
Naval Research Laboratory
Washington. DC 20375-5000

NRL Report 9185

Stein's Lemma-A Large Deviations Approach

C a R. SOWERS

N Target Characteristics Branch
Radar Division

March 21, 1989

3ELEC'E 0
JUN 19 1989

Approved for public release; distribution unlimited.

89 6 15 076



SECURITY CLASSIFCAT:ON OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNo 0704.088e

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSti AT UN AUTHORITY 3 DISTRIBUTION,/AVAILABILITY OF REPORT

2b DECLASSIFICATION DOWNGRADING SCHEDULE Approved for public release, distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9185

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Research Laboratory Code 5340

6c ADDRESS (City, State, and ZIPCode) 7b ADDRESS(City, State, and ZIP Code)

Washington, DC 20375-5000

8a NAME OF FUNDING, SPONSORING Tb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research
8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217-5000 ELEMENT NO NO NO ACrESSION NO

62712N XFI2-141-100 DN380-10
11 TITLE (Include Security Classificat i^)

Stein's Lemma-A Large Deviations Approach

12 PERSONAL AUTHOR(S)

Sowers, R.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) "5 PAGE COUNT

InterimI FROM TO 1989 March 21 14

16 SUPPLEMENTARY NOTATION

(See page ii)

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Stein's lemma Large deviations

Cramer's theorem

19 ABSTRACT (Continue on reverse if necessary and identify by hlnck number) -

.-ift this report,'-we-p-oe Stein's Lemma by using a Large Deviations principle. Q proof is general, direct, and
intuitive. We represent the log-likelihood ratio used to test between the two hypotheses on the basis of the first n obser-
vations as a sample mean of i.i.d. observations. Led by the Strong Law of Large Numbers, we formulate a series of
hypothesis tests that bound the true Neyman-Pearson tests. We then determine the asymptotic behavior of these tests by
using arguments from the proof of Cramer's Theorem. The conclusion of Stein's Lemma follows.

20 D)STRIBUTION ,AVA)LABILIT', OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

S]UNCLASSIFIEDIUNLUMI TED [] SAME AS RPT C3 DTIC USERS UNCLASSIFIED
22a NAME I- F RESPONSIBILE INDIVIDUAL !22b TELEPHONE (Include AfreaCode) 22( O -FICE SY(MBOL
R, Sowers ,, (202) 767-6321 1Code 5,340

DO Form 1473, JUN 86 Previous edriions are obsolete __SCuRI.TY CLASSIF:CAr ON i1- THIS PAGE

S/N 0102-LF-014-6603

ii



16. SUPPLEMENTARY NOTATION

This work was performed while the author was with the Department of Electrical Engineering and Systems
Research Center of the University of Maryland, College Park, MD 20742. The work of this author was supported
through an ONR Graduate Fellowship. The author is currently with the Department of Mathematics, University of
Maryland. College Park, MD 20742.

DO Form 1473, JUN 86 __.._- ,.. _.. .... , . _. ..



CONTENTS

IN T R O D U C T IO N .................................................... 1

T H E M A IN R ESU LT ................................................. 1

MOTIVATION FOR TIlE PROOF OF STEIN'S LEMMA ............. 2

PROO F O F TH EO REM 1 ............................................ 3

C L O S U R E ............................................................ 6

ACKNOW LEDG M ENTS .............................................. 7

R E F E R E N C E S ....................................................... 7

APPENDIX A - The Divergence Integral ............................. 8

APPENDIX B - The Strong Law of Large Numbers .................. 9

Accession For

NTIS GRA&I Orr
DTIC ?A.B El
Unarmnounce d

Just If oe t ion

- f va t , L l Iity C-odes

Gkvr.fl. &id/cr
Dist

i



STEIN'S LEMMA-A LARGE DEVIATIONS APPROACH

INTRODUCTION

,it this report, we prove Stein's Lemma, see Ref. 1, by using a Large Deviations Principle. This idea
was first proposed in Ref. 2; we provide a proof that is more general, direct, and intuitive.

Stein's Lemma is formulated as follows. Let {XJ}1 be a sequence of i.i.d. observations defined on
some underlying probability triple (Q, ", R) and taking values in a measurable space (E, F). We know that
the probability measure R is one of two probability measures P or Q. For each n = 1,2,..., we form a
Neyman-Pearson test to decide whether R = P or R = Q on the basis of X 1 ,X 2 ,.-.X,, (clearly, we need
that P i Q for this problem to be meaningful). Stein's Lemma states that for a fixed power constraint, the
size of the Neyman-Pearson tests decays at an exponential rate and provides a formula for this rate.

