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1. INTRODUCTION

This workshop on "Quantum-Limited Imaging and Image Processing"
represents the eighth of a series of intensive academic/ government
interactions in the field of advanced electro-optics, as part of the Army
sponsored University Research Initiative. By documenting the associated
technology status and dialogue it is hoped that this baseline will serve all
interested parties towards providing a solution to high priority Army
requirements. Responsible for program and program execution are
Dr. Nicholas George, University of Rochester (ARO-URI) and Dr. Rudy Buser,
NVEOC.



2. SUMMARY AND FOLLOW-UP ACTIONS

Opening remarks were by Dr. Rudy Buser. In his introduction he summarized
the scientific and technology missions of NVEOC He indicated a strong
interest in exploring approaches to automatic target recognition (ATR),
particularly those which may be useful for automatic recognition of military
targEts located in a cluttered environment.

Dr. Michael Morris followed withan overview of the work being done at the
Institude of Optics on quantum-limited imaging and image processing. He
discussed an approach to ATR in which a quatum-limited image, i.e.
consisting of only a few detected photoevents, is correlated with a reference
function located in computer memory. A key feature of the method is that it
provides a simple way to reduce the amount of information that must be
processed to make reliable recognition decisions.

Next, three graduate students, working with Dr. Morris at the University of
Rochester, described the main results obtained from their dissertation
research. Thomas Isberg discussed his work on rotation-invariant filtering
using circular-harmonic expansions, and two-staged template matching.
Miles Wernich presented work on maximum-likihood image classification,
stressing the importance of filter designs, which are insentive to intrinsic
object variations with a given class. Edward Watson described methods to
upconvert (both narrow and Broadband) infrared images to a visible-
wavelength range, in which focal-plane detector arrays are readily available.

Dr. David Singer presented an overview of the work at NVEOC on image
processing and ATR, with emphasis on model-based, multi-sensor algorithm
development.

The final presentation was given by Teresa Kipp, NVEOC, on laser radar
imaging. Effects of sampling, field of view, noise, ambiguity interval on laser
imagery were illustrated. Examples of the use of range data to for 3-d surface
profile images were also discussed.

From the workshop the following areas for continued interaction have been
identified:

a. Specialize the University of Rochester's ATR scheme for the recognition
of laser radar imagery, and compare its performance with NVEOC
algorithums. NVEOC will provide the University of Rochester with laser
radar imagery.

b. Initiate interaction with NVEOC personnel on methods for generating
upconverted imagery, and identify specific military applications.

c. Model the manner in which speckle noise distorts a modulated laser
radar beam. In turn, on the basis of this work. NVEOC will model the
probability distribution of error in range measurements.
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IMAGE RECOGNITION AT LOW LIGHT LEVELS

I IMPULSE
RESPONSE C (x,y)

S(x+" ,y+Ve)

INPUT SCENE: V(C,,,) = (C -xi -yi)
i=1

STORED REFERENCE FUNCTION: S (" ,n7)

CORRELATION SIGNAL:

C(xy) = ffdC d, 7 V( ,7 )S(x+' y+,q)

A

N

C(xy) = S( x-xi, Y-yi)
i=1
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Distortion-invariant Image Recognition

Image variations

Geometrical Intrinsic
(Invariant filtering) (Classification)

Rotation Scale Single object Intraclass
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Invariant Image Recognition
using

Quantum-Limited Images

Recognition of a Single Object within an
Input Scene

* Rotation Invariant Filtering: Circular-Harmonic

Filters

* Extraction of Rotation-, Position-, and Scale-

Invariant features: Radial Moments of Circular-

Harmonic Functions

Recognition of Multiple Objects within an
Input Scene

" Two-Stage Template Matching

" Two-Stage Invariant Filtering and Feature

Extraction

Future Applications
- Correlation Tracking



Invariant Filtering

Input Reference Correlation
Function Output

g W,y') R(x,y;x',y') C(xy)

* C(x,y) remains unchanged when g(x',y')
is rotated, scaled, or shifted.

* C(xy) attains its maximum value
when the reference object is input



Rotation-invariance:
The Circular-Harmonic Expansion

e Expansion
00

f(r, 0)= 1 Fm(r) exp(imO)

where
2n

F (r)f= f(r,O) exp(-imO)dO

9 Reference function: mth harmonic

F* (r,O) = F* (r) exp(-imO)m m

* Rotation-invariant correlation
output

IC (x)i = i(g(r 0+(x),F * (r,0)) I

le "'G m(r) F(r) r dr l
0
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Radial Moments of Circular-
Harmonic Functionst

MVsSm = feffr(erne+o ) drde
0 0

-rs !mot 27 0 S1 -ime
= f e e f(re)drde

0 0

Invariant Feature s,m"

IM IIMs,mIs,m lM,0
s,0

Decision Criterion: Distance in
Feature Space, D

D= I (_ (( (inp) - ((ref) )2

m s,m s,m

tRef: Sheng and Arsenault, JOSA A 3, 771 (1986).



Photon-Limited Estimation of
Radial Moments of CHF's

s-2 -im

Ref. Function: r e

Choose s = 2

2t o -ime

N J J f(r,e)e rdrdE

<C> = 00

2T[ oo

f f f (r,6G) rd rdeG

I<C>I IM2m

2,0
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Two-Stage Template Matching

11J
Ref. Window
Location: (x,y)

Before Implementation:
1. Specify required probabilites of detection

and false alarm.

