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Abstract

This project has been concerned with theoretical, algorithmic, and
applied research in six areas of discrete applied mathematics. Work
on graph theory and its applications has been concerned with graph
coloring and stability, special classes of graphs, and graphs and
discrete optimization. Work on discrete optimization has also dealt
with location problems, preprocessing and decomposition,
approximation, and applications of combinatorial optimization to
nonlinear problems. Our research on posets and other combinatorial
structures and their applications has been concerned with linear
extensions and ideals, graphs and posets, posets and discrete
optimization, and other useful combinatorial structures. Our effort
in the area of computational complexity and efficient algorithms has
concentrated on foundations of computational complexity and
heuristics. Work on applications of discrete mathematics to
decisionmaking has involved group decisionmaking, measurement and
decisionmaking, and multiple conclusion logic. Our work on large
scale scheduling problems has concentrated on the STORM I and STORM II
models for routing aircraft, the aircrew scheduling problem, and the
single base aircrews staging problem. Among the many applications we
have considered are frequency assignment, task scheduling and air crew
scheduling, location of warehouses and communication centers,
maintenance problems, communications over noisy channels, and expert
systems.
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A RUTCOR Project on Discrete Applied Mathematics

Grant Number AFOSR 85-0271

SUMMARY OF RESEARCH ACCOMPLISHMENTS

September 30, 1987-September 30, 1988

This summary of research accomplishments is organized into the
essentially the same sections and subsections as is our original
proposal. Papers referred to by number are listed below in the list
of publications prepared under the grant during the period September
30, 1987 to September 30, 1988.

1. Graph Theory and its Applications

The emphasis in our work in graph theory has been on questions
relating to applications. It has been, and will continue to be,
motivated by some basic problems in communications, transportation,
scheduling, assignment, maintenance, and so on.

1.1. Graph Coloring and Stability

Much current work in graph theory is concerned with the related
problems of finding optimal graph colorings and finding the largest
stable set in a graph. Both of these problems are closely tied to
practical applications, and our work on them so far has been connected
to such applications.

In earlier years, we initiated the study of T-colorings of
graphs in connection with frequency assignment problems. In such
problems, the vertices of a graph G represent transmitters and an
edge between two vertices represents interference. We seek to assign
to each vertex or transmitter x a channel f(x) over which x can
transmit, and for simplicity we take the channels to be positive
integers. The assignment of channels is subject to the restriction
that if two transmitters interfere, i.e., if the corresponding
vertices are joined by an edge, then the channels assigned to these
transmitters cannot be separated by a disallowed distance. To make
this more precise, we fix a set T of nonnegative integers and assign
channels so that if vertices x and y are joined by an edge of G,
then If(x)-f(y)I is not in T. (See Roberts.[1986] for a summary
of the literature of T-colorings and a statement of fundamental
problems.) We have studied the problem of finding the optimum span of
a T-coloring, the minimum separation between the smallest and
largest f(x) values. We have obtained in the thesis [723 a variety
of results about T-colorings of complete graphs, the basic graphs to
which most T-coloring problems can be reduced. We have also
introduced in the thesis [72] and the paper [64] the beginnings of a
theory of set T-colorings, variants of a theory of T-colorings in
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which each transmitter receives more than one channel. This theory
combines the n-tuple colorings of Gilbert [1972] and Stahl [1976] and
the more general set colorings of Roberts [1979b] and Opsut and
Roberts [1981, 1983a,b] with the T-colorings we have been studying.
Some related work can be found in the paper by Furedi, Griggs and
Kleitman [1988].

Graph colorings have a wide variety of applications in
scheduling, fleet maintenance, traffic phasing, etc. (For a
discussion of the applications of graph coloring, see Roberts [1984].
See also [64].) We have been working on some fundamental problems of
graph coloring. In particular, we have studied list colorings of
graphs. In many practical coloring problems, a choice of color to
assign is restricted. A set or list of possible colors to be assigned
to a vertex is specified, and we seek a graph coloring so that the
color assigned to a vertex is chosen from its list. List colorings
arise for instan-e in the channel assignment problem when we specify
possible acceptable channels. Erdos, Rubin and Taylor [1979]
introduced the idea of considering when a graph G can be
list-colored for every assignment of lists of k colors in each list.
If G can always be list colored for every such asignment, we say
that G is k-choosable, and call the choice number of 6 the
smallest such k. Tesman (71,72] has calculated the choice number
for chordal graphs. He has also introduced a similar theory of list
colorings which are also T-colorings and obtained useful bounds on a
T-choice number for T-colorings of chordal graphs.

We have also introduced ((37]) a theory of "hard to color graphs"
in connection with approximate coloring algorithms. For a given
approximate coloring algorithm, a graph is said to be slightly hard to
color if some implementation of the algorithm uses more colors than
the minimum needed. Similarly, a graph is said to be hard to color if
every implementation of the algorithm results in a non-optimal
coloring. We have shown that for the widely-used largest-first
algorithm, there is a unique smallest hard-to-color graph.

We have been studying on-line algorithms for a variety of
coloring problems. An algorithm is on-line if, as is the case in many
practical problems, it is necessary to make choices as new data
becomes available, rather than waiting until all of the problem is
specified in advance. In earlier years, we started developing on-line
algorithms for optimal ordinary colorings and optimal T-colorings.
In the present year, the former effort has continued with the
refinement and publication of paper [59]. This effort is described in
detail in Section 4.3 below.

Turning to stable sets, we note that some well-known results of
Turan [1941] in extremal graph theory, modified by Brigham and Dutton
[1985], give a nice formula for a sharp lower bound on the number of
edges of a graph of n vertices and stability number a. Hansen
[1975], (1979] has given sharp lower and upper bounds on a given n
and m, the number of edges of the graph. In paper [45] we obtain
sharp lower and upper bounds on n given m and .
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1.2. Special Classes of Graphs

Many graph theory problems are extremely difficult when looked at
in general, but turn out to be tractable when restricted to a special
class of graphs. Hence, research in graph theory has in recent years
emphasized the study of rich and interesting special classes of
graphs, many of which arise from applications, and for which efficient
algorithms can often be found to solve important optimization
questions. Our work on special classes of graphs has reflected this
point of view.

Among the classes of graphs we have studied are the threshold
graphs. These graphs have connections to Guttman scaling in
measurement theory and to synchronizing parallel processors. Of great
importance in the study of threshold graphs has been the sequences of
degrees of its vertices; a sequence of numbers arising this way is
called a threshold sequence. Paper (63] studies the convex hull Dn
of the set of all degree sequences of length n of arbitrary graphs,
and shows that the threshold sequences are exactly the extreme points
of D n . A variety of related results about threshold sequences are

obtained, for instance that every degree sequence is a convex
combination of threshold sequences that are rearrangements of each
other.

An important class of graphs with regard to applications is the
class of competition graphs and its variants. These graphs,
introduced by Cohen [1968], arise in communications over noisy
channels; in the channel assignment problem mentioned above (which
often is concerned with coloring a competition graph); in large-scale
computer models of complex systems; and in the study of food webs in
ecology. (See the surveys by Raychaudhuri and Roberts [1985] and by
Lundgren [1989].) Recently, Scott (1987] introduced the notion of a
competition-common enemy graph (CCE graph), a graph obtained from an
acyclic directed graph by taking an edge between two vertices if and
only if they have incoming arcs from two common vertices and outgoing
arcs to two common vertices. Kim [53] has solved a problem of Seager
in showing that every bipartite graph with one of its classes having
size at most 4 is a CCE graph if at most two isolated vertices are
added. In the process, she has found an interesting result about
matrices which, under row and column permutations, are free of the
pattern 1 0 1 on diagonals. Further results are in the paper E56].
Kim, McKee, McMorris, and Roberts [54] have developed a theory of
p-competition graphs, graphs which arise from digraphs by taking an
edge between two vertices if and only if they have outgoing arcs to at
least p common vertices. This theory falls into a more general
theory of tolerance graphs (see Jacobson, et al. (1988]). Also in the
study of competition graphs, we have solved a problem of Harary by
calculating the largest competition number of a graph of n vertices.
(See Kim (53].) We have also proved ((53], (55]) a modified version
of the conjecture of Opsut (1982] that if G is a graph with the
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property that each vertex has a neighborhood which can be covered by
at most two cliques, then 6 has competition number at most 2. We
have also obtained (see paper E46]) some further results on the most
important open problem in the field of competition graphs, namely in
identifying what acyclic digraphs have the property that their
competition graphs are interval graphs. Following on our approach to
this problem begun last year, we have attacked it by restricting the
outdegree and indegree in the digraphs. Under degree restrictions, we
have characterized the competition graphs and the acyclic digraphs
whose competition graphs are interval graphs, and also the competition
graphs which are interval graphs. The results make heavy use of the
theory of combinatorial designs.