To place the problem in a rigorous setting, let {.F,}c be the filtration of." generated by the observations;

.T := O{Xi,X 2 ... Xn}, n = 1,2... (1)

Let 0 < c < 1 be a predetermined constant, and take n = 1,2 .... For each set D in .Yn, we can define
a decision rule to select P or Q by choosing P if and only if w E D for any w E f0 (the requirement that
D be in f)7 is of course equivalent to the requirement that our decision be a function of the observations
X 1 , X2... X,). To form the Neyman-Pearson test of power c, we vary D E Fn so as to minimize the
size Q(D) (the false alarm rate in radar parlance) subject to the requirement that the power P(D) satisfy
P(D) > I -( (i.e., a lower bound on the detection probability). Let e(n,C) be this minimum, or more exactly,
infimum; symbolically

e(n,c) := inf{Q(D) : D E FJ, P(D) > 1 - c}. n = 1,2,... (2)

Define P (respectively Q) as the probability measure induced on (E,') by any one of the observation
RV's XI, X 2 ,... under the probability measure P (respectively Q). Since the observations are identically
distributed, it does not matter which X, we select to define P and Q; we may choose P PXI1 and
Q = QX 1

1. The result that we wish to prove can now be stated.

THE MAIN RESULT

Theorem 1 (Stein). Assume that P is absolutely continuous with respect to Q. Then

lim I log e(n, c) = -D(P, Q) (3)
n n

where

D(P,Q) Jlog dP , (4)

the integral possibly being infinite.

If the observation space E is finite, this result is the same as the one in Ref. 3, Corollary 2.2.2, and in
Ref. 2. We note that D(P,Q) is the Kullback-Leibler informational divergence of P from Q; thus we know
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SOWERS

that D(P,Q) is well defined; see Ref. 4 and Appendix A. Note also that if P is not absolutely continuous

with respect to Q, the Nevyian-Pearson tests are trivial and e(n, c) = 0 for n large. Indeed, assume that/ 5 is

not. absolutely continuous with respect to Q so that there is a set A in E such that P(A) > P but Q(A) = 0.

For each n = 1,2. define the decision region D, E X" as

D, :{Xi E 4forsomei= 1,2,. ,n}

n (5)

i=1

Then
P(D,) 1 - P(D, )

=I - P nl X E (6)

= - P(A)n,

so that lim,, P(D,, ) 1, and consequently D,, satisfies the power constraint for n large. But since

n

Q(D ) IQ{Xi A)
t=1 (7)

ZQ(A) = 0,
i=1

we conclude that for n large, e(n,c) Q(D,,) = 0.

MOTIVATION FOR. THE PROOF OF STEIN'S LEMMA

It is a well-known result that Neyman-Pearson tests are performed by comparing a log-likelihood ratio

to a threshold, see Ref. 5, Thin. 5.5.2. For each n = 1,2,.. -, let P (respectively Q,,) be the restriction of

P (respectively Q) to the a-field T, . The absolute continuity requirement on P and Q implies that for each

n = 1,2-. P, is absolutely continuous with respect to Q, so that our log-likelihood ratio is log df /dQ,,.

If we define dP
Y := log --=(Xi), n 1,2,.. (8)

dQ

then it is not difficult to verify that d P,
log Q,= S- n =1, 2,... (9)

where

Sn : yi. n= 1,2,... (10)

i=1I

Note that the sequence {uo n } is an i.i.d. sequence and that we have suggestively written the log-likelihood

ratio as a partial sum. If I? I ", then by the Strong Law of Large Numbers (SIN),

IY P f d P

f dP dp (11)
= log -P

= D(P, Q).

2
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Alternately, if R Q, we would then expect that if Q is absolutely continuous with respect to P,

1S. Q--- Y dQ
nli

E dQ (12)
=- /Elog d

=E IdP
S- D(, P).

(See Appendix B for the SLLNs that are required in Eqs. (11) and (12) if the integrals are infinite.)

From Eqs. (11) and (12), our hypothesis tests should reflect the fact that Sn/n has different almost sure
limits under the different probability measures P and Q. If we define our decision regions so as to decide
that R = P if S,/n is near D(P,Q), then a high rate of detection and a low false alarm rate should result for
large n. (Note that Eqs. (11) and (12) explain a technical difficulty. If P agrees with Q on Y := V,' 1 .Y,,
then we expect not to be able to distinguish between R = P and R = Q from the observations. This
is reflected in the easily verified fact that P = Q if and only if P and Q coincide on F"', in which case
D(P,Q) = D(Q,P) = 0 and Sn/n tends almost surely to 0 under both P and Q.) Since {Yj} is i.i.d., we
can use Cramir's theorem from the field of Large Deviations, see Ref. 6, Theorem 3.8 and Ref. 7, Theorem
3.1, to describe the rate at which Sn/n tends to its limit under P and Q. The reasoning behind the following
arguments is then clear.

