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g ABSTRACT

The need for tools capable of handling non-stationarities in the spectral content of
wos

the dataphas been recognized as early as 1946. The Wigner-Ville Distribution (WD) has
been extensively used since its introduction in 1948, but suffers from some associated
problems (e.g., spectral cross-terms and requiring the use of analytic signals). An alter-

native Distribution is proposed, which has its origin in the definition proposed by Page
of élnstamaneous Power Spectrum@ (IPS). Its characteristics are examined and, when

pertinent, compared to the WD. It is shown to be less sensitive to the problems aflicting '~ -

the WD, but provides less frequency resofution. The usefulness of a parametric (AR)

version is investigated. Some typical test signals are examined, to demonstrate the per-

formance and trade-offs of IPS and its parametric version. K-iir oo Soa, 00 2o
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I. INTRODUCTION

A. THE PROBLEM

The use of the Fourier Transform as a spectral description of signals is a concept
whose usefulness is restricted to the class of stationary signals. Though mathematically
elegant and convenient. Fourier decomposition of a signal can often mask the true
spectrum, since the assumed basis-functions implicitly oppose anyv notion of time-
dependency.

When the spectral content of the signal changes with time, as i1s often the case in
fields such as Communications, Seismology or Speech Processing. more powerful tools
are needed. The time-dependency of the spectral content should be apparent and meas-
urable through the use of a more general type of representation of the signal. Gabor
[Ref. 1] proposed such a representation by introducing the concept of a spectral de-
scription in a joint time-frequency plane.

Since then, several attempts have been made [Refs. 2, 3, 4, 5] to derive a, or the.
funcuon capable of correctly describing the distribution of the signal's energy in this
plane. Short Time Fourier Analvsis (STFA) has been widelv used and is regarded as a
very convenient approximation to the “true” distribution.

However, obtaining this distribution 1s an under-determined problem. since an in-
finity of valid solutions 1s introduced by allowing non-stationary descriptions.  For
example. any tume signal can be represented as a time-varving DC component. To

llustrate. consider the following discrete time signal:

x(n) = cos( % n) . (1

Two equally valid representations, in the sense that each one is capable of generat-
ing the observed signal. are shown in Figures 1 and 2.

Each one of these descriptions explains the existence of a sinusoidal time-series.
Though there 1s no conceptual distinction between them. the algorithm of analysis must
have the ability to decide which one will be taken as the “true™ one, based on an ex-
plicitly or implicitly built-in set of rules. The situation thus arises, where “one will see

what one wants to sec'’.
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Figure 2. x(n) represented as a time-varving DC component

Further complications appecar when we consider the fact that, given a time-series,
we cannot determine if the underlying process is or is not stationary, without using ar-
bitrary and often inappropriate assumptions about what is the local behavior. When the
algorithm of analysis produces a time-varying spectrum, the fact remains that there is
at least one equally valid time-invariant spectral description (the Fourier Transform
based), which is arbitrarily ruled out.

B. APPROACHES

If the signal is to be represented in the joint time-frequency plane in a sensible
manner, the distribution must have some key properties. For example, a shift in the
time-series should always imply a corresponding shift of the spectral representation

along the time-axis. Also, a multiplication of the time-serics by a complex exponential




should result into a shift of the spectral representation along the frequency axis. Without
these properties, physical interpretation of the representation can be ain impossible goal.
This is one of the reasons whyv Ambiguity functions are not used 1n spectral estimation.

This technique of imposing constraints that are felt needed in a distribution can be
carried further, and the distribution (or one of the distributions) formed 1n this refine-
ment process defined as the true distribution. One of the most successful representations
obtained by this approach 1s the Wigner-Ville Distribution (WD), which has extensively
been used since its introduction in 1948 [Ref. 2].

A different approach to solve the indeterminacy is to define, a priori and unambig-
uously, what the considered true distribution is. Though this approach lacks control of
the properties of the resulting distribution, it has the advantage of more closely pre-
serving phvsical meaning in whatever 1:sults it produces. A typical example 1s the
definition of “instantaneous Power Svectrum” proposed by Page [Ref. 5], uniquely

determining a resulting distribution which is amenable to physical interpretation.

C. OBIJECTIVES

The Wigner-Ville Distribution has been extensively studied [Refs. 6. 7, 8,9 ]. and its
characteristics are fairlv well understood. However, its use is still hampered by some
problems. First. it has uneven performance for different classes of signals. It performs
optimally for single-component linear FM (linear chirp). but has worse performunce for
less regular spectral dynanics. Also. when multi-component signals are present, the WD
creates artifacts in the spectrum. Iving mid-way between true con.ponents. These
artifacts are. up to some degree, recognizable and treatable due to an alternating sign
[Refl 6], but can severclv mask results when analvzing more complex signals. The use
of analvtic signuls is usually required. not onlv to avoid the need for sampling at twice
the Nvquist rate, but also to prevent the appearance of undesirable artifacts that would
otherwise be created by the interference between positive and negative frequencics
[Refs. 6. 7. 10].

Though 1t has not received proper attention in the literature, Page's Instantaneous
Power Spectrum is. once properly understood and treated. a practical alternative to es-
timate the time-varving spectrum.

The study and development of such an alternative is the main goal of this thesis.




II. INSTANTANEOUS POWER SPECTRUM (IPS)

A. DEFINITION

In an attempt to accommodate the notion of instantaneous frequency content, Page
defined the Instantaneous Prwer Spectrum as the derivative of a running energv spec-
trum [Ref. 5):

— 8 - 2 )
p ([!j)_al ISI(.,{)I (“)
where
[
S () =J s(r)e . (3)

That 1s, the Instantaneous Power Spectrum was defined as being, at each frequency,
the rate of change of the energy collected by a TFourier transform taken from — oo . up
to the time of analvsis. This concept was later extended by Levin [Ref. 3]. who intro-

duced a complementary backward run, similarly defined a«:

ol N = :—1"— LSt ()

where

o
)

SHH = j s(t)e ¥ ar (

and dcfining the Instantaneous Power Spectrum as the average of these two runs:

IPS(1, f) =—;—[p_([. N+pti nl. (6)




This expression can be put in the form [Refs. 3, 11 ]
IPS(, f) = Real [ (1)S(Ne*™] (7)

where S(f) is the Fourier Transform of s(r).

IPS can thus be seen to be the real part of Rihaczek’s distribution [Ref. 4], which
allows one to think of IPS(1, f) as being the energy density entering, at time ¢, an infi-
nitely narrow filter centered at frequency f. An enlightening treatment of this point can
be found in Ackrovd [Ref. 12].

1. Time Domain

Let us now consider the following: we want a function of ¢, t whose Fourier
Transform is /PS(1. /) . That is, we want G(r, t) such that

>

IPS(1.f) = J Gr. 1)e ™ g . (8)
-
Then, using (7)
Glr.7) = -']T [\ [S(I)S'(f)"-jzm + S(l)'S(/)é’jz:ﬂ] ej2ﬁf?q,/\ (9)
from where, with the appropriate variable substitutions we obtain
G r)y= —l—f [J(HJ s = me g, + s'(z)J‘ s(1 + 7;)L’—j2"“f"d;1} emﬁz'(/'. (10
—on - -0
Interchanging the order of integration, we get
Gt 1) =L [s(0s"(1 = 1) + s (st + 1)]. (1




IPS can now be restated as:

o0

IPS(1, /) = —;_—j [s()s (= 1) + s (0)s(t + 1)) e dz (12)

2. Frequency domain
Alternatively, a dual expression can be derived, expressing IPS in terms of the

Fourier Transform of the signal.

o o

IPS(f) = %f (s (= e e 4 %— [ s"(0)s(r + 7)e P d

-0 —o0

f J u)d”‘“duf S*()e g e e 4

—0C =0T

+—f f S (we ’*“’duj () e

—_—r =D —_—0

J J 1)S (T eIV — Ndydu +
J‘ f AT AT - Ndydu

—00 =00

i
ul»—-

(13)
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With the appropriate variable substitutions, we get

[ o] o0

IPS(, f) = % J S(F+ S (e dy + %J S (f= S d: (14)
and, finally
IPS(1./) = %f [SANS (F— )+ S (NSU + )] &¥7'ay . (15)

3. IPS for discrete signals
The discrete version of IPS follows directly from ( 12 ) as

A,T Z [s(n)s'(n -k + s (n)s(n + k]]e—jm':. (16)

= — e

[PSin. 0) =

A formal derivation of { 16 ) can be found in Appendix A.

B. RELATIONS WITH OTHER TIME-FREQUENCY DISTRIBUTIONS
1. Rihaczek’s Distribution
The Rihaczek Distribution was proposed in 1968 as the true energy! distribution
In an attempt to unify existing resuits.

Formallv, the distribution is [Ref. 4]
(1. )= s(0)S (e (17)

where s(7) 1s the analytic signal being analvzed, and S(/) 1s its Fourier Transform.
As was derived, elr,. £) 1s the complex energy density at the point (4. f) in the
time-frequency plane. A similar expression had been considered by Levin., who defined

the Complex Instantancous Power Spectrum as the complex conjugate of ( 17 ).

Rihaezek used the concept of “complex energyv”, whose real part is the real energy. while the
imaginary part is the reactive energy.




Using Levin's notation, the Complex Instantancous Power Spectrum is
X =500, (18)

where () is the complex envelope of the real signal under analysis.
We thus see from ( 7 ) that, though addressing a broader class of signals, 1PS
is both the real part of Rihaczek’'s Distribution and the real part of Levin's Complex

Instantaneous Power Spectrum. Formally,
IPS(t, f) = Real[e(s, f)] . (19)

2. Cohen’s Generalized Phase-Space Distribution Functions
In 1966, Cohen introduced a generalized class of time-frequency signal repres-

entations, given by

oz o oG

e(t. ﬁ=J j j O, 1) sty +%)5'(11 — ) SN Dgdr dr (20)

—00 =00 =00

where the choice of ®(v, 7) will determine the resulting distribution |Ref. 13].

If we slightlv rearrange ( 20 ) to read

we can interpret it as the double Fourier Transform of Y(n, 7) {Rel. 14], where

o

Y(v, 1) = O(n, T)J s(h + = )s (1, — = )e*™Nar, (22)
We can now recognize ( 22 ) as a general expression for the well known Ambi-

guity function, which can serve as a general definition of the time frequency

autocorrelation function [Refs. 3. 4 ).




Each choice of weighting function ®(v, t) in ( 20 ) provides a different distrib-

ution, because each one defines the combined autocorrelation ( 22 ) in a somewhat dif-

ferent way.

Let us see which distributions result from three different realizations of ®(v. 1)

(complex exponential, constant, and real sinusoid) [Refs. 4, 13, 14 |.

a. Complex exponential

J2mer
O, 1)=¢ 2

The combined autocorrelation becomes

o>

Y. 1) = é’jﬂTJ‘ s(r) + —;' )s'(ll - —;— ) gjz“”xd,l

—C

o

= ‘. s(t 4+ = )s ' = =) Ty

—C

and. defining a new variable r =1, + -5- we obtain

e )

Y(u, 1) =f s(!,)s'(t, - 'r)(’/k”‘dll .

