
I

0 Final Tecimical Report

t,%% 3D Navier-Stokes Flow Analysis
' for a Large-Array Multiprocessor

Sponsored by
Defense Advanced Projects Agency (DoDi

Defense Small Blsiness Innovation Research Programn
3D Navier-Stokes Flow Analysis for Large Array Multiprocessor

ARPA Order No. 5916, Aindt. 9
Issued by U.S. Army Missile Command Under

Contract # DAAH01-88-C-0405

l DTIC
ELECTE

AMTEC ENGINEERING. INC. MAY 18 1989
3055 112th Ave. NE, Suite 208

Bellevue, VA 98004 S 0 D
U Principal Investigator: IN.M. Peerv .

Telephone Number: (206) 827-3304

Short Title of Work: 3D N.S. on Multiprocessor
Effective Date of Contract: 14 SEP 1989
Contract Expiration Date: 28 FEB 1989
Reporting Period: Final Technical Report
Distribution: Approved for public release: distribution unlimited.I

I
DISCLAIM ER

"'The views and conclusions c(oitained in this dociuiient are those of the authors ant should
not be interpreted as representing the official policies, either expressed or imped, of the

Defense Advanced Research Projects Agency or the U.S. Government.'

I
%; .tL

I
. U~ a i nllg i i i I

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OME No. 0704-0188

Ex. Date Jun 30. 1986

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution

unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

. AEI-TR-85290.01

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Amtec Engineering, Inc. (If applicable) U.S. Army Missile Command

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

11820 Northup Way,
Suite 200

Bellevue, WA 98005 Redstone Arsenal, AL 35898-5244

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

IDefense Advanced Research Projects Agcy. ISTO DAAHOI-88-C-0405

8e. ADDRESS (Cty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Boulevard ELEMENT NO. NO. NO. ACCESSION NO.

Arlington, VA 22209-2308

11. TITLE (Include Security Classification)

A 3D Navier-Stokes Flow Analysis For A Large-Array Multiprocessor

12. PERSONAL AUTHOR(S)
Kelton M. Peery

13a. TYPE OF REPORT 13b. TIME COVERED "14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM88SEP14 TO 89FEB29 89 APR 17 59

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Parallel processing; Computational Fluid Dynamics;
A2Navier Stokes Equations~(ID I

(/ itd1 C

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Computational fluid dynamics (CFD) software is an important analysis tool for engineers,

particularly in the aerospace industry. CFD codes are, however, severely limited by the

speed of current supercomputers -- several orders of magnitude increase in floating-point

speed is necessary to effectively utilize CFD tools in engineering design. Parallel process-

ing computers will be available in the next few years with theoretical speeds approaching

that required for effective use of CFD. Much work needs to be accomplished in developing

CFD algorithms to make efficient utilization of these parallel computers. In this work one

explicit and two implicit algorithms for solving the 3D Navier-Stokes equations were devel-

oped and benchmarked on the Encore Multimax, a shared-memory Multiple Instruction Multiple

Data (MIMD) computer. Parallelism was obtained with domain decomposition. Parallel effici-

encies ranged from 50 to 95% with 2 to 9 processors on 24 x 12 x 12 and 50 x 30 x 30 meshes.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[' UNCLASSIFIED/UNLIMITED 0" SAME AS RPT. [] TIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inciude Area Code) 22c. OFFICE SYMBOL

Hugh C. Carson 205 876-7215 AMSMT-En- P-T

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION JF TH,! ,rFAll other editions are obsolete.

U Contents

I Introduction 1

2 Objectives 5
2.1 Overall Objectives 5
2.2 Phase I Objectives 5

*3 Related Work 7
3.1 General Parallel Algorithms. 7
3.2 Parallel Algorithms for CFD 8

4 Description of the NS3D) Code 11
4.1 Mathematical Model. 11I4.2 Discretization and Flux Functions. 12
4.3 Solution algorithms 14

4.3.1 Explicit Method. 15

4.3.2 J-Column Implicit Method. 16
4.3.3 J-Line Gauss Seidel Implicit Method 17

4.4 Description of Code Structure 20

5 Description of Encore Multimax MIMD Computers 21

6 Selection of Parallel Algorithms 23
6.1 Considerations in Selection of Parallel Algorithms for CFD 23
6.2 Model Problem Results. 25

7 Parallehizing the NS3D Program 33I7.1 The EPF Compiler 33
7.1.1 EPF Program Model 34
7.1.2 Memory allocation. 35I7.1.3 EPF compiler directives. 36

7.2 Approach 37
7.2.1 Code Evaluation. 37I7.2.2, Data Partitioning 39
7.2.3 Analyze Code Flow. 41

7.3 Coding. 41
7.4 Debugging. 44

8 Results of a Real Parallel CFD Application 47
8.1 Skewed Shock Wave/Laminar Boundary-Layer Interaction. 47

I i

8.2 Results of NS3D Calculations 49 i
8.3 Efficiencies of Parallel Algorithms 51

9 Conclusions 57 a

l

or!

I

III

; i!$ '-'A &l

, C- TAB -_

- j I ,\ :I(,: ., or

C;.St

II
I

. . . i ni i f NI ii I

I 1 Introduction
U

Computational fluid dynamics (CFD) is becoming a major element in the aerody-
namic design and analysis of full aircraft and aircraft components. As computers
and solution algorithms become even faster, numerical analysis will gradually re-
place wind-tunnel testing in most design procedures in the aerospace industry. The

* emphasis on wind tunnel testing will shift from parametric testing of candidate de-
sign configurations to validation of CFD numerical analyses and verification of final
designs. CFD analysis can potentially generate design data much faster and at sub-
stantially less cost than by using wind-tunnel testing. CFD also offers the capability
of numerically simulating flow fields that can not be (or are extremely difficult to
be) achieved in wind tunnels. Since the hypervelocity high-temperature flows are
very difficult to achieve in wind tunnels, CFD analysis is of critical importance in the
design of hypersonic aircraft such as the National Aerospace Plane (NASP).

CFD analyses require immense computer resources. The future success of CFD
analysis depends greatly upon the development of faster computers and better solu-
tion algorithms. Solutions of the 3D Navier-Stokes equations (modeling the viscous
flow of compressible fluids) run for hours on present supercomputers (such as the
Cray-X-MP, Cray-II, and the Cyber 205) for the analysis of flow about relatively
simple aircraft components. Peterson [1] projects that computers capable of well
over one teraflops (one trillion floating-point operations per second) and having at
least one billion words of memory will be necessary for accurately simulating whole
aircraft turbulent flow fields using current algorithms. The estimates are even more
awesome when additional complexities are introduced into the equations modeling the
flow field: multi-species chemical reactions, multiple phases, sub-grid scale turbulenceII
models, and direct simulation of turbulence. The (theoretical) technological limit of
the Single-Instruction-Single- Data (SISD) and the Single-Instruction-Multiple-Data
(SIMD) computer architectures currently used on most supercomputers, however, is
only about one gigaflop (one billion floating-point operations per second) [2). New
computer architectures must be utilized to achieve the substantial increases in com-
puting speed required for the desired CFD applications.

The only clear path to achieving substantial increases in computing speeds is the
implementation of Multiple-Instruction- Multiple-Data (MIMD) computer architec-
tures - that is parallel computers. Numerous first generation parallel computers
have been built and/or are presently available. These include the four-cpu Cray-X-
MP, ILLIAC-IV, Denelcor's HEP computer, Alliant's FX/8, Intel's Hypercube, and
Encore's Multimax. Unfortunately, the current algorithms have been developed pri-
marily for SISD machines with some use of vectorization. These algorithms will not
be able to utilize the full capabilities of parallel computers efficiently.

I
I

Um mnmnnnnin a / N H

I

There is an urgent need to develop parallel algorithms for CFD flow analysis codes
to take advantage of parallel computers, but development of parallel algorithms is not
a straight forward process. One of the problems with the use of parallel computers is
that their architectures differ in many respects. The number of CPU's can vary from
2 to tens of thousands and have greatly differing computing capability. The memory
may be globally shared by all CPU's or each CPU may have its own dedicated memory. I
The method by which the CPU's communicate is also a variable. Each CPU may
have a dedicated path to all of the memory, a switching network that connects the
CPU's to memory, a bus that provides a common path connecting all the CPU's with I
the memory, or other methods as well. The above architectural aspects of parallel
computers, and the fact that these architectures are changing in time, mal.e the
development of parallel algorithms difficult.

