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ABSTRACT

The need for tools capable of handling non-stationarities in the spectral content of
L,A. ) i

the datahas been recognized as early as 1946. The Wigner-Ville Distribution (WD) has

been extensively used since its introduction in 1948, but suffers from some associated

problems (e.g., spectral cross-terms and requiring the use of analytic signals). An alter-

native Distribution is proposed, which has its origin in the definition proposed by Page
of (6nstantaneous Power Spectrunr(IPS). Its characteristics are examined and, when

7' pertinent, compared to the WVD. It is shown to be less sensitive to the problems afieting - -,

the WD. but provides less frequency resolution. The usefulness of a parametric (AR)

version is investigated. Some typical test signals are examined, to demonstrate the per-

formance and trade-offs of IPS and its parametric version. A1-- , ',-ii ,t ,':... .
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1. INTRODUCTION

A. THE PROBLEM
The use of the Fourier Transform as a spectral description of signals is a concept

whose usefulness is restricted to the class of stationary signals. Though mathematically
elegant and convenient. Fourier decomposition of a signal can often mask the true

spectrum. since the assumed basis-functions implicitly oppose any notion of time-
dependency.

When the spectral content of the signal changes with time, as is often the case in

fields such as Communications. Seismology or Speech Processing. more powerful tools
are needed. The time-dependency of the spectral content should be apparent and meas-

urable through the use of a more general type of representation of the signal. Gabor

[Ref. 11 proposed such a representation by introducing the concept of a spectral de-

scription in a joint time-Irequency plane.

Since then. several attempts have been made [Refs. 2, 3, 4. 5] to derive a, or the.
function capable of correctly describing the distribution of the signal's energy in this

plane. Short Time Fourier Analysis (SlFA) has been widely used and is regarded as a
very convenient approximation to the "true" distribution.

However. obtaining this distribution is an under-determined problem. since an in-

finity of valid solutions is introduced by allowing non-stationary descriptions. For

example. any time signal can be represented as a time-varying DC component. To

illustrate. considcr the following discrete time signal:

X(1) = cos( ()

Two equally valid representations. in the sense that each one is capable of generat-

ing the observed signal. are shown in Figures 1 and 2.

Each one of these descriptions explains the existence of a sinusoidal time-series.

Though there is no conceptual distinction between them. the algorithm of analysis must

have the ability to decide which one will be taken as the "true" one, based on an ex-

plicitly or implicitly built-in set of rules. The situation thus arises, where "one will see

what one wants to see.



I Freq. Axis

Figure 1. x(n) represented as a constant sinusoid

Freq. A ;

-I--

Figure 2. x(n) represented as a time-varying DC component

Further complications appear when we consider the fact that, given a time-series,

we cannot deternine if the underlying process is or is not stationary, without using ar-

bitrary and often inappropriate assumptions about what is the local behavior. When the

algorithm of analysis produces a time-varying spectrum, the fact remains that there is

at least one equally valid time-invariant spectral description (the Fourier Transform

based), which is arbitrarily ruled out.

B. APPROACHES

If the signal is to be represented in the joint time-frequency plane in a sensible

manner, the distribution must have some key properties. For example, a shift in the

time-series should always imply a corresponding shift of the spectral representation

along the time-axis. Also, a multiplication of the time-series by a complex exponential

2



should result into a shift of the spectral representation along the frequency axis. Without

these properties. physical interpretation of the representation can be an impossible goal.

This is one of the reasons why Ambiguitv functions are not used in spectral estimation.

This technique of imposing constraints that are felt needed in a distribution can be

carried further, and the distribution (or one of the distributions) formed in this refine-

ment process defined as the true distribution. One of the most successful representations

obtained by this approach is the Wigner-Ville Distribution (WD), which has extensively

been used since its introduction in 1948 [Ref. 2].

A different approach to solve the indeterminacy is to define, a priori and unambig-

uously, what the considered true distribution is. Though this approach lacks control of

the properties of the resulting distribution, it has the advantage of more closely p-e-

serving physical meaning in whatever i sults it produces. A typical example is the

definition of "instantaneous Power Snectrum" proposed by Page [Ref. 5]. uniquely

determining a resulting distribution which is amenable to physical interpretation.

C. OBJECTIVES

The Wigner-Ville Distribution has been extensively studied [Refs. 6. 7. S. 9 1. and its

characteristics are fairly well understood. However, its use is still hampered by some

problems. First. it has uneven performance for different classes of signals. It performs

optimally for single-component linear FM (linear chirp). but has worse performaznce Ior

less regular spectral dynanics. Also. when multi-component signals are prescott. the N\D

creates artifacts in the spectrum. lying mid-x,,y between true conponents. These

artitacts are. up to some degree, recognizable and treatable due to an alternatin, sign

[Rcf. 61. but can severely mask results when analyzing more complex signals. The use

of analytic signals is usually required. not only to avoid the need for sampling at twice

the Nyquist rate, but also to prcvent the appearance of undesirable artifacts that would

othernvise be created by the interference between positive and negative frequencies
[Refs. 6. 7. 10].

Though it has not received proper attention in the literature. Page's Instantaneous

Power Spectrum is. once properly understood and treated, a practical alternative to es-

timate the time-varying spectrum.

The study and development of such an alternative is the main goal of this thesis.

.3



11. INSTANTANEOUS POWER SPECTRUM (IPS)

A. DEFINITION

In an attempt to accommodate the notion of instantaneous frequency content, Page

defined the Instantaneous Prwer Spectrum as the derivative of a running energy spec-

trum [Ref. 5]:

(', .fJ) - t I S' o 1' (2)

where

87) = s(-r)e - 2 d. (3)

That is, the Instantaneous Power Spectrum was defined as being, at each frequency.
the rate of change of the energy collected by a Fourier transform taken from - , up

to the time of analysis. This concept was later extended by Levin [Ref. 31. who intro-

duced a complementarv backward run, similarly defined aF:

CI

where

S+O(f {s(r)eJ'f dz, (5)

and defining the Instantaneous Power Spectrum as the average of these two runs:

ips(i, fl = ± [p-(t. ]) + p . 1)]. (6)

4



This expression can be put in the form [Refs. 3, 11 ]

IPS(t, f) = Real [s(I)S(fDe' f1 ] (7)

where S(J) is the Fourier Transform of s(t).

IPS can thus be seen to be the real part of Rihaczek's distribution [Ref. 4], which

allows one to think of IPS(t.f) as being the energy density entering, at time t, an infi-

nitely narrow filter centered at frequency f. An enlightening treatment of this point can

be foup" in Ackroyd [Ref. 12].

1. Time Domain

Let us now consider the following: we want a function of t, T whose Fourier
iransform is IPS(t.fl . That is, we want G(t. r) such that

IPS(tj) = { G(t. T)e-J2-d. (8)
f

Then. using (7)

Gar. = ±"F [s()S'oe-Y2 ' + s(i)*Sfe j 2 ',fI] Je2-,f (9)

from xhere. with the appropriate variable substitutions we obtain

if f " fG't ±) T L- s' s (i - j)e-i ''ldq1 + s'(zj s(; + )C-J2-f'dl] l/fd. l1O)

Interchanging the order of integration, we get

G(t. 7) = 1[s(t)s,(t T ) + s'(t)s(t + T)] .(1

n m~nm nunnnnluumlmml~lI *NNNI



IPS can now be res'ated as:

IPS(,]) [s(I)s*(t - T) + s*(t)S(I + T)] eJ2 ir (12)

2. Frequency domain
Alternatively, a dual expression can be derived, expressing IPS in terms of the

Fourier Transform of the signal.

JPS(r,J - f S(t)s(t - )e 17fdz ± + s*(t)s(t + Te '-

-OC~

+ h. ', S() dP S(, (I,~~~, e -j"7d

f 4 f S ()S()teJ 2 t( fd'~

+ 4-W" J S~pSye~~ e1 ~'()SdIe

f o 2 f



With the appropriate variable substitutions, we get

000

IP( J ± s(f+,.)s*(/)e>Y'd.lt'f ;)~)2)d;, (14)

and, finally

00

IPS(.I) = J [S(f)S*(f- y) + S*I)S(ff+ y)] e,2"I-td>'  (15)

0C

3. IPS for discrete signals

The discrete version of IPS follows directly from ( 12 ) as

IPS(n. 0) = AT [s(n)s*(n - k) + s (n)s(n + k)]e - jok. (16)

A formal derivation of ( 16 ) can be found in Appendix A.

B. RELATIONS WITH OTHER TIME-FREQUENCY DISTRIBUTIONS

1. Rihaczek's Distribution

The Rihacek Distribution was proposed in 196S as the true energy1 distribution

in an attempt to uni!\ existing results.

Formally,. the distribution is [Ref. 4]

tit. f) = s(t)S*(f)e -}ft (1 7)

where s(t) is the analytic signal being analyzed, and S(1) is its Fourier Transform.

As was derived. d( 0. f,) is the complex energy density at the point (it,f,) in the

time-frequency plane. A similar expression had been considered by Levin. who defined

the Complex Insiantancous Power Spectrum as the complex conjugate of( 17 ).

Rihaczck used the concept of "complex energy", whose real part is the real energy. wHle the
imaginarv part is the reactive energy.

7



Using Levin's notation, the Complex Instantaneous Power Spectrum is

A'(t, t) = S (t)sOf ', (IS)

where i(t) is the complex envelope of the real signal under analysis.

We thus see from ( 7 ) that, though addressing a broader class of signals, IPS

is both the real part of Rihaczek's Distribution and the real part of Levin's Complex

Instantaneous Power Spectrum. Formally,

IPS(tj) = Real[r(t, 1)] . (19)

2. Cohen's Generalized Phase-Space Distribution Functions

In 1966. Cohen introduced a generalized class of time-frequency signal repres-

entations, given by

ZX-: 0C 0C

C(t. q)(v, 7) s(t1 + + )s(t, - + -t-L1:)dvdtI dr (20)

where the choice of 1(v, T) will determine the resulting distribution [Ref. 131.

If we slightly rearrange ( 20 ) to read

c(t. = fJ )(1,, T) s(11 + -t )s (t - _L- ) PLrldtj]e-j r 'dodt (21)

we can interpret it as the double Fourier Transform of T(,. r) [Ref. 14]. where

T(u, r) = (D(), r) s(t, + - )s*(t, -- . (22)

We can now recognize ( 22 ) as a general expression for the well known Ambi-

guity function, which can serve as a general definition of the time frequency

autocorrelation function [Refs. 3.4 .

i • Ill I l l l lI I I I l8



Each choice of weighting function )(0, r) in ( 20 ) provides a different distrib-

ution, because each one defines the combined autocorrelation ( 22 ) in a somewhat dif-

ferent way.

