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1. Accomplishments under Contract for the Period

,a5%'Jad - 7.re 0/. ;P
1 July 1979 to 30 June 1980

1.1 Papers and Lectures

a. Comparison of the Approximate and Exact Full Wave

Theory for the Sounding of a Stratified Ionosphere

i. University of Pennsylvania Report

ii.Report Enclosed with Final Report

b. Colloquium, University of Pennsylvania, February, 1980

Colloquium, New Jersey Institute of Technology,
December, 1979



1.2 Reserach Objectives Which Have Been Accomplished

A copy of the above-mentioned report is included with this final

A
report. A paper entitled "Curved Space Scattering" has already been sent

to AFOSR. The abstracts of the paper and report contain statements of

the research accomplished. In addition we have looked into the following

problems: x
- a. We have employed the Kanal-Moses variational principle to treat

the synthetic data discussed in the report listed in 1.1. It was found

that if the initial trial function is within 10% of the actual result,

then the K-M variational principle gives the result to better than 1%.

b. We have generalized the results of Kay for n-poles in such a

way that practical applications are possible, e.g. to the ionosphere. To

test the method we are in the process of studying the 4- and 10-pole

cases before treating the 100-pole case.

, I



1.3 Interaction with Other Investigators

a. We discussed scattering at a Physics Colloquium, University

of Pennsylvania, February, 1980.

b. We have been discussing problems of mutual interest on a

continuing basis with Prof. H. Moses of the University of

Lowell and Dr. A. Skalafuris of the Naval Research Laboratory.

The problem of obtaining information beyond a potential peak

was discussed with Prof. Percy Deift of the Courant Institute

and with Dr. Robert Greene of Science Applications Inc.

We have had extensive discussions concerning inverse scat-

tering with Prof. C. V. Vishveshwara of the Raman Institute

in Bangelore, India. A collaboration between India and the

United States is now under way.

Applications to the ionosphere have been discussed with Drs.

A. Jordan and S. Ahn of the Naval Research Laboratory. Appli-

cations to oceanography have been discussed with Dr. E. Toton

of the Naval Oceanographic Laboratory and Dr. R. Adams of the

Applied Physics Laboratory.

• . , -- - - ,,,,,,,m nn umKii



A COMPARISON OF THE APPROXIMATE AND EXACT FULL WAVE THEORY

FOR THE SOUNDING OF A STRATIFIED IONOSPHERE

Jeffrey Cohen and Michael Kearney
Department of Physics, University of Pennsylvania

Philadelphia, Pennsylvania 19104

1. INTRODUCTION AND SUMMARY

The purpose of the present communication is to compare

methods of obtaining the electron density profile N(z), which is

assumed to be a function of altitude z, using the usual approxi-

mate W.K.B. method and using the full-wave method. The data

needed to compute N(z) using the two methods is identical. This

data is the time as a function of frequency which it takes a

train of horizontally polarized electromagnetic waves, trans-

mitted vertically, to be reflected from the ionosphere back to

the transmitter.

Since the data used is identical for the approximate and

full-wave theories, there is, in principle at least, no need to

modify equipment. The difference in treatments is essentially

computational and the same experiment can be used to obtain

N(z) using the approximate and exact theories.

The approximate treatment has been in use for over forty

years and many of the purely computational difficulties have

long since been overcome. Those who use ionosondes and calculate

profiles have become so accustomed to the use of the approximate

method that they often forget the method really is approximate
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The exact treatment suffers from the defect that it is new and

therefore the purely computational methods are only now being set

up. Indeed one of the objects of the present communication is to

stress the need for understanding the computational difficulties

and thus make it possible to apply the full wave theory to the

data. But the principal point of this introduction, and of this

communication is to provide a larger view of the problem.
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2. THE EXACT DIFFERENTIAL EQUATION FOR THE ELECTROMAGNETIC

FIELD.

Let E(z,t) be a component of the electric field perpen-

dicular to the z-axis or vertical axis along which the electron

density is stratified. Then with

Ek(z,t) = ei t Ek(z)

(w = ck) (1)

the equation for Ek(z,t) is (ref. 1, page 129)

d2 E(z) + k 2 n 2  (z) = 0 . (2)

In (1) w is the angular frequency, k = - is the wave number in
c

free space and n is the index of refraction given by

2 N (z') 4 Ie 2n2= 1 ~)Te

mc 2k 2  (3)

where m, e, c are the mass of the electron, the charge of the

electron and velocity of light in Gaussian cgs units.

