphs corresponding to two molecules, the
molecules are said to be equivalent. If no graph isomorphism exists between the graphs corre-
sponding to two molecules with the same number of carbon atorr s, the molecules are said to
be isomers (structurally different). In Figure 4.3, all three molecules have the same structural
formula (Ce H14). However, (a) and (b) are equivalent, and (c) is an isomer of (a) and (b).

A sub-problem of the paraffins problem involves paraffin radicals (radicals, for short), sub-
molecules of paraffins. A radical is a molecule with structural formula Cp, Hy,41, a paraffin with

one hydrogen atom missing. Alternatively, any bond in a paraffin can be broken to produce
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C

Figure 4.3: Some Isomers of Cg Hy4

two radicals.

A radical is isomorphic to an unordered ternary tree. The hydrogen atoms correspond to
the leaves of the tree. Both the root and the internal nodes have three children, and children
are unordered. Two radicals are equivalent if their corresponding trees have an isomorphism.

methyl (CH3) and Ethyl (C2Hs) are drawn in Figure 4.4.
—C —C—C
methyl ethyl

Figure 4.4: Two Radicals

We will refer to the size of a radical or paraffin as the number of carbon atoms contained
in it.

The problem is to enumerate, without repetition, the paraffins up to a certain size. The
answer should list the paraffins of size one, the paraffins of size two, and so on, up to paraffins
of some specified size. “Without repetition™ is the tricky part. Just as it is tricky to twist two
paraffins around to see if they line up (as we saw in Figure 4.3), a program must not output
two equivalent paraffins.

This defines the abstract problem. Before we get into solutions, however, we give an indi-
cation of the complexity. To do this, we must get into issue of representation. Radicals can
be represented by ternary trees trees. radical is defined as a new algebraic type as follows.
Although a hydrogen is not normally considered a radical (radical of size zero?: CoH,), it is

convenient for us to do so.
type radical = H | Rad radical radical radical;

Representing paraffins, however, is not as easy. Radicals have a root from which to start,

but paraffins have no such distinguished nodes. We can simply pick a node, and then hang four
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radicals from that node as follows:
type paraffin = Para radical radical radical radical;

But if we pick a node randomly, there are many representations for a given paraffin. We
have even more choices than that, as the children are unordered. So, we see that even our
representation for radicals is not unique, as the sub-radicals are unordered, too. The molecule
pictured in (a) and (b) of Figure 4.3 has 108 representations! Seventy-two representations
correspond to choosing an “outer carbon” as the starting point (or paraffin-origin), and thirty-
six representations correspond to choosing an “inner carbon” as the paraffin-origin. The number
of representations of paraffins and radicals is exponential in the size.

Now, we have a handle on the problem definition and complexity. We go on to consider two

solutions.

Turner’s Paraflins Program

Turner’s algorithm generates radicals recursively by compiete induction?. A radical of size n has
three smaller sub-radicals whose size adds up to n — 1. By making the restriction that the size
of the first sub-radical is less than or equal to the size of the second sub-radical, whose size is
less than or equal to the size of the third sub-radical, many of the duplicate representations can
be avoided for radicals®. This restriction also means that the size of the first sub-radical can not
be more than a third the total sizes of the sub-radicals, and a corresponding fact for the second
sub-radical. Although this implied restriction does not change the number of representations,
it makes the generation more efficient. An array of radicals ronging in size from zero to n is

generated as follows:

typeof rad_array = N -> (array (list radical));
def rad_array n =
{ rads = { array (0,n)
| [0] = H:nil
| [i] = radgen i || i <- 1 to n};
def radgen n = {: Rad a b c ||
i <- 0 to floor((n-1)/3)
& j <~ i to floor((n-1-i)/2)
& a <- rads[i]
& b <- rads[j]

2By complete induction we mean that the objects of size n depend on objects of sizes less than n.
3The first duplicate occurs at size seven; the proof is left as an exercise to the reader.

81




& c <- rads(n-1-i-jl}
in
rads};

The rad.array procedure has two bindings. rads, a memoization array for lists of radicals
of each size, is generated with an array comprehension. radgen, which depends on the existence
of radicals of sizes zero to : — 1 to generate the radicals of size i, generates radicals using a list
comprehension that has generators five levels deep. a, b, and ¢ are the sub-radicals. i, j, and
n-1-i-j are the corresponding sizes of the sub-radicals. i ranges over all possible sizes for the
first sub-radical, and a ranges over all radicals of size i. Similarly for j and b. ¢ ranges over all
radicals of whatever carbon atoms remains. It should be clear that all radicals are generated,
although not uniquely.

That’s the easy part of the algorithm.

Our representations are not unique. Non-unique representations makes it difficult to tell if
two radicals or paraffins are equivalent. And if we ever generate the same paraffin more than
once, we have to discard all but one.

When we introduced the radicals, we noted that we can get a radical by starting with a
paraffin and “breaking off” a hydrogen atom. Similarly, we can generate a paraffins of size n
by starting with a radical of size n and “completing it” by adding a hydrogen atom. Turner’s
algorithm actually adds a methyl group (CH3) to a radical that is one size smaller than the
size of the desired paraffin.