In other work which is related to combinatorial designs, we have
studied the special class of graphs consisting of the complete graphs
with an even number of vertices. A A-hyperfactorization of K2n is

a collection of 1-factors for which each pair of disjoint edges
appears in precisely A of the 1-factors. Such a
A-hyperfactorization is called trivial if it contains each 1-factor of
K2n with the same multiplicity and simple if each 1-factor appears at

most once. Cameron [1976] and Jungnickel and Vanstone (1987] had
found examples of nontrivial A-hyperfactorizations for special values
of n. In paper [11], we show the existence of nontrivial, simple
A-hyperfactorizations of K2n for all n > 5.

We have completed work started in previous years in which we have
found an exact formula for the smallest number of edges of a graph of
n vertices which does not contain an induced forest of size k. (See
E1].)

We have also studied a variety of intersection graphs, in
particular interval graphs and indifference graphs, in paper E66].
These graphs have very important applications in scheduling problems,
maintenance problems, traffic phasing problems, computer storage
problems, task assignment problems, etc. The paper [66] surveys some
of these applications and recent results about these important classes
of graphs.

1.3. Graphs and Discrete Optimization

A rather large effort has been devoted so far to discrete
optimization, and we discuss this in detail in Section 2. Here, we
describe some of our work which relates graph theory to discrete
optimization. In applications of graph theory to problems of
communication, one of the most important open problems remains the
famous problem of Shannon which is to compute the (zero-error)
capacity of a graph. In connection with this problem, Lovasz [1979]
introduced orthogonal reprasentations of graphs to compute the
capacity of the 5-cycle, a well-known and important special case of
Shannon's question. Grotschel, Lovasz, and Schrijver [1986] showed
that orthogonal representations are intimately related to the vertex
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packing polytope, and Grotschel, Lovasz, and Schrijver [1984) used
orthogonal representations to design polynomial-time algorithms for
finding maximum cliques and optimum colorings in perfect graphs. In
paper [58), Lovasz, Saks, and Schrijver study the minimum dimension of
the space in which orthogonal representations with certain
non-degeneracy properties exist. They prove that a graph is
k-connected if and only if its vertices can be represented by real
vectors of length n-k such that nonadjacent vertices are represented
by orthogonal vectors and any n-k of them are independent. They
also show that the closure of the set of all representations with
these properties is irreducible as an algebraic variety.

Paper [16] studies bidirected graphs, multigraphs in which every
arc has either two tails, or two heads, or a tail and a head.
Bidirected graphs have been considered in connection with such
concepts of discrete optimization as matching polyhedra (Edmonds and
Johnson [1970]) and network flows (Lawler [1976]). A bidirected graph
is called simple if for each pair of vertices, there is at most one
arc with those as endpoints. The adjoint of a bidirected graph B
has for vertices the arcs of B and has an edge connecting two
vertices if and only if the corresponding arcs are consecutive in B.
A graph is quadratic (respectively quadratic primitive) if it is the
adjoint of some bidirected (respectively simple bidirected) graph. We
prove that the recognition problem for quadratic primitive graphs is
NP-complete. The results extend to another class of quadratic graphs,
the so-called partition quadratic graphs.

A matching in a graph is a collection of edges or complete
2-vertex subgraphs which have no common endpoints. Maximal matchings
on graphs and weighted graphs arise in a wide variety applications in
optimization problems which include job assignments, storage of
computer programs, real estate transactions, etc. They had a classic
application to pilot assignments for the Royal Air Force during World
War II. We have studied in paper (213 a generalization of a matching
called an odd chain packing, a collection of edge-disjoint chains of
odd length such that all endpoints of these chains are distinct. We
extend the augmenting chain theorem of matchings to odd chain packings
and find an analogue of matching matroids. We show that we may
restrict ourselves to packings by chains of lengths one or two, and
obtain a min-max result for such packings for the special case of
trees.

2. Discrete Optimization.

Discrete optimization problems arise in a large variety of
vitally important practical scheduling, allocation, planning, and
decisionmaking problems. Such practical problems have been one of the
reasons that discrete optimization has become one of the most rapidly
developing fields of mathematical programming. Another reason is that
more and more mathematical fields (e.g., group theory, number theory,
boolean algebra, graph theory, and polyhedral combinatorics) are
becoming involved in the study of such optimization problems. We have



spent a great deal of time on discrete optimization questions in the

past year.

2.1. Location Problems

Location problems arise whenever a large set of potential sites
for placing certain units is available and a selection must be made of
the sites to be utilized. Such problems arise naturally in situations
like placing warehouses, satellites, communication centers, military
units, or emergency services. We have studied a variety of location
problems and approaches to solving them.

In paper [203, in work begun in earlier years, we have concluded
our study of the classic simple plant location problem by formulating
it as the minimization of a pseudo-Boolean function (see definition in
Section 2.2). This formulation is transformed into two discrete
optimization problems: A set covering problem and a weighted vertex
packing problem on a graph. These three formulations of the problem
are compared to similar formulations that have appeared in the
literature and to the standard integer programming formulation.

Traditionally, location theory has studied where to locate
desirable facilities. During the last decade, as increasing attention
was being paid to environmental problems, the location of obnoxious
facilities has been studied with increasing intensity. Much recent
work focuses on the location of mutually obnoxious facilities. This
leads to dispersion problems. For example, the p-maxisum dispersion
problem consists of locating p facilities at vertices of a network
in order to maximize the sum of the distances between all pairs of
them. (See Kuby E19873.) In paper [423, we have shown the decision
version of this problem to be strongly NP-complete. For a tree
network, a solution algorithm with a complexity linear in the number
of vertices is proposed for any given p. Moreover, the problem on a
general network is shown to be a particular case of the quadratic
knapsack problem, for which fairly efficient algorithms are available.

In paper (393 we study the continuous p-median problem for a
network. We show that the sets of vertices and midpoints of edges of
a network always contains a continuous median and that this extends to
the case of the p-median problem. We provide linear algorithms for
solving the 1-median problem on a tree.

The main body of facility location theory concentrates on the
location of facilities under the control of a single decisionmaker.
In contrast, in earlier years we considered the problem of locating a
facility with respect to other competing facilities under the control
of independent decisionmakers. We also considered the problem of
locating facilities as the result of a collective action in which
"clients" pur%ue their own interest within the mutual dependency
imposed by a voting rule. Our foundational work on these two problems
(paper [38) has been revised for publication in the past year.

Finally, we have considered in paper (29] the problem of locatiLng
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several facilities among a given set of possible locations to maximize
profit assuming that the pricing policy of a firm is either
discriminatory prices (each client is given a separate price), uniform
delivered prices (prices are the same to all), or uniform mill price
(price at each factory is the same). We have found algorithms to
solve the optimal location problem for all three cases and compare the
results. The results show that a number of statements in the economic
literature about the advantages of competition are not accurate.