In our discussion we have ignored electron collisions and

the effect of the earth's magnetic field. This physical (as

opposed to mathematical) approximation is often assumed in

ionospheric sounding methods. At the magnetic equator, the earth's

magnetic field igparallel to the earth's surface and hence the

polarization of the jonosonde can be chosen so that the magnetic field

does not affect the scattered wave. In other situations, the effect

of the magnetic field may also be eliminated (see Ref. 3). The

effect of collisions is negligible at higher altitudes (z > 80 km).

One of the ultimate objectives of the present train of research is to

determine whether these physical approximations lead to errors greater

than those made by the mathematical approximations. In any case,

we shall assume as
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is customary that the use of Eq. (3) for the index of refraction

is a good approximation for use in ionospheric sounding in certain

geographical regions.

Equation (2) can also be written

d2

d__ Ek(z) + (k2 - V(z)) Ek(Z) = 0 (4)dz2 kk

where V(z) is given by

V(z) = K N(z), with K = 4 e 2 .

mc 2  (4a)

Equation (4) is the one-dimensional Schroedinger equation

which has been exhaustively studied, There has been a renewal of inter,

arising in recent years because of its connection with soliton

theory (4). The potential V(z) is essentially the number density

N(z).

In the direct problem of reflecting electromagnetic waves

from the ionosphere we assume V(z) (or N(z)) is very small for

z < z0 and z > zI .

We look for solutions of (4) which behave like
= ikz +-bkk

Ek(z) = e + b(k) e for z < z0

= t(k) e i k z for z > z1 (5)

The quantities b(k) and t(k) are called the reflection

and transmission coefficient respectively.

For a wave with wave number k,

we have

E(z,t) = e i k ( z - c t ) + b(k) e - i k ( z + c t ) , z < z 0

= t(k) eik(z - ct), z > z1 . (6)
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The boundary conditions (b) are interpreted to mean that

27r
a plane wa,e with wave number k =- moves initially toward

the scattering potential V(z) and then is partially reflected

toward the left. A transmitted wave on the other side of the

potential which moves to the right is also present.

Actually, one never sends an infinite plane wave toward

the potential (or ionosphere). Instead one sends a pulse con-

taining several wave lengths. This pulse can be represented by

+ 0 0 - i w t
E(x,t) = f A(k) e Ek(Z) dk (7)

and is thus a superposition of the infinite plane waves. The

amplitude factor A(k) has its peak value near or at the value

of k = k0 , where k0 is the wave number of the plane wave which

appears in the pulse. One sends in a pulse

+C* ik(x-ct)
Eincident(x,t = f A(k) e dk (8)

and gets back a reflected pulse

+C0 -ik(x+ct)
Ereflected(Xt) -f A(k) b(k) e dk. (9)

Since Eincident(Xt) and E reflected(X,t) are of finite extent

we can ask for the time for the reflected wave to return to the

transmitter. This time will depend on k It is given by

T( evaluated at k= k (10)

where 0(k) is the phase of b(k); i.e.

i (k)b(k) = [b(k) [ e .(11)
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The virtual height h is given by
v

h= - cT(k). (la)

It should be remembered that the theory thus far is exact.

(In using (10) for the time delay it is convenient to think of

the transmitter as being located at z = 0.)
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3. THE APPROXIMATE INVERSE PROBLEM

The direct problem is, for our purposes, the following:

Given V(z) (or equivalently N(z)), find T(k).

The inverse problem is: Given T(k) for all k, find V(z)

(or N(z)).

The approximate solution is obtained from the W.K.B. ap-

proximation. Assume Ek(z) has the form

Ek(z) = A e (12)

Substitute (12) into equation (2) to obtain

dF 2  .d2F(a- k = 2 n 2 + i d2

dz2  (13)

which becomes a Riccat4 equation if y = dF/dz. An iteration pro-

cedure can be started by assuming on the right of eq. (13) that

k2n 2 is large compared to --F , i.e. n/A is large or n varies
dz

2

slowly compared to the wave length (see Ref. 3 for a more careful

analysis of domain of validity). The first iteration gives

F' = + kn while the second yields
n uI,

iF iF in
F' = + kn (1 + -) + kn(l + ) = + kn + 2n

k2n2  2k2n 2  2n

which gives F by a quadrature. Since Eq. (13) is non-linear,

the two particular solutions of (13) cannot be superimposed to

find a general solution. However, the solution F can be substituted

into Eq. (12) to obtain particular solutions

Ek(Z) A& (4 exp Ei k fZ n(z') dz' . (14)
zo

to Eq. (2). If one particular solution to Eq. (2) is known, it

can be used to give a first order linear equation which can be

solved by quadratures thereby giving the general solution.
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Alternatively, two distinct particular solutions can be added

to give the general solution of Eq. (2) which is (within this

approximation)