A single paraffin can be generated by attaching a methyl group to to several distinct radicals.
This has nothing to do with representation. The paraffin in (a) and (b) of Figure 4.3 can only
be generated in one way by this method. Chopping off any methyl group leaves an identical
paraffin. The paraffin in (c) of Figure 4.3 can be geneirated in two ways. We can chop off a
methyl group from a long or short “chain” and leave two different radicals. It should be clear
that if we have all radicals of size ¢ — 1, we can generate all paraffins of size i by attaching
methyl groups to the radicals.

Now we have a problem. We can generate all paraffins of a given size, but we will have
repetitions. And since the representations are not unique, it is non-trivial to filter out duplicates.

Turner deals with the non-uniqueness issue is by defining equivalence classes for paraffin rep-
resentations. Two representations of paraffins are in the same equivalence class if the paraffins

are equivalent.
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The three procedures (or laws) rotate, swap, and invert take one representation for a
paraffin and return another representation for the same paraffin. rotate rotates the paraffin’s
radicals (the radicals at the top level). swap exchanges the paraffin’s first two radicals. invert
shifts the paraffin-origin to the root of the paraffin’s first radical. The laws use pattern matching

to destructure their arguments.

typeof laws = list (paraffin -> paraffin);
laws = rotate:swap:invert:nil;

typeof rotate = paraffin -> paraffin;
def rotate (Para a b ¢ d) = Para b ¢ d a;

typeof swap = paraffin -> paraffin;
def swap (Para a b c d) = Para b a ¢ d;

typeof invert = paraffin -> paraffin;
def invert (Para Hb c d) = Para Hb c d
| invert (Para (Rad x y 2z) b c d) = Para x y z (Rad b ¢ d);

If applied in the correct order, these three laws can take any representation of a given
paraffin into any any other representation for the same paraffin. The closure of these laws over
a singleton set containing a paraffin is the set of all representations, i.e., the equivalence class.
This may or may not be obvious.

The following procedures generate the equivalence class of a paraffin by taking the closure

under the laws. “++” is the list append operator.

typeof equivclass = paraffin -> (list paraffin);
def equivclass p = closure_under_laws laws (p:nil);

typeof closure_under_laws = (list (paraffin -> paraffin)) ->
(list paraffin) -> (list paraffin);
def closure_under_laws laws s = s ++ closurel laws s s;

typeof closurel =
(1ist (paraffin -> paraffin)) ->
(list paraffin) -> (list paraffin) -> (list paraffin);
def closurel laws s t =
closure2 laws s (mkset {: p || law <- laws
& p <- map_lii* law t
unless member? .==) p s});

typeof closurel =
(list (paraffin -> paraffin)) ->
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(list paraffin) -> (list paraffin) -> (list paraffin);
def closure2 laws 8 nil = nil
|..closure2 laws 8 t = t ++ closurel laws (s++t) t;

The mkset procedure (used in closure2 above) removes duplicates from a list.

typeof mkset = (list paraffin) -> (list paraffin);
def mkset nil = nil
| mkset (x:xs) =x : {: y Il y <- xs unless x==y};

Using equivclass, testing paraffin equivalence is straightforward. The member library rou-
tine takes an equality test, an element, and a list, and determines if the element is in the

list.

typeof equiv = paraffin -> paraffin -> B;
def equiv a b = member? (==) b (equivclass a);

Given the ability to test for equivalence, the quotient procedure takes an equivalence

relation and a list, and returns a list with no two equivalent elements.

typeof quotient = (paraffin->paraffin->B)->
(list paraffin) -> (list paraffin);
def quotient £ nil = nil
| quotient f {a:x) = a : {: b || b <- quotient f x unless f a b};

Finally, we can generate the radicals of size n — 1, slap on methyl groups, and filter out

equivalent representations.

typeof paragen = N -> (list paraffin);
def paragen n =
{ radicals = rad_array (n-1);
rads = radicals [n-1]
in
quotient equiv {: Parar HH H || r <~ rads}};

Turner’s solution uses higher order procedures and abstraction in a big way. In case you
didn’t notice, the Id# programs in this section have no “#”s in them, i.e., it is not necessary to
use lazy data-structures. The fact that closure_under_laws can be executed eagerly in a lazy
functional language with no penalty is not obvious, though (perhaps it is?). This fact is very

difficult to deduce automatically. We discuss this issue in Section 5.2. The soluticn does make

heavy use of non-strict data-structures to expose parallelism, however.
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If the problem were modified slightly, then laziness would come in handy. If the problem
were, for example, to produce ten paraffins of a particular size, we wouldn’t like to produce
all the paraffins of that size, or even all the radicals of smaller sizes. But, how much laziness
is required? It turns out, that we need simply convert the list enumerations in radgen ( in
rad_array) and in paragen to stream enumeration, and we have a “lazy version”. It is still
true that executing closure_under_laws eagerly causes no penalty, but it is even less obvious
and no easier to deduce automatically. We discuss this issue in Section 5.2.