2.2. Preprocessing and Decomposition

Discrete optimization problems are frequently too hard to solve.
This can be because there are huge numbers of redundant variables
present in their original formulation, because the coefficients in the
constraints are disproportionately large, because there are
unnecessary nonlinearities, etc. A frequently useful approach is to
transform a given problem into a more structured one, or a small
number of more structured problems, for which good solution met'hods
exist. Our research effort has continued to emphasize such
preprocessing of discrete optimization problems.

In our work on preprocessing and decomposition, we have continued
to devote considerable effort to the set covering problem, one of the
most fundamental, yet difficult problems studied in 0-1 linear
programming. This problem has applications to crew scheduling,
network disconnection, information retrieval, delivery problems, etc.
Our work on set covering problems has continued to concentrate on
defining and studying classes of such problems which can be decomposed
into a small number of specially structured problems, for which good
solution methods exist. This idea led us, in work cited in our
previous two Interim Scientific Reports, to the study of bimatroidal
independence systems, independence systems which can be expressed as
the union of exactly two matroids. In Crama and Hammer [1986] and
Crama and Hammer [19873, we found a family of independence systems
that admit a unique decomposition into two prime matroidal components
and such that the number of circuits of one of the components is
exponentially large 'in the number of circuits of the original system.
We also showed how to obtain a bimatroidal decomposition into prime
components in polynomial time for a special class of independence
systems generalizing the independence systems of graphs which had been
studied earlier by Benzaken and Hammer. We have shown that in
general, when the independence system is described by an "independence
oracle," any algorithm for determining bimatroidalness performs in the
worst case in an exponential number of steps. However, we have found
a polynomial-time algorithm for the set-covering version of the
problem (where the input consists of the complete list of circuits of
the system). In paper [15], we have now ben able to improve these
results.

A pseudo-Boolean function is a real-valued function on (0,1) n ,

and a Boolean function is a 0-1-valued pseudo-boolean function. Such
functions have a wide variety of practical applications. As part of
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our study of discrete optimization problems, we have been
investigating the formulation of such problems using pseudo-boolean
functions. Many times, boolean and pseudo-boolean methods allow the
considerable simplification of combinatorial optimization problems
expressed by using boolean and pseudo-boolean functions. We have
already described in Section 2.1 our work on formulating the simple
plant location problem as the minimization of a pseudo-Boolean
function. To describe other work, let us note that a pseudo-Boolean
function has a unique expression as a multilinear polynomial in n
variables. It is called almost-positive if all the coefficients in
that expression, except maybe those in the linear part, are
nonnegative. The almost-positive functions form a convex cone, given
explicitly by its extreme rays. In work which was begun in earlier
years (paper [17]), we describe this cone by a system of linear
inequalities, which can be viewed as a natural generalization of
supermodularity to higher orders. We also point out a
characterization in terms of the sign of pa, i: derivatives.
Finally, in paper [193 we reconsider the classic algebraic method of
Hammer and Rudeanu for solving pseudo-Boolean programming problems.
We show that this method is linear for a particular class of
pseudo-Boolean functions for which the co-occurrence graph is a
partial k-tree. Some steps of the algorithm are revised and
computational experience allows us to solve problems with k < 10 and
at most 200 variables.

2.3. Approximation

A major theme in discrete mathematics in recent years has been
the effort at finding methods for approximating solutions to problems
and at finding exact solutions by successive approximations. The
approximation problem has continued to be a main focus of our efforts
so far.

We have already described in Section 1.1 our efforts at
understanding what graphs are hard to color by any implementation of
an approximation algorithm for graph coloring.

One approach to approximation is to associate with a given
problem a "relaxation" of it, i.e, an easy problem the solution of
which provides information about the solution of the original problem.
Hammer, Hansen, and Simeone E1984) associated a linear program to a
discrete optimization problem and showed that it provides a bound to
the original one and fixes the optimal values of some of the
variables. This technique is called roof duality. In the previous
two years, we had begun to build on this fundamental notion of roof
duality to study quadratic and more general polynomial 0-1
optimization problems, which have applications in the selection of R&D
projects, of petroleum leases upon which to bid, of items to be
included in any volume-limited or weight-limited space (the "knapsack"
problem), and of routes to be served by a commercial or military
carrier. In paper [263, we have investigated the roof duality gao,
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the gap between the optimal value of the roof dual and of the original
quadratic function in 0,1 variables whose optimal value is being
approximated. We obtain a bound on this roof duality gap and show
that in a special case where the off-diagonal elements of the Hessian
matrix are nonnegative, the optimal value of the roof dual coincides
with the so-called concave envelope. In paper [41], which has been
revised and updated from a paper prepared last year, we have
investigated the approximation using paved duality and have shown that
in the general nonlinear case, paved-duality combined with standard
linearization leads to the same bound as roof duality.

The notion of roof dual has also arisen in our investigation of
the Separation Problem in paper [75]. Given a set of n vertices
with distances dij between them defined, this problem is the problem

of partitioning the vertices into two sets so as to maximize the total
distance between them. It is shown that in the general case where the
"distances" are symmetric, but not necessarily non-negative, the
problem is equivalent to the 0,1 unconstrained quadratic optimization
problem, and, in fact, it is equivalent to the general unconstrained
Boolean optimization problem of degree 2. Linearization constructions
based on the early work of Rhys [1970] lead to an integer linear
program whose optimal solutions are optimal solutions to the
Separation Problem; solutions to its relaxation are therefore upper
bounds for the Separation Problem. It is shown that the dual to this
linear program is exactly the roof dual. A preliminary heuristic
approach to numerical solution is briefly investigated, and some very
preliminary computational results are presented.

In other work begun in previous years, we have been examining how
bad the gap can be between the linear and integer programming
solutions to problems with 0-1 coefficients and constraints and we
investigated a special class of problems by comparing matchings with
fractional matchings. We solved the fractional version of the
celebrated Erdos-Faber-Lovasz conjecture. Specifically, we proved
that if X is a nearly disjoint hypergraph on n vertices (i.e., a
hypergraph with any two sets intersecting in at most one point) and
is the set of matchLngs of X, then there is a function w from A
into the positive reals so that for all A in Z, Z w(M) > 1 and

AeM
Z w(M) < n. This work has now been carefully written up as paper

Mehl
[51].

For a given optimization problem P considered as a function of
the data, its marginal values are defined as the directional partial
derivatives of the value of P with respect to perturbations in that
data. For linear programs, formulas for a complete marginal value
analysis were given by Mills [1956] and extended by Williams [1963).
Although these general formulas for complete marginal analysis of
linear programming models have been known for some time, their
application still generally seems to be restricted to the case of
perturbing a single right hand side value when the dual optimal
solution is unique. We present in paper (74] a number of instances in
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which the more general formulas are of practical use in analyzing
linear programming models and their solutions. Emphasis is on
analysis and conclusions that can be made just on the basis of
information ordinarily made available when a linear program is solved
on a typical commercial code, i.e., a single primal optimal and single
dual optimal solution.

In other work on the sensitivity of linear programs to changes in
parameters, we have investigated in paper [40] the tolerance approach,
an approach which allows us to determine by how much a set of
parameters can simultaneously change either upwards or downwards while
leaving the same basic solution optimal. In contrast, in the usual
sensitivity analysis, one just changes one coefficient at a time or
changes all coefficients in the same direction, governed by one
parameter, which is very restrictive. In this paper, we apply this
tolerance approach to the case where the coefficients are weights of
the multiple linear objectives.