2. Choose similarity criterion and number of photons
for each stage.

Stage One
0 Move the location of the ref. window to

each point in the input scene.

0 Sample using a. small number of detected
photons.

• Compute correlation function or invariant
features.

° Apply threshold similarity criterion.

Stage Two

Examine the locations that satisfied the
similarity criterion using a sufficient number of
photons to achieve the specified probabilities of
detection and false alarm.



Two-Stage Template Matching

ILI
S.

Ref. Window
Location: (x,y)

Determination of the number of photons and
similarity criterion for each stage:

* The number of photons in the first stage should be
as small as possible.

" The similarity criterion is chosen to achieve the
required probability of detection, while allowing as
few false alarms as possible.

* The number of photons and similarity criterion in the
second stage are chosen such that the false alarms
from the first stage are eliminated.

* For a given input scene, it is possible to optimize the
choice for the similarity criterion and number of
photons in each stage.
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The ML approach

• Log-likelihood ratio
PD1nI H I~

ln{l()} = In{ p [ n I H )]
p[n rI H }~

* Decision rule
di

ln{l(n)} Z 0
d2



Related strategies

* Minimize probability of error
d p(2)

j Infl(n1)}d,<> In{ plHi

d 2  p[H (1)j

SMinimize cost of decision

d 1  (c12 - c 22 )p[H (2)]lnln) <In{ ( 2

d 2  (c21 = C11 )p[H ]

(J)
where p(H ) = a priori, class j

c.. = cost of deciding i
when j is correct
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Summary of results
(number of detected photoevents

to achieve 1/10000 error rate)

Tools

ML JM43

Average 91

FK 136

0 50 100 150

Characters

ML 146

Average 246

FK 965

0 500 1000
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Optical Implementation
Matched ML

filter filter

Input F
imageFF

Reference
function

Correlator
outout
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Classification Results
(F vs. R)
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Quantum-Limited Imaging of
Upconverted Infrared Radiation

Outline

Quantum-limited infrared detection

Upconversion methods

Narrow band imaging

Broadband imaging

Broadband upconversion

Upconversion systems

Summary



Infrared Detection

Current detector technology

Low number of pixels

Requires cooling

No mature methods for doing photon-counting

Visible images by IR upconversion

Allows use of well-developed visible detection

Large space-bandwidth product

Uncooled

Photon-counting capability



Upconversion Methods

Incoherent (Bloembergen, 1959)

-IR

Visible - No coherence requirement
Output on pump.

Pump _- Narrow band (limited to
bandwidth of IR transition)

Coherent (Armstrong et al, 1962)

Visibl

IR

Pump
Phase matching

- Only phased-matched IR

Pump IR efficiently upconverts
- Limited bandwidth

Visible

Energy matching



Narrow Band Imaging

Large D*
Active illumination is narrow band
Noise is broad band

Range extension/increased resolution
by photon-counting

Upconversion Cell

I R Visibl

y stemSyste



Broadband Imaging

Classical intensity levels

Broadband imaging improves

performance

x =10.55 -10.8 Am

7.5000e. 1 -TI = .0002
B=1 Hz

6.0000e+1

4.5000e+1

Z 3 . 0 0 0 e + 1 
T 3 W

1 .5000e+1 T40

TzOW00
0 I

0 5.000e-8 1.000e-8 1.5009-7 2.000e-7 2.500e-7

Spectral Bandwidth (in



Broadband UPCOnversion

Alkali metal vapor allows Stark tuningTilted Plates produces variableStrshtalg
axis Of cellStrshfaln



Incoherent Broadband Upconversion

Upconversion Cell

Hl h DispersiveHolographic Lens

Object Lens System* Visible
Image

Dispersive element spreads image in upconversion cell

Each wavelength upconverts at different point in cell

Final dispersive lens system recombines visible light
into single image

*D. Faklis and G. M. Morris, "Broadband Imaging with Holographic

Lenses," submitted to Applied Optics, in review.



Coherent Broadband Upconversion

Upconverslon Cell

+ Dispersive

Lens
IR Imaging System*

Lens

Objc l: Vsble

Second lens produces plane waves in cell

Each wavelength upconverts at different point,
producing a plane wave

Final dispersive element forms single image

G. M. Morris and D. A. Zweig, "White-Light Fourier Transformations,"
In Optical Signal Processing. (J. Homer ed.), pp 23-71,
Academic Press, New York (1987).



Summary

Advantages of upconversion

Larger number of pixels than direct IR imaging

Uncooled

Photon-counting capability

Active imaging uses narrow band,
photon-counting upconversion

Passive imaging requires broadband
upconversion
Dispersive optical elements

Alkali-metal vapor cells



Monte Carlo Image Compression
and Computing Systems

Low-Light-Level Implementation

Image Compression Image Analysis
Object

Photon-Limited DeteCtion
I Pattern Recognition

Optical Implementation of Algorithms
Poisson Random Number
Generator

Electronic Implementation

Image Compression Image Analysis
Obec 

IDetector

Poisson Pseudo-Random P<altn eogito
Number Generator Agrtm



Pattern Recognition using
Quantum-Limited Images

Features

* Data Reduction and Computation Speed

* Minimal Computing Hardware

* Intensity-Based System

Potential Applications

Machine and Robot Vision
Automatic Target Recognition

Low light levels (passive night vision)
Laser radar systems

Correlation Tracker for Vehicle Guidance
Recognition of Spectroscopic Signatures
Radiological and Nuclear Imaging
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inouHStrIal Applications-. r=c. bk'J..t
Vol. 960. Dearborn, M3. June 27-28. 1988