Turner’s solution is exponentially inefficient. By changing the laws a little bit, and taking
advantage of the fact that canonical forms exist, a solution of the same style (equivalence class,
closure, etc.) can be developed. For certain canonical forms, it turns out that even more

efficient solutions exist, solutions whose running time is linear in the size of the output [6].

An Efficient Paraffins Program

This section presents an efficient solution (linear in the size of the output, which makes it
asmytotically optimal) for the paraffins problem. A more detailed description of this solution
can be found in [6]. This solution uses no higher order functions or laziness.

The first step is to establish a total order on radicals. This is fairly easy (since radicals have
a reference point, the root), and leads directly to a canonical form for radicals. A radical is in
canonical form if its sub-radicals are in ascending order, and if the sub-radicals are in canonical
form. We will not give the details of the total ordering and canonical form here. Suffice it to
say that the gen_radicals procedure below generates radicals completely and uniquely. The
tails procedure produces the list of all prefixes of a list. The radical type is redefined to

memoize the size.

nil
(»:as8) : tails as;

def tails nil
| tails (a:as)

type radical = H | Rad N radical radical radical;

def gen_radicals w =
{ def rgen wpl =
{: Rad wpl r1 r2 r3 ||

i = wpl-1
& vl <- 0 to fix(w/3)
& r1:ritl <- tails radicals[wi]
& w2 <- wl to fix((w-w1)/2)
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& r2:r2tl <- tails (if wi<w2 then radicals[w2] else ri:ritl)
& w3 = w-wi-w2
& r3 <- if w2<w3 then radicals[w3] else r2:r2tl};
= { array (O,w)
| [0] = H : nil
| [i] = rgen i || i<-1 to w}
in radicals};

radicals

Now we need a canonical form for paraffins. The graphs that model paraffins are called free
trees. Knuth (Volume I) discusses the enumeration (i.e., unique enumeration) of free trees [28].
The trick is to realize that free trees (paraffins) have a well defined centroid, which is either one
node or a pair of adjacent nodes. The centroid is like the center of mass. We define two types
of paraffins, BCPs (bond centered paraffins) and CCPs (carbon centered paraffins) corresponding

to the two cases.

type paraffin = BCP radical radical |
CCP radical radical radical radical;

BCPs and CCPs partition the paraffins. Canonical form for paraffins is achieved if the radicals
of BCPs and CCPs are kept in order and in canonical form.
The paragen procedure generates the paraffins completely and uniquely. bepgen generates

the bond centered paraffins, and ccpgen generates the carbon centered paraffins.

def paragen radicals n =
{ def bcpgen w = if (0 <> remainder w 2) then nil
else {: BCP r1 r2 ||
ri:ritl <- tails radicals[fix(w/2)]
& r2 <- ri:ritl};
def ccpgen w =
{: CCP r1 r2 r3 r4 ||

wi <- 0 to fix((w-1)/4)
& ri:ritl <- tails radicals[wi]
& w2 <- wl to fix((w-1-w1)/3)
& r2:r2tl <- tails (if wi<w2 then radicals[w2] else ri:ritl)
& w3min = (fix (w/2))-wil-w2
& w3lo = max w2 w3min
& w3 <- w3lo to fix((w-1-wi-w2)/2)

& r3:r3tl <- tails (if w2<w3 then radicals[w3] else r2:r2tl)
& wi = w-1-wi-w2-w3
& r4 <- if w3<w4 then radicals[w4]
else r3:r3tl}
in bcpgen n, ccpgen n};




This solution does not require any laziness or non-strictness. In fact, it can be translated into
Fortran in a straightforward way. Extracting parallelism from the Fortran, however, would be
very difficult. Consider the gen_radicals procedure, which enumerates the radicals of sizes 0 to
n. While the procedure can be executed in well defined phases, strict semantics would severely
limit the available parallelism. (We explore this in Section 5.1.) Id’s non-strict semantics,
however, harnesses all the parallelism available. This is an excellent example of where laziness
provides non-strictness, but all that is needed is the less restrictive and cheaper non-strictness.

If we took up the modification to Turner’s original problem statement as presented at the end
of the last section, it is clear that we can get a “lazy version” by converting the list enumerations
of rgen, bepgen, and ccpgen to stream enumeration, and we can generate paraffins one at a

time.

4.2 What We Cannot Do with Lazy Data-Structures

As we mentioned, our system is not as expressive as a lazy functional language. In this section
we explore programs that are difficult or impossible to code using lazy data-structmres.

As pointed out by Henderson [24], laziness cannot always be restricted to data structures if
we wish to achieve lazy semantics. The following program relies on laziness in an argument to

a procedure:

typeof problem = N -> (list N);
def problem n = 1 to n ++ problem (n+1);

The right argument to append (“++”) must be delayed to break an infinite recursion. It
is straightforward, however, to produce a program that functions correctly in our restrictcd

system.

typeof no_problem = N -> (list N);
def no_problem n =
{ def lazy_range lo hi =
if lo == hi then hi:nil
else lo :# lazy_range (lo+1) hi;
def no_problem_ n = lazy_range 1 n :# no_problem_ (n+1);
def flatteni (nil:rest) = flattenl rest
| flatteni ((a:as):rest) = a :# flattenl (as:rest);
in
flattenl (no_problem_ n)};




Suppose we call no_problem with an input of 1. Thunks will be associated with:

1. each element of each intermediate list generated by lazy range,
2. each intermediate list as a whole (“:#” in no_problem),

3. and each element of the result (“:#” in flatten_1).