2.4. Applications of Combinatorial Optimization to Nonlinear
Problems

In operations research, one makes the distinction between
algorithms designed to find a local optimum and algorithms design-d to
find the global optimum. The vast majority of nonlinear programming
algorithms belong to the first category, but increasing attention is
being devoted to the latter one. We have found that many of the iIleas
underlying algorithms for combinatorial optimization can be transpqed
to the field of global optimization. Many practical problems in th,
engineering literature can be looked at as constrained global
optimization problems. The most successful approaches to constrained
global optimization appear to be interval analysis (Moore (1979],
Hansen (1979, 1980], and Hansen and Sengupta E1981]); monotonicity
analysis (Wilde (1978], Papalambros and Wilde (1979, 1980]); and
computer algebra (Stoutemeyer [1975]). These three approaches have
been combined and extended in a series of papers [32,33,36] we
prepared last year and modified in the current year.

This year, our work on global optimization has continued. In
particular, in paper [35], we have studied Piyavskii's algorithm which
maximizes univariate functions f(x) satisfying a Lipschitz
condition. We have compared the numbers of iterations needed to
obtain a bound within of the (unknown) optimal solution with a
best possible algorithm (n B ) and with Piyavski'i's method ( np). The

main result is that np< nB 1 and that this bound is sharp. Several

related bounds are obtained.

We have also found in paper [34] the global minimum of a
univariate function by approximating this function piecewise by
polynomials, which can then be minimized analytically. This corrects
and generalizes some previous results by Wingo (1985] on minimization
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of polynomials.

3. Posets and Other Combinatorial Structures and their Applications

Combinatorial structures such as matroids, graphs, block designs,
and partially ordered sets (posets) have a wide variety of
applications to practical problems. Our work on such combinatorial
structures to date has emphasized graphs (see Section 1) and posets.
We have, however, also encountered a variety of other structures in
our work. In this section, we describe the work on posets and on
these other combinatorial structures, with an emphasis on posets.

3.1. Linear Extensions and Ideals

Posets are among the fundamental objects of discrete mathematics.
They have applications to the theory of computation, optimization,
game theory, preference and decisionmaking, etc. Among the concepts
of posets especially important in problems of searching and sorting
are the concepts of linear extension and antichain. The dimension of
a poset is the smallest number of linear extensions whose intersection
is the poset. A well-known result of Hiraguchi (1955] states that
the size of a poset is at least twice its dimension. The analogous
question for lattices was posed by B. Sands. We have shown that the
dimension of a projective plane of order n is at least on the order

of n/log n, so the size of a lattice can be as small as d2 logd,
where d is the dimension. This work, begun in earlier years, has
been updated and published. See paper E24].

In other work begun in an earlier year, we have been studying the
shadows of antichains in the Boolean algebra B(n), the sets covered
by such antichains, and asking whether it is possible for such a
shadow to contain a positive fraction of all the sets. K. Engel had
originally asked how large such a shadow could be, and made the

(natural) conjecture that it is 0(2 n.rn), i.e., about the number of
n/2-sets. Furedi and Kahn had disproved this earlier. In paper (25],
we obtain the surprising result that it is possible for a shadow to
have a positive fraction (more than a tenth) of all the sets.
Remarkably, there is still no upper bound on the size of the shadow

which is asymptotically less than 2

In studying linear extensions of posets, Kahn and Saks [1984]
proved the very deep result that if a poset is not a chain, then for
every x and y, the probability that x < y in an extension is
bounded away from both 0 and 1, in particular by 3/11 and 8/11. By
making use of the Brunn-Minkowski Theorem, we have now shown (paper
[493) a similar result with bounds 1/2e and 1-(1/2e). The bounds are
not as good as the earlier ones, but the proof is much easier.
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3.2. Graphs and Posets

One can sometimes learn something about a graph by associating
with it a poset and one can sometimes learn something about a poset by
associating with it a graph. In paper [69], begun last year, we have
used such considerations to find an exact answer for the minimum
number of pairwise comparisons needed to identify the larger class of
a finite set which is divided into two as yet unknown classes.

3.3. Posets and Discrete Optimization

Posets play an important role in the analysis of a number of
discrete optimization problems. We have prepared two papers, Hammer
and Liu [27,28], which describe the important role of order relations
in solving mathematical programming problems.

3.4. Other Useful Combinatorial Structures and their
Applications

Other combinatorial structures have played an important role in
our work from time to time, as have structures which fall in the
interface between combinatorics and other parts of mathematics. In
the past year, we have obtained results about various algebraic
structures, about combinatorial designs, about random structures, and
about spaces of smooth, piecewise polynomial functions.

In work involving algebraic structures, we should mention again
the work on orthogonal representations described in Section 1.3 and
the work on matrices without 1 0 1 on the diagonal described in
Section 1.2. Another example of such work involves extremal matrix
problems. Let W be a linear subspace of symmetric nxn matrices
whose rank is at most t and L be an affine space of nxn matrices
having rank at least k. Paper [62] obtains bounds on dim W if the
underlying field has more than t elements and bounds on dim L if
the underlying field is algebraically closed. The latter result is
applied to a problem of Valiant concerning permanents and
determinants.

Combinatorial designs, in particular various kinds of balanced
incomplete block designs, have played a role in the work described in
Section 1.2 on competition graphs of acyclic diqraphs with restricted
indegrees and outdegrees. They have also played a role in the work on
A-hyperfactorizations of K2 n described in that section. Designs

also play a role in our study of projective planes. Paper [9] shows

that in the Galois plane PG(2,p S), p prime, there is a blocking set

of size 2p s , with no lines having more than p+1 points in common
with it. In paper (123, it is shown that if PG(d,q) denotes the
d-dimensional finite projective plane of order q, then given 1 < r



-13-

< s < d and • > 0, if X c PG(d,q) contains (1+e)q s points, then
the number of r-flats spanned by X is at least a positive fraction
of the number of r-flats in PG(s+l,q).

An increasingly important theme in discrete mathematical research
is to investigate random discrete structures of various kinds. The
reason for the emphasis on random structures is in part because of
their connections to probabilistic algorithms and in part because of
their relevance in formulating models for applied problems. Moreover,
sometimes a probabilistic approach can lead to useful results about
inherently non-probabilistic problems. A few of our results are of a
probabilistic nature. For instance, paper [52] shows that the second

eigenvalue of a random d-regular graph is of the order of .if. This
result was proved by a totally new method, quite different from the
classical methods of random graphs. When it was later proved by
classical methods, the proof was much more complicated. Another
result about randomness is concerned with the collective coin flipping
problem. A set of n players wish to agree on the value of a single
bit (0 or 1), which they will all accept as random. Each player has a
fair coin at his disposal, which he flips privately. An obvious
procedure is to have one of the players flip his coin and announce the
outcome. Assuming that the designated player abides by the rules of
the game, the outcome is an unbiased bit. However, if the player
designated to flip the coin is dishonest, he can announce whatever bit
value he chooses. Roughly speaking, the problem of collective coin
flipping is to design a procedure for n players to agree on a bit
value which is robust in the sense that even in the presence of
dishonest players who conspire to bias the coin, the outcome is
unbiased or nearly unbiased. In the paper E3], we survey results
about this problem viewed as a perfect information game. Viewed in
this way, the collective coin flipping problem has connections with
game theory, error-correcting codes, and extremal set theory and is an
example of a more general question: How well can imperfect random
sources simulate perfect random sources? The paper [3] surveys
results about this question for other models of imperfect random
sources. The paper [68] describes the most robust scheme known for
the collective coin 'flipping problem. To give still a different
example of the role of randomness in our research, we have presented a
new method to analyze and solve the maximum satisfiability problem
using a method which involves randomizing the Boolean variables. This
method, written up in paper (133, is discussed in more detail in
Section 4.2.