Pattern Recognition using Photon-Limited Images

G. Michael Morris, Thomas A. Isberg. and Miles N. Wernick

The hadtnu of Optics, University of Rochester
Rochester. New York 14627

ABSRAC

The spatial coordinates of detected poroevents and the number of deetdphotoevents in a given area convey information
about the classical irradiance of die input sceanL In this paper the effectiveness of photon-conting techniques for image
recognition is discussed. A correlation signal is obtained by cross correlating a photon-limited input scene with a classical
intensity reference function stored in mcomputer memory. Laboratory experiments involving matched filtering, rotation- and
scale-unrianz Image regnition, mid image classification arereported. For many Images it is found tdin only a sparse
samplin of the input is uequized to obtain accur-ate recognition decisions, mid the digital processing of the data is extremely
efficient. Using available photon-counting detection systems, the total timie required to dtect process, and make a recognition

* decision is typically an the order of tens of milliseconds. This work has obvious applications in night vision, but it is also
relevant ID area such as process control, radiological, and nuclear imaging, spectroscopy, robot vision, and vehicle guidance.

L 1NWOUCTION

Often input scentes contain a vast mtoutnt of inftbmation, which tend to make pattern-recogrtition decisions laborious and
deconsuming. In traditional digital pattern recognition methods, one digitizes the input scene usin a two-dimenisional

detector, eg. a solid-state photsdode any, and a hans store. If die deetrconsists of, say, a 1000:x 1000 array of detection
elements, then one has to process a million points of data. This is too much information for even very large computers to
process in real time, so on generally transforms die irrut Information into some sort of feature-space representation, e.g.
throuh the use of edge-enhanced images, and makes the recognition decision based on this reduced data set.

An alternative approach to the pattern recognition problem is to p ress low-light-level (photon-limited) input images
using photon-correlation methods. In this scheme phoaoeverits we detected at the maximum rate the detection/computer
system can handle. One collects photoevents until there is enough information about the input scene to achieve an aceptable
eralte for the given recognition task. Cur studies indicate that in many case only a sparse sampling (a small number of ..

detected photoevents) of the input image is needed for accurate image recognition; hence, the time needed to detect. process, and
makte a recognition decision can be quite short, typically a few tens of milzseconds. In effect one is letting natuire randomly
sample (digitize) the input scee

The problem that a practical pattern-recognition system faces is aat it must be highly sensitive to image features that will
separate a given reference object from the other possible inputs, yet at the sane time be insensitive to image distortions that
an no important for the recognition tak. It is convenient to groi~p Image distortiorns into two categories: geometrical and
intrinsic. Geometrical distortions include variations such as rotation, scale, position, and aspect of an input image. As an
example, one might want to recognize a given set of images in which the angular orientation and/or scale size can vary over a
range of values. Intrinsic variations are fundamental deviationas, not attributable to simple changes in geometry. In this case,
the pattern-recognition task is to identify the input image as a member of an image class, rather than a specific reference
image.

In this paper, we review the research to date on photon-correlation systems in which an input photon-limited imaiv is
correlated with a fixed (or deterministic) reference func~tion stored in computer mnemory. The principal application for these
correlation systems is automatic pattern recognijon. Basically, one is given a set of possible reference images and the goal is
to decide automnatically (without human intervtntion) which of the reference objects is most like to input object- In Section 2,
we briefly review the statistical properties of photon-limited imaging and photon correlation. Section 3 contains a brief
description of two-dimensional, photon-couinting detectors. In Section 4 and 5, correlation results obtained using an image of
the reference function (matched filter case), circular-harmonic filters (rotation invariance), Fourier-Mellin decriptors (scale and
rotation invariance). and mauirnum-likelihood filters (image classification) am summarized.



At bw levels ofrilumination, a input -ce VI(r) con be repruted ISa two.diiielsiOlll cOlletinc of Dirac-delta

N
VI(r)m8(r .r ,()

J I which t k deoes the spaial coordinms of doe k-tb deated pbosoevent ad N is the total number of dmd phm~events.
Of ceun, with an actual desector depleowelevtic couns are not idealized poins, but 1aie they occpy a finit am the
effect cnbe Included bI pusin 00~) through a lin ar Bysm in which the impulse response is equal to the point spread
funclon of the detector . Although one does nam went to ignore the finite spind of tie detected photoevustt, it doen lead to
helpful simplifcation in the notaton.

In EQ. (1) die spatial coordinate rk of the k-th detected photoeven ate random variables. The number of detected
phosoevents, N, may or may not be a random variable depending on bow the experiments is perfomed. For example, N is not
andom for the case when a fixed nmber of photoevents is collected. On the other ha"d if photoevewt am collected fora
fixed time interval -9. then ftom the theory~ of PhotodetectiOn2 46 die conditional probability distribution for detecting N
pbotoevets in the time interval Et. t+-] from a detec:o of ara A., given die clasical image irradiance V(r,t), is an
inhomogeneous Poissn process given by

m1..nVt1 t A N! A (2)

in which the rate functon ).(rt) is

)4r,t) - IIV(r~t)thv ,(3)

where TI denotes the quantum efficiency Of dhe detector. h is Planck's constant. andv denotes the man frequeny of the izicid~1nht
quasi-ITImochromatic light.I