Further suppose that the result contains z elements. We will generate 2z + \/z thunks. A
compiler that did a perfect job at analyzing problem would generate code that would generate
the same number of thunks.

The theoretical minimum is one thunk per output element, as we may suspend any time.

We can achieve this in our language by removing abstraction.

typeof no_abstraction = N -> (list N);
def no_abstraction n =
{ def no_abstraction_ lo hi =
{ lo1,hil = if lo == hi then 1, (hi+l) else (lo+1),hi
in
lo :# no_abstraction_ loi hil}
in
no_abstraction_ 1 n};

If we are willing to allow some unwinding, i.e., some speculation: generating several elements

at a time, we can avoid even more thunks. We can generate each intermediate list eagerly, and

end up with /z thunks for an output stream of length z.

typeof speculation = N -> (list N);
def speculation n =
{ def speculation_ lo hi =
if lo == hi then hi :# speculation_ 1 (hi+1)
else lo : speculation_ (lo+1) hi;
in
speculation. 1 n};

In the first solution, although there is a lot of abstraction, we coded all the routines (in-
cluding the library append function) down to primitives. In the latter solutions, we avoided
abstraction, and solved the problem more efficiently. Abstraction is interfering with our lazy

data-structuring mechanism. Abstraction is the hallmark of functional languages, and any

limitation on our ability to abstract is serious.




4.2.1 Lay

A real program with this aforementioned difficulty can be found in the Miranda Standard
Environment. The lay procedure, when applied to a list of strings, joins them together after
appending a newline character to each string. The result is a string. Since Miranda defines
strings as lists (at some deep level), strings can be partially defined. The desired behavior
is to avoid computing the result string fully unless the entire string is needed. Consider the
translation of the Miranda version into Id:

typeof lay = (list S) -> S;

def lay =nil = nil

| lay (a:x) = string_concat a (string_concat "\n" (lay x));
The desired lazy behavior can be achieved by rewriting the library routine string_concat.

This is a problem, since we don’t want the user altering library functions.

4.2.2 Equal Fringe

The problem of comparing the fringes of two trees for equality is a famous demonstration
of the power of laziness with respect to non-infinite data-structures. The following code lazily
converts the trees’ fringes into streams, and then compares the stream elements until a difference
is encountered.

The trees being compared may be lazily constructed or not, but at least part of the fringe

must be reachable in finite time.
type tree = Leaf N | Node tree tree;

typeof equal_fringe = tree -> tree -> B;
def equal_fringe t1 t2 = equal_list (fringe t1) (fringe t2);

typeof equal_list = (list N) -> (list N) -> B;
def equal_list nil nil = true
| equal_list (a:as) nil false
| equal_list nil (b:bs) = false
| equal_list (a:as) (b:bs) = if a==b then equal_list as bs
else false;

We still need to generate the fringe. The following program, which works in a lazy functional
language, relies on the lazy evaluation of a procedure argument, as did Henderson’s example.

Furthermore, it cannot be trivially modified to run correctly in our system.




typeof fringe = tree -> (list N);
def fringe t = fringe_ t nil;

typeof fringe_ = tree -> (list N);
def fringe_ (Leaf x) tail = x:tail
| fringe_ (Node t1 t2) tail = fringe. t1 (fringe_ t2 tail);

The problem is that we need to delay the second argument to the fringe_ procedure. Our
trick of changing “:” to “:#” won’t help us here.
Fortunately, there are other ways to fringe a tree. Here are two. The first shifts the tree to

the right, preserving the fringe, until the left edge of the fringe is near the top.

typeof fringeil = tree -> (list N);
def fringel (Leaf x) = x:nil
| fringel (Node t1 t2) = fringel_ ti1 t2;

typeof fringel_ = tree -> tree -> (list N);
def fringel_ (Leaf x) t = x :# fringel t
| fringel_ (Node ti1 t2) t3 = fringei_ t1 (Node t2 t3);

Or we can simply keep track of the spine aiong which we descended.

typeof fringe2 = tree -> (list N);
def fringe2 t = fringe2_ t nil;

typeof fringe2_ = tree -> (list tree) -> (list N);
def fringe2_ (Leaf x) nil = x:nil

| fringe2_ (Leaf x) (t:ts) = x :# fringe2_ t ts

| fringe2_ (Node t1 t2) ts = fringe2_ t1 (t2:ts);

It is interesting to compare the different solutions. The first recursive call to fringe_ needs
a delayed argument, but the second recursive call does not. If a compiler only compiles one
version of a procedure, no amount of strictness analysis will optimize this away. The laziest
(and most expensive) case must be applied universally.

