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2B DISCUSSING, USING AND RECOGNIZING PLANS

2B.1 OVERVIEW

This project, also known as the Natural Language Planning project, is a joint project of a
research group at SUNY at Buffalo (UB), led by Dr. Stuart C. Shapiro, and a research group at
U. Mass. led by Dr. Beverly Woolf. The project is devoted to the investigation of a knowledge
representation design compatible with the intensional knowledge representation theory previ-
ously developed by Dr. Shapiro and his co-workers and capable of providing a natural language
interacting system with the ability to discuss, use, and recognize plans. The project officially
got underway on August 13, 1987. These last few months of 1987 were devoted to reviewing
the extensive literature on planning, working on the software to be used jointly by the UB and
U. Mass. researchers, developing and experimenting with an initial design of a representation of
rlans, and investigating the possible integration of GRAPPLE, the U. Mass. plan formalism
with SNePS, the UB knowledge representation system.
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2B.2 OBJECTIVES

The objectives of this project are to:

(1)  design a representation for plans and rules for reasoning about plans within an esta-
blished knowledge representation/reasoning (KRR) system; enhance the KRR system so
that it can act according to such plans;

(2)  write a grammar to direct an established natural language processing (NLP) system to
analyze English sentences about plans and represent the semantic/conceptual content of
the sentences in the representation designed for objective (1); the resulting NLP system
should be able to: accept sentences describing plans, and add the plans to its “plan
library”; answer questions about the plans in its plan library; accept sentences describ-
ing the actions of others, and recognize when those actions constitute the carrying out
of a plan in its plan library.

The KRR system to be used is SNePS (Shapiro 1979), and the NLP system to be modified
for this purpose is CASSIE (Shapiro & Rapaport 1987). The UB group is responsible for
enhancing SNePS/CASSIE according to the objectives listed above. The U. Mass. group is respon-
sible for testing the enhanced system in the specific domains of the Blocks World, tutoring, and
space launch narratives. Communication and feedback between the two groups will greatly
improve the work of both.
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2B.3 TECHNICAL PROGREFSS IN 1987

2B.3.1 The Underlying Knowledge Representation Theory

A basic principle of our theory of intensional knowledge representation, embodied in the
design and use of SNePS as a propositional semantic network, is The Uniqueness Principle —
that there be a one-tc-one mapping between nodes of the semantic network and concepts (men-
tal objects) about which information may be stored in the network. These concepts are not
limited to objects in the real world, but may be various ways of thinking about a single real
world object (e.g. the Morning Star vs. the Evening Star vs. Venus). They may also be abstract
objects like properties, propositions, Truth, Beauty, fictional objects, and impossible objects.
They may include specific facts as well as general facts, and even rules, which can be believed,
disbelieved, or followed when reasoning.

It is a major hypothesis of the current project that plans are also mental objects that can
be represented in such a propositional semantic network. We can discuss plans with each other,
reason about them, formulate them, follow them, and recognize when others seem to be follow-
ing them. An Al system, using SNePS as its belief structure. should also be able to do these
things.

Plans, being structures of actions, states, and other plans, resemble reasoning rules, which
are structures of beliefs. However, they are different in important ways: reasoning rules are
rules for forming new beliefs based on old beliefs, plans are rules for acting; a belief, once
formed, need not be formed again, an action may need to be performed multiple times; the tem-
poral order of assessing old beliefs and forming new beliefs is very flexible, the temporal order
of performing actions is crucial to the correct carrying out of a plan. The representation of rea-
soning rules in SNePS, and the algorithm for reasoning according to them, implemented in SNIP
— the SNePS Inference Package, have been carefully designed to make reasoning flexible and
efficient. In this project, we are undertaking a similar design of the representation and use of
plans. The wvarious objectives, outlined in Section 2B.2, form important constraints on this
aesign.

2B.3.2 A First Representation of Acts and Plans

In 1987, we have begun experimenting with an initiai design of plans 2zd of an acting
system that uses them. Qur representation of acts is based on that of Almeida (1987). He dis-
tinguishes the nodes for an act, the event of that act’s being performed by a particular actor at
a particular time, and the proposition of that event’s having occurred. The benefit of this dis-
tinction is that the same node may be used to represent the same act (as required by the
Uniqueness Principle) no matter who performs it and no matter when performed. Our initial
representation of an act is a node with an ACTION arc to a node that represents the action, and
OBJECT1, -, OBJECTn arcs to the required objects of the action, as shown in Fig. 1. For exam-
ple, the SNePSUL command for building a node representing the act of saying “FOO" is:

(build action say objectl FOO)

BJECTn
ACTION
<object>
OBJECTI1

<action> <object>

Figure 1. Mx represents the act of performing <action> on the<object>s.
2B-9




It is necessary to distinguish between primitive and complex (non-primitive) actions. A
primitive action is one that the system is capable of performing. The system is not capable of
performing a complex action, so in order to carry out a complex action, the system must decom-
pose it into a structure of other actions, which, ultimately, must be primitive. We assert that
an action is primitive using the standard SNePS MEMBER-CLASS case frame shown in Fig. 2.
To assert that “saying” is primitive, we execute the SNePSUL command:

(build member say class primitive)

Complex actions are those actions not asserted to be primitive.

MEMBER LASS

<action> PRIMITIVE

Figure 2. Mx represents the proposition that <action> is a primitive action.

A complex action is performed by decomposing it into a structure of simpler actions,
wkich constitute a plan for carrying out the complex action. Qur representation presupposes
the hypothesis that this decomposition must take the objects of the action into account, but
needn’t take the actor into account. Le, the decomposition relation holds between two acts, and
is represented as skown in Fig. 3. The act at the end of the PLAN arc must be more decom-
posed than the act at the end of the ACT arc. Eg., it may be the case that actl is complerx,
while act2 is primitive. (We will say that an act is primitive or complex just when 1ts action
is) We can use a SNePS rule to assert that the plan for “asserting” anything is to “say” it by
executing:

(build avb $x
act (build action assert object1 *x)
plan (build action say objectl *x))

ACT LAN

<actl> <act2>

Figure 3. Mx represents the proposition that <act2> constitutes a plan

for cartying out <actl>. <act2> must be more decomposed than <acti>.
2B-10




This kind of plan is one for carrying out a complex action. Another kind of plan is one
for achieving some state. The representation of that kind of plan is shown in Fig. 4. For the
representations of propositions, we use the constructs shown in this report and those shown in
(Shapiro & Rapaport 1987).

GOA LAN

<proposition> <act>

Figure 4. Mx represents the proposition that <act>constitutes a plan
for achieving a state in which <proposition> is true.

The system may already know a plan for a goal or complex act. However, if it does not
already have such a plan, it may try to produce it by reasoning about the complex act or goal,
effects of acts, etc. Such reasoning constitutes the planning activity. Effects of an act may be
asserted into the SNePS network just like any other beliefs. Initially, we use the representation
shown in Fig. §, although it is certainly true that the effects of an act may depend on the actor,
so this representation is too simplistic. Another simplistic assumption we are making initially
is that all effects of a performed act occur. Examples of effect assertions will be shown in the
next section.

Initially, we are treating preconditions as conditions on plans. Examples will be shown
in the next section. This is clearly inadequate, presupposing that planning is done “on the fly”
as the acts are performed, and in the upcoming year, we will investigate advanced planning,

ACT EFFECT

<act> <proposition>

Figure 5. Mx represents the propaosition that the effect of performing the<act>

is that the<proposition> becomes true.
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the use of states as preconditions, and reasoning about effects as a method of planning.

2B.3.3 An Acting System

The initial experimental acting system is composed of an acting executive (called “snact™)
and a queue of acts to be carried out. The top-levei algorithm is:

SNACT(QUEUE) ==
REPEAT
remove FIRST-ACT from QUEUE
IF FIRST-ACT is primitive THEN
DO FIRST-ACT
INFER effects of FIRST-ACT,
and schedule the believing of them
ELSE { FIRST-ACT is complex }
DEDUCE a plan for carrying out FIRST-ACT,
and add it to QUEUE
ENDIF
UNTIL QUEUE is empty.

Primitive actions may be supplied to the system by programming them in Lisp. One of
the simplest primitive action we have written is “say” — the action of printing something on
the output device, used as an example above. The code defining say is:

(defun say (n)
(format t ""& A™%"
(first-atom (pathget n “object1))))

Several things may be noted about this definition: the action takes an act node with itself as
action as its argument so the function call of acts is consistent regardless of the number of
arguments the action takes; pathget takes a node and a path of arc label, and returns the list of
nodes at the end of the given path from the given node; first-atom returns the first node in the
list under the assumption that each argument of a say act will be a single node. In the
remainder of this report, we will refrain from showing actual Lisp code of primitive acts, but
will describe them in the format:

(say <node>) Primitive-action
"Prints <node> on the output device”

The arguments will be shown in a way that indicates their types.

So that we can explain the circumstances under which nothing need be done, we have
defined the noop action:

(noop) Primitive-action
""Does nothing."

The snact algorithm includes the scheduling of believing that the effects of acts have hap-

pened. This makes use of the primitive belie:\zreé ac1ti§n:




(believe <proposition>) Primitive-action
""Causes the system to believe <proposition>, and removes from the
system any belief in <proposition>’s negation."

Notice that this is an internal, mental action.

Another primitive action we have written is an important paradigm for our design and
experimentation with representations of plans. It is the primitive action of performing two
sub-acts in sequence:

(snsequence <actl> <act2>) Primitive-action
"Puts <actl> followed by <act2> on the front of the act queue’

Since either or both sub-acts can themselves be snsequence acts, we have a general structure for
plans of sequential actions. Using this action as a model, we next will experiment with the
design of other control structure actions.

Notice that snsequence is also a mental action, and is an “intention forming” action in the
sense that putting an act on the act queue models a cognitive agent’s forming the intention of
performing that act.

One may also intend to achieve a goal. The goal, itself, being propositional, should not be
put on the act queue. For that purpose, we have the achieve action:

(achieve <proposition>) Primitive-action
"Finds or infers a plan for achieving a state in which the
proposition holds, and schedules the carrying out of that plan."”

Since more than one plan may be found, we have defined a choose-plan operation. Initially,
choose-plan chooses a plan at random, but we will investigate the creation of rules and plans
for choosing plans more intelligently.

2B.3.4 The Blocks World
The first domain for our acting system is the well-known blocks world.
The predicates used in the Blocks World are:

(clear <block>) Predicate
""<block > has no blocks on top of it."”

(ontable <block >) Predicate
""<block > is sitting directly on the table.”

(holding <block >) Predicate
“"The robot is holding <block >."”

The Blocks World relations are:

(on <blockl> <block2>) Relation
""<block1> is directly on top of <block2>."”

The primitive Blocks World actions are:
2B-13




(pickup <block >) Primitive-action
“The robot picks up <block > from the table.”

(putdown <block>) Primitive-action
"The robot puts <block> down on the table.”

(stack <block1> <block2>) Primitive-action
"The robot stacks <block1> on top of <block2>.”

(unstack <block1> <block2>) Primitive-action
""The robot picks <block1> up from on top of <block2>."”

Since we do not have an actual robot arm, these actions are simulated by printing appropriate
messages to the output device.

The effects of the primitive actions are asserted by the following SNePSUL commands,
where the preceding comments explain the statements.

= After picking up a block, the block is not clear.
(build avb  $block
act (build action pickup objectl *block) = PICKUP-BLOCK
effect (build min 0 max O
arg (build property clear object *block) = BLOCK-IS-CLEAR)
= BLOCK-IS-NOT-CLEAR)

= After picking up a block, the block is not on the table.
(build avb  *block
act *PICKUP-BLOCK
effect (build min O max O
arg (build property ontable object *block) = BLOCK-ON-TABLE))

= After picking up a block, the robot is holding the block.
(build avb  *block
act *PICKUP-BLOCK
effect (build property holding object *block) = HOLDING-BLOCK)

= After putting down a block, the robot is not holding the block.
(build avb  *block
act (build action putdown objectl *block) = PUTDOWN-BLOCK
effect (build min O max 0 arg *HOLDING-BLOCK) = NOT-HOLDING-BLOCK)

= After putting down a block, the block is clear.
(build avb  *block

act *PUTDOWN-BLOCK

effect *BLOCK-IS-CLEAR)

= After putting down a block, the block is on the table.
(build avb  *block

act *PUTDOWN-BLOCK

effect *BLOCK-ON-TABLE)

= After stacking one block on another, the robot is no longer holding it.
(build avb  (*block $other-block)
2B-1u




act (build action stack objectl *block object2 *other-block)
= STACK-ONE-ON-OTHER
effect *NOT-HOLDING-BLOCK)

= After stacking one block on another, the latter is no longer clear.
(build avb  (*block *other-block)
act *STACK-ONE-ON-OTHER
effect (build min O max O
arg (build property clear object *other-block)
= OTHER-IS-CLEAR))

= After stacking one block on another, the former is on the latter.
(build avb  (*block *other-block)
act *STACK-ONE-ON-OTHER
effect (build rel on argl *block arg2 *other-block) = ONE-ON-OTHER)

= After stacking one block on another, the former is clear.
(build avb  (*block *other-block)

act *STACK-ONE-ON-OTHER

effect *BLOCK-IS-CLEAR)

= After unstacking one block from another, it is no longer clear.
(build avb  (*block *other-block)
act (build action unstack object] *block object2 *other-block)
= UNSTACK-ONE-FROM-OTHER
effect *BLOCK-IS-NOT-CLEAR)

= After unstacking one block from another, it is no longer on the other.
(build avb  (*block *other-block)

act *UNSTACK-ONE-FROM-OTHER

effect (build min 0 max 0 arg *ONE-ON-OTHER))

= After unstacking one block from another, the latter is clear.
(build avb  (*block *other-block)

act *UNSTACK-ONE-FROM-OTHER

effect *OTHER-IS-CLEAR)

7 After unstacking one block from another, the robot is holding the former.
(build avb  (*block *other-block)

act *UNSTACK-ONE-FROM-OTHER

effect *HOLDING-BLOCK)

Next, we describe some Blocks World plans.
Plans for achieving the holding of a block

= If the robot is not already holding some block, B1, and Bl is on some
= other block, B2, and Bl is clear, then unstacking B1 from B2 is a plan
= for holding B1.
(build avb (*block *other-block)
&ant ((build I-/- t arg *HOLDING-BLOCK)
*ONE-ON-OTHER

*BLOCK-IS-CLEAR)
2B-15




c¢q (build plan *UNSTACK-ONE-FROM-OTHER
goal *HOLDING-BLOCK))

= If a block is on the table and clear, then picking it up is a plan for
= holding it.
(build avb *block
&ant (*BLOCK-ON-TABLE
*BLOCK-IS-CLEAR)
cq (build plan *PICKUP-BLOCK
goal *HOLDING-BLOCK))

7= If the robot is already holding a block, then doing nothing is a plan
= for holding it.
(build avb *block
ant *HOLDING-BLOCK
cq (build plan (build action noop) = DO-NOTHING
goal *HOLDING-BLOCK))

Plans for getting a block on the table

= If some block is not on the table, then the robot can get it there by
= first holding the block, then putting it down.
(build avb *block

ant (build I-/- t arg *BLOCK-ON-TABLE)

cq (build plan (build action snsequence

objectl (build action achieve
object1 *HOLDING-BLOCK)
= HOLD-BLOCK
. object2 *PUTDOWN-BLOCK)
goal *BLOCK-ON-TABLE))

= If a block is already on the table, then doing nothing is a plan for
= putting it there.
(build avb *block
ant *BLOCK-ON-TABLE
cq (build plan *DO-NOTHING
goal *BLOCK-ON-TABLE))

Plans for getting one block on top of another

= If block Bl is already on top of block B2, then one need do nothing to
= get it there.
(build avb (*block *other-block)
ant *ONE-ON-OTHER
cq (build plan *DO-NOTHING
goal *ONE-ON-OTHER))

= If block B1 is not already on top of block B2, then to put it there,
= first clear B2, then hold B1, then stack Bl on top of B2.
(build avb (*block *other-block)
ant (build I-/- t arg *ONE-ON-OTHER)
cq (build plan (build action snsequence
object1 (build action achieve
2B-16




objectl *OTHER-IS-CLEAR)
object2 (build action snsequence
object] *HOLD-BLOCK
object2 *STACK-ONE-ON-OTHER))
goal *ONE-ON-OTHER))

Plans for clearing a block

= If a block is already clear, nothing needs to be done to clear it.
(build avb *block
ant *BLOCK-IS-CLEAR
cq (build plan *DO-NOTHING
goal *BLOCK-IS-CLEARY))

= If block Bl is on top of block B2, then to clear B2,
o first clear B1, then put Bl on the table.
(build avb (*block *other-block)
ant *ONE-ON-OTHER
cq (build plan (build action snsequence
cbject1 (build action achieve
object1 *BLOCK-IS-CLEAR)
object2 (build action achieve
object1 *BLOCK-ON-TABLE))
goal *OTHER-IS-CLEAR))

A plan for building a stack of three blocks

= To build a stack of three blocks, B1 on B2 on B3,
o first put B3 on the table, then put B2 on B3, then put Bl on B2.
(build avb (*block *other-block $third-block)
act (build action make-3-stack
object1 *third-block
object2 *block
object3 *other-block)
plan (build action snsequence
object1 (build action achieve
objectl (build property ontable
object *other-block))
object2 (build action snsequence
objectl
(build action achieve
object1 *ONE-ON-OTHER)
object2
(build action achieve
object1 (build rel on
argl *third-block
arg2 *block)))))

The following is a run of the system after loading the actions, effects, plans, etc. discussed
above. Comments are on lines beginning with “”. The SNePS prompt is “*”. Other lines are
SNePS output. The only editing has been the elimination of extra blank lines and some stray
trace prints.
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First, we will ask the system some questions about the actions and plans it knows about.

; What actions do you know about?
* (find action- ?x)

(make-3-stack unstack stack putdown pickup noop achieve snsequence)
exec: 0.26 sec  gc: 0.00 sec

; What are the primitive actions?
* (find (member- class) primitive)

(unstack stack putdown pickup forget believe noop say achieve snsequence)
exec: 0.06 sec  gc: 0.00 sec

; What complex actions do you know about?
* ((find action- ?x) - (find (member- class) primitive))

(make-3-stack)
exec: 0.26 sec  gc: 0.00 sec

; What are the effects of picking up a block?
* (desc (find (act action) pickup effect ?x))

(m16 (effect (m15 (object (v1)) (property (holding))))
(act (m8 (object1 (v1)) (action (pickup))))
(avb (v1)))
(m14 (effect
(m13 (arg (m12 (object (v1)) (property (ontable)))) (max (0)) (min (0))))
(act (m8 (object1 (v1)) (action (pickup))))
(avb (v1))
(m11 (effect
(m10 (arg (m9 (object (v1)) (property (clear)))) (max (0)) (min (0))))
(act (m8 (object1 (v1)) (action (pickup)))
(avb (v1)))
(dumped)

exec: 0.31 sec  gc: 0.00 sec

; How would you make a stack of three blocks?
* (desc (find (act action) make-3-stack plan ?x))

(m74 (plan
(m73 (object2
(m72 (object2
(m71 (object1 (m70 (arg2 (v1)) (argl (v3)) (rel (on))))
(action (achieve))))
(objectl
(m69 (object1 (m27 (arg2 (v2)) (argl (v1)) (rel (on))))
(action (achieve))))
(action (snsequence))))
(object1
(mé68 (object1 (m67 (object (v2)) (property (ontable))))
(action (achieve))))

(action ( ),
action (snsequence 2B-18




(act
(m66 (object3 (v2))
(object2 (v1))
(object1 (v3))
(action (make-3-stack))))
(avb (v3) (v2) (v1))
(dumped)
exec: 0.28 sec  gc: 0.00 sec

We will now demonstrate having this system solve the Blocks World problem shown in
Fig. 6.

A | B l C
L ]
Figure 6. A Blocks World problem to be solved.

= First, we define the initial state of the problem.

; C is clear.

* (describe (forbtop property clear object C))
(m75 (object (C)) (property (clear)))
(dumped)

exec: 0.15 sec  ge: 0.00 sec

;Aison C.

* (describe (fobtop rel on argl C arg2 A))
(m76 (arg2 (A)) (argl (C)) (rel (on)))
(dumped)

exec: 0.10 sec  gc: 0.00 sec

; A is on the table.

* (describe (forbtop property ontable object A))
(m77 (object (A)) (property (ontable)))
(dumped)

exec: 0.08 sec  gc: 0.00 sec

; B is clear.
* (describe (forbtop property clear object B))
(m78 (object (B)) (property (clear))) 5




(dumped)
exec: 0.10 sec  gc: 0.00 sec

; B is on the table.

* (describe (forbtop property ontable object B))
(m79 (object (B)) (property (ontable)))
(dumped)

exec: 0.10 sec  gc: 0.00 sec

i Then we ask the system to build a stack.

; Make a stack of A on Bon C.
* (snact (build action make-3-stack objectl A object2 B object3 C))

Now doing: UNSTACK C from A.

Now doing: DISBELIEVE:
(m75 (object (C)) (property (clear)))

Now doing: DISBELIEVE:
(m76 (arg2 (A)) (argl (C)) (rel (on)))

Now doing: BELIEVE:
(m104 (object (A)) (property (clear)))

Now doing: BELIEVE:
(m92 (object (C)) (property (holding)))

Now doing: PUTDOWN C on table.

Now doing: DISBELIEVE:
(m92 (object (C)) (property (holding)))

Now doing: BELIEVE:
(m75 (object (C)) (property (clear)))

Now doing: BELIEVE:
(m87 (object (C)) (property (ontable)))

Now doing: NOOP
Now doing: PICKUP B from table.

Now doing: DISBELIEVE:
(m78 (object (B)) (property (clear)))

Now doing: DISBELIEVE:
(m79 (object (B)) (property (ontable)))

Now doing: BELIEVE:
(m126 (object (B)) (property (holding)))

Now doing: STACK B on C.
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Now doing: DISBELIEVE:
(m126 (object (B)) (property (holding)))

Now doing: DISBELIEVE:
(m75 (object (C)) (property (clear)))

Now doing: BELIEVE:
(m84 (arg2 (C)) (arg1 (B)) (rel (on)))

Now doing: BELIEVE:
(m78 (object (B)) (property (clear)))

Now doing: NOOP
Now doing: PICKUP A from table.

Now doing: DISBELIEVE:
:0104 (object (A)) {property (clear)))

Now doing: DISBELIEVE:
(m77 (object (A)) (property (ontable)))

Now doing: BELIEVE:
(m163 (object (A)) (property (holding)))

Now doing: STACK A on B.

Now doing: DISBELIEVE:
(m163 (object (A)) (property (holding)))

Now doing: DISBELIEVE:
(m78 (object (B)) (property (clear)))

Now doing: BELIEVE:
(m82 (arg2 (B)) (arg1 (A)) (rel (on)))

Now doing: BELIEVE:
(m104 (object (A)) (property (clear)))

nil
exec: 36.00 sec  gc: 7.60 sec

We can now find out the final state by asking about all the predicates and relations.

; What objects are clear?
*describe (deduce property clear object %x))

(m104 (object (A)) (property (clear)))

(m150 (arg (m75 (object (C)) (property (clear)))) (max (0)) (min (0)))
(m186 (arg (m78 (object (B)) (property (clear)))) (max (0)) (min (0)))
(dumped)

exec: 1.83 sec  gc: 0.00 sec
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; What objects are on the table?
*(describe (deduce property ontable object %ox))

(m87 (object (C)) (property (ontable)))

(m175 (arg (m77 (object (A)) (property (ontable)))) (max (0)) (min (0)))
(m139 (arg (m79 (object (B)) (property (ontable)))) (max (0)) (min (0)))
(dumped)

exec: 1.71 sec  gc: 0.00 sec

; What objects are being held?
*(describe (deduce property holding object %x))

(m115 (arg (m92 (object (C)) (property (holding)))) (max (0)) (min (0)))
(m148 (arg (m126 (object (B)) (property (holding)))) (max (0)) (min (0)))
(m184 (arg (mi63 (object (A)) (property (holding)))) (max (0)) (min (0)))
(dumped)

exec: 2.35 sec  gc: 0.00 sec

; What objects are on what other objects?
*(describe (deduce rel on argl %x arg2 %y))

(m82 (arg2 (B)) (argl (A)) (rel (on)))

(m84 (arg2 (C)) (arg1 (B)) (rel (on)))

(m102 (arg (m76 (arg2 (A)) (argl (C)) (rel (on)))) (max (0)) (min (0)))
(dumped)

exec: 1.35 sec  gc: 0.00 sec

2B.3.5 Conclusions

We have designed and implemented a first version of representing acts and plans in SiNePs,
and of a SNePS acting component. We have shown primitive acts, their effects, plans for com-
plex acts, and plans for achieving goals being explained to the system in short declarations, each
of which can be seen to be expressible in an easily understood English sentence. We have
shown the system answering questions about its actions and plans. We have shown the system
using its plans to carry out a Blocks World problem.

Our representation distinguishes actions, acts, propositions, decomposition (act-based) plans,
and goal-oriented (state-based) plans. It also distinguishes between primitive actions/acts and
complex actions/acts. We have actions that the system performs on the world (simulated by
printing onto the output device), such as pickup and putdown, and internal, mental actions,
such as believe. We also have intention-forming actions, such as achieve, whose effects are to
place acts on the act queue. The intention-forming action snsequence is a control-structure
action which permits us to represent and carry out structured plans.

Our next tasks are clear. We will modify the current CASSIE grammar so that the kinds
of conversations shown in this report can be carried out in English instead of in SNePSUL. We
will modify our Blocks World representation to more closely mimic that of (Huff & Lesser
1987). We will add additional primitive control structure actions. We will modify our
representation of plans so that advanced planning can be carried out. We will begin investigat-
ing the use of these plans to recognize when other actors are carrying out plans the system
knows about. We will begin representing plans from the tutoring domain.
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2B.4 SOFTWARE DEVELOPMENT

SNePS-2 is a new design of SNePS, incorporating advances in our theory of intensional
knowledge representation made since the original SNePS was designed and implemented.
SNePS-2 is being implemented in Common Lisp on Texas Instruments Explorers, Symbolics Lisp
Machines, and HP Al Workstations. The current implementation of SNePS-2 includes the core
SNePS functions of explicit storage into and retrieval from SNePS networks, and a Generalized
ATN (Shapiro 1982) Grammar interpreter. This implementation has been delivered by the
group at UB to the group at U. Mass. Implementation of SNIP-2 has begun.
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2B.7 TRIPS FUNDED BY RADC

Reliability and Maintainability Symposium, Philadelphia, PA, January 27-29, 1987 Shapiro.
NAIC Executive Committee Meeting, RPI, February 2, 1987: Shapiro.

Conference on Al Applications by IEEE, Orlando, Florida, February 25-27, 1987: Taie.

NAIC Executive Committee Meeting, Syracuse, NY, March 27, 1987: Shapiro.

NAIC Spring Technology Fair, RADC, April 9-10, 1987: Shapiro, Srihari, Geller, Taie, Campbell.

NAIC Summer Workshop, Minnowbrook Convention Center, NY, June 29 - July 2, 1987
Shapiro, Srihari, Geller, Bettinger.

Tenth International Joint Conference on Artificial Intelligence-87 (IJCAI-87), Milan, Italy,
August 23-28, 1987: Shapiro, Geller.

SUNYAB VMES - NLP Meetings, Buffalo, NY, September 16-17, 1987: Shapiro.

Natural Language Planning Workshop, Minnowbrook Conference Center, NY, September 20-23,
1987: Shapiro.

NAIC Fall Conference, Potsdam, NY, October 2, 1987: Srihari, Kumar, Ali.

SNePS Workshop, U. Mass,, December 1, 1987: Shapiro.

NAIC Executive Committee Meeting, SUNY at Buffalo, NY, December 3, 1987: Srihari, Spahr.
SUNYAB VMES - NLP Meetings, Buffalo, NY, December 2-4, 1987: Shapiro.

Concurrent Common Lisp Workshop, Beaverton, Oregon, December 9-11, 1987: Campbell.
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2B.8 CONFERENCES ATTENDED, PAPERS PRESENTED

Conference on Al Applications by IEEE
Orlando, Florida, February 25-27, 1987
presented M. R. Taie Modeling Connections for Circuit Diagnosis

1987 Reliability and Maintainability Symposium
Philadelphia, PA, January 27-29, 1987,
presented S. C. Shapiro Knowledge Based Modeling of Circuit Boards

Second UB Graduate-Conference on Computer Science
Buffalo, NY, March 10, 1987

chairmen S. S. Campbell
editors J. Geller
K. E. Bettinger
presented T. F. Pawlicki The Representation of Visual Knowledge
J. M. Mellor-Crummey Parallel Program Debugging with Partial Orders
S. Wroblewski, T. Thomas Efficient Trouble Shooting in an Industrial En-
vironment
C.-H. Wang ABLS: An Object Recognition System for Locat-
ing Address Blocks on Mail Pieces
D. Horton, G. Hirst Presuppositions as Beliefs: A New Approach
N. Wahl, S. Miller Hypercube Algorithms to determine Geometric

Properties of Digitized Pictures
D. Walters, G. Krishnan Bottom-up Analysis for Color Separation

B. Selman Vivid Representations and Analogues
S. Svorou The Spatial Extension Terms in Modern Greek
Y. Jang, H. K. Hung Semantics of a Recursive Procedure with Param-

eter and Aliasing
J. Tenenberg, L. Hartman  Naive Physics and the Control of Inference
Z. Xiang Multi-level Model-based Diagnosis Reasoning

Seventh International Workshop on Expert Systems

Avignon, France, May 13-15, 1987

presented S. N. Srihari Tutorial on Spatial Knowledge Representation
and Reasoning

Sixth National Conference on Al
Seattle, WA, July 13-17, 1987

presented J. J. Hull Hypothesis Testing in a Computational Theory
of Visual Word Recognition
G. Krishnan Adding Vision Capabilities to a Computer

Graphics System for Color Separation
other attendees S. N. Srihari
D. Walters
D. Niyogi
K. Bettinger
D. Kumar
Z. Dobes
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AAAI Workshop on Blackboard Architectures

Seattle, WA, July 15, 1987

presented C.-H. Wang Object Reception in Structured and Random En-
vironments Using a Blackboard Architecture

other attendees S. N. Srihan

International Joint Conference on Artificial Intelligence
Milan, Italy, August 22-24, 1987

presented J. J. Hull Knowledge Utilization in Handwritten Zip Code
Recognition
R. M. Bozinovic A Multi-level Perception Approach to Reading
Cursive Script
J. Geller Graphical Deep Knowledge for Intelligent
Machine Drafting
S. Peters A Representation for Natural Catagory Systems
other attendees S. N. Srihari
S. C. Shapiro

SPSE’s 40th Annual Conference and Symposium on Hybrid Image Systems
Rochester, NY, May 17-22, 1987

presented S. N. Srihari Document Image Analysis: An Overview of Al-
gorithms
J. J. Hull A Computational Model for Human and
Machine Reading

International Workshop on Expert Systems and Pattern Recognition
Novosibirsk, USSR, Oct. 25-28, 1987
presented S. N. Srihari Spatial Knowledge Representation and Reasoning
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2B.9 OTHER NON-FUNDED ACTIVITIES AND PAPERS
BY NAIC SUPPORTED RESEARCHERS

The Encyclopedia of Artificial Intelligence, edited by Dr. S. C. Shapiro, was published by
John Wiley & Sons, Inc., New York, 1987.

Dr. Srihari presented his paper (not sponsored by RADC), “Spatial Knowledge Representa-
tion and Reasoning”, at the Seventh International Workshop Conference on Expert Systems and
Their Applications, in Avignon, France, May 13-15, 1987. He is sponsored by ECCAI - Euro-
pean Coordinating Committee for Artificial Intelligence.

The Second Annual University at Buffalo Graduate-Conference on Computer Science was
held on March 10, 1987. This is a one day conference organized and presented completely by
SUNYAB Computer Science graduate students. Scott Campbell was the chairman; Keith Bet-
tinger and James Geller were included on the committee. Twelve graduates from four depart-
ments in three universities presented their research work in C.S. - eight of which were Al
related talks. In order to continue and expand on NAIC's principle of enhanced communication
between member institutions, two of the presentors were students at the University of Roches-
ter. We feel that this event has helped to strengthen lines of communication between our two
Universities. The event was well attended with a total 146 attendees - 2 21.6% increase over
last year’s attendance. Many of the attendees were from local businesses and universities, who
saw how much our involvement in the NAIC has strengthened our department, as well as
what is going on in the NAIC.

Dr. Shapiro went to Bolling AFB, Washington, D. C., April 3-4 (sponsored by the
National Research Council, Board on Mathematical Sciences) to attend a meeting of the Review
Panel for the Research Program of the Mathematical and Information Sciences Directorate,
AFOSR.

Dr. Shapiro demonstrated one of the Explorers at the UB Freshman Open House, April 11.

Dr. Shapiro presented “CASSIE: Development of a Computational Mind”, Department Col-
loquium, Department of Computer Science, SUNY at Albany, April 8, 1987.

Dr. Shapiro led a discussion on Al with a group of undergraduate students of Wilkeson
Quadrangle, UB, as part of the FAST (Faculty and Students Talking) series, April 28.

Dr. Shapiro presented “Toward a Computational Mind”, at a meeting of the Niagara Fron-
tier Chapter of the ACM, Buffalo, NY, May 7.

Dr. Srihari (not sponsored by RADC) traveled to Avignon, France, May 9-15, 1987, and
presented his paper, “Spatial Knowledge Representation and Reasoning”, at the Seventh Interna-
tional Workshop Conference on Expert Systems and Their Applications. He was sponsored by
ECCAI - European Coordinating Committee for Artificial Intelligence.

Keith Bettinger attended AAAI-87, July 13-17, 1987, in Seattle, Washington as a
volunteer.

Dr. Sargur N. Srihari (not funded by RADC) attended the AAAI-87 Sixth National
Conference on Artificial Intelligence at the University of Washington, Seattle WA, July 13-17,
1987. He participated in the Blackboard Systems Workshop.

Dr. Shapiro co-authored the paper (not funded by RADC) with Sandy Peters, “A
Representation for Natural Category Systems”, presented at the International Joint Conference
on Artificial Intelligence-87 (JCAI-87) in Milan, Italy, August 23-28, 1987.
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Sargur N. Srihari and Radmilo Bozinovic presented a paper “A Multilevel Perception
Approach to Cursive Script Recognition”, at the Tenth International Joint Conference on
Artificial Intelligence-87 (IJCAI-87) in Milan, Italy, August 23-28, 1987.

Jonathon Hull and Sargur N. Srihari presented a paper, “Use of External Information in
Zipcode Recognition”, also at the same conference, the Tenth International Joint Conference on
Artificial Intelligence-87 (1JCAI-87) in Milan, ltaly, August 23-28, 1987.

Sargur N. Srihari and Radmilo Bozinovic have published a paper in the Artificial Intelli-

gence Journal, October 1987 issue. The title of the paper is the same as the LJCAI paper, “A
Multilevel Perception Approach to Cursive Script Recognition™.

Dr. Shapiro spent Sept. 16-17 at the Department at UB meeting with the VMES and
Natural Language Planning research groups.

Dr. Shapiro attended the 1987 Natural Language Planning Workshop in the Minnowbrook
Conference Center, Sept. 20-23.

Dr. Shapiro presented “Semantic Network Based Reasoning Systems” at ISI, Marina del
Rey, CA, on Sept. 30, 1987.

Dr. Shapiro gave a talk “CASSIE: Development of a Computational Mind” at the Com-
puter Science Seminar, Department of Computer Science, University of Southern California,
Oct. 28, 1987.

The paper “A Model for Belief Revision” by Stuart C. Shapiro and Joao P. Martins has
been accepted for publication in the journal Artificial Intelligence, and is tentatively scheduled
to appear in Winter, 1988.

Dr. Sargur N. Srihari (not funded by NAIC) attended the International Workshop on
Expert Systems and Pattern Recognition, USSR Academy of Science (Siberian Section), Novosi-
birsk, USSR, October 26-30, 1987. He presented a paper on Spatial Knowledge Representation.

A paper written by Sribari, Wang, Palumbo, and Hull has been published in the Dec. 18,
1987 issue of Al Magazine. The article is featured as the lead article of the issue on the cover.
Al Magazine is the principal publication of the American Association of Artificial Intelligence.

Professor Stuart C. Shapiro has been appointed to the program committee of the First
International Conference on Principles of Knowledge Representation and Reasoning, to be held
in Toronto, Canada, May 15-18, 1989.
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2B.10 SELECTED DEPARTMENT ACTIVITIES IN 1987

2B.10.1 New Al Faculty

David Sher, Ph.D., accepted an appointment as Assistant Professor starting in Fall, 1987.
Dr. Sher’s research, in Computer Vision, was part of Dr. Chris Brown’s task within the NAIC.

2B.10.2 Al Faculty

Al Faculty

Six of the fourteen faculty at SUNY at Buffalo are AI. They include: Shoshana Hardt;
William J. Rapaport; David B. Sher; Stuart C. Shapiro; Sargur N. Srihari; Deborah D.K. Walters.

2B.10.3 Al Seminars in 1987

CS702 - Walters
Detection and Representation of Visual Features - Spring 87

CS703 - Hardt
Automating Intelligent Interaction with Complex Worlds - Spring 1987

CS70S - Leyton
Geometry of Robot Planning

CS706 - Srihari
Introduction to Connectionist/Neural Network Models

2B.10.4 Advanced Degrees Conferred in Al

Al M.S. degrees: Brinkerhoff L; Campbell, S. C; Chan, C. M;; Chen, Y. Y; Chun, S. A;
DeVinney, G. Dodson-Simmons, O.; Feuerstein, S.; Gupta, R Jian, H; Kim, J; Krishnaswamy,
Vs Kuo, C. K; Lang, S. L, Lee, H. C; Li, N;; Li, P; Lively, R; Murty, K.; Schwartz, M,; Siracusa,
T, Schneck, N. T So, H. M; Thomas, T; Wang, G.; Wroblewski, S,; Wu, T. Y; Wu, W. J.

Al PhD.s:

George L. Sicherman
Thesis Supervisor: Shoshana L. Hardt
"A Model of Probabilistic Inference for Decision-Making Under Risk and Uncertainty”

Mingruey R. Taie
Thesis Supervisor: Sargur N. Srihari
"Representation of Device Knowledge for Versatile Fault Diagnosis"

Michael Almeida
Thesis Supervisor: Stuart C. Shapiro
"Reasoning about the Temporal Structure of Narratives”
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1. INTRODUCTION

Computational linguistics is a subfield of artificial intelligence (Al) concerned with the develop-
ment of methodologies and algorithms for processing natural-language by computer. Methodologies for
computational linguistics are largely based on linguistic theories, both traditional and modern.
Recently, there has been a proposal to utilize a traditional method, viz., the shastric Sanskrit method of
analysis (Briggs, 1985), as a knowledge representation formalism for natural-language processing. The
proposal is based on the perceived similarity between a commonly used method of knowledge
representation in Al, viz, semantic networks, and the shastric Sanskrit method, which is remarkably
unambiguous.

The influence of Sanskrit on traditional Western linguistics is acknowledgedly significant (Gelb,
1985). While linguistic traditions such as Mesopotamian, Chinese, Arabic, etc., are largely enmeshed
with their particularities, Sanskrit has had at least three major influences. First, the unraveling of
Indo-European languages in comparative linguistics is attributed to the discovery of Sanskrit by
Western linguists. Second, Sanskrit provides a phonetic analysis method which is vastly superior to
Western phonetic tradition and its discovery led to the systematic study of Western phonetics. Third,
and most important to the present paper, the rules of analysis (e.g., sutras of Panini) for compound
nouns, etc., is very similar to contemporary theories such as those based on semantic networks.

The purpose of this paper is threefold: (i) to describe propositional semantic networks as used in
Al as well as a software system for semantic network processing known as SNePS (Shapiro, 1979), (ii)
to describe several case structures that have been proposed for natural-language processing and which
are necessary for natural language understanding based on semantic networks, and (iii) to introduce a
proposal for natural-language translation based on shastric Sanskrit and semantic networks as an
interlingua.

2. KNOWLEDGE REPRESENTATION USING SFMANTIC NETWORKS

2.1. Semantic Networks

A semantic network is a2 method of knowledge representation that has associated with it pro-
cedures for representing nformation, for retrieving information from it, and for performing inference
with it. There are at least two sorts of semantic networks in the Al literature (see Findler 1979 for a
survey): The most common is what is known as an “inheritance hierarchy,” of which the most well-
known is probzbly KL-ONE (cf. Brachman & Schmolze 1985). In an inheritance semantic network,
nodes represent concepts, and arcs represent relations between them. For instance, a typical inheritance
semantic network might represent the propositions that Socrates is human and that humans are mortal
as in Figure 1(a). The interpreters for such systems allow properties to be “inherited,” so that the fact
that Socrates is mortal does not also have to be stored at the Socrates-node. What is essential, however,
is that the representation of a proposition (e.g, that Socrates is human) consists only of separate
representations of the individuals (Socrates and the property of being human) linked by a relation arc
(the “ISA” arc). That is, propositions are not themselves objects.