The goal of this work is to develop a flow analysis procedure for solving the three-
dimensional Navier-Stokes equations. The flow analysis procedure will be capable
of simulating three -dimensional viscous hypersonic flows over complex aerodynamic
bodies, including the effects of finite-rate chemical reactions. Specific applications
would include hypersonic vehicles like the National Aerospace Plane (NASP), SDI
interceptors, as well as other conventional aircraft flow fields. The flow analysis
procedure will utilize an efficient parallel algorithm for efficient computing on a large- I
array multiprocessor (LAmP) computer with globally shared memory.

The Navier-Stokes equations provide an accurate mathematical model of the flow I
of gases over most aerodynamic bodies at speeds from 0 to Mach 5 (and even higher
when chemical reaction equations are included). If engineers could solve these flow
equations accurately and timely (like within an hour) for partial or full aircraft config-
urations, the aircraft design process would be revolutionized. Engineers could rapidly
evaluate candidate configurations, and explore radically different designs quickly and
inexpensively. If numerical flow solutions could be performed in much less than one
hour, then software could be developed to perform automated optimization of aircraft
aerodynamic designs. The results would be more fuel-efficient and higher-performance I
aircraft that cost less to design as compared to today's aircraft.

In the present work (Phase I) several candidate parallel algorithms were developed n

and implemented into a prototype 3D Navier-Stokes code. The algorithms were devel-
oped on an Encore Multimax computer [3] with 10 NS32332 32-bit microprocessors,
each capable of executing 2 million instructions per second (mips), yielding a total of
20 MIPS (millions of instructions per second) and approximately 3 MFLOPS (millions
of floating-point operations per second) for the Linpack double precision benchmark. I
After incorporating the algorithms into prototype computer codes, the codes were
applied to a computationally demanding flow field calculation on the Multimax. The
results of this work is reported herein.

2I

I

I

I In Phases II and III the most promising parallel algorithm will be refined and
optimized. The algorithm will be incorporated into a production code capable of
simulating hypersonic flows over complete aircraft with complex geometry. The final
result of Phases II ard III will be a useful CFD flow analysis code that efficiently
utilizes the parallel processing capabilty of MIMD computcrs with large numbers
of processors and can be applied to the most computationally demanding flow field
problems.

I3

I
I
I
I
I
I
I
I
I
I
I
I

I 3

I
UI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 I
I

I

i 2 Objectives
i

2.1 Overall Objectives

The overall objective of Phases I, II, and III is to develop a commercial version of a
3D Navier-Stokes code that runs efficiently on MIMD computers with a large array
of processors. When used on future MIMD computers, this code will be capable of
simulating hypersonic flow over complete aircraft in a time frame that is acceptable
for use in engineering design processes (approximately one hour per calculation).

i 2.2 Phase I Objectives

i Develop several parallel algorithms for solving the three-dimensional Navier-
Stokes equations. Each will be incorporated into a prototype computer code and
applied to a computationally demanding flow field calculation on a Multimax
shared-memory parallel computer. The performance of the parallel algorithm
will be measured and evaluated.

" Apply the above algorithms to the same flow field problem on the Dual-Multimax
- a LAmP system provided by Encore Computer Corporation. The perfor-
mance of the parallel algorithm will be measured and evaluated.I

The results from achieving the above objectives should provide insight into the
difficaltie-. and computational advantages of several parallel algorithms for solving
the 3D Navier-Stokes equations for real flow problems on a shared-memory MIMD

i computer.

I

I
I

!1I
I 5 | I I | |

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6 I
I

I

I 3 Related Work
i

3.1 General Parallel Algorithms

As adeptly noted by Ortega and Voigt[24] there have been few truly new algorithms
developed for solving partial differential equations on parallel processors. In their re-
view they found that most parallel algorithms have been developed by restructuring
the computational domain into independent portions (domain decomposition) and
reordering the unknown variables to enhance the decomposition. A clear example
of this approach was given by Evans[25]. Evans describes checkerboard Successive
Over Relaxation (SOR) as a parallel version of classical SOR. By simply reordering
a rectangular array of grid points into two sets (black points i + j = even and red
points i + j = odd) a good sequential algorithm was transformed into a good parallel
algorithm. By contrast one might select simultaneous over relaxation (point Jacobi
with over relaxation) as a parallel version of SOR. But as Gibbons et al.[28] states,
replacing a good sequential algorithm (SOR in this case) with a poor parallel algo-
rithm (point Jacobi) makes no sense, even though point Jacobi has high parallelism
and is very easy to program on a parallel computer. The reason for this is that SOR
is substantially more efficient on uniprocessors than point relaxation. The optimal
parallel algorithm is one that achieves a speedup over the best sequential algorithm
equal to the number of processors. Therefore, if one could efficiently parallelize the
best sequential algorithm, he would have the optimal parallel algorithm. Linden, et
al.(35] support this same arguement. They stress the point that parallelism by itself
is not enough; parallel algorithms that are also efficient on sequential computers will

* be favored.

Evans [25] presented results of "group explicit" methods for creating parallelism
in a relaxation algorithm for Laplace's equation. In this method the computational
domain is divided into blocks of equal number and structure of cells. The equations
within each block are analytically combining to eliminate dependency of the unknowns
upon each other; each unknown is a function of the unknowns in the cells on the
boundary of the block. In this manner the relaxation iteration can be performed on
each node independently and still retain implicitness locally within each block. These
methods appear to be very good for simple linear equations, but application to the
non-linear Navier-Stokes equations would be difficult to program and costly in terms
of storage requirements. Another interesting point that Evans makes is that there is
some advantage in having a parallel algorithm that is consistent with some sequential
algorithm. Theories exist for predicting the performance of sequential algorithms,
but not for parallel algorithms that have no sequential counterpart (like chaotic or

folded schemes).

I7
I

Many real parallel computing applications were studied, catagorized, and analyzed i
by Fox[33]. He notes that coarse grain functional decompostion will yield only mod-
est speedups, since most real applications do not exhibit more than a few different
functions that could proceed concurrently. He concludes that over 90% of the various
scientific applications he analyzed could benefit from extension to a higher level of
parallelism. i

Schultz, et a1.[37] are developing the LCAP-1 system, a loosly coupled array of
processors. Their objective is to study a computer architecture that uses existing
computers connected with high-speed channels. Using large cache memories at each
processor, large memories shared by groups of processors, and large global memory
shared by all processors, significant overall performance was obtained on problems
that could be parallelized with domain decomposition. The critical importance of
having large local memories at each processor was stressed.

3.2 Parallel Algorithms for CFD i

There have not been many papers written about parallel processing for computational i
fluid dynamics. And most of those are concerned with vector pipeline processors like
the Cray 1, Cray X-MP, CDC Cyber203, Cyber205, and Star-100. Obviously, until
recently there haven't been many multiple-instruction-multiple-data parallel comput-
ers on which to conduct research on parallel algorithms, and especially not on the
more complex equations like the Navier-Stokes equations.

The first major parallel computer used for CFD research was the Illiac IV that
was installed at NASA Ames Research Center in 1972. Lomax and Pulliam[261 report
on parallelizing a 3D implicit Navier-Stokes code that used approximate factorization
on the Illiac IV in 1982. Eberhardt and Baganoff[27] parallelized three CFD codes on
a two-processor DEC VAX MIMD computer. Using what we have termed "variable
domain decompostion" on the Approximately Factored implicit algorithm for the
Navier Stokes equations, Eberhardt and Boganoff, were able to get speedups of 1.905
on the two-processor MIMD computer. They noted the importance of minimizing
inter-processor communication and having large local memory.

Gropp and Smith[32] measured the performance of an explicit MacCormack method
on a MIMD computer. They were able to achieve a speedup of 13 with 16 processors.
They point out that to minimize interprocess communication the aspect ratio of the I
decomposed portions should be near 1.0, thereby minimizing the ratio of boundary
cells (surface) to internal cells (volume). They report achieving speedups greater than

the number of processors. This can happen when the entire domain is too large to fit

I
i

I into a processor's cache, but the subdomains do fit. The processors are simply able
to process at greater speeds due to a reduction in system overhead related to cache
memory misses, etc.

Patel and Jordan[29] parallelized an SOR algorithm for the two-dimensional Navier-
Stokes equations in vorticity/stream function form on a HEP MIMD computer. They
applied the code to the driven cavity problem. They achieved a maximum speedup
of 6.8. They used a diagonal wave-front ordering of the SOR sweep to achieve true
point SOR.

Harding and Carling[30] parallelized the Navier-Stokes equations for a DAP (Dis-
tributed Array Processor) computer using explicit, ADI, and checkerboard SOR al-
gorithms. They found that full 3D checkerboard was more effective than stacking
similar 2D checkerboards for 3D calculations because of boundary condition effects.