Continuing with the fringe_ procedure, since the traversal requires one procedure call for
each nod2 in the graph, there is a delayed and subsequently forced expression for both the
internal and fringe nodes. So, on the average, there are two delays and two forces for each
fringe element generated.

Now consider either of the other solutions. There is exactly one force and one delay per

fringe element generated, the theoretical minimum.
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The point is not investigating clever algorithms per se. The original algorithm is slick, but

surprisingly expensive. The other algorithms delay only what is necessary.

4.2.3 The Non-Strict Tree

The following example is drawn from [26] where it is credited to Bird [12]. In a single traversal, it
replaces each element of the fringe by the minimum element of the original fringe. Although this
program is featured as depending on lazy evaluation, it only requires non-strict evaluation {35].

A new variety of tree is used that has values at the leaves but not at the internal nodes.

type ntree = tip N | fork ntree ntree;

typeof traverse = ntree -> N -> (ntree,N);
detr traverse (tipn) x = (tip x), n
| traverse (fork L R) x = { L1,xL = traverse L x;
R1,xR traverse R x;
x1 = min xL xR
In _
(fork L1 R1), x1} ;

typeof solution_2 = ntree -> ntree;
def solution_2 t = { ti,x = traverse t x
In
t1} ;

It is interesting to ask if we can produce the the result lazily in our language, and the answer
is: not very easily. Again, the problem is abstraction over data-structure construction. But,
no piece of the answer can be produced before the entire input is traversed. So, if the result
is prodrced lazily, we are effectively doing two passes anyway, and much more straightforward

algorithms are possible.

4.3 Power and Limitations of Lazy Data-Structures

We have considered a host of examples to gain experience with the power and limitations of our

system. We conclude with a discussion of the power and limitations of lazy data-structures.

4.3.1 More Expressive Power

We can now write programs with streams and other lazy data-structures, an ability not pre-

viously available in Id. Lazy arrays are a particularly dramatic example, as they provide a
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power in excess of that available in a lazy functional language. This is somewhat slippery, as
arrays are not typically available in functional languages. Unless array generation is extremely
restricted, it is not possible to propagate demands through an array, as index functions are not

always available or invertible. Consider the following lazy array comprehension:
{ array (1,n) | [perm i] # f i ||l i <- 1 to n}

In order to compute a slot value, the producer must be determined. But this cannot be
done without at least some evaluation of the index function. In general, we will have to evaluate
the index function until it generates the desired value. There is no other way to “propagate
demand” unless we can invert the index function.

In our language, no pretense is made about laziness with respect to the index calculation:
the index calculations are performed eagerly, determining the producer of each slot, but the
value expressions are left unevaluated. Work is done to put a thunk in every lazy slot, and, in
that way, the producer of the value for each slot is manifest. Of course, some slots can be filled

eagerly, some lazily, and some not at all.

4.3.2 Lack of Fidelity

What you see is what you get. What you meant, on the other hand, may be somewhat different.
For example, we must be careful to make a distinction between the following two expressions.
The first one forces the potentially delayed tail of s and then includes it in a delayed expression,

perhaps too late to delay. The second one does not risk any premature forcing.

{(h:t) = 8 in h :# t}

{(h:)

s in h} :# {{_:t)= s in t}

The second form, which is more conservative, is clumsy. This subtlety arises in practice.

Consider the following function to filter a stream:

typeof sfilter = (*0 -> B) -> (list *0) -> (list *0);

def sfilter p nil = nil
| sfilter p (x:xs8) = if p x then x :# sfilter p xs
else sfilter p xs;

Even though xs is named in both branches of the conditional, the consequent is a stream
cons and might never be evaluated. But, as defined, xs always gets a value. A more conservative

definition would be the following: '
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def sfilter p nil = nil
|..sfilter p 8 =
{ (x:) =58
in
if p x then x :# sfilter p {_:xs = 8 in xs}
else sfilter p {_:xs = s in xs}};

So, our original definition looked fine, but it did a little more work. This is not a problem,
norially, where we are concerned with controlling infinite streams, but it does extra computa-
tion, and might not be safe.

The following program has a similar difficulty and demonstrates the difficulty precisely. We
would like a program that touches the first n elements of a stream, but the following, contrary
to cur intuition, touches n+1 elements:

typeof take = N -> (list *0) -> (list *0);
def take 0 s = nil
|..take n (x:x8) = x : take (n-1) xs;

It has been suggested that this problem is due to the way we compile pattern matching [36].

We could move the selection of slots “inward” to the lexical use, so that they are not selected

in as many cases. This idea seems right and merits additional study.

4.3.3 Limitations of the Lazy Data-Structures

Our system is not as expressive as a lazy system. There are tw~ ways that we see the difference.
First, arguments to procedures are not delayed. And second, we cannot abstract over lazy con-
structors and preserve laziness. The second point, while subsumed by the first, is independently
interesting.