[Figure 1 here]

In a propositional semantic network, all information, including propositions, is represented by
nodes. The benefit of representing propositions by nodes is that propositions about propositions can be
represented with no limit. Thus, for example, the information represented in the inheritance network
of Figure 1(a) could (though it need not) be represented as in Figure 1(b); the crucial difference is that
the propositional network contains nodes (m3, m5) representing the propositions that Socrates is
human anc that humans are mortal, thus enabling representations of beliefs and rules about those pro-
positions.




NATURAL LANGUAGE PROCESSING

2.2. SNePS

SNePS, the Semantic Network Processing System, is a knowledge-representation and reasoning
sof tware system based on propositional semantic networks. It has been used to model a cognitive
agent’s understanding of natural-language, in particular, English (Shapiro 1979; Maida & Shapiro 1982;
Shapiro & Rapaport 1986, 1987; Rapaport 1986). SNePS is implemented in the LISP programming
language and currently runs in Unix- and LISP-machine environments.

Arcs merely form the underlying syntactic structure of SNePS. This is embodied in the restric-
tion that one cannot add an arc between two existing nodes. That would be tantamount to telling
SNePS a proposition that is not represented as a node. Another restriction is the Uniqueness Principle:
There is a one-to-one correspondence between nodes and represented concepts. This principle guaran-
tees that nodes will be shared whenever possible and that nodes represent intensional objects. (Shapiro
& Rapaport 1987.)

SNePS nodes that only have arcs pointing to them are considered to be unstructured or afomic.
They include: (1) sensory nodes, which—when SNePS is being used to model a cognitive agent—
represent interfaces with the external world (in the examples that follow, they represent utterances);
(2) base nodes, which represent individual concepts and properties; and (3) variable nodes, which
represent arbitrary individuals (Fine 1983) or arbitrary propositions.

Molecular nodes, which have arcs emanating from them, include: (1) structured individual nodes,
which represent structured individual concepts or properties (i.e, concepts and properties represented in
such a way that their internal structure is exhibited)—for an example, see Section 3, below; and (2)
structured proposition nodes, which represent propositions; those with no incoming arcs represent
beliefs of the system. (Note that structured proposition nodes can also be considered to be structured
individuals.) Proposition nodes are either atomic (representing atomic propositions) or are rule nodes.
Rule nodes represent deduction rules and are used for node-based deductive inference (Shapiro 1978;
Shapiro & McKay 1980; Mckav & Shapiro 1981; Shapiro, Martins, & McKay 1982). For each of the
three categories of molecular nudes (structured individuals, atomic propositions, and rules), there are
constant nodes of that categorv and pattern nodes of that category representing arbitrary entities of
that category.

There are a few built-in arc labels, used mostly for rule nodes. Paths of arcs can be defined,
allowing for path-based inference, including property inheritance within generalization hierarchies
(Shapiro 1978, Srihari 1981). All other arc labels are defined by the user, typically at the beginning of
an interaction with SNePS. In fact, since most arcs are user-defined, users are obligated to provide a
formal syntax and semantics for their SNePS networks. We provide some examples, below.

Syntax and Semantics of SNePS

In this section, we give the syntax and semantics of the nodes and arcs used in the interaction.
(A fuller presentation, together with the rest of the conversation, is in Shapiro & Rapaport 1986,
1987.)

(Def. 1) A node dominates another node if there is a path of directed arcs from the first node to the
second node.

(Def. 2) A pattern node is a node that dominates a variable node.

{Def. 3) An individual node is either a base node, a variable node, or a structured constant or pattern
individual node.

(Def. 4) A proposition node is either a structured proposition node or an atomic variable node
representing an arbitrary proposition.

(Syn.1) If w is a(n English) word and i is an identifier not previously used, then
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: LEN Z

is a network, w is a sensory node, and i is a structured individual node.
(Sem.1) i is the object of thought corresponding to the utterance of .

(Syn.2) If either ¢, and ¢, are identifiers not previously used, or ¢, is an identifier not previously used
and ¢, is a temporal node, then

. BEFORE .

is a network and ¢, and ¢, are temporal nodes, ie. mdxwdual nodes representing times.

(Sem.2) ¢, and ¢, are objects of thought corresponding to Two times, the former occurring before the
latter.

(Syn.3) If i and j are individual nodes and m is an identifier not previously used, then

@‘Jnomm & OBJECY ’O

is a network and m is a structured proposition node.
(Sem.3) m is the object of thought corresponding to the proposition that { has the property j.
(Syn.4) If { and j are individual nodes and m is an identifier not previcusly used, then

@<PROPER-NRME @ OBJECT .O

is a network and m is a structurea proposiuon node.

(Sem.4) m istinobjead'thmghtconupmdingmthepmpmiﬁonthnl'spmpermeidj. Gis
the object of thought that is i's proper name; its expression in English is represented by a node
at the head of a LEX-arc emanating from j)

(Syn.S) If { and j are individual nodes and m is an identifier nat previously used, then

@‘ CLASS @ MEMBER .O

is a network and m is a structured proposition node.
(Sem.S) m is the object of thought corresponding to the proposition that { is a (member of class) j.
(Syn.6) If { and j are individual nodes and m is an identifier not previously used, then

@4 SUPERCLRSS @suscmss ’O

is a network and m is a structured proposition node.

(Sem.6) m is the object of thought corresponding to the proposition that (the class of) is are (a sub-
class of the class of) js.

(Syn.7) If i, ,i,,i; are individual nodes, ¢, , ¢, are temporal nodes, and m is an identifier not previ-
ously used, then

is a nerwork and m is a structured proposition node.

(Sem.7) m is the object of thought corresponding to the proposition that ageat {; performs act {; with
respect to {3 starting at time ¢, and ending at time ¢,, where ¢, is before ¢,.
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(Sem.7) m is the object of thought corresponding to the proposition that agent i, performs act i{; with
respect to {, starting at time ¢, and ending at time ¢,, where ¢, is before ¢,.

3. NATURAL-LANGUAGE UNDERSTANDING USING SEMANTIC NETWORKS

Semantic networks can be used for natural-language understanding as follows. The user inputs
an English sentence t0 an augmented-transition-network (ATN) grammar (Woods, 1970, Shapiro 1982).
The parsing component of the grammar updates a previously existing knowledge base containing
semantic networks (or builds a new knowledge base, if there was none before) to represent the
system’s understanding of the input sentence. Note that this is semantic analysis, not syntactic pars-
ing. The newly built node representing the propasition (or a previously existing node, if the input
sentence repeated information already stored in the knowledge base) is then passed to the generation
component of the ATN grammar, which generates an English sentence expressing the proposition in
the context of the knowledge base. It should be noted that there is a single ATN parsing-generating
grammar; the generation of an English output sentence from a node is actually a process of “parsing™
the node into English. If the input sentence expresses a question, information-retrieval and inferencing
packages are used to find or deduce an answer to the question. The node representing the answer is
then passed to the generation grammar and expressed in English.

Here is a sample conversation with the SNePS system, together with the networks that are built
as a result. User input is on lines with the :-prompt; the system’s output is on the lines that follow.
Comments are enclosed in brackets.

: Young Lucy petted a yellow dog
| understand that young Lucy petted a yellow dog

[The system is told something, which it now “believes.” Its entire belief structure
consists of nodes bl, m1-m13, and the corresponding sensory nodes (Figure 3). The
node labeled “now” represents the current time, so the petting is clearly represented
as being in the past. The system’s response is “I understand that” concatenated with
its English description of the proposition just entered.]

: What is yellow
a dog is yeliow

(This response shows that the system actually has some beliefs; it did not just parrot
back the above sentence. The knowledge base is not updated, however.]

: Dogs are animals
| understand that dogs are animals

[The system is told a small section of a class hierarchy; this information does update
the knowledge base.]

[Figure 3 here]

There are three points w0 note about the use of SNePS for natural-language understanding. First,
the system can “understand” an English sentence and express its understanding; this is illustrated by
the first part of the conversation above. Second, the system can answer questions about what it under-
stands; this is illustrated by the second part. Third, the system can incorporate new information into
its knowledge base; this is illustrated by the third part.

Case Frames

Implicit in such a language understanding system are sc-called case frames. We give a brief
summary here; for a more thorough treatment see Winograd (1983).
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Case-based deep structure analysis of English was suggested by Fillmore (1968). The surface
structure of English relies only on the order of constituents and propositions in a clause to indicate
role. Examples are:

Your dog just bit my mother.
My mother just bit your dog.

In Russian, Sanskrit, etc, explicit markings are used to represent relationships between participants.
Examples in Russian, which uses six cases (nominative, genitive, dative, accusative, instrumental, and
prepositional), are:

Professor uchenika tseloval (the professor kissed the student).

Professora uchenik tseloval (the student kissed the professor).

The extremely limited surface case system of English led Fillmore to suggest cases for English
deep structure as follows: Agentive (animate instigator of action), Instrumental (inanimate force or
object involved), Dative (animate being affected by action), Factitive (object resulting from action),
Locative (location or orientation), and Objective (everything else). For example, consider the sentence:

John opened the door with the key.

Its case analysis yields: Agentive = John, OQbjective = the door, Instrumental = the key.

Schank (1975) developed a representation for meaning (conceptual dependency) based on
language independent conceptual relationships between objects and actions: case roles filled by objects
(actor, object, attribuant, recipient), case roles filled by conceptualizations (instrument, attribute, ... ),
and case roles filled by other conceptual categories (time, location, state). For example:

John handed Mary a book.

has the analysiss Actor = John, Donor = John, Recipient = Mary, Object = book, Instrument = an action
of physical motion with actor = John and object = hand.

4. SANSKRIT CASE FRAMES AND SEMANTIC NETWORKS

In the previous section we noted that natural-language understanding based on semanitc net-
works involves determining what case frames will be used. The current set of case frames used in
SNePS is not intended to be a complete set. Thus, we propose here that shastric Sanskrit case frames,
implemented as SNePS networks, make an ideal knowledge-representation “language.”

There are two distinct advantages to the use of classical Sanskrit analysis techniques. First, and
of greatest importance, it is not an ad hoc method. As Briggs (1985) has observed, Sanskrit grammari-
ans have developed a thorough system of semantic analysis. Why should researchers in knowledge
representation and natural-language understanding reinvent the wheel? (cf. Rapaport 1986). Thus, we
propose the use of case frames based on Sanskrit grammatical analysis in place of (or, in some cases, in
addition to) the case frames used in current SNePS natural-language research.

Second, and implicit in the first advantage, Sanskrit grammatical analyses are easily implement-
able in SNePS. This should not be surprising. The Sanskrit analyses are case-based analyses, similar,
for example, to those of Fillmore (1968). Propositional semantic networks such as SNePS are based on
such analyses and, thus, are highly suitable symbolisms for implementing them.

As an example, consider the analysis of the following English translation of a Sanskrit sentence
(from Briggs 1985):

Out of friendship, Maitra cooks rice for Devadatta in a pot over a fire.

Briggs offers the following set of “triples,” that is, a linear representation of a semantic network for
this sentence (Briggs 1985: 37, 38):

cause, event, friendship
friendship, object1, Devadatta
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friendship, object2, Maitra
cause, result, cook

cook, agent, Maitra

cook, recipient, Maitra
cook, instrument, fire
cook, object, rice

cook, on-loc, pot

But what is the syntax and semantics of this knowledge-representation scheme? It appears to be
rather ad hoc. Of course, Briggs only introduces it in order to compare it with the Sanskrit grammati-
cal analysis, so let us concentrate on that, instead. Again using triples, this is:

cook, agent, Maitra

cook, object, rice

cook, instrument, fire

cook, recipient, Devadatta
cook, because-of, friendship
friendship, Maitra, Devadatta
cook, locality, pot

Notice that all but the penultimate triple begins with cook. The triple beginning with friendship can
be thought of as a structured individual: the friendship between Maitra and Devadatta. Implemented
in SNePS, this becomes the network shown in Figure 4. Node m11 represents the structured individual
consisting of the relation of friendship holding between Maitra and Devadatta. Node m13 represents
the proposition that an agent (named. Maitra) performs an act (cooking) directed to an object (rice),
using an instrument (fire), for a recipient (named Devadatta), at a locality (a pot), out of a cause (the
friendship between the agent and the recipient).

Such an analysis can, presumably, be algorithmically derived from a Sanskrit sentence and can
be algorithmically transformed back into a Sanskrit.sentence. Since an English sentence, for instance,
can also presumably be analyzed in this wav (at the very least, sentences of Indo-Furopean languages
should be easily analyzable in this fashion), we have the basis for an interlingual machine-translation
system grounded in a well-established semantic theury.

{Figure 4 here]

S. INTERLINGUAL MACHINE ’I'RANSLATIbN

The possibility of translating natural-language texts using an intermediate common language
was suggested by Warren Weaver (1949). Translation using a common language (an “interlingua®) is a
two-stage process: from source language to an interlingua, and from the interlingua to the target
language (Figure 5). This approach is characteristic of a system in which representation of the “mean-
ing” of the source-language input is intended to be independent of any language, and in which this
same representation is used to synthesize the target-language output. In an alterpative approach (the
“transfer” approach), the results of source text analysis are converted into a corresponding representa-
tion for target text, which is then used for output. - Figure 6 shows how the interlingua (indirect)
approach compares to other (direct and transfer) approaches to machine translation (MT). The inter-
lingua approach to translation was heavily influenced by formal linguistic theories (Hutchins 1982).
This calls for an interlingua to be formal, language-independent, and “adequate” for knowledge
representation.

[Figures S and 6 here]
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Various proposals for interlinguas have included the use of formalized natural-language, artificial
“international” languages like Esperanto, and various symbolic representations. Most prior work on
interlinguas has centered on the representation of the lexical content of text. Bennet et al. (1986) point
out that a large pcrtion of syntactic structures, even When reduced to “canonical form,” remain too
language-specific to act as an interlingua representation. Thus, major disadvantages of an interlingua-
based system result from the practical difficulty of actually defining a language-free interlingua
representation.

Besides, none of the existing MT systems use a significant amount of semantic information (Slo-
cum 1985). Thus, the success of an interlingua depends on the nature of the interlingua as well as the
analysis rendered on the source text to obtain its interlingual representation. This made the inter-
lingua approach too ambitious, and researchers have inclined more towards a transfer approach.

It has been argued that analyses of natural-language sentences in semantic networks and in San-
skrit grammar is remarkably similar (Briggs 1985). Thus we propose an implementation of Sanskrit
in a semantic network to be used as an interlingua for MT. As an interlingua, Sanskrit fulfills the
basic requirements of being formal, language-independent, and a powerful medium for representing
meaning.
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Egure 1(a). An“ISA” inheritance-hierarchy semantic network

- Figure 1(b). A SNePS propositional semantic network (n3 and m5 represent the
propositions that Socrates is human and that humans are mortal, respectively)
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Knowledge-Based Parsing

J.G. Neal and S.C.Shapiro

Abstract. An extremely significant feature of any natural language (NL) is that it
is its own metalanguage. One can use an NL to talk about the NL itself. One can
use an NL to tutor a non-native speaker, or other poor language user, in the use of
the same NL. We have been exploring methods of knowledge representation and
NL understanding (NLU) which would allow an artificial intelligence (AI) system
to play the role of poor language user in this setting. The Al system would have to
understand NL utterances about how the NL is used, and improve its NLU abili-
ties according to this instruction. It would be an NLU system for which the
domain being-discussed in NL is the NL itself.

Our NLU system is implemented in the form of a general rule-based inference
system which reasons according to the rules of its knowledge base. These rules
comprise the system’s knowledge of language understanding in the same way that
the rules of any rule-based system-comprise that system’s knowledge of its domain
of application. Our system.uses the same knowledge base for both linguistic and
other knowledge since we feel that there is no clear boundary line separating syn-
tactic, semantic, and world knowledge.

We are exploring the possibility of an NLU system’s becoming more facile in its
use of some language by being told how that language is used. We wish this expla-
nation to be given in an increasingly sophisticated subset of the language being
taught. Clearly, the system must start with some language facility, but we are inter-
ested in seeing how small and theory-independent we can make the initial, “ker-
nel” language. This article reports the current state of our work.

1 Introduction
1.1 Overview

An extremely significant feature of any natural language (NL) is that it is its own
metalanguage. One can use an NL to talk about the NL itself. One can use an NL
to tutor a non-native speaker, or other poor language user, in the use of the same
NL. We have been exploring methods of knowledge representation (KR) and NL
understanding (NLU) which would allow an artificial intelligence (AI) system to
play the role of poor language user in this setting. The Al system would have to
understand NL utterances about how the NL is used, and improve its NLU abili-
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ties according to this instruction. It would be an NLU system for which the
domain being discussed in NL is the NL itself.

Tt is essential to our approach tc have the system’s parsing and linguistic knowl-
edge be an integral part of its domain knowledge. Acknowledging that what is
meant by “meaning” is controversial (Quine, 1948), we take the meaning or signifi-
cance of a word or phrase to include linguistic knowledge about the word or
phrase. For example, we feel that how a word like “dog” is used in language is a
part of its “meaning”, along with other properties such as the fact that “dog”
denotes a special kind of animal with typical characteristics. The implementation
of our system is based upon the above stated view and therefore the rules and
assertions comprising the system’s knowledge of language understanding, includ-
ing syntax, is integrated into the system's knowledge base along with its other wask
domain knowledge. ’

We are exploring the possibility of an NLU system’s becoming more facile in its
use of some language by being taught how that language is used. The teacher
might be a conversation partner whc happens to use some phrase the system is not
yet familiar with, or a language theorist who wants to find out if she can explain
her theory completely and clearly enough for the-system to use language accord-
ing to it. We wish this explanation to be given in an increasingly sophisticated sub-
set of the language being taught. That is, why not test and make use of the sys-
tem's language capability by using it to continue the system’s “education™?
Clearly, the system must start with some language facility, but we are interested in
seeing how small and theory-independent we can make the initial, “kernel” lan-
guage.

In this chapter, we will discuss our knowledge representation techniques, the
system's kemnel language (KL), and parsing strategy. We will demonstrate how our
system can be instructed in the use of some language defined by the teacher and
how the system’s acquired language can itself be used as its own metalanguage.
The kernel language only incorporates primitive relations such as one token being
a predecessor of another in a string, membership in a lexical or string category,
and constituency. As an example of using the system’s language as its own meta-
language to enhance its language capability, we will demonstrate, starting with
only the KL, how the system can be instructed with regard to the number (i.e¢., sin-
gular or plural) of some words and then be informed that “If the'liead-noun of a
noun-phrase X has number Y, then X has number Y. This newly acquired
knowledge can then be applied by the system to infer that since “glasses™ is plural,
50 is “the old man’s glasses” when it reads this phrase in a sentence such as “The
old man’s glasses were filled with water™.

Our system is able to understand when strings are mentioned in input utterances
as well as when they are used to communicate with the system. This capability is
demonstrated frequently in this chapter, but particularly in Sect.4 with the classic
sentence from Tarski (1944): “‘Snow is white’ is true if and only if snow is white”.

The use of inference and world knowledge is essential for a system to parse sen-
tences such as “John saw the bird without binoculars™ and “John saw the bird
without tailfeathers” from Schubert and Pelletier (1982) or “John saw the man on
the hill with a telescope”. Our research is based upon the concept of having pars-
ing performed by a general reasoning system which has the capability of applying
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world knowledge infereaces during parsing, since the “parser” " is not a separate
isolated component with specaal sublanguage, representations, or knowledge
base.

1.2 Fundamental Assumptions

Our system incorporates the use-mention distinction (Quine, 1951) for language.
Our representations reflect the fact that the meaning of a token or surface string is
distinct from the token or string itself. Our system’s knowledge base maintains a
representation for a token or surface string that is distinct from the representation
of the interpretation of the input token or string. This distinction is the same as
between a numeral and a number in mathematics. To refer to a word or string
rather than its meaning, the user must use the usual English convention of prefac-
ing the word by a single-quote mark or enclosing the string in quotation marks.
(See Sections 2.2.1 and 2.4.2 for more information.) .

A second principle upon which our work is based is that each occurrence of a
givea surface string in the input stream is assumed to have a different interpreta-
tion, unless the teacher has eatered rules into the system to dictate otherwise. For
example, if a name such as “John” has been entered into the lexicon and is used
twice, cither in successive utterances or within the same utterance, then the system
interprets each occurrence of the name as referring to a different entity unless the
teacher has instructed the system otherwise..Since an NLU system must ? = capa-
ble of handling ambiguities, and, in a situation in which no explicit rules are
known to the system to guide it in determining whether a word or phrase is ambig-
uous, it must have a default procedure to follow, we have chosen to implement the
above pnnaple. Although our approach would seem to overly complicate the net-
work, it is a reasonable default principle since thére is some evidence that merging
of nodes is easier than splitting nodes (Maida and Shapiro, 1982). .

A third principle which is furidamental to our theory is that all possible parses
and interpretations of a surface string are to be determined according to the lan-
guage definition used by the system. We feel that multiple interpretations, when
justified by the language definition, are warrented since agile human minds fre-
quently perceive alternative interpretations and, in fact, a great deal of humor is
dependent upon this.

Our system does not currently do morphological analysis. One of the dreas in
which we plan to do future research is knowledge-based morphological analysis.
We plan to develop a system component that would performm morphological anal-
ysis and function as a preprocessor or coprocessor with the system discussed in
this article.

1.3 Declarative Knowledge Representationinan Integrated Knowledge Base
Our approach is to represent knowledge in declarative form, to the greatest extent

possible, in the semantic network formalism. This applies to all knowledge includ-
ing linguistic knowledge and the rules which are applied by the inference machine
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to guide the system’s reasoning, the parsing process being one manifestation of the
system'’s reasoning according to the rules of its network knowledge base. It is our
intent that the system's knowledge, including its linguistic knowledge, be available
to the teacher in the same way that domain knowledge is in other Al systems.

Furthermore, the declarative form is a more suitable form for linguistic knowl-
edge in theoretical studies of language. A language definition or description is
inherently declarative, and as Pereira and Warren have pointed out: “The theorists
have concentrated on describing whar natural language is, in a clear and elegant
way. In this context, details of how natural language is actually recognized or gen-
erated need not be relevant, and indeed should probably not be allowed to
obscure the language definition™ (1980, p.269, italics in the original). In this
regard, a declarative representation is preferable to a formalism such as an ATN,
in that the ATN is a description of a process for recognizing a language.

Our system uses an integrated knowledge base for both linguistic and other
knowledge as advocated by Pollack and Waltz (1982) and by Dahl (1981). As indi-
cated in Section 1.1, we take the meaning of a word or phrase to include linguistic
knowledge about the word or phrase and its use. Furthermore, we feel that there is
no clear boundary line separating syntactic, semantic, and world knowledge. For
example, it is not clear to what extent the classification of words into lexical cate-
gories depends on meaning, function, or form. Should certain words be classified
as mass nouns because they fit certain distributional frames or have a certain form
(e.8., I used {sand, the sand, a bag of sand, *a sand, *two sands.}) or are the frames
and forms simply a reflection of the property we think of as characterizing the
substances named by mass nouns, namely that the substance is not naturally phys-
ically bounded and that when two amounts of the substance are “put together”
they become one amount? Perhaps certain aspects of syntax cannot or should not
be separated from semantics. Furthermore, the terms “semantic knowledge” and
“world knowledge™ seem only to be used to informally express a measure of the
sophistication or complexity of knowledge. ’

1.4 System Overview

Our Natural Language System is being developed and implemented using the
SNePS semantic network processing system (Shapiro, 1979a; Shapiro and the
SNePS Group, 1981). The terminology and representations for some of the basic
categories, objects, and relations of this work evolved from a preliminary study
reported in Shapiro and Neal (1982). Figure 1 illustrates an overview of the sys-
tem.

The semantic network formalism has been used by many researchers for knowl-
cdge representation (Quillian, 1968, 1969; Rumelhart and Norman, 1973; Sim-
mons, 1973; Woods, 1975; P. Hayes 1977; Schubert, 1976; Hendrix, 1978, 1979;
Schubert et al, 1979; Brachman, 1979). In contrast to other semantic network
implementations, the SNePS system provides a uniformn declarative representation
for both rules and assertions in the network (Shapiro, 1971, 1979b). Furthermore,
our system comprises an effort to utilize a common representation for problem-
solving and language-comprehension information as advocated by Chamiak
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1
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Fig.1. Overview of the NL system 1

(1981). Our system is similar to the Prolog-based (Roussel, 1975) systems of War-
ren and Pereira (1982), Dahl (1979, 1981), and McCord (1982) in that it is imple-
mented in a logic-based system in which processing is a form of inference. The
SNePS inference package (Shapiro et al., 1982), however, is not based on the reso-
lution principle (Robinson, 1965) as is Prolog, but on a multi-processing approach
(Kaplan, 1973; McKay and Shapiro, 1980) incorporating a producer-consumer
model. SNePS also provides a facility for “procedural attachment” in rules to han-
dle processing knowledge for which the declarative network representation is
unnatural.

The PSI-KLONE system (Bobrow and Webber, 1980) uses linguistic knowledge
represented in a KL-ONE network (Brachman, 19784, 1978b, 1979) to function as
semantic interpreter for parsed surface strings. The PSI-KLONE interpreter, how-
ever, functions in cooperation with an ATN parser in the RUS framework
(Bobrow, 1978). In contrast, we are implementing an integrated system for syntac-
tic and semantic processing which uses a uniform representation for syntactic and
semantic knowledge.

The rule-based parser of Figure1 is &sentxally the SNePS mfercnce package
which reasons according to the rules of the knowledge base.

The knowledge base consists of CORE knowledge and USER knowledge. The
CORE knowledge is provided by the designers of the system and defines a kernel
language initially acceptable to the system. USER knowledge results from the pro-
cessing of user input utterances.

The function of our NL parser is twofold:

1. derivation of zero or more annotated parse trees for the input surface string;

2. construction of a network representation for the interpretation of the input
utterance from the annotated parse tree and from other relevant knowledge
from the network data base.

The above two functions are not handled by separate processors, but, instead, are
both accomplished by the SNePS inference package as a result of the application
of CORE and USER rules. The processes of accomplishing the two functions are
interrelated and can cooperate. The interpretation of a surface string will depend
on how it is syntactically parsed and, conversely, the syntactic parse of a surface -
string can depend on the meanings of related, constitutent, or neighboring strings.
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The two processes are not carried out in a purely sequential fashion for a given -
input utterance, since interpretations can be constructed for parsed constituent
strings before the parsing of the entire utterance is complete.

1.5 Knowledge Representation Techniques

A SNePS semantic network is a directed graph with labeled arcs in which nodes
represent concepts and the arcs represent nonconceptual binary relations between
concepts. It is generally agreed that the nodes of a semantic network represent
intensional concepts (Woods, 1975; Brachman, 1977; Maida and Shapiro, 1982).
A “concept” is something in our domain of interest about which we may want to
store information and which may be the subject of “thought™ and inference. Since
cach concept is represented by a node, the relations represented by the arcs of our
system are not conceptual, but structural (Shapiro, 1979 a).

The primary type of arc in a SNePS network is the descending arc and if there is -
a path of descending arcs from node N to node M, N is said to dominate M. Two
important types of nodes are molecular and atomic nodes. Molecular nodes are
nodes that dominate other nodes. Atomic nodes are simply not molecular. Atomic
nodes can be constant (representing a unique semantic concept) or variable. Vari-
able nodes are used in SNePS as variables are used in normal predicate logic
notations. Network nodes can also be categorized as in the table in Figure 2.

A propositional molecular node N together with the arcs incident from the node
and the nodes M,,. . ,M; immediately dominated by N correspond to a case frame
(Fillmore, 1968; Bruce, 1975) where the arc names correspond to the slot names,
and the nodes My,.. .M, represent the slot fillers. Undominated molecular nodes
in a SNePS network represent propositions believed by the system. Concepts such
as the following are propositional and are represented by molecular nodes: Lex-
eme L is a member of category C; S1 is a constituent string of S2; lexeme L has
number N (i.e. singular or plural). Simple examples of propositional nodes are
M1 and M2 of Figure 3.

Node M1 represents the proposition that B1 represents the concept expressed
by the word “NOUN" and M2 represents the proposition that the lexeme
“SNOW?” is in the category called “NOUN".

The syntactic objects represented in our network knowledge base include mor-
phemes, surface strings, and nodes of annotated parse trees. Individual mor-
phemes are represented as nodes whose identifiers or print names are the mor-
phemes themselves. The representation of a surface string utilized in this study
consists of a network version of the list structure used by Pereira and Warren
(1980). This representation is also similar to Kay’s charts (1973) in that whenever
alternative analyses are made for a given substring of a sentence, the sentence
structure is enhanced by multiple structures representing these alternative analy-
ses. Retention of the alternatives avoids the reanalyses of previously processed
substrings which occurs in a backtracking system. Our basic representation of a
surface string is illustrated in Figure 4.

Nodes identified by the atoms B0, SNOW, IS, and WHITE are atomic nodes
and represent objects: the empty string, and tokens “SNOW™, “IS”, and
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MNode Category Iype of Concept

Non-dominated (asserted) Asserted proposition which is
molecular node "believed” by the System
Dominated molecular node Proposition or structured object which

‘{s a participant in a proposition

Atomic node Object

Fig.2. Table of node categories

PRED PRED

M5 M6

®
?
b

@IoM
ayoM

Fig.4. Basic network representation of a surface string

“WHITE", respectively. Node M4 is molecular and represents the initial string
“SNOW™, MS is also molecular and represents the initial string “SNOW IS”, and
similarly for node M6. A node such as M6 that represents an object would typi-
cally be dominated in our system by some node representing a proposition
about it.

As each word of an input string is read by the system, the network representa-
tion of the string is extended and relevant rules stored in the SNePS network are
triggered.

Interpretations of surface strings are also represented as nodes of our network
knowledge base. The kernel language of the systemn enables the user to define case
frame structures and to define rules to guide the system in interpreting input utter-
ances.
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1.6 Core Knowledge and the Kernel Language

Our approach is to provide the teacher (user) with a kemel language in which she
can begin to “explain™ the syntax and semantics of some natural or invented lan-
guage to the system. The present version of our kernel language includes:

a) predefined terms such as L-CAT, the set of the names of lexical classes, and
S-CAT, the set of the names of string classes; S-CAT contains the important
category names ANT-CLAUSE, CQ-CLAUSE, and RULE-STMT, which are
used to bootstrap into a more sophisticated rule input capability;

b) prcdcﬁncd objects such as (i) initial strings and (ii) bounded strings with begin-
ning and ending token;

c) predefined relations such as (i) lexeme L is a member of category C; (i)
bounded string B is a member of category C and this structure is represented
by S; (iii) structure S expresses concept C; (iv) structure S1 is a constituent of
structure S2;

d) predefined functions such as (i) a test to determine whether two network nodes
are identical, (ii) a test to determine whether two bounded surface strings
match, and (iii) a test to determine whether one bounded string precedes
another bounded string.

The KL provides the teacher with a basic language of rewrite rules for the purpose
of defining syntactic lexical insertions, context free phrase structure rules, and con-
text sensitive rules as well as semantic mappings from string categories to case
frame structures and mappings from string categories to case frame participant or
component slots.

1.7 Metalanguage Conventions and Symbols

In this chapter, we use the notational convention that words written in upper case
letters denote words of KL and we use the metasymbols:

() denote a non-terminal; if the angle brackets enclose the name of a category of
the core or a user-defined category, then such usage denotes a variable whose
domain is the category named within the enclosing brackets.

() for grouping.

* Kleene star: when used as a superscript on an item, denotes zero or more of
the items in a finite sequence.

+ when used as a superscript on an item, denotes one or more of the items in a

- finite sequence.
. ellipsis.
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2 Core Knowledge and Representations
2.1 Uniform Representation and Intensional Constructs

We use the semantic network formalism to represent both syntactic and semantic
knowledge in the form of assertions and rules to be applied in inference forma-
tion. We include linguistic knowledge in the network knowledge base and use the
network formalism as a uniform “language™ with which to represent all types of
knowledge. Thus we model surface strings and syntactic properties and categories
as intensions (Woods, 1975; Brachman, 1977; Maida and Shapiro, 1982), con-
cepts, or objects of thought.

2.2 Predefined Categories, Objects, Relations, Functions
2.2.1 Predefined Categories

We are investigating the capability of an NLU system becoming more adept in the
use of some language by being instructed in the use of the language. The system
must start with some language facility, but we are striving to make the core knowl-
edge base as small and theory-independent as possible.

Included among the core primitives are certain predefined categories. Since we
are designing a language capability that is as theory-independent as possible and
not a robust parser for a predetermined language such as English, some of these
categories are initially empty, while others have very few members. All the catego-
ries are to be utilized by the teacher, either directly or indirectly, and the member-
ship of the categories expanded by the teacher as the definition of her target lan-
guage takes shape.

The most basic of these categories are L-CAT, S-CAT, and VARIABLE. L-CAT
consists of the names of lexical classes or classes of terms. L-CAT initially con-
tains the predefined terms L-CAT, S-CAT, VARIABLE, PUNCTUATION, and
FUNCTION-NAMES. Names that the teacher would add to L-CAT might
include, for example, NOUN, VERB, and PREPOSITION.

The purpose of VARIABLE is to contain all the identifiers that the teacher will
use as variables in her processing rules when stated as input to the system. The
VARIABLE category is initially empty.

The category PUNCTUATION initially contains the punctuation marks period,
single-quote, and double-quote.

The class FUNCTION-NAMES contains the names of the functions that the
- teacher has available to be used in a form of procedural attachment to the declar-
ativé rules of the network knowledge base. FUNCTION-NAMES initially con-
tains the names of the tests discussed in Section 2.2.4: IDENTITY-TEST,
STRING-MATCH-TEST, and PRECEDES-TEST.

S-CAT is defined to be the set of all the names of string categories. S-CAT ini-
tially contains the names of the predefined string categories UTTERANCE, P-
RULE, CASE-FRAME-DEFINITION, CASE-SLOT-DEFINITION, LITERAL,
LITERAL-STRING, UNIQUE-MEANING-CAT, VAR-APPOSITION-PHR,
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MAIN-APPOS-PHR, VAR-NAME, ANT-CLAUSE, CQ-CLAUSE, and RULE-
STMT. The string categories P-RULE, CASE-FRAME-DEFINITION, CASE-
SLOT-DEFINITION, LITERAL, LITERAL-STRING, and VAR-NAME each
have predefined syntax. For the remaining string categories except UTTER-
ANCE, the definition of the syntax is left to the teacher, VAR-APPOSITION-
PHR and RULE-STMT having restrictions discussed later in this article. The class
UTTERANCE contains all input surface strings.

The predefined string category P-RULE includes all strings that qualify as pro-
duction or syntactic rewrite rules as discussed in Section 2.5.2. These rewrite rules
are part of the kernel language understood by the system.

The kernel language includes semantic rewrite rules to enable the teacher to
define case frames and associations between case frames and particular string
categories for use in the interpretation of input utterances. CASE-FRAME-DEFI-
NITION and CASE-SLOT-DEFINITION are string categories that contain the
two types of semantic rewrite rules. The capability associated with the CASE-
FRAME-DEFINITION and CASE-SLOT-DEFINITION classes is discussed in_
Section 2.5.3. :

LITERAL is the category of strings consisting of a single-quote mark followed
by a lexeme. LITERAL-STRING is the category of strings that consist of a pair of
double-quote marks enclosing a surface string.

VAR-APPOSITION-PHR, MAIN-APPOS-PHR, and VAR-NAME are string
categories that enable a variable to be used as an appositive so as to establish the
variable as the identifier for the MAIN-APPOS-PHRase which it is adjacent to.
For example, after input of appropriate user-defined rules to the system, the string
“a noun-phrase X" (from the sentence “If the head-noun of a noun-phrase X has
number Y then X has number Y™) could be parsed as a VAR-APPOSITION-PHR
with “a noun-phrase” as the MAIN-APPOS-PHR and “X"” the VAR-NAME so
that in parsing the stated rule, X is remembered by the system as an identifier for
the unknown noun-phrase refered to in the phrase and is thus capable of being
referred to again later as in the given rule example. Since no referencing mecha-
nisms are built into our system to enable the teacher to refer to previously men-
tioned concepts, the above string categories assist the teacher in establishing rules
to determine the referencing process according to her own theory. The use of this
capability is illustrated by example in Section 3.

As the teacher proceeds to instruct the system in her language definition, she
will need to enter rules that cannot be expressed in the language of rewrite rules.
Such rules would include rules concerning the semantics of utterances. Therefore,
the core primitives include three initially empty string categories, RULE-STMT,
ANT-CLAUSE, and CQ-CLAUSE to enable the teacher to define the syntax of
general conditional rules. These categories are discussed in subsequent sections.

UNIQUE-MEANING-CAT is defined to be the class of all the strings that
have a unique meaning. That is, if a string is in UNIQUE-MEANING-CAT, it
must express the same intension each time it is encountered in an input utterance.
As stated in Section 1.2, a premise of our theory and NL system is that each time a
given word or string is “read” by the system, it has a new or different meaning
unless this meaning is determined by rules and/or assertions input by the
teacher.
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2.2.2 Predefined Objects

The predefined objects essential to our theory and implementation are the con-
cepts of the Initial String and the Bounded String. These objects and their network
representations are described below.

a) Initial string S consists of the word or symbol W con-
catenated to the initial string Q. Q may be the null string
represented by node BO.

b) Bounded string B represents the surface string begin-
ning with the last word of initial string S1 and ending
with the last word of initial string S2 where S1 precedes
S2.

2.2.3 Predefined Relations

It is necessary for the NL system to have a set of predefined relations for knowl-
edge representation. The current set of these relations and their corresponding
semantic network structures are listed below.

a) Lexeme L is a member of category C; e.g., node M21
of Figure 5 represents the concept that ‘STUDENT is a
NOUN.

b) The bounded string B is in category C and this struc-
ture or parse of the string B is represented by node S
(analogous to a node of an annotated parse tree); e.g.,
node M43 of Figure 5 represents the concept that the
structure represented by B21 represents a parsing of
the bounded string represented by M42 as an INDEF-
NOUN-PHRASE.

¢) Structure or parsed string S expresses concept C; e.g.,
node M20 of Figure$ represents the concept that the
string “NOUN?"™ expresses the category of nouns repre-
sented by node B10.
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d) The structure S1 is a constituent of structure S2; e.g.,
node M44 of Figure$ represents the concept that the
literal ‘STUDENT is a constituent of the structure rep-
resented by node B21.

¢) The rule structures of SNePS (Shapiro, 1979 a).

Figure S shows a surface string enhanced by additional structure that would result
from the system's reading and parsing the input string “A STUDENT" after some
syntactic rules had been input by the teacher (e.g., 'A is an INDEF-DET, 'STU-
DENT is a NOUN, a string consisting of an INDEF-DET followed by a NOUN
is an NOUN-PHRASE).

2.2.4 Predefined Functions

The following functions are essential for the NL system and could not be effi-
cently implemented in the declarative SNePS language.

a) Identity test takes two network nodes as arguments, and retumns true if the two
nodes are identical and returns false otherweise.

b) String-match test takes two bounded strings in network representation as argu-
ments, and returns true if the sequence of words or symbols in the two strings
are identical, and returns false otherwise.

¢) Precedes test takes two bounded strings in network representation as argu-
ments, and returns true if the first string precedes the second string in the input
stream, and returns false otherweise.

2.3 The Reading Function

The system’s reading function “reads™ one token (lexeme or punctuation mark) at
a time from the input stream. For each input token, the structure of Figure 6 is
added to the network, where node S represents the previously added initial string,
C represents the lexical category of the token, I represents the newly established
initial string, and B represents the newly added bounded string.

JIf the token belongs to any lexical categories, this membership would already be
represented in the network in the form of relation (a) of Section 2.2.3 (how such
relations are established in explained in Section 2.4). The lexical categories to
which the input token belongs are found in the network by the reading function
and, for each such category C, a node such as M of Figure 6 is added. If no such
categories exist, then only the initial string and the bounded string are added.

Forward inference may be triggered by the addition of the network of Figure 6
for each token, depending on what rules are already in the system. For example, in
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Fig.5. Surface string enhanced
with syntactic structures

Fig.6. The structure added to the
network for each input token
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Figure 5, nodes M38 und M41 are added by the reading function and nodes M42, '
M43, M44, and M45 are built only if there is a rule in the system that asserts that
an INDEF-DET followed by a NOUN is an INDEF-NOUN-PHRASE.

2.4 The Representational Mapping
2.4.1 Introduction

Not all strings of a language form meaningful “chunks™. For example, the sub-
string “a large™ from the sentence “A large aggressive dog frightened the girl” is
not a conceptually coherent constituent of the sentence. Many researchers, e.g.,
Fodor and Garrett (1967), Bever (1970, 1973), and Levelt (1970, 1974), have inves-
tigated the relationship between surface constituents and the conceptually coher-
ent components of an utterance. There seems to be good evidence for surface con-
stituents being the coherent units for comprehension of discourse. How sentential
constituents or discourse constituents (moving up to a higher level in the organiza-
tion of text) are utilized in the comprehension process is an active field of research
(Brown and Yule, 1983).