One of the themes of modern discrete mathematics and discrete
optimization research is the investigation of the interface between
these areas and other areas of mathematics. We have been
investigating some problems of algebra, topology, and numerical
analysis using combinatorial methods. Namely, we have been concerned
with the general problem of finding efficient ways to represent all
piecewise polynomial functions which are smooth of order r and are
of degree at most m, over a d-dimensional triangulated region in
d-space. Such functions, often called splines or finite elements,
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have application in computer graphics and surface modeling as well as
in numerical analysis. We have been concerned with the problem of
determining the dimensions of such spaces as well as computationally
useful bases. In attacking this problem, we have used methods from
combinatorics and commutative algebra similar to those used to study
the numbers of faces of convex polytopes. We have related the study
of the ring of continuous piecewise polynomials over a d-dimensional
triangulation to the study of the face ring of the underlying
simplicial complex and showed how this leads directly to a
specification of the dimensions in question. In the past year, we
have prepared four papers on this subject, papers [4,5,6,7]. Among
the more important results of this work is the possibility that
Groebner basis methods of computational commutative algebra might lead
to effective means to compute dimensions and bases of spline spaces in
large practical examples.

4. Computational Complexity and Efficient Algorithms

One of the primary directions of research in discrete mathematics
today involves the complexity of algorithms. Our work on complexity
has emphasized the foundations of computational complexity, the
development of heuristic algorithms for obtaining approximate
solutions to problems, and the development of on-line algorithms for
the solution to problems where decisions must be made one at a time as
data becomes available, rather than waiting for the entire problem to
be laid out. In addition, throughout our research, we have been
searching for efficient algorithms for solving problems, and many of
these are referred to elsewhere in this report.

4.1. Foundations of Computational Complexity

Our work on foundations of computational complexity has spanned a
variety of topics in theoretical computer science. For instance, in
paper C50], we have studied the conjecture that, stated imprecisely,
says that if you want to compute even a very simple function with a
certain kind of boolean circuit (a bounded depth boolean circuit with
gates with output functions depending only on a restricted sum of
inputs), the circuit must be very large. We have proven this
conjecture for a special case.

To give a second example, in paper [573 we have taken the
position that communication is concerned with the question of how much
information two processors need to exchange to compute a specified
function that depends on both of their inputs. We develop a general
framework for the study of a broad class of communication problems
which can be looked at this way, and analyze such problems using
combinatorial lattice theory.

To give a third example, in paper [233 we establish tradeoffs
between the cost of queries and updates in various data structures.
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4.2. Heuristics

As more and more problems are shown to be difficult, for instance
by proving them to be NP-complete, there is coming to be an increasing
emphasis on heuristic solutions. Heuristic algorithms are especially
important in practice where there are many problems involving
hundreds, thousands, even tens of thousands of variables. In such a
case, we would like to elaborate a heuristic algorithm capable of very
rapidly finding approximate solutions to large problems.

We have been working on heuristic algorithms for a number of
combinatorial problems. In the past year, we have emphasized the
Maximum Satisfiability Problem (MSP). In this problem, we seek the
largest possible set of logical clauses from a given set which may be
simultaneously satisfied. This problem contains the satisfiability
problem and is NP-complete even when all clauses contain at most two
literals. In paper [30], we study both old and new algorithms for MSP
and Maximum 2-Satisfiability. In particular, we analyze the
algorithms of Johnson (1974], Lieberherr [1982], Lieberherr and
Specker [1981], and Poliak and Turzik [1982]. We propose an exact
algorithm which can be used for problems of moderate size, as well as
the specialization of two recent local search algorithmic schemes, the
Simulated Annealing method of Kirkpatrick, Gelatt, and Vecchi [1983]
and the Steepest Ascent Mildest Descent method. The resulting
algorithms, which avoid being blocked as soon as a local optimum has
been found, are shown empirically to be more efficient than the
heuristics previously proposed in the literature.

In related work, we present in paper (13] a probabilistic model
for MSP and apply probabilistic bounds to develop Branch-and-Bound
type algorithms for their solution. (It is interesting to note that
the probabilistic existence proof results in a deterministic
algorithm.) The probability bounds prove the existence of some
solutions having reasonable quality.

4.3. On-Line Algorithms

Many practical problems call for efficient solution algorithms
for combinatorial problems. Most of the theory of combinatorial
algorithms deals with problems which are completely specified in
advance. In practical problems, we often need solution algorithms
which are on-line in the sense that one is forced to make choices at
the time data becomes available. A typical example of such a
practical problem is the frequency assignment problem which is
discussed in Section 1.1. One has to find an assignment of a
frequency to a new transmitter before one knows all of the
transmitters to which assignments must be made.

A general approach to on-line problems is to think of them as
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sequential decisionmaking problems. There are two points of view:
(a) Formulate a probabilistic model of the future and minimize the
expected cost of future decisions; (b) compare an on-line decision
strategy to the optimal off-line algorithm, one that works with
complete knowledge of the future. The first is the approach taken for
instance in the theory of Markov decision models. We have emphasized
the second approach.

In this approach, one calculates the performance ratio, the ratio
between the worst case value computed by an on-line algorithm and the
theoretically optimal value. For instance, suppose A is an on-line
algorithm for coloring graphs. What this means is that a graph is
presented one vertex at a time (with edges to previously presented
vertices defined at that time). Then algorithm A is supposed to
choose a color for that vertex, knowing what it has previously done
but not what the rest of the graph looks like. Let O(G) be an order
of presentation of G. Let XA(O(6)) be the number of colors needed

to color G using algorithm A if O(G) is the order of
presentation, and let XA(G) be the maximum XA(O(G > among all

possible orders O(G) in which G could be presented. We are
interested in the performance ratio XA(G)/X(G). Alternatively, we

are sometimes interested in finding constants Q so that KA(G) -

7(G) is bounded for all G. Such a constant is called a waste
factor for A. Then we seek w(A), the infimum of all waste factors
Q for A. This is called the waste factor for A.

We have shown in paper [59] that for every on-line algorithm A
and every graph 6, KA(G)/ (G) < n/log*n, where n is the number of

vertices of G and log*n is the number of times we must take the
log of the log ... of n before reaching a number less than or equal
to 1. We have also shown that for every on-line algorithm, there is a
graph 6 so that KA(G)/(G) > n/loglog n. The question remained

whether or not the actual waste factor was sublinear, i.e., was it
o(n)? We have now succeeded in showing this as well.

5. Applications of Discrete Mathematics in Decisionmaking

Problems involving complex choices are often most naturally
formulated using discrete mathematics. The tools of discrete
mathematics are widely used in the literature of individual or group
decisionmaking, measurement and utility theory, and so on. (See
references in our original proposal.) We have made progress using
discrete techniques on several problems involving decisionmaking and
have also found concepts from the theory of decisionmaking to be
useful in attacking other problems of discrete mathematics.

5.1. Group Decisionmaking

Our major effort in group decisionmaking has involved various
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results of a gae-theoretic nature, in particular about multi-person
games of the sort which arise in negotiation situations, in
disarmament, in economic decisionmaking, and the like.

In game theory, there are several measures of power of a player
in a group. We have studied two of these, the Shapley and Banzhaf
measures. One important question in game theory is the question of
how small the maximum (normalized) Banzhaf measure can be in a game
with half of all coalitions winning. In work begun last year (paper
(473) we reduce this problem to one of estimating the maximum over F

C ( 0 , 1 }n of given size of the number of pairs x,y in F with

d(x,y) = d, where d(x,y) is the ordinary Hamming distance and d
is fixed in advance. The reduction depends on taking the Fourier

transform of the characteristic vector of the set X c (0 ,11 n and

then (reversing a standard technique) attempting to analyze this
transform by studying an associated random walk. The advantage of the
new formulation is that it is closer to standard extremal problems in
combinatorial set theory, and hence might be more tractable.

The paper [483 is concerned with an idealized two-person game in
which each player knows the other player's "hand." The results give
an indication of how the "relative strength" of a hand determines the
best strategy.