Mandel[31] reports a case history of parallelizing a "real code". His real code
was 40,000 lines long and used a free-Lagrange method for computing hydodynamic
flow. He documents the troubles that they encountered in parallelizing the code. The
first problem was that parallelizing the 3D code presented problems that were not
evident in their model 1D code, mainly concerning memory usage. Pointers to large
linear arrays occuring in low-level subroutines were found to complicate the parallel
coding. Differentiating between local and global varibles was the most difficult aspect
of parallel coding. They recommend, if possible, to design a parallel code from scratch
instead of parallelizing an old sequential code. They feel this will avoid complicated

* coding and substantial debugging.

Hiromoto, et al.[34] point out the important concept that inner Do-loops should
be reserved for pipeline vector processing, while outer loops used to parallelize. Data
partitioning was used to achieve parallelism in most of the code and functional parti-
tioning was used to compute boundary conditions while internal cells were still being
operated upon.

Linden, et al.[35] developed a parallel multigrid solver for the incompressible

Navier-Stokes equations at low Reynolds numbers on a zonal mesh. They had not
run the code on a MIMD computer, but predicted that the parallel efficiency would
increase as the number of mesh cells in the domain increased. Although the con-
vergence times for multigrid on a sequential computer were very good and displayed
a near linear relationship between run time and the number of cells, multigrid has
not been as good for flows at high Reynolds numbers typically found in engineering
problems.

I A 2D Navier-Stokes code was multitasked on the Cray Y-MP by Fatoohi[36] using

I

microtasking, marcotasking, and autotasking (automatic multitasking). His results
show a rapid drop off in parallel efficiency with increasing number of processsors. With
8 processors he measured a range of speedups from a low of 21% with a 64x64 mesh
using macrotasking to a high of 79.5% with a 256x256 mesh also using macrotasking.
Microtasking and Autotasking with 8 processors were only 40 to 50% parallel efficient
for the two mesh sizes.

Catherasoo[381 has parallelized two explicit 3D Navier-Stokes codes for the AME-
TEK Series 2010 MIMD computer. His results show that efficiencies up to 95% can
be obtained on a 32x32x32 mesh on a 64 node system. The parallel efficiency falls
off when vector pipeline processors are attached to each node (although the run time
decreases). An additional drop in parallel efficiency occurs when smaller meshes are
used. When a 24x4x4 mesh is used on a 16 node system with vector processors the
parallel efficiency is about 25%. This indicates the importance of communication
overhead especially in distributed-memory MIMD computers with large number of
processors.

Keyes[39] used domain decompositon to parallelize a 2D reacting flow problem.
Comparing several solution methods that included relaxation schemes and iterative
preconditioned conjugate gradient methods, he solved the flow field on an Encore
Multimax. He obtained a speedup of about 10 with 16 processors (60% parallel
efficiency). 3

I

I
I
I
I
I

1o I
10 I

,I

I

U 4 Description of the NS3D Code

The Amtec NS3D code uses a mesh built up from multiple i,j, k ordered grids (zones)
patched together. The patched grid gives a better discretization of a complex flow
domain than can be achieved with a single i,j, k ordered grid. In this section the
Navier-Stokes equations, the discretization method used to difference the differen-
tial equations, and finally the three parallel algorithms used to solve the difference
equations in this work are presented and described.

4.1 Mathematical Model

T he NS3D code solves the mass-averaged form of the Reynolds-averaged Navier-
Stokes equations. These equations are given below in integral form [11].

-'II U dV + P.iidS=0 (1)
i where where ~P = F jZ + F 21' + F 313

I Pu'and

I pu
U pu2

E =

e=1C1

p = p UUl + p~e - 7

PUtlU3 + P631 -7"13

[(E + p)u - u r + qj

I E =)~+ut, = 6,m-p

TIM ' ,x + 3,- --.

(=

I!

I

Here the standard summation convention (sum over repeated indices) is followed and I
6ij is the Kronecker delta function (6,, = I when i = j and 5q = 0 otherwise). The
thermal condutivity, k, and the absolute viscosity, p, are taken to be the sum of the i
laminar and turbulent values. A standard turbulence model is included in the NS3D
code, but was not used during phase I of this contract.

4.2 Discretization and Flux Functions i

Physically, Equation 1 represents a very simple idea: the time rate of change of
mass, momentum, and energy within an arbitrarily chosen volume, V, is equal to
the apparent flux of these quantities inward through the surface, S, surrounding the
volume. The finite volume method consists of breaking the flow field up into a large
number of nearly hexahedral finite volume cells, as shown in Figure 1, and applying I

J I
I

~I

~I

K

~I

Figure 1: Finite Volume Mesh

the integral equations directly to each volume. i

An individual finite volume cell, with indices i, j, and k, is shown in Figure 2.
Applying the integral equations in this volume gives

d (Ui~~ vik) =-(Di J. 9± D, I.5? D§ + s D,

12 i

I

I
I

I

I i+1/2
Sk.1/2

Figure 2: Finite Volume Cell

where Ui,,k is the mean value of U in cell i,j, k and DiPS, for example, represents
the difference of the fluxes through opposing faces of the cell.

The time derivative is approximated using backward in time differencing.

I Vtl2i'j'c Uk = -(Di2 .S+ Di P.S+ DkP.-S) (2)

where

6Ui,j,k = "i,j,k Ui,.,k

The fluxes must now be approximated in terms of the Ui,j,k. For conciseness consider
only the i + 1/2 surface.

For the approximation of the flux through a surface the inviscid and diffusion
terms of the flux vector are considered separately.

P. = 5- inv + f. § ,i:

These terms are then evaluated in a manner consistent with the predominant nature
of the equations in the limit as Re -- oo (hyperbolic) and Re -- 0 (parabolic); i.e.,
upwind differencing for the inviscid terms and central differencing for the diffusion
(viscous stress and heat flux) terms.

The inviscid flux terms can be evaluated using any four point function (two points
on each side of a cell face). In the present work we include two flux functions. The first

I 13
I

!I

is based on the flux-vector-splitting method developed by Steger and Warming [12]. I
The second is based on Roe's approximate Reimann solver flux-difference-splitting
method [13]. Second-order spatial accuracy is obtained using MUSCL-like differencing 3
[14]. The differencing is reduced to first order flux splitting near shocks. The diffusion
terms are evaluated using standard central differences [15]. The resulting flux vector
is a function of the solution in four nearby cells. 1

P" Si+1 2 - f(Ui-l,j,k, U,,,k, Ui+lj,k, Ui+2,j,k) (3)

The exact form of the above flux function differs for Steger and Warming flux-vector-
splitting and Roe's flux-difference-splitting. For details see Peery and Imlay [6] and
Vinokur [16].

I
4.3 Solution algorithms I
Equation 3 defines the spacial dependence of the surface fluxes. The temporal depen-
dence of this flux determines the type of algorithm used: explicit or implicit. If the
flux is evaluated at the known time level, n, the procedure is explicit. If the flux is I
evaluated at the unknown time level, n 4- 1, the procedure is implicit. Evaluating the
flux implicitly, and substituting into Equation 2, results in a large system of nonlinear
algebraic equations which must be solved for Un+ 1 on each time step. This system
is generally linearized and often simplified in other ways as well. The two implicit
methods considered below differ in the degree to which this system is simplified. The
explicit method determines Un+l directly from U' without solving any systems of
equations.

Three solution methods were considered in this investigation: one explicit and two
implicit. All three are time-marching procedures that follow the basic steps

1. Calculate residuals based upon the local variation of the solution for each cell
using the explicit flux balance

RidA = - (Di f"9 + Dj A. f + D, P. f) n (4)

2. Calculate the changes in the solution, Uj,k, from the residuals, Ri,j,k.

'The full form of the viscous terms including the cross derivatives cause the flux to depend on the
solutions in the eight additional cells neighboring the surface ((i+ 1, j+ I, k), (i, j+ 1,. k), (i+ 1, j, k+ 1),
etc. For the i+1 surface). The cross derivatives are not treated implicitly, however, so this additional
dependence for the flux function does not affect the implicit methods.

14 I
I

I 3. Update the solution for each cell using

,j, = U,,k + 6 U,j,k (5)

This procedure is repeated until the desired unsteady flow phenomena have been
observed for unsteady problems, or a steady state is reached for steady problems.

4.3.1 Explicit Method

I The explicit method is obtained by evaluating the fluxes through the surfaces of the
finite-volume cells, Equation 3, using the solution at the known time level, U'. Step
2 of the procedure on page 14 then becomes a simple rescaling of the flux residuals.