We let R designate the representational mapping (Allen, 1978) from surface
strings to their interpretations. The domain of R contains the categories of strings
that form conceptually coherent units, possibly depending on linguistic or other
contexts. The domain of R initially contains predefined categories L-CAT, S-CAT,
VARIABLE, LITERAL, LITERAL-STRING, VAR-APPOSITION-PHR, RULE-
STMT, P-RULE, CASE-FRAME-DEFINITION, and CASE-SLOT-DEFINI-
TION. They are discussed in the following sections.

We provide the teacher of the system with the facility for determining what the
conceptually coherent constituents will be, in addition to the core, and for
instructing the system in their use.

2.4.2 Base Cases

The categories L-CAT, S-CAT, VARIABLE, LITERAL, and LITERAL-STRING
are the base cases for the representational mapping. The most basic subclass of the
domain of R is L-CAT, the class of identifiers for the lexical categories of the sys-
tem, including both system identifiers and user-defined identifiers. The class L-
CAT contains the predefined identifiers L-CAT, S-CAT, and VARIABLE. The
representational mapping applied to any identifier in L-CAT maps to a constant
base node. In Figure 6, the interpretations of the identifiers L-CAT and S-CAT are
represented by nodes B1 and B2 respectively. Similarly, if the system is informed
that "NOUN is an L-CAT, then its interpretaticn is represented by a base node (B4
of Fig.7). The information that "'GOOSE is a NOUN and that 'NOUN-PHRASE
is in S-CAT is also represented in Figure 7.

A member of VARIABLE maps to a corresponding network variable node.
Since the interpretation of a user variable must be local to the rule in which it is
used, the representational mapping applied to the class VARIABLE is handled in
a special manner as explained in Section 3.
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Fig.9. Representational mapping applied to a LITERAL-STRING

The representational mapping applied to a LITERAL (defined in Section 2.2.1
as the single-quote mark followed by a word) maps to the node whose identifier is
the word itself, as illustrated in Figure 8.

The representational mapping applied to a LITERAL-STRING (a string
enclosed by double-quote marks) maps to the bounded string representing the
string enclosed by the quote marks. Figure 9 illustrates the representational map-
ping applied to the literal string “SNOW [S WHITE".
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Fig. 10. Reprsentaiional mapping applied to a RULE-STMT

2.4.3 Propositions and Structured Objects

Some string categories contained in the domain of R are mapped to non-atomic
network (case frame) structures representing propositions or structured objects by
the representational mapping. The system has just two predefined string catego-
ries, namely P-RULE and RULE-STMT, whose members’ interpretations are rep-
resented as non-atomic structures by the representational mapping. P-RULEs
have a predetermined syntax and are translated into SNePS network rules using
the predefined structures. RULE-STMT is defined as the class of strings that are
interpreted by the system as general rules. This class is initially empty and the syn-
tax is to be determined by the teacher. A RULE-STMT must have an ANT-
CLAUSE and a CQ-CLAUSE as constituents. The structure resulting from the
application of the representational mapping R to a RULE-STMT is illustrated in
Figure 10.

The ANT-CLAUSE category is defined as the class of strings that can be used
in antecedent position in rules input by the teacher. Similarly, the CQ-CLAUSE
category is defined as the class of strings that can be used in consequent position
in rules input by the teacher. Both of these classes are initially empty and the syn-
tax of RULE-STMTs, ANT-CLAUSEs, and CQ-CLAUSE: is to be determined by
the teacher. An example is discussed in Section 3.

The teacher can add new string categories, whose interpretations are to be rep-
resented by non-atomic network structures, to the domain of R and specify the
semantics of these string categories by using the semantic rewrite rule capability
discussed in Sect.2.5.3.

2.4.4 Participants in Propositions or Relations; Components of Structured Objects

In the previous section, the category of natural language phrases that assert rela-
tions between concepts or objects was discussed briefly. This type of phrase maps
to the top node of a molecular representational structure.

Many phrases of natural language refer to individual concepts or objects that
are participants in relations or propositions or that are components of structured
objects. This type of phrase would map to a slot of one or more network case
frame structures. The system has no predefined string categories which map to
“participant” slots. The syntax for creating new categories of this type and their
associated semantics is discussed in Sa%x_gg 2.5.3.




2.5 Kemnel Language
2.5.1 Predefined Terms

As previously indicated, we are attempting to provide a facility with which a per-
son can define a target language and yet keep the core as small and unbiased as
possible. It is essential to provide the person (teacher) with a kernel language with
‘which to start building up her language definition. The kernel language (KL) of
our system consists of predefined terms, syntactic rewrite rules, and semantic rew-
rite rules. The predefined terms of the system are the names of the categores dis-
cussed in Section 2.2.1.

2.5.2 Syntactic Rewrite Rules

The kemel language ‘includes linguistic rewrite rules to enable the teacher to
iustruct the system in the basic syntax of her target language.

a) Lexical Entry: The KL includes syntactic production rules of the form (L-CAT)
— (LITERAL) where (L-CAT) represents the name of a lexical category that has
already been defined. A LITERAL was.defined in Section 2.2.1 as consisting of
the single-quote followed by a word (the single-quote is part of the KL and indi-
cates that the following word is mentioned rather than used). This form of produc-
tion rule is the means of entering lexical items such as

L-CAT —'NOUN

L-CAT — "PROPER-NOUN
L-CAT — 'DEF-DET
L-CAT — 'INDEF-DET
L-CAT — 'VERB

L-CAT — 'BE-VERB

L-CAT — 'ADVERB

L-CAT — 'ADJECTIVE
NOUN — 'GOOSE

NOUN — 'GEESE
PROPER-NOUN — 'GRADY
PROPER-NOUN — 'GLADYS
DEF-DET — 'THE
INDEF-DET — ‘A

VERB — "HAS

BE-VERB —'IS

ADVERB — 'THEN
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L-CAT — 'PREPOSITION
L-CAT — 'CONJ

L-CAT — 'PROPERTY
S-CAT — "HEAD-NOUN
S-CAT — 'STRING
VARIABLE — X
VARIABLE — 'Y

" ADJECTIVE — 'WHITE

ADJECTIVE — 'SINGULAR
ADJECTIVE — 'PLURAL
PREPOSITION — 'OF

CONJ —'IF

PROPERTY —» 'COLOR
PROPERTY — 'NUMBER
UNIQUE-MEANING-CAT —
'ADJECTIVE
UNIQUE-MEANING-CAT —
'PROPERTY




b) Context Free Rules: The KL includes rules of the form
(S-CAT) — (sh. . {sh, k>0,

where (S-CAT) represents the name of a string category and for each i, (s); is either
a LITERAL, the name of a lexical category previously entered as a member of
L-CAT as in (a) above, or the name of a string category.

Examples: PROPERTY-CLAUSE — SUBJECT PREDICATE
SUBJECT — NOUN-PHRASE
NOUN-PHRASE — LITERAL
NOUN-PHRASE — VARIABLE
NOUN-PHRASE — PROPER-NOUN
PREDICATE — RELATION-PREDICATE
PREDICATE — BE-PREDICATE
RELATION-PREDICATE — RELATION PREDICATE-ADJ
BE-PREDICATE — BE-VERB PROPERTY-INDICATOR
RELATION — '"HAS PROPERTY-INDICATOR
PROPERTY-INDICATOR — PROPERTY-CLASS-INDICATOR
PROPERTY-INDICATOR — PROPERTY
PROPERTY-CLASS-INDICATOR — PREDICATE-ADJ
RULE- —'IF ANT-CLAUSE 'THEN CQ-CLAUSE

¢) Context Seiisitive Rules: The KL includes syntactic production rules of the form

(Ish. . (1s)q — {rs)s. . .{rs)q, n>0,

where each element (Is); or (rs); is either a LITERAL, the name of a lexical cate-
gory, or the name of a string category; both sides of the rule must have the same
number of elements and for each element (Is); of the left side,

1) if (Is); is a LITERAL or lexical category, then the corresponding element {rs}); of
the right side must be the same as (Is);;

2) if (Is); is the name of a string category, then the corresponding element (rs); of
the right side can be either a LITERAL, lexical category name, or string cate-
gory name.

This facility allows the user to enter context sensitive rules, such as:

RELATION PREDICATE-ADJ — RELATION ADJECTIVE
RELATION PREDICATE-ADJ — RELATION VARIABLE
BE-VERB PREDICATE-ADJ — BE-VERB ADJECTIVE

'IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE

"'THEN CQ-CLAUSE — 'THEN PROPERTY-CLAUSE

The first rule asserts that in the context of 2 RELATION, an ADJECTIVE is rec-
ognized as a PREDICATE-ADJ, the second asserts that in the context of a
RELATION, a VARIABLE is parsed as a PREDICATE-ADJ, and the third
asserts that in the context of a BE-VERB, an ADJECTIVE is parsed as a PREDI-
CATE-AD/J. Similarly, the fourth and fifth rules state that following the word “IF”
or “THEN", a PROPERTY-CLAUSE is parsed as an ANT-CLAUSE or CQ-
CLAUSE, respectively.
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SUBJECT :: NOUN-PHRASE

NOUN-PHRASE :: LITERAL

NOUN-PHRASE :: VARIABLE

NOUN-PHRASE :: PROPER-NOUN
PROPERTY-INDICATOR :: PROPERTY-CLASS-INDICATOR
PROPERTY-INDICATOR :: PROPERTY

PREDICATE-ADJ :: ADJECTIVE

PREDICATE-ADJ :: VARIABLE

define the semantics of a PROPERTY-CLAUSE to be a case frame with three
slots, such that the PROPERTYOF slot is filled by the interpretation of the SUB-
JECT of the PROPERTY-CLAUSE, the PROPERTY slot is filled by the interpre-
tation of the PROPERTY-INDICATOR constituent of the PROPERTY-
CLAUSE, and the VALUE slot is filled by the interpretation of the PREDICATE-
ADJ constituent. The second and third definitions above indicate that the-
interpretation of an ANT-CLAUSE is the same as the interpretation of its PROP-
ERTY-CLAUSE constituent and that the interpretation of a CQ-CLAUSE is the
same as the interpretation of its PROPERTY-CLAUSE constituent, respectively.
The next rule defines the interpretation of a SUBJECT to be the same as the inter-
pretation of its NOUN-PHRASE constituent. The next three rules define the
interpretation of a NOUN-PHRASE to be the interpretation of either its
LITERAL constituent, its VARIABLE constituent, or its PROPER-NOUN con-
stituent, whichever it has. The remaining rules are similarly understood by the sys-
tem.

The representational mapping R builds a network structure such as that domi-
nated by node M of Figure 11 as the interpretation of a PROPERTY-CLAUSE.

R

<PROPER‘1‘ -CLAUSE) CECEXDEZEESEE)
$
l""’,4fff/’/’”x-5\\\\5\\§~\\~\\\\\‘ c¢©
<Y

<SUBJECT> <PROPERTY- <PREDICATE-ADJ> R[(SUBJEC?)]
INDICATOR>

R[<ADJECTIVE>]

R[<PROPERTY>]
Fig.11. Representational mapping applied to a PROPERTY-CLAUSE

b) Case Frame Slot-Filler Definitions: In order to provide a capability for defining
the semantics of a phrase whose interpretation is a slot-fiiler in a case frame, the
following type of semantic rewrite rule is included. The syntax of the CASE-
SLOT-DEFINITION is

(phr-name) > > ([(slot-name), (string-name), . .
(slot-name), (string-name), D*

where the square brackets are part of the object language and the + and the pa-
rentheses are metasymbols. The (phr-name) is the name selected by the teacher for
the category of strings whose semanztch§ 7‘eilre defined by the expression to the right




2.5.3 Semantic Rewrite Rules

a) Case Frame Definitions: The KL includes language to enable the teacher to
define case frames and instruct the system in their use by using the syntax of a
CASE-FRAME-DEFINITION:

(string-cat) :: (slot-name), (constit-name), . . .
(slot-name), (constit-name),

where n> 0. Such a CASE-FRAME-DEFINITION is used by the system as fol-
lows: A string that is identified as being in category (string-cat) is mapped into a
case frame such that for each slot identified by (slot-name);, the slot-filler is the
interpretation of the constituent string identified by (constit-name);. The constitu-
ent strings need not be immediate constituents of the string in category (string-cat).
The same (constit-name) can be used to specify the filler for more than one slot._
For example, suppose the teacher wants to define a language in which an utter-
ance such as “JOHN BOUGHT A HOUSE", involving the act of purchase, is
interpreted to mean that the person bought the object for himself unless otherwise
stated. To handle the semantics of such a clause, the teacher might want to define
a case frame with AGENT and BENEFICIARY slots which are both filled by the
interpretation of the same constituent of the ‘clause. Qur CASE-FRAME-DEFI-
NITION facility provides for this eventuality.

If a string is parsed as a (string-cat) but is missing a constituent specified by the
semantic rewrite rule, then a default representation of the slot-filler corresponding
to the missing constituent is established in the form of an atomic node about
which the system knows nothing, other than its being a participant in the case
frame. In the context of a RULE-STMT the atomic node will be a variable node
(see Section 1.3), otherwise a constant node. For example, to represent the inter-
pretation of a sentence such as “THE HOUSE WAS PURCHASED YESTER-
DAY™ the teacher might want to use the same case frame mentioned in the pre-
ceding paragraph. Since an AGENT and BENEFICIARY are implicitly part of
the act of purchase, but not explicitly mentioned in the sentence, it is reasonable
for the unmentioned participants to be represented in the interpretation of the sen-
tence. The above default representation for the interpretation of a missing constit-
uent provides the teacher with a facility for instructing the system how to interpret
such a sentence.

An alternative syntax for the CASE-FRAME-DEFINITION is

(string-cat): : (constit-name).

The right side of the :: symbol is a degenerate case frame and the definition is
interpreted as meaning that the semantics of the string of category (string-cat) is
the same as that of the constituent string of category (constit-name). For example,

PROPERTY-CLAUSE:: PROPERTY OF SUBJECT
PROPERTY PROPERTY-INDICATOR

VALUE PREDICATE-AD]J
ANT-CLAUSE :: PROPERTY-CLAUSE
CQ-CLAUSE :: PROPERTY-CLAUSE
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of the symbol > >. The object language symbol + must be used in place of at
least one (string-name), designating the position of the interpretation of the string
(phr-name) in the case frame.

Each set of brackets encloses a case frame definition as described in the previ-
ous section. That is, each slot named (slot-name); is filled by the interpretation of a
string in category (string-name);, if a string of category (string-name); is present as a
(not necessarily immediate) constituent of the string of category (phr-name). The
+ symbol marks the slot whose filler is the interpretation of the (phr-name) string.
The system represents the interpretation of the (phr-name) string (1) as a variable
atomic node if the semantic rule is used in the context of a RULE-STMT and (2)
as a constant atomic node, otherwise. If a slot-filler constituent is specified in a
semantic rewrite rule, but is missing from the surface string to which the rule is
being applied, a default representation of the siot-filler corresponding to the miss-
ing constituent is established in the form of an atomic node about which the sys-
tem knows nothing, other than its being a participant in the case frame (as in the
previous section for a CASE-FRAME-DEFINITION).

Consider the following example CASE-SLOT-DEFINITION:

PROPERTY-CLASS-INDICATOR > > (MEMBER ADJECTIVE PROP-
ERTY-CLASS +]

According to this rule, a PROPERTY-CLASS-INDICATOR should have an
ADJECTIVE constituent and the interpretation of a string of the PROPERTY-
CLASS-INDICATOR category would be represented by an atomic node which
fills the PROPERTY-CLASS slot of a case frame whosc I{EMBER slot is filled
by the interpretation of the ADJECTIVE constituent. The mapping from a surface
. string to the network representation of its interpretation is illustrated in Figure 12.

In order to prepare for the example discussed in Sect.3, the following rule is
input:

INDEF-S-PHRASE > > [BSTR STRING CAT S-CAT STRC +]

According to this rule, the interpretation of a string parsed by the system as an
INDEF-S-PHRASE would be represented by an atomic node filling the STRC
slot of a case frame whose CAT slot is filled by the interpretation of the S-CAT
constituent of the INDEF-S-PHRASE and whose BSTR slot is filled by the
STRING constituent. This is illustrated in Figure 13.

<PROPERTY-CLASS-INDICATOR> EmxEoxws) R[<ADJECTIVE>

<ADJECTIVE>
Fig.12. Representational mapping applied to a PROPERTY-CLASS-INDICATOR
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<INDEP-S-PHRASE)> sEusssssEszEns) R{<STRING>]

R{<S-CAT>]

<STRING> <S-CAT>
Fig.13. Representational mapping applied to an INDEF-S-PHRASE

PROPE -CLAUSE

SUBJECT pnso'icus
RELATION=-PREDICATE )
NOUN-PHRASE RELATION PREDICATE-ADJ

PROPERTY-INDICATOR

PROPEiR— NOUN PROP?RTY ADJ E‘CTIVE
GRADY HAS COLOR WHITE

Fig.14. Parse tree for sample input utterance

26 Use in Language Processing

To illustrate the system's use of the language definition developed via the rewrite
rules of the preceding sections, we show some sentences of this language which
refer to the language itself compared with some that refer to a non-linguistic
domain. Thinking affectionately of her pet geese, the teacher informs the system
that “GRADY HAS COLOR WHITE". The system recognizes and builds the
parse tree of Figure 14 for the utterance. We show the more conventional form of
the parse tree, rather than the equivalent network parse tree that the system actu-
ally builds in order to simplify the figure.

In the preceding sections, the teacher has entered rewrite rules into the system
to define the semantics for certain string classes (e.g., PROPERTY-CLAUSE,
PROPERTY-INDICATOR), thereby identifying the conceptually coherent constit-
uents for the language definition. The system applies these semantic rewrite rules
and builds the structure of Figure 15 as the interpretation of the utterance. The
assertion that the parsed input utterance expresses the concept represented by
node M75 is also established in the network.

Similarly, the system can process the input utterance “‘GOOSE HAS NUM-
BER SINGULAR". The resulting parse tree is shown in Figure 16.

The representation of the interpretation of the utterance is shown in Figure 17.
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Fig.15. Representation of the interpretation of input utterance

PROPERTY~-CLAUSE
SUBJECT PRED{CATE
RELATION-PREDICATE
NOUN-PHRASE RELATION PREDICATE-ADJ
PROPERTYI—INDICATOR
7?!. ) PROPERTY ADJECTIVE
¢ GOOSE HAS NUMBER SINGULAR

@ EXPRESSTON

Fig.17. Representation of interpretation of utterance

As stated in Section 1.5, the NL system distinguishes between a word or phrase
and its interpretation. The interpretation of a LITERAL is the word following the
quote mark (the word *GOOSE, in this case). Thus node M80 represents the prop-
osition that singular number is a property of the word ‘"GOOSE and not of the
concept expressed by the word '"GOOSE. On the other hand, the interpretation of
the word '"GRADY is represented by rode B20 of Figure 15, and it is this entity
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that has color white. Comparing these two examples illustrates the knowledge rep-
resentations we have established as well as the capability for handling strings and
their interpretations as domain knowledge, which is fundamental to our theory
and system.

At this stage, the teacher can simplify the language to use with the system for
expressing properties. She.does this by inputting the following rewrite rules so that
property class entries can be made.

PROPERTY-CLASS-ENTRY — ADIJECTIVE 'IS 'A PROPERTY
PROPERTY-CLASS-ENTRY :: MEMBER ADJECTIVE
PROPERTY-CLASS PROPERTY

Since the system has previously been informed that "WHITE is an ADJECTIVE
and "COLOR is a PROPERTY, the utterance “WHITE IS A COLOR” would be
recognized by the system as a PROPERTY-CLASS-ENTRY. Also since, in Sec--
tion 2.5.3, for the purposes of this example, the teacher entered "ADJECTIVE and
"PROPERTY into UNIQUE-MEANING-CAT, the surface strings that are in the
categories ADJECTIVE and PROPERTY cre each treated as having a unique
interpretation. Thus different instances of the same string such as "WHITE are
treated by the system as having the same interpretation and it uses just one net-
work structure to represent this interpretation. Therefore, using the above seman-
tic rewrite rule, the system builds the structure of node M8S5 of Figure 18 to repre-
sent the interpretation of the utterance, finding the nodes B21 and B22 of
Figure 15 to represent the interpretation of '"COLOR and *"WHITE, respectively.

Similarly, the system can be informed that “PLURAL IS A NUMBER" and it
builds a structure similar to that of Figure 18 to represent the assertion that the
concept expressed by 'PLURAL is a member of the property-class NUMBER.

If the utterance “GLADYS IS WHITE" is now input to the system, the utter-
ance is also recognized as a PROPERTY-CLAUSE as shown in Figure 19.

The semantic rewrite rules of the previous section are used by the system to
build the structure dominated by node M90 as the representation of the interpreta-
tion of the utterance.

According to the semantic rule for a PROPERTY-CLAUSE, the PROPERTY
slot in the case frame is filled by the interpretation of the PROPERTY-INDICA-
TOR constituent of the utterance. Referring to the parse tree of Figure 19, the
PKUPERTY-INDICATOR consists of the PROPERTY-CLASS-INDICATOR.
The semantic rule

PROPERTY-INDICATOR: : PROPERTY-CLASS-INDICATOR

of the previous section instructs the system to use the interpretation of the PROP-
ERTY-CLASS-INDICATOR as the interpretation of the PROPERTY-INDICA-
TOR. ‘The rule for interpreting a PROPERTY-CLASS-INDICATOR is the
CASE-SLOT-DEFINITION presented in the previous section:

PROPERTY-CLASS-INDICATOR > > [MEMBER ADJECTIVE PROP-
ERTY-CLASS + ]

This rule instructs the system to interpret the PROPERTY-CLASS-INDICATOR
as the PROPERTY-CLASS slot-filler of the frame whose MEMBER SLOT is
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Fig. 18. Representation of interpretation of utterance

- PROPERTY-CLAUSE

SUBJECT PRED}ICATE
BE-PREDICATE

pnovsxr¥-ruurcaron
PROPERTY-CLASS-INDICATOR
NOUN-PHRASE
_ _ paeuxc1rs-ana
PROPER-NOUN BE-VERB ADJECTIVE
GLADYS ‘ 18 WHITE

Fig.19. Parse tree for input utterance

Fig.20. Representation of interpretation of utterance

filled by WHITE. Node B22 of Figures 15 and 18 is found as the representation of
the interpretation of "WHITE, since the members of the class ADJECTIVE have
been defined by the teacher as having “unique semantics™. Thus, the system uses
node B22 to use as the MEMBER slot-filler for the case frame associated with a
PROPERTY-CLASS-INDICATOR. Then B21 of Figure 15 is found and used as
the PROPERTY-CLASS slot-filler as shown in Figure 20, since it represents the
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PROPERTY-CLASS that has WHITE as a MEMBER. Node B21 is also the rep-
resentation of the interpretation of the PROPERTY-CLASS-INDICATOR string.
In general, a CASE-SLOT-DEFINITION maps a surface string to a participant in
a relation or proposition.

In a manner similar to the parsing and interpretation of the utterance
“GLADYS IS WHITE", the system also understands the utterance “‘GEESE IS
PLURAL". The system's language definition is again used as a metalanguage to
expand upon the same language itself.

3 Increasing the System’s Language Capability Through
Its Language Capability

‘3.1 Motivation ’ -

Since we treat linguistic knowledge as domain knowledge, the system teacher
(user) can add to the knowledge base and instruct the system as to how to process
or understand ever more sophisticated language.

Just as a person is continually influenced by interaction with his environment,
the data base of our system is modified by each input. The knowledge base is
incrementally enhanced to form a more sophisticated system.

Since we represent language processing knowledge in the same knowledge base
and in the same formalism as other domain knowledge, it is possible to make the
system’s language processing knowledge the subject of its language processing
and this is a fundamental aspect of our approach. Thus by instructing the system
in the domain of linguistics as we would expect to be able to do with another
domain in an interactive NLU system, we can increase the system’s language .
capability through its language capability. A user can communicate with our sys-
tem in just one language via one processor without switching “modes” or interact-
ing with supportive processors in special purpose languages.

The rewrite rules of the KL are certainly not sufficient for expressing all the
rules a teacher would need to define a language of her choice. Therefore, one of
the most important capabilities that the system needs is to understand a more gen-
eral form of rule statement. A teacher should be able to bootstrap into a more
powerful rule statement language from the KL. In the next sections, we present an
example from such a bootstrap process.

3.2 Defining More-General Rule Forms

The teacher first extends the system’s language definition so that it can begin to
understand general “IF-THEN" rules. As stated in Section 2.2.1, RULE-STMT is
a predefined category. The syntax of a RULE-STMT is not predefined, but for the
interpretation process, each RULE-STMT must have an ANT-CLAUSE and a
CQ-CLAUSE constituent. The ANT-CLAUSE constituent is interpreted as the
antecedent of the rule and the CQ-CLAUSE constituent as the consequent of the
rule. Thus the rewrite rule 2B-78




RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE

defines a syntax for the RULE-STMT. The syntax and semantics of ANT-
CLAUSE and CQ-CLAUSE must also be defined. This was done is Section 2.5
(see Appendix).

The additional rules that the teacher chooses to input to the system to increase
its capability of understanding linguistic-domain language for this example are
listed below. In order to make use of the system's ability to use a VARIABLE as
an appositive to another phrase and remember the association of the VARIABLE
to the prase, the teacher inputs:

DEF-S-PHRASE — DEF-DET S-CAT

INDEF-S-PHRASE — INDEF-DET S-CAT

MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE
VAR-APPOSITION-PHR — MAIN-APPOS-PHR VAR-NAME

To explain to the system how to parse and interpret language which describes one
phrase being a constituent of another, the teacher inputs:

SUP-STRING-REF — VAR-APPOSITION-PHR

CONSTIT-REF — DEF-S-PHRASE

CONSTIT-PHRASE — CONSTIT-REF 'OF SUP-STRING-REF

NOUN-PHRASE — CONSTIT-PHRASE

CONSTIT-PHRASE > >[CONSTIT + CONSTITOF SUP-STRING-
REF]
[BSTR STRING CAT DEF-S-PHRASE STRC +]
- SUP-STRING-REF :: VAR-APPOSITION-PHR

MAIN-APPOS-PHR: : ' INDEF-S-PHRASE

NOUN-PHRASE :: CONSTIT-PHRASE

DEF-S-PHRASE = :: S-CAT

These rules will be used in the next sections.

3.3 Parsing Strategy

The parsing strategy applied by our NL system is a combined bottom-up, top-
down strategy. As each word of an input string is read by the system, the network
representation of the string is extended as discussed in Section 2.3 and relevant
rules stored in the SNePS network are triggered. All applicable rules are started in
parallel in the form of processes created by our MULTI-processing package
(McKay and Shapiro, 1980). These processes are suspended if not all their anteced-
eats are satisfied and are resumed if more antecedents are satisfied as the reading
of the string proceeds. As parsing proceeds, the annotated parse (tree(s) for an
input utterance is (are) represented in the system’s network knowledge base. Our
system builds and retains network structures corresponding to alternative analyses
of a given input string. Retention of the alternatives avoids the reanalysis of previ-
ously processed surface strings that occurs in a backtracking system.

Processing is controlled by the SNePS Inference Package (Shapiro et al., 1982),
which employs bi-directional inference. This is a form of inference resulting from
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interaction between forward and backward inference and loosely corresponds to
bi-directional search through a space of inference rules. This technique focuses
attention towards the active parsing processes and prunes the search through the
space of inference rules by ignoring rules which have not been activated. This cuts
down the fan out of pure forward or backward chaining. New rules are activated
only if no active rules are applicable.

Consider the sample input utterance “IF THE HEAD-NOUN OF A NOUN-
PHRASE X HAS NUMBER Y THEN X HAS NUMBER Y". When the first
word is read by the system, it is recognized as matching the word 'IF in the rules

RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE
'IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE

and parsing begins in a bottom-up manner. Both rules are triggered in parallel by
the SNePS MULTI package. When originally input, each of the above rules was
interpreted by the system and stored in the form of a network rule which we para-
phrase as follows (NOTE: In all the paraphrased rules of this section, V; and V,
are universally quantified variables):

(1) If a word of an input string is the word 'IF, then
(2) if V; f-llows the word "IF and V, is an ANT-CLAUSE, then
(3) if the word 'THEN follows V, then
(4)  if V, follows the word "'THEN and V, is a CQ-CLAUSE,
then the string consisting of 'IF followed by V,
followed by "THEN followed by V, is a RULE-STMT.
(5) If a word of an input string is the word 'IF, then
(6) if V, follows the word 'IF and V; is a PROPERTY-CLAUSE,
- then Vy is an ANT-CLAUSE.

(The numbers in parentheses are rule numbers, not line numbers. Thus, for exam-
ple, nested rule (3) begins with “if the word "THEN™ and continues to the period
at-the end of the sentence.)

Since the antecedent of rule (1) above is satisfied, the system questions whether
a string immediately following the word 'IF is an ANT-CLAUSE. When a SNePS
rule is triggered, a process is created forming the active version of the rule for the
purpose of such activities as data collection and variable binding. Some of these
processes act as demons, waiting for instances of their antecedents so that
instances of their consequents can be deduced. This is the case for the nested rule
(2). Since no string follows the word 'IF yet, the process for rule (2) is suspended.

These active processes, with their communication links, form the equivalent of a
hypothesized parse tree with associated expectations. The inference system .
ignores unactivated rules as long as there are applicable active rule processes
awaiing data, csscuually parsing in a top-down manner in this situation. The
hypothesized parse tree corresponding to the process of rule (2) is illustrated in
Figure 21. The parsing strategy of our system is similar to “left-comner bottom-up
parsing”™ (Burge, 1975) in that construction of a parse tree begins at the bottom left
comer, processing of a surface string proceeds in a left-to-right manner, and when-
ever an initial segment of a string has been parsed, the system attempts to establish
a goal analysis of the string or substring thereof. In the following figures, the bro-
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RULE-STMT ?
o
\\\ - ——
'le-* ANT-CLAUSE ? 'THEN ? CQ-CLAUSE ?
IF
Fig.21. Hypothesized parse tree
RULE-STMT ?
\“ —— — —_——
'"IF ANT-CLAUSE ? ‘THEN ? CO-CLAUSE ?

/\Mwse ?

PROPERTV-CLAUSE ?

IP
Fig.22. Hypothesized parse tree

ken lines indicate goals or expectations represented by antecedents of nested rules
for which active demons have net yet been created. The question-marks mdxcate
expectations which have not yet been satisfied.

The antecedent of rule (5) is also satisfied. This is a context sensitive rule which
constrains the parsing process. According to this rule, a PROPERTY-CLAUSE is
parsed as an ANT-CLAUSE in the context of the word 'IF. A process is created
forming the active version of rule (6) and this process awaits a PROPERTY-
CLAUSE following the word 'IF. Figure 22 reflects the current state of the system.
in terms of its active processes, implicit expectations, and the tokens that it has
consumed.

When the word 'THE is read by the system, the rule

DEF-S-PHRASE — DEF-DET S-CAT
is triggered as parsing continues in.a bottom-up manner. This rule is paraphrased
as:

(7) If V, is a DEF-DET, then
(8) if V, follows V, and V, is an S-CAT,
then the string consisting of V, followed by V, is a
DEF-S-PHRASE.

The antecedent of rule (7) is satisfied and a process is created for nested rule (8) to
await an S-CAT following the DEF-DET. The active processes form another
hypothesized parse tree shown in Figure 23.
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RULE~STMT ?

{//7'*-\7:' ——

N, —
' ANT-CLAUSE ? ‘THEN ?
/\mr-c':nuse ?

'/U’ PROPERTY-CLAUSE ?

CQ~CLAUSE ?

DEP-S-PHRASE ?

DBFTDE‘I‘ S~CAT ?
IF THE

Fig.23. Hypothesized parse tree

RULE-STMT ?
~NT —
e ~ T— —e— —
‘IF ANT-CLAUSE ? 'TH ? CQE&USE ?
ANT- ‘AUSE ?
'IF PROPERTY~CLAUSE ?
DEF-S—PHRASE ?
' S-CAT ?
/N ?
DEP~DET NOuw ?
IP THE

Fig.24. Hypothesized parse trees

Suppose another rule such as DEF-NOUN-PHRASE — DEF-DET NOUN

had been entered by the teacher and is present in the network knowledge base. |
This rule is paraphrased as:

(9) IfV,is a DEF-DET, then
(10) if V; follows V; and V, is a NOUN, then the string
consisting of V, followed by V, is a DEF-NOUN-PHRASE.

This latter rule is also triggered by the system’s reading of the word 'THE and the

processes created for rules (9) and (10) form another set of hypothesized parse
trees as illustrated in Figure 24.
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The parse trees of Figure 24 dominated by DEF-S-PHRASE? and DEF-
NOUN-PHRASE? represent alternative possibilities for the parse of the.string
beginning with the word "'THE. A process such as the process for rule (10) waiting
for a NOUN may remain suspended indefinitely if the expected data is not forth-
coming.

When the next word 'HEAD-NOUN is read, the system recognizes it as an S-
CAT and the process corresponding to rule (8) is resumed since it is waiting for an
S-CAT following the word "THE. Thus the string “THE HEAD-NOUN?" is recog-
nized as a DEF-S-PHRASE by application of the teacher’s rules. This DEF-S-
PHRASE then triggers the network version of the following rule and the DEF-S-
PHRASE is then recognized as a CONSTIT-REF:

CONSTIT-REF — DEF-S-PHRASE
Recognition of a CONSTIT-REF triggers the rule
CONSTIT-PHRASE — CONSTIT-REF 'OF SUP-STRING-REF
whose network representation can be paraphrased as

(11) If V, is a CONSTIT-REF, then
(12) if the word "OF follows Vi, then
(13)  if V, follows the ward 'OF and V; is a SUP-STRING-REF,
then the string consisting of V, followed by the word
'OF followed by V, is a CONSTIT-PHRASE.

Activation of rule (11) is analogous to bottom-up processing again. A process is
established for rule (12) to await the word 'OF in the input stream.

When the next word 'OF is read by the system, the demon corresponding to rule
(12) is activated and since the antecedent of rule (12) is satisfied, a process is estab-
lished for rule (13) to expect a SUP-STRING-REF following the word 'OF. No
other rules are activated by the reading of the word "OF since an active process
was waiting for this word in the input stream.

The system parses the next string “A NOUN-PHRASE™ as an INDEF-S-
PHRASE by application of the rule

INDEF-S-PHRASE — INDEF-DET S-CAT
This triggers the rule

MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE
which is paraphrased as

(14) If V, is an INDEF-S-PHRASE, then
(15) if V, follows V; and V,is a VARIABLE,
(16)  then V,is a MAIN-APPOS-PHR and V, is a VAR-NAME.

Since the antecedent of rule (14) is satisfied, a process is set up for rule (15). When
the next word "X is read, it is recognized as a VARIABLE and since the active
process for rule (15) is waiting for a VARIABLE, no unactivated rules are applied.
An example of such an unactivated rule is
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NOUN-PHRASE — VARIABLE

which we previously input to the system. Thus an alternative parse is blocked by
the expectation of a VARIABLE by the process for rule (15). By application of the
rules

VAR-APPOSITION-PHR — MAIN-APPOS-PHR VAR-NAME
SUP-STRING-REF — VAR-APPOSITION-PHR

the expected SUP-STRING-REF of rule (13) is satisfied and the string “THE
HEAD-NOUN OF A NOUN-PHRASE X" is parsed as a CONSTIT-PHRASE.
By application of the rule

NOUN-PHRASE — CONSTIT-PHRASE

the string is also recognized as a NOUN-PHRASE. Notice that the term NOUN-
PHRASE is mentioned in the input string and used in the application of the above
rule. N

At this point in the parsing process the hypothesized parse trees are illustrated
in Figure 25.

As parsing proceeds using the rules introduced in this and preceding sections of
this chapter, the resulting parse of the entire input statement is shown in Figure 26.
The string category identifiers in the tree that are underlined are the categories
that are included in the domain of the representational mapping. These are the
categories for which the teacher has defined a rule to determine the interpretation
of any member of the category (i.e., the underlining identifies the string categories
defined by the teacher as the conceptually coherent constituents of the utter-
ance).

- RULE-STMT ?

MT
/\\ — -
‘7 ANT-CLAUSE ? ‘THEN ? CQ-CLAUSE ?

ANT-FLAUSE ?
‘IF PROPERTY-CLAUSE ?

CONSTIT-PHRASE

CONSTIT-REF 'OF SUP-STRING-REF
DEF-S=-PHRASE VAR-APPOS ITION-PHR
DEF-NOUN- §-CAT MAIN-APPOS-PHR VAR-NAME
PHRASE ? INDEF-S~PHRASE
Dev-oa"r//] VARIABLE
NOUN ? INDEF-DET SCAT I
IF THE HEAD-KOUN OF A NOUN-PHRASE X

Fig.25. Hypothesized parse trees
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In this section on parsing, we have illustrated the following characteristics of our
system’s strategy:

(1) the parallel processing of applicable rules;

(2) constraint of the parsing process by the use of context sensitive rules; ,

(3) constraint of the parsing process by the SNePS Inference Package focusing on
active rule processes - the manifestation being the blocking of multiple parses
by previously established expectations;

(4) suspension and resumption of rule processes during the parsing process.

The retention of alternative analyses of a string, which avoids the reanalysis of cer-
tain strings in the case of a backtracking system, was not illustrated by the exam-
ple of this section, but is a characteristic of our system.

Also of importance in this section is the fact that the system is again using its
acquired language definition as a metalanguage to understand another i mstructlon
from the teacher concemning the language itself.

3.4 Interpretation of the Input Rule Statement

During the interpretation process, a VARIABLE of the user’s language is trans-
lated into a variable node of the semantic network. The scope of a user VARI-
ABLE is the utterance in which it occurs. The association of a user VARIABLE to
its interpretation is maintained on a list only during translation of the utterance in
which the VARIABLE occurs.

The interpretation of a user VARIABLE is as follows: If a VARIABLE is used
as the VAR-NAME of a VAR-APPOSITION-PHR, discussed briefly in Sec-
tion 2.2.1, then the system uses the interpretation of the MAIN-APPOS-PHR as
the interpretation of the VARIABLE, and stores this association on the variable
association list. Otherwise, the system checks the variable association list for a
corresponding interpretation already established. Otherwise, a new variable node
is created as the interpretation of the user VARIABLE, the new pair once again
being added tc the variable association list.

As shown in Figure25, the phrase “A NOUN-PHRASE X" was recognized by
the system as 2 VAR-APPOSITION-PHR, with “A NOUN-PHRASE" recognized
as the MAIN-APPOS-PHR and 'X as the VAR-NAME. Thus the interpretation of
the phrase “A NOUN-PHRASE" is remembered by the system as the interpreta-
tion of "X. The string “A NOUN-PHRASE" has been recognized as an INDEF-S-
PHRASE and thus the semantic rule

INDEF-S-PHRASE > > [BSTR STRING S-CAT STRC +]

of Section 2.5.3 applies. As discussed in Section 2.5.3, if a constituent is mentioned
in a semantic rule but is missing from the surface string to which the rule applies,
then the system represents the interpretation of the constituent as an atomic node.
Furthermore, this atomic node is a variable node in the context of a RULE-STMT.
Since the slot-filler constituent of category STRING is not present in our example
INDEF-S-PHRASE, an atomic vanable node (V2 of Fig.26) is built to represent
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the interpretation of the missing STRING constituent. The representation of the
interpretation of the S-CAT constituent “NOUN-PHRASE" is node B2S, repre-
senting the category of NOUN-PHRASEs. The STRC slot-filler becomes the
interpretation of the INDEF-S-PHRASE. This slot-filler is also represented by an
atomic variable node (V1 of Fig.26) as explained in Sect.2.53. The + symbol in
the rewrite rule marks the participant of the proposition represented by the case
frame whose representation is also the representation of the interpretation of the
INDEF-S-PHRASE. Thus the interpretation of the INDEF-S-PHRASE “A
NOUN-PHRASE" is node V1 of Figure 26. That is, the INDEF-S-PHRASE is
interpreted as a variable node to be instantiated by a structure representing an
analyzed surface string which has an associated bounded-string (see Sect.2.2.3)
and category NOUN-PHRASE. V1 is also the interpretation of user VARIABLE
"X due to the string “A NOUN-PHRASE X" being a VAR-APPOSITION-PHR
and the association of V1 and "X is stored cn the variable association list.