Other work on group decisionmaking which we have already
discussed in Section 3.4 is our work on the collective coin flipping
problem. This involves the design of a procedure whereby a group of
n decisionmakers can agree on the value of a single bit which they
will all accept as random even in the presence of dishonest players.

5.2. Measurement and Decisionmaking

In our work on measurement and decisionmaking, we have worked on
the meaningfulness of statements arising in combinatorial optimization
and on a variety of clustering problems.

An area of considerable current interest in the theory of
measurement is the theory of meaningful statements. Put briefly, a
statement is called meaningful if its truth or falsity is independent
of the particular versions of scales of measurement used. That is,
its truth or falsity is not an artifact of the particular scales of
measurement used. (See Roberts [1979a3 for detailed definitions of
concepts from the theory of measurement.) The theory of
meaningfulness has had a wide variety of applications, including
applications involving average performance measures for new
technologies, importance ratings, indices of consumer confidence,
psychophysics, social networks, and structural modeling for complex
decisionmaking problems. See Roberts (1985] for a survey. Continuing
work begun last year, we have looked at the limitations which the
requirements of meaningfulness place on conclusions from combinatorial
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optimization problems. The results show for instance that the
statement "z is an optimal solution" can be meaningless for
quadratic optimization even if the variables are measured on the very
strong scale called a ratio scale. However, this statement is
meaningful for linearly homogeneous objective functions under some
reasonable assumptions. See paper [65].

Also falling into the general area of measurement and
decisionmaking is the paper [66] which we have prepared which surveys
the applications of graph theory and combinatorics in the biological
and social sciences. In this paper, we discuss applications of the
fundamental notion of semiorder which is critical in measurement
theory and of the fundamental notion of social welfare function which
is crucial in group decisionmaking. Also with decisionmaking
applications in mind, we discuss problems of qualitative stability and
applications of signed digraphs.

Much of measurement and decisionmaking begins with clustering or
partitioning of alternatives into groups. Our work on measurement so
far has concentrated to a large extent on clustering or partitioning
problems. Clustering methods aim at finding within a given set of
entities, subsets called clusters which are both homogeneous and
well-separated. These concepts can be made precise in terms of
dissimilarities between entities. The split of a cluster is the
smallest dissimilarity between an entity in that cluster and one

outside it. The paper (31] gives an O(n 3 ) algorithm to determine
the maximum sum of splits partitions into M clusters for all M
between N-1 and 2. The paper [22] is a revised and significantly
improved version of paper [31]. It introduces the concept of a dual
graph of a dendrogram and solves the problem as a constrained longest

path on this dual graph. The result is a e(n 2 ) algorithm. The paper
E10] also gives results on this problem. It is shown that there

th
exists an optimal partition such that the intersection of the 

j

cluster with the convex hull of the first j-1 clusters is always
empty.

5.3. Multiple Conclusion Logic

When a given signal can be interpreted as being the result of a
variety of causes and a small number of tests have to be created to
identify the exact cause of the signal, we have a typical instance of
a multiple conclusion logic situation. ExampleA of such situations
occur in medical decisionmaking, in searching and seeking in hazardous
or nuclear or chemically toxic environments, in detecting enemy
positions, in remote operations in space or underseas, and so on.
This situation is especially important in the design of expert
systems. A natural approach to such problems is based on Boolean
methodology. The paper [18] uses partially defined Boolean functions
to analyze multiple conclusion logic situations, in particular,
cause-effect relationships. Procedures are provided to extrapolate
from limited observations, concise and meaningful theories to explain
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the effect under study and to prevent (or provoke) its occurrence. A
follow-up to paper [18] is the paper [733, which looks at the same
problem using methods in the spirit of regression analysis,
implemented by ordinary linear programming, as opposed to the integer
programming methods used in [18).

As we have noted, the work on multiple conclusion logic is
relevant to the design of expert systems. For instance, Boolean
methodology is useful in the design of "inference machines" for such
systems, as was illustrated in work completed in an earlier year of
this project - see Crama, et al. [1986]. Also, as the size of
databases and knowledge bases in expert systems grows, the occurrence
of inconsistencies becomes more and more likely. It is then desirable
to restore consistency by relaxing as few logical conditions as
possible. In the domain of propositional calculus, this problem
corresponds to the maximum satisfiability problem for Horn formulas, a
problem which has played a central role in the theory of Boolean
functions. Our work on this problem has been described in Section
4.2.

6. New Operations Research Techniques for Large Scale Scheduling
Problems

Since September 30, 1988, a group from RUTCOR has been working on
developing new operations research techniques for dealing with large
scale scheduling problems under a $100,000 supplement to RUTCOR's
grant from AFOSR. The funds for this supplement were provided by the
Military Airlift Command (MAC).

The central focus of this group's effort has been to determine
models which as realistically as possible correspond to very large
scale scheduling problems of interest to MAC, and to derive techniques
to provide optimum or near optimum solutions for a variety of
realistic objective functions.

RUTCOR's work dn problems of MAC has involved basic research to
formulate models for approaching various MAC questions, to develop
techniques for handling MAC problems, and to develop and experiment
with computational methods designed for implementation of some of the
results. In addition, we have consulted with MAC on practical
implementation problems.

The work for MAC has emphasized three problems which were
recommended by MAC: The STORM I and STORM II models for routing
aircraft on regularly scheduled MAC runs, the aircrew scheduling
problem, and the single base aircrews staging problem. The work on
these problems is described in the next three sections.
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6.1. The STORM I and STORM II Models

The STORM I and STORM II linear programming models were developed
by the CINCMAC Analysis Group for scheduling channel missions more
efficiently. (STORM stands for Strategic Transport Optimal Routing
Model.) These models were developed to save money by using fewer
aircraft flying hours to airlift the same amount of cargo. The STORM
I model has 3506 constraints and 4058 variables, while the STORM II
model, which allows for transshipment, has 4204 constraints and 22,573
variables. Both models have proved extremely time consuming to solve
with commercial simplex codes. David Shanno of RUTCOR has been
working at the frontiers of research in this area by developing
interior point methods for solving these models, with considerable
practical success.

Numerical work over the past several years has provided
substantial evidence that interior point algorithms for solving LP's
outperform the classical simplex algorithm by a factor that grows
rapidly with problem size. These interior point algorithms originated
in the projective transformation methods for linear programming of
Karmarkar in 1984.

Much of Shanno's research under his own AFOSR project during the
past year was spent on separate implementations of two algorithms out
of the group of logarithmic barrier algorithms, the dual affine
algorithm and the primal-dual algorithm. His work has shown that all
interior point methods fall into the general class of logarithmic
barrier methods, of which the two implemented are the two of principal
interest. This work has been documented in the report (70].

Past improvements in the primal-dual algorithm required
considerable theoretical effort but still led to extraordinarily slow
practical algorithms. Shanno has utilized the special feature of the
primal-dual algorithm that an estimate of the decrease in the duality
gap dependent upon the value of u is available to devise an
algorithm that has performed exceptionally well in practice. The
preliminary study of this algorithm was partially supported under
Shanno's AFOSR project and was written up in a report by McShane, et
al. [1988]. Under MAC support, extensive additional testing was
undertaken during the summer of 1988 and has been written up in report
r14].

Implementation of the dual affine algorithm variant is described
in report [60], which was also partly supported under the MAC funds.
The performance of this algorithm has been so exceptionally good that
recent work has concentrated on supercomputer implementations.
Extensive research is currently under way on the CRAY XMP, YMP, and
CRAY II. Results here are startling. For example, we can currently
solve the STORM II model of MAC in 86 seconds on the CRAY II. This is
much faster than the best simplex codes tailored to the CRAY. Indeed,
Cray Research is so enthusiastic about the performance of this code
that they have made available extensive free testing time on their
computers in Minnesota and MAC has directly benefitted from extensive
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free supercomputer testing of their models. A report documenting the
implemented algorithm and the computational results is in preparation
(report [613).