The resulting distribution is

o1, /)=J J J s(1))s (1, = TN TN gy

(24)

(26)




-
c(t, H= s(ty)s"(e; — 1) e 7781, — 1)dr,dr
‘J-OO —O0
r‘(X)
= s@)s’(t~1)e " ar

|

o0

= 5(0S" (e

which is the well-known Rihaczek Distribution.

(27)

Though this definition of the combined autocorrelation is probably the

most intuitive one, its lack of mathematical symmetry has the undesirable effect of

making the distribution complex. It has extensively been used in radar theory. since

{ 25 ) 1s exactly Woodward's definition of the Ambiguity function [Ref. 3].

b. Constant
O, 1) =1

The combined autocorreiation becomes

o0

Y. 1) = f s(r, + -:— )s'(l1 - %) eizn[ldh .

—0

The resulting distribution is

oo o0 OO

(1, /) =j j J sty + 5 )s (o ~ =) T e dedo

10

(29)

(30)




(‘OO o

S+ 205 0 = 203,
e (31)
f‘

T\t T2y
s(e + > )s (¢ > Je dr

which is the Wigner-Ville Distribution. This definition of the combined autocorrelation,

though only slightly different from the one in ( 25 ), has the needed symmetry to make

this distribution real, and mathematically very convenient (when dealing with analytic

signals).

c.  Cosine function

D(v, 1) = cos(rvT) (32)

The combined autocorrelation becomes

Y. 1) = cos(mvr) | s( + -;— )s‘(Il - % )elzﬂ[’dll

— e
o0
(e/,‘:L < + e-jn-:)
2

5

r4

T M je=
sty + = )s (1 = =7y,

—0

‘49

()93
—

- (

| * 2z =
—2—[ s(t +-%-)s (4, ——;-)e’ G ar,

—-0C

OC

. D mlfe —
+ s(e, + —;-)5 @ —-;—)e/""“‘ 2 )dz‘]

—0C

11




ﬂ'—

. . . . T . 1
Substituting ¢ for 1, + —:— in the first integral, and ¢ for ¢, — = in the second,

we get

(=] o0

Y, 1) = ';‘ [J s()s (r — 1)*™dr +f s (st + T)eﬂﬂu(le

—O0 ~—o0

(39)

[ o]

[s()s’(t = 1) + 5" (Ds(z + 1)) ™ar .

]
ro |-—-

—_—00

The resulting distribution is

o0 oo oC

f‘
ot = f % [s(0))s"(r; ~ ) + 57 (0))s(e; + 7))e* eV g dode

—00 —oC —00

= -l— [s())s7 (e, = ©) + s"(ys(e, + 0] 77781, = 1) dr (35)

—0o0

which is the expression we had found earlier for IPS. In this case, the definition of the
combined autocorrelation also possesses the symmetry needed for a real distribution.
The kernel that generates IPS ( ®(v, 7) = cos(nvt) ) has been considered by Cohen
[Ref. 13]. and shown to generate the Margeneau-Hill distribution [Ref. 15]. well known
in quantum mechanics theory.
3. Wigner-Ville Distribution

Since the Wigner-Ville Distribution (WD) has enjoyved wide acceptance, we will
define more closely the relations between 1PS and WD. As an indirect connection, we
can relate both to the Rihaczek Distribution. From ( 29 ) the WD implicitly defines the

combined autocorrelation as [Ref, 4]




Y, 1) = J s(n +=)s () — % )2,
- (36)
= e_jm”J‘ s(1,)s (1, — r)en”v"dll .
Hence, the Wigner-Ville Distribution is given by [Ref. 4]
WD f)= Fb,f[e"’"’f s(1)s (1, — T)é’m”‘dn] , (37)

where F_.[ . ] denotes the 2-D Fourier transform. From the convolution property of this
operator, and using ( 25 ),

=]

WD = F, [ TU S(0)5"ty - >ad}
= (38)
=F, T[e’jmtl ** et f)

= T e(r, f)
where ** stands for 2-D convolution, and ¢(z, f) is the Rihaczek Distribution. From
( 38 ). using ( 19 ) and the realness property of WD (see Section I1-C), we obtain

WDy, f) = Real] &7 ** 41, )]
IPS(1, f)= Real[ 6(1. /) ** e(r, N)].

(39)

We thus sce how the two distributions can be obtained from the Rihaczek Distribution

by an appropriate chotce of the function convolved with &z, f) .

13




We found earlier that each choice of ¥(v, t) in Cohen’s class of Distributions

( 20 ) yields a particular definition of the combined autocorrelation function

o0

Y(v, 1) = O, r)J sty +5)s7( — % )/ ¥ Ny, (40)

-0

and that the 2-D Fourier transform of ( 40 ) resulted in a particular distribution, de-
pending on (v, 7).

We see now that ( 40 ) is the product of two functions, ®(v, 7) and the integral.
Its double Fourier Transform is thus a double convolution in the transform
domain.[Ref. 14]

That is:

o, f)=F, [¥0, )]

o0

= FU'T[:(D(U, T)f s(r, + % )s () — % )eﬁ””’a’t]:l
- . (41)
=TI, [®, )] ** F, U s(t, + % )s (1 — % )e’z"”!d:,]
=F, [Do.7)]** H'D(r—.j) .
In the particular case of 1PS,
IPS(1, fy=F, [ cos(nvr)] ** II'D(1. f). (42)
Therefore,
IPS(t. /Y= cos(dnft) **'D(1, /), (43)

which we could have deduced directly from ( 39 ) and the fact that the WD is alwavs

real, as follows:
IPS(t, f) = Real[e(r, f)]

| . (44)
=?[£(l,f)+£ (t, N].




Using ( 38),

IPS(t, fy =—[e T« 1D, f) + &7 ** WDy, p)

[e ™ + *7) % WD, f) (@3)

1
2

L
2

= cos(dnfr) ** WD(1, f).

At this point, we would like to be able to express the WD in terms of IPS, with
a relation of the form:

WD(. fy= O[IPS(t, /)], (46)

where O[ .] is an arbitrary operator. Unfortunately, the inverse filter does not exist,

S S S 7
r“"[ cos(mvt) } 47

is not defined over the required range of n and 7.

since

4. Short-Time Fourier Transform
Though the Short-Time Fourier Transform (STFT) can not be considered a true
Time-Frequency Distribution [Ref. 14], its widespread use fullv justifies the study of how
it relates to IPS. This hs been addressed in [Rel. 11]. and will be done here. after which

some indirect results will emerge. Let us thus consider the STFT as defined in ( 48 )

STFT(t, w) = |F(t, )|

o

J s(1 + 1w (1) dr
Y oo (48)

2

f j s(t+ s (1 4 v)w (T)w(v)e 7 e drdv




Substituting s(r + 1) and w*(z) by their Fourier definitions, we have that

oo 00 o0 o0

(‘
STFT(1, w) = s(1 + v)w(v) J 5(5)6”-‘““”(1.{ W (p)e " dpe ™" drdv

1
e

o 00 —00 —00

o0 00
od r*

= s'(2 + 0)(v)S(p + @)W (p)“PY e dvdp (49)

LY

(-

OO

o0 D0

ror
= s (1 + 0)S(p + @) TNy (p)e PP dvdp .

[ Y

[ Y

oC —oC

We thus see that the STFT is a time-frequency smoothed version of the Rihaczek dis-
tribution of the signal. The smoothing function is the Rihaczek distribution of the
window used to compute the STFT. Since the right-hand side of ( 49 ) 1s alwavs real and
positive, and the previous relations are valid for arbitrary signals and windows, we con-
clude that windowing a Rihaczek distribution with a Rihaczek distribution guarantecs a
real and everywhere positive distribution. This result will be important when addressing

the issue of positivity.

C. BASIC PROPERTIES OF IPS

As was already mentioned, and is easily seen from { 20 ), it is the choice of a par-
ticular ®(v, 1) that deternunes the particular distribution and, hence. its properties. It is
thus desirable to establish direct connections between the properties of {d(r, z) and the
properties of the resulting distribution. This i1ssue has been addressed [Refl 14]. and we
will in the most part only state results, as applicable to IPS. The basic properties of 1PS

are:

1. Time shift
If w(r) = s(r — &), then
IPS (1, N=1PS (1 —1,. /). (50)
2. Modulation

If w(r) = s(i)e?v, then
IPS (1. N=1IPS 1./~ ). (51




3. Marginal in Time

oc

J IPS(1, Hdf=s(1)}*. (52
4. Marginal in Frequency
J IPS(1, idi=1S() ). (53)
where S(N) = F[s(0)] .
5. Realness
IPS(1. Nisreal foralls, f. (54)
6. Insrantancous Fre'quem‘_l'2
/‘x
j [1PSu, Ndf

= f{1) (instamaneous frcquency) (33)
I sty
. Group Delay

o

( rIPS(, Ndi
— T =T.N (group delay) (301
RU ’

S. Zero Power
str)=0 = [PS(r,. =0

Sf=0 = IPSi. f)=0 (57)

The Wigner-Ville Distribution also respects properties 1-7 [Ref. 6], but onlv a

weaker version of property 8.

D. FURTHER PROPERTIES
Though the properties presented in Section I1-C constitute the basic set of rules to
which IPS is bound. some further analysis must be made. The effects of linear operators

should be investigated. to fullv understand the behavior of IPS.

* This property is vahid for analstic signals only ( see Appendix B b
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1. Windowing in the time-domain

The issue here is to determine how IPS is aflected by windowing the original

time signal.

We will at this point introduce the notation:

IPS 1, f) = % IPS;(t, /) + % IPS}(t, f)

where
IPS; (1, )= J di)d (1 — e P dr
and

IPSI, f) = J d'(0d(t + 1) g

If the signal is windowed. that is:
d(ry = s(epvlr) .

then the IPS of the windowed signal will be

IPS{tf) =+ j [dnd (1 — 1) +d (0dy — e ™ s
= -{—J\ [s(l‘)u‘(I)S.(I - Tt)w'(t -1)+

+ y‘(l)w'([)s(z + )wlr + -()](,-_"Z:frdr .

(38)

(39)

(60)

(61)




Separating the two terms,

oC

J [s(0)s™(r = DIDw()w’ (1 — 1)]e T dr

-0

IPS 41, f) =

-

oC

+ 'L‘j [s"(0)s(t + )0 (Ow( + 1)]e 7 dr

_ 1 F_l - — —=j2zft
-1 [IPST1F [IPSZ)e™* (63)

o

C -1 . =1 —j2nfz
T—Z—J F [IPSTIF [IPS}e7 7z

-

o o

#

% [ IPST (1. W)IPS (1. f— u)du+%f IPSF (1. 0)IPST (. f = v)do .

i —¢

where F"![.] is the inverse Fourler Transform operator. Hence
ow 1 ¥\ * - 1 ot * C+
1ps 1. h=—S[ 1070, N IPSSL N+ S{IPSTa N IPSI AL (o)
- - j

where * denotes comvoiunion in the { variable.