The input string “THE HEAD-NOUN OF A NOUN-PHRASE X" was parsed
as a CONSTIT-PHRASE (refer to Fig.26). The rule for interpreting a CONSTIT-
PHRASE was given in Section 3.3 as

CONSTIT-PHRASE > > [CONSTIT + CONSTITOF SUP-STRING-
REF]
[BSTR STRING CAT DEF-S-PHRASE STRC
+]

This rule stipulates that the interpretation of a CONSTIT-PHRASE is a partici-
pant in two case frames as defined in the two sets of brackets and the + symbol
marks the slot-filler that is the interpretation of the CONSTIT-PHRASE. Again an
atomic variable node is built to represent this slot-filler which also represents the
CONSTIT-PHRASE. The SUP-STRING-REF ist the constituent “A NOUN-
PHRASE X" (refer to Fig.26), whose interpretation is represented by node V1 of
Figure 27. The structure representing the case frame defined in the second set of
brackets is built in a manner similar to that used in building the structure of Fig-
ure 27 and described above.

The interpretation of the example CONSTIT-PHRASE “THE HEAD-NOUN
OF A NOUN-PHRASE X" is represented by node V3 of Figure 28. The node V1
of Figure 28 ist the same node as V1 of Figure 27.

Assembling the interpretations of the constituents of our RULE-STMT from
Figures 27 and 28 and completing the interpretation of the RULE-STMT as the
system does using the scmantic rewrite rules of this article, node M86 of Figure 29
represents the interpretation of the RULE-STMT. All of the variable nodes V1, V2,

Fig.27. Node V1 represents the interpreta-
tion of “A NOUN-PHRASE"
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Fig.28. Node V3 represents the interpretation of the CONSTIT-PHRASE

PROPERTYOF

Fig.29. Node M86 represents the interpretation of the input rule

V3, V4, and VS are universally quantified (refer to Shapiro (1979a) for the network
representation of the quantification that is not shown in the figure and for more
details on the rule structures of SNePS). The &ANT and CQ arcs are the SNePS
systemn arcs used in the network representation of “&-entailment”, the entailment
of any of a set of consequent, by the conjunction of one or more antecedents.
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4 Language Use-Mention Distinction

In order for our system to treat linguistic knowledge as domain knowledge and to
receive instruction in the use of this knowledge, it is essential for the system to dis-
tinguish between use and mention of language (Quine, 1951). We have already
seen examples of this capability in our system. When words are entered into their
appropriate lexical categories as in Section 2.5.2a, they are mentioned. Those lex-
emes that are themselves names of lexical categories are subsequently used to refer
to their corresponding lexical categories. For example, the word 'VERB is men-
tioned when entered into the category L-CAT of lexical category names and
is subsequently used to refer to the category of verbs (see Sect.2.5.2). The
word *GOOSE is mentioned in the example sentence of Section 2.6 when specify-
ing that its number is singular, but, in a similar sentence, the word ‘"GRADY is
used.

As a more sophisticated example combining use and mention, we illustrate our
system’s processing of an equivalent version of the classic sentence of Tarski
(1944) “'SNOW IS WHITE’ IS TRUE IF AND ONLY IF SNOW IS WHITE".
We do not treat truth relative to possible worlds. Our semantic network represents
only the belief space of the system, and asserted propositions are those believed by
the system.

We continue to build upon the language definition thus far input to the system
in this article. The additional lexical entries that we input are:

L-CAT — '"MASS-NOUN ADJECTIVE — 'TRUE
PROPERTY — "'TRUTH-VALUE ADJECTIVE — 'FALSE
MASS-NOUN — 'SNOW

We explain to the system that

TRUE IS A TRUTH-VALUE
FALSE IS A TRUTH-VALUE

to be parsed and interpreted by the system as PROPERTY-CLASS-ENTRIES as
shown in Section 2.6. Additional syntax rules such as the following are needed:

NOUN-PHRASE — MASS-NOUN
NOUN-PHRASE — LITERAL-STRING

Upon input of the sentence
If SNOW IS WHITE THEN “SNOW IS WHITE" IS TRUE

the system builds the parse tree shown in Figure 30 for the utterance.

Applying the teacher’s rules, the system builds the network rule of Figure 31 as
the interpretation of the. input sentence. Node M92 represents the generic string
“SNOW IS WHITE" and not just an instance of the string. Node M92 dominates
a pattern that is matched by any instance of the string, with V8 a universally
quantified vanable node.

If the system believes that snow is white, then the rule shown in Figure 31 is
used appropnately and if we query the system regarding any instance of the string
“SNOW IS WHITE" it indicates that the string is true.
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RULE-STMT

‘IF ANT-CLAUSE *THEN CQ-CLAUSE
PROPERTY~CLAUSE PROPERTYl-CLAUSE
SUBJECT PREDICATE SUBJECT PREDICATE
BE-PREDICATE BE-PREDICATE
PROPERTY-INDICATOR PROPERTY~-IND ICATOF
NOUN- PROPERTY~CLASS- MOUN- PROPERTY~CLASS-.
PHRASE INDICATOR PHRASE INDICATOR
BE-VERB ’ BE-VERB
PREDICATE-ADJ PREDICATE-ADJ
MASS~ ADJECTIVE LITERAL- ADJECTIVE
NOUN STRING
1F sJow 1s WHITE.  THEN “SNOW IS WHITE"™ IS TRUE

Fig.30. Annotated parse tree

To complete the original bi-conditional statement, the converse statement
IF “SNOW IS WHITE” IS TRUE THEN SNOW IS WHITE

can also be entered the system and the converse of the rule of Figure 31 is built
into the network as its interpretation.

S Summary

This article has presented our approach to NLU: an approach that focuses on the
capability of a natural langauge to be used as its own metalanguage. It is essential
to this approach to have the system'’s parsing and linguistic knowledge be an inte-
gral part of its domain knowledge. It is our view that linguistic knowledge about a
word or phrase is a part of its meaning or significance and, furthermore, there is
no clear boundary line separating syntactic, semantic, and world knowledge. For
these reasons we represent linguistic knowledge along with other domain knowl-
edge in an integrated knowledge base. Furthermore, the linguistic rules of the sys-
tem’s knowledge base comprise the system’s knowledge of language understand-
ing in the same way that the rules of any rule-based system comprise that system’s
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(TruTE-VALD) CTROED

Fig.31. Interpretation of the input utterance “IF SNOW IS WHITE THEN ‘SNOW IS WHITE'
IS TRUE"

knowledge of its domain of application. Our system also incorporates the use-
mention distinction for language.

We are exploring the possibility of a NLU system’s becoming more adept in its
use of some language by being instructed in the use of the language. We wish this
explanation to be given in an increasingly sophisticated subset of the language -
being taught. The system must start with some language facility, and we are inter-
ested in seeing how small and theory-independent we can make the initial kemnel
language.

In this chapter, we have discussed the core knowledge and representations of
our system, including the kernel language, which consists of predefined terms, and
syntactic and semantic rewrite rules with which to bootstrap into a more sophisti-
cated language definition. We have demonstrated the capability of increasing the
system's language facility by using the very same facility to instruct the system
about language understanding. We built up the system’s capability to the stage at
which it processed the sentence “IF THE HEAD-NOUN OF A NOUN-PHRASE
X HAS NUMBER Y THEN X HAS NUMBER Y". We presented additional
examples of language being treated as the topic of discourse including the sys-
tem’s parsing and interpretation of the sentence “‘SNOW IS WHITE' IS TRUE
IF AND ONLY IF SNOW IS WHITE™.
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We discussed the system’s parsing strategy, which is a combined bottom-up,
top-down strategy. Our system’s parser is a general rule-based inference system in
which applicable rules are activated in parallel in the form of processes or
demons. The inference system employs bi-directional inference to cut down the
fan out of pure forward or backward chaining.
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opinions during the course of this research. In particular, we thank William J. Rap-
aport for his comments on an earlier version of this chapter.

Appendix &hrqnological Summary of Input to the System
as Presented in This Chapter

Section  Input

252  L-CAT—'NOUN

252  L-CAT—'PROPER-NOUN
252  L-CAT—'DEF-DET
252  L-CAT—'INDEF-DET
252  L-CAT—"VERB

252  L-CAT—'BE-VERB
252  L-CAT—'ADVERB

252  L-CAT—'ADJECTIVE
252  L-CAT—'PREPOSITION
252  L-CAT—'CONI

252  L-CAT—'PROPERTY
252  S-CAT—'HEAD-*'QUN
252  S-CAT—'STRING

252  VARIABLE —'X

252  VARIABLE —'Y

252 NOUN — 'GOOSE

2.52 NOUN — 'GEESE

2.5.2 PROPER-NOUN — ‘GRADY

2.5.2 PROPER-NOUN — ‘GLADYS

2.5 DEF-DET — THE

2.5.2 INDEF-DET — ‘A

252  VERB—'HAS

252 BE-VERB —'IS

252  ADVERB— THEN

252  ADIJECTIVE — "WHITE

252  ADJECTIVE — 'SINGULAR

252  ADJECTIVE — 'PLURAL

2.52 PREPOSITION — 'OF

252  CONJ—'IF

2.52 PROPERTY — 'COLOR

2.52 PROPERTY — ‘NUMBER

252  UNIQUE-MEANING-CAT — 'ADJECTIVE
252 UNIQUE-MEANING-CAT — 'PROPERTY

252 PROPERTY-CLAUSE — SUBJECT PREDICATE
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Section  Input
Number
2.5.2 SUBJECT — NOUN-PHRASE
25.2 NOUN-PHRASE — LITERAL
2.5.2 NOUN-PHRASE — VARIABLE
2.5.2 NOUN-PHRASE — PROPER-NOUN
2.5.2 PREDICATE — RELATION-PREDICATE
2.5.2 PREDICATE — BE-PREDICATE
2.5:2 RELATION-PREDICATE — RELATION PREDICATE-ADIJ
2.5.2 BE-PREDICATE — BE-VERB PROPERTY-INDICATOR
252 RELATION — "HAS PROPERTY-INDICATOR
2.5.2 PROPERTY~ INDICATOR — PROPERTY-CLASS-INDICATOR
2.5.2 PROPERTY-INDICATOR — PROPERTY
252 PROPERTY-CLASS-INDICATOR — PREDICATE-ADIJ
252 - RULE-STMT —"'IF ANT-CLAUSE 'THEN CQ-CLAUSE
2.5.2 RELATION PREDICATE-ADJ — RELATION ADJECTIVE
2.5.2 RELATION PREDICATE-ADJ — RELATION VARIABLE
2.5.2 BE-VERB PREDICATE-ADJ — BE-VERB ADJECTIVE
252 ‘IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE
2.52 "‘THEN CQ-CLAUSE — THEN PROPERTY-CLAUSE
253 PROPERTY-CLAUSE :: PROPERTY SUBJECT
" PROPERTY PROPERTY-INDICATOR
VALUE PREDICATE-ADJ
2.53 ANT-CLAUSE :: PROPERTY-CLAUSE
253 CQ-CLAUSE  :: PROPERTY-CLAUSE
253 SUBJECT :: NOUN-PHRASE
253 NOUN-PHRASE:: LITERAL
253 NOUN-PHRASE:: VARIABLE
253 NOUN-PHRASE:: PROPER-NOUN
253 PROPERTY-INDICATOR :: PROPERTY-CLASS-INDICATOR
2.53 PROPERTY-INDICATOR :: PROPERTY
253 PREDICATE-ADJ : ADJECTIVE
.53 PREDICATE-ADJ :: VARIABLE
2.5.3 PROPERTY-CLASS-INDICATOR > >
(MEMBER ADJECTIVE PROPERTY-CLASS +]
253 INDEF-S-PHRASE > > [BSTR STRING CAT S-CAT STRC +]
2.6 GRADY HAS COLOR WHITE
2.6 *GOOSE HAS NUMBER SINGULAR v
2.6 PROPERTY-CLASS-ENTRY — ADJECTIVE 'IS 'A PROPERTY
2.6 PROPEKTY-CLASS-ENTRY :: MEMBER ADJECTIVE
PROPERTY-CLASS PROPERTY
2.6 WHITE IS A COLOR
26 PLURAL IS A NUMBER
2.6 SLADYS IS WHITE
26 ‘GEESE IS PLURAL
32 DEF-S-PHRASE — DEF-DET S-CAT
32 INDEF-S-PHRASE — INDEF-DET S-CAT
32 MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE
32 VAR-APPOSITION-PHR — MAIN-APPOS-PHR VAR-NAME
32 SUP-STRING-REF — VAR-APPOSITION-PHK
32 CONSTIT-REF  — DEF-S-PHRASE
32 CONSTIT-PHRASE— CONSTIT-REF "OF SUP-STRING-REF

32

NOUN-PHRASE — CONSTIT-PHRASE
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Section  Input

Number
32 CONSTIT-PHRASE > > [CONSTIT + CONSTITOF SUP-STRING-REF]
[BSTR STRING CAT DEF-S-PHRASE STRC +]

32 SUP-STRING-REF :: VAR-APPOSITION-PHR

32 MAIN-APPOS-PHR : : INDEF-S-PHRASE

32 NOUN-PHRASE :: CONSTIT-PHRASE

32 DEF-S-PHRASE  :: S-CAT

33 IF THE HEAD-NOUN OF A NOUN-PHRASE X HAS NUMBER Y
THEN X HAS NUMBER Y

4 L-CAT — "MASS-NOUN

4 PROPERTY — TRUTH-VALUE

4 MASS-NOUN — 'SNOW

4 ADJECTIVE — TRUE

4 ADJECTIVE —'FALSE

4 TRUE IS A TRUTH-VALUE

4 FALSE IS A TRUTH-VALUE

4 NQUN-PHRASE — MASS-NOUN

4 NOUN-PHRASE — LITERAL-STRING

4 IF SNOW IS WHITE THEN “SNOW IS WHITE"™ IS TRUE

4 [F “SNOW IS WHITE" IS TRUE THEN SNOW IS WHITE
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DESIGN OF AN INCREMENTAL COMPILER FOR A
PRODUCTION-SYSTEM ATN MACHINE!

A. Hanyong Yuhan
and
Stuart C. Shapiro

Department of Computer Science
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226 Bell Hall
Buffalo, New York 14260

ABSTRACT
We present v new  lesign technique for constructing an incrementally-
built, compiled. producton system ATN machine. This technique, the re-
entrant state module tec hnique, makes it possible to have a highly modular-
ized, compiled ATN machine that allows flexible search control by having a
variable entry puint included in the configuration frume of every state module.

We have shown this solution to be practically feusible by implementing an
efficient ATN compiler of this design.

1. INTRODUCTION

The properties of the Augmented Transition Network (ATN) f ormz;lism have been inten-
<ively investigated by a number of researchers {Thorne, Bratley & Dewar (1968), Bobrow &
Fraser (1969), Woods (1970; 1973; 1978; 1980), Kaplan (1972; 1973a; 1973b; 1975), Bates
(1978)]. The expressive power of the ATN formalism is at least as great as that of transforma-
tional grammars. The recursive nature of an ATN's use of PUSH arcs to find non-terminal
constituents gives it the power of handling phrase-structure rules, while its register handling
capability, including the effects exhibited by VIR arcs coupled with the HOLD action, gives it
the power of handling context-sensitive transformational rules. For this reason, ATNs have
heen widely used to express parsing grammars for many formal or natural language processing

' This work was supported in part by the Air Force Systems Command, Rome Air Development Center,
Girifiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research, Boiling AFB DC
20332 under contract No. F30602-85<C-0008. Bill Rapaport’s valuable comments on earlier drafts of this pa
per was greatly appreciated.
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systems {Woods, Kaplan & Nash-Webher (1972), Woods et al. (1976), Waltz (1976), Bobrow et
ai. (1977), Wanner & Maratsos (1978), Kwasny & Sondheimer (1981), Mckay & Martins
(1981), Weischedel & Sondheimer (1984), Shapiro (1982), Shapiro & Rapaport (1985)] Shapiro
(1975, 1982) has shown that a single ATN formalism can be used to express grammars for
both sentence recognition and sentence generation; thus, ATNs may be used for bidirectional

symbol transductions between surface linguistic forms and internal semantic representations.

Since hardware ATN machines are not yet available, ATNs are processed by ATN virtual
machines emulated by software. Usually, ATN programs (grammars) are processed by an ATN
interpreter, ar;other program usually written in Lisp. An ATN interpreter is a general-purpose
ATN virtual machine in the sense that it can be used to run any ATN program. However, sys-
tems using ATN interpreters tend to be very slow. Another way of building an ATN virtual
machine 1s, to combine a given ATN program with the emulating program into one homogene-
ous unit. However, such an ATN machine is only good for the AT program it was made for.
We call an ATN machine of this kind a compiled ATN machine. By an AT'N compiler, we
mean a special device (or program) that builds a compiled 'ATN machine when a particular
A'I'N program is given. The input/output relations for the various (virtual) machines we have

defined are depicted in Figure 1.

figure 1. Input/output relations of various
ATN-related machtnes

The obvious advantage of compiling an ATN is faster execution, although this is probably at
the expense of a larger program space.? However, in most computing environments, space prob-
lems are usually efficiently buffered by the operating system, leaving users with no significant
penalty for this trade-off. Therefore, designing a good ATN compiler is an interesting issue to
be addressed in computational linguistics. In this paper, we first examine the properties of an

ATN parser as an abstract machine and compare two different models for ATN machines. We

© Fimin (1983:37) reports that he obtained a size reduction of the program space as weil through s ATN
compilation.
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then analyze the advantages and problems associated with various approaches to ATN com-
pilers and present a solution to a problem faced by what is arguably the best approach.
Finally, we provide a brief description of an ATN interpreter due to Kwasny and Shapiro
(henceforth, the Kwasny-Shapiro interpreter that we believe is a suitable ATN virtual
machine by the standards discussed here, and present our implementation of an ATN compiler
based on that interpreter. However, the applicability of our design technique for the compiler
1s not limited to the Kwasny-Shapiro interpreter.

2. TWO MODELS OF ATN MACHINES

When an ATN program G for a language L is appropriately loaded, an ATN machine
MG tests whether an input § is a sentence of L, possibly producing an analysis of S as a
side-effect if § is a sentence of L. At this point, it 1s not our immediate concern whether MG
is an actual machine or a virtual machine implemented by a program running on another
machine. Neither does it concern us whether G is explicitly loaded into MG or is a part of
MG iwself. We view an ATN program as an expression of a search space consisting
exclusively of OR-trees. Each ATN state is a node, with the initial state being the root node,
Fach arc from a given ATN state is an edge from the node {or the state. If S is a sentence of
L, it is mapped to a set of paths from the root to a terminal in the search space, where each
such path represents a unique analysis of S. If § is not a sentence of L, it fails to be mapped
to any path starting from the root to a terminal. On this view, a process of the ATN
machine’s computation, which we will call ATN parsing, is essentially an OR-tree search for

a sojution path or a set of solution paths in the search space defined by G, where the search is

3 One may alternatively view the search space made by an ATN program as a directed graph in which a
single node can be reached through more than one path. The parsing technique of keeping a substitution
table for well-formed substrings appears to be based on this view {Tennant (1981: 67, 270)L However,
whether a string analyzed into a certain svntactic structure will have an invariant semantic interpretation
regardiess of i1ts contexc is as vet an open question. If the purpose of parsing is more than a mere acceptabili-
tyv test of the input form, it may sometimes turn out to be inadequate assaciate 2 well-formed substring
with the results recorded in the table due t0 a previously parsed substring which was found in a different
path environment. We will not pursue this issue here, since it is not directlv relevant and our model is ne:
ther dependent on nor incompat:bie With this view.
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conditioned by the input §S.

The central component of an ATN machine is the part that controls the search in this
OR-tree search space. There are two different models for managing this control on a sequential

machine: the host-recursion model and the production-system model.

The host-recursion model utilizes the host machine’s recursive control and internal stack.
Here, each search step in the ATN search space, such as a transition from a state SI to another
state S2 via an arc C, is realized as a direct call to the program module corresponding to C
from the_program context for S. in order io create a program context for $2 embedded one
level further down in the control stack. Since an ATN state transition is realized as a recur-
sive call at the host machine level, the configuration frame? of each ATN state can be main-
tained in the host system’s run-time stack of activation records. For this reason, the ATN
machine’s backtrack:ng is trunsparently managed by the host machine’s own recursive control
and its run-time stack. A depth-first search strategy can easily be implemented in a host-
recursion ATN machine. This method makes the data flow and control flow of an ATN
machine very simple and effortless. But its drawback, besi-es the potential danger of the host
machine’s stack overflow, is that the control of the ATN search is tied to the host program-
ming language’s data and control structures. Because of this, it becomes relatively more
difficult to allow the ATN user to exercise control over the order of search during parse time.
The implementation of multiple parsing on a sequential machine also turns out to be quite
cumbersome 1n this mode] because of the unnatural forcing of backtracking after a successful

return of a subroutine call.3

In a production-system model, on the other hand, the control driver of an ATN machine
is an indefinitely iterated execution of search processes. It stops only when an interrupt flag is

set because either the search processes have been exhausted or the goal of the computation has

4 By this, we mean the ATN-level data objects relevant to a state such as the state name, the present input
buffer, the path history, etc., contrasted to the data objcts mearungful onlv at the ATN machine emulation
level.

% This is usuallv achieved by the host language’s facility for a forced back tracking, such as THROW and
CATCH found in some Lisps [Christaller (1983). Laubsch & Barth (1983)]
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been achieved. This is an adaptation of the standard production system architecture [Post
(1943), Davis & King (1977: 30)}. In each cycle of the production, a process is taken out of the
process queue and executed. The effect of a process being executed is the realization of a
further step of the search in the OR-tree search space, possibly resulting in the creation of a
number of new successor processes appropriately inserted in the process queue according to
their respective search priority. Each process has a configuration frame that specifies the
actions to be taken for the particular search step and the data on which those actions are to be
applied. Every arc of each ATN state is realized as such a process, and an ATN state is realized
as a group of ;roceses that share the same configuration frame except for the actions to be
taken. An ATN machine of this model keeps possession of the top-level control of the ATN
parsing beca-use of explicit maintenance of the process queue and the configuration frames for
the processes in the que'e. Since the process queue is maintained at parse time, this model
allows the order of the search to be controlled flexibly during parse time by a priority policy
for process scheduling. Thus, the order of the search is, in principle, dynamically determined
at the time when an ATN program runs, rather than at the time when the program is loaded

into the ATN machine.

According to Winograd (1983: 261), “the scheduling strategy is an important theoretical
property of the ATN formalism. Unlike the parsers that are tied to a specific precessing order
— an ATN parser can make use of a grammar that was written without a specific processing
regime in mind.” Thus, an ATN machine with no capability for managing its own scheduling
control can probably be considered as theoretically incomplete, despite Finin's (1983) defense of
his depth-first backtracking implementation of an ATN machine. Therefore, even if a particu-
lar implementation does not elabora'tc a policy of scheduling priority for ATN pgr;ing and
ends up with an extremely trivial algorithm that makes it, in effect, nothing more than a
depth-first search, we believe that the basic architecture of an ATN machine should be designed
in such a way that it is capable of incorporating jiexible scarch vonirol when desired. For this,

we conclude that the choice between these two ATN models is more a practical issue than a
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theoretical one, and we believe that choosing the architecture of an ATN machine with a pre-
determined search control by choosing the host-recursion model is comparable to choosing a

“quick and dirty” solution.®

The advantage of the production-system model over the host-recursion model does not
stop at the ATN machine’s capability for dynamic scheduling of the search order at parse time.
Since each search process is represented in the machine declaratively rather than procedurally,
it is also very simple in this model to incorporate a debugging facility to be used to monitor

the behavior of the parsing, as will be shown in our later discussion.

3. EVOLUTION OF ATN COMPILER CONSTRUCTION

The approach to ATN compiler construction has been changing from the earlier integral
compilation approach to the present incremental compilation approach. In the integral compi-
lation approach [Burton (1976), Burton & Woods (1976)), the compiler compiles an ATN pro-
gram into one huge fragment of an ATN object program, which is characteristically a single
loop around a case statement (or a computed GOTO-statement), where, in essence, each ATN
state is a Jabel for a segment of code that implements all the arcs emanating from that state.’
On the other hand, the incremental compilation approach [Finin (1977; 1983), Christaller
(1983), Kochut (1983), Laubsch & Barth (1983)] attempts a maximum modularization of the
ATN object program in such a way that each ATN module (such as an ATN state or arc) is
mapped to an associated program module in the compiled code. The relation between these two
approaches parallels the one between the spaghetti-GOTO style of programming and the struc-
tured programming.

The obvious advantages of incremental compilation over integ:al cwmpilation are the
clarity of the compiled code in the host language and the greater maintainability of the com-

piled ATN program. Furthermore, because the code segments implementing each ATN state or

7 For a good sketch of this approach, see Laubsch & Barth (1983: 152-162).
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arc are detached from the code segment for the contro! driver, the perspicuity of the ATN
notation is better preserved in the compiled ATN program. Since each ATN module can be
compiled and loaded independently, the ATN programmer can simply modify a selected part
of his source ATN program, and recompile and load those particular modules, leaving the rest
intact. Because of this flexibility, even compilation of an extremely large ATN program can be
done piece by piece on a small system where the total available space may be restricted.
Furthermore, debugging flags or a monitor can very easily be inserted in appropriate object
modules corresponding to specific source modules of the ATN, enabling the user 10 monitor or
modify th; ATN program in debugging mode while running compiled code.

In general, however, excessive modularization may often sacrifice some of the program'’s
execution eéﬁciency. Depending on the host language, an invocation of a module may some-
times waste its resources creating an activation record for the sake of a formal syntactic
requirement. This might have been unnecessary if it were a mere jump within one module.
A segment of a program is justified tu become a module if a significant amount of local data
preparation has to be done on entering its execution context due to the logic of the task. In
this light, we argue that modularization of an object ATN program for ATN source modules is
not a case of excessive modularization. Every program component corresponding to an ATN
source module is expected to have to set up its own data environment anyway. In fact, every
compiled ATN program built in the integral approach has done this. Furthermore, if the range
of control transfer is widely spread over a number of mutually exclusive alternatives in a
large program space, and the operating system on the host machine performs virtual memory
management for program space, the efficiency of main memory management can be greatly
enhanced by a well-modularized program. This is because the logical segmentation of the pro-
gram space can help the swapping manager deal with naturally partitioned memory blocks.
In fact, because function calls are such a naturar form of program conirol in somes stack-
oriented languages like Lisp, the cost of module invocation should not deter us from creating

logically well-motivated modules.
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Considering these factors,.we regard the development from integral compilation to incre-
mental compilation as a natural consequence of the evolution of general programming style.
The rest of our discussion will be limited to issues and problems encountered in the incremen-

tal compilation approach.

4. CURRENT ISSUES IN THE INCREMENTAL APPROACH

A number of designs for incremental ATN compilers have been presented [Finin (1983),
Christaller (1983), Laubsch & Barth (1983), Kochut (1983)] All of them clearly address the
problems of integral compilation and succeed in constructing incremental compilers. However,
they all share the same pitfall of being too closely tied to the peculiarity of the host language,
namely, Lisp. These compiler designs are all host-recursion models. Each ATN state is mapped
10 a program module in the compiled code, but each transition from one ATN state to another,
that is, each step of the A'I'N search, is realized as a call of one Lisp function from another
Lisp function. The basic schema of a compiled ATN state module is an OR or AND construc-
tion® over a number of code segments intended for each of the alternative arcs. The conse-
quent limitations are, of course, all those exhibited by ATN machines built on the host-
recursion model. One typical shortcoming of this relinquishing of the ATN’s control to the
host language is exhibited by Laubsch & Barth (1983). Their compiled ATN machine does not
handle HOLD actions and alternative lexical interpretations, and does not easily provide users
with flexible debugging information. Although Finin (1983:9) argues that he had purposely
“chosen to implement a depth-first backtracking version”, we feel that there was hardly any
other choice left onc;: the ATN machine had surrendered its control to the host language (Lisp,
in his case). Due to the direct use of Lisp's own run-time stack and controls (such as OR, AND,
THROW, and CATCH ) to guide the ATN search, users were deprived of the freedom of tog-

gling the ATN machine between single parsing and multiple parsing modes. Once the single

* OR or AND 1s selected depending on whether one or all possible parsings of the input sentence are
sought. In an actual implementation. ANI) construction can be repiaced bv a PROG structure.
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parsing policy is chosen as the primary option, allowing muluiple parsing turned out to be a
problem because a faked failure has to be created even after a genuine success of a series of

embedded function calls corresponding to an acceptable ATN search.

Although host-recursion implementations take an incremental compilation approach, in
principle, there has been little interest shown in breaking down a state module further into
submodules corresponding to each arc of the state. We will call this arc-module modulariza-
tion. We realize that such implementations can achieve a superficial arc-module modulariza-
tion merely _py making a slight modification to the compiler so that it would decompose the
code for every ATN state into separate submodules for its arcs. However, we suspect that they
are right not to do so in the absence of a compelling motivation, since it would mean even fas-
ter consum;)tion of Lisp’s run-time stack. In their design, control over the alternative arcs of
an ATN state is determined by the compiler once and for all, and then is frozen inflexibly in
the program body of the emulating host system. When no control flexibility of invocation is
preserved, arc-module modularization for the sake of mere code decomposition turns out to be a

question about programming style rather than an issue of theoretical significance.

Earlier, we pointed out that the production-system model is a better solution for an ATN
machine that preserves its own search control. On this design, the ATN machine explicitly
maintains its own appropriately sorted process queue. To our knowledge, there have been no
discussions of the design issues of compiled ATN machines of the production-system model
viewed from the incremental compilation approach. At first thought, it does not appears to be
too difficult to construct a production-system-like driver that would work on a queue of
processes consisting of ATN state modules that would be pretty much like the state modules in
the host-recursion model. But if we decide to map an ATN state, rather than an arc, to the
smallest ATN module in the compiled ATN machine, we are faced with a serious problem.
Granting that a compiled program cannot be modified during run-time, it iooks as if we have
no other choice but to freeze the ATN's search order within a state at the time of ATN pro-

gram compilation. Since every arc emanating from each ATN state is mapped to an ATN
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later re-entrance for the remaining alternative arcs. The problem is reduced to that of how a

state module can be made re-entrant.

S. THE RE-ENTRANT STATE MODULE TECHNIQUE

In the Kwasny-Shapiro interpreter based on the production system model, each process in
the queue is made of a configuration frame that holds the source definition of an ATN state?
being active in the search frontier, as well as other int;ormation relevant to a process. Every
time a prc.)c-c-ﬁs is fired, one and only one of its arc alternatives is consumed, and the aiternative
arc list of the process is appropriately reduced. When a process is on the queue, it corresponds
to a state nrodule representing all the alternative arcs. However, when it is fired, a process is
realized as an arc module that activates a specific search process associated with a particular arc
instance. We call processes on the queue, each mapped to an ATN state active on the search
frontier, archiprocesses1? to distinguish them from actually expanded, specific individual
search processes. When an archiproces is fired, it chooses one of its successor processors in
accordance with a priority policy to create a successor archiprocess, which is then also inserted
into the queue. The successor archiprocess inherits its configuration frame, appropriately
modified by its own search actions, from the parent process. When such a child process is
created, the parent archiprocess also modifies its own configuration frame so that it no longer
contains that consumed process in its alternative list, or comyletely removes itself from the

queue if no alternatives are left.

The solution to the problem of devising a re-entrant state module lies in the implicit
notion of archiprocesses found in the Kwasny-Shapiro interpreter. The process queue of the
compiled ATN machine can also queue a sequence of archiprocesses, but with the configuration

frames slightly restructured. In a compiled ATN machine, the configuration frame of an

Y A sourte deéfinition of a state is a set of source definitions of alternative arc instances.

'0 This term is borrowed from, and is analogous to, the notion of “archiphonemes™ or “archi-unit” used in
phonology, as explained in Chomsky & Halle (1963:64).
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search process, a compiled preduction-system ATN machine is impossible even to imagine
without, at least, an implicit notion of arc-module modularization. Without resolving this
arc-module modularization problem, it is impossible to make the system have the capability of
incorporating flexible search control. One might propose splitting state modules such as the
above into stand-alone arc modules for every arc in the state, and queue them in the process
queue as if they were totally unrelated to their sibling processes. However, all the sibling arcs
from one ATN state are, in f ar;t, closely related to one another by the facts that they inherit a
common configuration frame and that they are competing alternatives at a same point of the
search context. Because of this, the compiled production-system ATN machine should preserve
the ATN states’ statehood property, as well. We therefore reject the approach that would

eliminate state modules in the compiled machine.

We conclude that, in order to construct a compiled ATN machine which will meet the
requirements of capturing the AT\ states’ statehood and preserve control flexibility over alter-
native arcs, we wiil need to map both ATN states and arcs to modules of the compiled
production-system ATN machine. The consequent problem is, then, how we can arrange it so
that each process in the queue will corresponding simultaneously with a state itself and with
only one of its arc instances. This is a problem for the host-recursion model, as well; however,
it was not realized to be a problem, since the host system’s control automatically stores a state
module on the run-time stack and invokes each arc alternative one by one using the host
system’s backtracking mechanism. This is done at the expense of the ATN's being limited to
the blind depth-first search policy (cf. Section 7.3.1). We find the notion of program re-
entrance hidden in this mechanism of host system’s stack manipulation and automatic back-
tracking control. A state module remains in the stack waiting for re-entry to each of its arc
instance. In the production-system model, an ATN’s own process queue is used instead of the
host system’s stack. Thus, the solution to this problem for a production-system ATN machine
seems to be to make each process in the queue be a state module, where a state module is not

only consumed and exited from with one arc tried, but also left in the queue available for a
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later re-entrance for the remaining alternative arcs. The problem is reduced to that of how a

state module can be made re-entrant.

5. THE RE-ENTRANT STATE MODULE TECHNIQUE

In the Kwasny-Shapiro interpreter based on the production system model, each process in
the queue is made of a configuration frame that holds the source definition of an ATN state?
being active in the search frontier, as well as other information relevant to a process. Every
time a pro;:cag is fired, one and only one of its arc alternatives is consumed, and the alternative
arc list of the process is appropriately reduced. When a process is on the queue, it corresponds
10 a state nrodule representing all the alternative arcs. However, when it is fired, a process is
realized as an arc module that activates a specific search process associated with a particular arc
instance. We call processes on the queue, each mapped to an ATN state active on the search
frontier, archiprocesses!® to distinguish them from actually expanded, specific individual
search processes. When an archiprocess is fired, it chooses one of its successor processors in
accordance with a priority policy to create a successor archiprocess, which is then also inserted
into the queue. The successor archiprocess inherits its configuration frame, appropriately
mogiﬁcd by its own search actions, from the parent process. When such a child process is
created, the parent archiprocess also modifies its own configuration frame so that it no longer
contains that consumed process in its alternative list, or completely removes itself from the

queue if no alternatives are left.

The solution to the problem of devising a re-entrant state module lies 1n the implicit
notion of archiprocesses found in the Kwasny-Shapiro interpreter. The process queue of the
compiled ATN machine can also queue a sequence of archiprocesses, but with the configuration

frames slightly restructured. In a compiled ATN machine, the configuration frame of an

Y A sourcs definition of a state is a set of source definitions of alternativs arc instances.

' This term 1s borrowed from, and is analogous to, the notion of “archiphonemes” or “archi-unit” used in
phonology, as explained in Chomsky & Halle (1968:64).
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archiprocess in the queue holds a pointer to an appropriate compiled state module, instead of
remembering the source definition of the alternative arcs. A state module is an unalterable
program module that contains in it as many distinct entry-points as the number of arcs
emanating from the state, making it resemble an ignition distributor of an automobile. Each
ATN arc from the state is also mapped to a unique arc module dependent on the state in order
to achieve a higher degree of modularization along the lines of the incremental compilation
approach. Entering a state module with a specific entry-point value “ignite” a specific arc

module. As Figure 2 illustrates, cach entrance to a state module results in the invocation of

one and only one arc moduie, and the state module, being left in the queue, remains re-entrant.

Figure 2. Block-diagram of the control flow through

a re-entrant state mod'ile to an arc module
oot le .~ ABOU']" HERE ARk R Xk

We claim that this new desigr technique, the re-entrant state module technique, can be used to
incrementally build a compiled production-system ATN machine that allows flexible search
control at parse time. In this design, as in the Kwasny-Shapiro interpreter, every process in
the queue is statically an archiprocess associated with an ATN state currently found in the
search frontier, and a firing of such a process is dynamically equivalent to an execution of one
and only one alternative arc of the associated state. The priority policy used to decide which
arc is to be selected (which is comparable to the cylinder firing order in our automobile anal-
ogys only depends on the algorithm!! that dynamically computes the value of the entry-point

for each entrance to the state module.

6. DESCRIPTION OF THE KWASNY-SHAPIRO ATN INTERPRETER

In this section, we describe the organization of the Kwasny-Shapiro ATN interpreter!2,

! The investigation and elaboration of this algorithm is certainly an issue reiated to ATN pamsing, but ir
relevant to our discussion of the design issue. However, it is obvious, at least. that the algorithm must not
generate one¢ntry value more than once.

' This was initially designed by Stan Kwasny and Stuart C Shapiro at Indiana University in 1974 ©
the specifications presented by Woods's (1970; 1973) model [Kwasny (1974)] and has been expanded by the
SNePS Research Group at SUNY Buffalo, with 2 mapr contribution by Gerard Donlon. It presentiy includes,
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an ATN virtual machine currently implemented in Franz LISP and +anaing, normally in the
S:iePS!3 environment on VAX 750s and VAX 780s under the Berkeley Unix 4.3 operating sys-
tem. There are three reasons for describing this interpreter before the ATN compiler and the
compiled ATN machine: /i) it was designed according to the production-system model that we
have been defending, (ii) the re-ntrant state module designing technique was based on it, and
(1) our compiler implementation was directed toward building a compiled ATN machine

functionally equivalent to it.

6.1 ATN formalism

The arcs presently supported by the Kwasny-Shapiro ATN machine are: CAT, WRD,
TST, TO, JUMP, PUSH, CAIL.L. RCALL, POP, VIR, and GROUP. The syntax and semantics of
the ATN formalism used by this interpreter is described in Shapiro (1982), except for the fol-
lowing modifications. JUMP arcs are allowed to succeed with an empty input buffer, because a
JUMP arc consumes no input; this relaxation enables an ATN to capture and express some regu-
larities that can best be handled at the end of a sentence. The test ENDOFSENTENCE and the
form LEX are defined and given the same semantics as described in Bates (1978). Besides the
CALL arc proposed by Shapiro (1982), another new ATN arc, RCALL, has been added; it has

the same syntax as a CALL arc (cf. Shapiro, 1982:14), namely:

(RCALL <state> <form> <test> <preaction or action >*
<register> <action>* <terminal action> )

The semantics of an RCALL arc differs from that of a CALL arc only in that RCALL locally
replaces its whole inpnt buffer with <form>, while CALL globaliy prepends <form> to the
current input buffer. The new RCALL arcs wer: found to be convenient in writing genera-

tion grammars in which one often wants t delimit the scope of the locai input buffer for a

besides the ATN parser core, an English morphological analvzer and synthesizer written by Darrel Jov at In
diana, and an input interface written by Hanyong Yuhan at SUNY Buffalo that accepts sentences written in
normal Engiish orthographic conventions and takes care of punctuation marks and capitalized sentence-iniuial
words, o7

'3 SNePS 1s a semantic network processing system that can be used o represent, store, manipulate
knowledge {Shaptro (1979), Shapiro & Rapaport (1985)1
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CALL to one and only one specific semantic network structure. GROUP arcs have been imple-
mented so as to have the same meaning as described in Christaller (1983:75) and Winograd

(1983:265). A GROUP arc groups a number of arcs into a set of mutually exclusive alterna-

tives such that if the test of any one member of the set succeeds, the rest are not even tried. A
GROUP arc is distinguished from other Kkinds of arcs in that it is a meta-arc [Christaller
(1983:129)] intended to specify the control of search on a sequential machine rather than to

specify the substance of a search.

6.2 Organization and control structures

The Kwasny-Shapiro ATN interpreter consists of the following Lisp-implemented com-
ponents: //0 handler, program/data storage, control driver, and AT N-operation modules. The
four main subcomponents of the 170 handler are the input sentence reader, the ATN program
loader, the lexicon data loader, and the message printer. The message printer, called TALK,
prints out trace information in varying levels of details selected by the ATN user. The input
sentence reader, PARSERREAD, reads input sentences typed in normal English orthographic
convention. The ATN program loader, ATNIN, and the lexicon data loader, LEXIN, load the
ATN program and the user’s lexicon into appropriate storage areas; they are implemented using
the host Lisp's property lists.”® The ATN operation modules component consists of Lisp func-
tions that implement each of the ATN operations, including all the ATN arcs (such as CAT,
WRD, PUSH, etc.), ATN tests and actions (such as NULLR, SETR, HOLD, TO, JUMP, etc.), and
all ATN forms (such as *, LEX, GETF, etc.). Each of these Lisp functions tests, modifies, or
retrieves appropriate data eiements of the configuration frame of the current process or one of
the ancestral or descendant processes to satisfy the semantics of the associated ATN operation.
The control driver, consisting of the Lisp functions PARSE, PARSE2, and STEPPARSER, is the

component that controls the parsing computation in a production-system-like fashion.