AtWUij,k =-- Ri j k
V0ol,1 ,k '

The explicit procedure is simple and inexpensive per time step. However, it often3 requires more total computer time than an implicit method.

The computer time required for a time-marching solution procedure to complete a3 calculation is the product of the computer time required per time step and the number
of time steps required to complete the calculation. The computer time required per
time step is smaller for the explicit method than for implicit methods, but the total
number of time steps is often so much larger for the explicit method that it requires
significantly more computer time than an implicit method. This is true because the
explicit method is limited by stability to very small time steps.

To calculate the explicit time step you must first calculate the maximum allowed
time step for each cell. The time step is then the binallest of the individual cell time
steps. The maximum time step allowed by stability for each cell is related to the time
required for an acoustic wave to cross the smallest dimension of the cell'. If Ay is
the smallest dimension of the cell, v is the velocity in that y-direction, and c is the
speed of sound the time step limitation isI

At <IvIA

Therefore, if the v and c don't vary too dramatically throughout the solution domain
the explicit time step is roughly proportional to the smallest cell dimension in the
mesh.

2The maximum stable time step is also affected by the viscous terms and the other dimensions
of the cell. For a complete discusion see [11].

*I 15

Ij

I

The total number of time steps required to complete a computation is the total i
physical time (not CPU time) required to complete the computation divided by the
time step. The physical time required to complete a computation is related to the
time required for information (i.e. acoustic waves traveling at the speed of sound as
well as vortical waves traveling at the velocity of the fluid) to traverse the solution
domain. This latter number is relatively independent of the mesh used to solve the I
problem. The number of time steps for the explicit method therefore becomes large
when the smallest cell dimension becomes very small in comparison to the largest

dimensions of the solution domain.

Unfortunately, solutions to the Navier-Stokes equations nearly always require a
mesh with extremely thin cells near the wall. This is because the viscous boundary
layer is generally very thin compared to the other dimensions of the problem, and the
dimension of the cells, in the direction normal to the wall, must be small compared
to the thickness of the boundary layer. As a result, hundreds of thousands of time
steps must often be taken to complete the calculation.

For steady state calculations, the computation time for an explicit method can
often be reduced by using a different time step for each mesh cell. This allows infor-
mation to propagate faster in coarser regions of the mesh and the convergence rate is
often improved'. The dissadvantage of this approach is that the flow field does not
evolve in a physically correct fashion. This often results in instabilities in the solution

procedure. Of course, local time stepping cannot be used for unsteady solutions.

I_
4.3.2 J-Column Implicit Method I
For many problems a suitable mesh can be generated which is only refined in the
j-direction (for example, normal to walls with thin boundary layers). For these prob-
lems, dramatic improvements in convergence rate may be obtained by eliminating I
the contribution of the j-direction fluxes to the explicit stability condition. This is
done by evaluating the j-direction flux, and only the j-direction flux, implicitly and
linearizing. The result is

j+ 2

i,j+l/2,k 1,+l/2,k - B' (6)

where

,j+1/2,k --

3The convergence rate is the change in the level of convergence divided by the number of time
steps required

16 I

-- - ,r n m mm nmmnmnmnnnnunnmu n nuunu l m I II II

I

I Substituting this into Equation 2 results in a block pentadiagonal uiaLrix to be solved
for the XU's at each i, k column of the mesh. This system is solved directly using
an LU decompostion to give 6U's for the entire column of cells. The off diagonals
from a block upper tridiagonal matrix must be saved for the column during the
decomposition process.

Memory requirements are a very important concern for the j-direction implicit
method. The explicit method stores 49 real numbers for every cell in the mesh. If
the Jacebians and off diagonals from the block upper tridiagonal are also saved for
each cell, the storage requirement would be 224 real numbers per mesh cell. This
means that a problem solved using a 50x30x30 mesh would require 10 MWords (80
MBytes) of memory as opposed to the 2.2 MWords (17.6 MBytes) that the explicit
method requires. This is clearly unacceptable. The minimum memory requirement
would result if the LU decomposition were performed on one column at a time and
the Jacobians were calculated as they were needed for each mesh point. This would
require storage for one column of off diagonals (as mentioned above) and storage
for Jacobians at only one mesh cell. With this approach the increase in storage
requirement for the 50x30x30 mesh would be 1625 Words (12.7 KBytes). The increase

in memory is neglegible, as desired, but the resulting method is not easily vectorized
or parallelized. This is because operations at adjacent cells within the column must
occur sequentially. The compromise we have choosen is to perform the decomposition
on all columns within a k-plane simultaneously. This requires that the Jacobians be
saved for an entire j, k-row of cells and that the off diagonals be saved for an entire
k-plane of cells. The resulting increase in storage requirement for the 50x30x30 mesh
is 74 KWords (0.6 MBytes) of memory. This is still a small increase in required
memory and the method can now be vectorized or parallelized over the i-index.

The j-direction implicit method can provide a significant reduction in computa-
tion time when compared to the explicit method. In particular, when the mesh is
highly refined in the j-direction, but not the i- or k-directions, the j-direction im-
plicit method performs very well. When the mesh is also refined in the i-direction
and/or the k-direction, the i-direction and/or k-direction fluxes must also be treated

I implicitly.

I 4.3.3 J-Line Gauss Seidel Implicit Method

I The j-line Gauss Seidel implicit method solves, approximately, the full system result-
ing from linearized implicit treatment of all fluxes. This is a block banded system
of linear algebraic equations, as shown in Figure 3. The coefficient matrix for this
system is very large, but is sparse and well structured. Because the system is so large

I 17

I.

0 f: k
00

0 R
u R

IuA:.... - R * I
S!

8U R 1.f

Figure 3: Block Linear System of Equations

it is impractical to solve it directly and most investigators resort to approximately I
factoring this matrix into simpler matrices such as block pentadiagonals. Unfortu-
nately the error associated with the approximate factorization can severely restrict
the allowable time step of these methods when the mesh is refined in two nearly per-
pendicular directions. In this investigation this system is solved iteratively using a
modified j-line Gauss-Seidel relaxation method.

The standard j-line Gauss-Seidel relaxation method makes the system in Figure 3
solvable by multiplying the lower or upper off-diagonals by the solution at the previous
iteration level and subtracting from the residuals. The implimentation of this is as
follows: I

1. Start with U =0. I
2. Begin at a corner j-column of the mesh (for example, i = 1,k = 1).

3. Multiply the outer diagonals (any block multiplying U's at a column other I
than i, k) with the appropriate U's and subtract from the residuals on the
right hand side of the equation.

4. Solve the block pentadiagonal system for 5U1 k.

18 I

iuln • n n i m n I n mi l i nI

I 5. Move to a neighboring column (for example, i = 2,k = 1).

6. Repeat steps 3 through 5 , incrementing either i or k fastest in step 5, until
every column of the mesh has been done.

7. Repeat steps 2 through 6, starting with a different corner in step 2, until an
accepable approximate solution to the linear system is obtained.

This relaxation procedure works well but it cannot be vectorized or parallelized. This
is because the solution must be completed at an i, k column before proceeding to an
adjacent column. This relaxation procedure requires five more words of memory per
grid point than j-direction implicit method (a 10% increase).

The j-line Gauss Seidel relaxation was modified so that it could be vectorized or
parallelized. The new procedure is called red, white, blue (RWB) j-line Gauss-Seidel
and is similar in principle to the common multi-color relaxation procedures. The
procedure is shown in Figure 4. The columns of cells are labeled so that i = 1 is red,

I

WHT MITIE I .ii! ... WITE SU

I *...*....

I

Figure 4: Red, White, Blue j-line Relaxation Procedure

U i= 2is white, i -- 3 is blue, i = 4 is red, i -- 3 is whinte, etc. Then, on each iteration,

I

..

.. I'.

the relaxation procedure is performed as described above for the red columns first, i
then the white columns, and finally the blue columns. This is done by changing the
i-increment in step 5 from one to three and starting in step 2 with i = 1 for red,
i = 2 for white, and i = 3 for blue. The advantage of the RWVB relaxation over the
standard relaxation is that the columns in the RWB relaxation are independent of
each other during an iteration. As a result this procedure can be vectorized and/or i
parallelized over the i-index.