Ek (z) = A(k)Jn(zj-1/2 exp i k j n(z') dz'j.
z0

B(k) n zl/ exp i k In(z') dz'.
z- (15)

Using the first boundary condition of Eq. (6) and noting

n(z) = 1 for z z O , one finds
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Ek (z) = eikz + b(k) eikz (z < z 0 )
ilcze~keikzo e-ikz

= A(k) e-ikz0 e i k z + B(k) e e

ikz 0

Hence A(k) = e

h(k) = b(k) e kz (16)

Let zk be the value of z for which n(z) = 0, i.e. from Eq. (3)

and (4a)

V(zk) = k 2 . (17)

Our picture, the usual one, is that V(z) = 0 for z < z0 and ,

increases monotonically toward a maximum as z increases above

z 0 . As k2 varies from 0 to the maximum of V(z, a zk is defined

by (17).

From (15), Ek(zk)-) - unless

A(k) exp[i k f n(z')dzj + B(k) exp i k f n(z')dz

zo zo

0. (18)

Thus
z k

B(k) = - A(k) expf2ik f n(z') dz']
z0

ikz 0  zk
= -e exp[2ik f n(z') dz' . (19)

Or from (16) 0

2ikz 0 [ Zk (20
b(k) = - 0 expf2ik n(z') dz'(20)

The phase *(k) of Eq. (11) is 0

zk

(k) = 7r + 2 k[z + f n(z') dz'J (21)
z0
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T(k) = - z0 + Zk nW) dz'+L f n(z ) dz'zo z0

+2k n(z k (22)
c k ak

But n(zk) = 0 by definition (see Eqs. (3) and (4)), also

an(z) " 1 y_V(z)
3k

11 k2_ (z) + 1

*1 n1z*+ i
n(z) + kn(z) (23)

Thus finally
Tk 2 Zk dz,

T(k) = z0 + f n(z')
z0

or
zk
k dz'

T (k) [~z 0+ kf I___ j (24)Sz) 0  2 .2V(z,)

This is a well-known integral equation for V(z). The first
2z0

term on the right -- represents the time for the signal toc

reach z0 and return to the transmitter at z = 0. If k0 is

the lowest value of k for which there is a reflection, then

= cT(k0) (25)• 0 - 2 "( 5

Now that z0 is determined, one can find V(z) (or N(z)) using

Abel's method of inversion (Ref. 5). For each value of k one

gets T(k) experimentally. One then can find V(z) (z0 < z < zk )

using Abel's method. This is the usual procedure.
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Note if k2 > V (z), the method fails. Even if k2 ismax

near but less than Vmax , we are outside the domain of validity

because V(z) changes rapidly near its maximum.
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4. THE EXACT INVERSE PROBLEM

The exact or full-wave theory version of the inverse prob-

lem is developed in Refs. 1 and 2.

Let b(k) be the reflection coefficient as in Eq. (6). The

potential can be recovered from a knowledge of b(k) through the

use of the Gelfand-Levitan algorithm. To be specific let us

define R(z) by

+-ikz
R(z) = (2,)"1 f b(k) e dk. (26)

The reflection coefficient b(k) satisfies the following con-

ditions (see Refs. 1, 2 and 6.)

b(-k) = b*(k), b(k) analytic in the upper half-plane,
2 ikz0o

b(O) = -1, R(z) - 0 for z < 2z0 , b(k) = e g(k). (27)

The phase of g(k)approaches a finite limit as Ikl +- on the real axis.