4 ATNIN and LEXIN store the ATN programmer’s or the user's definition of each ATN state and lexical
entry as the property value of Lisp atom of the entry name under the property indiators, “=arcs and "=dict,
respectively. These storage areas, which are (normaily) not modified during parse time, function as the read
anlv memory of the ATN machine.
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PARSE initializes the ATN machine, reads an input sentence, and then invokes PARSE215
to parse the input form. PARSE2 interacts with STEPPARSER 1o drive the parsing processes.
Fach process is comparable to an ATN state with all its ATN arcs not yet attempted saved in
the list of alternatives, and those ATN arcs already attempted having been removed. As a data
type, each process is a configuration frame made of a record of 10 fields, which contains in it
all the information necessary for the execution or trace of the process, such as the ATN state
name, definitions of the arcs yet to be tried, the table of ATN registers and their values, the
input form m the current buffer, the path information of the current search process, and so on.
Initially, PARSE2 designates a process made for the starting ATN state as the current process
and calls STEPPARSER. Upon being called by PARSE2 for the current process, STEPPARSER
iteratively tries the remaining arcs until either it finds the first one that leads to a successful
ATN state transition or no alternative arcs are left.’® Each trial of such an arc alternative is
realized as an invocation of un appropriate arc module!? (such as CAT, PUSH, etc.) with the
source ATN arc definition as 1ts argument and the data in the configuration frame as its
environment. An arc module returns either a failure report or the successor process!5. The
data of the successor process for alternative arcs is newly made with the information copied
from the original definition of the target ATN state stored in the read-only ATN program
storage area. Eventually, STEPPARSER returns to PARSE2 a queue of processes (possibly
empty) that is the result of appending the processes for the remaining alternative arcs to the
successor processes returned by the first successful arc module call. If a non-empty successor
process queue is returned from STEPPARSER, PARSE2 designates the first process in the queue
as the current process and pushes the remaining processes onto the stack of alternative

processes. An empty successor process queue returned to PARSE2 from STEPPARSER indicates

'S PARSE2 can also be directly invoked from SNePS with a default initialization via a SNePS User
Language (SNePSUL) command for ATN parser invocation from within SNePS. In this case, SNeP5 communi-
cates with the ATN parser by means of the SNePS structures left as side-effects of parsing.

e The order of making the choice among the alternatives does not have 1o be tied to the order in which
the arcs are listed in the ATN program, although this interpreter adheres to that order for want of another
dependable policy.

" Note that the interpreter's arc modules are generic (cf. Section 7.3.4).

'* Since some arcs such as CAT may be succeeded by more than one process. 1t is actually a set of successor
processes.
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that the previously designated current process has been completely blocked and that the sys-
tem should backtrack one step. In this case, PARSE2 undoes, if necessary, all the side-effects
created by the blocked process, pops a process from the stack of alternative processes, and desig-
nates it as the current process. PARSE?2 iterates this cycle, invoking STEPPARSER until either
the accumulated results of the parse warrant the termination of the parsing or, upon receiving

STEPPARSER's failure report, it finds that the stack of alternative processes is depleted.

6.3 Handling of the ATN’s own recursion and side-effects

The above description shows that the Kwasny-Shapiro ATN interpreter was designed
according to the production-system model. It maintains a queue of processes and, for each pro-
duction system cycle, selects and activates a process out of the queue production-system model,
not relying on the host system's recursive stack. In this section, we examine how delayed

ATN actions or side-effects are handled.

PUSH-family arcs (namely, PUSH, CALL, and RCALL), which push the ATN’s environ-
ment one leve] deeper in the ATN's own recursion stack, are hybrid: they contain in their ATN
definition two components, which are executed on two non-adjacerit occasions. One part is exe-
cuted when the process for the arc itself is in control; the other part, which we call the list of
push-pop actions, remains dormant until the process for a matching pop acquires control and
awakens it to be executed. When the process for a member of the PUSH-family is executed, it
records the push-pop actions, that is, the list of <action>s and <terminal action>, into a special
stack reserved in the configuration frame for this particular purpose, and lets it be inherited by
all its successor processes. One of the main tasks of POP arc modules is to pop the top of this

stack and execute these push-pop actions.

In designing an ATN machine, the designer may sometim&s‘ﬁnd that some data operations
cannot be confined in one process's configuration frame at an acceptable cost. We say that a
data manipulgmon is done as a side-effect if the effect of the data operation is not confined
within a process’s configuration frame. On a system that adopts the flexible search strategy,

determining which side-effects are to be undone and which are to be kept for each process is an
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extremely complicated matter, We have noted that the Kwasny-Shapiro ATN interpreter
mostly runs in the SNePS environment in which it is allowed to modify SNePS network
structures as a side-effect in the middle of the parsing operation. In general, SNePS network
structures are global. In this ATN machine, one of the ten cells of the configuration frame,
dedicated to remembering all side-effects, records all the SNePS nodes created by the process.
When backtracking takes place, PARSE2, by accessing this cell, can thus deletes all the SNePS

structures created by the failed process.

7. IMPLEMENTATION

In this section, we present a compiler implemented to test the state-module re-entrant
technique w.e have proposed, showing some details of the compiled ATN machine generated by
the compiler. This compiler was designed to produce a compiled ATN machine that would be
functionally equivalent 1o the Kwasny-Shapiro interpreter ATN machine, following the same
ATN formalism and running in precisely the same software and hardware environments. For
this reason, quite a number of program modules are, in fact, shared by both ATN machines.
We will first describe the ATN compiler in order to see how it generates a compiled ATN
machine for a given ATN program, and then we will examine the details of the compiled ATN

machine as an abstract object.

7.1 Description of the compiler

The ATN compiler is a program package written in Franz LISP, running in the same
software and hardware environments as the Kwasny-Shapiro ATN interpreter. Given a file
containing an ATN program, it generates a Lisp program which is a compiled ATN machine.
The initial output of the ATN compilation is a file of Lisp source code which may be further
compiled into a lower-level language code using the general Lisp compiler provided in the
operating system environment. As a data type, an ATN program is a set of ATN state
definitions. To compile an ATN program, the cycle of reading a state definition and then cal-

ling COMPSTATE, the specialist for the state compilation, is iterated until the source ATN
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program file has been processed. For each ATN state, COMPSTATE generates a segment of Lisp
code that defines an associated state module containing in it as many entry points as the
number of arcs emanating {rom the state. Then, for each arc in the state, COMPSTATE calls
COMPARC, which in turn calls an appropriate arc compilation specialist. Figure 3 shows the

Lisp code for COMPARC.

Figure 3. Lisp definition of COMPARC function

structures for the compiled ATN machine.
ERERRKEEREREES AmUT HERE EREERKKKFXRKEREE

The arc compilation specialists are named COMP<arcname> {(such as COMPCAT, COMPPUSH,
COMPJSUMP, etc.), where <arcname> is the name of the arc it is specialized for. Each one pro-
duces the code of each state-dependent arc module. The function COMPGROUP, the specialist
for the GROUP arc compilation, generates the code for a pseudo-state (cf. Section 7.3.4) and
recursively calls appropriate arc specialists to generate the codes for the exﬁbedded arc modules,

allowing arbitrarily deeply embedded GROUP arcs.

The task of an arc compilation specialist is to re-write the associated interpreter’s generic
arc function (such ac CAT, PUSH, etc.) into a state-specific arc module completing as much
compile time evaluation and code expansion as possible in the context determined by the source
state and the arc instance. A typical example of code expansion is unfolding of loops. Iltera-
uons in the generic arc function which are designed to interpret arbitrarily many consecutive
ATN source actions are opened and unfolded into a finite sequence of the actual actions found
in the given arc instance. Whenever the specialist can obtain a compile time evaluation of a
form, it takes one of the two actions: (i) if the form is the condition part of a condition-action
construction, then, depending on the obtained value, it either directly proceeds to generate the
code for the action part, or totally ignores the condition-action construction; (ii) if the form is
not a condition part, then it generates the code replacing the form with the bound value with
a quote in-front so that it won't be evaluated again by the compiled machine later. For those

forms that cannot be evaluated at compile time, the speciaiist generates the code largely by
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duplicating the corresponding segment of the code of the interpreter’s generic arc module.
Sometimes, the arc compilation specialist may attempt a rough evaluation to simplify the com-
piled code if it should succeed. By rough evaluation, we mean an evaluation that may succeed
at compile time in some special case. An example is the examination of the test part of ATN
arcs, which often turns out to be a Boolean constant T. The function ROUGHTEST-T is used
to avoid generating code for a parse-time call to the function TEST if the test is simply the
constant T in the ATN source which even the compiler can tell the value of. However, we

have not yet included any extensive code optimization routines or error checking measures.

7.2 The configuration frame of the ATN machine

The data structures of the compiled ATN machine are based on the interpreter machine’s
data structures. Both machines maintain a queue of processes. As a data type, each process is a
configuration frame, which is a record of 10 information fields. In the interpreter, the

configuration frame holds the following information:

<state>, the name of the current ATN state;

<arcset>, the definitions of the remaining alternative arcs;
<buffer>, the input form not yet consumed;

<regset>, the current ATN registers and their values;

<hstack >, the stack of hold registers and their values;
<level>, the level of the ATN recursion;

<pstack >, the stack of the push-pop action lists;

<path>, the information on the path history;

<nodeset>, the SNePS nodes created as the process’s side-effect;
<weight>, information for the search priority.

The structure of a configuration frame used in the compiled machine is the same as the
interpreter’s, except that <arcset> is here replaced by <entry> for the value of the entry
point. Another minor difference is that, in the compiled machine, push-pop actions are no
longer a list of source ATN actions. When a PUSH-family process is executed, the sequence of
the actions in the list is defined into an equivalent lambda function with a unique name

assigned, and the name, instead of the action list, is stored in <pstack>.

7.3 Architecture of the compiled ATN machine
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The compiled ATN machine is made of two components: the core component, and the
ATN module component. The ATN module component, which originates in the user's ATN
program, consists of all the compiled ATN modules, each of which is either a mapping of an
ATN state or an arc instance. The core component includes the control driver and its auxiliary
modules. Since this component is ATN program invariant, it is stored in a separate file and
loaded into the compiled ATN machine when the ATN module component starts loading. In
this section, we will examine the skeletons of the core component and the prototypes of ATN

state and arc modules after we briefly discuss an issue about the control of search order.

7.3.1 Handli-ng of side-effects and semi-flexible depth-first search

We have pointed out that, in the Kwasny-Shapiro interpreter, some SNePS structures
may be created while a process is in execution, and that such a creation is a side-effect. In
order to handle the side-effects inexpensively, the interpreter searches the ATN space in a
depth-first fashion. We have imposed a non-trivial constraint in the compiled machine that
restricts the degree of flexibility in the search order to a certain extent. In our implementation,
we assume that the most recently created process's successors get the highest search priority
and that the search order is flexible among the child processes of the most recently expanded
processes, rather than among ali the processes spread over the entire search frontier in the ATN
net. This restriction appears to result in depth-first search. However, this is different from the
blind depth-first control thaat the compiled ATN machines of the host-recursion model per-
form. We call the depth-first control of our kind, in which flexibility is allowed within each
state, semi-flexible depth-first. Clearly, semi-flexible depth-first control, which is a kind of
“hill<limbing strategy” {Winston (1984:93)], is mid-way between blind depth-first search and
fully flexible search, and is still better than blind depth-first. The benefit of this constraint is
that the side-effects caused by an arc module can be undone by its parent state module when
the parent module regains control either to invoke another arc module or to find that there is
no more left. However, by implementing a different procedure for handling side-effects, one

can certainly build an ATN machine of this model to be fally flexible.!® Thus, this

9 Maruns's (1983) implementation of multiple belicf spaces in SNePS, in whih the interpretation of
SNePS structures are context dependent, suggests one possible solution to this problem
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implementational constraint should not be construed as a theoretical weakness of the model

itself.

7.3.2 Control driver

The top-level control driver of the production-system ATN machine is the function

PARSE as shown in Figure 4.

Figure 4. The top-level control driver

PARSE takes a sequence of pre-processed input?’ and an atom for the name of the initial state
as its arguments. [t then initializes the process queue QCFGS with the given input and the ini-
tial state, and begins to crank the infinite loop of executing the frontmost process taken from
the queue and updating the queue. As Figure S illustrates, EVAL-PC2?! invokes the appropri-

ate ATN state module with the process’s configuration frame CFG as its argument.

Figure 5. EVAL-PC, a module for

- a function application

7.3.3 State modules

In this section, we give an example of compilation of an ATN state.22 A fragment of an
actual ATN program as given in Figure 6 yields a compiled ATN module as shown in Figure 7.
When entered, a state module first removes any side-effects left by the last-executed child arc
alternative before it invokes the appropriate arc module pointed to by the entry point. Because
of our policy of having the side-effects of the previous process removed by the process called

for the next sibling process, we have implemented such that a state module is re-entered once

% The input pre-precossing includes actions such as dictionary lookup, decapitalization. and punctuation
handling. .

2 EVAL-PC, as well as PARSE, is one of the best checkpoints to be monitored by ATN debuggers.

1 An ATN source state <state> is mapped to a compiled ATN state module with the name CA%<state>.
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Figure 6. A fragment of an ATN program
EXEEEEX XXX EXAKE ABOU'I‘ HERE RIRAIERRAEE

Figure 7. Compiled ATN state module

corresponding to state SP

more after all of its arc alternatives have been consumed, just for the purpose of removing the
side-effects left by the last arc alternative.?3 If an entry value leads to a- mis-firing of an arc
module due to.a rejection of the arc module’s entrance test, the control may co!npletely exit
the state module and then re-enter the state module for the next urc alternative. However, in
such a case in the present implementation, instead of exiting vacuously, the state module keeps
invoking different arc modules, altering the entry values? until it finds the first successful
one in order to cut down the frequency of re-entrance to a state module. An arc module
retﬁms a record with two information fieldss a set of successor archiprocesses and a set of
SNePS nodes created by the arc module as its side effect. However, if the entrance to the arc is
rejected by the ATN’s entrance test, a mere NIL report, instead of a record of two empty sets,
is returned to the state module. This informative signaling method makes it possible for a
state module to differentiate the case of an immediate test entrance failure from that of a
blocked ATN search in the search space but leaving no side-effects and successor processes. This
distinction is utilized by pseudo-state modules due to GROUP arcs in determining when the
rest arc alternatives should be aborted. A state module returns to the top-level driver a set of
processes (including possibly an empty set) which is the union of the newly expanded succes-

sor processes and the process itself to be re-entered.

7.3.4 Arc modules

4 And, this is also a good time to give the user the message, if desired, that the comrol exits the state.

4 Presently, the function NEXT-EN.EN that finds the next entry Value, is a macro replaced by Lisp's
ADD1 functionr. But, this macro is subject 10 be refined into any appropriate operatiom to meet the particular
need of the individual installation site depending on their policy over search order.
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Arc modules?3 in the compiled machine are closely related to the interpreter’s arc func-
tions. However, while the interpreter's arc functions are generic, the compiled machine’s arc
modules are specific 10 a state. A generic arc function takes, as its arguments, a specific ATN
source of the arc body to be interpreted and a specific configuration frame of the current state,
and interprets the arc body within the eval-frame as indicated by the configuration frame to
realize all the tests and actions to be taken by the arc. But arc modules in the compiled
machine are each bound to a state with some variable bindings and form expansions done dur-
ing compile time. Therefore, a compiled arc module realizes the class of specific instances of an
arc in a pa_rtiéular state, and is invoked in order to complete the last phase bindings and form
evaluations that had to be delayed until parse time. Arc modules that realize an instance of
CAT, TST, WRD, VIR, TO, or JUMP are straightforward in the sense that they are largely a
mere transformation of the respective generic arc function filtered through the first-phase
evaluation by the compiler. But the arc modules for the GROUP arc and push-family arcs

deserve some comments on their somewhat tricky implementational tactics.

We pointed out that, in the interpreter machine (cf. Section 6.3), a list of the push-pop
actions are stored in successor process’s configuration frame in their ATN source notation so
that it can be later interpreted. In the compiled machine (cf. Section 7.2), the push-pop actions
are defined into a unique lambda function on the parser control's entrance to the associated
PUSH process, and its address (i, the function name) is stored in the configuration frame so

that it can be later invoked by the right POP process.

A GROUP arc makes itself as if it were a state. A set of arcs emanate from a GROUP arc
very much like from a state. But the first positive result of the entrance test to any of the

alternative arcs within a GROUP aborts all the other alternatives. We will call the imaginary

25 The arc modules dependent on CA%<state> are named CA%«<state><k><arcname-k> where
<arcname-k > is the k -th arc emanating from the state <state> in the source program. This naming scheme
svstematically assigns every compiled ATN module 2 mnemonic name. However, there is a slim chance of
having a collision between a state module and an arc module. For instance, if there s a state named NP with
its, sav, first arc being CAT, and if there is another state named NPICAT, then the mame CA%NPICAT will
be assigned both to the module for the state NP1ICAT and to the module for the first arc CAT of the state NP.
Collision of even this kind can be avoided by maintaining a table of module names, and letting it be checked
before every new module is to be named, which, we believe however, will be a waste of resources with no
practical danger existing.
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state created by a GROUP arc a pseudo-state. A GROUP arc module?® is by itself a pseudo-
state module. It invokes its own arc modules with a control slightly different from that of
normal state modules. Apparently, one of the strong motivations of having GROUP arc con-
vention in ATN notation is to allow ATN programmers to express their special desire for a
sequential control over otherwise non-deterministic alternatives. Thus, we also design GROUP
arc modules such a way that the control flows sequentially just as indicated by the ATN pro-
grammer. For this reason, a pseudo-state made by a GROUP arc is an OR-construction to
which the concept of re-entrant state module is not applied. Figure 8 exemplifies a fragment
of an ATN- pr})gram with a GROUP arc used in it, and Figure 9 illustrates how the GROUP arc

is mapped to a pseudo-state module in a compiled ATN system.

Figure 8. A fragment of an ATN program with a GROUP arc

EEXEERRRE KKK RS A B()LT },{ER l: XX ERKRIKRE KK

Figure 9. Compiled ATN pseudo-state module

corresponding to pseudo-state GROUP arc of state NP
EXREEREREEXE X KE ABOLT I{ERE KERXEEXLAERKKKES

7.4 Parse time control

A clear advantage of the production-system model is that a vast amount of system con-
trol can be exercised at parse time. With an appropriate refinement of the algorithm for the
entry point value computation at each entrance to a state module, the entirely different ATN
search can be explored. Even without a sophisticated control strategy algorithmicallyv set up,
the user can experiment with different search controls manually using the convenient and
powerful monitoring devices that can be easily inserted to the system because of the
production-system architecture. The places that such monitoring devices can best fit are the

two control driver modules, PARSE and EVAL-PC. PARSE is the module that drives the

» The psendo state of a GROUP arc is represented by a =*" concatenated at the end of the name of the
GROUP arc module such as CA%<state><k >GROUP®, and the embedded arcs from the pseudo state are
further named consistently 1n accordance With the above rule for arc module naming.
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production-system, and EVAL-PC is the module that fires the current processes, namely, each
selected state module for every production-system cycle. For instance, by setting the global
flag PARSE-MONITOR on, the user enters a break package every time the search driver iterates
the production-system cycle as was illustrated in Figure 4. In this break package, the user can
easily examine or manipulate the content of the process queue (QCFGS) in order to trace or
modify the search order.?’ Similarly, by setting the global flag EVAL-PC-MONITOR on, the
user enters a break package every time the search driver is about to execute the process selected
from the process queue as was illustrated in Figure 5. The user can also enter the break loop
when the control is about to invoke certain selected state modules only, by maintaining a glo-
bal list BREAK-POINTS of state module names which is checked with for a break in EVAL-
PC as shown in Figure 5. In the break package entered from EVAP-PC, the user can examine
or manipulate the content of the current process (CFG). The user can freely and safely re-
arrange the order in which the state-dependent alternative arc modules are executed b merely
altering the entry point value stored in the process’s configuration frame. Figure i(! shows an

example of a user exercising this control facility.

Figure 10. A parse time trace of the control driver

monitored by the user
RERE XK E KT ABOUT HER]‘ AXERKEFEEXXKEKKE

7.5 Results

Figure 11 illnstrates an efficiency comparison between the two ATN machines, the inter-

preter and the compiled machines.28

Figure 11. Efficiency comparison between interpreted and
compiled ATN machines with Shapiro (1985) ATN program

7 However, shuffling of the processes in this queue should be done with a great amount of caution exer
cised if the site-dependent policy of sideeffects removal imposes a certain limitation.

1 We madd this comparison with all the other factors remaining preciselv the same. The two Lisp pro
grams were both Lisp compiled for their maximum speed, and the test run was made when there was no oth
er users logged in on the system.
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The ATN program used was the grammar for natural language processing by Shapiro (1985).
Some inputs, prefixed by an “S”, were English sentences which caused the system 1o respc:.d in
English through the whole chain of processings for surface sentence understanding, inference,
and surface sentence generation, while some others, prefixed with “G”, were SNePS stru_tures
which caused the system to generate surface English sentences expressions for them. The input
forms were given to0 the system in the order as they are presented in the figure, which caused
the system to construct and maintain a particular cognitive context. With these non-trivial
data, the compiled machine was found to be running about 3 times as fast as the interpreter
counterpart. Considering the factor that this comparison was made in SNePS context where
many SNePS activities cther than ATN parsing per se, such as deductions, were also taking
place embedded in parsing routines, we reasonably conclude that the actual efficiency improve-
ment should be far more than this figure. Through further innumerable successive tests car-
ried out in SNePS Group lab, we were convinced that the presented design of our compiled

machine contained no apparent faults.

8. CONCLUSION

Compiled ATN machines of the production-system model constructed along the incremen-
tal compilation approach are important. We have demonstrated that the design technique of
re-entrant state module, in which an ATN state module is built so as to contain as many entry
points as the number o1 the arcs in it, is a valid solution to the prublem of building a compiled
production-system ATN machine that allows flexibie search control. This design provides
enough motivation to go further into arc-module modularization beyond the traditional state-
module modularization, thus extending the scope of incremental compilation of ATN programs.
Our sausfactory implementation has proven that this design is practically viable, too, by
enhancing the efficiency of ATN program execution in terms of the speed as much as three
times combaréd with the interpreter machine in the same environment. The practical benefit

of flexible search control an ATN machine of this design has hinges upon the effectiveness of
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the algorithm used to calculate the value for the entry-point on each entrance to » state

module. The study of this issue remains open.
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Figure 2. Block-diagram of the control flow through
a re-entrant state module to an arc module

2B-130




(DEF QMPARC
(LAMBDA (OPORT SSID AQUUNT ARC)
:: OPORT is the compiler output file
;+ SSID is the name of the state which the arc is dependent on
1; AODUNT counts the static order of the arc in the state
i3 ARC is the source ATN definition of the arc
(LET ((AMDDULE-NAME (MAKE-AMODULE-NAME SSID ACOUNT ARC)))
(COND ((1S-VALID-ARC ARC)
(SETQ CA-ARCS (CONS AMIDULE-NAME CA-ARCS))
;; a global variable, CA-ARCS remembers all the arc modules generated
(FUNCALL (GET-QOOMPARC-SPECIALIST ARC)
OPORT
AMIDULE-NAME
ARC))
(T (PRINT-CODE OPORT ";;**ERROR IN ARC FUNCTION**")
(MSG N "UNKNOAN ARC " (ARC-NAME ARC) " IN " SSID)
NIL)))))

Figure 3. Lisp definition of GMPARC function

PROCEDURE OMPARC ((WTFILE; STATE-NAME; ARC-COOUNT; ARC-RNDY);
{
generate the name of the compiled arc module;
IF no error in ARC- DY
THEN
call arc-specialist to generate code for the compile arc module;
ELSE
give message for an error in ARC-BODY of ATATE-NAME;
write in QUTFILE an error-indicating code;

Figure 3. Pseudo-code description of (OMPARC
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(DEF PARSE
(LAMBDA (PREP-SENTENCE INIT-STATE)
:; PREP-SENTENCE is the pre-processed input sentence
INIT-STATE is the name of the ATN state to start from
(DO ((QCRGS (INITIALIZE-PQQ PREP-SENTENCE INIT-STATE))
(PARSE-SET NIL))
; PARSE-SET is non-locally modified by successful parsings
(CISNULL.PQOQ QCIRGS) PARSE-SET)
; if the queue is empty, returns PARSE-SET
(BRFAK PARSE-BREAK (AND PARSE-MONITOR (EXAM-QUEUE)))
; if PARSE-MONITOR flag is on,
; displays the process queue, and enters the break package
(SETQ QCFGS
(MIRGE-P() (EVAL-PC (FIRST-PC!PQQ QCIGS))
(REST-PQOQ QCFGS)))
; the queue is updated with the result of the current process
(1F (AND ONE-PARSEFLG PARSE-SET)(SETQ QCFGS NIL-POQ)))))

Figure 4. Top-level control driver

(DEF EVAL-PC
(LaMBDA (CFG)
;; CRG is the configuration frame of the current process
(BREAK EVAL-PC-BREAK (AND EVAL-PC-MONITOR (EXAM-PC)))
; if EVAL-PC-MDNITOR flag is on,
; displays the config. frame, and enters the break package
(*BREAK (1S-BREAKPOINT-SET (GET-STATE-MODULE-NAME CFG) BREAK-POINTS)
(OONS ’'break-at-bpoint (GET-STATE-MIDULE-NAME CFG)))
; enters the break package
; if the state module name is listed in BREAK-POINTS
(FUNCALL (GET-STATE-MIDULE-NAME CRG) CRG)))

Figure 5. EVAL-PC, a module for
a function application
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(SP ; parse a sentence
(WRD (WO WHAT) T
; if it starts with “who"” or "what”, it's a question.
(SETR TYPE 'Q) (LIFTR TYPE) (SETR SUBJ 9X) (TO V))
(PUSH NPP T
; a statemernt starts with a noun phrase — its subject.
(SENDR TYPE 'D) (SENDR P-ATT) (SENDR NH2)
(SENDR BELIEVER.REG)
(SETR TYPE (QOND ((NULLR STYPE) °'D)
(T (D $))))
(LIFTR TYPE) (SEIR SUBJ *)
(TOV)))

Figure 6. A fragment of an AIN program
(Note that there are two arc alternatives in state SP’)

(DEF CA%SP
(LavA (C1G)
(CLEAN-SIDEEFFS (GET-SIDEEFFBCTS CRG))
; First, the sideeffects left by the previous entrance are undone
(IX) (; 1X0-1oop keeps the control to stay in the stats miule
: until the first successful arc alternative is fourd.
(ENTRY (GET-EN!PC CFG))
; ENTRY is the value of the entry-point
(NDS+SONS))
: the value returned from the successor arc module
(NIL ’INFINITE-LOOP)
(SETQ NDS+SONS
(CASEQ ENTRY
(1 (CA%SPIWRD CFRG))
(2 (CA%SP2PUSH CFG))
(T (RETURN NIL-POD))))
(SETQ ENTRY (NEXT-EN.EN ENTRY))
(QND (NDS+SON
(RETURN (MERGE - P(RQ. POQ&PC
(SUCCESSOR-PCQ NDS+SONS)
(UPDATE-CURRENT-PC
CRG
(GET-SIDEEFFECTS NDS+SONS)
(NEXT-EN.EN ENTRY)))))
(T 'DO-LOOPING)))))

Figure 7. Campiled ATN state module corresponding to state SP

(Note that the compiled state module CAJSP for state SP
contains in it two non-trivial entry-points)
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(NP

(GROUP ; first see if there’'s a propositional attitude
(PUSH G (OR (GETA WHICH) (GETA VERB))
; generate an S to express the M-objective
; of a propositional attitude if there is one.
; if the OBJ-register contains a propositional node,
: then that node has either a which-arc or a verb-arc
(SENDR DONE) (SENDR DIMMY (RTPRINT °THAT)) (TO D))

;else: the proper number is pl for a class, sing for an individual
(JUMP NP1 NUMBR)

(Jusp NP1 (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-))
i (SETR NUMBR °'PL))

(JuMP NP1 (NOT (OR (GETA SUB-)(GETA SUP-)(GETA CLASS-)))
(SETR NIMBR 'SING))))

Figure 8. A fragment of an ATN program with a group arc
(Note that the GROUP arc groups the four sub-arcs in it

into a sequence of mutually exclusive alternatives.)

(DEF CAZNP1GROUP
(1AVBDA (CKG)
(CLEAN-SIDEEFFS (NDS!PC CFG))
(OR (CANPIGROUP*1PUSH CFG)
(CAINPI1GROUP*2JWMP CFG)
(CAINPIGROUP*3JUMP CFG)
(CAINPIGROUP*4JWMP CRG))))

Figure 9. Campiled ATN pseudo-state module
corresponding to pseudo-state group arc of state NP

(Note that the four sub-arc modules are cambined

into a sequential OR-construction.
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{ PARSE-MONITOR IS ON ]
: Young Lucy petted a yellow dog

Process (Queue
1: (1 nil (young & Lucy & ...) CA%s ...)

Break parse-breake
<1>: (return t)

Process Queue
1: (1 nil (young & Lucy & ...) CA%sp ...)
2: (2 nil (young & Lucy & ...) CA%s ...)

Break parse-breake

<1>: (setq parse-monitor nil eval-pc-monitor t)

t

[ NON, PARSE-MINITOR 1S OFF, AND EVAL-PC-MONITOR 1S ON ]
<1>: (return t)

Configuration Frame for (CA%sp . 1)
(entry = 1)

(nodeset = NIL)

(buffer = (young (&) Lucy (&) ...))
(state = CA%sp)

(pstack = ((CA%s & CA%s1push-pop2)))
(level = 2)

(regs = ((believer.reg . Cassie)))
(held = NIL)

(path = NIL)

(weight = 0)

Break eval-pc-break

<1>: (setq eval-pc-monitor nil)

nil

[ NOW, EVAL-PC-MONITOR IS ALSO OFF ]

<1>: (set-bpoint npdet)

A break-point made at state-module CAZnpdet

[ NOWV, A BREAK-POINT IS SET TO THE STATE MODULE FOR STATE npdet ]
CA9anpdet

<1>: (return t)

Break {(break-at-bpoint . CA%npdet)

<1>: (exam-queue)

Process Queue

: (1 nil (young & Lucy & ...) CA%npdet ...)
: (5 nil (young & Lucy & ...) CA9npp ...)

: (3 nil (young & Lucy & ...) CA%«clause ...)
: (11 nil (young & Lucy & ...) CA%rulep ...)
: (2 nil (young & Lucy & ...) CA%rpl ...)

: {2 nil (young & Lucy & ...) CAIsp ...)

: (2 nil (young & Lucy & ...) CA%s ...)

A ™ 30 WL W=

1>: (return t)
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Break (break-at-bpoint
<1>: (exam-queue)
Process Queue

1: (1 nil (Lucy & petted & .
: (2 nil (young & Lucy & .

: (11 nil! (young & Lucy &

0 O awi

: (5 nil (young & Lucy &...
: (3 nil (young & Lucy & .

: (2 nil (young & Lucy & .
: (2 nil (young & Lucy & ..
(2 nil (young & Lucy & .

. CA9npdet)

..) CA9npdet ...)
.) CA%npdet ...)

.) CA9anpp ...)

.) CA%clause ...)
...) CA%rulep ...)
.) CA%rpl1 ...)

.) CA%sp ...)

) CA%s .. .)

t
<1>: {exam-pc)

Configuration Frame for (CA%npdet . 1)
(entry = 1)

(nodeset = NIL)

(buffer = (Lucy (&) petted (& &) ...))
(state = CA9npdet)

(pstack = ((CAdclause & CAJclause2push-popl) (CA%rulep & CA%ruleplOpush-pop2) ...

(level = 5)

(regs = ((* . young) (*
(held = ((adj 5 & nil)))
(path = NIL)

(weight = 0)

t

<1>: (reset-entry 6)
entry value is set to 6
6

[ NOW, ENTRY VALUE 1S ALTFRFD FROM 1 TO 6 ]
<1>: {exam-pc)

Configuration Frame for (CAdnpdet . 6)
(entry = 6)

(nodeset = NIL)

(buffer = (Lucy (&) petted (& &) ...))
(state = CAdmpdet)

. young) (lex . young) (* . young) ...))

(pstack = ((CA%clause &.C%&x]ause2push popl) (CA%rulep & CA%rulepiOpush-pop2) ...

(level = 5)

(regs = ((* . young) (* . young) (lex . young) (* . young) ...))
(held = ((adj §$ & nil)))

(path = NIL)

(weight = 0)

t

<1>: (unset-bpoint npdet)

The break-point removed from state-module CA%npdet
CA9npdet

[ THE BREAK-POINT AT STATE MIDULE CA9npdet 1S RBMOVED ]
<1>: (return t)

| understand that young Lucy petted a yellow dog

=> (cpu= 5.733 gc= 0.00) <=)

(time (sec.). :

Figure 10. A parse time trace of the control driver
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Parse tasks

Usage of symbols for task identification

|
|
| S# (Surface to surface parsing)

I input sentence —> system’s response

| G# (Semantic structure to surface parsing)
| >> system’s expression

S1: young Lucy petted a yellow dog
—> | understand that young Lucy petted a yellow dog
G1: >> young Lucy will pet a yellow dog
G2: >> young Lucy is starting to pet a yellow dog
G3: >> young lucy is petting a yellow dog
G4: >> young Lucy just petted a yellow dog
GS5: >> young Lucy petted a yellow dog
G6: >> young Lucy will be petting a yellow dog
G7: >> young Lucy was petting a yellow dog
G8: >> young Lucy would pet a yellow dog
G9: >> young lucy will have petted a yellow dog
S2: what is yellow —> a dog is vellow
S3: dogs are animals —> | understand that dogs are animals
S4: who petted an animal —> young lLucy petted 2 yellow animal
SS5: Lucy is a girl
~—> | understand that sweet young lucy is a girl
S6: girls are people —> ] understand that girls are people
$7: what was petted by a person
—> a yellow animal was petted by sweet young Lucy
S8: who petted a dog
—> sweet young Lucy petted a yellow animal
G10: >> a yellow animal
S9: who petted Rover — sweet young Lucy petted yellow Rover

11— ==== ===S=====

task _|interpreted _ compiled task interpreted compiled
S1 16.03 2.93 G5 5.45 1.73
S2 13.65 4.53 §7 30.66 10.18
G1 5.81 1.81 Gé6 7.50 2.38
S3 4.7 1.53 S8 30.73 10.21
G2 5.06 1.58 G7 6.93 2.16
S4 30.06 9.93 G10 2.58 0.88
G3 6.51 2.05 G8 13.43 4.28
S5 7.18 2.26 S9 19.96 6.65
G4 5.13 1.65 G9 11.95 3.91
S6 ___|____3.68_ 1.50 _ __

Ratio | _______ 3.160 : 1 (or 1 : 0.316)

Figure 11. Efficiency camparison between interpreted and
compiled ATN machines with Shapiro (1985) ATN program
(time unit = CPU seconds)
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Appendix B4:

“SNePS Considered as a Fully Intensional
Propositional Semantic Network”

Shapiro, S.C.
Rapaport, R.].
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11.1. Introduction

This chapter presents a formal syntax and semantics for
SNePS. the Semantic Network Processing System (Shapiro,
1979b).3°  The syntax shows the emphasis placed on SNePS's
propositional nature. The semantics, which is based on Alexius
Meinong's theory of intentional objects (the objects of thought),
makes SNePS's fully intensional nature precise: as a fully
intensional theory. it avoids possible worlds and is appropriate
for Al considered as “computational philosophy” - Al as the
study of how intelligence is possible - or “computational
psychology” ~ Al with the goal of writing programs as models
of human cognitive behavior. We also present a number of
recent Al research and applications projects that use SNePS,
concentrating on one of these. a use of SNePS to model (or
construct) the mind of a cognitive agent, referred to as CASSIE
(the Cognitive Agent of the SNePS System-an Intelligent
Entity).

11.1.1. The SNePS environment

A semantic network i1s a data structure typically
consisting of labeled nodes and labeled. directed arcs. SNePS
can be viewed as a semantic network language with facilities

tor

1. bhuilding semantc networks to represent  wvirtually

30

Tris research was supported in part by the Nalional Science Foundation
under Grant No. [IST-8504713 and SUNY Buffalo Research Deveiopment Fund
grants No, 150-9216-F and No. 150-8537-G (Rapaport), and in part by the Air
Force Systems Command, Rome Air Development Center, Griffiss Air [rree
Base, NY 13441-5700, and the Air Force Office of Scientific Research, Bolling
AFB, DC 20332 under contract No. F30602-85-C-0008 (Shapiro). We wish to
thank Michael Almeida, James Geller, Joao Martins, Jeannette Neal, Sargur
N. Srihari, Jennifer Suchin, and Zhigang Xiang for supplying us with
descriptions of their projects, and Randall R. Dipert, the members of SNeRG
(1 SNePS Research Group), and three anonymous reviewers for comments and
drngenn,
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any kind of information or knowlsdge.
2. retrieving information from them, and

3. performing inference with them. using SNIP (the
SNePS Inference Package) and path-based inference.

Users can interact with SNePS in a variety of interface
languages, including: SNePSUL, a LISP-like SNePS User
Language: SENECA. a menu-based, screen-oriented editor:
GINSENG. a craphics-oriented edilor; SNePSLOG. a higher-order-
logic languzge {in the sense in which PROLOG is a first-order-
logic language) (McKay and Martins, 1981), (Shapiro. McKay.
Martins, and Morgado. 1981); and ‘an extendible fragment of
English, using an ATN parsing and generating grammar
(Shapiro, 1982). see Figure 11-1.

SNePS |e4——»f SNIP.

Al

\=4 =
SNePSUL SENECA GINSENG
¥ ¥
SNePSLOG ATN

Figure 11-1: SNePS, SNIP and Their User Interfaces.

SNePS, SNIP (the SNePS lInterface Package) and their user
interfaces. When the arcs, case frames, and ATN grammar are
those of SNePS/CASSIE, then the system is being used to
model CASSIE. When the ares are for the database .sec
Section 11.4.1), then the system is being used as a database
management sysiem, etc.
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SNePS is the descendent of SAMENLAQ (Shapiro.
Woodmansee, and Kreuger, 1968) (Shapiro and Woodmansee,
1969) and MENTAL (Shapiro. 1971b). (Shapiro. 1971c¢). It was
developed with the help of the SNePS Research Group at
Indiana University and at the University at Buffalo. The
current version is implemented in Franz LISP and runs on
VAX 11/750s and 780s in the Department of Computer Science
at Buffalo. An earlier version was implemented in ALISP on a
CDC Cyber 730. and an updated version is being implemented
in Common LISP on Symbolics LISP machines. TI Explorers.
and a Tektronix 4406. Theré are additional installations at
other universities in the U.S. and Europe.

11.1.2. SNePS as a knowledge representation system

Some researchers., for example, (Levesque and Brachman,
1985). view a knowledge representation (KR) system as a
subsystem that manages the knowledge base of a knowledge-
based system by storing information and answering questions.
In contrast, we view SNePS as the entire knowledge-based
system, interacting with a user/interlocutor -through one of its
interfaces. Of course. the user/interlocutor could be another
computer program using SNePS as a subsystem, but that is not
the way we use it

A basic design goal of SNePS and its ancestors was to be
an environment within which KR experiments could be
performed. that is. to be a semantic network at the "logical®
level, to use Brachman's term (Brachman. 1979), see Section
11.5. below. This has been effected by providing a rather low
level interface, SNePSUL. Using SNePSUL. a KR designer can
specify a syntax: individual arc labels and sets of arc labels
(or case frames) that will be used to represent various objects
and information about them. It is also the designer’s obligation
to supply a semantics for these case frames. As is the case
for any provider of a language or “shell”. we cannot be
responsible for what use others make of the facilities we
provide. Nevertheless. we have our own preferred use.

In this chapter. we try to do two things. First, we try
to provide an understanding of SNePS and of some of the uses
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to which it has been put. Second. and most importantly, we
present our own preferred use: this is to use SNePS, with a
particular set of arc labels and case frames. and a particular
parsing/generating grammar for a fragment of English, as (a
model of) the cognitive agent, CASSIE. We shall refer to
SNePS with these arcs. case frames, and grammar as
SNePS/CASSIE. SNePS/CASSIE forms CASSIE's mind and
stands as our current theory of KR at the "conceptual” level
(cf. Section 11.5, below. and (Brachman, 1979)). The purpose
of the central part of this paper is to present this theory by
explaining the  entities represented by  structures in
SNePS/CASSIE. by giving a formal syntax and semantics for
those structures. and by showing and explaining a sample
conversation with CASSIE.

11.1.3. Informal description of SNePS

Regardless of the intentions of a KR-system designer.
SNePS, as a KR formalism. provides certain facilities and bas
certain restrictions. The facilities (for example, for building.
finding, and deducing nodes) are best understood as those
provided by SNePSUL. but we shall not give a complete
description of SNePSUL here. (For an example, cf. Section
11.4.1, below: for details, see (Shapiro. 1979b).] The
restrictions, however, are important to understand. because they
distinguish SNePS from a general labelled. directed graph and
from many other semantic network formalisms.