PROOF OF THEOREM 1

A Large Deviations Principle
Let us temporarily assume that
(a) the probability measure Q is absolutely continuous with respect to the probability measure P,
(b) D(P, Q) < oo and D(Q,P) < oo, and
(c) the moment generating function M of Y under Q; i.e., M(O) := fn eY'dQ, is finite for all 0 in JR.

Under these assumptions, we may directly verify the upper bound

limsup I loge(n, c) _< -D(P,Q) (13)
n n

by invoking Cram6r's Theorem Fix 6 > 0 and set F6 := [D(P,Q) - 6, oo). From Eq. (11) we know
that if R = P, then lim, Sn/n E F6 P-a.s. Since almost sure convergence is stronger than convergence in
probability, it is immediate that

limP({S,/n E F6 }) = 1, (14)
n

so for large n, the decision regions given by

D, :={Sn/EF6 } = 1,2,... (15)

satisfy the power constraint.

We can now apply Cram~r's Theorem to verify that

1
lim sup - log Q(Dn) < - inf I(x), (16)

n n- xEF6

3
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where I is the Legendre-Fenchel transform, see Ref. 8, Chapter 6, of log M(.);

I(x):= sup (Ox - log M(O)). x E IR (17)
OER

From Ref. 6, Lemma 3.3, we know that x : I(x) is nondecreasing for x > fn YidQ = -D(Q, P), the integral
being well defined under assumption (b). Thus

inf I(x) = I (D(P,Q)- 6) (18)
-T E Fa

But
I (D(P,Q) - 6) > (1) (D(PQ) 6) -log M(1) (19)

= D(P,Q) - 6

since

M(1) = J -E' l Q = = 1. (20)

Combining Eqs. (16) through (19), we have that

limsupQ(D,) !S -D(P,Q) + 6. (21)
n4

In view of Eq. (14), we then have that

limsup - log e(n,c) _< limsup 1 log Q(D,4 ) < -D(P, Q) + 6. (22)
n n n n1 -

Since 6 > 0 was arbitrary, Eq. (13) is established.

An inspection of the proof of Cram6r's theorem reveals how to prove Theorem I when assumptions (a)
through (c) are not enforced.

Case 1: D(P, Q) < oo
Upper Bound: Fix 6 > 0 and again set Fb := [D(P,Q) - 6,oo) and

, := {S,/n E Fb}. n = 1,2.... (23 )

As in the above arguments, we know that for large n, D satisfies the power constraint. Following the
arguments of Ref. 6, Lemma 3.4, we argue that for each n = 1, 2,...

Q(D,) = _((PQ)-6)}dQ

< exp [S0 - n (D(P, - 6)] dQ (24)

= exp [-n (D(P,Q)- 6)] ieS~dQ

= exp [-n (D(P,) - 6)1 (1),

and consequently,

limsup -IlogQ(Dn) < -D(P,Q) + 6. (25)
n n

As above, this is sufficient to prove the upper bound Eq. (13) since b > 0 was arbitrary.

4
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Lower Bound: We next prove that

liminf log e(nc) > -D(PQ). (26)n 7.!

Our proof of Eq. (26) is essentially the same as that in Ref. 2. Take 6 > 0. Then for each positive integer
n, we can find a set U,, in Y, so that

P(U,) _ -(27)

and

Q(Un) <_ e(n, ()e 612 . (28)

Define F= (-c,, D(P, Q) + 6/2] and set

I), := {S,/n E F6). n 1,2,... (29)

As in tlie proof of tle ul I1 r hound, the SI.LN ensures that limo P(D,,) 1, so necessarily

lir inf P(Un fl D,) _> 1 - c. (10)

For each n 1,2 ..
P(1, n D,,) = n,(U, f D,)

- / esndQ
,7.nD. (31)

-< ] exp [n (D(P,Q) + 6/2)] dQ

< exp In (D(P,Q) + 6/2)] Q(U,, n D,),

wh,.r,' we have tiid E'q. (9) and the fact that S, < n (D(P, Q) + 6/2) on Dn, which is obvious from Eq.
(2'.)). Thus, upon coiniiig Eq. (28) and Eq. (31), we have

e(nc) >_ Q(U!;)c - 06 / 2

> Q(U, l D,)e - n6 / 2  (32)

> P(J, n D,,) exp [-n (D(P,Q) + 6)],

, Hi 'w of lq. (30),

lhrn inf I log (n, c) > -D(P, Q) - 6; (33)
n 71

,iC(- b > 0 was arhitrary, F' . (26) is true.