In general. V(r,t) is a random process and the conditonal distibutiuon given in Eq. (2) must be ensemble averaged to
Obtain die observable counting distrbution. For example, if V(r,t) obeys negative exponential statistics, as in the Case of
polarized quasi-monochromatic light emitted by a thermal souICe, then the observable counting distribution P(N) obeys Bose-
Einstein statistics when the integration time is snall Compared to the coherence te Of the light, see eg.. Ref. 6). However,
if V(a-t) does not fluctuate signiICantly, i.. V(r,t) u V(r), as in die case of illumination provided by a well stabilized single-
modeC laser then counting distribution is simply

No)! C 4

N!

in Which

f AJd~ V(r)()
A



i the a-qe mnber of detected photeevents. One nes that the distribution in Eq. (4) is applicable also for polarized
thermal radiation when is mch lar thu the cIea Pence time of the 1ht4 . in this case the fluctuations in the irradiance ae
m d ot ain the time hhpatim and V(r) epresems the mean value of the iuadiance.

In q (1)the potoeven coordiume u ndonsz vaiables. Te probability density function for
wu 1.tdipe6 is directly proportional to the classical intensity V(rk), Le.,

vr (

rV(r)
A

2-2 C ielatin with a Dletey-nintie Refe'nnee Fr ttnon

Out approuch to the ptenm-recognidon problem is to calculate the correlation function formed by an input photon-limited
image ad a reference function stored in computer memory, which describes the object of interest. Examples that ilusrate the
performance of this method are Siv in Sections 4 and S. In this section we summarize the salient statistical properties of the
correlaboa sgnaL A detailed reatment of the statistical prperties of the correlation signal is given in Ref. 7.

Consider the correlation signal

C(r) - jr' V t (r') R(r' +r) r7)

obtained by cross correlating a photon-limited input scene Vt(r), given in Eq. (1), with a deterministicrefeience fancdon R(r)
stored in computer memory. Using Eqs. (I) and (7) gives

N CC(r) - R(r, + r). )--

k-I . .

Hence, the photon-limited correlation signal C(r) is a random function since the event coordinates rk ae independent random
variables with the probability density function specified in Eq. (6). The reference function R(r) may be either real or compl4
In this nct-oon R(r) is taken to be a real-valued function. The msults are readily extended to the case in which the reference
function is complex S. Also as noted above, N, the number of detected photoevents, may or may not be random depending o .
how the input image is sampled. Here, we take the number of detected photoevents to be fixed.

To calculate C(r), one uses the spatial coordinates of a given detected photoevent as am address. The offset coordinated r
defines the location of the reference-function window within the input scene. The procedure to calculate C(r) is to look up the
value of the reference function stored at the address specified by r + rk, and place that value into an accumulator this
operation is repeated for all N detected photoevents. The recognition decision is based on the resulting value of C(r).

In a typical patern-recognition problem, one would generally expect that the number of detected photoevents needed to
make am accunte recognition decision would be rather large, at least a few hundred to a few thousand phowevents. As N gets
large, the correlation signal in Eq. (8) tends to a Gaussian process. In the limit of large N, the probability density function
for C(r) is given by

[C(r) - <C(r)> 
2

PiC(r)) e- (9)

in which the expected value of the correlation signal <C(r)> is

... . ... .... ...... . . . . m m ~ m e il I l l l I



qrC(rk> N NJ, tpr'V(r')] R(r' + r0 (10)

the varasoe 02 is

a' N f i p[rjV(rjjRi] r

aid pfr'JV(r)J Is given i Eq. (6). Notice dhat .cCr)> is directly prqporioa to the correlation fun M between the high-
light-leve (or classical intensity) input scene and referenc function R(r).

II I Pmohshilhv nf Demefi mi Wie lm a detectioni problem can be forulated by using the statistical theoy
of hyoh sesmting?. On the basis of the correlation signal CQr) one must choose between two hypotheses: the null
bypoius H40 - the reference function R(r) is not present in the input meV(r); or the positive hypothesis, H I - the

6 Om functi ontmained in V(r).

Under hypothesis H0. the probability density function of the crelation signal is denoted by P0(C)
P[C(rXV(r") - N(r')1, wherm N(r') represents a noise (or false) image. Under hypothesis HI. the probability density function of
the couelation signal is denoted by P1(C) - P[C(r)IV(r') - (r')], where R(r) is the reference image.

Operationally, the observer usually sa a threshold value CT for the corelation signal. If C(r) :P CT, hypothesis H I is
chosen. Sitnilauly If C(r) < CT. the observer chooses hypothesis 110. Howeve, becaus of the statistical ani of the signal.
the observer occasionally makes an a=.or regardless of the value of CT. The probability of choosing H, when HO is true is
called the probability of false alarm and is given by

P, J dC P0(C) (12)
Cr

The probability of choosing H1 when H1 is true is called the probability of detection.

CT

Almost all the two-dimensional photon-counting detectors that have been developed use a mi~ochninel image
imiensifler10 " lin cascade with some type of anode assembly to record the position coordlinates of the event. A number of
anode assemblies have been used including siio-neife-ittelevsioni caneras12 14, selfsane (CC)) detector .-

ays15I- 20, cr~wkgepid mcdes2 l, muli anoe azrys22 rsistve aodes23-27, wedge.E-mdipanodes28-31, ~my
coded mask ue with a band of photornultipliers32.