The time delay obtained from the phase of b(k), approaches the
2z 0

value-- as Iki , i.e. if 0(k) is the phase of b(k) as in

Eq. (11)

*(k) - 2kz 0 as IkI * . (28)

Let us define the Gelfand-Levitan kernel K(z,y) by

K(z,y) = 0 for either y > z, or z < z0. (29)

For y < z and at the same time z > z0 we require K(z,y) to

satisfy the Gelfand-Levitan equation:

x
K(z,y) =- R(z+y) -n(z+y-2z 0) f K(z,u) R(u+y) du (30)

2z 0 -y

where n(x) is the Heaviside function defined by n(x) = 1 for

x > 0, n(x) = 0 for x < 0.
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Having found the Gelfand-Levitan kernel K(z,y), V(z) is

given by the simple expression

V(z) = 2 d K(z, • (31)

However, the electric field Ek(z) can also be obtained using

E (z) = e + b(k) e + 2 K(z,u) ieiku+ b(k) e-iku2 du.k 2z 0 -z
(32)

Thus to find V(z) using the algorithm, we obtain the re-

flection coefficient b(k) from its phase 0(k).

This is accomplished using the analytic properties of b(k)

and hence log b(k) and a generalized form of the Hilbert trans-

form. To be specific, (d/dk)o(k) is found from the time delay

in accordance with Eq. (10). From Eq. (28) z0 can be found.

The phase O(k) is obtained by integration with the boundary

condition 0(0) = w. Let v(k) be defined by

v(k) = 0(k) - 2kz 0  (33)

and w(k) by

w(k) = log Ib(k)I ,- (34)

then
w~k) P Sf kv(k')dk

w(k) = r f k'(k'-k) dk'. (35)

In Eq. (35), the symbol P means the principal part of the

integral,

It should be mentioned that there are variational prin-

ciples available (Ref. 7) which enable one to obtain V(z) when

b(k) is known. These principles have an upper bound built

into them.
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One also has available a generalization of the Gelfand-

Levitan algorithm. If for a given reflection coefficient

b 0(k) one knows the electron density V0 (z), one can obtain

V(z) - V0 (z) in terms of b(k) - b 0 (k) (Ref. 8). One can view

this generalization as offering at least two options. One may

regard V(z) - V0 (z) as the error in density due to an error

b(k) - b0 (k) in the reflection coefficient. Or one may think

of V0 (x) as being the density associated with a time delay

leading to b0 (k) having been obtained from a model or a pre-

vious calculation (even using the WKB method). Then V(x) is

obtained as a relatively small change due to the change in the

reflection coefficient. The variational principle can also be

used to obtain V(x) - V0 (x) from b(k) - b 0(k) together with a

bound on this difference. We refrain from details.
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5. NUMERICAL SOLUTION OF THE EXACT INVERSE PROBLEM

A straightforward technique for solving the Gelfand-Levitan

integral equation numerically is to replace equation (30) with a

discrete approximation on a uniform coordinate grid in the (z,y)

plane. (Refs. 10 and 11). Assuming nonvanishing z0 and grid

size A yields the approximation

m+n
K =- Rm+n - A E Km,i-n RiWi,m+n -m <n < n (36)i=0

where Kmn = K(mA,nA) and Rm = R(mA). The term W. ,m+n is a

weighting factor which depends on which quadrature rule is chosen

to approximate the integral in equation (30). The best choices

would be those forms which maximize the precision of the approxi-

mation for a given grid size and integrand and which allow stable

numerical computation. Note that the weighting factor may depend

on the number of points summed over. For example many quadrature

rules depend on whether the number of grid points summed over is

odd or even.

The discrete fourier transform (Ref. 12) provides a

natural framework for calculating the values of Rm , the fourier

transform of the reflection coefficient, b(k), at the coordinate

grid points. This follows from the fact that fourier integrals

can be approximated by discrete sums over a uniform grid and that

computationally efficient algorithm, the fast fourier transform

(FFT), (Ref. 14) exists for evaluating these sums (Ref. 13).

Once the values of Rmi,i-0, M have been calculated (we assume

here that b(k) is given or measured experimentally) Eq. (36) is
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equivalent to a set of 2m+l simultaneous equations for each

value of m. Solution of these equations will yield all the

values of K for -m : n i m. If desired, scattering potentialmn

may then be derived fromthe values of Kmm, using eq. (31).

There are a variety of techniques available for solving such

sets of simultaneous equations. These techniques may generally be

divided into two classes, direct and iterative. Direct methods

have the advantage of assured solution for nonsingular matrices

but require -N3 arithmetic operations for their solution (for

matrices of size N). This is a distinct disadvantage for large

sets of equations. Iterative techniques (Gauss-Seidel, Jacobi,

for example), generally require KN2 operations (k is the number

of iterations) but do not assure convergence in less than N

iterations and so may not be superior to direct methods.