This relaxation procedure is guaranteed to converge if the linear system of Figure 3
is diagonally dominant. The system is diagonally dominant if first order upwind differ-
enceing is used. It is not diagonally dominant with second-order upwind differencing
like we use. Fortunately, diagonal dominance is a sufficient, not a necessary, condi-
tion for convergence and the relaxation generally does converge. Under-relaxation is
needed though, and code must be added to detect and recover from the occasional
divergent relaxation. In general, only two to four iterations per time step are needed
for the time-marching procedure to be stable and converge rapidly (for steady state
problems).

When the linear system of equations is solved accurately, and the time step taken is
very large, this procedure approximates a Newton method for the system of nonlinear
algebraic equations resulting from differencing of the time independent Navier-Stokes
equations.

4.4 Description of Code Structure I

The NS3D code is structured so that it is efficient, easy to modify, and easy to
maintain. The subroutines are organized using a layered approach which modularizes
the code according to function. This makes the code comparatively easy to debug
and, therefore, reduces the time required to make a modification. The field variable
data for all zones are stored in a HEAP (a one-dimensional array) in the upper level
routines and are passed using pointers to the lower level routines where they are
converted to multiple-dimension arrays. This results in no memory being wasted,
even though the i,j, k dimensions of the different zones are unrelated. Utilities are
provided for swapping zones to secondary memory and rearranging zonal data on the
heap. In this manner, large problems can be accommodated by having only a small
number of zones in main memory at a time.

I

20 I
• • , i i i i nn iI

I

U 5 Description of Encore Multimax MIMD Cor-
puters

The development of the parallel algorithms was performed on an Encore Multimax
parallel computer [3]. The Multimax is a MIMD shared-memory closely-coupled
computer. It may contain from 2 to 20 cpu's-each being a 32-bit microprocessor
(National Semiconductor NS32332)- providing from 2 to 40 million instructions
per second. The global shared memory may be up to 128MBytes. The CPU's and
memory boards (which are interleaved in 8 banks to improve memory access times)
are connected via a high speed bus. The bus has a maximum bandwidth of 100
MBytes per sec and includes a 64-bit data path and 32-bit address path. Each CPU
has a local 64KByte high-speed memory cache to reduce CPU wait states and to
reduce the bus traffic. The introduction of local cache memory creates a problem:
the copy of shared data present in a CPU's local cache memory could become stale
if another CPU writes over the shared data in the global memory. To avoid the
obvious problem, Encore has incorporated a low-overhead cache coherency scheme.
Each CPU has a circuit that watches the system b)us. If another CPU writes to any
data addresses presently in the local cache, a tag is set identifying that data address
as stale. If and when the CPU trys to access stale data, it is directed to request
the data from the global memory. The present work was run onl Amtec's Multimax
configured with 10 NS32332 processores with \Veitek floating point coprocessors and
32 MBytes of random access memory.I

I
I
I
I
I

I
I 21 |I|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9') I
I

* 6 Selection of Parallel Algorithms
I

6.1 Considerations in Selection of Parallel Algorithms for
CFD

Choosing solution algorithms for parallel computers is a difficult process. The optimal
choice is dependent on the type of parallel computer being used and the number
of processors available. For example, an algorithm with relatively little inherent
parallelism might perform well on a computer with three or four processors but very
poorly on a computer with 50 processors. The choice also depends on the type, shared
memory or distributed memory, of parallel computer the program will be running on.
For example, on the Encore Multimax shared-memory computer we often parallelize
by unrolling DO loops. With this approuch the data at a given mesh point may be
operated on by one processor in one loop and another processor in the next loop. On
shared memory machines with a moderate number of processors there is relatively
little overhead associated with this type of operation. On a distributed memory
machine, however, this would carry a larger communication overhead since data would
have to be transfered from the memory of the first processor to the memory of the
second before the second processor could operate on it..

I There are some measures of parallel performance which are useful when evaluating
parallel algorithms. The first is the speedup,

I execution time using one processor
= execution time using p processors

I which measures the speedup of a given algorithm when it is parallelized. Ortega [24]
points out that one is often more interested in how much faster a given problem can
be solved with p processors than how much faster a given algorithm runs with p
processors. He therefore defines a modified speedup,

= execution time using the fastest sequential algorithm on one processor
execution time using p processors

This definition emphasizes the tradeoffs made to have an algorithm which can be
easily parallelized. This point is of significant importance in the solution of the Navier-
Stokes equations where the most easily parallelized algorithm, the explicit method,3 often performs very poorly compared to less easily parallelized algorithms, such as
the various implicit methods. One final measure of performance is the efficiency,

I p

I E23IP

I

When discussing the efficiency we are generally most interested in the performance I
of a given algorithm, so we use Sp rather than Si.

Another parameter of importance is the fraction of work, a, which can be pro-
cessed in parallel. Ware (41] developed a formula,

(1-a) + (7)
p

which presents an optimistic estimate of the variation in algorithm speedup with
the number of processors, p, and a. Figure 5 gives the variation in Sp, given by I

14

12 I

10 16 processors

8 processors

a 4 processorsI

4I
2

00.6 070 0.0 010 100

Figure 5: Speedup as a function of parallel fraction I
Equation 7, with a for four, eight, and sixteen processors. It is clear from this figure
that it is very important to maximize a since the speedup varies with the square of
a. One weakness of Equation 7 is that it neglects the various overheads (such as
communication overhead) associated with parallel computation. Another weakness is I
that it assumes a is not dependent on p which, as we will see in the next section, is
not generally true.

There are two basic approaches for parallel algorithms: data partitioning and
functional partitioning. With data partitioning, multiple identical tasks are created
which operate on portions of the data. With functional partitioning, however, mul-
tiple unique tasks are created to perform different operations on the data. Data
partitioning is the procedure most useful in CFD where the data at hundreds of
thousands of mesh points is being manupulated in essentially the same fashion.

24 I
I

The majority of parallel algorithms used in CFD today are sequential algorithms
which have been modified. Ortega [24] gives two techniques for parallelizing sequen-
tial algorithms which he refers to as divide and conquer and reordering. Divide and
conquer refers to breaking the problem up into smaller subproblems which may be
treated independently. This includes both data partitioning and functional parti-
tioning. Reordering, on the other hand refers to "restructuring the computational
domain and/or the sequence of operations in order to increase the percentage of the
computation that can be done in parallel". In other words, reordering entails looking
for hidden parallelism in the problem and exploiting it. One example of reordering
is Patel and Jordon's [231 diagonal wave front ordering of a point SOR sweep. Some

* other examples of reordering are demonstrated in the next section.

I 6.2 Model Problem Results

I The model problem is Laplace's equation (V 2
0 = 0) within a three dimensional

rectangular box. Dirichlet boundary conditions are used with € set to unity on one of
the six faces of the rectangle and zero on the other five faces. The problem is solved
using standard second differences and point Jacobi iteration with under-relaxation.
A constantly spaced mesh (unit spacing) with dimensions 30x30x50 is used.

I This problem was used to study choices for parallelizing nested DO loops with
DOALL - END DO statements. This problem is convenient for this study since the
bulk of the work is done within the single nested DO loop shown in Figure 6. This DO

do 100 k=2,kmax-1
do 90 j=2,jmax-1

do 80 i=2,imax-1
a(i,j,k,npl) = (1.0-cc)*a(i,j,k,n)

& + cc*(a(i+l,j ,k ,n)+a(i-l,j ,k ,n)
& +a(i ,j+1,k ,n)+a(i ,j-l,k ,n)

8 & +a(i ,j ,k+l,n)+a(i ,j ,k-1,n))/6.0
80 continue
90 cont inue

100 continue

I Figure 6: Model problem DO Loop before parallelization

loop is executed on every iteration along with three assignment statements. There
is also some code to set the boundary conditions and initial conditions. This latter

I 25

I

I

code, which we'll call the initializing code, is only executed once at the beginning I
of the calculation and it's contribution to the total run time becomes less significant
as the number of iterations is increased. We have, therefore, parallelized only the I
nested DO loop shown in Figureieffig:ModelCode0. For the calculation of efficiency,
we eliminate the contribution of the initializing code by considering the difference of
times for a 50 iteration run and a 100 iteration run.

Four approaches to parallelizing this loop were considered. They span the range
from very large data partitions to very small data partitions. The expectation at the
beginning of this study was that the cases with large data partitions would yield the
highest efficiencies on our Encore Multimax computer with six processors. This is be-
cause the inherent overhead associated with scheduling parallel tasks is less significant
when there are fewer tasks (larger data partitions). However, it was also recognized
that fewer tasks could result in significant processor idle time if the number of pro- I
cessors does not divide evenly into the number of tasks. Our purpose for studying a

simplified model problem was to quantify the above effects so that intellegent decisions
could be made when parallelizing the Navier-Stokes code.