A schematic of a resistive-anode-type detector is shown in Fig. 1. An incident photon ejects an electron from a
photocatode. The ejected phocoelectro is directed into a stack of mkrochmel plates (tyically arranged in a V. and/or Z-
stock to prevent ion feedback) to achieve an electron gain G of approximately 106 to 103. The reulting chiarge pulse is
collected by the resistive-anode assembly. The resistive layer is terminated by electrodes; -ttre rf locations awound its
perimeter, when provide the signals for the centroiding algorithm. When coupled to position-computing electronics, the
detection system is generally capable of operatirij t count rates up to approximately 100,000 counts per x!oid with aspatial .

reolution of approximately 400 x 400-elements'q.
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Fig. 1. Schematic diagram of a resistive-anode, photon-counting detection systen.

The choice of the anode assembly, of cme, depends on the requirements imposed by the application. For example,
detection systems that operate with only one detected photoevent in the device at a time can be used to collect a specific
nmber of photoevents; hence. N in Eq. (1) can be fixed, instead of random. Teses detectors can provide both the spatial
coordinates and time-of-arriva! infomatim of the detected phosoevents. On the other hand, detection systems that utilize a
detector arrays or a television tube to mad out the position coordinates of detected photoevents are generally preferable in high
speed applications that involve moving objects or pulsed light sources. In these systems many events can be detected in a
short time interval and then read out in a raster format, the time-of -amrival information of detected photoevents is not availale,
and the number of detected photoevents for a fixed time interval t is a random variable.

4 IMAGE CORRELATION AT LOW LIGHT LEVE_ - .

The results in Section 2 ae applicable for general real-valued reference functions and input scenes3 3. The capabilities of
this low-light-level approach to pattern recognition cam be predicted theoretically by studying the probability density functions
of the correlation signal when the input scene (1) matches the reference function stored in computer memory, and (2) is a
typical backlgound image encountered in the given application. From these probability density function, one can determine
the number of detected photoevents that is required to achieve a given probability of detection and false alarm.

In this Sectim, we consider the correlation signal obtained when the input scene is correlated with a classical intensity
mage of the reference object. In the case the correlation output, C(r) in Eq. (8), corresponds to that of a matched filter. When
N, the number of detected photoevents, is a fixed number, the mean value and variance of the correlation signal are given by
Eqs. (10) and (11), respectively.

As an example, let us consider the recognition of detailed images, such as the engraved portraits of George Washington,
Abraham Lincoln, and Andrew Jackson shown in Fig. 2. The photographs in Fig. 2 were obtained by imaging portraits from
U. S. currency onto a two-dimenional, photon-counting detector (Electro-Optical Products Div., iT Corporation, Model
F4146MJ. The detector was connected to position-computing electronics [Surface Science Laborawries, Model 2401] to
determme the spatial coordinates of detected photoevents. The spatial coordinates of the detected events were digitized to a
spatial resolution of 256 x 256 pixels and then sent to a microcomputer system for display. Illumination was provided by
fluorescent worn lights. Neutral density filters were inserted between the imaging lens and the detector to reduce the count rate
ID approximately 50,000 coma per second. In each image a fixed number of detected photoevents was collected. The number
of detected evenms for the images in a given row am indicated along the left-hand side.
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Fig. 2. Images of engraved po'tris obtained using a two-dimensiona, phowtn-couning detection system:
first column, portrait of George Washington; second column, Abraham Lincoln; third column, Andrew
Jackson. N is the number of detected phooevents over the entire image: top row, N - 20 million; middle
row, N - 4,000; bottom row, N - 1,000. The spatial coordinates of each detected photoevent are digitzed to
8-bit accuracy.

The probability density functions of the corelation signal in Eq. (8) are calculated using the images in the top row of Fig.
2. For detailed imagery one expects that the number of detected photoevents will need to be relatively large for reliable
recognition; hence, the approximation that the probability density function of the correlation is Gaussian distributed should be
fairly accurate.

Since the reference and input images have the stne amea A, we take the reference-window offset r - 0. The mean value id

variance of the Gaussian-distributed correlation signal is computed for each input object using Eqs. (10) md (11), respectvely.
By using the mean values and variances for the different input objects, one can calculate the probability of detection and
probability of false alarm versus N.-the number of detected photoevents. Figure 3 contains ROC curves for the portraits of for "-

different values of N. The portrait of Washington was used as the reference function. From the ROC curves, one sees that

excellent discrimination can be obtained by using less than one thousand detected phowevents (see bottom row of Fig. 2). It is

this ex- me data reduction that enables one to achieve real-time operattion.

ft -!
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Fig. 3. ROC curves for the portraits of Washington and Lincoln for different values of N.

In operation, the recognition decision is based on a single realization of the correlation signal N photoevents from the
input image are detected, and the resulting correlation signal is compared with a threshold value CT. If the value of the
correlation signal exceeds CT, the reference image is said to be present in the input; if not, the reference object is said to be
absenL Excellent agreement between theoretical predictions and laboratory experiments have been observed. Note that at a rate
of 50,000 counts/sec, the total time to detect, process, and make a recognition decision using 1000 detected photoevents is
approximately 20 milliseconds.