SNePS is a propositional semantic network. By this is
meant that all information. including propositions, "facts”, etc..
i1s represented by nodes. The benefit of representing
propositions by nodes is that propositions about propositions can
be represented with no limit. (In the formal syntax and
semantics given in Section 11.3, the propositions are the nodes
labelled ‘m’ or °r'.)

Arcs merely form the underlying syntactic structure of
SNePS. This is embodied in the restriction that one cannot add
an arc between two existing nodes. That would be tantamount
to telling SNePS a proposition that is not represented as a
node. There are a few built-in .arc labels. used mostly for
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rule nodes. Paths of arcs can also be defined. allowing for
path-based inference. including property inheritance within
generalization hierarchies [see Section 11.3.4. below: cf. Shapiro
(Shapiro., 1978). (Srihari. 1981). and (Tranch. 1982).] All other
arc labels are defined by the user. typically at the beginning of
an interaction with SNePS, although new labels can be defined
at any time.

For purposes of reasoning, propositions that are asserted
in SNePS must be distinguished from those propositions that
are merely represented in SNePS but not asserted. This could
happen in the case of a proposition embedded in another (for
example, "Lucy is rich” embedded in ."John believes that Lucy
is rich”). SNePS interprets a proposition node to be asserted if
and only if it has no arcs pointing to it.3!

Another restriction is the Uniqueness Principle: There is a
one-to-one correspondence between nodes and represented
concepts. This principle guarantees that nodes will be shared
whenever possible and that nodes represent intensional objects.3?
We next consider the nature of these objects.

11.2. Intensional knowledge representation

SNePS can be used to represent propositions about entities
in the world bhaving properties and standing in relations.
Roughly, nodes represent the propositions. entities, properties.
and relations. while the arcs represent structural links between
these.

SNePS nodes might represent extensional entities. Roughly.
extensional entities are those whose "identity conditions” (the
conditions for deciding when "two" of them are really the
"same") do not depend on their manner of representation. They

31his is not really a restriction of SNePS, but of SNIP (the SNePS Inference
Package) and path-based inference.

321, (Maida and Shapiro, 1982) this name was given to only half of the
Uniqueness Principle as stated here: “each concept represented in the network is
represented by a unique node” (page 291).
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may be characterized as those entities satisfying the following
rough principle:

Two extensional entities are equivalent (for some purpose)
if and only if they are identical3?
For example. the following are extensional:

the Fregean referent of an expression;

physical objects;

sentences;

truth values;

mothemotical objects such oas:
sets,
functions defined in terms of their input—output

behavior (that is, as sets of ordered pairs),

n—-place relations defined in terms of sets of

ordered n~tuples.

Although SNePS can be used to represent extensional
entities in the world, we believe that it must represent
intensional entities. Roughly, intensional entities are those whose
identity conditions do depend on their manner of representation.
They are those entities that satisfy the following rough
principle:

Two intensional entities might be equivalent (for some)
purpose without being identical (that is, they might
really be two, not one).

Alternatively, intensional entities may be characterized as
satisfying the following five criteria:

1. They are non-substitutible in referentially opaque
contexts. '

2. They can be indeterminate with respect to some
properties.

3. They need not exist.

334hat is, if and only if “they” are really one entity, not two
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4. They need not be possible.

5. They can be distinguished even if they are
necessarily identical (for cxample. the sum of 2 and
2 and the sum of 3 and 1 are distinct objects of
thought).

For example. the following are intensional:

the Fregean sense of an expression;

concepts;

propositions;

properties;

algorithms;

objects of thought, including:
fictional entities (such as Sherlock Holmes),
non-existents (such as the golden mountain),
impossible objects (such os the round square)

Only if one wants to represent the relations between a
mind and the world would SNePS also have to represent
extensional entities [cf. (Rapaport. 1976). (Rapaport. 1978).
(McCarthy. 1979)). However, if SNePS is used just to represent
a mind - that is, a mind’s model of the world-then it does not
need to represent any extensional objects. SNePS can then be
used either to model the mind of a particular cognitive agent
or to build such a mind - that is, to be a cognitive agent
itself.

There have been a number of arguments presented in
both the Al and philosophical literature in the past few years
for the need for intensional entities. (Castaneda, 1974), (Woods,
1975). (Rapaport. 1976). (Rapaport. 1985a)., (Brachman, 1977).
(Routley. 1979). cf. (Rapaport. 1984a), (Parsons. 1980), cf.
(Rapaport, 1985b)). Among them, the following considerations
seem 10 us to be especially significant:

Principle of Fine-Grained Representation:

The objects of thought (that is, intenfional objects)
are intensional: o mind con have two or more objects of
thought that correspond to only one extensional object.

To take the classic example. the Morning Star and the Evening
Star might be distinct objects of thought, yet there is only one
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extensional object (viz., a certain astronomical body)
corresponding to them.

Principle of Displacement:

Cognitive agents con think aond tolk acbout non—existents:
¢ mind caon hove an object of thought that corresponds to
no extensional! object.

Again to take several classic examples, cognitive agents can
think and talk about fictional objects such as Santa Claus.
possible but non-existing objects such as a golden mountain,
impossible objects such as a round square, and possible but
nol-yet-proven-to-exist objects such as theoretical . entities (for
example, black holes).

If nodes only represent intensional entities (and
extensional entities are not represented in the network). how do
they link up to the external, extensional world? In
SNePS/CASSIE. the answer is by means of a LEX arc (see
syntactic formation rule SR.1 and semantic interpretation rule
SL1 in Section 11.3.3, below): the nodes at the head of the
LEX arc are our (the user’s) interpretation of the node at its
tail. The network without the LEX arcs and their head-nodes
displays the structure of CASSIE's mind [cf. (Carnap. 1967).
Section 11.14].

A second way that nodes can be linked to the world is
by means of sensors and effectors, either linguistic or robotic.
The robotic sort has been discussed in (Maida and Shapiro.
1982). Since so many Al understanding systems deal
exclusively with language. here we consider a system with a
keyboard as its sense organ and a CRT screen as its only
effector.

Since the language system interacts with the outside
world only through language, the only questions we can
consider about the connections of its concepts with reality are
questions such as:

Does 1t use words as we do?

When it uses word W, does it meon the some thing os
when | use it?

When | use word W, does it understaond whot 1 mean?
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The perceptual system of the language system is its
parser/analyzer - the programs that analyze typed utterances
and build pieces of semantic network. The motor system is
the generator - the programs that analyze a section of the
semantic network and construct an utterance 1o be displayed on
the CRT. One crucial requirement for an adequate connection
with the world is simple cbnsistency of input-output behavior.
That is. a phrase that is analyzed to refer to a particular node
should consistently refer to that node. at least while there is
no change in the network. Similarly. if the system generates a
certain phrase to describe the concept represented by a node, it
should be capable of generating that same phrase for that same
node. as long as nothing in the network changes. Notice that
it is unreasonable to require that if a phrase is generated to
describe a node, the analyzer should be able to find the node
from the phrase:: The system might know of several brown
dogs and describe one as "a brown dog’: it could not be
expected to find that node as the representation of "a brown
dog" consistently. .

If we are assured of the simple input-output consistency
of the system. the main question left is whether it uses words
10 mean the same thing as we do. It is the same question
that we would be concerned with if we were talking with a
blind invalid. although in that case we would assume the
answer was Yes until the conversation grew so bizzare that
we were forced to change our minds. As the system (or the
invalid) uttered more and more sentences using a particular
word or phrase. we would become more and more ‘convinced
that it meant what we would mean by it. or that it meant
what we might have described with a different word or phrase
("Oh! When you say ‘conceptual dependency structure, you
mean what 1 mean when | say ‘semantic network'."). or else
that we didn't know what was meant, or that it was not
using it in a consistent, meaningful way (and bence that the
system (or invalid) did not know what it was talking about).
‘As long as the conversation proceeds without our getting into
the latter situation. the system has all the connections with

reality it needs.
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11.3. Description of SNePS/CASSIE

In this section. we introduce CASSIE, and give the syntax
and semantics for SNePS/CASSIE in terms of a philosophical
theory of mental entities inspired by Alexius Meinong's Theory
of Objects.

11.3.1. CASSIE - A model of a mind

SNePS nodes represent the objects of CASSIE’s thoughts -
the things she thinks about. the properties and relations with
which she characterizes them. her beliefs, her judgments. etc.
[cf. (Maida and Shapiro. 1982), (Rapaport, 1985a)]. According
to the Principle of Displacement, a cognitive agent is able to
think about virtually anything, including fictional objects.
possible but non-existing objects, and impossible objects. Any
theory that would account for this fact requires a non-standard
logic. and its semantics cannot be limited to merely possible
worlds.  (Otberwise, it could not account for impossible
objects. This accounts for the difficulties David Israel has in
providing a possible-worlds semantics for SNePS (Israel, 1983),
(cf. (Rapaport. 1985a)). Theories based on the Theory of
Objects of the turn-of-the-century Austrian philosopher-
psychologist Alexius Meinong are of precisely this kind.

For present purposes. it will be enough to say that
Meinong held that psychological experiences consist in part of a
psychological act (such as thinking, believing. judging. wishing.
etc.) and the object to which the act is directed (for example.
the object that is thought about or the proposition that is
believed). TVM kinds of Meinongian objects of thought are
relevant for us:

1. The objectum. or object of “simple” thoughts: Santa
Claus is the objectum of John's act of thinking of
Santa Claus. Objecta are the meanings of noun
phrases.

2. The objective., or object of belief. knowledge. etc.:
that Santa Claus is thin is the objective of John's
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act of believing that Santa Claus is thin. Objectives
are like propositions in that they are the meanings
of sentences and other sentential structures.

It is important to note that objecta need not exist and that
objectives need not be true. [For details. see: (Meinong, 1904),
(Findlay. 1963). (Rapaport. 1976)," (Rapaport. 1978). (Rapaport.
1981). (Rapaport. 1982). (Castaneda, 1974). (Castaneda, 1975a).
(Castaneda. 1975b), (Casteneda, 1975)., (Castaneda. 1977).
(Castaneda. 1979). (Tomberlin, 1984), and (Routley, 1979); cf.
(Rapaport. 1984a). (Parsons, 1980); cf. (Rapaport. 1985b).
(Lambert, 1983): cf. (Rapaport. 1986a). (Zalta, 1983).]

This is, perhaps. somewhat arcane terminology for what
might seem like Al common sense. But without an underlying
theory. such as Meinong’s, there is no way to be sure if
common sense can be trusted. It is important to note that not
only are all represented things intensional. but that they are
all objects of CASSIE's mental acts: that is, they are all in
CASSIE's mind (her “belief space”) - they are all intentional.
Thus. even if CASSIE represents the beliefs of someone else
(for example. John's belief that Lucy is rich, as in the
conversation in the next section), the objects that she represents
as being in that person’s mind (as being in his "belief space”)
are actually CASSIE’s representations of those objects - that is.
they are in CASSIE’'s mind.

11.3.2. A conversation with CASSIE

Before giving the syntax and semantics of the case, frames
employed in representing CASSIE's "mind", we present a
conversation we had with her. An ATN parser/generator
(Shapiro. 1982) was used to parse the English input into SNePS
and to generate the SNePS structures in English. User input is
on the lines beginning with the :-prompt; CASSIE's output is
on the lines that follow. (Execution and garbage-collection
times have been edited out for clarity.)

: Young Lucy petted a yellow dog
I understond thaot young Lucy petted o yelfow dog

: What is yellow
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o dog is yellow

: Dogs are animols
1 understond that dogs are animals

: Who petted an onimal
young Lucy petted o yellow dog

: Lucy is swest
I understond that young Lucy is sweet

: Lucy is o girl
I understand thot sweet young Lucy is a girl

: Girls ore people
I understand that giris are people

: Whot waos petted by o person
o yellow dog was petted by sweet young Lucy

: The dog is nomed Rover
1 understond that Rover is o yellow dog

: What wos petted by a person
yellow Rover wos petted by sweet young Lucy

: John believes that Lucy is rich
I understond thot John believes that Lucy is rich

: Who is rich
I don’t know.

: Who is sweet
young Lucy is sweet

: John believes that Lucy is old
I understond that John believes that rich Lucy is old

: John is a boy
1 understand that John is a boy

: Boys are people
1 understand that boys are people

: Dogs ore pets
I understand that dogs are pets

: For every p oand d if p is a person ond d is o pet then p
loves d
I understond that for every d ond p, if p is a person
ond
‘d is a pet
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then p loves d

. Who loves o pet

sweet young Lucy loves yellow Rover
ond

John loves yellow Rover

11.3.3. Syntax and semantics of SNePS/CASSIE

In this section, we give the syntactic formation rules (SR)
and semantic interpretations (SI) for the nodes and arcs used in
this interaction. together with some other important ones. We
return to a2 more detailed examination of the interaction in the
next section. What we present here is our current model; we
make no claims about the completeness of the representational
scheme. In particular, we leave for another paper a discussion
of such structured individuals as the golden mountain or the
round square. which raise difficult and important problems
with predication and existence. [For a discussion of these
issues. see (Rapaport. 1978). (Rapaport, 1985a).]

Information is represented in SNePS by means of nodes
and arcs. Since the meaning of a node is determined by what
it is connected to in the network, there are no isolated nodes.
Nodes that only have arcs pointing fo them are considered to
be unstructured or atomic. They include:

(A1) sensory nodes, which represent interfaces with the
externatl world (in the exomples thaot follow, they will
represent words, sounds, or utterances);

(A2) base nodes., which represent constaont individuol
concepts and properties;

(A3) variable nodes, which represent orbitrary individuals
(cf. (Fine, 1983)) or arbitrary propositions.

Molecular nodes. which have arcs emanating from them, include:

(M1) structured individual nodes, which represent structured
individual concepts or properties (that is, concepts
and properties represented in such o way that their
internal structure is exhibited; see the discussion
of structured informotion in (Woods, 1975));

(M2) structured proposition nodes, which represent
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propositions; those with no incoming arcs represent

beliefs of the system.>* (Note that structured
proposition nodes con qlso be considered to be
structured individuals.) Proposition nodes are either
atormuc (representing atomic propositions) or ore

rule nodes. Rule nodes represent deduction rules

and are used by SNIP (the SNePS Inference Package) for
35

node-—bosed deductive inference.
For each of the three categories of molecular nodes (structured
individuals. atomic propositions, and rules), there are constant
nodes of that category and partern nodes of that category
representing arbitrary entities of that category.

- The rules labeled 'SR’. below, should be considered as
syntactic formation rules for a non-linear network language.
The semantic interpretations, labeled 'SI', are in terms of
Meinongian objecta and objectives. which are intentional objects,
that is, objects of thought. Since intentional objects are
intensional. our Meinongian semantics is an extensional
semantics over a domain of infensional entities (Meinongian
objects). '

We begin with a few definitions.3¢

Definition 1

A node dominates another node if there is a path of directed

34 There is a need 1o distinguish structured proposition nodes with no
incoming arcs from structured individual nodes with no incoming arcs; the
latter. of course, are nol beliefs of the system. This is handled by the
syntactic formation rules and their semantic interpretations. There is also a need
to distinguish between beliefs of the system and those propositions that the
system is merely contemplating or “assuming” temporarily [cf. (Meinong, 1983))
We are currently adding this capability to SNePS by means of an assertion
operator ("1").

35For details, sec (Shapiro, 1977), (Shapiro, 1978), (McKay and Shapiro,
1980), (McCarty and Sridharan, 1981), (Shapiro and McKay, 1980), (Shapiro,
Martins, and McKay, 1982), (Martins, 1983a).

36Th¢=c are actually only rough definitions; the interested reader is referred
1o (Shapiro, 1979b), Section 2.1, for more precise ones.
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arcs from the first node 10 the second node.

Definition 2

A pattern node is a node that dominates a variable node.

Definition 3
An individual node is either a base node, a variable node, or a
structured constant or pattern individual node.

Definition 4
A proposition node is either a structured proposition node or an
atomic variable node representing an arbitrary proposition.

SR.1 If "w" is an English word and "i" is an identifier not
previously used. then

LEX

is a network, w is a sensory node. and ¢ is a structured
individual node.

SI.1 ¢ is the Meinongian objectum corresponding to the
utterance of w.

SR.2 If either "i," and ", are identifiers not previously used.
or 'l,' is an identifier not previously used and t, is a temporal
node, then
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BEFORE

is a network and t, and t, are temporal nodes. that is

individual nodes representing times.

SI.2 t, and t, are Meinongian objecta corresponding to two

time intervals. the former occurring before the latter.

SR3 If ¢ and ; are individual nodes, and "m" is an identifiér
not previously used, then

EQUIV, QUIV

is a network and m is a structured proposition node.

SI3 m is the ™einongian objective corresponding to the
proposition that Meinongian objecta { and j (are believed by
CASSIE 10) correspond to the same actual object. (This is not
used in the conversation, but is needed for fully intensional
representational systems; cf. (Rapaport, 1978:RAPA84b) and
(Castaneda. 1974:CAST75b) for analyses of this sort of
relation, and (Maida and Shapiro, 1982) for a discussion of its
use.)

-

SRA4 If i and j are individual nodes and "m" is an identifier
not previously used. then
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is a2 network and m is a structured proposition node.

SI4 m is the Meinongian ‘objective corresponding to the
proposition that i has the property j.

SR.S If i and j are individual nodes and "m” is an identifier
not previously used. then

OBJECT PROPER-NAME

is a network and m is a structured proposition node.

SI5 m is the Meinongian objective corresponding to the
proposition that Meinongian objectum i's proper name is j. (j is
the Meinongian objectum that is i's proper name: ils expression
in English is represented by a node at the head of a LEX-arc
emanating from j.)

SR.6 If i and j are individual nodes and "m" is an identifier
not previously used. then
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MEMBER CLASS

1s @ network and m is a structured proposition node.

SIL.6 m is the Meinongian objective corresponding to the
proposition that i is a (member of class) j.

SR.7 If ¢ and j are individual nodes and "m" is an identifier
not previously used, then

1s a network and m is a structured proposition node.

SI.7 m is the Meinongian objective corresponding to the
proposition that (the class of) is are (a subclass of the class

of) Js.

SR.8 If il, ':2' i3 are individual nodes. t, t, are temporal nodes,
and "m’ is an identifier not previously used. then
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is a network and m is a structured proposition node.

SI.8 m is the Meinongian objective corresponding to the
proposition that agent i, performs act i, 10 or on i, starting at

lime ¢, and ending at time 7,. where ¢, is before ¢,

It should be noted that the ETIME and STIME arcs are
optional and can be part of any proposition node. They are a
provisional technique for handling the representation of acts
and events; our current research on temporal representation is
much more complex and is discussed in Section 11.4.7, below.

SR.9 If m, is a proposition node. i is an individual node. j is

the (structured individual) node with a LEX arc to the node,
believe, and "m2" is an identifier not previously used. then
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is 2 network and m, is a structured proposition node.

S19 m,
proposition that agent i believes proposition m,.

is the Meinongian objective corresponding to the

Two special cases of SR.9 that are of interest concern de re
and de dicto beliefs; they are illustrated in Figure 11-2 and
Figure 11-3. [For details. see (Rapaport and Shapiro.
1984) and (Rapaport. 1984b), (Rapaport, 1986b).]

SR.10 If m,, .., m_ are proposition nodes (n Z 0), "% and "}
are integers between O and n, inclusive. and "r" is an identifier
not previously used. then .

is a network, and r is a rule node.

SL10 r is the Meinongian objective corresponding to the
proposition that there is a relevant connection between
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Figure 11-2: Meinongian Objective - de re Reading

ms is the Meinongian objective corresponding to the
proposition that agent iI believes de re of objectum i3 (who
is belicved by CASSIE 10 be named i4) that it has the

property i5.

propositions m,, ... . m_ such that at least i and at most i(j) of

them are simultanenously true.

Rule r of SR/SL10 is called AND-OR and is a unified
generalization of negation (i = j = 0), binary conjunction (i = j
= 2). binary inclusive disjunction (i = 1, j = 2). binary
exclusive disjunction (i = 0. j = 1), etc.

SR.11 If m, .., m are proposition nodes (n < 0). is an
integer between 0 and n. inclusive, and “r" is an identifier not

previously used, then
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Figure 11-3: Meinongian Objective ~ de dicto Reading

m, is the Meinongian objective corresponding to  the
proposition that agent i, believes de dicto that objectum iy
(who is believed by i, 1o be named i4) has the property is.

THRESH O
» |

i1s a network, and r is a rule node.

SI.11 r is the Meinongian objective corresponding to the
proposition that there is a relevant connection between
propositions m,, ... , m_ such that either fewer than i of them

are true or they all are true.

Rule r of SR/SI.11 is called THRESH and is a generalization of
the material biconditional (i = 1).
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SR.12 If Qe s Qpy €y e G and 41. - . d, are proposition
nodes (n 2 I: j k 2 0; j+ k 2 1) %" is an integer

between 1 and n. inclusive. and "r" is an identifier not
previously used. then

is a network. and r is a rule node.

SI.12 r is the Meinongian objective corresponding to the
proposition that the conjunction of any ¢ of the propositions a,,

. a_ relevantly implies each ¢, (I < I < j) and relevantly
implies each d, (I £ I $ k) for which there is not a better

reason 1o believe it is false.

SR.13 If a;, ...,a,c

n. Il
nodes (n, j, k 2 0). and “r" is an identifier not previously

used, then
CQ
&ANT

is a network, and r is a rule node.

s Cjo and d,, .. , d, are proposition

SLL13 r is the Meinongian objective corresponding to the
proposition that the conjunction of the propositions a,, .. , @,

relevantly implies each ¢, (I < [ < j) and relevantly implies
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each d, (1 £ ! £ k) for which there is not a better reason to
believe it is false.

The d; are default consequences. in the sense that each is

implied only if it is neither the case that CASSIE already
believes not dl nor that not dl. follows from non-default rules.

SR.14 If a,, .. . a, c, .., < and d,, .. , d, are proposition
nodes (n 2 I:j, k 2 0; j+k 2 1), and "r" is an identifier
not previously used. then

is a network, and r is a rule node.

SL.L14 r is the Meinongian objective corresponding to the
proposition that any a, / € i £ n. relevantly implies each ¢
(1 € I € j)and relevantly implies each d, (I £ I £ k) for

which there is not a better reason to believe it is false.

SR.15 If m is a proposition node. and r" is an identifier not
previously used, then

B4

©

is a network, and r is a rule node.
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SL.L1S r is the Meinongian objective corresponding to the
proposition that there is no good reason for believing
proposition m.

SR.16 If r is a rule node as specified by SR.10-SR.15. and r
dominates variable nodes LS TR and. in addition, arcs

labeled "AVB" go from r lo each v, then r is a quantified rule

node.

SI.L16 r is the Meinongian objective corresponding to the
proposition that the rule that would be expressed by r without
the AVB arcs bolds after replacing each v, by any Meinongian

object in its range.

SR.17 If r is a rule node as specified by SR.10-SR.15, and r
dominates variable nodes v, .. , Vo and, in addition, arcs

labeled "EVB" go from r to each v, then r is a quantified rule

node.

SI.17 r is the Meinongian objective corresponding to the
proposition that the rule that would be expressed by r without
the EVB arcs holds after replacing each v, by some Meinongian

object in its range.

SR.18 If a, ...a, and c¢ are proposition nodes; Vo s vy are

variable nodes dominated by one or more of a,, .. , a

j". and "n" are integers (0 < i £ j € mn). and r" is an
identifier not previously used:. then
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1S a network. and r is a rule node.

SI.18 r is the Meinongian objective corresponding 1o the
proposition that, of the n sequences of Meinnngian objects
which, when substituted for the sequence v,, .. , v, make all

the a, believed propositions. between i and j of them also

satisfy ¢. (For further details on such numerical quantifiers, see
(Shapiro. 1979¢).)

11.3.4. The conversation with CASSIE, revisited

In this section, we shall review the conversation we had
with CASSIE. showing the network structure as it is built -
that is. showing the structure of CASSIE's mind as she is given
information and as she infers new information. (Comments are
preceded by a dash.)

: Young Lucy petted o yellow dog
I understand that young Lucy petted a yellow dog

— CASSIE is told something, which she now believes. Her
entire belief structure is shown in Figure 11-4 (a).
The node lobeled "now" represents the current time, so
the petting is clearly represented os being in the post.
CASSIE's response is "I understand thot" appended to her
English description of the proposition just entered.

: Whot is yellow
o dog is yellow

- This response shows that CASSIE octualiy has some
beliefs; she did not just porrot back the above
sentence.

: Dogs are animals
I understond that dogs ore onimals

— CASSIE is told a small section of o closs hierarchy.

: Who petted on onimal
young Lucy petted o yellow dog

— CASSIE con answer the question using the class
hNierarchy, becouse, prior to the conversation,
the inheritance rule
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Figure 11-4: Fragment of CASSIE's Belief Structure

Fragment of CASSIE's belief structure after being told
that young Lucy petted a yellow dog.

(def-path class (compose class (kstar
(compose subclass— superclioss))))

wos given to SNePS. This rule says thot the CLASS orc is
implied by the path consisting of o CLASS orc followed
by zero or more occurrences of the two—arc poth
consisting of the converse SUBCLASS orc followed by the
SUPERCLASS arc [see (Shopiro, 1978), (Srihari, 1981)}].
The dog was called "o yellow dog" rother thon "a yellow
animal® becouse the redundant CLASS arc is not built.
Figure 11-5 shows the current stote of )
CASSIE's belief structure about the dog’s classification
and color.

: Lucy is aweet

I understaond that young Lucy is sweet
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Figure 11-5: CASSIE’s Belief Structure

CASSIE’s belief structure about the dog's classification
and color. (Node m12 represents the dog.)

— CASSIE's response shows that she identifies this
Lucy with the previous Lucy.

Lucy is a girl
I understand that sweet young Lucy is a girl

— The beginning of o class hierarchy for Lucy. Notice
that all the adjectival properties of Lucy are mentioned.

: Girls ore people
I understand that girls are people

- More of the class hierarchy is given.

: What wos petted by a peréon
a yellow dog was petted by sweet young Lucy

- Again, the proposition is retrieved using the CLASS
inheritance rule. The answer is expressed in the
possive voice because of the way the question was
asked.

: The dog is nomed Rover
I understand that Rover is o yellow dog
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— 'the dog’ refers to the only dog CASSIE knows about,
who is now given a nome.

: What wos petted by o person
yeliow Rover was petted by sweet young Lucy

- This is exactly the some question that waos asked
before. It is onswered differently this time,
becouse the dog now has o nome, aond CASSIE prefers
to describe on individua! by -its name when it has
one.

John believes thot Lucy is rich
I understand that John believes thot Lucy is rich

- At this point in our development of CASSIE, she
interprets "believes that' contexts to be de
dicto, so she ossumes that the Lucy that John
hos in mind is o different one from the Lucy
thot she knows. Figqure 11—-6 shows CASSIE's
beliefs about the two Lucies.

: Who is rich
I don't know.

—~ CASSIE knows no one who is rich. She only believes
thot John believes that someone (whom she believes
that he believes to be named 'Lucy’) is rich. The
answer is '] don't know', rather than 'no one is rich’,
becouse CASSIE doesn’t use the closed—world hypothesis.

. Who is sweet
young Lucy is sweet

— This question is asked merely to demonstrote that Lucy
is able to answer a “who is <property>" question when
she hos relevant beliefs.

John believes thot Lucy is old
] understand that John believes thaot rich Lucy is old

- Even though CASSIE ossumes that John knows a
different Lucy thon she knows, she ossumes
that alt John's beliefs about “Lucy" are
about the same Lucy.

: John is a boy
I understand that John is o boy

- This aoand the next two inputs are given to
establish more of the closs hierarchy ond
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Figure 11-6: A Fragment of the Network

A Fragment of the network after CASSIE is told that
John believes that Lucy is rich, showing CASSIE's beliefs
abcut the two Lucies.

to moke it clear that whep CASSIE censwers
the last question of this session, she is
doing both path-based reasoning and node—
based reasoning at the some time.

I understand that boys are people

: Dogs are pets
1 understaond that dogs are pets

: For every pand d if p is o person ond d is o pet then p
toves d

2B-168




Oan e =

A casct o A
ey

O—®

understand that for every d and p, if p is o person and
d is o pet

- Figure 11-7 shows how this node-based

rule fits into the closs hierarchy. This is, we

believe, equivalent to the integrated TBox/ABox

mechanism proposed for KRYPTON

[ (Brachman, Fikes, and Levesque, 1983),
(Brachman, Gilbert, ond Levesque, 1985)].
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Figure 11-7: A Node-based Rule in a Class Hierarchy

. Who loves a pet
sweetl young lucy loves yellow Rover

and
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John loves yellow Rover

— The question was answered using poth—based inferencing
to deduce that Lucy and John are people and thot Rover
is a pet, and node-bosed Iinferencing to conclude that,
therefore, _ucy and John love Rover.

~ The full network showing CASSIE's state of mind at the
end of the conversation is given in Figure 11-8.

-
Z

yays

[ 7

Figure 11-8: CASSIE's Beliefs at the End of the Conversation
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11.4. Extensions and applications of SNePS

In this essay. we have been advocating the use and
interpretation of SNePS networks to model (the beliefs of) a
cognitive agent. SNePS. however, is of much wider and more
general applicability. In this section. we give examples of
recent and current research projects using SNePS in belief-
revision. as a database managemeni system. for developing
several expert systems, and for representing temporal
information in narratives. Even though most of these uses of
SNePS do not explicitly involve a cognitive agent. it should be
noted that in each case the asserted nodes can be treated as
“beliefs” of the system: beliefs about the database. beliefs about
the various domains of the expert systems, beliefs about
linguistics, etc.

11.4.1. SNePS as a database management system

SNePS can be used as a network version of a relational
database in which every element of the relational database is
represented by an atomic node, each row of each relation is
represented by a molecular node. and each column label
(attribute) is represented by an arc label. Whenever a row r
has an element ¢ in column ¢, the molecular node representing
r has an arc labeled ¢ pointing to the atomic node representing
e. Relations (tables) may be distinguished by either of two
techniques. depending on the particular relations and attributes
in the relational database. If each relation has an attribute
that does not occur in any other relation. then the presence of
an arc labeled with that attribute determines the relationship
represented by the molecular node. A review of the syntax of
the CASSIE networks will show that this technique is used
there. The other technique is to give every molecular node an
additional arc (perhaps labeled "RELATION") pointing to an
atomic node whose identifier is the name of the relation. Table
11-1 shows the Supplier-Part-Project database of (Date. 1981),
p 114). Notice that the SNAME and STATUS attributes only
occur in the SUPPLIER relation; PNAME. COLOR, and
WEIGHT only occur in the PART relation: JNAME only occurs
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in the PROJECT relation; and QTY only occurs in the SPJ

relation.

this database.

Table 1: SUPPLIER

Table 4: SPJ

Figure 11-9 shows the SNePS network for part of

S# | SNAME | STATUS | CITY S# | Pe | J¢ | QTY
sl | Smith 20 London st |pl |}l 200
s2 | Jones 10 Paris sl | pl | 4 700
s3 | Blake 30 Paris s2 | p3 |1 400
s4 | Clark 20 London s2 | p3 | 2 200
s5 | Adams 30 Athens s2 |p3 |3 200
s2 (p3 | M 500
Table 2: PART s2 | p3 {5 600
P# | PNAME | COLOR WEIGHT | CITY s2 | p3 | 400
pl | nut red 12 London s2 | p3 | 37 800
p2 | bolt green 17 Paris s2 ' pS | )2 100
p3 | screw blue 17 Rome s3 | p3 |1 200
p4 | screw red 14 London s3 | p4 |2 500
pS | cam blue 12 Paris sd | p6 {33 | 300/
p6 | cog red 19 London s4 | p6 | J7 300
sS | p2 |32 200
Table 3: PROJECT sS | p2 | M4 100
J# | INAME | CITY sS [ pS IS S00
J1 .| sorter Paris sS | p5 | §7 100
j2 | punch Rome sS | p6 | 2 200
i3 reader Athens sS | pl | 4 1000
¥ | console Athens sS | p3 | B | 1200
}5 | collator London sS | p4 | M 800
) terminal | Oslo sS | pS | KA 400
7 tape London sS | pb | ¥ 500
Table 11-1: Tables Supplier Part Project and SPJ

Many database retrieval requests may be formulated using

the find command of SNePSUL. the SNePS User's Language.

The syntax of find is (find r; n; — r_ n_). where r. is

either an arc or a path, and n; is either a node or a set of
nodes (possibly the value of a nested call to find). The value
of a call to find is the set of all nodes in the network with

an r, arc to any node in the set n,. an r, arc to any node in

1
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Figure 11-9: Fragment of SNePS Network for the
Supplier-Part-Project Database.

the set n,. .. . and an r_ arc to any node in the set n_. Free

variables are prefixed by "?". An infix '-° sign between finds
represents the set difference operator.

The session below shows some of the queries from ‘(Date,
1981); pp 141-142 translated into find commands. and the
results on the database shown above. (In each interaction,
comments are preceded by semicolons, user input follows the
*-prompt. and SNePS responses are on succeeding lines.
Execution and garbage collection times have been edited out for
clarity.)

: Get full details of ali projects in London.

e« (dump (find jname ?x city London))

(m18 (city (London)) (jnome (tope)) (jnum (j7)))
(m16 (city (London)) (jname (collator)) (jnum (jS)))
{(dumped)

; Get SNUM values for suppliers who supply project Ji
. with part P1.
e (find snum— (find joum j1 pnum pl))

(s1)

: Get UNAME values for projects supplied by supplier S1.
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e (find (jnome— jnum jnum— snum) st)
(console sorter)

; Get S§ values for nuppliora who supply both projects

; J1 and J2.
o (find (snum— jaum) j1 (snum— jnum) j2)
(s3 82)

: Get the nomes of the suppliers who supply project J1

;: with a red part.

(find (snome— saum snum=) (find jnum j1 (pnum pnum—
color) red))

(Smith)

;: Get S values for suppliers who supply a London or Paris
s project with a red part.
e (find snum— (find (jnum jnum— city) (London Paris)
(pnum paum— color) red))
(s34 s1)

: Get Pf values for parts supplied to any project by

; a supplier in the some city.

. (f:nd paum— (find (jnum jnum— city) ?city (snum snum—
city) ?city))

(pS p4 p1 p2 p6 p3)

;: Get J§ vatues for projects not supplied with any red part

: by any London supplier.-

o ((find joum— ?x)~(find jnum— (find (pnum paum— color) red
(snum snum— city) London)))

(j6 jsS j2)

. Get S§ values for suppliers suppliying ot least one part

. supplied by at leocst one supplier who supplies at least

. one red part.

o (find (snum— pnum pnum— snum snum— pnum pnum— color) red)
(s3 s4 32 s5 s1)

; Get Jf values for projects which use only parts which are
availagbie from supplier S1.
. ((flnd joum— (find qty ?q))
- (tind (joum pnum) (find pnum— ?r) - (find (pnum— snum)

s1)))

nil

11.4.2. Address recognition for mail sorting

A research group led by Sargur N. Srihari is studying
address recognition techniques for automated mail sorting
(Sribari. Sargur, Jonathan. Palumbo. Nivogi. and Wang. 1985).
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Computer determination of the sori-destination of an arbitrary
piece of letter-mail from its visual image is a problem that
remains far from solved. It involves overcoming several
sources of ambiguity at both the spatio-visual and linguistic
levels: The location of the destination address has to be
determined in the presence of other text and graphics: relevant
address lines have to be isolated when there ‘are irrelevant lines
of text in«the address block: the iconic shapes of characters
have to be classified into words of text when numerous types
of fonts, sizes. and printing media are present; and the
recognized words have to be verified as having the syntax and
semantics of an address.

Spatial relationships between objects are essential
knowledge sources for vision systems. This source extends
naturally to the postal-image understanding problem. because of
strong directional expectations. For example, the postage mark is
usually above and to the right of the destination address. and
the return address is usually to the left of the postage. A
semantic network is a natural representation for geometric
relations.

An envelope image is segmented into blocks, and a SNePS
network is built that represents the geometric relations between
blocks and information about the relative and absolute area
occdpied by each block. A preliminary set of geometric
relations are the eight compass points. Relative area occupancy
is expressed as the percentage of each block that falls in each
of nine equal rectangular subdivisions of the envelope image.
and absolute area is given in terms of the number of pixels
covered by each block. The program constructs an exhaustive
representation of all the geometric relations present in the
image.  Given the image produced by an initial segmentation
procedure, a rough. intuitive output, shown in Figure 11-10
with some arc labels removed for clarity) was produced.

Future work in this area includes refinement of the data
structure to represent more information more efficiently and
the addition of inferencing capabilities whose objective is to
present the control structure with tentative decisions about the
address block based only on the information provided by the
initial segmentation.
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Figure 11-10: SNePS Network Representation of Initial
Segmentation of Envelope Image
(from Srihari, Hull et al. 1985)

11.4.3. NEUREX

The NEUREX project (Cheng. 1984). (Xiang and Srihari.
1985). (Xiang. Sribari, Shapiro and Chutkow, 984"). (Suchin,
1985) is a diagnostic expert system for diseases of the central
and peripheral nervous systems: it also deals with information
about neuroaffectors. neuroreceptors. and body parts. SNePS is
used to  represent  spatial  structures  and functions
propositionally. Entities are represented topologically by means
of proposition nodes expressing an entity’'s shape. position. etc..
and spatial relations are represented by proposition nodes
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expressing adjacency. connectivity, direction. etc. This approach
integrates structural and functional neuroanatomical information.
Moreover. the representation is both propositional and analog.
For the peripheral nervous system. there are nodes representing
such propositions as that, for example, a sequence of nerve
segments are linked at junctions. and that the whole sequence
forms a (peripheral) nerve: the network that is built is itself
an analog representation of this nerve (and ultimately, together
with its neighbors, of the entire peripheral nervous system). See
Chapter 15 for further discussion of analog representations. For
the central nervous system, there are coordinates in the
network representation that can be used to support reasoning
by geometrical computation or graphical interfaces.

As one example, the network of Figure 11-11 can be used
by the system to determine which muscles are involved in
shoulder-joint flexion, using the SNePS User Language request

(find (ms— ¢n) (find jt shoulder—joint mv flexion)),

which returns the following list of four nodes:

~ (deltoid pectoralis_major_clavicular_head
corocobrochialis biceps_brachii)

Furthermore. rules, like that shown in Figure 11-12. can be
emploved and can even include probabilistic information. (Note
that node r in Figure 11-12 is the SNePS implementation of
the IF-THEN rule: of. (SR.13).)

11.4.4. Representing visual knowledge

The goal of the Versatile Maintenance Expert System
(VMES) project is to develop .an expert maintenance system
that can reason about digital circuits represented graphically
(cf. (Shapiro. Srihari, Geller. and Taie. 1986:SSTG86)). A
similar  perspective on the need for visual knowledge
representation is taken by Tsotsos and Shibahara (Chapter 10)
and Havens and Mackworth (Chapter 16). The representation
is not pixel-oriented; this is a project in visual knowledge
representation integrated with more traditional conceptual and
propositional knowledge representation.  The graphical form of
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Figure 11-11: Four of the Shoulder-Joint Movements

Four of the shoulder-joint movements with musscles involved
and their contribution to each relevant movement. (Meaning
of the arc Jabels: jt=joint; mvemovement; ms=musclc;
cn=contribute; pr=percentage.) (From Xiang and Srihari 1985)

an object is a LISP function that. when evaluated. draws the
object on the screen. Propositional nodes express information
about (1) the relative or absolute position of the object and (2)
attributes of the object. Visual knowledge can also be
distributed amoeng nodes in traditional hierarchies: for example.
the knowledge of how to displav a particular hammer may be
stored at the level of the class of hammers; the knowledge of
how to display a person may be distributed among the nodes
for heads., arms. etc.

For example. Figure 11-13 shows a set of three assertions.
Node m233 represents the assertion that the object
TRIANGLE-1 is 100 units to the right and 20 units below the
object SQUARE-1. The MODALITY arc permits the selection of
different modes of display; here, we want 1o display
TRIANGLE-1 in “functional” mode. = Node m220 states that
every member of the class TRIANGLE displayed in functional
mode has the form DTRIANG associated with it. Finally. node
m219 asserts that TRIANGLE-1 is a TRIANGLE.
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Figure 11-122 SNePS Network for a NEUREX Rule.
(From Xiang and Srihari 1985)

Figure 11-13: SNePS Network in VMES for the Form
and Relative Position of TRIANGLE-1.

Figure 11-14 contains four assertions. of which node
m246 is the most complex. It links the object GATE-1 to an
absolute position at 1007400 and to the class of all AND-gates.
Node m244 asserts that GATE-1 is a part of BOARD-1. Node
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m248 asserts that INP1-GATEl1 is a PART-OF GATE-1 and
belongs to the class AINP1. The label 'PART  actually stands
for "has part”. Node m239 links the attribute BAD to GATE-1.
Every atiribute belongs to an attribute class, and the arc
ATTRIBUTE-CLASS points to the class STATE.

Figure 11-14: SNePS Network in VMES for the Location.
Structure, and State of GATE-I.