Let us see which distributions result from three different realizations of 4(v. T)

(complex exponential, constant, and real sinusoid) [Refs. 4, 13, 14 1.

a. Complex exponential

4)(V,r)=e 2 (23)

The combined autocorrelation becomes

' '.. T) = .J' :f s(zl + - )s(t, - "5- ) ej2""dt,

(24)

f s(II +- - )s 1 - "T )e " 7-)dr1

and. dcfining a new variable z = t, + we obtain
2

'(U. r) = s(I)s (I - T)ei 2"rtttdi. (25)

The resulting distribution is

c(r, fJ = {s(Os(t, - TW21%[t e (It dTdv . (26)



00 00

c(t, f f J'S(1 )S*(fl - T) ei2 'f6(tj - t)dt~dr

00 -00

00 
(27)5 S(t)s'(t - T)e-J2"SdT

-00

= s(t)S*(i)e -
2 s'

which is the well-known Rihaczek Distribution.

Though this definition of the combined autocorrelation is probably the

most intuitive one. its lack of mathematical symmetry has the undesirable effect of

making the distribution complex. It has extensively been used in radar theory, since

( 25 ) is exactly Woodward's definition of the Ambiguity function [Ref. 3].

b. Constant

)(V, T) = 1 (2S)

The combined autocorreiation becomes

T(U, T) = I + S (t - ( (29)

The resulting distribution is

00 00 00D

c(z, J) = S(t1 + " )s (t1 - ) e- r t~+;drdtdrdv , (30)

-00 -0.1 -00o

10



c(I, i~=f {sti +-I- - -I- )eT'fb(i1 -

C

00 (31)

=f{ s(t + --!)s*(t- -!-)e j 2 'rfdT

which is the Wigner-Ville Distribution. This definition of the combined autocorrelation,

though only slightly different from the one in ( 25 ), has the needed symmetry to make

this distribution real. and mathematically very convenient (when dealing with analytic

signals).

c. Cosine function

(1(V, T) = cos(M)r) (32)

The combined autocorrelation becomes

't'(V,. ) =cos( t ) s(ti + + )s2(t - T

( 2 S(I + - )s( t l - -- " ")ettdi

(33)

[= [js(II + T )s (t, - )dtd

+ s(t, + -I- )s (t - + )e2-t' T 2dt.

11



Substituting t for t, + - in the first integral, and t for t, - -L n the second,
we get

000

'T'(v, T) = [ s(t)s'(t - T)" 2"'dt + s'(t)s(t + r)e'2°u dt

000 
(34)

- 7 [s(ts'(t - T) + s*(t)s(t + T)]d2 'd.

00

The resulting distribution is

C( . ) = J J [S(i1 )S*(1 - ) + s ( 1 )S(i 1 + 7)]e'2-+dl d vd r

-003 -- -00J

- S(t 1 )S(jst - T) + s*(tl)s(t + T)]e- tjdt:d3 (35)

c-- -00

f f [s(I)S(l; - T) + s"(I)s(z + T)je

which is the expression we had found earlier for IPS. In this case, the definition of the

combined autocorrelation also possesses the symmetry needed for a real distribution.

The kernel that generates IPS ( (v. ) = cos(7rwr)) has been considered by Cohen

[Ref. 13]. and shown to generate the Margeneau-Hill distribution [Ref 15). well known

in quantum mechanics theory.

3. Wigner-Ville Distribution

Since the Wigner-Ville Distribution (WD) has enjoyed wide acceptance, we will

define more closely the relations between IPS and WD. As an indirect connection, we

can relate both to the Rihaczek Distribution. From ( 29 ) the WD implicitly defines the

combined autocorrelation as [Ref, 4]

12



T'(L, T) = s(1, + T )s*(i, - -'

0 02 (36)

= e- j Sr u s(t,)S*(t - r ""dt.

00

Hence, the Wigner-Ville Distribution is given by [Ref. 4]

0C

1I D(t. F,' e j S(I)S*( 1 - T)ei2""Eldi] (7

00

where F..[ ] denotes the 2-D Fourier transform. From the convolution property of this

operator. and using ( 25 ),

VI)(i. F-, I.[JU]*[ J'sI1)s*(lr1 -)ei27th1d]

-0 (3 S

F, ~ [eE I.f)
= c4 ; *-* .. (t. J)

where * stands for 2-D convolution, and t(t, .P is the Rihaczek Distribution. From

38 ). using ( 1) ) and the realness property of WD (see Section Il-C). we obtain

IV'D(t. J)= Real[ eia ' f ** E(1. ]

(39)
IPSt, .) = Real[ (t. ) ** t(t,

We thus see how the two distributions can be obtained from the Rihaczek Distribution

by an appropriate choice of the function convolved with t(t, ])

13



We found earlier that each choice of T(V, r) in Cohen's class of Distributions

( 20 ) yields a particular definition of the combined autocorrelation function

'T'(v, T) = 4)(v, r) s([i + _ (_ - "j )e12 "d1  (40)

00

and that the 2-D Fourier transform of ( 40 ) resulted in a particular distribution, de-

pending on (D(V, T).

We see now that ( 40 ) is the product of two functions, )(V, r) and the integral.

Its double Fourier Transform is thus a double convolution in the transform

domain.[Ref. 14]

That is:

c(t, F, 'T'(t, T)]

00

- F1 , r(V, T) s(t + + )s*(1 - + )eIrt ' d"]
~(41)If= F1' ,[BI, t)] F* F{J. s(z + -y )s'(t1 - T )c'2 rd¢1]

= F, .()(,. T)] WD(r. J).

In the particular case of IPS,

IPS(t i) F, [ cos(7T[r)] ** WVD(t. J) . (42)

Therefore.

IPS(t. f) = cos(4,ft) ** WD(t, 1), (-13)

which we could have deduced directly from ( 39 ) and the fact that the WD is always

real. as follows:

IPS(t, f) = Real[e(t, j)]
I [1;(t, f) + E*(1,/) (4i
2

14
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Using( 38 ),

1PS(t, [e- 1 -** IVD(i. I) + eJl-f4 ** WD(t. J)]

S[e_ 4 -' +,- ** WD(, (45)

= cos(4ffft) ** WD(t, J).

At this point, we would like to be able to express the WD in terms of IPS, with

a relation of the form:

WD(r, I) - O[IPS(t, fn] (46)

where 0[. ] is an arbitrary operator. Unfortunately. the inverse filter does not exist.

since

COS(. , s rtr) (47)

is not defined over the required range of n and T

4. Short-Time Fourier Transform

Though the Short-Time Fourier Transform (STFT) can not be considered a true

Time-Frequency Distribution [Ref. 14]. its widespread use fully justifies the study of how

it relates to IPS. This hs been addressed in [Ref 11]. and will be done here. after which

some indirect results will emerge. Let us thus consider the STFT as defined in ( 48 ):

STFT(t, w) = (t, G))

01 2

s(z + T)W*(T)ej"dT
OC (-4s)

OC2 O<2

= f s( + ()s(r + U)Wv(T)w(V)eJW ei-dd

15



Substituting s(r + r) and w*(r) by their Fourier definitions, we have that

CO00 00 0

STFT(t, co) = s*(t + v)w(v) S()t+)d--.

00 -C0 -00 -00

=f f s(t + v)w(v)S(p + co) i'(p)e1('+P)eJ'Iwdvdp (49)

-W -00

00

e t =s (t + u)S (p + if)' W + )( + )w (u) I(p )e-ji d vddp .

We thus see that the STFT is a time-frequency smoothed version of the Rihaczek dis-

tribution of the signal. The smoothing function is the Rihaczek distribution of the

window used to compute the STFT. Since the right-hand side of( 49 ) is always real and

positive, and the previous relations are valid for arbitrary signals and windows, we con-

clude that windowing a Rihaczek distribution with a Rihaczek distribution guarantees a

real and everywhere positive distribution. This result will be important when addressing

the issue of positivity.

C. BASIC PROPERTIES OF IPS

As was already mentioned, and is easily seen from ( 20 ), it is the choice of a par-

ticular ()(1. r) that determines the particular distribution and. hence, its properties. It is

thus desirable to establish direct connections between the properties of Vr. -1) and the

properties of the resulting distribution. This issue has been addressed lRef. 1-4]. and we

will in the most part only state results, as applicable to IPS. The basic propcrties of II'S

are:

1. Time shift

If co(i) = s(t - t,). then

IPS,,,(I. J) = IPS(t - tJ.i (50)

2. Modulation

If 9(t) = s(i)c 2"o!, then

IPS,,o(t, 6) = IPSs(t,f - f,) (5)
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3. Aarginal in Time

J'IPS(t, J) df= I s(t) 2 (52)

-c

4. Afarginal in Frequenc'
oc

f IPS(t, J) (t= I S)1.(53)

where So = I-s(t)].

5. Realness

IPS(i. J) is real for all t, f. (54)

6. Instantaneous Frequeni' 2

f "IPS( t. fil ,f

.fIPs(i. iz  = f(t) (instantaeous frequency) (55

Group Dela

-ISf) dr = 7W) (grout , dely) (561

S. Zero Power
st = () - JPS(t, I) = 0

S ,, I= ltIS(I. fc) =(

The Wigncr-Ville Distribution also respects properties 1-7 [Ref. 6]. but only a

weaker version of property S.

D. FURTHER PROPERTIES

Though the properties presented in Section 1I-C constitute the basic set of rules to

which I PS is bound, some further anal3 sis must be made. The eflects of linear operators

should be inxestisated. to fully understand the behavior of IPS.

Thi, property is valid for analxlic signals onk ( see Appendix 13 .
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1. Windowing in the time-domain

The issue here is to determine how IPS is affected by windowing the original
time signal.

We will at this point introduce the notation:

2 IPSj(t, ) + 1 IPSd(t, f) (58)

where

IPSd (1, f = d(t)d (t - T)e-I2'rfrdr (59)

and

01

IPS(, J) =f d(t)d(t + T)ch'-fJdz. (6-

If the signal is windowed. that is:

d(i) = s(i)w(t) .(61

then the IPS of the windowed signal will be

2tr

(62)

LS()w(t)S(t - r)w (t - r) +

4- s(t)w ')s(t ± r)w(i + )e =d.
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Sep-rati... the two terms.

lPSt, J) = [s(t)s(r - r)][w(t)w (t - T)]e-dr

+ !-f [s'(r)s(t -+ r)1[w'()w@t + ~]J~d+~~~~~~ ~ ~ f [*[St+TEw(w ) ]e'-j2 r"f d-

F- IPS,-] F[IPS,]e-J:f-dr (63)
2

+ f-- F [IPS] F [IPS-]e-j2 'd-

IPSs(t, L)IPS-(tf- O),, + 1 PSs+(t. u)iPs,-
2 "S-- 2)

where F [.] is the inverse Fourier Transform operator. Hence

ISd-. r ± ISur. f) * IPS(t, fJ] + I PS+(.)*I J IPS(. f]

where dcnotes LoII O iIOH in the f variable.