Accelerated convergence might be accomplished through the use of

relaxation methods, a common approach in the numerical solution

of partial differential equations. However, the best technique

probably depends to a great extent on the problem at hand.

The authors have used both approaches successfully on the

model calculations of the next section.
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6. NUMERICAL SOLUTION FOR SOME MODEL POTENTIALS

Our approach to testing the numerical methods described in

the previous section is to use synthetic data obtained from

simple potential models for which exact, analytic solutions

are available for the potential, reflection coefficients and

eigenfunctions. This has the advantage that the potential V(x)

and hence the Gelfand-Levitan kernel K(x,x) can be evaluated

easily. This gives a direct, simple technique for evaluating

numerical methods for accuracy, stability and speed.

We have chosen to start with model reflection coefficients

derived from known potentials rather than from arbitrary reflection

coefficients corresponding to a potential with properties not

known a priori. The solutions of the Gelfand-Levitan integral

equation may then be compared with the known solutions in a

straightforward way.
in table I

Below/, we list the models we have used for preliminary tests

of our numerical techniques. We give both the potential form

and reflection coefficient. For each potential we have calculated

the virtktal height (Eq.(ll and the fourier transform of the

reflection coefficient for parameters which are typical of those

observed in the ionosphere: penetration frequencies of the order

- 3mhz,widths of order -50 km. These results are presented in

Figs. 1 through 14. One feature of the fourier transforms should

be mentioned. For the more realistic ionospheric models n, the

rectangular and the parabolic electron distributions, the trans-

forms exhibit rapid oscillations whose wavelength is roughly Kp
-l,
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where K is the penetration wave number. This feature will

place a severe strain on calculations using the discrete

Gelfand-Levitan equation, as the grid size must be made suffi-

ciently small so that the approximation for the integral in

(30) is accurate. This means that one will have to solve a

large set of simultaneous equations in order to produce the

desired results. The solution of such sets of equations is

a machine intensive product requiring large amounts of storage.

At this time, it is this factor which restricts the major possible

numerical solutions of the Gelfand-Levitan equation. The authors

are presently investigating the possibility of lifting or at

least easing this restriction.

Figures L through.W present the results for K(x,x) versus x for

four potential models: a single delta function (I)

a potential with a rescaled delta function reflection coefficient(i4')

a 2-delta-function potential (23) and a potential step (15).

The results exhibit two major properties. First the presence of

discontinuities in K(x,x) does not impair the effectiveness of the

algorithm, as the discontinuities one expects from the analytic

solutions for V(x) are present in the numerical results. Second,

the precision of the results gets worse as x increases. This is

to be expected since any quadrature rule used to approximate the

integral in (30) will be less accurate, the larger the range of

integration. This effect can be reduced by keeping the grid size

small and using those approximations which are best suited to the

form of the integrand.
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TABLE I - IONOSPHERE MODELS

Model I - Single Delta Function

Potential V(x) = V 06(x)

Reflection bk i(kV)i-
Coefficient b0)

Fourier transform Figure 7
of b(k)

Virtual height Figure

Gelfand-Levi tan
Solution Figure i

Model II - Rescaled Delta Function

Potential V(x) = vV 06(x) V 0 a 2sech 2 (ax+x)

Reflection 
-Coefficient b(k) = -iv((2k/V 0)+1) 1

Fourier Transform
of b(k) Figure 1 (rescale by V)

Virtual height Figure 2

Gelfand-Levitan

Solution Figure 14

Model III - Double Delta Function

Potential V(x) = V 06 (x) + V 1 6(x-x 1

Reflection
Coefficient b(k) = (-(l+(2ik)/V 0)+(l-(2ik/Vi))e&2 ikxl) x

(-(l-(2ik/V 0 ))(1-(2ik)/V e-2 ikxl + 1V 1l

Fourier Transform
of b(k) Figure 8
Virtual Height Figure

Gelfand-Levitan
Solution Figure 13
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Model IV - Potential Step

Potential V(x) = ri(x)VO

Reflection (1i-2-))(l+i 0-2 -i~
Coefficient (1i(2) 1

b(k)

k 0 =V 0 h, + k/k0

Fourier Transform
of b(k) Figure

Virtual Height Figure 3

Gelfand-Levitan
Solution Figure 1J5
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