That i<, while for the Wigner-Ville. windowing the time signal implies the con-
volution along the (requency axis of the signal’'s WD with the window's WD {Ref. 6].
for IPS we have a sum of two convolutions: the first term of the signal’s IPS (IPS;) is
convolved with the first term of the window’s IPS (/PS;), and a similar convolution is
applied to (IS yand (IPS;) .

A special case occurs when the window, the signal, or both, possess conjugate
svmmetry  about ¢, the tme at which we are computing IPS ( 1e,

slt+ 1) =5 =) wl+ 1) = w'(t — 1), or both ). If w(r) possesses that symmetry. then

IPS (1, )= 1IPS_ (1, )y =IPS, (1. f) (63)
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and, by linearity of the convolution operator, ( 64 ) becomes

oo

IPS (1, ﬂ=j IPS (1, v)IPS,(1, f— v)dv. (66)

—00

We thus see that in this case IPS and WD respond similarly to the windowing
of the data: the IPS of the windowed signal is the convolution (in frequency) of the 1PS
of the signal with the IPS of the window.

In summary, the IPS of a windowed signal is a frequency-smoothed version of
the IPS of the unwindowed signal. The time-resolution is not affected.

2. Convolution in the Time-domain
The question now is: how is the IPS of a signal affected if the signal is pre-

processed with a filtering operation? So, let
d(1) = s(1) = h(1) . (67)
Then,
IPSAt. /)= Real [[s'(1) « A" (1)) F [s(r) » h(1)] €]
= Real [[s(1) » K ()ISNHN] (68)

= Real [[s'(nsmc”’f’] * KO HN "J] ,

where we used the fact that

eikﬁ[a(l) . b(l)] _ ejzrﬁj a(T)b(I —1)dt

~—0

oC

= J a(1)e* 7 b1 — 1)

—oC

(69)

= [aln)e™™ ] « [b(nd*¥"].
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We thus see that (contrary to what happens in the WD?) filtering the signal
does not. in general, correspond to the convolution in time of the signal’s IPS with the
IPS of the impulse response of the filter. What is observable from ( 68 ) is that the IPS
of the filtered signal is now the real part of the convolution, along the time axis, of the
two Rihaczek Distributions. The net effect picduced on IPS is, thus, still a smoothing
operation along the time axis. The frequency resolution is not affected.

3. 1IPS and Moyal’s Formula

As is often stated in the literature, IPS does not, in general, respect Moval’s

formula [Ref. 16]. When applied to the WD, Moval's formula states [Ref. 17):

oC o

f f WD(1. NIVD,(1, fdidf = < s,g > < s.g >" (70)

where < s5,¢ > is the inner product of s and g . Let us now see what happens in the IPS

case:

f { IPSde, f)IPS, (1. f)drdf =
_ _1_ * * —/2=f+
=] [s()s (t =)+ 5 (¢)s(t + T)]c dr &

oc

f Le(ng (1~ v) + g (gt + v)]e ¥ qu |diar .

—oc

" The WD of a filtered signal is the convolution along the time-axis of the original signal’s
WD with the WD of the impulse response of the filter {Ref. ).




o o

J‘ J' IPS (1, fYPS,(t, f)didf =

) %Jv f ,f [s(0)s" (1 = 7) + s"()s(t + D)]Le(g (1 = v) + g (gt +v)]

. J‘ e P or  drdrdy

—c

(72)
= % J J [s()s'(t— 1) + 5 (0)s(t + D}g(g (1 + 1) + g (gt — D dr d
=—l— <S5 g>'<so> +-—1— <s g> <_sg>.
4 ’ « J4 ’ )
+ —l— Real f s(n)g(r) f s'(z — r)g’(z + t)dt |dr |,
and, finally
[ ( IPS (1, [UPS (1. f)didf =
o . - (73)
= —;— <s,g> <sg> + -%— Real f s(ng(?) j 's'(t —)g (1 + 7)dz |dt

—0C —_—00

The result confirms that Moval's formula is not, in general, valid for IPS. Only
in the trivial case of onec of the functions being a real constant would the second term

in the right hand-side of { 73 ) reduce to —l— <s,g> <s,¢g>" and hence would IPS obey
Moval's formula.

(8]
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4. Recovery of time-signals
To address he problem of recovering a signal from its IPS, we will find it con-
venient to consider two separate cases.
a. Infinite duration signals
For reai signals with 5(0) # 0, recovery of thc signal is always possible ex-

cept for a sign indeterminacy, by considering

IPS(1, 0) = Real[s(1)S(0)]

= SO)s(1) 79

and, since | S(0) | can be found by using Property 4 ( §3 ), only the sign of S(0) remains
undetermined. No similar results are available for complex signals of infinite duration.
However, if s(1) possesses conjugate symmetry around some f,. then we can also recover
complex signals of infinite duration up to a phase term, by considering £-' [ /PS(s./) ]
Similarly, if S(/} possesses conjugate symmetry around some f; and S(0)# 0, we can
again recover complex signals of infinite duration up to a phase term, by considering
FLIPS(, /)]
b. Finite duration signals

For finite duration signals, recovery of real or complex signals is always

possible except for a constant phase term (or a sign, in the casc of real signals).

Let us denote the starting time by r=0. From ( 12)
F LIPSO, /)] = —1,- [s(0)s" (= 1)+ 5 (0)s(r) ] (75)
and, since s( ~t)=0 for >0,
F LIPS(0, N 0 = % $'(0)s(<) (76)

which, by property 3 ( §2 ), leaves an unknown phase term.

E. IPS- A GENERALIZATION OF THE WIENER-KHINCHIN THEOREM
By redefining auto-correlation, IPS offers a very straightforward extension of the
Wiener-Khinchin theorem to the non-stationary case, as we shall see.

Let us define the auto-correlation function of a signal as

Rit.7)= *1— E{s(r)s'(t — 1)+ s (sl + r)} . (77)
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We have. then, using ( 12 ) and by linearity of the convolution operator the follow-

ing pair of relations:

or

o FE{PS(t, N} = ( R(t, ©) e dr

oo

¢ R(1,1)= J E(IPS(1, )} e> df

These relations can be read as a generalization of the Wiener-Khinchin theorem to
non-stationary signals, since for stationary signals they promptly reduce to that theorem.

If s(z) is a stationary signal, then

R(r,7) = -;— E{s([)s'(t —-7)+ s‘(l)s(t + r)}
= % E{s({)s'(z - r)} + % E{s'(t)s(r + r)} %)
=—;—R(r)+{,-k'(—r)
= R(7)
E{IPS(t./)} = J R(t)e T dr=|S(f) |} (79)

The expected value of TPS is, thus, for stationary signals, the usual Power Spectral
Density ( PSD ).

Since in the non-stationary case we cannot try to infer ensemble averages from time
averages. the IPS of a signal is one realization of the generalized Wiener-Khinchin re-
lations of the underlyving stochastic process.

A different view of IPS when applied to stochastic processes can be found in Grace
[Ref. 11], where E{IPS(:, f)} is shown to be the Fourier Transform of Loeve's General-
1zed Power Spectral Density.
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III. RETHINKING IPS
A. ON THE USE OF WINDOWS

IPS, as given in ( 12 ), suffers from intense ringing at all {requencies “touched” by
the signal. This same eflect is one of the reasons why Rihaczek’s Distribution did not
find much acceptance. An example can be seen in Figure 3, where a linear chirp was
used as the test signal.

Figure 3.  IPS for a linear chirp

This ringing eflcct can easily be understood by slightly rearranging ( 12 ) to:

o0 o0

[s(z)f s'(z-r)e‘f“f’dws'(nj s(:+1)e“f“f’dr]. (80)

—_00 =00

IPSG, ) =

t\)l»—-
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With the appropriate changes of variable, we get

o0 o0

IPS(1, =-;—[s(1) f s'()e 2 War 4+ 5 (1) J s(tz)elz"ﬂ"")dlz]

1 - « e - (81)
o [0 Ls() « P77 + 50 [s(0) « 7]
= Real [ s°()) [s() » 71 ].

But s(¢) » ¢ is the output of a [ilter whose impulse response is a complex exponential.
IPS is, thus, for each frequency, the real part of the product of the signal's complex
conjugate and the output of an infinitely narrow non-causal filter (non-causal oscillator)

(Figure 4). [Ref. 12]

JexFt
hit)=€

SCt) SOV fear ¢ SHES et

¢ D

Figure 4.  Model of IPS

The riaging is hence unavoidable, and will persist until the filter’s impulse response be-
comes negligible. We should consider stable filters, with decaying impulse responses, if
we want to diminish this effect. This reasoning leaves us very close to the work of F'ano
{Ref. 18]. which was later extended by Schroeder and Atal [Ref. 19].
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If we replace the oscillators in the IPS definition by stable filters with impulse re-
sponses of the form

k(1) = w()e*™", (82)

where w(r) is any real and symmetric function of r with general lowpass characteristics
and w(0) = 1, then the resulting distribution D(z, f) is given by

D;([, f) = Real [S'(I)[S(I) * W(I)en:ﬂ]]

= % [s()Ls() * w(e*7T + s"(O0s(r) * w(0)e*™]]
) > (83)
) _1.J‘ S(I)S'(r)w(l - T)e—jzﬁﬂl_:)df + _‘l’-f S'(I)S(U)w(t - U)eizrrf(t-t)dl).

Substituting 4, for (r — 1) in the first integral, and —, for (r — v) in the second integral,

we get

T

Ddt, i=

FJ"—‘

( [s(r)s (1 — 1) + 57 (s + 1)1 w(2,) ey

¢
-

= [PS; ,\t, /i

(84)

where y(t) = wit —1).

That is, the resulting distribution is the IPS of the windowed signal, where the win-
dow is the envelope of the filter impulse response, centered at the time of analivsis. Since
w(t — 1) is real and symmetric around 7, we see from ( 66 ) that a smoothing of the IPS
in the frequency direction will result.

IPS in general can hence be written as

>0

IPS(t, f)= —é—j [s(0)s (1 = 1) + 5 (0)s(7 + 7)] w(O)w(z)e 77 dr (85)

where w(t) is the chosen window.




To illustrate the effectiveness of the windowing operation, we computed the IPS of
the test signal used in Figure 3. A Hamming window was used in ( 85 ), and the results
are shown in Figure 5. As is observable, the ringing is avoided.

Figure 5.  IPS for a linear chirp - Hamming window

B. PROPERTIES AFTER WINDOWING
Some of the properties of IPS will be aflected by the windowing operation. It will
thus be necessary to determine which properties are modified and establish the con-
nections between the characteristics of the used window, and the effects it gencrates.
Tracing back the windowing operation to the kernel function (®(v, 1)) in ( 20 ) that
it implies, we will be able to use well established results [Ref. 14] about these functions.