1 hat is. while for the Wigner-Ville. windowing the time signal implies the con-

volution along the frequency axis of the signal's WD with the window's VD [Ref. 61.

for II'S we have a sum of two convolutions: the first term of the signal's IPS (IPS:) is

convolved with the first term of the window's IPS (IPS), and a similar convolution is

applied to (IPS: ) and (IPS,-)

A special case occurs when the window, the signal, or both, possess conjugate

synmctry about t, the time at which we are computing IPS ( i.e.,

s(t I s- r). w(t + 7) = w:(t- T), or both ). If w(t) possesses that symmetry. then

IPS ,(t. ) IPS (1, J) = IPS I(, ) 165)
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and, by linearity of the convolution operator. ( 64 ) becomes

lPSajt, J) =fIPSs(t, V)IPSw(1, f - V)dL. (66)

We thus see that in this case IPS and WD respond similarly to the windowing

of the data: the IPS of the windowed signal is the convolution (in frequency) of the IPS

of the signal with the IPS of the window.

In summary, the IPS of a windowed signal is a frequency-smoothed version of

the IPS of the unwindowed signal. The time-resolution is not affected.

2. Convolution in the Time-domain

The question now is: how is the IPS of a signal affected if the signal is pre-

processed with a filtering operation? So. let

d(t) = s(t) * h(t) . (67)

Then,

IPSd(t. f) Real [[si(t) * z(t)] F [s(r) * h(i)] e'2'
7f]

= Real [[s*(t)j hIt)]S(H1udh27' ]  (6S)

= Real [[S(t .S(rCji21-]* [h)II(,, -I , 21

where we used the fact that

i 2 f"f[ a(') * b(t)] e f a(z)b(t - T)dr

f (69)

= a(zr)c 2 "' b(i - r)e2 "/')~dz 69

[a(/)e'"'] * [b(t)c "'if]
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We thus see that (contrary to what happens in the WD 3 ) filtering the signal

does not. in general. correspond to tile convolution in time of the signal's IPS wvith the

IPS of the impulse response of the filter. What is observable from ( 68 ) is that the IPS

of the filtered signal is now the real part of the convolution, along the time axis. of the

two Rihaczek Distributions. The net effect picduced on IPS is, thus, still a smoothing

operation along the time axis. The frequency resolution is not affected.

3. IPS and Noyal's Formula

As is often stated in the literature, IPS does not, in general. respect Moval's

formula [Ref. 16]. When applied to the WD, Moyal's formula states [Ref. 17]:

J' IVDs(t. J)DI Dgt, J)didf= < s, g > < s.g > (70)

where < sg > is the inner product of s and g. Let us now see what happens in the IPS

case:

{ PSst, f)I'S,(, f)dtdf=ff
Or~ -x

f 1 [s(ts(t - r) + s*([)s(t + r)jc-;2 dr

, i - ) + g*(I)g(t + u)1e-2Ldjdtdf.

--OC

3 The WD of a filtered signal is the convolution along the time-axis of the orignal sinal's
WD %%ith the \VD of the impulse response of the filter lRef. 61.
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f' f IPSs(t, f)IPS(,f )dtdf

-O0 -'2c

= "{ { [s(t)s (I - T) + s*()s(t + T)]Lg(t)g(t -V ) + g*(t)g(t + V)]

[[e j2r,+t)aj dTdtdv (72)

J [s(t)s*(t - r) + s*(t)s(t + r)][g(t)g*(t + r) + g*(t)g(t - -)] dt dr

I* 1 *

4

1 f- - Real s~~~ t- r~ ( + drd,

and, finally

fIPS,([, f)lPS.(i.f)didf=

(73)

_-=2 < s,g> <s,g > + -Real s(tg(t) s(t - ,)g (t + r)dr di

The result confirms that Moval's formula is not, in general, valid for IPS. Only

in the trivial case of one of the functions being a real constant would the second term

in the right hand-side of( 73 ) reduce to I" <s.g> <s,g> , and hence would IPS obey

Moyal's formula.
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4. Recovery of time-signals

To address he problem of recovering a signal from its IPS. we will find it con-

venient to consider two separate cases.

a. Infinite duration signals

For reai signals with S(O) * 0, recovery of the signal is always possible ex-

cept for a sign indeterminacy, by considering

IPS(t, 0) = Real[s(t)S(O)]

= S(O)s(t)

and, since I S(0) I can be found by using Property 4 ( 53 ), only the sign of S(0) remains

undetermined. No similar results are available for complex signals of infinite duration.

However, if s(t) possesses conjugate symmetry around some t. then we can also recover

complex signals of infinite duration up to a phase term, by considering F-1 [ IPS(to.J)].

Similarly. if S(U) possesses conjugate symmetry around some f0 and S(0) # 0. we can

again recover complex signals of infinite duration up to a phase term, by considering

F [ IPS(t,f0) ].

b. Finite duration signals

For finite duration signals. recovery of real or complex signals is always

possible except for a constant phase term (or a sign, in the case of real signals).

Let us denote the starting time by t = 0. From ( 12)

-- 1) l 1 (75F [IPS(O. f] =- [ s(O)s( - r) + s*(0)s(T)

and, since s( - z) = 0 for T > 0.

F [IPS(0. f)] K-.>0 = s (0)s(t) (76)

which, by property 3 ( 52 ), leaves an unknown phase term.

E. IPS - A GENERALIZATION OF THE WIENER-KHINCHIN THEOREM

By redefining auto-correlation, IPS offers a very straightforward extension of the

Wiener-Khinchin theorem to the non-stationary case, as we shall see.

Let us define the auto-correlation function of a signal as

R(t. r) = - Es(t)s*(t - T) 4- s*(I)s(t + r)} . (77)
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We have. then, using ( 12 ) and by linearity of the convolution operator the follow-

ing pair of relations:

SE{IPS(tz. = f R(t. T) e-j"IfdT

0 R(1, T) f E(IPS(t, fo} ei,2 df

These relations can be read as a generalization of the Wiener-Khinchin theorem to

non-stationary signals, since for stationary signals they promptly reduce to that theorem.

If s(t) is a stationary signal, then

- 1 E{s(t)s*(t - -) + s*(t )s(t + T)}

I If~~ * -- ~ f*tSI+TJ
2 (78)

1R(T)+ R T)

= R(z)

E{IPS(t.)} f R(r)e-j2'-f'fdT = I S(f) 12 (79)

The expected value of IPS is, thus, for stationary signals. the usual Power Spectral

Density ( PSD ).

Since in the non-stationary case we cannot try to infer ensemble averages from time

averages, the IPS of a signal is one realization of the generalized Wiener-Khinchin re-

lations of the underlying stochastic process.

A different view of IPS when applied to stochastic processes can be found in Grace

[Ref. 11], where E{IPS(t. di} is shown to be the Fourier Transform of Loeve's General-

ized Power Spectral Density.
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Ill. RETHINKING IPS

A. ON THE USE OF WINDOWS

IPS, as given in ( 12 ), suffers from intense ringing at all frequencies "touched" by

the signal. This same effect is one of the reasons why Rihaczek's Distribution did not

find much acceptance. An example can be seen in Figure 3, where a linear chirp was

used as the test signal.

Figure 3. IPS for a linear chirp

This ringing efrect can easily be understood by slightly rearranging (12 ) to

IPS(1, J) = -s(i) s(t - + s*(t) s(t + r)e-J2'-,dr]. (80)
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With the appropriate changes of variable, we get

00 00

IPS :, j) = ~-[s(t)J' s*(t 1)e 1J2 fl - "Idt, + s(12)e1 2~' I)dI 2]IPS(t, J) =F f-22e1Yl

-00 - (81)

[s(t) [s(t) * + s'(t) [s(t). e21ft]]

-- Real [ s'() [s(t) * e'2 'f' ].

But s(t)* efilfi is the output of a filter whose impulse response is a complex exponential.

IPS is, thus, for each frequency, the real part of the product of the signal's complex

conjugate and the output of an infinitely narrow non-causal filter (non-causal oscillator)

(Figure 4). [Ref. 12]

jpwrt

Figure 4. Model of IPS

The ri. ging is hence unavoidable, and will persist until the filter's impulse response be-
comes negligible. We should consider stable filters, with decaying impulse responses, if

we want to dininish this effect. This reasoning leaves us very close to the work of Fano

[Ref. 181. which was later extended by Schroeder and Atal [Ref. 191.
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If we replace the oscillators in the IPS definition by stable filters with impulse re-

sponses of the form

h(t) = w(i)e' 2 -' (S2)

where w(t) is any real and symmetric function oft with general lowpass characteristics

and w(O) = 1, then the resulting distribution D(t, f) is given by

D3(r, J) Real [s'(t)[s(t) * w(t)e/2"ft]

-' [s(()[s(t) * w()2rf] + s(t)[s(t) *w(t)j2rf]

0 _ (83)

Substituting ( for (t - T) in the first integral, and -t, for (t - v) in the second integral,

we get

DJ = f) -= [s()s*(t - ) + s*(t)s(t + tj)] w(t) e -j,'2d-- -" 1
s  } d 1 ( 4

= IPS(S. fi

where -(t))= w~z-t.

That is, the resulting distribution is the IPS of the windowed signal, where the win-

dow is the envelope of the filter impulse response. centered at the time of analysis. Since

i(t- 7) is real and symmetric around t, we see from ( 66 ) that a smoothing of the IPS

in the frequency direction will result.

IPS in general can hence be written as

IPS(t, f) = I J [s(t)s*(t - r) + s*(t)s(t + T)] w(O)W(T)e -j2 f'd , (85)
2,

where wi( ) is the chosen window.
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To illustrate the effectiveness of the windowing operation, we computed the I PS of

the test signal used in Figure 3. A Hamming window was used in ( 85 ), and the results

are shown in Figure 5. As is observable, the ringing is avoided.

Figure 5. IPS for a linear chirp - Hamming window

B. PROPERTIES AFTER WINDOWING

Some of the properties of IPS will be affected by the windowing operation. It will
thus be necessary to determine which properties are modified and establish the con-

nections between the characteristics of the used window, and the effects it generates.

Tracing back the windowing operation to the kernel function ((D(v, r)) in ( 20 ) that

it implies, we will be able to use well established results [Ref. 14] about these functions.