We provide no mechanism for abstracting over lazy data-structures. This is analogous to
the problem present in eager languages of abstracting over conditionals. Consider the following
user-defined conditional (equivalent to Lisp’s and function, which is also sequential):

typeof if_nil = (list *0) -> (list *1) -> (list *1);
def if_nil 1st val = if nil == 1st then nil else val;

According to eager semantics, the actual expression for val would be evaluated before
if_nil were applied. All applications (under an eager interpreter) of the following function for
making a copy of a list would run off the end of the list and produce an error. A lazy system

would interpret the program as desired.
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typeof copy_list = (list *0) -> (list *0);
def copy_list 1st = if_nil 1lst {(a:as) = lst in a : copy.lst as};

This inability to abstract over conditionals is analogous to our inability to abstract over
lazy data-constructors. By the time an expression reaches a lazy data-constructor, it is already

evaluated.

4.4 Summary

This chapter demonstrates the utility of our approach as well as the limitations through a
collection of examples. We are able to deal with stream programming to a large extent, and
notice that new library routines are needed. As we tackle more complex problems, this deficiency
emerges as a difficulty with abstracting over lazy assignment in general.

If we can solve a problem in Id#, we end up with fine grain control over what is lazy and
what is not. Many of the classical examples can be solved in Id#. We hypothesize that this is
due primarily to the following two reasons. Laziness is often used to achieve non-strict behavior.
Our system already has non-strict behavior, obviating this use for laziness. Also, laziness is

typically associated with data structures.
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Chapter 5

Conclusions

We have presented an extension to the the dataflow language Id for supporting lazy data-
structures, as well as extensions to the compiler and architecture. In this, the concluding
chapter, we present a demonstration of the cost of data structure strictness, a challenge for the

advocates of lazy functional languages, and concluding discussions.

5.1 A Demonstration: the Cost of Data Structure Strictness

Although conventional languages are strict in procedure arguments, data structures may be
passed around before they are completely defined, i.e., non-strictly, and synchronization be-
tween producer and consumer is done explicitly. In a “conventional multiprocessor”, both for
efficiency and manageability, synchronization is likely performed on a large grain basis. For
example, a vector may be made readable only after it is completely defined. Or, a matrix may
be made available one row at a time. Individual synchronization can be viewed as enforcing a
strictness constraint equivalent to data availability. And, blocked synchronization is analogous
to building entire data-structures strictly; all the data must be in place before any values are
made available.

Data structure strictness, however, is not free. We demonstrate the cost of the explicit

synchronization of data-structures with some examples.

5.1.1 Paraffins

Consid&r the algorithm of Section 4.1.3 for efficiently enumerating the paraffins (molecules with
structural formula Cy, Hant2). The radicals (CpHjpnyy) are defined using complete induction.

As a group, the radicals of size n (n carbon atoms) depend on the radicals of sizes 0 to n — 1.
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The following Id code allows the radicals to be computed with or without barriers between the
production of radicals of successive sizes. A barrier insures that the preceding phase completes

before the succeeding phase begins.

type radical = H | Rad N radical radical radical;

typeof traverse_radical = radical -> N;
def traverse_radical H = 0
|..traverse_radical (RAD n r1 r2 r3) =
{ tr1 = traverse_radical ri;

tr2 = traverse_radical r2;
tr3 = traverse_radical r3
in

if (strict n) then (trl + tr2 + tr3) else 0};

typeof traverse_radical_list = (list radical) -> N;
def traverse_radical_list nil = 0
|..traverse_radical_list (r:x) =
1 + (traverse_radical r) + (traverse_radical_list x);

typeof traverse_radical_lists = (array (list radical)) -> (array N);
def traverse_radical_lists radicals =
{ (1o,hi) = bounds radicals
in
{ array (lo,hi)
| [i] = traverse_radical_list radicals[i]
Il i <- 1o to hi}};

traverse_radical_lists, which traverses each list of radicals and returns an array of the
number of radicals of every size, implements the barrier. All operations associated with any of
the traverse procedures, however, are masked from the collected statistics.

The gen_rads_bar procedure defines the array, strict_array; the ith slot becomes defined
when all the radicals of size ¢ are fully defined. If the extra argument barrier? to rad_gen._bar

is true, radicals of size n — 1 are completely defined before any radicals of size n are derived.

typeof gen_rads_bar = N -> B -> (array N);
def gen_rads_bar w barrier? =

{ def rgen wpl gatel =

{: Rad wpl r1 r2 r3 ||

v = wpl-1
vi <- fix(0O*gatel) to fix(w/3)
ri:ritl <- tails radicals[wi]
w2 <- w1 to fix({w-w1)/2)
r2:r2tl <- tails (if wi<w2 then radicals[w2] else ri:ritl)

L. I 2
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& w3 = w-wil-w2
& r3 <- if w2<w3 then radicals[w3] else r2:r2tl};
radicals =
{ array (0,w)
| [0] = H : nil
| [i] = rgen i strict_array[if barrier? then i-1 else 0]
Il i<-1 to w};
strict_array = traverse_radical_lists radicals
in strict_array};

The parallelism profile! in Figure 5.1 describes the construction of the radicals of size eight
or less, where the construction of any radicals of size n does not begin until all radicals of size
n — 1 are completed. Barriers are present between the construction of radicals of different sizes.