Case 2: )(['.Q) = x

W,' xish to prove that

li, ir I log e(n, c) = -oo. (,l)
n n

Irom t ie SI. N fomiild in Appenlix I, we know that limo Sn/n = oo P-a.s. if R = P. Fix a positive number
I, aril 10fire Ine 1 I, x ) and for each n 1,2,..., let the decision region D, be given by

, n E F}
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Then lim,, P(D,) = I as in Case 1, but for each n = 1,2,...,

Q(D.) =j nB} dQ

< exp[S, - nB~dQ

e" /n es. dQ

e-n ()

so that

lim sup log Q(D,) _< -B. (37)
n

Hence, in a manner analogous to Eq. (22),
11

linsup - log C(n,) _ lim sup 1 log Q(D,) _< -B, (38)
n TI n TI

and since B was an arbitrary positive number,

limsup log e(n, c) = -o, (39)
n n

which was to be proved.

The proof of Theorem I is complete.

CLOSURE

Note in our proof of Stein's Lemma that we did not formulate the Neyman-Pearson tests. The Strong
Law of Large Numbers and Eqs. (11) and (12) led us to a series of tests that bounded the true Neynian-
Pearson tests. The asymptotic behavior of these tests was found by using Large Deviations arguments, and
Stein's Lemma resulted.

In the Neyman-Pearson tests studied here, we minimized the false alarm rate subject to a lower bound
on the probability of detection. The more common formulation is to maximize the probability of detection
subject to an upper bound on the false alarm rate. By reversing the roles of P and Q, we see that the two
problems are equivalent. Define

7f(n, c) := sup{Q(D) : D E Y"n, P(D) _<5} n =1, 2.... (40)

Then 7t(n, c) corresponds to maximizing the probability of detection Q(D) (the power) subject to the con-
straint that the false alarm rate P(D) satisfy P(D) < c (an upper bound on the size). Since

y(n, c) = 1- e(n,c), n = 1,2,... (41)

an alternate way of stating the result of Theorem I is

lim I log (1 - -y(n, c)) = -D(P,Q). (42)
n n6
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Note also that we call ill fact relax the assumption that the observations are i.i.d. If P~, is absolutely
continuoulS with respcct to Q,, for each it = 1,2,. and if there is a constant Af, possibly infinite, such that,

.If = P-linm Iog ±P_ (43)

hen it is easy to verity, using the above arguments, that

lim-Ilog e(n, c) = M. (.15)
nl n

We't shall leave the proof of this extensio' to the interested reader.
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Appendix A

THE DIVERGENCE INTEGRAL

The proof that the divergence integral is well defined is difficult to find in the literature; here we provide
a simple proof. We show that

E (log d) dP< , (< 0)

where x- min{-x,0}. For convenience, define X := d. Now

J (log-X)- dP = Jx<'}-logXdP

= f -X log XdQ (A2)

p X_} (X)dQ,

where :(t) := -tlog I for t > 0 and p(O) = 0. If Q{X < 1} = 0, Eq. (Al) follows immediately from Eq.
(A2), so a.ssuvne that Q{X < 1) > 0. By differentiating twice, we see that ( is concave on [0, X), so by
Jensen's inequality,

:(X)dQ S Q{X <_ l} Q{x <I} XdQ) (A)

P{X 1)= O x < 1} 0 -(-YX < ))'

which is clearly finite; returning to Eq. (A2), we see that Eq. (Al) is true when Q{X < 11 > 0.



Appendix B

THE STRONG LAW OF LARGE NUMBERS

The proof of Eqs. (11) and (12) requires the following formulation of the Strong Law of Large Numbers.

Proposition. Let {XI} be a sequence of i.i.d. RVs defined on an underlying probability triple (W,Fr , P).
Suppose that E[X] is well defined and -oo < E(X1 ] < oo. Then

I 
P3

n X P-a-. E[X, .(il
i=1

Proof. If E[X1 < , we may use Ref. 9, Theorem 2.3.1 to verify Eq. (B1); assume that E[X) = c,. 'Take
any positive constant 13, and define

Xn :=min{XB}. n= 1,2,... (132)

Clearly the {X' }j are i.i.d. and P-integrable, so Ref. 9, Theorem 2.3.1 again applies and we conclude that
P-a.s.

lim! XB = E[XB]. (33)

But 1'-a.s.

lim inf1 Xi >! lim infn- XiP > E[X] (B.4)
1 i=I

Since 13 was an arbitrary positive constant, we let B tend to infinity, and by the Monotone Convergence
Theorem, we then have from Eq. (B4) that P-a.s.

I1

jim inf Xi = 0, (/35)
i=1

which is the result we seek when E[X 1] =c. U
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