The resulting kernel function will be

$(D, T) = w(O)w(z) cos(7Tr) , (86)

which can be proved using ( 19 ) as follows

IPS(t, f) = w(O)w(r) cos(7wr)s(t + -L )S(t, _L )C2(tutlej 2ff(U1+fdvdrdt, .(87)

00 -CIO _0
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Replacing the cosine by complex exponentials, we have

IPS(t, f)= 2 s(t 1 + -I- )s*(t I -- )e'2 (' + 2 )dtie[2 "(t+fJ)dtdr

- c -o -C(0
00 0.0 (SS

+ I(2 (z) + - )s*(t - T- )e2'-) - 2T )dt1e-' 2 (It+fdd

-1 -OC -00

and, by convenient change of variables,

Do

IPS(t. f) = 2 s(p)s*(G - z)e' 2f dte-J2=Lt+-'dtdz

(S 9)

s ()s(kt + z)e 2 "dpe-J 2L t 'ej~drdz.

-0<-c -00

Interchanging the order of integration, we obtain

IPS(I. f) = J' [s(t)s'(i - 7) + s (t)s(t + )]w(O)w(r)e j'-tdr .

completing the proof.

We can now easily determine which properties are maintained after the windowing

operation. by direct application of the results in [Ref. 141, mapping the characteristics

of the kernel function to the properties of the distribution. The conditions on c)(u,. r)

necessary for the preservation of each of the properties will also be given.
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1. Time shift

If w(t) = s(t - t,), then

IPS.(t, ] 1 lPSs(t - toJ) (91)

The requirement on 1(v, T) is:

(1(v, r) constant for all t. (92)

This property will thus be maintained for every used window.

2. Modulation

If co(i) = s(t)e.2"o, then
IPS,,,(t, J) = IPS(t f - fo) . (93)

The requirement on 1(v, r) is:

(1(v. r) constant for allf. (9-)

This property will thus be maintained for every used window.

3. Aarginal in Tine

f IPS(t. f) df= I s(t) 2 (95)

The requirement on (I('. r) is:

D(i, 0) = I for all v. (96)

.Maintained iff w(0) = I

4. larginal in Frequency

f IPS(t, J) dt = I Sy)i 12

The requirement on a)(v. r) is:

(1(0, r) = I for all r. (9s)

Not maintained for practical windows.
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5. ReahIess

IPS(t. ()is real for all t, f. (99)

The requirement on (1t), T) is:

((L, T) = (- v, - ). (10o)

Maintained if the window is real and even, or at least possesses conjugate symmetry
around the origin.

6. Instantaneous Frequency

f f'IPS(t, fOdf

- sft) 2 f(t) (instantaneous frequency) (101)

The requirement on D(v,. T) is:

(D(u. 0) = I and -) (v, T) K= 0 for all v. (102)

Maintained if

* ~v"(z) U_,= )

7. Group Debi,

t I IIIS(t. .ndt

t = Tg (group delay) 1103)

The requirement on ()(1., T) is:

= 1 and - ( r) , C ) for all r. (104)

Cv

Not maintained for practical windows.

S. Zero Power

s(to)  0 IPS(t0. J) 0 (105)

This property is clearly maintained, due to the multiplicative nature of the win-
dowing operation.

S(f0) = 0 IPS(It. fo) 0 (106)

This property will not be maintained since, from ( 64 ), a convolution along the
frequency axis will be performed.
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C. SPECTRAL RESOLUTION

1. Time-invariant Components

Though I IS is a tool directed towards the analysis of signals with timc-varying

spectral contents, some insight into its inner workings will be gained by considering its

resolution capabilities for time-invariant spectral components. A comparison of resol-

ution capabilities fbr IPS and WD will be made, and contrasted with the standard

Fourier Transform.

As seen in ( 6 ). IPS is a coherent average of two terms, one of which uses only

past data, while the other uses only future information. 4 When analyzing finite duration

signals, the "past term" will have its maxinmm resolution capability at the end of the

data segment, since it is at this point that the most past data is available. Similarly, the

"future term" will resolve better at the ibeginning of the data segment. This can be seen

in Figure 6 and Figure 7, for the past and future terms, respectively.

ConLour pLot

rv

ua: V

22::

0 FREOUENCY RXIS FREOUENY A1

(a) (b)

Figure 6. Sinusoidal component. Past term. 3-D (a) and Contour (b) plots

If the two terms are averaged as in ( 6 ), the resulting expression (IPS) will keep the good

resolution at end-points that each component provides, degrading its resolution

4 A note of caution should be made here. These "past" and "future" terms should not be
identified %%ith the mx o terms in ( 12 ), since each one of the terms in tlis formuk. pans all the data.
from - C,- to oo.
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capabilities towards the center of the time segment. This effect can be observed in the

contour plot of Figure 8.

Contour pLot

0° .1

UJ2

0 FREOUENC RXIS

FREOUENCY - AXIS

(a) (b)

Figure 7. Sinusoidal component. Future term. 3-D (a) and Contour (b) plots

! Contour pLot

U,0 0
CC

0 FREOUENCY FRXIS TT FREQUENCY -AXIS

(a) (b)

Figure 8. IPS for a sinusoidal component. 3-D (a) and Contour (h) plots
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This is one of the characteristics of the unwindov,ed ;PS. It has better resolution at
end-points than it does in the middle of the data segment. We should point out that the

WD does the opposite, presenting a thinner main-lobe at the center of the time interval,

and loosing resolution capabilities towards the end-points (Figure 9).

Contour pLot
o

IIaa:

Tr ._. .._ _

FREOUENCY AXIS FREOUENCY - AXIS

(a) (b)

Figure 9. WD for a sinusoidal component. 3-D (a) and Contour (b) plots

A more formal discussion can be made as follows: Let us denote by CIV,0(r) the
function of T whose Fourier Transform is WD(t, J) and, similarly, denote by CI, (r) the

function of T whose Fourier Transform is IPS(to, J). I lence,

ClfJ,(T) = s*(1 0 - - )s(to +
1 (107)

CI,O(r) = I [s( 0)s (to - T) + s*(o)S(to + r)]

where s(t) is the stationary signal of interest. That is, both IPS and WD create, from the

data, a new "signal", whose Fourier Transform is the wanted spectrum (Figure 10). It

is thus the effective duration of this new signal that determines the resolution obtainable

in the frequency domain.
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s(t)

t o t
to 0

CI (T) GW (T)

o o T

7-() IFT(.) I

Spectrum 1 Spectrum 2

0t to  at to

Figure 10. IPS and WD conceptual diagram

Let us now assume that s(t) is only known within a finite segment of length L,

and compare the theoretical resolution of IPS and WD at both the end-points and the

middle of the segnent.

a. End-points

Since both end-points are treated sirnilarly, we will only consider the start-

ing point of the known signal, which we will denote by t0. Let us consider that a

rectangular window of length L was applied to the signal ( Figure 11). It is easily seen

from ( 107 ) that

C {IOS(10)12T=0 (108)
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and thus, IT'D,,(J (Fourier transform of a delta function) is a constant. On the other

hand, the windowing of' the data implies that a window (wji)) of length 2L is applied

to CI,0(T) (Figure 12).

to o- -L Time'

Figure 11. Windomi applied to the signal

Figure 12. Widois applied to CI,0(z)
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When we now take the Fourier transform of CI,0(r) , we will be taking the transform of

a signal twice as long as the original data. This creates a main-lobe twice as narrow as

the main-lobe that would be obtained if we were to Fourier transform the data. How-

ever, we know from ( 107 ) that C1,0jr) = CIo(- r). This then implies that, from the

obtained segment of length 2L, only half contains information. As a result, at end-

points, IPS presents a main-lobe twice as narrow as the one obtainable by Fourier

transforming the data, but without an equivalent improvement in effective resclution.

b. Aliddhle-point

We now consider that the window is symmetrically placed around t,, as in

Figure 13.

I/,7,'j,<J/ " ,,,"

-to--L/ T- L r

Figure 13. Symmetric windomw applied to the signal

Again, it is readily seen from ( 107 ) that windowing the data with a window of length

L centered at t, implies the windowing of CIV,0(T) with a window of length 2L. The eff ct

on CI,0(r), however, is to window it with a window of length L. This discrepancy implies

that, in the middle of the interval, the WD has twice the effective resolution of IPS. Let

us note that, as discussed before, for both CR',0(r) and Cl,0fr), only half of the length

carries information. t lence, their Fourier-transform will have its main-lobe artificially

narrowed by a factor of two, without improvement in effective resolution. In summary,

the WD has at the middle of the time interval the same effective resolution that IPS has

at end-points, and hence the same effective resolution obtainable by Fourier-

transforming the data.
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This fact of IPS having twice as poor resolution in the middle of the time

interval than at end-points will be important, since the windowed implementation
normally uses the window centered at the time of interest. This then means that these
implementations are using, at each time, the worst estimate (in terms of resolution) that
IPS will provide. The model of a typical windowed implementation of IPS can be seen
in Figure 14.

1PS"

FREGIUENVG Y

Figure 14. Typical imnplemnentationi of IPS

The overall result is that, for these implementations, IPS has, by a factor of two, lower
effective resolution for stationary components when compared with thle WD.

2. Tiie-varying Components

One of the most noticeable characteristics of IPS is the fact that the width of its

main-lobe depends on the dynamics of the signal. A typical example can be seen in

Figure 15, where a quadratically chirped FM signal is used.
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(a) (b)

Figure 15. Irs for FM signal - Quadratic chirp. 3-D (a) and Contour (b) plots

This test signal has its instantancous frequency increasing quadratically with time. The
width of the niain-lobe is directly proportional to the slew rate. lIn Figure 16, a cross
section along the frequency axis of' I PS for the same test signal is presented. The past

and future terms are also indicated.

I P5
Future Term
P.. ost .Ter~m.....

0-

FREOUENCY AXIS

Figure 16. IPS for FMI signal - Quadratic chirp. Cross-section
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As is seen, the width of the main-lobe of IPS results from the imperfect alignment of the

two terms: the past term seems to lag the true position of the instantaneous frequency,

showin2 a tendency to be positioned in locations previously occupied by the signal, while

the future term leads the true location of the instantaneous frequency. This lag and lead

effect become more severe for faster dynamics, hence broadening the main-lobe of IPS.

In an attempt to explain this feature, one might be tempted to argue that IPS
lacks symmetry in its definition. Despite being clearly insufficient, as we will see, it will

be instructive to pursue this type of reasoning a little further, since some additional re-

sults will emerge. When computing CI,(r), we are, for each T (without loss of generality

assume T > 0 ), coherently averaging two terms. One results from the present and past

signal history (x'(t)x(t + T) ), and the other results from present and future signal history
(x(t)x'(t + -)) . To obtain IPS, we will extract the frequency contents of the sequence so

obtained. However, if the signal has frequency dynamics, each one of the terms will
contribute differently to the frequency contents of CI,0 (r) . For example, if the instanta-

neous frequency of the signal is increasing in time, the contribution of the present-future

term (x(t)x(t + T) ) will have higher frequencies than the present-past term, since it is

centered in a region with higher average instantaneous frequency. The temptation thus

arises to compensate for the difference in the centers of the two regions. This effectively

corresponds to forcing the two terms in Figure 16 to align "correctly", thus eliminating

the broadening of the main-lobe. To do so, it suffices to introduce compensating phase

terms in the process of computing IPS (see .Alternate way of computing the i Vigner-ille

below). When these compensating terms are introduced, the distribution that results is

the Wigner-Ville distribution. We can now interpret WD as: the WD is the distribution

that results by aligning the two terms of IPS.