The first approach to parallelizing this nested DO loop, (case 1), is to simply
replace the outermost DO loop, the loop over the k-index, with a DOALL - END
DO loop, (See Figure 7). This effectively partitions the data into krnax - 2 planes
of data, each of which may be assigned it's own processor. These are large partitions
relative to the number of processors. The advantage of this approach, as stated
earlier, is that each task contains a relatively large amount of data to work on so that
any overhead involved in scheduling parallel tasks should be insignificant.

Contrast case 1 with case 2, (see Figure 7), where the parallelization occurs over
the innermost loop. In case 2 the data partitions, and the amount of work contained
within each task, is small so the overhead involved in scheduling parallel tasks will be
more significant than in case 1. For the 30x30x50 mesh considered here, case 1 yields
48 data partitions and case 2 yields 37,632 data partitions.

One of the major problems with cases 1 and 2 is that they cannot effectively use
large numbers of processors. For the 30x30x50 mesh, they cannot use more than
48 processors. Furthermore, the parallel performance shows significant degradation
when the number of processors used does not divide evenly into the range of the
DOALL loop, 48. For example, if 23 processors are requested, 21 of them will sit idle
for 1/3 of the time. This means that the maximum efficiency4 for 23 processors is
69.57%. A plot of the maximum efficiency versus the number of processors is shown I
in Figure 8 for cases 1 and 2. This processor idle time is not very significant for

4Maximum efficiency meaning, in this case, the efficiency obtained if there is no overhead asso- 3
ciated with parallel execution.

26 I
U

I

I-- - OUTER LOOP PARALLELIZED - CASE 1
doall (k=2:kmax-1)

do 90 j=2,jmax-I
do 80 i=2,imax-1

a(i,j,k,npl) = (1.0-cc)*a(i,j,k,n)
& + cc*(a(i+1,j ,k ,n)+a(i-l,j ,k ,n)
& +a(i ,j+l,k ,n)+a(i ,j-1,k ,n)
0 & +a(i ,j ,k+l,n)+a(i ,j ,k-1,n))/6.0
90 continue
90 continue

end doall

--------------------------------------- INNER LOOP PARALLELIZED - CASE 2
do 100 i=2,imax-1

do 90 j=2,jmax-1
doall (k=2:kmax-1)
a(i,j,k,npl) = (1.0-cc)*a(i,j,k,n)

& + cc*(a(il,j k n)+a(i-l,j k n)
& +a(i ,j+l,k ,n)+a(i ,j-l,k ,n)

& e +a(i ,j ,k+l,n)+a(i ,j ,k-l,n))/6.0
end doall

90 continue100 continue

Figure 7: Coding for test cases 1 and 2

systems with fewer than 10 processors but becomes more significant as the number
of processors increases.

The idle time described above can be mostly avoided if smaller data partitions
are used. This is done in cases 3 and 4, (See Figure 9), Case 3 replaces all three
DO loops by a single DOALL loop over a parameter, m. The indices i, j, and k are
then calculated explicitly in terms of m. Case 3 virtually eliminates the idle processor
problem described above, at least until thousands of processors are considered, but it
adds expense for the calculation of the indices and it uses very small data partitions.
Case 4 is a compromise between cases I and 3. It replaces the j and k DO loops with
a DOALL over m and retains the innermost DO loop over i. Indices j and k must
still be computed from m but the calculations are simpler than for case 3 and they
are performed fewer times. The data partition is also larger, with associated benefits.
The only disadvantage of case 4 over case 3 is that the idle processor problem occurs
with fewer processors. With case 4 the maximum efficiency first drops below 90%
with 166 processors whereas it takes 4646 processors for case 3 to drop below 90%.

I 27

I

U
I

1.000 I
0.00

LU 0.800

0.700

0.600

0.500 1

25 50 75 100

Number of Processors

Figure 8: Maximum efficiency variation with number of processors - model problem I
cases land 2

However, these numbers are both large in comparision to the 9 processors required for
the maximum efficiency of cases 1 and 2 to first drop below 90%. Plots of maximum I
efficiency versus number of processors are given in Figure 10 for case 3 and Figure 11
for case 4.

The parallel efficiencies and run times for all four cases are shown in Figure 12.
Case 1 retained a very high efficiency when the number of processors divided evenly
into 48 with predicted lower efficiencies otherwise. Case 2 yielded somewhat lower
efficiencies than case 1, 2.5 percent less efficient with 6 processors, but had the same
trends. Case 3 eliminated the "idle processor" dip in the efficiency with 5 processors
and had efficiencies comparable to case 2 elsewhere. This was expected since the two
cases have similarly sized data partitions. Case 4 also eliminates the "idle processor"
dips and performs better than case 3. This was also expected since case 4 has larger
data partitions than case 3.

One surprising thing about the results is just how efficient cases 2 and 3 really I
are. The data partition for these cases is very small. In case 2 each task contains just
one statement, with seven floating point addition/subtractions, two floating point
multiplies, and one floating point divide. Each task in case 3 adds to this eleven
integer additions/subtractions, three integer multiplies, and two integer divides. This
is very few operations compared to the average nested loop in the Navier-Stokes
code. There are many places in the implicit part of the Navier-Stokes code where

2S

I

- -- - SINGLE LOOP PARALLELIZATION - CASE 3

doall (m=l:mtot)

k = (m-1)/ijtot + 2

j = (m-(k-2)*ijtot-1)/itot + 2
i = 1 + m - (k-2)*ijtot - (j-2)*itot
a(i,j,k,npl) = (1.0-cc)*a(i,j,k,n)

& + cc*(a(i+1,j ,k ,n)+a(i-l,j ,k ,n)
& +a(i ,j+l,k ,n)+a(i ,j-l,k ,n)

& +a(i ,j ,k+l,n)+a(i ,j ,k-1,n))/6.0
end doall

-------------- TWO LOOP PARALLELIZATION - CASE 4
doall (m=1:mtot)3 k = (m-l)/jtot + 2

j = I + m - (k-2)*jtot
do 80 i=2,imax-1

a(i,j,k,npl) = (1.0-cc)*a(i,j,k,n)
& + cc*(a(i+l,j ,k ,n)+a(i-l,j ,k ,n)
& +a(i ,j+l,k ,n)+a(i ,j-l,k ,n)

S& +a(i ,j ,k+l,n)+a(i ,j ,k-1,n))/6.0I80 continue

end doall

Figure 9: Coding for test cases 3 and 4

data dependences force us to use small data. partitions to parallelize DO loops. These
results indicate that little efficiency is lost on the Encore Multimax by doing this.

The run time results for 100 iterations, (See Figure 12) show significant differences
in the single stream (1 processor) run times. Case 4 is fastest at 316 seconds, followed
by case 1 at 327 seconds, case 2 at 334 seconds, and finally case 3 at 385 seconds.
The slow speed of case 3 is almost certainly due to the computation of the i, j, and k
indices. The fact that case 4 is faster than case 1, single stream, is unexpected since
it has five more integer additions/subtractions, one more integer multiply, and one
more integer divide than case 1.

It is clear that the approach taken in case 4 is the best of those studied. It is the
fastest of the four cases, has one of the highest processor efficiencies, and is likely to
perform well with increasing processors. This is the approach taken in the Navier-
Stokes code whenever possible. It is comforting to know, however, that those regions
of the program which must be coded like case 2 still perform reasonably well on the
Encore Multimax with up to ten processors.

I 29

I
U-

I
I

4 U

0.70

0.60

0.50

0.40 • . I .. I .. I. ,,
0- 0 0000 30000 40000 50000 60000

Number of Processors

Figure 10: Maximum efficiency variation with number of processors - model problem I
case 3

I

0.90

w 0.80

0.70

0.60 III

0.150

0.40 . . . iI - •. .

I I
500 1000 1500 2000

Number oi Processors I
Figure 11: Maximum efficiency variation with number of processors - model problem
case 4 3

30 I
I

3400 1.00............0....T.......

0990

.........................

CAS 1 4---- ----2 4 5
.......ER. OF...... P..OCESSO....S NUMER...POCESORI~-__ ___

100~~~~~~ 000....

1AE 4 1 2 74 5

NUMBER OF PROCESSORS NUMBER OF PROCESSORS

0.99...............................

8. .0.980

3 ~ 2 0

..............................

CASE4 2 LL 0

Figur 12:... Comparison of...... meas....r..d
0950-.....

0 .94 _ ___ ___ ___

100 ~~~ 2..... 3 4 6..