The resulting kernel function will be
O(v, 1) = w(0)w(r) cos(nvt) , (86)

which can be proved using ( 19 ) as follows :

o0 oo o0

1Ps@, )= J f J‘ w(0)w(t) cos(rvt)s(t; + -;— )s (1 — % )2 D gy gy, (87)

—00 —00 —00
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Replacing the cosine by complex exponentials, we have

! O ; - i - i —_f -
IPS(1, N = -i%ﬂj s(t, +—;—)s (1, ——;-)c'jz"b("+ 2 d1,e 7 Davgz
—no  —00 —o0
o oo oo (88)
(O)w . —ufr — L (s
. w( :u(r) f s, +_;_)S (0 _‘_:_p)e/zl.uu, Thdne 2R+ 4

and, by convenient change of variables,

= e - o0

(O . 9 mg Lot
IPS([. ﬁ — ‘\ J‘ l(_)zﬁl\j‘ S(,U)S ('u - T)ejz-.b#due"‘jz-.(l—l, J)dl’df

o

- )
A0Vw(7 . i —j2r@ I+,
+J f l_vl_)J‘ s"(w)stu + 1 Hdue P N ude

—uc —o0 -0

Interchanging the order of integration, we obtain

"o

IPS(1. fy= —;-J [s(0)s"(r = 7) + s (Ds(2 + DO (z)e ¥ dr

Y e
completing the proof.

We can now easily determine which properties are maintained after the windowing
operation, by lirect application of the results in [Ref. 14], mapping the characteristics
of the kernel function to the properties of the distribution. The conditions on (v, 7)

necessary for the preservation of each of the properties will also be given.




—

1.

Time shift
If w(z) = s(t — 1), then

IPS (1, /)= IPS(t—1y.f).

The requirement on ®(v, ) is:
®(v, 7) constant for all .

This property will thus be maintained for every used window.

Modulation

If o(r) = s(r)e>v, then
IPS (1, N=1IPS(t,f- f) .

The requirement on ®(v, 7) is:
®(v. 1) constant for all f.

This property will thus be maintained for everv used window.,

Marginal in Time

(o203

J IPS(t. fdf=s(n)}?.

The requirement on ®(v. 7) is:
O, 0)=1 forallo.
Maintained 1T w(0)=1.

Marginal in Frequency

j IPS(1, di=\S(H .

The requirement on ®(v, 1) is:
OO0, 7)=1 forallz.

Not maintained for practical windows.

(93)

(90)

(97)

(98)




n

Realness
IPS(t, fyis real foralle, f. (99)
The requirement on ®(v, 7) is:
O, 1) = (D'( -v,—1). (100)
Maintained if the window is real and even, or at least possesses conjugate symmetry

around the origin.

Instantaneous Frequency

0

J FIPS(t, Hdf

= PP =f{1) (instantaneous frequency) (1on)
sty

The requirement on ®(uv, 1) is:

-~

®@w.0)=1 and ff—mw, t)]..o=0  forallv. (102)

Maintained if
e uw(0)y=1
o )l =0
Group Deluy

f IPSu, Ndr

—— =T)  (group delay) (103)

NN

The requirement on M0, 1) 1s:
O, oy=1 and —Cf,— Dlo. 1) j,op =0 for all =. (104
)

Not maintained for practical windows.
Zero Power
(it =0 = [PS{15, =0 (105)

This property is clearly maintained, due to the multiplicative nature of the win-
dowing operation.

Sy =0 = IPS(1, f;) =0 (106)

This property will not be maintained since, from ( 64 ), a convolution along the
frequency axis will be performed.
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SPECTRAL RESOLUTION

1.  Time-invariant Components
Though IPS is a tool directed towards the analysis of signals with time-varving

C.
spectral contents, some insight into its inner workings will be gained by considering its
resolution capabilities for time-invariant spectral components. A companison of resol-

ution capabilities for IPS and WD will be made, and contrasted with the standard

Fourier Transform.

As seen in ( 6 ). IPS is a coherent average of two terms, one of which uses only
past data, while the other uses only future information.* When analyzing finite duration
signals, the “past term” will have its maximum resolution capability at the end of the
data segment, since it is at this point that the most past data is available. Similarly, the

“future term” will resolve better at the beginning of the data scgment. This can be seen

in Figure 6 and Figure 7, for the past and future terms, respectively.
o Contour plot
R g
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0  rFreouencY AXIS FREQUEMSY - AXIS
(a) (b)
Sinusoidal component. Past term. 3-D (a) and Contour (b) plots

Figure 6.
If the two terms are averaged as in ( 6 ), the resuiting expression (IPS) will keep the good

resolution at end-points that cach component provides, degrading its resolution

A note of caution should be made here. These “past” and “future” terms should not be
identificd with the two terms in ( 12 ), since each one of the terms in this formul: -pans all the data,

from — on to on.




capabilitics towards the center of the time segment. This effect can be observed in the

contour plot of Iigurc 8.

Contour plot
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Figure 7.  Sinusoidal component. Future term. 3-D (a) and Contour (b) plots
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Figure 8. IPS for a sinusoidal component. 3-D (a) and Contour (b) plots
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This 1s one of the characteristics of the unwindowed IPS. It has better resolution at
end-points than it does in the middle of the data segment. We should point out that the
WD does the opposite, presenting a thinner main-lobe at the center of the time interval,

and loosing resolution capabilities towards the end-points (Figure 9).

Contour plot

32.0

32.0

TIME AXIS

Q
\
N

TIME - AXIS

— ]

Tty 11y V1Tt v

FREQUENCY AXIS

0.0

ki f T T T T
FREQUENCY - AXIS
(a) (b)

Figure 9. WD for a sinusoidal component. 3-D (a) and Contour (b) plots

A more formal discussion can be made as follows: Let us denote by CII', (1) the
function of r whose Fourier Transform is W D(z,, f) and, similarly, denote by Cl (1) the

function of * whose Fourier Transform is I1PS(z,, f). Hence,

CIy(0) =5 (g~ 5 )t + )
i . . (107)
Cl (1) = > [s(rp)s (g — 1)+ 5 (f9)s(tg + 7)]

where s(7) is the stationary signal of interest. That is, both IPS and WD create, from the
data, a new “signal”, whose Fourier Transform is the wanted spectrum (Figure 10). It
1s thus the effective duration of this new signal that determines the resolution obtainable

in the frequency domain.
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Figure 10.  IPS and WD : conceptual diagram

Let us now assume that s(t) is only known within a finite segment of length L,
and compare the theoretical resolution of IPS and WD at both the end-points and the

middle of the segment.
a. End-points

Since both end-points are treated similarly, we will only consider the start-

ing point of the known signal, which we will denote by . Let us consider that a

rectangular window of length L was applied to the signal ( Figure 11). Itis casily seen
from ( 107 ) that

, 0 %#0
CWy=3 15t I ©=0 (108)
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and thus, II'D, (/) (Fourier transform of a delta function) is a constant. On the other
hand, the windowing of the data implies that a window ( w,(r) ) of length 2L is applied
to C/,(7) (Tigure 12).

W(‘t)}

.'/f’//// // —

t tg+ L Time

Figure 11.  Window applied to the signal

A C
1,C + o

L

[ ime

Figure 12. Window applied to C/, (1)




When we now take the Fourier transform of CI,(7) , we will be taking the transform of
a signal twice as long as the original data. This creates a main-lobe twice as narrow as
the main-lobe that would be obtained if we were to Fourier transform the data. How-
ever, we know from ( 107 ) that C/ () = CL(—t). This then implies that, from the
obtained segment of length 2L, only half contains information. As a result, at end-
points, IPS prescnts a main-lobe twice as narrow as the one obtainable by Fourier
transforming the data, but without an equivalent improvement in effective resclution.
b. Middle-point

We now consider that the window is symmetrically placed around ¢, as in

Figure 13.

wdto

V ? // - 7 /7
A
SRS S S —
t—Lo2 4 trlLre Time

Figure 13.  Symmetric window applied to the signal

Again, it is readily seen from ( 107 ) that windowing the data with a window of length
L centered at ¢, implics the windowing of CIV, (r) with a window of length 2L. The effect
on C/,(7), however, is to window it with a window of length L. This discrepancy implies
that, in the middle of the interval, the WD has twice the efTective resolution of 1PS. Let
us note that, as discussed belore, for both CH,(r) and C/, (7), only half of the length
carries information. Hence, their Fourier-transform will have its main-lobe artificially
narrowed by a factor of two, without improvement in effective resolution. In summary,
the WD has at the middle of the time interval the same effective resolution that 1PS has
at end-points, and hence the same eflective resolution obtainable by [Fourier-

transforming the data.
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This fact of IPS having twice as poor resolution in the middle of the time
interval than at end-points will be important, since the windowed implementation
normally uses the window centered at the time of interest. This then means that these
implementations are using, at each time, the worst estimate (in terms of resolution) that
IPS will provide. The model of a typical windowed implementation of IPS can be seen
in Figure 14.

ANATTANN AN

s(t)

D T
FRECGUENCY

Figure 14.  Typical implementation of 1PS

The overall result is that, for these implementations, IPS has, by a factor of two, lower
effective resolution for stationary components when compared with the WD.
2. Time-varying Components
One of the most noticeable characteristics of IPS is the fact that the width of its
main-lobe depends on the dynamics of the signal. A typical example can be seen in
Figure 135, where a quadratically chirped FM signal is used.
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Figure 15.  IPS for FM signal - Quadratic chirp. 3-D (a) and Contour (b) plots

This test signal has its instantancous frequency increasing quadratically with time. The
width of the main-lobe is directly proportional to the slew rate. In Figure 16, a cross
section along the {requency axis of IPS for the same test signal is presented. The past

and future terms are also indicated.

IPS

__Future Term
Post Term

AMPLITUCE

I RV A VAR

FREQUENCY AXIS

Figure 16.  IPS for FM signal - Quadratic chirp. Cross-section
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As is seen, the width of the main-lobe of IPS results from the imperfect alignment of the
two terms: the past term seems to lag the true position of the instantaneous frequency,
showing a tendency to be positioned in locations previously occupied by the signal, while
the future term leads the true location of the instantaneous frequency. This lag and lead
effect become more severe for faster dynamics, hence broadening the main-lobe of IPS,
In an attempt to explain this feature, one might be tempted to argue that IPS
lacks symmetry in its definition. Despite being clearly insufficient, as we will see, it will
be instructive to pursue this type of reasoning a little further, since some additional re-
sults will emerge. When computing CI, (1), we are, for each 7 (without loss of generality
assume 7 > 0 ), coherently averaging two terms. One results from the present and past
signal history (x"(r)x(r + 7)), and the other results from present and future signal history
(x(1)x*(t + 7)) . To obtain IPS, we wiil extract the frequency contents of the sequence so
obtained. However, if the signal has frequency dynamics, each one of the terms will
contribute differently to the frequency contents of CI,(7) . For example, if the instanta-
neous frequency of the signal is increasing in time, the contribution of the present-future
term (x°(1)x(r + 7)) will have higher frequencies than the present-past term, since it is
centered in a region with higher average instantaneous frequency. The temptation thus
arises to compensate for the difference in the centers of the two regions. This effectively
corresponds to forcing the two terms in Figure 16 to align “correctly”, thus eliminating
the broadening of the main-lobe. To do so, it suffices to introduce compensating phase
terms in the process of computing IPS (see . Alternate way of computing the Wigner-1ille
below). When these compensating terms are introduced, the distribution that results is
the Wigner-Ville distribution. We can now interpret WD as: the WD is the distribution
that results by aligning the two terms of IPS.
o Alternate way of computing the Wigner-Ville
From the previous discussion, an alternate way of computing the WD can
be derived, which allows us to directly apply the WD to real signals sampled at the
conventional Nvquist rate, thus avoiding the need for oversampling that would be

required if the WD was to be computed in the usual way [Refs. 7, 10]. The two
step procedure is:

1. Compute

F(t,v) = % [s(D)s (1 = 1)e ™™ +5°(0)s(t + 1)/ ™ 1> d (109)

—_00
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2. Compute

WD, f)= F(t,0)e ™D (110)

—00 =00

As can easily be recognized, the need for a 2-D Fourier transform places the
cost of this procedure well above the one needed if an interpolation scheme is used. This
consideration may disappear in emerging fields such as optical sigrial processing.