0 Alternate way qf computing the lWigner- Ville

From the previous discussion, an alternate way of computing the WD can
be derived, which allows us to directly apply the WD to real signals sampled at the
conventional Nyquist rate, thus avoiding the need for oversampling that would be
required if the WD was to be computed in the usual way [Ref's. 7, 10]. The two
step procedure is:

1. Compute

F(r, v) = [s(tls(t - T)e - jfu- +s*(t)s(t + T)e'11T]e2":tdt (109)

00
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2. Compute

00 W0

f fD(t, )= f { F(, -j2(+ddr (110)

-00 -00

As can easily be recognized, the need for a 2-D Fourier transform places the

cost of this procedure well above the one needed if an interpolation scheme is used. This

consideration may disappear in emerging fields such as optical signal processing.

All our previous discussion has been based on a loosely defined lack of symme-

try, intimately related with the concepts of past and future. As pointed out earlier, this

explanation is clearly insufficient. To illustrate why, a different definition of "Instanta-

neous Power Spectrum" is made in Appendix E, thus creating a new distribution. The

important point to be made is: not only are the concepts of past and future inexistent

in this new definition, but it also possesses perfect symmetry. However, the resulting

distribution is very similar to IPS, with the characteristic data-dependent width. Since

lack of symmetry cannot be argued for this definition, the explanation for the broaden-

ing of the main-lobe must be found somewhere else.

In Appendix C, the issue of uncertainty is addressed. One important result to

extract from there is: the maximum obtainable frequency resolution when analyzing

signals with unknown frequency dynamics is \/df/dr . This result is in agreement with the

fact. proven by Rihaczek [ Ref. 4], that signals with strong phase modulation have, at

each time, their energy concentrated within a frequency band B, of size

12 _d7'(t)Ba ci t2  '(111)

where D(t) is the signal's phase. It thus explains the broadening of the main-lobe of IPS

in terms of the expression of uncertainty. Since the uncertainty region grows for in-

creasingly faster dynamics, so does the width of the main-lobe. Put in simpler terms, "the

faster it moves, the harder it is to locate". According to the results of Appendix C. any

algorithm should behave in this manner, unless it has, or assumes (directly or indirectly),

information concerning the dynamics of the signal. However, not assuming is the key

rule for a robust algorithm, one whose performance does not depend on the class of

signals being analyzed.
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D. THE CHOICE OF A WINDOW
We know from ( 66 ) that, if we pre-window the signal with a window real and

symmetric around the time at which we are evaluating IPS, the resulting IPS will be:

00

IPS(.W)(t, ) = f IPS,(t, v)'1PS(tf - o)du. (112)

00

But

00

o-j2

-PS/([, ]) [w(t)w(t - r) + w(t)w(i + T)]er2 "fdT (113)f

and, since w(t - T) = w(t + T),

00

IPSW(t. f) w(t)w(t + T)e 2rd(

-0 (114)

where w,() = w(t + T), that is. w. is the used window shifted to the origin.

Hence, if a real and even sliding window is used. the smoothing function in ( 112
is the Fourier Transform of the window w(T) . It is interesting to compare this result
with the Pseudo-Wigner Ville (frequency smoothed Wigner-Ville), where the smoothing
function is not the Fourier Transform of the window itself, but the Fourier Transform

of the square of the window (in a rescaled frequency axis) [Ref. 61. We thus see that all
the knowledge on window functions for the Fourier Transform can be directly applied4

to the choice of a window to be used with IPS.

Though the smoothing function in ( 112 ) is always real (we are considering only real
and even windows), it may be negative. This can contribute to the presence of strongly'
negative values in the resulting IPS, especially if the side-lobe structure of the window
is not controlled. This thus suggests that windows with good side-lobe suppression
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should be preferred. Spectral resolution is another important issue to be considered

when choosing a window.

As discussed in the previous section (Section III-C), IPS has a main lobe whose

width is proportional to \,'df/1dt, in accordance with the uncertainty principles of Ap-

pendix C. Hence, degrading the apparent frequency resolution of the unwindowed IPS

does not become a relevant issue, if working with windows whose effective duration is

well above the reciprocal of the uncertainty region. The width of this region should thus

be the criteria for the choice of window size, but would require a-priori knowledge of the

dynamics of the signal. In the absence of this knowledge, optimality will not be achieved.

However, as we will see. IPS is a very forgiving tool, in the sense that its performance

is not seriously affected even for large deviations from the optimal window size.
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IV. EXPERIMENTAL RESULTS

To illustrate the types of behavior predicted in the previous sections, some test cases
will be presented. For all the cases the test signals are 128 point sequences, with one

spectrum for each sample. All plots are on a linear scale. Some considerations relating
to the Pseudo Wigner-Ville (PWD) were made: all test signals are analytic, thus freeing
the PWD from the somewhat annoying inter1irences between positive and negative fre-
quencies. The exception to this rule will be Figure 19, since its sole purpose is to

illustrate the effects of the use of real signals. Also, when noise is present (Figure 24),

analytic noise is used. Unless otherwise stated, all Figures use a 41-point llanmming
window, and present the distributions after smoothing along the time direction. l lence,

most of the spectral cross-terms of the PWD due to multi-component signals do not
appear in the plots. To illustrate the effectiveness of time-smoothing, Figure 17 was
provided, differing from Figure 21 only in the fact that the time-smoothing technique

was not used.

200

FREQUENICY AXIS b FREOUENCY AXIS T7

(a) (b)

Figure 17. FSK. IPS (a) and PWD (b). No time-smoothing.

A. REAL SIGNALS

In Figure 18, IPS and PWD for a linear analytic FM chirp are presented.
Comparing Figure 18 with Figure 19, where the test signal is a linearly chirped cosine
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function, wve can appreciate how insensitive IPS is to the fact of the signal being real.

The artifacts present in the P'V'D whien analyzing real signals are, for all practical

purposes, absent in IPS.

CD,

F--

n Tr
FR[QUENCY AXIS FREQUENCY A~XIS

(a) (b)

Figure 18. Analytic linear FNI chirp. IPS (a) and PWND (b).

0v 
0

U)i

FREQUENCY AlXIS FREQUENCY flX15

(a) (b)

Figure 19. Linearly ch~irped cosine. IPS (a) and PWVD (b).
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B. INSTANTANEOUS POWER

Another visible effect in Figure 19 is the "amplitude modulation" of the main-lobe

of IPS. IPS gives us the distribution in frequency of the instantaneous power of the sig-

nal. It then follows that, when computing the rpectrum at a low power sample, the

amplitudes of the frequency components will have to be small, since their total power

must add up to the low power of the sample. This is a direct consequence of ( 95 ) and

is a requirement that has be fulfilled by any positive distribution. It is not observable in

Figure 18, since the used analytic signal has the same power at all samples.

The WD, though also obeying the Marginal in Time property, tends to absorb the

fluctuations of the instantaneous power in its cross-terms, and, in order to do so, is

forced to assume strongly negative values.

C. END-POINT RESOLUTION

Though the better resolution at end-points provided by IPS is in general well visible

in all the plots that are presented, Figure 20 is probably one ofthe most representatives.

ITTI7 
TT

FREOUENCY AXIS FREOUENCY AXIS

(a) (b)

Figure 20. FSK (127-point Haniniig iiindow). IPS (a) and PWD (b).
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Considering it, we see that not only is the end-point resolution of IPS better, but also
the transition times are shorter, allowing a more accurate definition of' the time of spec-

tral jtumps.
As stated in Section Ill-D, IPS is a forgiving tool, in the sense that we can deviate

from the optimal length of window without severely degrading its performance. To
illustrate, Figure 21 is presented, which diflers from Figure 20 only in that it uses a
window with dill'erent effective duration.

023

r'J

FREQUENCY FIXIS FREQUENCY RXIS

(a) (b)

Figure 21. FSK ( 51-point Hlamming Nindow ). IPS (a) and PVD (b)

As is seep, the time resolution is basically kept the same, the only noticeable diflercnce

being the width of the window's main-lobe.

D. MULTI-COMPONENT SIGNALS
Performance for multi-component signals is addressed in Figure 22 and Figure 23,

where the test signal has three components: a linearly chirped FM signal, a quadratically
chirped FM signal, and a stationary component. As seen, IPS is free of the cross-terms
appearing in the PWD. Ilowever, for iPS, each one of the spectral components has its
width affected by the associated uncertainty region and is, hence, wider than the corre-
sponding one in the PVID. Again. the instantaneous power modulation is visible in IIS.
'Ihese eflects are also apparent in the provided contour plots.
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Contour pLot
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(a) (b)

Figure 22. IPS for Multi-component signal. 3-D (a) and Contour (b) plots

9 Contour pLOt.
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Figure 23. PWD for Multi-component signal. 3-D (a) and Contour (b) plots
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E. PERFORMANCE IN NOISE

One issue still not addressed is the performance in noise. In Appendix I), a proof is

given that, for a signal embedded in additive bandliniited white Gaussian noise, the

variance of IPS is, on the avcragc,5 smaller than the variance of WD. Also, from the

same Appendix, we have that, when the bandwidth of the noise approaches infinity, the

improvement in the variance given by IPS approaches the liniting value of 3 dB.

Figure 24 is provided to illustrate this theoretical result. The SNR for this picture is

5 dB, and it is seen that IPS does, indeed, present a smoother estimate of the instanta-

neous spectrum.

D

a::

' TT 0 T

FREOUENCY AXIS FREOUENCY AXIS

(a) (b)

Figure 24. FSK ( SNR= 5 dB). IPS (a) and PWD (a)

F. THE CAPTURE EFFECT

Having borrowed the term from cormnunication theory (FM demodulation), our

goal is to compare the behaviors of IPS and PWD when analyzing multi-component

signals, when the components have different amplitudes. In Figure 25, the two compo-

nents have amplitudes differing by a factor a four (12 dB). As is observable, both IIS

and PWD detect the weaker component, despite the fact of the cross-terms in the PWD

being already more energetic than the weak signal itself. In Figure 26, the same two

i The variance of II'S is time dependent. When we say that "...the variance is...on the aver-
age...... %c arc refcrring to the time avcraec of the variance.
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component signal is presented, now with a factor of 8 between amplitudes (18 dB). It

is obvious that the PWD lost the weak component. The cross-terms, however, still re-

main. In this case, the position of the weaker term could be inferred from the cross-

terms, but such a technique would be impossible to apply to more complex signals.