11.4.5. SNeBR: A belief revision package

The SNePS Inference Package has been extended by Joao
Martins to handle belief revision - an area of Al research
concerned with the issues of revising sets of beliefs when a
contradiction is found in a reasoning system. Research topics
in  belief revision include the study of the representation of
beliefs. in particular how to represent the notion of belief
dependence; the development of methods for selecting the subset
of beliefs responsible for contradictions; and the development of
techniques 10 remove some subset of beliefs from the original
set of beliefs. (For an overview of the field, see (Martins.
1987).)

SNeBR (SNePS Belief Revision) is an implementation in
SNePS of an abstract belief revision system called the Multiple
Belief Reasoner (MBR). which, in turn. is based on a relevance
logic system called SWM (after Shapiro. Wand. and Martins)
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(Shapiro and Wand. 1976). (Martins. 1983b). (Martins. 1983a).
(Martins and Shapiro. 1984). (Martins and Shapiro. 1986a).
(Martins and Shapiro, 1986b). (Martins and Shapiro. 1986¢).
SWM contains the rules of inference of MBR and defines how
contradictions are handled. The only aspect of SWM relevant
to this description concerns the objects with which MBR deals.
called supported wffs. They are of the form

Ait o, r

where A is a well-formed formula representing a proposition, ¢
is an origin tag indicating how A was obtained (for example,
as a hypothesis or as a derived proposition), o is an origin set
containing all and only the hypotheses used to derive A. and r
is a restriction set containing information about contradictions
known to involve the hypotheses in o. The triple ¢, o, r is
called the support of the wff A. The origin tag. origin set.
and restriction set of a wff are computed when the wff is
derived. and its restriction set may be updated when
contradictions are discovered. .

MBR uses the concepts of context and belief space. A
context 1s any set of hypotheses. A context determines a belief
space, which is the set of all the hypotheses defining the
context together with all propositions derived exclusively from
them. The propositions in the belief space defined by a given
context are characterized by having an origin set that is
contained in ‘the context Al any point. the set of all
hypotheses under consideration 1s called the cwrent context,
which defines the current belief space. The only propositions
that are retrievable at a given ume are the ones belonging to
the current belief space.

A contradiction may be detected either because an
assertion is derived that is the negation of an assertion already
in the network, or because believed assertions invalidate a rule
being used (particularly an AND-OR or a THRESH rule; see
(SR/S1.10-11)). In the former case, the contradiction is noted
when the new, contradictory. assertion is about to be built into
the network. since the Uniqueness Principle guarantees that the
contradictory assertions will share network structure. In the
latter case. the contradiction is noted in the course of applying
the rule. In the former case. it may be that the contradictory
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assertions are in different belief spaces (only the new one being
in the current belief space). If so. the restriction sets are
updated to reflect the contradictory sets of hypotheses, and
nothing else happens. If the contradictory assertions are both
in the current belief space (which will be the case when one
of them is a rule being used), then, besides updating the
restriction sets, the user will be asked to delete at least one of
the hypotheses underlying the contradiction from the current
context. Management of origin sets according to SWM
guaraatees that, as long as the current context was originally
not known to be contradictory. removal of any one of the
hypotheses in the union of the origin sets of the contradictory
assertions from the current context will restore the current
context to the state of not being known to be inconsistent.

11.5. Knowledge-based natural language
understanding

.

Jeannette Neal has developed an Al system that can treat
knowledge of its own language as its discourse domain, (Neal,
1985). The system’s linguistic knowledge is represented
declaratively in its network knowledge base in such a way that
it can be used in the dual role of “program” to analyze
language input to the system and “data’ to be queried or
reasoned about. Since language forms (part of) its domain of
discourse, the system 1is also able to learn from the discourse
by being given instruction in the processing and understanding
language. As the system’s language knowledge 1s expanded
beyond a primitive kernel language. instructions carn be
expressed in an increasingly sophisticated subset of the language
being taught  Thus, the system’s language is used as its own
metalanguage.

The kernel language consists of a relatively small
collection of predefined terms and rewrite rules for expressing
syntax and for expressing the mapping of surface strings to the
representation of their interpretations.

The knowledge representations include representations f{or

~
(O

surface strings and for relations such as: (a) a lexeme being a
member of a certain lexical category. (b) bounded string B
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being in category C and this phrase structure being represented
by concept N. (¢) a structure or parsed string expressing a
certain concept. and (d) one phrase structure being a
constituent of another structure.

In order to talk about both the syntax and semantics of
language. the network representations distinguish between a
word or string and its interpretation. In one experiment, the
statements

(1) A WOMAN IS A HUMAN
(2) *WOMAN*® IS SINGULAR

were input to the system. The first makes a claim about
women: the second makes a claim about the word ‘woman’.
Nodes m40 and mSO of Figure 11-15. respectively. represent
the propositions expressed by these statements. The concept or
class expressed by "WOMAN’ is represented by node b22; the
entity represented by node b22 is a participant in the subset-
superset proposition expressed by (1). However, in the
representation of (2), the word "WOMAN' itself is the entity
having the property SINGULAR.
Additional statements, such as:

(R) IF THE HEAD-NOUN Of A NOUN-PHRASE X
HAS NUMBER Y, THEN X HAS NUMBER Y.

were input lo the system to demonsirate the use of a subset
of English as its own metalanguage in building up the system’s
language ability from its primitive predefined language. Figure
11-16  illustrates  the  representation of  the system's
interpretation of rule (R) as well as the representation of
certain linguistic relations. Node m87 represents the proposition
that some bounded string represented by variable node v4 is in
the category HEAD-NOUN. and this phrase structure is
represented by variable node v3. Node m88 represents that the
phrase structure represented by node v3 is a constituent of vl.
which represents a NOUN-PHRASE structure. (In this figure.
the AVB arcs have been eliminated for claritv: cf. (SR/SL16).)
A< soon as any rule surh as (R) is parsed 2nd interpreted. it
s immediately available for wuse in subsequent processing.
Thus. the svstem is continuously  educable and can use als

Linpaye an ity own mt‘121;9{13111;:3"'
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Figure 11-15: Representation of the Interpretation of
Statements About Linguistic and Non-
linguistic Entities.

11.5.1. Temporal structure of narrative

Michael Almeida is using SNePS in the development of a
system that will be able to read a simple narrative text and
construct a model of its temporal structure (Almeida and
Shapiro. 1983). (Almeida. 1986). This project uses an event-
based. rather than a proposition-based. approach: that is,
intervals and points of time are associated with events
represented as objects in the network rather than with the
propositions that describe them The temporal model itself
consists of these intervals and points of time related to one
another by such relations as BEFORE/AFTER,
DURING/CONTAINS. etc
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Figure 11-16:  SNePS Net for Rule (R) (From Neal, 1985)

The representation of the following short narrative,

John arrived at the house. The sun was setting.
He rang the bell; a minute !latar, Mary opened
the door.

1s shown in Figure 11-17. The ARG-PRED-EVENT case frame
asserts that the proposition consisting of the argument pointed
to by the ARG-arc and the predicate pointed to by the PRED-
arc describes the evenl pointed to by the EVENT-arc. Notice
that the predicates are classified into various types. This
information plays an important role in the temporal analysis of
a textl.

NOW is a reference point that indicates the present
moment of the narrative; it is updated as the story progresses
through time. NOW is implemented as 2 wvariable whose
current value 1s indicated in Figure 11-17 bv a dotted arrow
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Figure 11-17:  SNePS Newwork for a Short Narrative.

Subscripts are used in the figure to show the successive values
of NOW.

The BEFORE-AFTER-DURATION case frame is used to
indicate that the period of time pointed to by the BEFORE-arc
temporally precedes the period of time pointed to by the
AFTER-arc by the length of time pointed to by the
DURATION-arc. These durations are usually not known
precisely. The value <epsilon> stands for a very short
interval, whenever an event occurs in the narrative line, it has
the effect of moving NOW an interval of <epsilon> bevond
i,
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The DURING-CONTAINS case frame is used to indicate
that the period of time pointed to by the DURING-arc is
during (or contained in) the period of time pointed to by the
CONTAINS-arc. Notice that the progressive sentence, "The sun
was setting”, created an event that contains the then-current
NOW. If the system knows about such things as sunsets, then
it should infer that the event of the sun’s setting also contains
John's arrival, his ringing of the bell, and probably also Mary's
opening of the door.

11.6. Conclusion: SNePS and SNePS/CASSIE as
Semantic Networks

We shall conclude by looking at SNePS and
SNePS/CASSIE from the perspective of Brachman's discussions
of structured inheritance networks such as KL-One and
hierarchies of semantic network formalisms (Brachman, 1977.
Brachman. 1979). .

11.6.1. Criteria for semantic networks

Brachman offers six criteria for semantic networks:

A semantic network must have a wniform notation. SNePS
provides some uniform notation with i1ts built-in arc labels for
rules, and it provides a uniform procedure for users to choose
their own notation.

A semantic network must have an algorithm for encoding
information. This is provided for by the interfaces to SNePS,
for example. by the parser component of our ATN parser-
generator that takes English sentences as input and procuces
SNebP’S networks as output.

A semantic network must have an assimilation”
mechanism for building new information in terms of stored
information. SNePS provides for this by the Uniqueness
Principle, which enforces node sharing during network building.
The assimilation is demonstrated by the generator component of
our ATN parser-generator, which takes SNePS nodes as input

and produces English output expressing those nodes: Our
nueroation with CASSIE llusirated  thie the node built to
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represent the new fact, ‘Lucy is sweet, is expressed in terms
of the already existing node for Lucy (who had previously
been described as young) by ‘young Lucy is sweet’.

A semantic network should be neutral with vespect to
network formalisms at higher levels in the Brachman hierarchy.
SNePS is a semantic network at the "logical® level, whereas
SNePS/CASSIE is at the “conceptual” level. SNePS is neutral in
the relevant sense; it is not so clear whether SNePS/CASSIE is.
But neutrality at higher levels may not be so important; a
more important issue is the reasons why one formalism should
be chosen over another. Several possible criteria that a
researcher might consider are: efficiency (including the ease of
interfacing with other modules; for example, our ATN parser-
generator has been designed for direct interfacing with SNePS).
psychological adequacy (irrelevant for SNePS, but precisely what
SNePS/CASSIE is: being designed for). ontological adequacy
(irrelevant for SNePS/CASSIE-see below)., logical adequacy
(guaranteed for SNePS. because of its inference package). and
natural language adequacy (a feature of SNePS's interface with
the ATN grammar). )

A semantic network should be adequate for any higher-
level network formalism. SNePS meets this nicely: KL-One
can be implemented in SNePS (Tranch. 1982).

A semantic network should have a semartics. We
presented that in Section 11.3. But it should be observed that
there are at least two very different sorts of semantics. In
SNePS. nodes have a meaning within the system in terms of
their links to other nodes: they have a meaning for users as
provided by the nodes at the heads of LEX arcs. Arcs. on the
other hand. only have meaning within the system. provided by
node- and path-based inference rules (which can be thought of
as procedures that operate on the arcs). In both cases. there is
an ‘internal”. system semantics that is holistic and structural:
the meaning of the nodes and arcs are not given in isolation,
but in terms of the entire network. This sort of “syntactic’
semantics differs from a semantics that provides links to an
external interpreting system. such as a user or the "world” -
that is. links between the network's way of representing
information and the wuser's way. It 1s the latter sort of
semantics that we provided for SNePS/CASSIE wiath respect 1o
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an ontology of Meinongian objects.

11.62. SNePS and SNePS/CASSIE vs. KL-One

SNePS and SNePS/CASSIE can be compared directly to
KL-One.  Unlike KL-One, which is an inheritance-network
formalism for representing concepts, instances of concepts, and
properties and  relations among them. SNePS is a
propositional-network formalism for representing propositions
and their constituents (individuals. properties. and relations).

Nevertheless, SNePS can handle inheritance. = We have
already seen an example of inheritance by path-based inference
in the conversation with CASSIE. In that example, inheritance
could also have been accomplished through node-based inference
by. for example, representing ’‘dogs are animals’ as a
universally-quantified rule rather than by a SUBCLASS-
SUPERCLASS case frame. That is. where an inheritance
network might express the claim that dogs are animals by a
single arc (say. a subclass-arc) from a dog-node to an animal-
node. SNePS could express it by a proposition (represented by
node m17 in Figure 11-5.).

One advantage of the propositional mode of representation
and. consequently, of the second. or rule-based, form of
property inheritance is thal the proposition (m17) expressing
the relationship can then become the objective of a proposition
representing an agent's belief or it can become the antecedent
or consequent of a node-based rule. In some inheritance
networks. this could only be done by choosing to represeat the
entire claim by either the dog-node, the animal-node. the
subclass-arc. or (perhaps) the entire structure consisting of the
two nodes and the arc. The first two options seem incorrect:
the third and fourth either introduce an anomaly into the
representation (since arcs can then point either to nodes or 10
other arcs or to structures), or it reduces 1o what SNePS does:
SNePS. in effect. trades in the single arc for a node with two
outgoing arcs. In this -way. the arcs of inheritance networks
become 1information-bearing nodes. and the semantic network
svstem becomes a propositional one.

Secand  K1.-One uses “epistemologically primitive  hinks™.
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But why does KL-One use the particular set of links that it
does. and not some other set; that is, what is the ontological
justification for KL-One's links? There have been many
philosophical and logical theories of the relations of the One 10
the Many (part-whole, member-set-superset. instance-concept.
individual-species-genus, object-Platonic Form, etc.). KL-One's
only motivation seems to be as a computationally efficient
theory that clarifies the nature of inheritance networks: but it
does not pretend to ontological or psychological adequacy.
Indeed. it raises almost as many questions as it hopes to
answer. For example. in KL-One. instances of a general concept
seem to consist of instances of the attributes of the general
concepl. each of which instances have instances of the values
of those attributes. = But this begs important philosophical
questions about the relations between properties of concepts (or
of Forms. or of ..) and properties of individuals falling under
those concepts (or participating in those Forms. or ..., some of
these issues are discussed in (Brachman, 1983). but not from a
philosophical point of view): Are they the same properties?
Are the latter "instances” of the former? Are there such things
as concepts (or Forms, or ...) of properties? And do instance
nodes represent individuals? Do they represent individual
concepts? [cf. (Brachman. 1977): 148.]

Now. on the one hand. SNePS/CASSIE's arcs are also
laken to be “primitive”; but they are justified by the
Meinongian philosophy of mind briefly sketched out above and
explored in depth in the references cited. On the other hand.
SNePS’s arcs. by contrast to both SNePS/CASSIE's and KL-
One’s. are not restricted to any particular set of primitives.
We believe that the interpretation of a particular use of SNePS
depends on the wser’s world-view. the user should not be
required to conform 1o ours.

And, unlike KL-One. the entities in the ontology for
SNePS/CASSIE are not to be taken as representing things in the
world:  SNePS/CASSIE's ontology is an epistermological ontology
(cf. (Rapaport. 1985a). (Rapaport, 1985b). (Rapaport, 19864)]

consisung of the purely intensional i1tems that enable 2
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cognitive agent 1o have beliefs (about the world). An
epistemological ontology is a theory of what there must be in

order for a cognitive agent 1o have beliefs (about what there
is).

2B-191




References

Abadir, M.S. and Breuer. M.A. A Knowledge-Based System for
Designing Testable VLSI Chips. [EEE Design and Test.
August 1985, 2(4). 56-68.

Abelson., R.  Concepts for Representing Mundane Reality in

Plans. In Bobrow. D.. and Collins, A. (Eds.).
Represeruation and Understanding, New York: Academic
Press. 1975.

Adolph., W.S.. Reghbati, H.K. and Sanmugasunderam. A. A
Frame-Based System for Representing Knowledge About
VLSI] Design. pages . ACM-IEEE. 1986.

Aho. A.. Hopcroft. J.. and Ullman, J. Data Structures and
Algorithms. Reading. Massachusetts:Addison-Wesley.,
1983.

Aiello. N. A Comparative Study of Control Strategies for Expert
Systems: AGE Implementation of Three Variations of PUFF.
AAAIL, Washington. 1983.

Allen, J. = Maintaining Knowledge abow Temporal Intervals.
Technical Report TR-86. Department of Computer Science.
University of Rochester, 1981.

Allen. J. Recognizing Intentions f{rom Natural Language
Utterances. In M. Bradv (Ed.). Compwational Models of
Discourse. Cambridge. Massachusetts: M.LLT. Press. 1982.

Allen. J.  Maintaining Knowledge about Temporal Intervals.
Communications of the ACM. 1983, 26(11). 832-843.

Allen. J.. and Kauwz. H. A model for naive temporal
reasoning. In Hobbs. J. and Moore. R. (Ed.). Formal
Theories of the Commonsense World, Norwood. New lJersey:
Ablex, 1985.

Almeida. Michael J.  Reasonung abour the Temporal Structure of
Narrative Texts. Technical Report §6-00. SUNY Buffalo
Department of Computer Science. 1986.

2B-162




Almeida. Michael J., and Shapiro. Stuart C. Reasoning about
the Temporal Structure of Narrative Texts. Cognitive
Science Society. University of Rochester, 1983.

Appelt. D.  Planning Natural Language Utterances to Satisfy
Muliiple Goals.  Technical Report TR. SRI International.
1962.

Ari. M. Ben. Manna, Z.. and Pneuli. A. The Temporal Logic of
Branching Time, pages 222-235. Eight Annual ACM
Symposium Principles of Programming Languages. . 1981.

Bailes. A. Response Generation. Technical Report M.Sc. thesis.
Department of Computing Science. University of Alberta.
1986.

Baldwin., J.F. and Zhou. S.Q. A Fuczy Relational Inference
Language. Technical Report EM/FS132. University of
Bristol. 1982.

Barr. A.. and Feigenbaum. E. The Handbook of Artificial
Iruelligence: Volume |1 Stanford. California:Harris Tech
Press. 1981.

Barrow. H.. and Tenenbaum. J. Representation and the Use of
Knowledge in Vision. Technical Report TR 108, SRI
International. 1975.

Barrow. H.. and Tenenbaum. J. Recovering Intrinsic Scene
Characteristics  from  Images. In A, Hanson and
. Riseman (Eds.). Computer Vision Systems. New York:
Academic Press. 1978.

Bartlett. F. Remembering: A Study in Experimental and Specicl
Psychology. Cambridge. England:Cambridge University
Press. 1932.

Bellman. R.E. and Zadeh. L.A. Local and Fuzzy Logics In
Epstein. G. (Ed.). Modern Uses of Muliiple Valued Logic,
Dordrecht: Reidel. 1977.

Birren. F. (ed). Ostwald. The Color Primer New York, New
York:Van Nostrand Reinhold Co.. 1969

2B-193




Birren. F. (ed). Munsell .\ Grammar of Color. New York.
New York:Van Nostrand Reinhold Co.. 1969.

Black. F. A Deductive Question Answering System. In
Minsky. M. (Eds.). Semanuic Information Processing,
Cambridge. Mass.: MIT Press, 1968.

Blum, R. Discovery and Representation of Causal Relationships
from a Large Time-Oriented Clinical Database. In Lecture
Notes in Medical Informatics 19, Springer-Verlag, 1982.

Bobrow. D. Dimensions of Representation. In Bobrow. D., and
Collins, A. (Eds.). Representation and Understanding, New
York: Academic Press. 1975.

Bobrow. D. Special Issue on Non-Monotonic Logic of Artificial
Intelligence Journal.  Amsterdam:North Holland. 1980.

Bobrow. R. and Webber. B. Knowledge Representation for
Syntactic/Seinantic Processing. pages 316-323. Proceedings
of the 1st AAAIL Stanford. California, 1980.

Bobrow. D.. and Winograd. T. An Overview of KRL: a
Knowledge Representation Language. Cognitive Science.
1977, 1(1). 3-46.

Boland. J.. and Lekkerkerker. C. Representation of a Finite
Graph by & Set of Intervals on the Real Linc
Fundamentals Mathematics., 1962, 11{1}). 45-64.

Booth. K.. and Lucker. G Lincar Algorithms to Recognize
Irterval Graphs and Test for the Consecutive Ones [Properiy.
pages 252-265. Proceedings of the 7th ACM Sympesium
on the Theory of Computing. . 1975.

Brachman. Ronald J. What's in 2 Concept. Struciural
Foundations for Semantic Networks. /nternational Journal
of Man-Machinc Studies, 1977. 9. 127-52.

Brachman Ronald J. On the Epistemological Status of Semantic
Networks. In Findler. N.V. (Ed.). Associative Networks:
Representation and Use of Knowledge by Computers. New

York: Academic Press. 1979. reprinted in Brachman and
I

2B-194




Levesque 1985: 191-215.
Brachman. R. What 1S-A is and Isnt. CSCSl, Saskatoon, 1982.

Brachman. R. What 1S-A Is and Isn'tt An Analysis of
Taxonomic Links in Semantic Networks. [JEEE Compuzer.
1983, 16(10). 30-36.

Brachman, R.. and Levesque. H. Readings in Knowledge
Represeruation.  Los Altos, Ca.:Morgan Kaufmann, 1985.

Brachman. R.. and Schmolze. J.  An Overview of the KL-One
Knowledge Representation System. Cognitive Sctence.

1985. 9(4). 171-216.

Brachman. R.. and Smith. B.  Special Issue on Knowledge
Representation, SIGART Newsletter. New York:ACM.
1980.

Brachman., R.. Fikes, R.. and Levesque. H. KRYPTON: A
Functional Approach to Knowledge Representation. [EEE
Computer, 1983. 16(10). 67-74.

Brachman. Ronald J.; Gilbert. Victoria P.; and Levesque. Hector
J.  An Esseruial Hybrid Reasoning Svstem: Knowledge and
Symbal Level Accourus of KRYPTON. pages 532-39. 1JCAL
1985.

Brower. R.. Meester. G. The Shape of the Human Left Ventricle:
Quantification of Symmetry. Computers in Cardiology.
Florence. 1981,

Brown. J. S.. and Burton. R.  Diagnostic Models {or Procedural
Bugs in Basic Mathematical Skills. Cognitive Science.
1978, 2(2). 155-192.

Brown, J.. Burton. R.. and Bell. A. SOFPHIE: A Sophisticated
{nstructional Environmeru for Teaching Electronic
Troubleshooting (An Example of Al in CAl).  Technical
Report BBN Report No. 2790. Bolt Beranek and Newman,
Inc., 1974.

Brown. J.. Burton. R.. and de Kleer., J. Pedapomcal. Natural

| anguage  and  Knowledge  Loyinerring Techmiguen an

2B-195




SOPHIE 1. Il. and IIL In Sleeman, D.. and Brown.
J. (Eds.). Intelligent Tuworing Systems, New York:
Academic Press, 1982.

Buchanan. B.. Sutherland. G., and Feigenbaum. E. Heuristic
DENDRAL: A Program for Generating Explanatory
Hypothesis in Organic Chemistry. In B. Meltzer and
D. Michie (Eds.), Machine Intelligence 4, Edinburgh:
Edinburgh University Press, 1969.

Buchanan. B.. and Shortliffe. E. Rule Based Expert Systems:
The Mycin Experiments of the Stanford HPP. In
.Buchanan. B.. and Shortliffe. E. (Eds.). Rule Based Expert
Svstems: The Mycin Experimerus of the Stanford HPP,
Reading. Massachusetts: Addison-Wesley. 1984.

Bundy. A.. and Silver. B. Using meta-level inference for
selecuve application of multiple rewrite rules in algebraic
manipulation. Artificial Intelligence, 1981, 16(2), .

Bundv. A. Byrd. L.. and Mellish. C.  Special purgose, but
domain independend, inference mechanisms., pages 67-74.
AISB. Orsay. France, 1982.

Carbonell, J.  POLITICS. In R. Schank and C. Reisbeck (Eds.).
Inside  Computer Understanding, Hillsdale. New Jersev:

[.awrence Erltaum Associates, 1981.

Carbanell, 1., Michalski, J.. and Mitcheil, T An Cverview of
Machine Learning.  In Michalski, J.. Carbonell. J.. and
Mitchell, T, (kds.). Maciune Learainy  An arddficial

Inteligence Approach, Palo Alwo, California. Tioga Press.

1983,
(irnap. Rudolfl. The Logical  Structure of e Werla
Berkelev:University  of  California  Press. 1967, R.A.

Georpe, translator.

Casten Hector-Neri. Thinking and the Structure of the World.
Philosophua, 1974, 4, 3-40. reprinted an 1975 in Critica
6(1972)43-86.

(ataneda, Hedtor-Nen Individuals and Noa-Jdentny A New

2B 196




look  American FPhilusophical Quarterly. 1975, 12. 131-40.

Castaneda. Hector-Neri. Identity and Sameness.  Philosophia.
1975. 5. 121-50. '

Castaneda. Heclor-Neri. Perception, Belief. and the Structure of
Physical Objects and Consciousness. Synthese, 1977, 3S.
285-351.

Castaneda. Hector-Neri. Fiction and Reality: Their Basic
Connections. JFoetica. 1979. 8. 31-02.

Castaneda, Hector-Neri. Thinking and Doing: The Philosophical
Foundations of Institutions.  Dordrecht:Reidel, 197"

Cercone. N.. and McCalla. G. Artificial Intelligence: Underlying
Assumptions and Basic Objectives. American Jowrnal for
Information Science, 1984, 5(35). 280-290.

Cercone. N.. and McCalla, G.  Accessing Knowledge Through
Natural Language. In M. Yovits (Ed.), Advances in
Computers, New York: Academic Press. 1986.

Cercone. N. and Schubert, L. Toward a State-Based Conceptual
Represeruation, pages 83-91. 1JCAI7S5. Advance Papers of
the 4th International Joint Conference on Artificial
Intelligence. Thbilisi, USSR. 1975.

Cercone. N.. McCalla, G.. and McFetridge. P. The Many
Dimensions of Logical Form. In Bole. L. (Eds.).
Translating Natural language into Logical Form. New
York: Springer-Verlag. 1986. forthcoming.

Chandrasekaran. B., Gomez, F.. Miual. S.. Smith. J. An
Approach to Medical Driagnosis FBesed on Conceptual
Structures. 1JCAL Tokyo. 1979.

Chapman. David. Planning for Conjunctive Goals.  Technical
Report 802. MIT  Artificial Intelligence  Laboratory.
November 1985.

Cheng. M. The Design and Implementation of the Waterloo
UNIX Prolog Enviromment.  Technical Report Report 26.
(CS-84-47. University of Waterloo. 1984.

2B-197




Clancey. W.  Tutoring Rules for Guiding a Case Method
Dialogue. In Sleeman, D.. and Brown, J. (Eds.).
Iruelligent Tutoring Systems, London. England: Academic
Press. 1982. '

Clark. K.. and McCabe. F. The control facilities of IC-
PROLOG. In Michie, D. (Eds.). Expert systems in the
micro-electronic age, Edinburgh, Scotland: Edinburgh
University Press. 1979.

Clocksin. W.. and Mellish. C. Programming in Prolog.
Berlin:Springer-Verlag. 1981.

Codd. E. A Relational Model for Large Shared Data Banks.
Communications of the ACM, 1970, 13(6). 377-387.

Cohen. P.  Planning Speech Acts. Technical Report TR 118,
Department of Computer Science. University of Toronto.
1978.

Collins. A. Reasoning from Incompleter Knowledge In Bobrow,
D.. and Collins. A. (Eds.). Represeruation and
U'nderstanding. New York: Academic Press. 1975.

Collins, A.. and Quillian, M. How to Make a Language User.
In Tulving. E.. and Donaldson. W. (Eds.), Orgarusazmn of
Memory, New York: Academic Press. 1972.

Colmerauer. A.. Kanoui. H.. Pasero. R.. and Roussel. Ph. Un
Svsteme de Communication Homme-Machine en Francais.
Marseille. France:Aix-Marseille University Press. 1973.

Colmerauer. A. Un Systeme de Communication Homme-Machine
en  Francais. Technical  Report . Aix-Marseille
University. 1973.

Covington. A. and Schubert. L. Organization of modally
embedded propositions and of dependent concepts.. pages
87-94. CSCSI/SCEIO. Victoria. British Columbia. 1980.

Craig. J. et al. DEACON: Direct English Access and Control.
FICC. AFIPS Conf. Proc.. 1966. 29(1). 365-380.

Cresswell. M.J.  Logic and lLanguages l.ondon:Methuen. 1973,

2B-198




Cullingford. R. Script Application: Computer Undersianding of
Newspaper Stories. Technical Report Research Report 116.
Department of Computer Science. Yale University. 197§.

Dahl. V. Translating Spanish into Logic Through Logic.
American Journal of Computational Linguistics. 1981, 7(3).

x-y.

Dahl, V. On Database Systems Development Through Logic.
~ ACM Transactions on Database Systems. 1982, 7(1)
102-123.

Dahl. V., and McCord. M.  Treating Coordination in Logic
" Gramumars. Technical Report TR-83, Simon Fraser
University and University of Kentucky. 1983.

Dahl, V.. and Sambuc, R. Un Systeme de Bangque de Donnees en
Logiqgue du Premier Ordre, en Vue de sa Consutation en
Langue Naturelle. Technical Report . Aix-Marseille
University, 1976.

Date, C.J. An  Introduction to  Database  Systems.
Reading:Addison-Wesley, 1977.

Date. CJ. "An [ntroduction to Database Systems. Reading,
Massachusetts:Addison-Wesley. 1981.

Davis, R. Diagnostic Reasoning Based on Structure and
Behaviour. Artificial Inzelligence. 1984, 24(4). 347-410.

Davis. R.. Buchanan. B.. and Shortliffe. E. Production Rules as
a Representation f{or a Knowledge-Based Consultation
Program. Artificial Intelligence, 1977. 8(1). 15-45.

de Groot. A. Perception and Memory Versus Thought: Some
Old Ideas and Recent Findings. In Kleinmuniz. B. (Eds.).
Problem Solving, New York: Wiley, 1967.

De Kleer, J., and Brown. J. A Qualitative Physics Based on
Cenfluence. Artificial Intelligence. 1984, 24(2). 7-83.

Dean, Thomas. Temporal Imagery: An Approach to Reasoning
about Time for Planning and Problem Solving.  Technical
Report YALEU/CSD/RR #433, Yale University.

2B-199

-




e

Depariment of Computer Science, October 1985.

deHaan, J. Inference in a topically organized semantic net.
Technical Report M.Sc. thesis. Department of Computing
Science. University of Alberta, 1986.

deHaan, J., and Schubert, L. Inference in a Topically Organized
Semantic Net.. pages (Lo appear). AAAIl Philadephia.
Pennsylvania. 1986.

DeKleer. J. How Circuits Work. Arrtificial Intelligence, 1984,
24. 205-280.

Delgrande. J.  Steps Towards a Theory of Exceptions. pages
87-94. Proceedings of the Sth National Conference of the
CSCSI/SCEIO. London, Ontario. 1984.

Dennett. D. Why the Law of Effect will not go away. In
(Eds.). Brainstorms, Cambridge, Massachusetts: Bradford
Books. MIT Press. 1978.

Doran. J.. Traill, T.. Brown. D.. Gibson. D.  Detection of
Abnormal Left Ventricular Wall Movement During
Isovolumic Contraction and Early Relaxation. British
Heart Journal. 1978, 40. .

Dovle. J. Some Theories of Reasoned Assumptions: An Essay in
Rational Psychology. Technical Report TR, Carnegie
Mellon University, 1982.

Dovle. J. A Society of Mind: Multiple Perspectives, Reasoned
Aswsumptions, and Virtwal Copies. pages . Eight
International Joint Conference on Artificial Intelligence.
Karlsrhue, West Germany, 1983.

Dresher. B.. and Hornstein. N. On Some Supposed
Contributions of Artificial Intelligence to the Scientific
Study of Language. Cognition., 1976. 4(4), 321-398.

Dresher, B., and Hornstein, N. Reply to Winograd. Cognition.
1976, 5(4). 377-392.

Dresher. B.. and Hornstein. N. Response to Schank and
Wilensky. Cognition, 1977. 5(2). 147-150.

2B-200




DuBois. D. und Prade. H. Fuzzy Cardinality and the Modelling
of Imprecise Quantification.  Fuzzy Sets and Systems,
1985. 16. 199-230.

Duda. R.. Gashning, J.. Hari. P.. Konolige. K.. Reboh, R..
Barreut, P.. and Slocum, J. Development of the
PROSPECTOR Consuliation System for Mineral Exploration,
Final Report. SRl Frojects 5821 and 6415.  Technical
Report 5821 & 6415, SRI International, 1978.

Elcock. E. Problem solving compilers. In Findler. N. (Eds.).
Artificial  Iuelligence and  Heuristic  Programming,
Edinburgh. Scotland: Edinburgh University Press. 1971.

Elcock. E.. McGregor, J.. and Murray. A. Data directed control
and operating systems. British Computer Journal. 1972,
15(2). 125-129.

Etherington. D., Mercer. R.. and Reiter, R. On the Adequacy
of  Predicate Circumscription for Closed Reasoning.
Computational Intelligence, 1985, I(1). 11-15.

Fagan. L. M. VM: Representing Time Dependence Relations in a
Medical Setting. Technical Report Ph.D. Thesis. Al
Laboratory. 1980.

Fahlman. S. A System for Represernzing and Using Real World
Knowledge. Technical Report Al Lab Memo 331. Project
MAC. M.LLT., 1975.

Fahlman. S.  NETL: A System [or Representing and Using Real
World Knowledge.  Cambridge. Mass.:M.1.T. Press. 1979.

Fahlman. S. Design  Sketch for a Million Element NETL
Machine. pages 249-252. Proceedings of the 1st AAAL
Stanford. California. 1980.

Fahlman, S. Three Flavors of Parallelism, pages 230-235.
CSCSI 82. Proceedings of the 4th National Conference of
the Canadian Society for Computational Studies of
Intelligence, Saskatoon. Sask.. 1982.

Fikes. Richard E. and Nilsson. Nils J. STRIPS: A New

2B-201




Approach to the Application of Theorem Proving to
Problem Solving.  Artificial Intelligence. 1971, (2)}.
198-208. '

Fikes. R.. and Nilsson. N. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.
Artificial Intelligence. 1971, 2(3). 184-208.

Findlay. J.N\. Meinong's Theory of Objects and Values.
Oxford:Clarendon Press, 1963.

Fine. Kit A Defence of Arbitrary Objects. pages 55-77.
Aristotelian Society. 1983. Supp. Vol. 58.

Firby. R. James. Dean. Thomas and Miller, David. Efficient
Kobot Planning with Deadlines and Travel Time. 1ASTED,
Santa Barbara. Ca., May. 1985.

Fodor. . Tom Swift and His Procedural Grandmother.
Cognition. 1978, 6(4). 229-247.

Forbus, K. Qualitative Process Theory. Artificial [ntelligence.
1984, 24(2). 85-168.

Forgy. C.. and McDermott. J. OPS, A Domain Independent
Production System Language, pages 933-939. 1ICAIL77.
Proceedings of the 5th International Joint Conference on
Artificial Intelligence, Cambridge. Mass., 1977.

Foster. J.. and Elcock. E. Absys 1: an incremental compiler
for assertions: an introduction. In Meltzer. B. and
Michie, D. (Eds.). Machine Intelligence 4. Edinburgh.
Scotland: Edinburgh University Press. 1969.

Fujii, J.. Watanabe, H.. Koyama. S.. Kato. K.
Echocardiographic Study on Diastolic Posterior Waii
Movement Left Ventricular Filling by Disease Category.
American Heart Journal, 1979, 98. .

Fulkerson. D.. and Gross. O. Incidence Matricies and Interval
Graphs.  Pacific Journal of Mathematics, 1965. 15(11).

835-855.

Funt. B Problem Solving with Diagrammatic Representations

2B-202

— ]




Artificial Intelligence. 1980. /13(3), 201-230.

Funt, B. A Parallel Process Model of Mental Rotation.
Cognitive Science, 1983, 4(1). 1-23. ‘

Gerbrands, J.. Booman, F.. Reiber, J. Computer Analysis of
Moving Radiopaque Markers from X-Ray Films.
Computer Graphics and Image Processing. 1979, 11. .

Gershon. R. Explanation Methods for Visual Motion
Understanding Systems. Master’s thesis, Deparument of
Computer Science. University of Toronto, 1982.

Ghosh, S. File Organization: the Consecutive Retrieval Property.
Communications of the ACM. 1972, 15(12). 802-808.

Ghosh: S.. Kambayashi. Y., and Lipski. W. Data Base File
Organization, Theory and Applications of the Consecutive
Retrieval Property. In Ghosh, S.. Kambayashi. Y.. and
Lipski. W. (Eds.). Data Base Organization, New York:
Academic Press, 1983.

Gibson D., Prewitt, T.. Brown, D. Analysis of Left Ventricular
Wall Movement During Isovolumic Relaxation and its
Relation to- Coronary Artery Disease. British Heart
Journal. 1976. 38. .

Glicksman. J. A Schemata-Based System  for Utilizing
Cooperating Knowledge. pages 33-39. Proceedings of the
4th National Conference of the CSCSI/SCEIQ. Saskatoon.
1982.

Goebel. R. lruerpreting  Descriptions in a Frolog Based
Knowledge Represeruarion System, pages 711-716. 1JCAI
85. Proceedings of the 9th International Joint Conference
on Artificial Intelligence. Los Angeles. California, 1985.

Goldstein, 1., and Burton. R. The Genetic Graph: A
Representation for the Evolution of Procedural Knowledge.
In Sleeman. D.. and Brown, J. (Eds.). [ruelligent Tutoring
Svstems, New York: Academic Pres<, 1982.

Goodwin, James. Taxonomic  Programming with KL-Onc.

2B-203




Technical Report LiTH-MAT-R-79-5. Informatics
Laboratory. Linkoeping University, 1979.

Green. C. A Summary of the PSI Pragram Synthesis System.
pages 380-381. HCAI77. Proceedings of the 4th
International Joint Conference on Artificial Intelligence.
Cambridge. Massachusetts, 1977.

Hadley. R. SHADOW: A Natural Language Query Analyser.
Computers and Mathematics, 1985, 11(5), x-y.

Hagan, A.. et al. Evaluation of Computer Programs for
Clinical Electrocardiography. In D. Cady. Jr. (Ed.),
Computer Technigues in Cardiology, New York: Marcel
Dekker, Inc., 1979.

Halmos. P.  Lectures on Boolean Algebra. New York:Van
Nostrand Press. 1963.

Hanson. A.. and Riseman. E. VISIONS: A Computer Systems
for Interpreting Scenes. In A. Hanson ind E. Riseman
(Eds.). Computer Vision Systems, New York: Academic
Press. 1978.

Havens. W. A Procedural Model of Recogniiion. pages 263-264.
Proceedings of the 5th 1JCAl, MIT. Cambridge. MA, 1977.

Havens, W. A Procedural Model of Recognition for Machine
Perception, pages 254-262. Proceedings of the 2nd
National Conference of the CSCSI/SCEIO, Toronto. 1978.

Hiavens. W.  Recognition Mechanisms for Hierarchical Schemata
Knowledge. Computers and Mathematics, 1983. 9(]).
185-200.

Havens, W. A Theory of Schema Labelling. Computational
Intelligence. 1985, 1(3). 101-120.

Hawrylak. I.  MSc. Thesis . Master's thesis, Department of
Computer Science. University of Kentucky. 1985.

Hayes. P. In Defence of Logic. pages 559-565. 1JCA177.
Proceedings of the 5th International Joint Conference on
Artificial inteihgence. Cambridge. Mass.. 1977

2B-204




Hayes. P. The Logic of Frames. In B. Webber and N. Nilsson
(Eds.). Readings in Artificial ~Intelligence, Palo Alto,
California: Tioga Press. 1979.

Hayes-Roth. F. Using Proofs and Refutations to Learn from
Experience. In Michalski, R.. Carbonell. J.. and Mitchell,
T. (Eds.). Machine Learning: An Artificial Intelligence
Approach. Palo Alto. California: Tioga Press, 1983.

Hayes-Roth, F.. Waterman, D. A., and Lenat, D. B.. (Editors).
Building Expert Systems.  Reading. Mass.:Addison-Wesley.
1983.

Hendrix. G. Expanding the Utility of Semantic Networks Through
FPartitioning, pages 115-121. 1JCAI75. Advance Papers of
the 4th International Joint Conference on Artificial
Intelligence, Tbilisi. USSR, 1975.

Hendrix. G. Encoding Knowledge in Partitioned Networks. In
N. Findler (Ed.). Associative Networks: The Representation
and Use of Knowledge by Machine, New York: Academic
Press. 1979.

Hewitt. C. Description and Theoretical Analysis of PLANNER.
Technical Report Ph.D. Thesis. Al Laboratory. M.LT..
1972.

Hobbs., J.R. and Moore, R.C. Formal Theories of the
Commonsense World.  Norwood:Ablex. 1984.

Hobbs. J.R. and Moore. R.C. Formal Theories of the
Commaonsense World.  Norwood. NJ:Ablex, 1985.

Hoehne. K.. Boehm. M.. Nicolae. G. The Processing of X-Ray
Image Sequences. In Swucki (Ed.). Advances in Digital
Image Processing, Plenum Press. 1980.