All our previous discussion has been based on a loosely defined lack of symme-
try, intimately related with the concepts of past and future. As pointed out earlier, this
explanation is clearly insufficient. To illustrate why, a different definition of “Instanta-
neous Power Spectrum” is made in Appendix E, thus creating a new distribution. The
important point to be made is: not only are the concepts of past and future inexistent
in this new definition, but it also possesses perfect symmetry. However, the resulting
distribution is very similar to IPS, with the characteristic data-dependent width. Since
lack of symmetry cannot be argued for this definition, the explanation for the broaden-
ing of the main-lobe must be found somewhere else.

In Appendix C, the 1ssue of uncertainty is addressed. One important result to
extract from there is: the maximum obtainable frequency resolution when analvzing
signals with unknown frequency dynamics is \W This result is in agreement with the
fact, proven by Rihaczek [ Ref. 4], that signals with strong phase raodulation have, at

each time, their energy concentrated within a frequency band B, of size

—_— (111)

where @(¢) is the signal’s phase. It thus explains the broadening of the main-lobe of IPS
in terms of the expression of uncertainty. Since the uncertainty region grows for in-
creasingly faster dynamics, so does the width of the main-lobe. Put in simpler terms, “the
faster it moves, the harder it is to locate”. According to the results of Appendix C. anv
algorithm should behave in this manner, unless it has, or assumes (directly or indirectly),
information concerning the dynamics of the signal. However, nor assuming is the key
rule for a robust algorithm, one whose performance does not depend on the class of

signals being analvzed.
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D. THE CHOICE OF A WINDOW
We know from ( 66 ) that, if we pre-window the signal with a window real and
symmetric around the time at which we are evaluating IPS, the resulting IPS will be:

IPS,. .1, f) =j IPS (1, v} IPS,(t,f - v)dv . (112)
But
IPS, (1, f) = —l— f [w(w(t — 1) + w(t)w(t + 1)]e > dr (113)
and, since w(f — 1) =w(1 + 1),

IPS,(1. f) = J w1 + 1)e T dr
- (114)
= vt'(t)ll'(/)ejz’f’

= w,(0)}1,(N),

where w,(7) = w(r + 1), that is, w, is the used window shifted to the origin.

Hence, if a real and even sliding window is used, the smoothing function in ( 112 )
1s the Fourier Transform of the window w,(z) . It is interesting to compare this result
with the Pseudo-Wigner Ville (frequency smoothed Wigner-Ville), where the smoothing
function is not the Fourier Transform of the window itself, but the Fourier Transform
of the square of the window (in a rescaled frequency axis) [Ref. 6]. We thus see that all
the knowledge on window functions for the Fourier Transform can be directly applied
to the choice of a window to be used with IPS.

Though the smoothing function in ( 112 ) is always real (we are considering only real
and even windows), it may be negative. This can contribute to the presence of strongly
negative values in the resulting 1PS, especially if the side-lobe structure of the window

i1s not controlled. This thus suggests that windows with good side-lobe suppression
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should be preferred. Spectral resolution i1s another important issue to be considered
when choosing a window.

As discussed in the previous section (Section 111-C), IPS has a main lobe whose
vidth is proportional to \"WI_, in accordance with the uncertainty principles of Ap-
pendix C. Hence, degrading the apparent frequency resolution of the unwindowed IPS
does not become a relevant issue, if working with windows whose effective duration is
well above the reciprocal of the uncertainty region. The width of this region should thus
be the criteria for the choice of window size, but would require a-priori knowledge of the
dvnamics of the signal. In the absence of this knowledge, optimality will not be achieved.
However, as we will see, IPS is a very forgiving tool, in the sense that its performance

1s not seriously affected even for large deviations from the optimal window size.
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1V. EXPERIMENTAL RESULTS

To illustrate the types ol behavior predicted in the previous sections, some test cases
will be presented. For all the cases the test signals are 128 point sequences, with one
spectrum for each sample. All plots are on a linear scale. Some considerations relating
to the Pseudo Wigner-Ville (PWD) were made: all test signals are analytic, thus frecing
the PWD from the somecwhat annoying interferences between positive and negative fre-
quencies. The exception to this rule will be Figure 19, since its sole purpose is to
illustrate the eflects of the use of real signals. Also, when noise is present (Figure 24),
analytic noise is used. Unless otherwise stated, all Figures use a 41-point Hamming
window, and present the distributions after smoothing along the time direction. Ience,
most of the spectral cross-terms of the PWD due to multi-component signals do not
appear in the plots. To illustrate the eflectiveness of time-smoothing, Figure 17 was

provided, differing {from Figure 21 only in the fact that the time-smoothing technique

was not used.

128.0

TIME AXIS
TIME AXIS

FREQUENCY AXIS

FREQUENCY AXIS
(a) . (b)

Figure 17.  FSK. IPS (a) and PWD (b). No time-stmoothing.

A. REAL SIGNALS
In Figure 18, IPS and PWD for a linear analytic I'M chirp are presented.

Comparing I'igure 18 with Figure 19, where the test signal is a lincarly chirped cosine
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function, we can appreciate how insensitive IPS is to the fact of the signal being real.
The artifacts present in the PWD when analyzing real signals are, for all practical

purposes, absent in IPS.
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FREQUENCY RXIS

FREQUENCY AXIS
(b)

(a)

Figure 18.  Analytic linear FM chirp. 1PS (a) and PWD (b).

128.0
128.0

w
>
a
)
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FREQUENCY AXIS _ FREQUENCY AXIS
(k)

(a)

TIME AXIS

Figure 19.  Linearly chirped cosine. IPS (a) and PWD (b).
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B. INSTANTANEOUS PCWER
Another visible eflect in Figure 19 is the “amplitude modulation” of the main-lobe

of IPS. IPS gives us the distribution in frequency of the instantaneous power of the sig-
amplitudes of the frequency components will have to be small, since their total power
must add up to the low power of the sample. This is a direct consequence of ( 95 ) and
is a requirement that has be fulfilled by any positive distribution. It is not observable in
Figure 18, since the used analytic signal has the same power at all samples.

The WD, though also obeving the Marginal in Time property, tends to absorb the

nal. 1t then follows that, when computing the spectrum at a low power sample, the

fluctuations of the instantaneous power in its cross-terms, and, in order to do so, is

forced to assume strongly negative values.

C. END-POINT RESOLUTION
Though the better resolution at end-points provided by IPS is in general well visible

in all the plots that are presented, Figure 20 is probably one of the most representatives.

128.0
128.0

TIME AXIs

TIME AX1S

FREQUENCY AX1S FREQUENCY AXIS

(a) (b)

Figure 20.  FSK (127-point Hamming window). IPS (a) and PWD (b).
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Considering it, we see that not only is the end-point resolution of IP’S better, but also
the transition times are shorter, allowing a more accurate definition of the time of spec-
tral jumps.

As stated in Section I11-D, IPS is a forgiving tool, in the sense that we can deviate
from the optimal length of window without severely degrading its performance. To
illustrate, Figure 21 is presented, which differs [rom Figure 20 only in that it uses a

window with dilferent eflective duration.

128.0

TIME AXIS
TIME AXIS

FREQUENCY RAXIS FREQUENCY AXIS
(a) (b)

Figure 21.  FSK ( 51-point Hamming window ). IPS (a) and PWD (b)

As is seen, the time resolution is basically kept the same, the only noticeable difference

being the width of the window's main-lobe.

D. MULTI-COMPONENT SIGNALS
Performance for multi-component signals is addressed in Figure 22 and Figure 23,

where the test signal has three components: a linearly chirped FM signal, a quadratically
chirped F'M signal, and a stationary component. As seen, I1PS is free of the cross-terms
appearing in the PWD. However, for 1PS, each one of the spectral components has its
width aflected by the associated uncertainty region and is, hence, wider than the corre-
sponding onc in the PWD. Again, the instantaneous power modulation is visible in [PS.

These eflects are also apparent in the provided contour plots.
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Contour plot
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E. PERFORMANCE IN NOISE

One issue still not addressed is the performance in noise. In Appendix D, a proof is
given that, for a signal embedded in additive bandlimited white Gaussian noise, the
variance of IPS is, on the avcragc,5 smaller than the variance of WD. Also, [rom the
same Appendix, we have that, when the bandwidth of the noise approaches infinity, the
improvement in the variance given by IPS approaches the limiting value of 3 dB.
Figure 24 is provided to illustrate this theoretical result. The SNR for this picture is
5 dB, and it is seen that IPS does, indeed, present a smoother estimate of the instanta-

neous spectrum.
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Figure 24.  FSK ( SNR=5dB). IPS (a) and PWD (a)

F. THE CAPTURE EFFECT
Having borrowed the term from communication theory (FM demodulation), our

goal is to compare the behaviors of IPS and PWD when analyzing multi-component
signals, when the components have different amplitudes. In Figure 25, the two compo-
nents have amplitudes diflering by a factor a four (12 dB). As is observable, both IP§
and PWD detect the weaker component, despite the fact of the cross-terms in the PWD

being already more energetic than the weak signal itself. In Figure 26, the same two

5. . . . . . ,
The variance of IPS is time dependent. When we say that “...the variance is...on the aver-
age....”, we are referring to the time average of the vanance.
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component signal is presented, now with a factor of 8 between amplitudes (18 dB). It

is obvious that the PWD lost the weak component. The cross-terms, however, still re
main. In this case, the position of the weaker term could be inferred from the cross

terms, but such a technique would be impossible to apply to more complex signals.

TIME AXIS
TIME AXIS

il

i

il

it

1

FREQUENCY RXIS . FREQUENCY AXIS
(b)

(a)

Power ratio = 12 dB. IPS (a) and PWD (b)

Figure 25,

128.0

TIME AXIS -

FREQUENCY AXIS  FREQUENCY AXIS
(b)

(a)

TIME AXIS

Figure 26.  Power ratio = (8 dB. IP’S (a) and PWD (b)
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V. PARAMETRIC IPS

A. INTRODUCTION

We have, from ( 12 ), that the IPS of a signal is, at each time, the Fourier transform
of a function of the signal. This implies that the wanted information lies in the spectral
content of this function. The process of obtaining the IPS can therefore be reduced to
the problem of performing conventional spectral estimation on a function G(r, t) which
is derived from the signal as in ( 11 ). The use of parametric methods should thus be
considered, in an attempt to improve the resolution capabilities of IPS. These consider-
ations are also applicable to the WD, and a parametric version of this distribution has
been considered [Ref. 20].