The domain is time steps, and the range is the number of parallel ALU operations.

40 J
30

20 J

10 J

100 200 300 400 500 600 700 800 900 10001100 12001300 14001500 16001700
ALU OPERATIONS PROFILE IN GEN'RADS'BAR (8 $T)

Figure 5.1: Parallelism Profile for Strict Generation of Radicals

The parallelism profile in Figure 5.2 describes the construction of the radicals of size eight
or less, where the construction of radicals of all sizes begins as soon as possible in an overlapped
and non-strict fashion.

In the strict case, 15,805 operations are performed, and the critical path is 1788. In the
non-strict case, 15,805 operations are performed, and the critical path is 705. In the original
algorithm, 15,708 operations are performed, and the critical path is 681. The extra operations

are the result of the procedure linkage to traverse_radical lists, and the conditional barrier.

1 A parallelism profile plots the number of operations that can be executed in parallel for a particular program
and input under a greedy schedule. The two curves envelope the actual locus.
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Figure 5.2: Parallelism Profile for Non-Strict Generation of Radicals

The actual operations associated with the iraversal procedures are masked from the statistics.

Strictness implies serialization and costs us parallelism. The non-strict case has a shorter
critical path and more parallelism. The shape of the parallelism profile is important, too. The
many constrictions make it difficult to keep a parallel machine busy. Also, synchronization
must be performed explicitly; the masked operations associated with traverse._radical_lists

accounted for the majority of the operations.

5.1.2 Insertion Sort

In this section we consider a functional implementation of insertion sort. A list is sorted by
successively inserting each element into a sorted list. insert_elements calls insert_element
to insert each element of the original list into a sorted intermediate result. insertion_sort

calls insert_elements with the initial list, and an empty list (which is vacuously sorted).

typeof insertion_sort = (list n) -> (list n);
def insertion_sort as = insert_elements as nil;

typeof insert_elements = (list n) -> (list n) ~-> (list n);
def insert_elements nil sorted_list = sorted_list
| insert_elements (a:as) sorted_list =
insert_elements as (insert_element a sorted_list);

typeof insert_element = n -> (list n) -> (list n);
def insert_element a nil = a:nil
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| insert_element a (x:xs8) =
if a < x then
a:x:xs
else
x:insert_element a xs;

If we enforce data-structure strictness, insertions proceed one element at a time. The next
insertion cannot begin until the previous one has completed. The synchronization, however, is
simpler than in the paraffins example, as the list is traversed sequentially. So, when we reach
the correct position, the prefix must be defined. Or must it? Doesn’t this inductive fact simplify
synchronization? Not necessarily. Unless we enforce extraneous synchronization along the way,
the “heads” of the prefix cells could be proceeding in parallel. So, we must synchronize the
entire list.

A non-strict approach allows the successive elements to be inserted in a pipelined and
overlapped fashion. As soon as a prefix is computed, it is returned, partially defined, and the
next element can begin its crawl down the list.

What if we destructively update a shared list that has some method for locking? Although
Id has no facilities for this destructive behavior, we hypothesize the results for a parallel system
that allows updates such as Halstead’s Multilisp on Concert {21, 22]. The same mechanism
that is used for locking may subsume our producer consumer synchronization. After all, that

is what locking and exclusive access are all about.

5.1.3 Discussion

Two points merit exposition:

o Strictness limits parallelism, as it implies sequentialization.

e Synchronization is expensive. Fine grain synchronization of data can be accomplished
using I-structure memory. Large grain synchronization, which implies the coordination of
a set of fine grain synchronizations, is more complex in an unordered environment. In
a SIMD machine this is easy as computation proceeds in lock step, but the synchroniza-
tion cost is paid constantly. In a MIMD machine, where flexible evaluation order buys

utilization, coordinated synchronization is expensive.
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5.2 A Challenge: The Difficulty of Optimization

Strictness analysis is a compilation technique for deducing information about argument strict-
ness. If a procedure is strict in an argument, that argument need not be passed lazily. Abstract
interpretation {32, 16, 25] and context analysis [46] are two techniques for strictness analysis.
Since the problem is unsolvable in general, these approaches, as well as any other approaches
to strictness analysis, are necessarily approximation techniques.

Consider the closure_under_laws procedure of Section 4.1.3. It produces the equivalence
class of a particular paraffin, i.e., all the legal representations. There is no need for laziness in
this procedure, but this is not easy to show. After a particular paraffin, say Py, is generated, no
equivalent paraffin should be enumerated in the result. Suppose P; is next in the enumeration.
Before P; can be produced we must check that it is not in the equivalence class of Py, at which
point the equivalence class of Py must be fully expanded. Before finding P, however, we may
have checked P,, P3, and P4, only to discover they were equivalent to Py. Each replica will
have expanded the equivalence class of P to include itself. However, at no quiescent point of
the algorithm are any equivalence classes partially expanded.

Why is it difficult to deduce the strictness of closure_under_laws?