Horowitz. S. A Syntatic Algorithm for Peak Detection in
Waveforms with Applications to Cardiography.
Cumununications of the ACM. Mav 1975. 18(5). .

Horstmann, P.W. A Knowledge-Based System Using Design for
Testability Rules. pages 278-284. Proceedings of FTCS-14,

2B-205




19584.

Israel, David J. Interpreting Network Formalisms. In Cercone.
Nick (Ed.). Computational Linguistics. Oxford: Pergamon

Press. 1983.

Johnson-Laird., P. Procedural Semantics. Cognition, 1977, 5.
189-214.

Johnson-Laird. P. Mental Models in Cognitive Science.

Cognitive Science. 1980, 4(1). 71-115.

Jones. M.. and Poole. D. An Expert System for Educational
Diagnosis based on Default Logic. pages 573-583.
Proceedings of the 5th International Workshop on Expert
Systems and their Applications, Avignon, France, 1985.

Joobani. R. and Siewiorek. D.P. Weaver: A Knowledge-Based
Routing Expert. pages 266-272. ACM-IEEE. 1985.

Judd. D.. and Wyszecki, G. Color in Business. Science and
Industry (2nd edition). New York, New YorkiJohn
Wiley and Sons, 1963.

Kahn, K., and Gorry. G. Mechanizing Temporal Knowledge.
Artificial Intelligence. 1977, 9(2). 87-108.

Kameda, T. On the Vector Representation of the Reachability
in Planar Directed Graphs. [nformacion Proccssing Letters.,
1975, 3(4). 75-717.

Kao. M. Turning Null Responses into Quality Responses.
Master’s thesis. School of Computing Science. Simon Fraser
University, 1986.

Kaplan. J.  Cooperative Responses from a Portable Natural
Language Query System. Artificial Intelligence. 1982,
19(2), 165-187.

Katz, R.H. Managing the Chip Design Database. IEEE -
Computer, December 1983, 16(12). 26-40.

Kaufmann., A. and Gupta. M. [ntroduction to Fuzzy Arithmetic.
New York:VanNostrand. 1985.

2B-206




Nay. P.  Colwr Perception and the Meanings of Color Words.
pages 61-64. Cog. Sci. Soc.. Berkeley. California, 1981.

Kosslvn.  S. Image and Mind. Cambridge.
Massachusetts:Harvard University Press. 1980.

Kowalski. R. Predicate Logic as a Programming-Language. pages
569-574. North  Holland  Publishing  Company.
Amsterdam, 1974.

Kowalski. R.  Lagic for Problem Solving. New York. New
York:North Holland Elsevier. 1979.

Kowalski. T.J., et al. The VLSI Design Automation Assistant:
From Algorithms to Silicon.  JEEE Design and Test.
August 1985, 2(4), 33-34.

Kuipers. B. Commonsense Reasoning about Causality: Deriving
Behaviour from Structure.  Artificial Intelligence, 1984,
24(2), 169-202.

Kunz, J.C.  Analvsis of Physiological Behavior using a Causal
Maodel based on First Principles. American Association for
Artificial Intelligence. August. 1983.

Kuratowski, K.. and Mostowski. A. Set  Theory. New
York:North Holland. 1982,

Lambert. Karel. Meinong and the Principle of Indcpendence.
Cambridge. England:Cambridge University Press, 1983.

Langlev. P.. Bradshaw. G.. and Simon. H. Rediscovering
Chemistry  with the Bzcon System. In Michalskr. ..
Carbonell. J.. and Mitche!l. T. (kds.). Machine lLecrning:
An Artificial Intellipence Approach, Pale Alto. California:
Tioga Press. 1983.

llenat, D.  The Role of Heuristics in Learning by Discovery:
Three Case Studies. In Michalski, R.. Carbonell. J.. and
Mitchell. T. (Eds.). Machine IlLcerning: An  Artificial
Intelligence Approach, Palo Alto. California: Tioga Press.
1983.

lLevesque. H. A Procedural Approack o Semantic Neoworks,

2B-207




Technical  Report TR-105, Department of Computer
Science. University of Toronto, 1977.

Levesque. H. A Formal Treatment of Incomplete Knowledge
Bases. Technical Report Ph.D. Thesis. Department of
Computer Science. University of Toronto. 1981.

Levesque. Hector J., and Brachman, Ronald J. A Fundamental
Tradeoff in Knowledge Representation and Reasoning. In
in Brachman and Levesque 1985. Morgan Kaufmann. 1985.
Revised Version.

Levesque, H.. and Mylopoulos. J. A Procedural Semantics for
Semantic Networks. In N. Findler (Ed.). Associative
Networks: The Representation and Use of Knowledge by
Machine. New York: Academic Press, 1979.

Lispki. W. Information Storage and Retrieval.  Theoretical
Computing Science, 1976. 3(3). 183-211.

Lipski. W.  Logical Problems Related to Incomplete Information
in Databases. Technical Report Preprint #452, Universite
de Paris-Sud. Orsay. 1977.

Long. W.  Reasoning about State from Causation and Time in a
Medical Domain. American Association for Aruficial
Intelligence. August. 1983.

Long. W.. Russ. T.. A Corurol Structure for Tim-Dependent
Reasoning. 1JCAL Karlsruhe. Germany. 1983

Loveland. D. Auwtomated Theorem Proving: A lLogical Bass
Amsterdam:North Holland, 1978.

Lukasiewicz, J.  Aristotle’s Svllogistic. Oxford Clarendon FPrea..
1951.
Mackworth, A. Consistency in Networks of  Relations

Artificial Intelligence, 1975, 8(1). 99-118.

Mackworth, A. Model Driven Interpretation n  Intelhgent
Vision Systems.  Perception, 1976, 5(). 349-370.

Mackworth, A, How to See a Simple World In b Floock

2B-208




and D. Michie (Eds.). Machine lruelligence 8, New York:
Halstead Press. 1977.

Mackworth, A. Vision Research Strategy: Black Magic.
Metaphors, Mechanisms, Miniworlds. and Maps. In
A. Hanson and E. Riseman (Eds.). Computer Vision
Systems, New York: Academic Press. 1978.

Mackworth, A. Constraints, Descriptions and Domain Mappings

. in Computational Vision, pages . Royal Society Symposium

on Physical and Biological Processing of Images. London.
1983.

Mackworth, A.. and Freuder, E. The Complexity of Some
Polynomial Network Consistency Algorithms for Constraint
Satisfaction  Problems. Technical Report TR  82-6.
University of British Columbia. 1982.

Mackworth, A. and Havens. W. Structuring Domain Knowledge
for Visual Perception. pages 625. 1JCAI81, Proceedings of
the 7th International Joint Conference on Artificial
Intelligence, Vancouver. Canada. 1981.

Maida. Anthony S. and Shapiro., Stuart C. Intensional Concepts
in Propositional Semantic Networks.  Cognitive Science.
1982, 6. 291-330. Reprinted in Brachman and Levesque
1985: 169-89.

Maier. D. The Theory of Relational Databases. New
York:Computer Science Press. 1983,

Mamdani. E.H. and Gaines. B.R. Fuzzy Reasoning and us
Applications.  London:Academic Press. 1981.

Marr. D. Vision. San Francisco. Ca.:W._.H. Freeman, 1982.

Martins. Joao and Shapiro. Stuart C.  Reasoning in Multiple
Belief Spaces. pages 370-73. 1JCAI-8. 1983.

Martins. Joa,. Reasoning in Multiple Belief Spaces. Technical
Report 203, SUNY Buffalo Dept. of Computer Science,
1983.

Martins. Joao. Belief Revision. In Shapiro. S.C. (Ed.).

2B-209




Encyclopedia of Artificial Intelligence. New York: John
Wiley. 1987.

Martins, Joao and Shapiro. Stuart C. A Model for Belief
Revision. pages 241-94. AAALl, 1984.

Martins, Joao and Shapiro, Stuart C. Theoretical Foundations
for Belief Revision. In Halpern. J.Y. (Ed.). Theoretical
Aspects of Rea:oniné' Abowt Knowledge, Los Altos,
California: Morgan Kaufmann. 1986.

Martins. Joao and Shapiro, Stuart C. Hypothetical Reasoning.
pages 1029-42. AAAI, Berlin, 1986.

Martins, Joao and Shapiro, Stuart C. Belief Revision in SNePS.
pages 230-34. CSCSI, 1986.

Mathlab Group. MACSYMA Reference Manual. Cambridge.
Massachusetts:Computer Science Laboratory, Massachusetts
Institute of Technology. 1977.

Mays. E. Correcting Misconceptions Abowt Database Structure,
pages 123-128. Proceedings of the 3rd CSCSI National
Conference, Victoria. British Columbia, 1980.

Mays. E.  Monitors as Responses to Questions: Determining
Competence, pages 421-423. Proceedings of the National
Conference  on Artificial Intelligence, Pittsburgh.
Pennsylvania, 1982.

McCalla. G.  An Approach to the Organisation of Knowledge for
the Modelling of Conversation. Technical Report PhD
Thesis. University of British Columbia. 1978.

McCalla, G.. and Cercone. N. Techniques and Issues in the
Design of Applied Artificial IntelligenceSystems.
Computers and Mathematics, 1985, 11(5). 421-430.

McCarthy, J. First Order Theories of Individual Concepts and
Propositions. In Hayes, J.E.. D. Michie. and L. Mikulich
(Ed.). Machine Inztelligence 9, Chichester, England: Ellis
Horwood. 1979.  reprinted in Brachman and Levesque
1985: 523-533.

2B-210




McCarthy. J.  Circumscription:. A Form of Non-Monotonic
Reasoning. Artificial Intelligence. 1980. 13(1.2). 27-39.

McCarthy., J.  Applications of Circumscriptinn 10 Formalizing
Commonsense Knowledge.  Technical Report Al Technical
Report, Stanford. November 19%4.

McCarthy, J., and Hayes, P. Some Philosophical Problems from
the Suandpoint of Artificial Intelligence. In Meltzer. B..
and Michie. D. (Eds.). Machine JIrtelligence. New York:
American Elsevier. 1969.

McCarty. L. and Sridharan. N. The Represeruation of an
Evolving System of Legal Concepts 1I: Prototypes and
Deformations, pages 246-253. 1JCAI81. Proceedings of the
7th  International  Joint  Conference on  Artificial
Intelligence. Vancouver, Canada. 1981.

McCoy. K. Augmenting a Database Knowledge Representation for
Natural Language Generation, pages 121-128. Proceedings
of the 20th ACL. Toronto. Ontario. 1982.

McDermott.  Drew. The DUCK Manual. . Technical
Report YALEU/CSD/RR #399. Yale University.
Department of Computer Science. June 1985.

McKay. Donald P.. and Martins. Joao.  SNePSLOG User's
Manual.  Technical Report SNeRG Technical Note #4,
SUNY Buffalo Department of Computer Science. 1981.

McKay. Donald P.. and Shapiro. Stuart C. MULTI - A LISP-
Based Muliiprocessing System. pages 29-37. AAAL
Stanford University. 1980.

McKeown, K. The TEXT Svstem for Natural Language
Generation: An Overview. pages 113-120. Proceedings of
the 20th ACL. Toronto. Ontario, 1982.

McSkimmin. J.R.. and Minker. J. The Use of a Semantic
Network in a Deductive Question-Answering System. pages
50-58. HIJCAIT77. Proceedings of the 5th International
Joint Conference on Artificial Intelligence. Cambridge.
Mass.. 1977.

2B-211




McSkimmin. J.R.. and Minker. J. A Predicate Calculus Based
Semantic Network For Deductive Searching. In N. Findler
(Ed.). Associative Networks: The Representation and Use of
Knowledge by Mcchine. New York: Academic Press. 1979.

Mead. C. and Conway. L.  Introduction to VLSI Systems.
Reading. Massachusetts:Addison-Wesley. 1980.

Meinong, Alexius. Uber Gegenstandstheorie. In Haller,
R. (Ed.). Alexius Meinong Gesamiausgabe, Vol. 11, Graz,
Austria:  AKademische Druck-u. Verlagsanstalt, 1904.
.English Translation The Theory of Objects by 1. Levi et
al.. pp. 76-117 in R.M. Chisholm (ed.). Realism and the
Background of Phenomenology (New York: Free Press.
1960).

Meinong. Alexius. On Assumptions. Berkeley:University of
California Press, 1983.

Mercer, R.. and Reiter, R. The Representation of Presuppositions
Using Defaults, pages 103-107. Proceedings of the 4th
National Conference of the CSCSI/SCEIQ, Saskatoon, 1982.

Miller, David P.  Planning by Search Through Simulations.
Technical Report YALEU/CSD/RR #423., Yale University.
Department of Computer Science, October 1985.

Minsky. M. A Framework for Representing Knowledge. In
P. Winston (Ed.). Psychology of Computer Vision, New
York: McGraw Hill, 1975.

Minsky. M.  Learning Meaning. Technical Report Al Lab
Memo. Project MAC, M.LT.. 1980.

Minsky., M. Why People Think Computers Can't. Artificial
Intelligence Magazine, 1982, 3(4). 3-15.

Moore. R. Reasoning Abowt Knowledge and Actions. Technical
Report Tech note 191, SRI International. 1980.

Moore. R. The Role of Logic in Knowledge Represeruation and
Commonsense Reasoning, pages 428-433.  Proceedings of
the 2nd AAAI. Pittsburgh, Pennsylvania. 1982.

2B-212




Mostow. DJ.. Hayes-Roth, F. A Production System for Speech
Understanding System. In Waterman and Hayes-Roth
(Ed.). Pattern Directed Inference Systems, Academi¢ Press.
1978.

Mylopoulos, J.. Shibahara. T.. and Tsotsos. J. Building
Knowledge-Based Systems: The PSN - Experience. - [EEE
Computer special issue on Knowledge Representation. 1983,
16(10). 83-89. '

Neal. Jeanette G. A Knowledge Based Approach to Natural
Language Understanding. Technical Report 85-06. SUNY
Buffalo Department of Computer Science. 1985.

Newell, A. Production Systems: Models of -Control Structure.
In W. Chase (Eds.). Visual- Information Processing, New
York: Academic Press. 1973.

Newell, A. and Simon. H. Human  Problem Solving.
Englewood Cliffs. NI:Prentice-Hall. 1972.

Nii. H.. and Aiello. N. AGE: A Knowledge-Based Program for
Building Knowledge-Based Programs, pages 645-655.
IUCAI79. Proceedings. of the 6th International Joint
Conference on Artificial Intelligence. Tokyo. Japan, 1979.

Nilsson. N: . Problem Solving Methods in Artificial Intelligence.
New York. New York:McGraw Hill., 1971.

Nilsson. N.  Principles of Artificial Intelligence. Palo AlLuto.
California:Tioga Press. 1980. '

Nilsson, N.  Artificial Intelligence:  Engineering. Science. or
Slogan? Artificial Intelligence Magazine, 1982, 3(1). 2-8.

Noguchi, K.. Umano. M., Mizumoto. M.. and Tanaka. K.
Implemerntation of Fuzzy Artificial Intelligence Language
FLOU. Technical Report. Univ of Tokyo. 1976.
Technical Report on Automation and Language of IECE.

Norman., D.. and Rumelhart. D.  Explorations in Cognition.
San Francisco. Ca.:W.H. Freeman. 1975.

Papalaskaris. M. Special Purpose Inference Methods. Technical

2B-213




Report M.Sc. thesis, Deparument of Computing Science.
University of Alberta, 1982.

Papalaskaris. M.. and Schubert. L. Parts Inference: Closed and
Semi-closed Partitioning Graphs, pages 304-309. HCAL
Vancouver, British Columbia, 1981.

Papalaskaris, M., and Schubert, L. Inference, Incompatible
Predicates and Colours, pages 97-102. CSCSI/SCEIQ,
Saskatocn, Saskatchewan, 1982.

Parsons, Terence. Nonexistent Objects. New Haven:Yale
University Press. 1980.

Patil. R.S. Causal Representation of Patient Illness for Electrolyte

' and Acid-Base Diagnosis. Technical
Report MIT/LCS/TR-267, Laboratory for  Computer
Science, Massachusetts Institute of Technology. 1981. PhD
Thesis.

Patil. R.. Szolovits. P., Schwartz, W. Modeling Knowledge of
. the Patient in Acid-Base and Electrolyte Disorders. In
P. Szolovits (Ed.). Artificial Intelligence in Medicine.
Westview Press, 1982. '

Pereira, F.. and Warren. D. Definite Clause Grammars for
Language Analysis.  Artificial Intelligence. 1980. 13(3).
231-278.

Poole, D. A Logical System for Default Reasoning. pages
373-384. Proceedings of the AAAI Workshop on
Nonmonotonic Reasoning. New Paltz, New York. 1984.

Poole, D. On the Comparison of Theories: Preferring the Most
Specific Explaination. pages 144-147. IJICAl  85.
Proceedings of ‘the 9th International Joint Conference on
Artificial Intelligence, Los Angeles. California, 1985.

Poole. D.. and Goebel. R. On Eliminating Loops in Prolog.
ACM SIGPLAN Notices., 1985. 20(8). 38-41.

Pople. H. The Formation of Composite Hypotheses in Diagnostic
Problem Solving - An Exercise in Synthetic Reasoning

2B-214




[INTERNIST]. pages 1030-1037. 1JCAI77. Proceedings of
the S5th International Joint Conference on Artificial
Intelligence. Cambridge, Massachusetts. 1977.

Pople. H. Heuristic Methods for Imposing Structure on :Ill-
Structured  Problems: The Structuring of Medical
Diagnostics. In P. Szolovits (Ed.). Artificial Intelligence in
Medicine, Westview Press, 1982.

Popper. K. The Logic of Scientific Discovery. New York. New
York:Harper and Row. 1958.

Putnam. H. The Meaning of 'Meaning". In Putnam. H. (Ed.).
Mind, Language, and Reality, Cambridge. England:
Cambridge University Press. 1975.

Pylyshyn. Z. What the Mind’s Eye Tells the Mind’s Brain: A
Critique of Mental Imagery. Psvchological Bulletin. 1973,
80(1). 1-24.

Pylyshyn Z. The Imagery Debate: Analog Media versus Tacit
Knowledge. In Block, N. (Ed.), /magery, Cambridge. Ma.:
M.LT. Press. 1981. :

Quillian. M.  Semantic Memory. In Minsky. M. (Ed.).
.Semantic Information Processing, Cambridge. Ma.: M.LT.

Press. 19686.

Quillian, M. The Teachable Language Comprehender.
Communications of the ACM. 1969. 12(8). 459-476.

Quine, W. Word and Object. Cambridge. Ma.:M.LT. Press.
1960.

Quine. W., and Ullian, J. The Web of Belicf. New York,
New York:Random House, 1978.

Rapaport, William J. Irtentionality and the Structure of
Existence. PhD thesis, Indiana University Department of
Philosophy. 1976.

Rapaport., William J. Meinongian Theories and a Russellian
Paradox. Nous, 1978, 12, 153-80. errata, Nous
13(1979)125. '

2B-215




Rapaport. William J. How to Make the World Fit Our
Language: An Essay in Meinongian Semantics. Grazer
Philosophische Studien, 1981. 14, 1-21.

Rapaport. William J. Meinong. Defective Objects, and
(Psycho-)Logical Paradox. Grazer Philosophische Studien.
1982, 18. 17-39.

Rapaport. William J. Critical Notice of Routley 1979.
Philosophy and Phenomenological Research. 1984. 44.
539-52. '

Rapaport, William J. Belief Representation and Quasi-Indicators.
Technical Report 215, SUNY Buffalo Department of
Computer Science. 1984.

Rapaport. William J.  Meinongian Semantics for Propositional
Semantic Networks, pages 43-48. ACL. 1985.

Rapaport, William J. To Be and Not to Be. MNous, 1985. 19,
255-71.

Rapaport. William J. Review of - Lambert 1983. Jowrnal of
Symbolic Logic, 1986, 51, 248-52.

Rapaport. William J. Logical Foundations of Belief
Representation. Cognitive Science. 1986. 10. 00-00.

Rapaport, William J., and Shapiro, Stuart C. Quasi-/ndexical
Reference in Propositional Semantic Networks. pages 65-70.
ACL. Suanford University, 1984.

Raphael, B. SIR: Semantic Information Retrieval. In Minsky.
M. (Ed.). Semantic Information Processing, Cambridge.
Mass.: MIT Press. 1968.

Reghbati. H.K. VLS! Testing and Validation Techniques. 1EEE
Computer Society Press. 1985.

Reiter, R. A Logic for Default Reasoning. Aritificial
Intelligence, 1980. /3(1). 81-132.

Reiter, R.. and Crisculo. G. Some Representational Issues in
Default Reasoning. In Cercone. N. (Ed.). Computational

2B-216




Linguistics. London: Pergamon Press. 1983.

Rich. C. A Formal Representation for Plans in the Programmer’s
Apprerzice. 1JCA). Vancouver, British Columbia. 1981.

Rich., C. A layered architecture of a system for reasoning about
programs, pages 540-546. [1JCAIL Los Angeles, ‘California.
1985.

Rieger. C.. Grinberg. M. The Causal Representation and
Simulation of Fhysical Mechanics. Technical
Report TR-495. University of Maryland. November 1976.

Roberts. L. Machine Perception of Three-Dimensional Objects.
In J. Tippet (Eds.). Optical and Electro-Optical Information
Processing, Cambridge. Massachusetts: MIT Press. 1965.

Roberts. R. and Goldstein, 1.  The FRL Primer. Technical
Report Al Memo 408. MIT, November 1977.

Robinson. J. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 1965, 12, 23-41.

Robinson. J. Logic:  Form and Function. Edinburgh,
Scotland:Edinburgh University Press, 1979.

Robson. D.  Object-Oriented Software Systems. Bwe. 1981,
6(8). 74-86. ‘

Rosenschein, S.. and Shieber. M. Translating English into
Logical Form. pages 1-8. Proceedings of the 20th ACL
Conierence. Toronto. Ontario. 1982.

Roussel. P. PROLOG: Manuel de Reference et d'Utilization.
Technical Report . Aix-Marseille University, 1975.

Routley. Richard. Exploring Meinong's Jungle and Beyond.
Technical Report. Australian National University. Research
School of Social Sciences. Department of Philosophy. 1979.

Rumelkart., D., and Ortony, A. The Representation of
Knowledge in Memory. Technical Report TR 55.
Deparument of Psychology. University of California. San
Diego. 1976.

2B-217




Sacerdoti. E.D. A structure for plans and behavior. Technical
Report 109. SRI Artificial Intelligence Center, 1975.

Samad. T. and Director. S.W. Natural Language Interface for
CAD: A First Step. [EEE Design and Test. August 1985,
2(4). 78-86.

Sandewall, E. A Functional Approach to Non-Monotonic Logic.
Computational Intelligence, 1985. 1(2). 69-81.

Schank. R.  Conceptual Dependency: A Theory of Natural
Language Understanding. Cognitive Psychology. 1972. 3.
552-631.

Schank. R. The Role of Memory in Language Processing. In
C. Cofer (Ed.). The Structure of Human Memory, San
Francisco: Freeman, 1975.

Schank., R., and Abelson. R. Scripts, Plans, and Knowledge,
pages 151-157.  IJCAI75, Advance Papers of the 4th
International Joint Conference on Artificial Intelligence,
Toilisi, USSR. 1975.

Schank. R., and Abelson. R. Secripts, Plans, and Understanding.
Hillsdale, New Jersey:Lawrence Erlbaum Associates. 1577.

Schank, R.. and Rieger. C. Inference and the Computer
Understanding  of  Natural  Language. Artificial
Intelligence. 1974, 5(4). 373-412.

Schank. R., and Wilenskv. R. Response 1o Dresher and
Hornstein. Cognition. 1977, 5. 133-146.

Schank. R., Goldman. N.. Rieger. C.. and Riesbeck. C. Margie:
Memory, Analysis, Response Generation and Inference on
English, pages 255-261. 1JCAI173. Proceedings of the 3rd
International Joint Conference on Artificial Intelligence,
Stanford. Ca.. 1973.

Schlipf, J. Private Communication. ., 1986, ( ).

Schubert, L. Extending the Expressive Power of Semantic
Networks, pages 158-164. 1JCAI7S5. Advance Papers of
the 4th International Joint Conference on Aruficial

2B-218




Intelligence. Tbilisi. USSR, 1975.

Schubert. L.  Extending the Expressive Power of Semantic
Newworks. Artificial Intelligence. 1976, 7. 163-198.

Schubert. L. . Problems with Parts, pages 778-784.  1JCAI
Tokyo. Japan. 1979. '

Schubert. L. An approach to the syntax and semantics of affixes
in ‘converdionalized® phrase struuure grammar., pages
189-195. CSCSI/SCEIO. Saskatoon. Saskatchewan. 1982.

Schubert. L. On . Parsing Ireferences. pages 247-250. Coling.
Stanford. California, 1984.

Schubert. L.. and Pelletier. F. From English to Logic: context-
free computation of conventional logical translations. Am.
Journal of Computational Linguistics, 1982, 8(1), 26-44.

Schubert. L., Goebel, R., and Cercone. N. The Structure and
Organisation of a Semantic Network for Comprehension
and Inference. In N. Findler (Ed.). Associative Networks:
The Represeruation and Use of Knowledge by Machine, New
York: Academic Press, 1979.

Scragg. G. Answering Questions About Frocesses, Ph.D. Thesis.
Technical Report, Department of Computing  Science.
University of California. San Diego, 1975.

Shapiro. S. A Net Structure for Semartic Information Storage,
Deduction. and Retricval. pages 512-523. DCAIT1.
Proceedings of the 2nd International Joint Conference on
Artificial Intelligence. London. England. 1971.

Shapiro. Stuart C. The MIND System: A Data Structurc for
Semantic Information Processing. Technical Report Report
Number R-837-PR. The Rand Corporation, 1971. also AD
Number 733 560. Defense Documentation Center.
Alexandria. VA.

Shapiro. Stuart C. A Net Structure for Semantic Information
Storage, Deduction and Retrieval. pages 512-23. 1CAL
1971. '

2B-219




Shapiro, Stuart C. Represeruing and Locating Deduction Rules in
a Semaruic Network. pages 14-18. 1JCAl. 1977,

Shapiro. Swtuart C.  Paith-Based and Node-Based Inference in
Semantic Networks. In Waliz, D. (Ed.). Tinlap-2:
Theoretical Issues in Natural Language Processing, New
York: ACM, 1978.

Shapiro. S. The SNePS Semantic Network Processing System.
In N. Findler (Ed.). Associative Networks: The
Representation and Use of Knowledge by Machine, New
York: Academic Press. 1979.

Shapiro. Stuart C. The SNePs Semantic Network Processing
System. In Findler, N.V. (Ed.). Associative Networks: The
Representation and Use of Knowledge by Computers, New
York: Academic Press. 1979.

Shapiro. Stuart C. Numerical Quardifiers and Their Use in
Reasoning with Negative Information, pages 791-96.
HICAL. 1979.

Shapiro. Stuart C. Generalized Augmented Transition Network
Grammars for Generation from Semantic Networks.
American Journal of Computational Linguistics, January-
March. 1962, 8.1. 12-25. -

Shapiro. E. A Subset of Corcurrent Prolog and its Interpreter.
Technical Report CS83-06. Weizmann Institute of Science,
19863.

Shapiro. Stuart C.. and McKay. Donald P.  Inference with
Recursive Rules. pages 151-53. AAAI, 1980.

Shapiro. Stuart C., and Wand. Mitchell. The Relevarce of
Relevance. Technical Report 46. .Indiana University
Department of Computer Science, 1976.

Shapiro. Stuart C.. and Woodmansee. G. H. A Net Structure
Based Relaticnal Questions Answerer: Descaription and
Examples, pages 325-46. 1JCAIL 1969.

Shapiro. Stuart C.: Martins. Joao. and McKay. Donald P.

2B-220




Bi-Directional Infcrence. pages 90-93. Cognitive Science
Society. 1982.

Shapiro. Stuart C.: McKay. Donald P. Martins. Jozo; and
Morgado. Ernesto.  SNelSLOG: A ‘Higher Order’ Logic
Programming  Language. Technical  Report SNeRG
Technical Note Number 8, SUNY Buffalo Department of
Computer Science. 1981. Presented at the 1981 Workshop
on Logic Programming for Intelligent Systems. Long-
Beach. California.

Shapiro. Stuart C.: Srihari. Sargur N.; Geller. James: and Taie.
Ming-Ruey. A Fault Diagnosis System Based on an
Integrated Knowledge Base. [EEE Software. March 1986,
3.2, 48-49.

Shapiro. Stuart C.: Woodmansee. G. H.: and Kreuger, M. W. A

‘ Semantic  Associational Memory Net that Learns and
Answers Questions (SAMENLAQ). Technical Report 8.
University of Wisconsin Computer Sciences Department,
1968.

Shepard. R.  The Menta)l Image. American Psychologist. 1918,
33(6). 125-137.

Shepard. R.. and Cooper. L. Mental Images and Their
Transformations.  Cambridge. Mass.:MIT Press. 1952.

Shibahara. T. On Using Causal Knowledge to Recognize Vital
Sitgnals:  Krowledge-based Interpretation of Arrhychmias,
CAL Los Angeles. California, 1985.

Shibahara. T.. Tsotsos. J.. Mylopoulos. J.. Covvey., H. CAA: A
Knowledge-Based System Using Causal Knowledge (o
Diagnose Cardiac Rhythm Disorders.  1JCAl. Karlsruhe,
W. Germany. August, 1983.

Shortliffe. E.  Computer - Based Medical Consultation: MYCIN.
New York:North-Holland, 1976.

Simon., H. Rational Choice and the Structure of the
Environment. Psychological Review, 1956, 63(). 129.

2B-221




ﬁ_ﬂ

Slager. C.. et al. Left Veruricular Contour Segmentation from
Anatomical Landmark Trajectories and its Application to
Wall Motion Analysis. Computers in Cardiology. Geneva,
1979.

Sleeman. D.. and Brown. J. (eds). [Intelligent Tutoring Systems.
New York. New York:Academic Press. 1982.

Sloman. A. Afterthoughts on Analogical Reasoning. pages
178-182. Proceedings Theoretical Issues on Natural
Language Processing. Cambridge. Massachusetts. 1975.

Smith, B. Refections and Perspectives in a Procedural Langauge.
Technical Report TR-272, M.L.T.. 1982.

Sowa. M.. Scott. A.. and Shortliffe, E.  Completeness and
Consistencv in Rule Based Systems. In Buchanan, B.. and
Shortliffe. E. (Eds.). Rule Based Expert Systems, Reading.
Mass.: Addison-Wesley, 1985.

Srihari. Kohini K. Combining Path-Based and Node-Based
Inference in SNePS. Technical Report 183, SUNY Buffalo
Department of Computer Science. 1981.

Srihari. Sargur N.: Hull, Jonathan J.: Palumbo. Paul W.; Niyogi.
Debashish: and Wang. Ching-Huei. Address Recognuion
Technigues in Mail Sorting: Research Directions. Technical
Report 85-09. SUNY Buffalo Department of Computer
Science. 1985.

Stefik. M. et al.  The FPartitioning of Concerns wn Digual Svsien.
Design. pages 43-52. 1EEE. 1982.

Steinberg. L.I. and Mitchell. T.M.  lbe Redesign Svsiem: A
Knowledge-Based Approach to VLSI CAD. [EEE Design
and Test. Februarv 1985, 2(7). 45-54

Stickel. M. Theory Resolution: Building in  Noncguational
Theories.. pages 391-397. AAAIL Washington, DC.. 1983,

Stickel. M. Awomated Deduction by Theory Resolution. pages
1181-1186. 1JCAIL Los Angeles. Califormia. 1985

Suchin, Jennifer. A Semanric Network Representation of the

2B-222




FPeripleral Nervous Svstem. Technical Report Project
Report, SUNY Buffalo Department of Computer Science.
1985.

Sussman, Gerald J. A Computer Model of Skill Acquisition.
American Elsevier Publishing Company. Inc.. 1975.

Sussman, GJ. and Suallman. R. Heuristic Techniques in
Computer-Aided Circuit Analysis. [EEE Transactions on
Circuits and Systems, November 1975. CAS-22(11).
205-280.

Sussman G.J. and Steele. G.L. CONSTRAINTS - A Language
for Expressing Almost-Hierarchical Descriptions. Artificial
Intelligence, August 1980, 14(1). 1-39.

Szolovits, P. and Pauker. S.G. Categorical and Probabilistic
Reasoning in Medical Diagnosis.  Artificial Intelligence,
1978. 11, 115-144.

Tate. Austin.  Generating Project Networks.  1JCAL. AAAL
1977.

Taugher. J. A Represertation for Time Infurmation. Technical
Report M.Sc. thesis. Department of Computing Science.
University of Alberta, 1983. '

Taugher., J.. and Schubert. L. Fast Temporal Inference.
1986. ( ). (1o zppear).

Tenenberg. J.  Taxonomic Reasoning. pages 191-193. 1JCAI Los
Angeles, California. 1985

Tomberlin. James E. Agent. Language, and the Structure of the
World. IndianapolisiHackett, 1984. R.A. George.
transiator.

Tranchell. Lynn M. A SNePS Implementation of KL-ONE.
Technical Report 198, SUNY Buffalo Department of
Computer Science. 1982.

Tsotsos, I Represeruational Axes and Temporal Cooperative
Processes.  Technical Report RBCV-TR-2, Department of
Computer Science. University of Toronto. May 1984.

2B-223




Tsotsos. J.K. Knowledge Organization and Its Role in
Representation and Interpretation for Time-Varying Data:

The ALVEN System. Computational Intelligence, 198S.
1) .

Tsotsos J.K.. Mylopoulos. J.. Covvey. H.D.. Zucker., SW. A
Framework For Visual Motion Understanding. JEEE
Transactions on Pattern Analysis and Machine Intelligence.
November 1980, ]. .

Ullman, J. Principles of Database Systems. New
-York:Computer Science Press. 1984.

Umrigar, Z., and Pitchumani. V. An Experiment in
Programming with Full First Order Logic. IEEE 1985
Symposium on Logic Programming. 1985. 1(1). 40-47.

van Emden, M. Programming with Resolution Logic. In
Elcock. E. and Michie. D. (Ed.). Machine Intelligence 8.
Chichester. UK: Ellis Horwood. 1977.

van Emden. M.. and Kowalski, R. The semantics of predicate
logic ‘as a programming language. Journal of the ACM.
1976. 23(4). 733-742. :

van Melle. W. A Domain Independent Systemmn that Aids in
Constructing Consultation Programs (EMYCIN).  Technical
Report STAN-CS-80-820, Department of Computer Science.
Stanford University., 1980.

Vere. Steven. Planning in Time: Windows and Durations for

Activities and Goals. lEEFE Transactions on [attern
Analysis and Machine [ruelligence. 1983, (PAMI-5/3)}.
246-261.

Vilain. M.  The restricted language architecture of a hybrid
representation system. pages 547-551. 1JCAIL. Los Angeles.
California. 1985.

Vilain. M., and Kautz. H. Constraint Propagation Algorithms
for Temporal Reasoning, pages (1o appear). AAAL
Philadephia, Pennsylvania. 1986.

2B-224




Wallis, J.. Shortliffe. E. Explanatory Power for Medical Expert
Systems: Studies in the Represeruation of Causal
Relationships for Clinical Consultations. Technical
Report. STAN-CS-82-923, Stanford University. 1982.

Walther. C. A many-sorted calculus based on resolution and
" paramodulation. pages 882-891. 1JCAI. Karlsruhe, West
Germany, 1983.

Walwz, D. Understanding Line Drawings of Scenes with
Shadows. In P. Winston (Ed.). Psychology of Computer
Vision. New York: McGraw Hill. 1975.

Warren, D.. and Pereira. S. An Efficient Easily Adaptable

' System for Interpreting Natural Language Queries.
American Journal of Compuational Linguistics, 1982,
8(3+4). 110-122.

Warren. D.. Periera, L.. and Periera, F. PROLOG - the
language and its implementation compared to LISP.
Sigart Newsletter. 1977. 8(64). 109-115.

Weiss, S. M.. and Kulikowski. C. A. A Practical Guide to
Designing Expert Systems.  Totowa. New Jersey:Rowman
and Allanheld. 1984. '

Weyhrauch. R. Prolegomena to 2 Theory of Mechanized
Reasoning. Artificial Inzelligence. 1980. 13(2). 133-170.

Wilenskv. R.  Understanding Goal-Based Stories. Technical
Report Research Report 140. Department of Computer
Science. Yale University, 1978.

Williams. B.C. Qualitative Analysis of MOS Circuits.
Artificial [ntelligernce, 1984, 24. .

Wilson. K. From Association to Structure. Amsterdam:North
Holland. 1980.

Winograd. T. Understanding Natural Language. New
York:Academic Press. 1972.

Winograd, T. Breaking the Complexity Barrier Again.
SIGPLAN Notices. 1974, 9(6). x-y.

2B-225




Winograd. T. Frames and the Procedural-Declarative
Controversv. In Bobrow. D.. and Collins. A. (Eds.).
Represervation and Understanding, New York: Academic
Press, 1975.

Winograd. T.  Towards a Procedural Understanding of
Semantics. Revue International de Philosphie. 1976, 3-4(1).
260-303.

Winograd, T. On Some Contested Suppositions of Generative
Linguistics about the Scientific Study of Language.
Cognition. 1977, 5(3). 151-179.

" Winston, P. Learning Structural Descriptions from Examples.
Technical Report MAC-TR-76. PRoject -MAC, M.LT.. 1970.

Woods. W. Sermartics for a Question-Answering System.
Technical Report Ph.D. Thesis, Division of Engineering.
Harvard University, 1967.

Woods. W. What's in a2 Link. In Bobrow. D.. and Collins.
A. (Eds.). Represertation and Understanding, New York:
Academic Press, 1975.

Wobds. W. Cascaded ATN Grammars. American Jowrnal of
Computational Linguistics, 1980. 6(1). 1-15.

Woods., W. What's Important about Knowledge Representation.
In McCalla. G.. and Cercone. N. (Eds.). IEEE Computer
special issue on Knowledge Representation, New York:

ICEL. 1983.

Woods. W. Problems in Procedural Semantics. In Pylyshyn.
Z.. and Demopoulos. W. (Eds.). Meaning and Cognitive
Structure, New Jersey: Ablex Publishing Company. 1986.

Woods. W.. Kaplan. R.. and Nash-Webber, B. The Lunar
Science Natural Langauge Report. Technical
Report TR2378, Bolt Beranek and Newman. Inc.. 1972.

Wright, M.. and Fox. M. SRL/15 User Manual. Technical
Report TR, Carnegie Mellon University. 1982.

Wygralak. M. Fuzzy Cardinals based on the Generalized

2B-226




Equality of Fuzzy Subsets. Fuzzy Sets and Systems I8,
1986. }. 143-158.

Xiang., Zhigang, and Srihari, Sargur N\. Spaiial Structure and
- Function Represeruation in Dcagnosuc Expert Systems, pages
191-206. IEEE, 198S.

Xiang. Zhigang: Srihari. Sargur N.: Shapiro, Stuart C.. and
Chutkow, Jerry G. Analogical and Propositional
Represeruations of Structure in Neurological Diagnosis. pages
12‘7—32 IEEE, Silver Spring. MD.. 1984".

Zadeh, L.A. Similarity Relations and Fuzzy Ordérings. Inf.
Sci., ‘1971, 3. 177-200.

Zadeh, L.A. The Concept of a Linguistic Variable and its
Application 1o Approximate Reasoning. Information
Science. 1975, 8. 199-249. 301-357.

Zadeh. L.A. A Theory of Approximate Reasoning. Technical
Report Memorandum M77/58. Electronics  Research
Laboratory, 1977. 2lso appears in Machine Intelligence 9.
Hayes. J.E., Michie, D.. and Kulich, L.I.. (eds.) New York:
Wiley. pp. 149-194. 1979. :

Zadeh. L.A. A Theory of Approximate Reasoning. Technical
Report Memorandum M77/58. Electronics = Research
Laboratory. 1977. also appears in Machine Intelligence 9.
Hayes. J.E.. Michie. D.. and Kulich, L.I.. (eds.) New York:
Wilev. pp. 149-194. 1979.

Zadeh. 1..A.  PRUF - A Meaning Representation Language for
Natural Languages. [nt. J. Man-Machine Studies. 1978,
10. 395-460.

Zadeh, L. A Theory of Approximate Reasoning. Machine
Intelligence, 1979, 9. 149-194.

Zadeh, L.A. ~ Possibility Theory and Soft Data Analysis.
Technical  Report Memorandum  M79/59.  Electronics
Research Laboratory. 1979. also appears in Mathematical
Frontiers of the Social and Policy Sciences. Cobb. L. and
Thrall. RM. (eds.). Boulder: Westview Press. pp. 69-129,

2B-227




MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and selected
acquisition programs in support of Command, Control, Communications
and Intelligence ( I ) activities. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of i svstems. The areas
of technical competence include communications, command and control,
battle management, information processing, surveillance sensors,
intelligence data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic, maintainability, and

compatibility.
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