To give more details about the performance of our codes on
specific MAC models, we note that we have extensively tested both the
STORM I and STORM II models, principally on the VAX600, where we
compared the performance of the interior point code to XMP, a standard
linear programming code, and on the CRAY II, where we compared against
LAMPS and LOPT, the two best simplex codes on the CRAY machines, both
of which have been specifically tailored to the GRAYs. In all cases,
the dual affine code was faster. On the VAX, we were approximately 10
times faster than XMP on STORM I. The advantage on STORM II was
greater but not determined exactly, as XMP was terminated before
optimality due to excessive time usage. On the CRAYs, the dual affine
was twice as fast as LAMPS for STORM I, about 5 times faster than
LAMPS for STORM II. LAMPS was faster than LOPT for these problems.
Estimates of CRAY scientists are that the advantage of the dual affine
can be enhanced by a factor of three by tailoring the software to CRAY
architecture. Similar performance gains should be achievable for
other vector machines. We have been working closely with MAC to
illustrate the improved performance of our algorithms.

Several avenues of current research have been suggested by our
work with the MAC models. First, we are examining the structure of
the MAC constraint matrices to determine how best to implement linear
algebra routines for interior point methods with these structures.
More importantly, current research is under way to determine good
heuristics to recover a near optimal integer feasible solution from
the continuous optimal solution, which we think would be of major
importance to MAC. This is an extremely difficult problem, but the
structure of interior point algorithms suggests some promising
heuristics which would have been difficult, if not impossible, to
implement with a simplex code. This work is of such strong general
interest that it will be the major reseach emphasis for further
development of the dual affine codes for the next year.

6.2. The Aircrew Scheduling Problem

The Aircrew Scheduling Problem (ASP) is concerned with enhancing
pilot satisfaction from assignments to particular flights while
satisfying various feasibility constrdints. This problem was the
subject of a preliminary study by Albert Williams and Pierre Hansen of
RUTCOR, who collaborated with Major William Carolan of the CINCMAC
Analysis Group of MAC and with schedulers from various bases of the
Air Force. The problem of keeping pilots happy is of vital importance
to MAC, which estimates that the loss of each pilot represents an
investment loss of more than a million dollars.

ASP is a complex and large-scale problem. We made a preliminary
analysis of the problem, through meetings with Major Carolan at RUTCOR
and at MAC, through the study of documents provided by MAC, and
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through numerous interviews with pilots and schedulers. This analysis
involved considerable effort at modelling of the problem. We
determined that the following characteristics of ASP appear to be
basic. First, it is complex, involving many actors, several possible
objective functions, and many constraints. Second, ASP is partly
defined in a fuzzy way, as pilot satisfaction, a psychological
phenomenon which cannot be evaluated directly. Third, ASP is partly
stochastic, as there are unscheduled flights and uncertain round-trip
times on scheduled flights. Fourth, ASP involves go-nogo decisions,
such as assigning a crew to a particular mission. (This means using
0-1 variables in the modelling rather than continuous variables.)
Fifth, ASP is large-scale, larger than the scheduling problems solved
to optimality in the current OR state of the art. Finally, ASP is a
recurrent problem, solved manually each month. Any new system should
improve over the actual ones, in terms of performance, flexibility,
and user-friendliness.

Our preliminary analysis of ASP from a modelling point of view
was followed by considerable effort at outlining the desirable
characteristics of a computer-assisted scheduling system (CASS). We
identified the following desirable characteristics of CASS. First,
CASS should be a computer-assisted system, not an entirely automatic
one. Second, it should prepare monthly schedules as well as modified
schedules (or rolling schedules for the next 30 days). Third, CASS
should use a flexible way to express preferences of the crew members.
Fourth, CASS should use a heuristic algorithm to determine best
schedules. Fifth, it should be usable as a simulation tool to explore
policies. Sixth, it should alleviate as much as possible the
administrative burden of schedulers and crew members. Finally, CASS
should be flexible enough to adapt to different wings and to changing
policies and conditions.

Having identified the desirable characteristics of CASS, we
devoted considerable effort to outlining some basic principles upon
which such a system might be built. We believe that the development
of CASS should comprise first a prototype system which would be tested
at one or two wings. If such a prototype system turned out to be
promising, the task of completely realizing it as an industrial system
would follow. This task would be much larger, particularly due to the
large data bases involved, which would be accessed repeatedly and
interactively, and which would need to be updated both temporarily and
permanently.

The development of a prototype system would involve a large
amount of basic research. We have outlined some of the steps needed
to develop such a system. First, one would need to understand better
the dimensions of pilot satisfaction (which may vary a lot from pilot
to pilot according to familial and other personal preference
characteristics). Second, one would need to derive a flexible system
for obtaining and expressing pilot preferences. Third, one would need
to derive a heuristic algorithm which would insure a high average
level of pilot satisfaction while respecting all constraints on crew
composition, availability, duties, etc. and keeping also a fairness



-23-

objective in view.

We have tentatively designed a bidding procedure which could play
a key role in allowing flexible expression of pilot preference and
crew scheduling, with both high average satisfaction and fairness.

We have proposed to MAC that a RUTCOR group, wnrking in close
collaboration with schedulers and operations researchers in the Air
Force, be involved in the development of a prototype CASS. The RUTCOR
group would focus on the fundamental modelling and mathematical issues
involved, with the goal of producing a usable pilot software product.
However, it would not aim to produce a complete realization of a
commercial quality computer system. Such a system would have to be
left to commercial software producers.

The results of our feasibility study on the Aircrew Scheduling
Problem and a detailed proposal on the development of a pilot system
were prepared as report E43]. A second report on this, E44], is being
prepared.

6.3. The Single Base Aircrews Staging Problem

The Aircrews Staging Problem is concerned with the question of
how many crews should be stationed in one given staging area (base)
during a planned airlift operation. In general, the airlift operation
evolves during a predetermined period of time (say, several weeks) and
involves a given schedule of flights between several bases (origins
and destinations) which serve to move cargo and personnel as required
by the exercise. Notwithstanding the planning, the flows in this
network are stochastic as a result of schedule changes during the
operation which are due to factors such as changes in the priorities
of missions, equipment failure, weather conditions, and so on. We
have studied this problem for a single staging area, with the
objective being to develop methods and algorithms for achieving two
goals. The primary goal is to minimize the number of crews stationed
at the staging area so as to achieve a predetermined very small
probability of aircraft delay. The secondary goal is to minimize crew
discontent due to unnecessary waiting (legal periods).

Preliminary analysis of the Single Base Aircrews Staging Problem
(SBASP) was carried out by Benjamin Avi-Itzhak of RUTCOR, in
collaboration with Major Carolan of MAC. This analysis at first
involved various attempts to formulate mathematical models. We came
to the conclusion that SBASP could be formulated as an inventory
planning and control process and that it should be handled through the
development of two systems: A staging planning system and a staged
crews management system.

We did some research work on the planning problem and found out
that early planning (1-3 months before the exercise) can be aided by a
model based on aircraft arrivals behaving as a renewal process. At
this phase of the planning there is only very rough information
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available and the renewal process assumption requires very little
information. However, at the final planning phase, when flight
schedules are available, there is a need for an algorithm of a very
general nature that will track the schedule and calculate the number
of needed crews at each point in time during the whole exercise. We
did some research work developing the analysis and mathematical
results for the renewal process approach, including working out some
numerical examples. This work is documented in the report [2]. One
interesting result here was that the criterion of average aircraft
delay is not very meaningful and it may be more desirable to minimize
the number of staged crews subject to a given predetermined
probability of delay.