C- 9

LO L
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FREOUENCY AXIS 
' FREOUENCY AXIS 7

(a) (b)

Figure 25. Powier ratio = 12 dB. IPS (a) and PWD (b)
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(a) (b)

Figure 26. Powier ratio 18 dB. IiPS (a) and PWD (b)
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V. PARAMETRIC IPS

A. INTRODUCTION
We have, from ( 12 ), that the IPS of a signal is, at each time, the Fourier transform

of a function of the signal. This implies that the wanted information lies in the spectral
content of this function. The process of obtaining the IPS can therefore be reduced to
the problem of performing conventional spectral estimation on a function G(r, T) which
is derived from the signal as in ( 11 ). The use of parametric methods should thus be
considered, in an attempt to improve the resolution capabilities of IPS. These consider-
ations are also applicable to the WD, and a parametric version of this distribution has

been considered [Ref. 20].

B. AR MODELING - CONSIDERATIONS
Though obtained as a bilinear transformation of the data, the function in ( 11 ) can

not be considered a true autocorrelation function, since it is not constrained in any .,av

other than possessing conjugate symmetry around the origin. It can not be guaranteed
to give rise to a positive definite autocorrelation matrix, and hence can not be used to
directly solve the normal equations. We can however estimate its autocorrelation func-
tion and fit the mode! to this autocorrelation. In a sense,6 we will be fitting the model
in the fourth moment of the data. In all the results presented, the AR parameters are
obtained using the Modified Covariance .Method. This method has been found to pos-

sess good resolution properties, while alleviating some of the problems associated with
the Maximum Entropy Method (MEM) [Ref. 211. All plots are on a logarithmic scale.

C. EXPERIMENTAL RESULTS

Choosing the order of the model is a sensitive issue. From Figure 16. we know that
the main lobe of IPS consists of two terms, which do not align exactly. We might thus
expect that, if the correct order is exceeded, the extra poles will tend to resolve these two
terms, and each spectral component will have two associated peaks in the spectrum. In

Figure 27, where the test signal is again a single component quadratically chirped FM
signal, this effect is well visible. In the left, a one-pole model was used (analytic test
signal). With the addition of one extra pole, we can see that the two terms were resolved

6 Lacking both temporal and statistical averaging. ( 11 ) can not be considered to represent the
second moment of the data.
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(with some bias), and the undesired effect is now present. In Figure 28, a fourth order

model was used to fit a three component signal.

TTIT
FREOUENCY AIXIS FREOUENCY AIXIS

(a) (b)

Figure 27. Parametric IPS. First (a) and second (b) order models

We can observe that, since thle main lobes were not over-resolved, thle signal comnponents

are well defined, and can be located wvith greater precision than what would have been

possible with the non-parametric IPS.

0_

Li

IT
FREQUENCY AXIS

Figurie 28. Three coniponent sigivil. Parametric II'S. Fourth-order mnodel.
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VI. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, an alternative tool for the spectral analysis of signals with time-

varying spectral content is presented (IPS). Having its roots in the definition proposed

by Page of "Instantaneous Power Spectrum", IPS has a defining expression very similar

to the one defining the Wigner-Ville distribution (WD). Their performance is, however,

considerably different. The WD approach, though extensively used in the last decades,

suffers from a number of short-comings. The foldover frequency of its discrete fre-

quency is located at ir/2 , requiring the use of analytic signals or the use of an interpo-

lation scheme as an alternative to sampling at twice the Nyquist rate. Interference when

used with real signals, cross-terms when multi-component signals are present, preference

of linear dynamics and loss of resolution at the extremes of the analysis segment are

other problems associated with the WD [Ref 8]. The distribution presented here is

shown to have some advantages over the WD. These are: evenness of performance for

different dynamics of the signal, direct applicability to real signals sampled at the
Nyquist rate, reliability when analyzing multi-component signals, and preservation of

spectral resolution at end-points. Also, IPS is shown to behave better in the presence

of additive white Gaussian noise (AWGN). As a disadvantage, IPS does not achieve the

frequency resolution provided by the WD. Due to its robustness, IPS is especially well

fitted to be used as a front-end tool in non-stationary spectral analysis. The usefulness

of AR modeling as applied to IPS is investigated. It is found to be a technique very

sensitive to the chosen order model, but providing some advantage in defining the lo-

cation of each spectral component. The use of other parametric techniques should be

investigated. In Figure 29. we can see the FSK signal of Figure 20, this time processed

with the following expression:

D(t, J) = ± [s(t)s(t - T) - s*(t)s(t + T)]e-j2"f'.dT (115)

That is, Figure 29 is the imaginary part of the Rihaczek distribution of the test signal.

As is seen, it shows some natural ability to detect fast transitions in the spectrum, and
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seems to be a promising area for future work. Also, linear combinations between IPS
and this imaginary part of the Rihaczek distribution should be investigated.

C,

!r
X4

I--

." REOUENCY AXIS

Figure 29. inaginiary part of Rihaczek's Distribution - FSK

Signal synthesis from I PS may also be a promising field of research for speech processing

applications.
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APPENDIX A. IPS FOR FINITE DURATION DISCRETE SIGNALS

In this appendix, a formal derivation of the expression defining IPS for discrete
signals ( 16 ) is presented, as an alternative to the direct discretization of( 12 ).

The discrete version of(3) is, assuming that the sequence starts at n = 0:

t

S-(n, 6) = A TZ s(n)e- Jon  (116)

n=O

Hence,

I S-(n, O)12 = ATI2 s(n)e - jo sZ(n)jl"
n=0

n=O (117)

= AT 2  ' Y' e- jok

k=-t

where

Ck =Zs(n)s*(n - k) k 0 (11S)

n=k

and

ck- = (C2k)" (119)

Similarly

N-1

S+(n, 6) = A TZ s(n)e - j on  (120)
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I S+(n, 0) 2 = AT 2  s(n)e-Jon s (n)e-"'

z(121)

SA+ -jO

where

N-1

Ck = s(n)s (n - k) k > 0 (122)
n=z+k

and

+ =ck = -c~k) (123)

Now, to get the digital equivalents of (2),(4) we must approximate the derivatives of

( 117 ) and (120 ), which we will do using first order differences:

P () AT[ S-(,,. O)12 _ I S-(t - 1, 0)1 1

- r (124)
SATZ c -j k

k=-t

where

E- = s(n)s*(n - k) k 0 (125)

and

C- = (ck) (126)

In the same way,

p+(n, 0) z AT[I S+(n. 0)! 2 + I S+(, + 1, 0) 2]
=AT E + e -j k (127)

R=-(\-J-t)
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where

Ek = S(n)s(n +k) k O (128)

and

= E+k*(1-29)

Assuming the signal to be zero outside the known samples, then according to Levin's

definition (6):

IPS(n, 0) = ~[p-(n, 0) + p+(n, 0)]

2

which is the wanted result.
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APPENDIX B. INSTANTANEOUS FREQUENCY AND IPS

The proof of property 6 ( 55 ) can be made as follows:

{f fPS(t, f)df

-~ I ~i) 2(131)

CIO 00

s~z) 2j' f+ [S(t)S(t -r) + s()s( + T)]e12 "fdzdf
-0C -0

00 C0

21 sr) 2 { [s(t)s (t - z) + S ()S(t + T)]J fe- 2 ""fdfdr
C-c -00C

00

[ S~r')S*t - T) + S*(z)s(t + T)] d~... [6(TO1(I
2 1 s(t) 2' j7r d-

00

21 2(+ J's(I)s*(t - T)65 (T)d-t + (132)

+ 1 2 27t )'S*(tS(t + T)63(T)d-,

j) i )

-2 .s(i)s () - 2 s1
47 s(t) I47t 1 s(t) 2I ) (

1 2 [s(t)s*'(t) - *,S[]
47 s(t)

4rs(i) 2



Therefore

ffIPS(t, )df

2 2mgsz~~) (133)
1 sWr I 2I S(t) 2

For real signals,this center of mass is zero, as expected, since the spectrum Is conju-
gate symmetric about DC.

For analytic signals:

s(t) = in(i)ej' 14

and

- I P ( .f Im aig[s (t)s ( )]

I sj) Is(1) 12

and. finalix

Al d W (136)

which is the definition of instantaneous frequency for analytic signals.'

This definition of Instantaneous Frequency was introduced by Ville [Ref. 21 In 1952.
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Hence, we have that, for analytic signals

.{'IPS(t, J)df

2 =() (137)

and our proof is complete.
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APPENDIX C. NON-STATIONARY SIGNALS AND THE PRINCIPLE OF

UNCERTAINTY

When analyzing signals with time-varying spectral contents, there is a maximum

obtainable frequency resolution, determined by the dynamics of the signal. This is in

contrast with the stationary case, where the only constraint on the obtainable resolution

is the observation time. The presentation and proof of this effect is the goal of this

chapter.

A. THE PHYSICAL CONCEPT

Before presenting any mathematical results, we will try to approach the subject with

a brief discussion of the involved ideas.

Let us consider our ability to perform spectral estimation on a stationary signal.

For that purpose. we will assume that the incoming signal has been segmented into

contiguous intervals of At seconds. Our final goal is to determine the spectrum occupied

b- the signal at roughly the moment of analysis. that is. within the last received segment.

If we are given only this last segment. the obtainable frequency resolution is con-

strained by [Ref' 1]

Af 2 (IS)

But if now. for some reason, the next to the last segment of data becomes available,

we will be able to improve our analysis of the last segment up to a resolution of'

Af> (139)
4-Ai

We can continue the process and, if more segments of data become available, im-

prove our spectral description of the signal at the present time. The rule in this case is:

* The stationaritv of the signal allows us to improve the analysis of the present time
by using data collected no matter how distant in the past. Ilence, if infinite obser-
vation time is allowed, inflinite spectral resolution can be achieved.
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Let us now consider the same scenario, but with a non-stationary incoming signal,

which, we will assume, can be considered stationar" within the segment. If only the last

segment is available, our frequency resolution is again constrained by

f > 2-1t (140)

and the only way to improve it is to consider more segments. But a qualitative difference

appears at this point. Segments of the "distant past" are rendered useless by the dy-

namics of the signal unless we know or assume its behavior. Considering those segments

will only degrade our spectral analysis. The usable data is thus restricted to the most
"recent past", which implies an upper bound on the obtainable resolution.

For a non-stationarv signal with unknown dynamics. there is a maximum obtaina-
ble frequency resolution. which depends on how distant the unusable "distant
past" is. It is an absolute maximum, and depends only on the dynamics of the
signal.

Proving this statement is the purpose of this Appendix.