1. The strictness must be deduced from context. It is the way that closure_under_laws is

called that leads to the strictness.

2. Only some of the calls to closure_under_laws require the result to be fully defined. It

happens that the algorithm loops until it makes one of these “strict calls”.

Strictness analysis ir the presence of higher-order functions and data structures is already
complex. In order to produce efficient compiled code for closure_under.laws, however, we

must have algorithmic insight, a difficult task for a compiler.

5.3 Conclusions

5.3.1 Thunk Efficiency

We have claimed that our mcchanism is efficient. In the introductory chapter, we described
several key efficiency issues that are important when we implement delayed computation. Have

we addressed these issues?
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1. sharing
2. the use of thunks where lazy evaluation is not necessary

3. the speed of the operations required to manipulate thunks

1. Sharing is accomplished naturally. An expression is memoized in the data structure in
which it belongs, and is computed at most once.

2. Delaying is imposed at the request of the programmer, and, although extra delaying may
occur, it is unlikely.

3. The operations are efficient. Creating a thunk is no more than storing the environment,
and evaluating a delayed expression is about as complex as applying a procedure. The big win
is in subsequent references to the value, which incur no overhead resulting from the fact that

the value was once a delayed expression.

5.3.2 Embedding Henderson’s System

As we mentioned in the introductory chapter, the framework presented for lazy structures can
embed a Henderson-style source-to-source transformation for achieving lazy behavior. Consider

the following transformations. Delay and Force are implemented with lazy data-structures.
delay <exp> => {vector (0,0) [0] # <exp>}
force <exp> => exp(0]

Although this approach is roughly as efficient as standard solutions, we do not advocate it.

Any Henderson-style system is likely to end up with too many thunks and be too expensive.

5.3.3 Variations and Future Directions

We have developed a technique which depends on explicit delaying and implicit forcing. The
implicit part relies on a hardware mechanism for synchronization and, not surprisingly, is very
efficient. If a similar mechanism were available to trap delayed values so that normal processing
were uninterrupted, we might investigate delaying expressions in general. Trapping such delayed
expressions can be done, given hardware support in many scenarios, if we are willing to give up
sharing. We might view such a system as similar to Lisp’s invisible forwarding pointer system.

Several related approaches are worth considering. All of the following possibilities are vari-

aticns of the language or the semantics but preserve the underlying implementation.
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In the cases that data structures are involved, lazy structures can be thought of as simply
an optimization in any lazy language on a tagged architecture. Rather than have a thunk
resident in a data structure slot, use structure tag-bits to implement L-structures, cutting out
the intermediate storage. Implicit forcing comes as a bonus.

Another possibility is eager evaluation for all exprescions except those destined for data
structure slots. In order to guarantee termination, it may suffice to guarantee that all circular
expressions are cut by data-structures, in much the same way that circular combinational logic
must be cut by storage elements. Either strictness analysis or annotations may be useful for
generating optimized programs. This approach is similar to Burtons approach [15].

Similarly, we can assign even structure slots eagerly, except those that contain pointers to
other structures. We could benefit from compiler analysis (type checking) and annotations,
both eager and lazy. -

The repercussions of these varied choices are not clear. An interesting approach involves
using the techniques of Lucassen [31] and Young [48]. Lucassen developed techniques for cate-
gorizing expressions as pure and side-effecting. Due to the presence of the I-structure language
construct in Id, changing an expression’s evaluation semantics to eager or lazy may change its
meaning. Analysis similar to Lucassen’s may avoid these difficulties. Young developed tech-
niques for approximating the cost of expressions and approximating termination behavior. If
the cost of evaluating an expression is cheaper than the cost of building a thunk, then eager

evaluation is more efficient, assuming, of course, that the meaning of the expression is the same.

5.3.4 Concluding Remarks

Our thesis can be stated concisely as follows. An eager non-strict language plus lazy data struc-
tures with otherwise eager semantics provides most of the expressive power of a lazy functional
language and an opportunity for implementation at close to the cost of an implementation of
an eager non-strict language.

The language Id#, Id plus lazy data-structures, was presented in Chapter 2, and its expres-
sive power as well as its limitations were demonstrated in Chapter 4. Chapter 3 presents an
efficient implementation.

This much is clear: most expressions can be evaluated eagerly with no loss of expressive
power (chance of non-termination). An eager functional language is already very close to the

target. A lazy functional language, on the other hand, is far from the target, and, if we can
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get there at all, it is sure to be a struggle. Great progress has been made in strictness analysis,
recently including non-flat domains [20, 46] (i.e., data structures). But, it is unlikely that we
will reach the target. We have already pointed out the problem in analyzing indexed structures.
Furthermore, the problem of higher-order functions and data structures simultaneously appears
quite difficult.

To the purist, who is unwilling to accept any annotation, we simply note that, as demon-
strated, these annotations fit naturally into the source language, and have clear semantics.
Furthermore, the repercussions are clear, and confined.

For the eager non-strict programmer, who is willing to take responsibility for her program’s

actions, we hope to have opened up a gamut of possibilities, both powerful and efficient.
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