B. ARMODELING - CONSIDERATIONS

Though obtained as a bilinear transformation of the data, the function in ( 11 ) can
not be considered a true autocorrelation function, since it is not constrained in any wayv
other than possessing conjugate svmmetry around the origin. It can not be guaranteed
to give rise to a positive definite autocorrelation matrix, and hence can not be used to
directly solve the normal equations. We can however estimate its autocorrelation func-

tion and fit the mode! to this autocorrelation. In a sensc,6

we will be fitting the model
in the fourth moment of the data. In all the results presented, the AR parameters are
obtained using the Modified Covariance Method. This method has been found to pos-
sess good resolution properties, while alleviating some of the problems associated with

the Maximum Entropy Method (MEM) [Ref. 21]. All plots are on a logarithmic scale.

C. EXPERIMENTAL RESULTS

Choosing the order of the model is a sensitive issue. From Figure 16, we know that
the main lobe of IPS consists of two terms, which do not align exactly. We might thus
expect that, if the correct order is exceeded, the extra poles will tend to resolve these two
terms, and each spectral component will have two associated peaks in the spectrum. In
Figure 27, where the test signal is again a single component quadratically chirped FM
signal, this effect is well visible. In the left, a one-pole model was used (analytic test
signal). With the addition of one extra pole, we can see that the two terms were resolved

6 . . . .
Lacking both temporal and statistical averaging. ( 11 ) can not be considered to represent the
second moment of the data.
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(with some bias), and the undesired effect is now present. In Figure 28, a fourth order

model was used to fit a three component signal.

128.0
128.9

TIME AXIS

TIME AXIS

FREQUENCY AXIS FREQUENCY AXIS
(b)

(a)
Parametric IPS. First (a) and second (b) order models

Figure 27.

We can obscrve that, since the main lobes were not over-resolved, the signal components

are well defined, and can be located with greater precision than what would have been

possible with the non-parametric IPS.

128.0

TIME AXIS

FREQUENCY AX1S

Figure 28.  Three component signal. Parametric IPS. Fourth-order model.
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VI. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, an alternative tool for the spectral analvsis of signals with time-
varying spectral content is presented (IPS). Having its roots in the definition proposed
by Page of “Instantaneous Power Spectrum”, IPS has a defining expression very similar
to the one defining the Wigner-Ville distribution (WD). Their performance is, however,
considerably different. The WD approach, though extensively used in the last decades,
suffers from a number of short-comings. The foldover frequency of its discrete fre-
quency is located at n/2 , requiring the use of analytic signals or the use of an interpo-
lation scheme as an alternative to sampling at twice the Nyquist rate. Interference when
used with real signals, cross-terms when multi-component signals are present, preference
of linear dynamics and loss of resolution at the extremes of the analysis segment are
other problems associated with the WD |Ref. 8]. The distribution presented here is
shown to have some advantages over the WD. These are: evenness of performance for
different dvnamics of the signal, direct applicability to real signals sampled at the
Nvquist rate, reliability when analyzing multi-component signals, and preservation of
spectral resolution at end-points. Also, IPS is shown to behave better in the presence
of additive white Gaussian noise (AWGN). As a disadvantage, IPS does not achieve the
frequency resolution provided by the WD. Due to its robustness, IPS is especially well
fitted to be used as a front-end tool in non-stationary spectral analysis. The usefulness
of AR modeling as applied to IPS is investigated. It is found to be a technique very
sensitive to the chosen order model, but providing some advantage in defining the lo-
cation of each spectral component. The use of other parametric techniques should be
investigated. In Figure 29, we can see the FSK signal of Figure 20, this time processed

with the following expression:

D, f)= [s()s'(t = 1) = s (O)s(t + 7)]e P*dr . (115)

to]—

That is, Figure 29 is the imaginary part of the Rihaczek distribution of the test signal.

As Is seen, it shows some natural ability to detect fast transitions in the spectrum, and
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seems to be a promising area for future work. Also, linear combinations between IPS
and this imaginary part of the Rihaczek distribution should be investigated.

128.0

TIME AXIS

Figure 29.  Imaginary part of Rihaczek’s Distribution - FSK

Signal synthesis from IPS may also be a promising field of research for speech processing

applications.




APPENDIX A. IPS FOR FINITE DURATION DISCRETE SIGNALS

In this appendix, a formal derivation of the expression defining IPS for discrete
signals ( 16 ) is presented, as an alternative to the direct discretization of ( 12 ).

The discrete version of (3) is, assuming that the sequence starts at n = 0:

!

S7(n,6) = ATZ s(n)e %" (116)
n=0
Hence,
! 4
| S7(n, 6) | = ATzz s(n)e /" Z "(n)e?"
n=0
n=0 (117
1
a2 - bk
=AT Z €
k=~1
where
H
c;=zs(n)s'(n—k) k>0 (118)
n=Kk
and
g =1(c2) . (119)
Similarly
N=])
S*(n, 8) = ATZ s(n)e " (120)
n=t
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where

and

N-1

N1
| S*(n, 6) 1 = ATZE s(n)e 7" Z s (me?”

n=l
n=t!
(N=1-1)
=AT? Z cr e ok
k=—(N=1~1)
N-1
o = E s(n)s'(n—k) k=0
n=t+k
+ +3*
g = (cZ) -

(121)

(122)

(123)

Now, to get the digital equivalents of (2),(4) we must approximate the derivatives of

( 117 y and ( 120 ), which we will do using first order differences:

where

and

In the same way,

P )= AT[ |S™(.0) P =St~ 1,6) ]
I
=AT ) ¢ ek

g =sn)s (n—k) k=0

e = ()

p*(n, 0)x AT S¥(n, 0) P +15%(1+ 1,8) /']
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where
er=s(m)sn+k) k=0 (128)
and
er =) (129)

Assuming the signal to be zero outside the known samples, then according to Levin's
definition (6):

IPS(n,6) = = [67(1,6) + p*(n, 6)]

(130)

-4 Z [s(n)s (n — k) + s"(n)s(n + k)Je V%

which is the wanted result.




APPENDIX B. INSTANTANEOUS FREQUENCY AND IPS

The proof of property 6 ( 55 ) can be made as follows:

o0

J fIPS(t, Hdf
N - 131
I's(2) |2 (131)
=—t | 3| W=+ 5 W+ 91T dedr
Fs(o) | 2
(.oo .
l ) ’ —jizft
20s()1° [s(n)s (1—1)+ s (st + r)]j fe P dfde
,‘oo |
EY sir) " [s(0)s"( = ©) + 5 (0s(0 + ©)] = =2 [8(x) )t
1 j . ) )
B 2 s(n) |2 (—27 )f s(Ns (1 — 1) (7)dr + 132
! J . L
" 2| s(r) ]2 (3; )J s (1)s(r+ 7)o (7)d
- 5T - —L— 050
4n l(m2 PRFRYE

=4HHU ————[s(0)s" (1) = s"(0)s ()]

J . » g
= —— 2] .
PR [ - j2Imag(s (1)s (1]]
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Therefcore

o

f £IPS(t, Hdf

_ Imagls"()s (1)]

| (1) 2 2 | s(z) |2

(133)

For real signals,this center of mass is zero, as expected, since the spectrum is conju-
gate svmmetric about DC.

For analytic signals:

s(1) = m(1)e°® (134)
and
f SIPS(. Ndf
Y. _ Imag[s (15 (1]
| s() 2 27 | s(1) [2
Imag[m(z)e_j"ﬁ(')[m'(l)ejé(” +jd)'(1)m(t')cj°“)]] (133
B 27?"12(1)
Im&g[nl(l)nl’(l) +_/'(f)’(1)m:(l)]
B Zrzm:(l)
and, finally
f0) === (4] (136)
! 27 di

which is the definition of instantaneous frequency for analytic signals.’

-

This definition of Instantaneous Frequency was introduced by Ville [Ref. 2} in 1952,
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Hence, we have that, for analytic signals

o0

f FIPS(t, fdf
—= 3 =f(’)
s 1° ’
and our proof is complete.
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APPENDIX C. NON-STATIONARY SIGNALS AND THE PRINCIPLE OF
UNCERTAINTY

When analyzing signals with time-varyving spectral contents, there is a maximum
obtainable frequency resolution, determined by the dynamics of the signal. This is in
contrast with the stationary case, where the only constraint on the obtainable resolution
is the observation time. The presentation and proof of this effect is the goal of this

chapter.

A. THE PHYSICAL CONCEPT

Before presenting any mathematical results, we will try to approach the subject with
a brief discussion of the involved ideas.

Let us consider our ability to perform spectral estimation on a stationary signal.
For that purpose. we will assume that the incoming signal has been segmented into
contiguous ntervals of Az seconds. Our final goal 1s to determine the spectrum occupied
by the signal at roughly the moment of analysis, that is. within the last received segment.

[f we are given only this last segment, the obtainable frequency resolution i1s con-
strained by {Refl 1]

Af 2 —— (13§

But if now, for some reason, the next to the last segment of data becomes available,

we will be able to improve our analyvsis of the last segment up to a resolution of

Af 2 —— (139)

We can continue the process and, if more segments of data become avatlable. im-

prove our spectral description of the signal at the present time. The rule in this case is:

¢ The stationarity of the signal allows us to improve the analvsis of the present tine
by using data collected no matter how distant in the past. Hence, if infinite obser-
vation time is allowed, infinite spectral resolution can be achieved.
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Let us now consider the same scenario, but with a non-stationary incoming signal,
which, we will assume, can be considered stationary within the segment. If only the last

segment is available, our frequency resolution is again constrained by

1 \

Af 2 = 140

f Z'A[ ’ ( )

and the only way to improve it is to consider more segments. But a qualitative difference
appears at this point. Segments of the “distant past” are rendered useless by the dv-
namics of the signal unless ve know or assume its behavior. Considering those segments
will only degrade our spectral analysis. The usable data is thus restricted to the most

“recent past”, which implies an upper bound on the obtainable resolution.

* For a non-stationary signal with unknown dynamics, there is a maximum obtaina-
ble frequency resolution. which depends on how distant the unusable “distant
past” is. [t is an absolute maximum, and depends only on the dvnamics of the
signal.

Proving this statement is the purpose of this Appendix.

B. MATHEMATICAL FORMULATION
Let us brieflv discuss Gabor's result. Gabor [Ref. 1] defined the “effective duration”

Ar and the “eflective frequency width” A/ of a signal ¥(r) by the following equations

(141)

A= 25 =)

where [.] stands for the average, and the »~ moments are defined, ommiting the argu-

ment of (1), as

v vdr N
dr
Ty = —= 1 n —osc -
( )" > (/’7) (\ 27{./) o ’ (14‘-)
W yd Wy

N
to




resulting in

Ardf > -;- . (143)

This only states that any signal whose effective duration is Az ( see Figure 30 ), will

have an effective bandwidth Af ( see Figure 31 ) greater than 3137 ; the 1ssue of uncer-

tainty is not addressed in this result.

Yt

Ot

Figure 30. Effective duration of s(t)

WVer

Figure 31.  Effective bandwidth of s(t)

In fact, its relevance as an uncertainty principle only comes into play when we realize
how classical Spectral Estimation is achieved.