B. MATHEMATICAL FORMULATION

Let us briefly discuss Gabor's result. Gabor [Ref. 11 defined the "effective duration"

At and the "effective frequency width" Af ofa signal 0(t) by the following equations

At = I - 2

_______(141)

Af= , 2- (f'- I

where [.] stands for the average, and the n' moments are defined, omniting the argu-

ment of ,w(t). as

(,")= =-: T ,.ddin

0 . Odt f *d6
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resulting in

Ai'Af _t (143)

This only states that any signal whose effective duration is At ( see Figure 30 ), will
have an effective bandwidth Af( see Figure 31 ) greater than I ; the issue of uncer-

tainty is not addressed in this result.

V, (t)

t

Figure 30. Effective duration of s(t)

\; (4 f)

Figure 31. Effectie bandwidth of s(t)

In fact, its relevance as an uncertainty principle only comes into play when we realize

how classical Spectral Estimation is achieved.

Classical methods are based on the "mieasure of similarity" between the data and

more elementary functions of time which havc strong affinities with the physical concept
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of frequency. The best example is the Fourier Transform, which conceptually is a bank

of correlators, trying to determine the "measure of similarity" between the data and
sinusoidal functions, the true representation of our concept of frequency. Other typical
examples are in the works of Gabor [Ref. 11 and Priestley [Ref. 22], using elementary
functions on the t -f plane, where these functions have what Priestley calls an
"oscillatory form" needed to establish the correspondence to our notion of frequency.

Now, if the data is of length T, the elementary functions can have at best the same
duration, which implies that their frequency width is greater than -1T Since the ob-
tainable frequency resolution is at best of the size of the frequency width of the ele-
mentary functions, the principle of uncertainty in Spectral Estimation follows.

Gabor's result is only concerned with stationary signals, or at least assumed to be

stationary, since Af is the effective width of the Fourier Transform of the signal. How-
ever, some implications can also be derived for the non-stationary case.

Let us assume we have an arbitrary stationary signal 0,(t), which we will consider to

be analytic to simplify the formulation, with effective duration At. effective bandwidth

Af and constant instantaneous frequency. Formally,

I d [ arg[0(t)] ] = constant (144)
2-,, T, '4

Let us now force the signal to linearly chirp in frequency, by multiplying it with the

phasor e' 2 and defining the modified signal .(r) by

e~()= ¢(~"(145)

where k is a positive real number. Due to the exponential, iIu~(t) is nowv a non-stationary

signal chirping linearly in frequency with a slew rate of

-= k. (146)ct

The following results can be established for 0PM(i):

Effective time duration

The effiective time duration will be

At = \, (t -2; ) (147)
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where
00 00

f Pel tdt c0 tdt

-m -~ 00 (148)

O fdt O*dt

00 -00

00 C00

- {~ k t'dt f O~q t'~ dr

(t~)000- Oo (149)

I -00

H en ce,

(A"2= 2,- Ft7j (i2] =(At)2  (150)

*Effective bandwvidth

The effective bandwidth will be

Af 1 = 27nf1 %f,) h[~72 
- ch 2 1(15 1)

where
CIO

00

Using the identity

dofrm- d t)Cfrkt 
2  

- e"7kf 2 +27LvItq1ej kf 13
dt atftLq - dt-
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we have that
00

T Ldi ek,- j027rkefnkr dt

ff t (X0

J' -2- at 'Pkdt0

00 00

di f pik

J& dt O *Odt

J Oi/i f / O* di

00 -00

Hence, all we are missing to completely determine 4f is the expression for J1.
where [Ref. 11

00

d,11u dO q dt

di dt
1,) 20 (155)

(2r)'

-00

Noting that
do,t dP.If dOb dl" * t¢ dO/ , d¢

- -- j~ ko +j2rktO - + (2rTk) t'ii" (156)
dt dt dt dt "d6
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we have
00T[dip dok dO, * 2t2 1

dt y--j21rkto -j-+j2rktV'--L+(2 irk) d
f- I

(2 dr)2 00
f ObCdt

0000 00 (157)

O't2 q~dt q1t I -Lo dt "-'dT-t dt
di dt

d0 jk f o
=V+ +2r 00 21T 0

f -Oi t f 0 & d f- t ait
0000 -Iv

Considering now the following identities

*d i d ddt- -- dt[ IC~ +Cq'I- agt)

we have

00 o [ arg() ]dt

V = (f2 + k t) + -- (159)

00

and, using (144 ) we get

(tf) = ) + k 2(t2) + 2k-ifi. (160)
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Since [Ref. 2]

Of,

2ir (161)

CO

we have, by 144 ) that

O¢;,dt

f =f! =0f. (162)

f 0 dt

From where.

(f V=(f + k 2 (1 2 ) +2ki?. (163)

H1ence. from ( 151 ) and (154 ),

AK f 2 + k 2( 2 ) + 261i] - 277 (l 2 + k ±(1) 2 k ii

2 "

(,A)' + k (At)'

Therefore, using ( 150 ) we can write the effective time and frequency widths of the

modified signal 0,M(t) in terms of the effective widths of the original stationary signal

0(t) as

(Afst)2 = (Af)2 + k2(At) 2 1

(A t .)
2  = (A t)

2 .

Using ( 143) and( 165 ), we get the result
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(AfAt) 2 =a)2 [(A[ 2 + k2(at)2 ]

= (AtAj) 2 + k2(At)4  (166)
1 2

>- + k2(At)f
-4

from where

(Aff)2 1+k2(At)2. (167)
4(Ar)+

Hence, if we minimize the right hand-side of ( 167 ), we will find a lower bound on the

effective bandwidth of the chirped signal. Proceeding with the minimization, we have

,I L (AI + k 2(At)' 0 = - 2 + 2k2(A) =0eAt (A) 4(At)3

=k2At 1
4(At) 3

4 1

4k

=At= 2 1k
\' 2k

Hence

(Aflf)2 > + (169)

AfY1 > k

and we can read the obtained results as stating:

Lemma 1, A linear chirp will always occupy an effective bandwidth greater than

\ dJ;/d;, independently of its effective duration.
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Lemma 2. A linear chirp will occupy the minimum effective bandwidth of \ df/dt

only if its effective duration is

At=

12+d

These results will have obvious implications when classical spectral analysis of the

chirped signal is attempted; no matter what the duration of the elementary functions is,

the signal will always appear to occupy more than \idf/dt , and this will thus be the best

obtainable resolution. This completes our proof.

Lemma 3.The maximum obtainable frequency resolution when analyzing signals

with unknown frequency dynamics is \df/dt

Though the previous discussion was restricted to the case of a linear chirp, the

underlying ideas remain valid for laws of variation other than linear: the treated case can

be considered as a first order approximation for arbitrary non-stationary signals.
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APPENDIX D. PERFORMANCE IN NOISE

As we will see later in this Appendix, an absolute evaluation of the performance of

IPS in noise is not possible, because the second moment is data dependent. We will thus.

instead, compare the noise performance of IPS with the noise performance of the

Wigner-Ville distribution. Let us consider the inverse Fourier transforms of IPS and

WD.

Cls(t, T) = 1 [s(t)s*(t - r) + s*(t)s(t + r)]2
versus (172)

cH" (t. -r) = s(I + T )s*(t - T )

Given a signal z(i) that is corrupted by WAGN, where the noise is analytic and

bandlimited to the maximum frequency (1i) of the signal. that is:

v() = z(t) + n(), 173)

where

[0 otherwise

R() 27t 1 175

A. MEAN

1. XVD

C11"(1, t) = v(f + -- ).(t - z(i+- +,(t+-T )]• ,*(t_- n -

z(t + )z(t -L) +z(t+ 2 -"L) (176)

+ n( + -L )?n( - -L) + n(t + -L )z -(t -- )
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E{Cf',.([, T)} = C1"(lr. T) + z@t + -I- )E n*( - -L 4
+ z*( - - )E n(i + -L-)n*(t - -L(77

Hence.

E{ClT'(r, T)} Clf2(i, -r) + R,(T).

2. IPS

CI,(t, T) = [V(t)V'*(t T ) + V*([)V(t + T)]

,[-(t) +n(t)]i[z*(t - T) + -*( T)] (179)

+ 1 [z*(t) +n*(t]-[z(i - T) + ?n(1 - T)]

EUtT) I *(I
E{CI(t.r) = (t): ( T-) + 1y E~n(t)n*(t - T)}

+ I1 Z (z)z(t + T) + - Ettnz+ ) (1 SO)

=Cl,(r, )+ yR,(-c) + 2 J)

H-ence,

E{CIAI. T) }=C12(f, T) + R,,(-) .(181)

Therefore. IPS and WD have. as far as their first moment is concerned, identical be-

havior in the presence of noise.

B. VARIANCE

CW C (1, T) 2 =V(r + -i-)V*(t - L *(+ Lv -L

+ - -) + nt+--)[t- )+ (i
27



2 2

+ n(t + -L)z(t - + n(+ -L )n(t -)]

Using~~ no th exetto opr2r w ae

+E * ( + -- )z( - - )E z*(t + - nt- L)

+ z~---)2 f2 2

+±*( + -)( - -) n( + -I--)n(t - -)
2. 22 2)

I C~~(tz) 11 = z( + -)z(t - 'r )fIl + (t + -L-)zt-- R(r

2 -2 1

2 2

2 ±(
8 See Apendix )



where we made use of the fact that, for zero mean Gaussian random variables

[Ref. 23],

" E{xlx.x 3) = 0

* E(xxx 3x,} = Etxx2).E{x 3x,} + E{xx 3}.E{x x,} + E(xx}.E(x2x3}.

Hence,

E{ CWV (t, T) I'} z(t +'-L )z*(t -- + - - z(t +--) + z(t - - -)

+ Rn(T)Z((t+ ))z(r--)+ R;(T)Z(t++ )/(t- (17)

2 NO 2

+1 R,,(T)I + 2IV

Now,

Var{CIV(t. r)} = E{I C I V(t, r) 21 - E{CI V,(t. T)}E{CHV,(t, r)}*

E C{I C l(t, T) 21 - [CI'(t. T) + R,(T)].[ClV*(t, t) + R*(-r)]

= E fI -C 1, 7( )21 :(I T ) ( )2 - R, J) 2  (ISS)

- C , i (,')R,*(z) - CiT (t. T)R,:(z)

From where, using ( 187 ) and ( 172 ),

, .il " 2  12 0 2
Var{Clv'r. i)- 2 Izr±--) 2+ zt-- - + '- , (1S9)

2. IPS

CI-, ) 1 [v(t)v (t - r) + v*(t)v(t + r)][v*(t)v(t - T) + v(t)v(t + r)]

=14 [v(t)v (i)v (t - r)V(t - T)] + + r)v (t)v(t - T)] (190)

+~- [Q)V*(r - 1 )V(t)*(t + )] +(t + r)V(t)V*(t + r)]

For simplicity, we will treat each term in ( 190 ) separately, and use the fact that

the second and third terms are complex conjugates of each other.
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*First term

E I - z)Iv(i - -,)]}

-.LErI[zi) + n(i)][z*(t) + n*(z)][z*(t - T) + n7*([ - T)][z(t - T) ±n~i - T)]

E rz)z*(i) + z(t)tt(t) + z*(r)n(i) + n(t)n*(t)]

[z (r - - Tr) + Z (I - 'r)t(t - T) (191)

+ !:(t - T)tl(t - T) + n*( - -r)II@ - T]

= [:t )z*(r): (t - -r)z(t - r) + Iz(f) 12El I 11(t - T) 121

-r t):*(t - -r)E~n*(t)n(t - Tl+ 2*(t)@ - -)Efn(t)n* - T))

+ j :(I - -r) 12 E{ I n(,,) 121 ±E.{n(i)n*(i)n(t - T1*t- Tl

SimlPlifv\ingx

T)V ~ I (t:(1 -T)] ZV)* )1

4 T [Z(l) + I1 Z(!-T) 4 -- z:(- T)R,I) (192)

-([):)! - T)R,1(z) + -~(>' + -&R,(T).