2 331 62 3
NUBROIRCSOSNME FPOESR

40E....... ----- 0

I
I
I
I
U
U
I
I
I
I
I
I
I
I
I
I
I

32 I
I

I

I 7 Parallelizing the NS3D Program
I

The NS3D program was originally written using the standard FORTRAN 77 lan-
guage. The computer used for most of the development of NS3D was a Multimax 310
minicomputer made by Encore.

I
7.1 The EPF Compiler

Programming on the Encore Multimax 310 was done with the Encore Parallel FOR-
TRAN compiler (EPF). The EPF compiler has the following characteristics:

I e Supports automatic or user-specified parallelism.

* * The number of processes used to execute a. given program are specified by the
user prior to code execution and can be any number less than or equal to the
number of CPU's available.

e Parallelism can be confined to localized sections of code or can be global. This
flexibility allows the parallel coding to be tailored to meet the design of the orig-
inal program. Programs with a high degree of parallelism can make use of the
global constructs whereas programs that contain isolated sections of parallelism3 need only parallelize those sections.

e Data can be shared or private. Shared data can be accessed and modified by
all processes within a parallel region. Private data is allocated for each process
and can only be accessed and modified by the process to which it is assigned.

* Processes are assigned using the master/slave model. At program startup a
master (or root) process is spawned. When a, parallel region of code is reached

I the slave processes are released along with the master process to execute all
code within the parallel region.

I Process partitioning can be done dynamically (at runtime) or statically. Dy-
namic partitioning occurs when the work assigned to each process is done at
runtime and may vary from one run to the next. Static partitioning is when
the work assigned to each process is determined prior to code execution.

I 33
I

III

7.1.1 EPF Program Model U
A program can be divided into regions in which processes will be spawned and run in
parallel. The entire program can be run in paia,llel or any number of code segments
within the program can be designated to run in parallel. For most programs there I
is a mixture of code segments where some are easily parallelized and others are best
run single stream. If this is the case then the overhead associated with process
synchronization can be avoided for the non-parallelizable regions by parallelizing only i
those regions best suited for multiple processes. I

I
SUBROUTINE

A

SUBROUTINE

C

I
Figure 13: Typical program flow showing localized parallel regions

Figure 13 shows the process flow for three subroutines written using EPF FOR-
TRAN. A single line represents sections of code where only the master process is
executing. Multiple lines in parallel represent sections of code where all slave pro-
cesses and the master process are executing. In Figure 13, Subroutine A starts out in
single stream (only the master process is active). A parallel region is reached and the I
slave processes are spawned. Within the parallel region is a call to subroutine B and
so all processes follow the call to B and then return. The end of the parallel region
in A is reached and code execution becomes single stream. The call to subroutine C
is made while A is in single stream and subroutine C itself contains a parallel region.

Within a parallel region each process will execute each statement unless directed to i
do otherwise. Various constructs are available to partition the processes. For example
the DOALL - END DOALL constuct will partition the iterations of a FORTRAN DO 3
loop among all available processes.

34 I
U

I

I 7.1.2 Memory allocation

I Figure 14 shows how memory is allocated for multiple processes using the EPF com-
piler. The default is for all variables outside of a parallel region to be shared by

) PROCESSO 04

3 STATIC DATA STACK

STACK
STACK

3 HEAP

P

SHARED DATA STACK

I
Figure 14: Memory map for multiple processes

I all processes. The accessibility of all shared variables are governed by the standard
FORTRAN scoping rules. A copy of all variables declared within a parallel region or
variables local to a subroutine called from within a. parallel region are private to each
process. A variable declared as STATIC or SIHARED can be accessed or modified by
all processes provided that it obeys the FORTRAN scoping rules. When a parallel
region is encountered the private variables are allocated onto a local stack for each
process. Variables within functions called from within a parallel region are also placed
on this stack and are, therefore, private to each process. The local stack used by the3 EPF compiler for parallel processes is limited to 256k bytes.

II!3
I .

I

7.1.3 EPF compiler directives I

The Major parallel constructs in EPF FORTRAN are: I

* PARALLEL I
END PARALLEL
The PARALLEL - END PARALLEL environment defines a section of code

for which multiple processes will be made available. When the PARALLEL

statement is encountered the master process spawns n-1 subprocesses, where n
is user selectable prior to the execution of the program. All members of the
"process set" (the master process and all spawned subprocesses) will execute

all statements of the parallel block unless directed to do otherwise.

* PRIVATE [var-list]
SHARED [var-list]
PRIVATE and SHARED are used to declare how a set of variables are to be
addressed. A variable that is PRIVATE is placed in the processes local stack
and can be accessed and modified only by the process to which it is assigned.
SHARED data is placed in the global data area and can be accessed and mod-

ified by all processes.

* DOALL (istart: iend [:iskip])
END DOALL
The DOALL - END DOALL environment defines a section of code that is

analogous to the FORTRAN DO loop construct. Depending on the complexity
of the loop processes may be pre-assigned to a set of loop indices or processes

are assigned to loop indices in the order that the processes become available.

* CRITICAL SECTION
END CRITICAL SECTION

A CRITICAL SECTION defines a region inside of which only one process is

allowed at a time.

* BARRIER
A BARRIER statement causes the processes to wait until all have arrived before

proceeding.

* BARRRIER BEGIN
END BARRIER
The BARRIER BEGIN - END BARRIER construct defines a region through
which only one process is allowed. All other processes will skip around this 3
region and wait at the end until the one process finislics.

36 I

• . • w m II I I I II II I IU

I

* EVENT [var-list]
This specification statement is used to declare a variable to be an event type.

* LOCK [var-list]
This specification statement is used to declare a variable to be a lock type.

* SEND SYNC event-name
WAIT SYNC event-name
The SEND SYNC and WAIT SYNC operators are used to force processes to
wait or allow them to proceed.

* WAIT LOCK lock-name
SEND LOCK lock-name
The SEND LOCK and WAIT LOCIK operators are used to operate on semaphores
to allow a process exclusive access to a section of code.

3 The built-in functions available with EPF are:

3 . CONDLOCK
This function takes as an arguement a LOCK variable and returns .True. if the
lock was successfully taken and .False. otherwise.

S* NTASKS

This function returns the number of processcs in the current process set.

S* TASKID
This function returns the process-ID of the calling process.I

7.2 Approach

This section descripes the approach taken to incorporate code into the existing version
of the NS3D program to obtain the maximunm amount of parallelization using the EPF
compiler.I
7.2.1 Code Evaluation

Using tools such as the profiler available on the Miultimax 310, subroutines that
are the most expensive in terms of CPU usage were identified. Figure 15 shows an
example output from one of the profiler runs. The profiler output was generated

I 37

I

I
I

I

35.2 829.84 829.84 20 41492.0 _cispluj_.

21.0 495.18 1325.02 840 589.50 _xssrbs_ I
15.0 353.92 1678.94 _cijcroe_

3.9 91.94 1770.88 _ciflxr]_
3.8 89.24 1860.12 860 103.77 _cijacj_
3.7 86.74 1946.86 _ciflxri_
3.3 78.40 2025.26 _cijcvsj_

2.8 65.86 2091.12 _ciupdq_
2.5 58.64 2149.76 20 2932.0 _cispbsj_

2.0 46.14 2195.90 _cilts_
1.3 30.82 2226.72 -pow

1.2 29.46 2256.18 cibcfsw_

0.8 19.72 2275.90 _citurb_
0.6 13.44 2289.34 126 106.67 _cibccp_

0.4 9.66 2299.00 21 460.0 _cibcdu_

0.4 9.64 2308.64 _cimetr_ I
0.3 8.20 2316.84 _ciupdu_
0.2 5.70 2322.54 _cisrc_
0.1 2.40 2324.94 _ciconv_
0.1 1.74 2326.68 _cibcnsw_

0.1 1.66 2328.34 _fwrite

0.1 1.54 2329.88 _t-getc
0.1 1.50 2331.38 _scmp

0.1 1.44 2332.82 _cibcspii
0.1 1.42 2334.24 21 67.6 _cibczgo_

0.1 1.32 2335.56 _sysadmin

0.1 1.22 2336.78 _ciinuc_ I
0.1 1.20 2337.98 _rd-int

Figure 15: Example profiler output

3
I

38 I

II

I

U by running the NS3D code using a single stream (i.e. only one CPU). It is easy to
see that there are three main subroutines and 10 or 12 others which performed the
bulk of the work. Since this profiler output represents the work done for just one
particular run of the NS3D code, other profiler runs were made with different options
active. These other runs then highlighted a different set of subroutines which would
also require parallelization. In most cases the subroutines which topped the profiler
lists were already suspected as being dominant based on a working knowledge of the

* code.