£

Classical mcthods are based on the “measure of similarity” between the data and

more clementary functions of time which have strong aflinities with the physical concept
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of frequency. The best example is the Fourier Transform, which conceptually is a bank
of correlators, trving to determine the “measure of similarity” between the data and
sinusoidal functions, the true representation of our concept of frequency. Other typical
examples are in the works of Gabor [Ref. 1] and Priestley [Ref. 22], using elementary
functions on the 7—f plane, where these functions have what Priestley calls an
“oscillatory form” needed to establish the correspondence to our notion of frequency.

Now, if the data is of length T, the elementary functions can have at best the same
duration, which implies that their frequency width is greater than -Z—lf Since the ob-
tainable frequency resolution is at best of the size of the frequency width of the ele-
mentary functions, the principle of uncertainty in Spectral Estimation follows.

Gabor's result is only concerned with stationary signals, or at least assumed to be
stationary, since Af is the effective width of the Fourier Transform of the signal. How-
ever, some implications can also be derived for the non-stationary case.

Let us assume we have an arbitrary stationary signal ¥(z), which we will consider to
be analytic to simplify the formulation, with effective duration Az, effective bandwidth

Af and constant instantaneous frequency. Formally,

1 d ‘
St di [ arg[¥(n] ] = constant (134)

Let us now force the signal to linearly chirp in frequency, bv multiplving it with the

phasor e and defining the modified signal ¢ (1) by
V(D) = Y(o)e ™" (145)

where & is a positive real number. Due to the exponential, (1) is now a non-stationary

signal chirping linearly in frequency with a slew rate of
== k. (146)
The following results can be established for ¥ ,(1):

e Lffective time duration

The eftfective time duration will be

Aty =1 2nlly = Iyy)’ (147)
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where

Hence,

Effective bandwidth

o0 o0

Va1 dt J vyt di

L
J

Iy = ) = o =1
WV st v ydr
* 2 - 2
Uyt dt v yrd
) = _Dow = -oooo = ([

J W e

-—0

b1y =22 (7)) - ("] = an?.

The effective bandwidth will be

Afy = \"'!2”(./.‘\1 —fu) =2n [ ) = () ] .

where

Using the identity

'd:/;t,w =%[w(l)c/xk!2] =%1[/_e/.~:kr2+j2”k[¢{ej:krz’
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(148)

(149)

(150)

(151)

(153)




we have that

o0

f w;,[ -a% S j¢2nk1e/”k’2]dt
- l -—0
./:\'I= 27!./ )
f W Y
f .p'%’—d: f v Ykidr
1 Yoo Yoo
=3 = +—=
2nj (154)
f Yt J it
. dy .
J ¥ 7dt J v yide
1 Y. Yo
= 27 > +h—5
J Yyt f vy

=f+ki.

Hence, all we are missing to completely determine Af,, is the expression for (/5)
where [Ref. 1]

Ay dry
f dr dt ar
(/:\3)= (2:1.‘)2 ~= o . (155)
J Wt et

Noting that

dbyy dby  dy Ay LAy ay’ 2a e
TS g g TRk = ki —— & Qmk)’ YT, (156)
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we have
dy dy’ . d ay’ .
f [7/[’7'”[-— kg 7‘f’—+ j2nkt¢/—51—+(2nk)212w/ ]d:
—25= I Y -
M (27!)2 )
J v d
%o o oo (157)
= i .2
fc//z«pdr kat o dt Jwtdla’z
sy ) J —~0 Jk —00
=)+ 2_"_—4’? oo T2z & '
J v ydt f v ydr J ' dt
Considering now the following identities
aw’ 2
lﬁ—d‘[— =wl—7[ AREN 1A —[ar2 )]
" g N (158)
. ay /Y
W e A S2ARES 14 —[ara )]
we have
f pry” < Lare() di
) = (A + K () + 22— , (139)
J Y Y
and, using ( 144 ) we get
(Fd) = () + K3(7) + 241, (160)
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Since [Ref. 2]

= 1
f=3;r"—os'—— , (161)

we have, by ( 144 ) that

f=l—=—=/" (162)

| e

From where,

(1) = () + K3(2) + 24if . (163)
Hence. from ( 151 ) and ( 154),

Af_\,—d.l:(f)-kl\ )+ ] 22 + K30 + 2kif ]

2K1f
=2 (F) - ]+ #[() - )] (164)

= (AN° + kX(Ar)* .

Therefore, using ( 150 ) we can write the eflective time and frequency widths of the

modified signal ¥,(7) in terms of the effective widths of the original stationary signal

(1) as

(Af) = (AN + kXA .

) ) (163)
(A['il) =(A[) .

Using ( 143 ) and ( 165 ), we get the result
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(A Any) = (A0 [ (AN + k%(An? ]

= (ArAf) + kXA (166)
A 240
> a1 + k(A" ,
from where
)
(Afy) = v + KX(An*. (167)

Hence, if we minimize the right hand-side of ( 167 ), we will find a lower bound on the
effective bandwidth of the chirped signal. Proceeding with the minimization, we have

A r | 2 2 -2 2
- L——;+k(Ar) =0 = =+ 2k(A) =0
cA A1) 4(Ar)
=k*Ar = 1 -
4Arn)’
]
:(A[ 4 = ——
) ak>
/1
=A= /%
Hence
(Afiy) z%+-’-",’— (169)
Afyy = \‘.”T

and we can read the obtained results as stating:

Lemma 1. A linear chirp will alwavs occupy an effective bandwidth greater than

\ dfjdr . independently of its effective duration.
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Lemma 2. A linear chirp will occupy the minimum effective bandwidth of | df/dr ,
only if its effective duration is
-
df;
ar

At =

These results will have obvious implications when classical spectral analysis of the
chirped signal is attempted; no matter what the duration of the elementary functions is,
the signal will always appear to occupy more than /df/dr , and this will thus be the best

obtainable resolution. This completes our proof.

Lemma 3.The maximum obtainable frequency resolution when analyzing signals

with unknown frequency dynamics is  df//dr .
Though the previous discussion was restricted to the case of a linear chirp, the

underlyving ideas remain valid for laws of variation other than linear; the treated case can

be considered as a first order approximation for arbitrary non-stationaryv signals.
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APPENDIX D. PERFORMANCE IN NOISE

As we will see later in this Appendix, an absolute evaluation of the performance of
IPS in noise is not possible, because the second moment is data dependent. We will thus,
instead, compare the noise performance of IPS with the noise performance of the
Wigner-Ville distribution. Let us consider the inverse Fourier transforms of IPS and
WD.

Cugﬂ=%ﬂﬂ050—ﬂ+sﬁﬁu+ﬂ]
versus (172)

CIV 1. 7) = s(1 + -;— )s (1 = -;—) ,

Given a signal z(s) that is corrupted by WAGY, where the noise is analvtic and

bandlimited to the maximum frequency (1) of the signal. that is:

v(1) = z(1) + n(1), (173)
where
stV 0w .
G L0 otherwise o
.
» AW sin( ; ) " _
R, (1) = e I ¢ 1 (173)
2
A. MEAN
1. WD
CH'(I.T)=v(1+-;—)x'(l—%)=[2(1+-§-)+n([+—;-)]'[z (x——;)+n'(z-%)]
=z(1+-§-):‘(1-——§—)+:(l+—;-)n'(l—%) (176)




E(CT 1,1} = CIft, 1)+ 20+ 2 )E{m’(r = 5]

+: -5 )E{n(z + -+ )} .

Hence,

E(CW(1,7)} = CIW,(1,7) + R(1) .

!\)

IPS

Cl{, ) ==[ (v (1 =1)+v (1 + 1) ]

ro|— Nl-—-

[z(0) +n()] [z (1 — 1) + n (1 = 1)] (179)

+ -—;— [2°(0) 4+ ()] [2( = 7) + n(t = 7)] .

E(CI(1.7)} = % 20— 1)+ % E{n(in’ (1 — 1))
+ e+ 0+ L B ont+ o) (180)

Hence,
E{CI{t,t)}=CL{t. 1) + R, (7). (181)

Therefore, IPS and WD have, as far as their first moment is concerned. identical be-

havior in the presence of noise.

B. VARIANCE
I. WD

T, * T 7
7)»‘ (1+7)V([——2'

=[:(I+%)+n(t+—%-)][z'(r-%)+n'(z_%)]

LCW L) P =t + =0 =

'[z'(1+%)+n'(f+—;—-)][:([—%)+n(,__:.):]
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D P =+ 502 (=) + 20+ T - 5)

+at+ )2 =)+l + S (= 5)]
. . (183)
L2+ 5 )l =5 ) +2 (0 + )l = )
. T T . T T
+n(t+ 5 )z(r — > Y+n(t+ 5 n(t — 3 )] .
Using now the expectation operator, we have:
E{fcm o =120+ 5)Flae-F) 1
+ 20+ 2= S El 0+ £}
A+ IVPE v n = 2 2L
+ 1201+ > )| Ellﬂ(f > )| j
T T * T - T
+z(z+7)z(1—7)5{n (t+ S (z——z—)}
T - - (184)
+z ([——2—)2 (1+-2—)E{n(l+%)n(t———5-)}
- Iapf T2
+12= 2V PE L+ ) P
+ E{n(! + —;— )n'(t - —;- )n'(l + -;— (L — -;— )}
+:°0 +%):({ —-;— )E{n(bz + -;—)n'(t - %)} .
And, since®
E{n'(z + %);,'( ’_:T_)} = E{n({ + -%- n(t — % )} =0, (183
Ef1Cmt 0P =1z + ) Pz 5) P+ 200+ 5): = $HRsto)
1 2 Vol . T T
+|2(1+7)l o’ +z(l+7)2([—-{)Rn(r)
i : 2
Y N I
+z(t—1) 2°n +|Rn(r)lz+( 2°n ) :

¥ see Appendix F.

~)
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where we made use of the fact that, for zero mean Gaussian random variables
[Ref. 23],

¢ Elxxx}=0

o E{xxpox) = E{xx,} E{xx} + E{xx,} E{x,x} + E{xx} E{x,x,} .
Hence,

\' T T
E{lcmeal}=tae+ ) =3P+ 52 [ 12 (z+7)l +120-Z) 7]
R0z (14 3)2(t=5) + R0+ 3): 1=F) (159
2

N
+ | R(1) ]| +<—27> -

Now,
Var{CI¥,(r, 1)} = E[| CIV (1, 0) I} = E{CW (1, NE{CH (1. 7))

= E{1 O, 1) F} =[O0 0) + Ry I [CH1 1) + Ry(7)]
o (188)
= E[) O P = 1204 ) (0= 5) ) = | Ry(D) P

By

-

— CI (1 1)R(z) = CH (1. 1)R (7).