* sccuid [c; m

j5  (1) + n(U) t -4 n)] 7)]

= -yhI:CM-- n ][:* + ) -i(t T)- tl](t) +4 +2][( )]+n

-)( z (I-~ ' W7

7) (i)pi'- -t - n ()'(r-z -4n (t T)r- zf)

- v - I I [(1 -r )] 1 ~)n) *10 1 -4-r)( 1- 7

R1 +[H! -)R,(7',H

A,77



* Third term? Since this term is the complex conjugate of the second term, we

have:

E{ -- [V(!)V*(t - z)I()*( + T)}] -j Z()Z@t)Z( + r)Z*(r - T

+ -L z((t (+ T)R,(T) + -L z(t)z*( - T)R,*(T) (195)

+ -L z(t + T)R,(r) + -L- z(IZ*@ - T)R,*(T) + I R,() 12
4 -

* Fourth term

E{ [1()V~r + T)Iv(t)V*(t + Tr)]}

- Ef[.'*(t) + n*(l)][z* +Tr) + n(t + T)][Z(t) + n(t)]Ez*(t+ Tr)+ n*(t+ Tr)]4 L

= E [z*(t)z(i + Tr) + Z*(t)?I( + T) + ?*IZ + T) + n*(t)z(t+ T)].4 t

{:tzz+ r) + :(tOnl(t + r) + tn([gz'([ + T) + n(t)n*(t +- -r)]

+ L (1)c (It -i- + -) + *t)( + T)~n ~ *(i* + )

4_1 Z(I) 12 E I tI(I + Tr) 12-1 + I -(t+ T) 12 E'{ n(t) 121

+ z( I)z*(t + r)E~n*(t)n(t + T)+ Efn*(t)n(t)n(i + Tin*U + T)K

+ r 12+ 1 (1 +) +]~ -,C~ )Rrk.i- (197)

+ +14 T)R,,'' + ___ ~- R,I~f
+4~ 41~(T

Adding the four terms (192 ).(194 ).195 )and ( 9 .w hsotai the

expressil\for the second moment of IPS. Now,

Van' ICIr.,. J)= 141 C1,(r. r) I - L{At r)V2CIz ) (1, T

where

E{CAr. T) E{ C1, t. T)) = [ CI,(t. z) + R,Or)] CI (t, T) + R,4)

=CI.t z)CIji. 7r) + CLii. t)R,1(7) (199)

+ Cl:-(. T)R,(-z) + IR,(-,)



Substituting in ( 198 ), we get that

Var{Cl(t, r)) I r) II - E{Cji(, r)YE{Cljt, )}j*

I -'oI  12 2 12 12
-I NO [I1Z( +z(t-r)2 +Iz(t) + IZ(t+r) ]

4 21r
- z(1)z (t - T)R*(T) + I Z (t)z(t + r)R,>) (200

4 Z (t)z(t - T)Rn(T) -- z(t)z (t + r)R,(T)

1 2

2 2 2-r '

We can now compare the variances of CL(t, T) and Clj,(i, z) .First of all we

realize that, in both cases, the variance is a function oft and T. If = 0 , we have:

Var{ClJ(. T)) - I Z(t) 1 + )2 (201)

2 
2

Var{CW .(i. .V)} - r {:() +(A,- 2  (202)

That is.

Var{ Cl.(r. 7) = Var Cl ,(t. I )} (T = 0) (2' (S

For 0 # O, we have from ( 200 ) that

Nar{CIJI I
Va r{, Cl,(t.r + T) 2 Z(t) + z(z t- r) z(t) I'+ z(t  7)

1 2 ]

+ 2 R ,( ) I [ I t) Z (l ) I + IZ (t)Z(t + ) 1l2 0 1

T,2f I+ (t)Z( -3T) + I Z()z (I T)

+ Rn(',)--
2 2 2,r



1{C(,} o[I()2 ±t') 2  12(')[2V ar{C l .(t, T)} I . 2rr [ Iz(t) 12+ [Iz(1t - ) 12+ Iz(1) 12+ Iz(1t+ T)1

+ z(t) Iz(t + r) + I z() Iz(t -r)I + z() Iz(t -r) I (205)

+ Iz(r) IIz(t + T) ]+ 2LL "

The time dependency of the expression stops us from a direct comparison with

CWV(t, T). However, since the signal is arbitrary, we have no reason to assume any or-

dering of its magnitude at different points in time. We can thus average over time, and

get the following result:

< Var{ CI(t, T)>a [4< Iz(t) 12> + < Iz(t) Iz(t+r)I >av

+ < I z(t) Iz(t - > ,+ < Iz(t) z(t -r) >

+ < Iz(1) jI + T)I > 2 (206)

< - -< I z(t) I' +
/

Using (I 89).

< VarfCI (. T)} >a < Var{CI'(t, z)) >a , (207)

and finally, we have

Var{CI,(t. T)} = VartCIJ(t, r)j (20S)

< Var{ CI,(t, r)} > a, < < I Var{ C ;(t. T)} > av (209)

For the case z #0, If>], we can make the following approximations. using

189 ) and ( 200 ):

< VarfCl(t, T)} > 0V ( 1 2

< Var.C"1.('. r)) > , )2 (211)

< Var{ClIs t )> 2



That is, when the bandwidth of the noise approaches infinity, the difference in
noise performance between IPS and WD approaches the limiting value of 3 dB.



APPENDIX E. A DIFFERENT DEFINITION OF "INSTANTANEOUS

POWER SPECTRUM"

In accordance with the discussion in Section Ill-C, the following definition of In-

stantaneous Power Spectrum can be made.

* Definition - Instantaneous Power Spectram at the time of a given sample is the
frequency content of the stationary spectrum implied by the existence of that
sample.

That is: reading the Fourier transform as a change of basis in an N-dimensional

space, the Instantaneous Power Spectrum will be the difference in coordinates (referred
to the phasor axis) between the location of the signal in the N-dimensional space and its

location in the (N-1)-dimensional space that results from suppressing the dimension

corresponding to the sample of interest.
Since in terms of the internal product, the absence of any dimension can be repres-

ented by a zero component of any of the vectors along that dimension, this definition

leads to a three-step procedure:

1. Compute
2

X(CO) I , 212)

where

X(o) = x(n)e -/ '1 . (213)

2. Define a new sequence, obtained by zeroing x(n) at the sample of interest, that is:

x2(n) xi(n) n r (214)
o0 n = r

where r is the time at which the Instantaneous Power Spectrum is to be determined.
and obtain

2

3. Obtain the Instantaneous Power Spectrum as:
2

Instantaneous Power Spectrum = 2 ) I .(o') . (2 16)
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The resulting distribution will be ( using extended sequences, as in Appendix A )

2
IX(O) I = .(w)X(w)

7 x(n)e , x (n)e- (217)

n=-oo

and, after some manipulations,

00

IX(co) 12 = Zcke-j°k (218)

where

ck = '_x(n)x*(n - k) k >0 (219)
n=k

and

C_k Ck (220)

CorrespondingLy.

I )-'4wc:) I .eJ , (221)

where

b, = Zxz(n)x(n - k) k 0 (222)
;=k

and

b_k = bk• (223)
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Hence, we have that

I X(O) 2- X2(co) 2 Z ke - j ok -  bke -j k
k=- w k=-oo(2 4_, (224)

- Ake - wk Ix(r) 2
k=-oo

where

Ak = [x(r)x*(r - k) + x(r + k)x*(r)] k > 0 (225)

and

Ak = Ak. (226)

that is, this definition leads almost exactly (up to a constant, for fixed time) to IPS.

What is important to realize is that this definition has no concept of past or/future, and

that all points are equally treated, no matter what point they occupy in the sequence.

This result seems to put an end to our hope of finding assymetries in the IPS concept.

As a final note, a more formal proof of the relation between this distribution and

IPS can be made as follows: Define

ftn) nr(227)x (,) = 0 n= r

d(n) = x(n) - (22S)

Hence,

x(n) = Xz(n) + d(n) . (229)

Let

X(co) = F(x(n))
D(o) = F{d(n)) (230)

X~(,) = Fx 2(,,)} .
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Then,

K,( Xw) + D(co) (2-31)

and

IX(CO) -2~ w 2 = (X.(co) + D(co))(X*(co) + D*(w)) - X2(co)X;*(w) (232)
A,(co)D(co) + A';(c)D(co) + D(wo)D *(o).

But we know that D(wo) =x(r)e"--'. Therefore,

x(CO) X,(co) 2Re{XZ(wj)x*(r)e Iwr+ D(co)x*(r)eJwr

2-R ey [X2(w) + D (w)] x* e - I x r 2( 3 1
Me L,)x())r x(r)r 1~ r 2

(23

- AlIPS - I x(r)2

S 3



APPENDIX F. ON THE SECOND MOMENT OF ANALYTIC SIGNALS

The purpose of this appendix is to proof the following theorem:

Theorem: For an arbitrary analytic random signal z(r), defined as

z(t) = x(1) +jc(t) , (234)

where . (t) is the Hilbert transform of x(t), the following identity is satisfied:

E{z(n)z(s)} = 0 (235)

Proof"

E{z(n)z(s)} = E{ [x(n) +j"(n)].[x(s) +j"(s)]
(236)

= E{x(n)x(s)} +jE{ .'(n)x(s)} +jE{x(n)xAs)} - E{x (n)X(s))23

But, from the properties of the Hilbert transform. we have that

R .() = - Ri x(z)

Rir)= R( x(r) (237)

Hence.

Ejz(n):(s)} = Rx(n - s) +jRX.x(n - s) +jRxx(n - s) - R'xx(n - s)

=0.

Our proof is thus complete.
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