Professor Avi-Itzhak sent a preliminary copy of report [23 to MAC
and then flew to St. Louis to discuss the results with Major Carolan
and others involved in the SBASP. They had adopted his suggested
approach but were trying to solve the final planning problem by the
use of a brute force simulation. He provided Major Carolan with an
outline of a numerical algorithm which is orders of magnitude superior
to brute force simulation and much more reliable.
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"Applications of Simple Counting Rules"
"The One-Way Street Problem"
"Balance in Small Groups"
"Pulse Processes and Complex Decisionmaking Problems"

"From Garbage to Rainbows," invited plenary address to International
Conference on Graph Theory and its Applications," Kalamazoo, Michigan,
May 1988.

"On the Possible Merging Functions," invited hour talk at Workshop on
Measurement Theory, Center for Advanced Study in the Behavioral
Sciences, Palo Alto, California, June 1988.

"Finite Uniqueness Problems," invited hour talk at Workshop on
Measurement Thery-v, Center for Advanced Study in the Behavioral
Sciences, Palo Alto, California, June 1988.

"Applications of Discrete Mathematics," series qf four lectures
presented to Workshop of Consortium for Mathematics and its
Applications, Boston, MA, June 1988.

Titles of individual Talks:

"Graph Coloring"
"Eulerian Chains and Paths"
"Simple Counting Rules"
"One-Way Streets"
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"From Garbage to Rainbows," Douglass High School Institute for Science
and Math, Douglass College, July 1988.

Eight Lecture Minicourse "Applications of Graphs and Relations,"
Allegheny Mountain Section, Mathematical Association of America,
Allegheny College, Meadville, PA, July 1988.

Titles of Individual Talks:

"Applications of Graph Coloring"
"T-Colorings of Graphs"
"Applications of Eulerian Chains and Paths"
"Competition Graphs and their Applications"
"Relational Systems and the Theory of Measurement"
"Meaningless Statements"
"Representation and Uniqueness Theorems"
"The Possible Merging Functions"

"Applications of Discrete Mathematics," series of six lectures
presented to Mathematics Association of Two Year Colleges of New
Jersey, Princeton, September 1988.

Titles of Individual Talks:

"Intersection Graphs and their Applications"
"T-Colorings of Graphs"
"Competition Graphs and their Applications"
"Applications of Generating Functions"
"Group Decisionmaking: Arrow's Impossibility Theorem"
"Group Decisionmaking: Means and Medians"

Louis Billera

"Algebraic Methods for Multivariate Splines," Royal Institute of
Technology, December 1987.

"Algebraic Methods for Multivariate Splines," Hebrew University of
Jerusalem, January 1988.

"Algebraic Methods for Multivariate Splines," Institute for
Mathematics and its Applications, University of Minnesota,
Minneapolis, March 1988.

"Algebraic Methods for Multivariate Splines," SUNY at Binghamton,
April 1988.

"Algebraic Methods for Multivariate Splines," Courant Institute, NYU,
April 1988.

"Algebraic Methods for Multivariate Splines," University of Oslo, June
1988.
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"Algebraic Methods for Multivariate Splines," Univesity of Augsburg,
June 1988.

"Algebraic Methods for Multivariate Splines," IBM Yorktown Heights,
July 1988.

Endre Boros

"On the Number of Flats Spanned by a Set of Points in PG(d,q),"
Combinatorics '88, Ravello, Italy, May 1988.

"On a Lemma of Segre," University of Delaware, April 1988.

Pierre Hansen

"Clustering Algorithms," Institute for Mathematics and its
Applications, University of Minnesota, Minneapolis, January 1988.

"An Analytical Approach to Global Optimization," University of
Delaware, April 1988.

"Dispersing Facilities an a Network," ORSA/TIMS national meeting,
Washington, D.C., April 1988.

"Algorithms for Feasible Designs," ORSA/TIMS national meeting,
Washington, D.C., April 1988.

"Maximum Sum of Splits Clustering," ORSA/TIMS national meeting,
Washington, D.C., April 1988.

"A Hard to Color Graph," Advanced Research Institute in Discrete
Applied Mathematics, Rutgers, May 1988.

"An Analytical Approach to Global Optimization," a 90-minute research

review, EURO IX, Paris, July 1988.

"Two Clustering Problems," EURO IX, Paris, July 1988.

"Some Exact Clustering Algorithms," Institute of Applied Mathematics,
Beijing, China, August 1988.

"Recent Applications of Operations Research," Institute of System
Science, Beijing, China, August 1988.

"Applied Graph Theory," 30 lectures at Academia Sinica, Beijing,
China, August 1988.

"An Analytical Approach to Global Optimization," Mathematical
Programming Society, Tokyo, August 1988.
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"Probabilistic Logic and Pseudo-Boolean Programming," Mathematical
Programming Society, Tokyo, August 1988.

Jeffry Kahn

"Fractions of Matchings and Fractional Matchings," M.I.T., Cambridge,
MA, November 1987.

"On Fractional Matchings," IBM Research, Almaden, January 1988.

"Rebalancing Poset Extensions," Institute for Mathematics and its

Applications, University of Minnesota, Minneapolis, March 1988.

"Fourier Analysis of a Problem on Finite Sets," Meeting on Posets,
Oberwolfach, Germany, April 1988.

Roy Meshulam

"A Problem on Permanents and Determinants," M.I.T., February 1988.

"Linear Spaces of Matrices," Arizona State University, March 1988.

Michael Saks

"A Search Problem Related to Branch and Bound Procedures," Simon
Fraser University, March 1988.

"A Search Problem Related to Branch and Bound Procedures," University
of Arizona, April 1988.

"Local Management of a Global Resource in a Communication Network,"
University of California, San Diego, April 1988.

"Lattices, Moebius Functions, and Communication Complexity,"
University of Toronto, August 1988.

David Shanno

"An Implementation of a Primal-Dual Interior Point Method for Linear
Programming," Conference on Optimization at Mathematical Research
Institute, Oberwolfach, January 1988.

"An Implementation of a Primal-Dual Interior Point Method for Linear
Programming," ORSA/TIMS national meeting, Washington, D.C., April
1988.

"A Unified View of Interior Point Methods for Linear Programming,"
Workshop on Optimization on Supercomputers, University of Minnesota,
May 1988.
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"An Implementation of a Primal-Dual Interior Point Method for Linear
Programming," Mathematical Programming Society Symposium, Tokyo,
August 1988.
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Participants in "A RUTCOR Project on Discrete Applied Mathematics"

September 30, 19 87-September 30, 1988

FACULTY

Peter Hammer (Principal Investigator)

Fred Roberts (Principal Investigator)

Benjamin Avi-Itzhak

Louis Billera

Pierre Hansen

Jeffry Kahn

Michael Saks

David Shanno

Albert Williams

POSTDOCTORAL FELLOWS

Endre Boros

Roy Meshulam

GRADUATE STUDENTS

Hernan Abeledo

Ansuman Bagchi

Arunkumar Balakrishnan

Pey-chun Chen

Guoli Ding

Suh-ryung Kim

Wenzhong Li

Keh-wei Lih
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Xiaorong Sun

Xueqing Tang

Barry Tesman

Chi Wang

ASSOCIATE FELLOWS

Jean-Pierre Barthelemy, Ecole Nationale Superieure des
Telecommunications, Paris

Yves Crama, University of Linburg, the Netherlands

Dominique de Werra, Swiss Federal Institute of Technology, Lausanne

Albertus Gerards, Tilburg University, Belgium

Cor Hurkens, Tilburg University, Belgium

Toshihide Ibaraki, University of Kyoto, Japan

Bernard Monjardet, University of Paris

Uri Peled, University of Illinois, Chicago

Michael Sipser, Massachusetts Institute of Technology

ADVISORY COMMITTEE

Egon Balas, Carnegie-Mellon University

Claude Berge, CNRS, Paris

Ronald Graham, AT&T Bell Laboratories

Laszlo Lovasz, Eotvos University and Princeton University