It is important to note that in the theoretical predictions for the correlation signal, no corrections were make for additive
noise or dead-time effects; these effects are simply not important when the count rate is 50,000 counts/sec and N is a a few
thousand counts or less. In the experiments the dark-count rate is approximately 50 counts/se at room temperature (a bi-alkali,
photocathode is used in the detector). At a rare of 50,000 counts/sec, on average, there is only one detected photoevent out of a
thousand that is associated with additive noise; hence, the contribution due to additive noise is negligible.

5- DISTORTION-ITNVAR TANT FTLTER S

In most applications it is desirable to have an automatic recognition system that can tolerate certain variations in input
images, which are not important as far as a recognition decision is concerned. These variations can be divided into two basic
categories: geometrical distortions of the image (e.g., rotation, scale, and position) and intrinsic variations of the image (e.g.
changes in illumination, image clutter and object occlusions) . One could approach this problem by using multiplexed filters
in which a separate reference function (filter) is used for each scale and orientation of the input object, but this leads to a
computational-intensive system design that is difficult to implement.

A more elegant approach to the problem of image distortion is to choose a reference function R(r) so that the correlation,
output is invariant to the distortion of the input image. Mellin transforms, which have scale- and position-invariant properties
have been used 34 . Circular-harmonic filters, initially suggested by Hsu et a. 3 5, have proved useful for rotation-invariant . _ -
pattern recognition 8,36-38. Fourier-Mellin descriptors for rotation, scale and position invariance have also been reported3 9 -
42. Other approaches to distortion-invariant filtering include: synthetic discrimmnant filters4 3 , and the "lock and tumbler"
flter4 4.
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Any two-dimensional fuanction f(rO) can be represented in ms of its cicular-harmonic components as follows:

f(r,) , F.(r) e"ime, (14)

whee

2x
F.(r) -j f f(r.0) e71m'o d9 (15)

0

In Eq. (14), F,(r,9) -Fm(r)exp(ixnO) is sad to be the nm-tb circular-harnmnic component of dhe function f(rB). Rotation-
invariant filtering can be achieved by taking the referece function R(r), in Eq. (8), to be the complex conjugate of a single (or
multiple) circular-hatmortic component(s) of the reference object, eg.,

R(r) - F; (r,0) - IF; (.r) eiO(16)

When the offset coordinate r -0, the correlation signal. C(ra), is an inner product of an input funcwtion g(r.O~a) rotaed by an
angle a with respect to the reference function Fm*(r0):

2n.
C(0,a) -JJf g(r,G+ct) F; (0,) rdrdO (17)

00

Using the expansion in Eq. (14) for g(r,94.a) and substituting into Eq. (17) yields

C(0,a) - 2xt eimr± G .(r) F1 (r) r * 1
0

in which tmodulus of C(O,a) atrains its maximum value when G,(r) -Fm(r), as given by die Schwartz inequality. Notice
that only the rn-tb circular-harmonic component of the input contributes to C(O,a) in Eq. (17) owing to the onthogonality of
thee0-integration, and that the rataticn angle a appears only in the phase term exp(iznrz). Hence, the modulus of C(O,a) is
independent of dhe rotation angle of the input image. If the reference image is input, its orientation can be obtained from the
ratio of the real and imaginary parts of the correlation signal. The rotation angle a is given by

aw ta-, ~ '~ .mCU-) (19)

In Re((- a)



which cut be calculated easily when the correlation is impemnted digitally. The rotation angle a is far more difficult to
obtain in an optical implemention becaue most detection scemeres we Intensity based.

Mwe magnitude of doe correlation peak will depend an die particular harmonic die is chose as die reference function. The
magide Of C(rz) also depead on die location of die point about which the reffernc object is expanded; this location is
refered to a die exp;uo cenw. urn magnitude of CQra) will be in absolute maximum only when die "propet center, is
choen dibe expasion center 3S. Severa llsigations using die centoid of dhe image (rather itha die proper center) as an
eaiso enter have been demnstrated 10 be effective for rzumion-invariant image mcogn 83637.

EMMpermit ID tes the reogition capabilitme of the phoron-Iimited corrlation scheme when a complex circular.
harmonic filter is used =s the reference function R(r) were performend. In the experiments 35-mm-forma iniput scenes,
Illuminatled by an incohesretlightsauce, were imaged onto an rrT Mode! F41l46M photon-counting detector. Neutral density

*1 flit., wninserted toobtainaomut -rat of approximately 30,000 couts/sec. The (xy)-spatial coordinates of the detected
photoevents were digitized to S-bi cursy and sent to a digital compute for processing. The number of detected
phoroevents, N, (see Eq. (8)) was fixed.

Figure 4 shows t input images, the reference function, and rfsults fom die correlation experiments. The second (m,-2)

circlarharmnicOf the vise grips, computed about die centroid of die object, is u&=e as die rferenc function. The pliers and
die movable-jaw wrench ae used as fase objects.

Complex 2nd Circular-
Reference Harmonic
Function of Vise-Grips

Real Part Imaginary Part

Correlation Signal: N=3000
19

Fig. 4. Rotation-invariant filtering using a circular-harinoic filter. (a) Images used in corrlation
experiments, (b the second-circular harmonic of the vise grips is Used as the reference function; (c)
correlation results obtained using 3000 detected photoevents.