From where, using ( 187 ) and ( 172 ),

Ny

AWE
Var{CIF (1. 7)) = = [1:(:+—Tz-)|2+|z(z——§—)|2]+< = ) (189)

-.
s

2. IPS

| CI(t, ) P

-}1— [v(l)v'(t - 1)+ v'(t)v(l + T)][l"(I)L'(I -7+ V(I)v'(l +1)]
L
4

Do (1) (0 = (e — 1)] + — [‘ SOV + v (O = 1)] (190)
+ —‘_11- (oo (1 = () (e + 1)] + T [ (vt + (o (e + 1)]

For simplicity, we will treat each term in ( 190 ) separately, and use the fact that

the second and third terms are complex conjugates of cach other.
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First term

E{ —].i_ L '(1)1"(1)'."(} —h{t — 1)) } =

= -_l;— E{[ (1) + nf: )][z'(l) + n'(l)][:‘(_t -1)+ n'(z — )]zt — 1) + nl1 = 1)) }
= %— [‘(1 (1 )+ 2()n” (n+ z'(l)n(l) + n(r)n'(x)]
'[:'(I—-') {(1—1)+ z'(t—‘t)n(l—r) (191)

+zt—n =) +n (1 =)t — T)]}

»

(202" (0270 = D)z(t = o) + 1 20) PE{ | n(t = 7) 1})

=L

i
1)z (t - T)Er)l'(l)n(l — T)} + z'(t):(t - r)E{n(!)n'(l - t)}
+ izt =) PL{ n(0) 1} + E{n(on" (0n(s = on" (1 = 0},

Simplhifving.

1Nl 2 2 | .
-.‘-T > [_Iz(l); + {1 —1)} J+T:(1): (1 —1)R,.(7) (192)
L ‘ 1/ NoH \ 1 -

Second teirm:

E{ L, [‘."lu'.(r -+ T)‘C'U)‘.'(l -] } =

:—3-1 -]+ 1)+ DI + 0 O[2— ) + = 1)) :
=%1.‘i[:'(1):(1~t)+:’(1m(1—1-r)+n'(1):(1+t)+n'(1)n(1+r)]

'[:'i:';:‘! - )= :’(I)HH —7)+ II'(IJ:(I — 1)+ n‘(l)n(l - 7]
=%::'!1;:vt11:£1*‘?):(1—r)+:'(1):(1+t)[f{n‘(llnfl—rr}

NIy & ; It = zin m (1 1(1+r)£{/z'(1)rr(1—r_)}

S = b i+ 1)) = B (o unt + ot — 0.

p
b .
/,-’L?[;- TP P ]}L % (02 1) = 1) — 1)
Vo ) [ ) 94
T (rizie - ”1\"(71+T: (nztr — )R (194)
B T SR - s~ iR (e R
o LA PO e S T 3 N Z( TN : ' ‘,1(




e Third term Since this term is the complex conjugate of the second term, we

have:
E{ 0+ = v 0+ 01} = 2020 e+ 0570 -
+ % 2(1)z (1 + )R, (7) + —3— 20z (1 = TR (1) (193)
+ % 202" (1 + 1R (1) + —‘11— 20):"(1 = D)R(T) + -;— |R(1) .

o Fourth rterm

E{ L v + o (0 + 1] } =

- % [L2°(0) + n (OIL2( + ) + (e + DI + nDI (0 + 1)+ 1’1+ )] }
= —_11- [: (1) (t+1)+2 (t)n [+7)+n (l) (t+ 1)+ n'(z)n(l + 1)]
[z(1)z 1+ )+ (O (14 1)+ w0z (0 + 1) + n(tin (1 + 1)]
= —_]1 [z'( 0z(r + )00z (14 1) + z'([):([ + r)E{n(/)n*(l + r)]
+ 120 PE{ | nt+ ) 1P+ | 204 0 PE{ | nl0) ]
4 :(l):‘( )Eln (Hnr + r) + L{n'(l)n(l e + t)n (r+ T)], I .
'{—[x {O)v(r + vy ]} -}T; )u+r)|‘
A YL e 1 . _
+—_T 3 lzo "+ 1zt + 1) I‘J-*.-j-: (I):(!+T)R,:(T) (197)

+l-(z)-'(z+-\R(v)+ l( ull +~1—|RH'3
g4 s ‘)n* _1\2 ) J ptelno.

Adding the four terms ( 192 ), ( 194 ). ( 195 ) and ( 197 ). we thus obtuin the

expression_for the second moment of 1PS. Now,

Var{Cltr o)) = E{| Cle. o) '} = E{CL(t. 0 ELCL b (195)

where
E{CI{t. 0 E{CLit 1)} = [CL{t. t) + R ()] [CLt, ) + R, ()]
= CL{1, ")CL(t. ) + Cl{1. T)R, (%) (199)
+ CL(t, R () + | R (1) 1°.




Substituting in ( 198 ), we get that

Var{Cl(r, 1)} = E{| CL{t, 7) I} = E{CL{1, )} E{CL1t, 7))

No W
el E O L TN EOTEAE L
+ ’zlx' 2021 = DRI + 711‘ 2(0:(1 + DR.(7) (200)
+ 714- 2 (=00 = DR (7) + —_‘1- 202" (1 + DR,(7)

. 2
1 2, 1 Ny
+21R,,(r)l+2(——2ﬁ >

We can now compare the variances of Cl (s, 7) and CH (s, 7) . First of all we

realize that, in both cases, the variance is a function of r and 7. If =0, we have:

7 N ( AWi4 Y ,
Var{ClL(. 1)} =—5—1z(0) | + \T/ (201)
, . N, NN ,
\ar{CU\.(r.T)}:—?—{:UH -.‘-( . ) (202)
That is,
Var{Cl (. 7)} = Var{ClV (1. 1)} (t=0). (203)

For = # 0, we have from ( 200 ) that

o N L 2 2 2 2
Vari CL{1 1)} < =5 [l:(r)l‘+l:(1—f)| +lz 1+ 1zt + ) ]

= ROz (=) )+ 12 (0t +7) |

~a
. |




e —

NtV
Var(CL(, ) S - 2= [ 120 + 120 =) P+ |20 P+ |20+ )
+l20 2+ D)+l 2= [+ 10120~ (208)

NN
+|Z(I)HZ([+T)|]+( - )

The time dependency of the expression stops us from a direct comparison with
CH (1, T). However, since the signal is arbitrary, we have no reason to assume any or-
dering of its magnitude at different points in time. We can thus average over time, and
get the following result:

] NI ,
<Var{CL{1, 1)} >, < - [A< 1z >4+ <1z 1120+ 1) | >,

+ < |z)llzt=) >4+ <[z ||zt —7)| >,

A
<zt +1)] >m,]+( o > (206)

il

j
NI - AYV I
= <nz(z)|‘>m-+( > >
\ "

IA

Using ( 189 ).

<Var{Clf(r. 1)} >, < <Var{CI'(1,7)} >, . (207)
and finally, we have
[ J T = 0
Var{Cl (1. 7)} = Var{Cl (1, 1)} (208)
o 0
<Var{Cl (1, 1)} >,, < < |Var{Cl (1. 1)} | >, {209)

For the case 7# 0, 1I'>1, we can make the following approximations. using
( 189 )and ( 200 )

o AR :

<Var{ClL(1,7)}>, = T( 7 (210)
) AYLIERY:

<Var{ClF (e r)}>mz<—7—_’— (211)




That is, when the bandwidth of the noise approaches infinitv, the difference in
noise performance between IPS and WD approaches the limiting value of 3 dB.
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APPENDIX E. A DIFFERENT DEFINITION OF “INSTANTANEOUS
POWER SPECTRUM”

In accordance with the discussion in Section l1I-C, the following definition of In-

stantaneous Power Spectrum can be made.

® Definition - Instantaneous Power Spectrum at the time of a given sample is the
frequency content of the stationarv spectrum implied by the existence of that
sample.

That is: reading the Fourier transform as a change of basis in an N-dimensional
space, the Instantaneous Power Spectrum will be the difference in coordinates (referred
to the phasor axis) between the location of the signal in the N-dimensional space and its
location in the (N-1)-dimensional space that results from suppressing the dimension
corresponding to the sample of interest.

Since in terms of the internal product, the absence of any dimension can be repres-
ented by a zero component of any of the vectors along that dimension, this definition

leads to a three-step procedure:

I. Compute
[ X(w) |, (212)
where
Xw)= ) x(me™” (213)
R=—0

2. Define a new sequence, obtained by zeroing x(n) at the sample of interest, that is:

xn) = {g(") nrr (214)

where 7 is the time at which the Instantaneous Power Spectrum is to be determined,
and obtain

2
[ X (w)] . (215)

3. Obtain the Instantaneous Power Spectrum as:

. , 2
Instantaneous Power Spectrum = | X(o) | — | V(o) ] . (2161
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The resulting distribution will be ( using extended sequences, as in Appendix A )

| X() | = X)X (@)

o0

= z x(n)e e Z x (n)e®"

n=-—00

and, after some manipulations,

| X)) = icke ok
where
Cp= ix(n)x'(n —k)y k=0
n=k
and

Correspondingly,
2 >
| X) | = ) e,
e

where

b, = Z.rz(n).r;(n —k) k=0

1=k

and

b-—k:bk .

Sl

(217)

(218)




Hence, we have that

2 2 - i o i
| X(w)| =] Xfw)| = chef k_ Z e
kz;oo k=—00 (224)
= Y A1,
k=—o0
where
Ap=[x()x"(r — k) + x(r + )x"(N] k=0 (225)
and
Bp= By (226)

that is, this definition leads almost exactly (up to a constant, for fixed time) to 1PS.
What is important to realize is that this definition has no concept of past or furure, and
that all points are equally treated, no matter what point they occupy in the sequence.
This result seems to put an end to our hope of finding assymetries in the IPS concept.
As a final note, a more formal proof of the relation between this distribution and

IPS can be made as follows: Define

x.(n) = {*“’) nEY (227)
. 0 n=vr
0 n#r
dn) = {x(n) ner (228
Hence,
x(n) = x(n) + d(n) (229)
Let

on
to




Then,

X(@) = X (w) + D(w)

and
14@) = 1 240) [ = () + D)) + Do) = Xw)Xi()
— X,(@)D"(@) + X3(@)D(w) + D@)D"(w).
But we know that D(w) = x(r)e~. Therefore,
| X(@) | = | X() [ = 2Re{X@)x" ()¢} + D(@)x (e
= 2Re] [X,(@) + D(@)] x (N} = | ()

I
tJ

Re{ X(w)x"()e} = | x(r)

= 2ArIPS - | x(») l2 .

S3

(233)




APPENDIX F. ON THE SECOND MOMENT OF ANALYTIC SIGNALS

The purpose of this appendix is to proof the following theorem:

Theorem: For an arbitrary analytic random signal z(r), defined as
2(1) = x(1) + jx(1),
where x(r) is the Hilbert transform of x(r), the following identity is satisfied:

E{z(n)z(s)} =0

Proof:

E{z(n)=(s)} = E{ [x(n) + jX(m)T-[x(s) + jx(s)] }

= E{x(0)x(s)} + jE{x{n)x(s)} + jE{x(n)x(s)} — E{x(n)x(s)} .

But, from the properties of the Hilbert transform. we have that

R,v._%(f) = — R‘{,X(r)
R; (1) = Ry (1)

Hence,

E{z(nm)z(s)} = R((n— ) + jRxx(n — s) +ijfc(n —5) — Rxx(n —3)
=0.

Our proof is thus complete.

)

(234)
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