To t the peformince of the c cula-hm i filter at low light levels, correlations between photon-limited tool
images d the complex cirlar-mmonic refemce functim statd in computer memory were computed. Measureu Wa
taken with the nput reference object at various orientions (0, 90, 180 and 270 degrens with Prespr to the refer ene); the fal
objects were Imged moo the detector at the orientatis shown in Fi,. 4. Histograms of the correlation values obtained usi
3000 deected p otoevets are shown in Fig. 4. The solid curves ae the theoretial predictions S of the probability density
finuctio for the squared modulus of th correlatim signa. ?Cl2- IC(O,a)12. For each input obje, one thousand reliationsof do coneladmo signal were used to calculate the histogram In accord with theory, the magnitude of dhe corelation signal
was found to be independent of de object-rotation angle a.

In Fig. S, ROC curves we ploed for the vise grips (refleence object) and the movable-jaw wrench (false object). Note
that with N - 3000 detected photoevents, the probability of aro is extreP-ly small (approximately one ror in 100,000
realizato). Based on theoretical predictions, one finds that if the image of the vise grips we. used as the reference functio.(i.e., the mached-filter case), the same discrimination capability can be achieved with approximately 1000 detected
photevents. Hence, by inceasing the number of detected events by only a factor of three, one can add rotational invariance
into the recognition system.

C
010

09

....

Probability of Fale Alarm

Fig. 5. ROC curves for the vise grips (reference object) and the movable-jaw wrench for different values of N.

5.2- Furie..Mellin flescrinttw
.Rotation-, scale- and position-invariant image recognition can be accomplIished through the use of Fourier-Meulindesrpe (FMDs). In this method either the radial moments or the radial Mellin transform of dominant terms in the circular

harmonic expsion of a reference object are computed about the centroid of the image. The modulus of these descriptors is
used to define invariant feature. The invariant fe atres of an input scene ae compared with the conesponding features of the
reference object. A recognition decision is based on the sum of the squared differences of the features, D:2. If )2 is less than
ome pre-determined threshold value, the input is said to be the same as the reference. If D2 exceeds the threshold, then the

input is said to be different than the reference.

The invariant features Os,m of the input image V(r) - V(rO) r e given by

- -M(20 .. m" .('20)



where the Fouier-Mellin dsrpi Mm we

M.J J V(r,) r'Ic-iedrde.(1
00

The modulus of im~ is invariant with rpetto romoon and changes in posit=n of the input imag. If the MeLlin
transform variable s is pu iainary, di modulus of M I is salel invariant On die ode hand Uf the rmfrn
variablesa is real (eg. an integer) the ummalinan by ie 0-tdiorde descriptor (Eq. (20)3 provides scale invariance.

lnwiawz featre ca be estimated using quatwzn-limited images in the foflowing marter. Nf one chooses the reference
function which is stored in cmputes mimry, to be

R(rO) - rs-2 6-ime (22)

where the coordinates (r,0) are taken with mpect to the centroid of the input image, the mean value of the subsequent photon-

limied correlation signal is given by

NJ fJ V(rO) 1s-1 e-ime drde

< > 002x(3

JJV(rG) Amid
00

where N is the number of detected photoevents. Notice that <C,m,> is directly pioportional to the classical intensity

descriptor Msam in Eq. (21). Also.

IkC0 .1 "a~ (24)

If differet photoevents we used to compute <C(s),. and <C(O>.

The recognition capabilities of the photon-limited estimates of the RM's wmv tested in laboratoy experimens. A set of
usispo enies (35-mm format) were made using engraved portraits from U. S. currency, at relative magnifications of 1.0, 1.25,
1.5 and 1.75. These uransparencies (input at various orientations) wee imaged onto dhe two-dimional, photon-counting
deteto. Five thousand detected photoevents were used to deterine the location of die castroid of the input object in each
case The invariant feature were computed using the reference function in Eq. (57) with s-2. The distance in featre space
was computed between the quaun-himited input image and the referenc image (George Washington with a relative
magnification of unty). To test the theoretical predictions, one thousand measurements of the feature-space distanceD2......

were performed for each input image to provide accurate estimates for dhe am values and standard deviations of D2.

It was found that radial moments of thre circular harmonics (me - 1, 2 and 6) were sufficient to provide an error rate of 1
x 10-5 when 500 detecte photoevents wee used, to constrct the estimates of die PMD for each value of mn42. Thle
probability density functions for D2, based on experimental values far the mean values and vuarines of D2 for die different -

input images, am shown in Fig. 6. In fig. 6, a threshold value DT2 0.08 provides the amro rate of lx10I5 stated above.
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Fig. 6. Probability density functions for D2, based on experimental measurements of the mean value and
variance of D2 for the images of Washington, Lincoln, and Jackson. The invariant features 402,m (m - 1, 2.
and 6) of Washington wer used as the reference.

S t Image Clniq~ifi-atinn
In c i applications it may be desirable to ascertain the category or class of images to which an input image belongs.

An image class may, for example, include images of a single scene in which variations in background content, illumination
angle, and other atibutes are included. Printed characters in various fonts my likewise compose a class of images. In this
section photon-limited image correlation is applied to the problem of sorting two image classes. The high ram at which
images can be'identified arises from the efficiency of the photon-correlation calculation.

The photon-limited image consists of a histogram of the spatial coordinates of detected photoevents. Hence, a digitized ....

photon-limited image takes the form of a two-dimensional array n. At zero offset. the cross correlation between of a photon-
limited input image n and a reference function R(r) is given by

C . n R(r,) , (26)

where ri represents the coordinates of the i-th pixel of the reference image and ni is the number of detected photoevents in that
pixel, In practice, most of the ni's are zero; hence, the calculation consists simply of a summation of the values of the
reference function R(r) sampled at the spatial coordinates of the detected photoevents.

Our goal is to constuct a reference function R(r) that, when applied according to Eq. (26), yields useful information for .
class discrimination. The maximum-likelihood approach is found to be particularly well suited to the problem of sorting two
classes of photon-limited images 5 1.



Ta e n-likelood decision iitei is ID choose the hypothesis coresponding to the I= that was most likely
to have given rise to die observed data. The central quantity in the theosy is the liklihood ratio 1, given by

lum (2)}

whre a presets the phown-limited image md hypoeis Ha) 0-1,2) indicates dt the hpt Image is a member of
class j. The procedure that we will use to clsify an input image is as follows. When a photon-limited image a is input, the
ratio (n) is calculmaed. To select the most probable suce of the detected photoevenrts class I is chosen when 1(n) >I and
class 2 is chosen when 1(n) c 1.

Frequently, for convenience, die log-Mk ratio n[((n)) replaces the likelhood ratio 1(s) as the decision pmmeter.
Wernick and Morris5 1 have shown that ln(J(n)) isgivn approximately by

!nA) .al~, ,I lli' -" In{ (n)} -- Z nl In ],) + [2i[mi}(

i S O ..

Mj

SiWO) denotes the inradiance of the i-th pixel of the k-th taning image in class j, Mj is the number of training images in class
j, and [mj]i is the irradiance in the i-th pixel of the average image from class j.

Comparing Eqs. (26) and (28), it is seen that the natural logarithm term serves as the reference function for maximum-
likelihood image classification at low light levels. The tarm involving the difference of class means is a bias, which is
independent of the input image; it simply changes the thueshold value of In 1(n)} that is used to decide between the two
classes. Therefore, in operation, evaluation of the log-likelihood ratio reduces to the table-lookup-and-addition procedure that
we seek.

Experiments to compare the pe'formance of various image-classification methods at low light levels have been
performed51 using images of characters and tools. Representative members of the training sets used in the character-
recognition experiments are shown in Fig. 7. Reference functions were constructed for maximum-likelihood classification, the
Funaga-Koont, tansform, and average filtering. The reference function for maximum-likelihood image classification is
shown in Fg. S.

To evaluate the performance of the various algorithms we use as a figure of merit N - the number of detected photoevents
required to reduce the probability of emor (Le., the fraction of decisions that ae incorrect) to 10"4.The results obtained for the
veios classification methods am as follows: maximum likelihood, N - 146; difference of means, N - 246; Fakunaga-
Koont N - 965. Note that the maximun-likelihood solution, Eq. (28), yields the best results.

The classification tchdques ilustraed above we designed for sorting of two image classes. The generalization to
multiple classes is most readily obtained through application of a pairwise-voting logic, in which pain of image classes are
successively compared. On each pairwise decision, one class is eliminatd. Thus, if K classes are to considered, then (K-I)
correlations must be performed. In a hard-wired system, many reference function may be applied in parallel to the incoming
photoevent data. The resulting correlation values may be passed to a system that implements the voting logic.
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levls it 1 315• d e a pod Over at dasical intesities. M tional for dr use of pbon-jimited images is two fol (1)

doe bi np e maybe naktrally phaimlimited, (2) given~ a classica l-inhskty inputimagebece nofcompuationa
f 1m y many ca n it a y mb bm to rduc s Os light lkve d uwe pbhmowcmrlaim notdods to process die images.

oftn oly a spus sampling (amall u o detc'=d-pbo vets) of diw InpimageIseded for n image

u? g-I= 'bs-- -.uh - -einh (u10 Eq. (3M) is simpy a table-lookup-iddidon procedure. He ice if die number of

detected pboentsm is wo to doge die needed to detet P m -P i - d make a recognition decision Can be quite shrt
For euxnple, if 1000 phoweveus are neded to distnguish between a set o objects and the detect and processing system

C- opm a aram of we detected phomevent every 10 microsonds, die total time needed to mak a ncognion decision is

only 10 milliseconds.

'be statistical propenrte of die corelation sigial we summarized in Section 2. The system to compute the correlation
signal C(r). faned by a phosn-limited input me ad a deterministic refece function, is simply an optica

implsUaatiD of a Mono Carlo acheer to calculate definite integrals.

Ssvel reference functions for pat tr gniin sm euxmined. Examples of scene matching when die input image is

onrelatd with an image of di refence object am given in Section 4 (see Figs. 2 mad 3). In Section 5, diston.invariant

filMs considered. Experimntmal results dot Illustrate die use of circular-harmonic filed for rotation invariance (Figs. 4 --

and 5), moan CA and position invaane (Fi. 6) and image classification (Figs. 7, 8 ad Table 1) am given.

The hardware requirmernt to implemnti this photoncorrelatia sc eme minimal. The doetion system (see Section

3) Cosius of a 1wo4ndimsloA photon g detectr and postionmcornpudZ electonics, which is connected to a '

mictOp . The reference function is soed in computer memry. Since the phowncorri systemis rteIsty-based,

it ct operate with either spatially coherent or noocoherent radiation.

There aea number of potential applications for the methods discussed in this paper. These include: machine mid robot

vision, caget r ogi Pion from video monitors, correlation tracking for vehicle guidance, active or passive right vision

automatic recognition of spectral signaures, radiological imaging, and range extension for laser radars.
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