7.2.2 Data Partitioning

On a global scale, the data within the NS3D program is configured in three dimen-
sional blocks, or domains. To perform the various operations on these domains, they
are divided up in a number of different ways. Figure 16 shows the original three
dimensional domain along with four common ways in which the domains can be de-

Iz

J-Column W. Plans
Decomposition Decomposition

I6
Original Domain showing
I-J-, and K-Directions

K-J Plane K-Column
Decomposition Decomposition

Figure 16: Domain decomposition within the NS3D program.

composed. One form of data decomposition is to hold two indices constant and vary
the third. This in effect operates on a single column at a time. A second form of data
decomposition is to hold one index constant and vary the other two. This in effect

I 39

I

I
I
I

Decomposition Is governed by: 1
Algorithm Most Dominant Least Dominant

Explicit Maintain Vectonzation Modularity Memory Resources Algorithm

implicit Memory Resources Maintain Vectorization Algorithm Modularity

I
Figure 17: Criterion used for domain decomposition. I

operates on an entire plane at a time.

The NS3D program decomposes the three dimensional domain in a number of 1
different ways. Figure 17 shows what factors influence how the domain is decomposed
for both the implicit and the explicit algorithms.

Since the sizes of cases run using the NS3D program are usually very large, much
consideration is given to the amount of memory resources available when determin-
ing how the domain is decomposed. With the implicit method a large number of
temporary variables must be used at each mesh point within a subdomain. If large
subdomains were used, the program would use too much memory and would not fit
within the RAM of most machines. This is less important for the explicit algorithm
because it uses fewer temporary variables. Another important factor in determining

the domain decomposition was the need to retain loop vectorization to take advan-
tage of machines such as the Cray. As will be demonstrated later, sometimes during
the re-coding of NS3D, it was possible to maintain the vectorization for the Cray
implimentation while at the same time adjust the order of a DO loop to increase the

granularity for the parallel implimentation. In the explicit algorithm, since it does
not matter in what order each cell of the domain is solved for a given time step, the
algorithm plays very little role in the domain decomposition. The implicit algorithms
however do influence the domain decomposition because of a.n interdependancy from

one row of cells to the next.

One other major factor that must be kept in mind when parallelizing a program
is the load balancing. Depending on the target machine and the dimensions of the
problem to be solved, sometimes a larger granularity is better to minimize the syn-
chronization overhead and sometimes a smaller granularity is better because it may
improve the load balancing.

40 I
I,

i

7.2.3 Analyze Code Flow

I A hierarchical graph of the code flow was made to help identify which subroutines
should and could be parallelized and in what manner. Figure IS shows such a graph
of the most costly subroutines in the NS3D code. On the graph each subroutine is
marked as to what portions of its code could be parallelized and what index (ij,k or
other) would be unrolled. Also, calls made to subroutines from parallelized regions
within subroutines were checked to make sure that they executed code that would not
conflict with the the parallel context of the call (e.g. if a call is made within a parallel
loop over the I index, care must be taken to make sure that the called subroutine
doesn't rely on a sequential ordering of the I index and also that it doesn't alter any
global variables that the calling subroutine depends on to remain constant).I

I 7.3 Coding

Each subroutine marked to be parallelized was re-coded. All of the FORTRAN state-
ments added for parallelization are initially commented out but are marked so that
a preprocessor can activate them later. Also existing FORTRAN code that conflicts
with the parallel coding is left intact but is marked so that the preprocessor will
comment them out. In this way the original code can still compile and run as before

l with no alterations.

As a tool, the EPF compiler was sometimes used to automatically generate the
parallelized code. By using the -F flag on the compile command a listing can be gen-
erased which shows how the EPF compiler would insert the parallelizing statements.
For the most part however, the EPF compiler does a very conservative, safe job in
parallelizing, and is not as efficient as parallelizing by hand. Using the automatic
feature for parallelizing helps with parallelizing by hand in that it identifies for you
all of the variables that need to be declared as PRIVATE for the parallel regions.

Figure 19 shows a small section of code before and after re-coding for paralleliza-
tion. The !+P comments tell the preprocessor that this is a statement that is to be
activated (i.e. remove the C in column 1). The !-P comment tells the preprocessor
to insert a C in column 1 and comment out the line.

I In the example in Figure 19, the 100 C ONTINUE statement was marked with
!-P to comment it out later although this is unnecessary. The statement: DO 100 I
= IS,IE however must be marked with !-P so the preprocessor will comment it out
later.

I 41

II

BSLECISOLVE

CIFLXRI

-CIFLXRJ

CISRCU

IPL -UJ D
I JC

CIIJCSWE

j i
.CIFSWF

-CCJCRO

J-..CIPSWF

- CIJACI

-CIJCSWI

ICIFSWFF

CIJCRO

CISFSWSJ

II

LL I

I
I
I
I
I

Original coding:I
DO 100 I IS,IE

X(I) = X(I)*B
100 CONTINUE

i
Parallelized Coding:i

DO 100 1 = IS,IE !-P

C DOALL (I = IS:IE) !+PX(I) = X(1)*B

C END DOALL !+P

100 CONTINUE !-P

I
I Figure 19: Example Code before and after adding parallel constucts.

I
I
I
I 4:3

I

The DOALL - END DOALL construct was used most often when parallelizing the i
NS3D code. Originally, the NS3D code was written in a way to best take advantage
of the vectorizing capabilities on machines such as the Cray. Often the inner loop of
a nested DO loop was written to be as long as possible to increase the vector length.
Where possible these loops were re-ordered by moving the index to be parallelized as
close to the most outer loop as possible. This in effect increases the local granularity I
for the DO loop. Figure 20 shows an example of a DO loop before and after index
re-ordering.

The BARRIER BEGIN - END BARRIER construct was also used to guarantee
that one process only would execute certain sections of code and the CRITICAL
SECTION - END CRITICAL SECTION construct was used to allow only a one
process at a time to execute a given section of code.

7.4 Debugging

The EPF compiler does some checking to verify that all local variables to a parallel
region have been declared as being PRIVATE or SHARED. For the first attempt at
compiling a new subroutine after recoding for parallelization the EPF compiler would
typically find a few variables that were missed. Sometimes this checking also revealed
mistakes in the original coding.

After parallelizing each subroutine a suite of test cases are run to verify that output
of the parallelized version matches that of the original code (which was compiled with
the f77 compiler). When the results are not the same then one or more of the following
steps are taken: I

" The new subroutine is recompiled with the debugger flag turned on. The pro-
gram is re-run with various break points set and PRIVATE values and loop
indices are checked for each process.

" Sections of the new subroutine are "spared out" to try and isolate the problem.

This is done by using the BARRIER BEGIN - END BARRIER construct.

" The program is searched for variables that are not initialized properly. Fortu-
nately/Unfortunately the EPF compiler does not initialize the local variables
for each subroutine. Since this is not good programming practice (and usually
not done intentionally) these mistakes are good to find. If the number of pro-
cesses is reduced to one and the problem still persists then uninitialized values
rather than parallel coding mistakes are most li~ely t~o blame.

44 i
i

* Original coding:

-- -- -- ---DO- ---520- -- -- ---ROW- -- -- ---,NEU- -- -I DO 520 NO=1,NEU

NBCOL = NCOL + 1
DO 520 NMULT=1,NEUI DO 520 I=IBEGTRU,IEND,ISTRID

BBB(I,NROW,NBCOL) = BBB(I,NROW,NBCOL)

50& COTNE - C(I,NROW,NMILT,JTOP)*G2(I,JP,NMULT,NCOL)

Parallelized Coding:

C DOALL(I=IBEGTRU: lEND: ISTRID)!+
DO 520 NROW=I,NEUI DO 520 NCOL=1,NEU

NBCOL = NCOL + 1
DO 520 NMULT=1,NEUIDO 520 I=IBEGTRU,IEND,ISTRID !-P

BBB(I,NROW,NBCOL) = BBB(I ,NROW,NBCOL)

50& COTNE - C(I,NROW,NMULT,JTOP)*G2(I,JP,NMULT,NCOL)

C END DOALL!+

Figure 20: Example of index re-ordering to increase local granularity.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
U
I
I

46 I
I

I

I 8 Results of a Real Parallel CFD Application
I

8.1 Skewed Shock Wave/Laminar Boundary-Layer Inter-
* action

In order to demonstrate the parallel NS3D code a complex 3D flow field has been
calculated. The flow involves the interaction of a laminar flat plate boundary layer
with the skewed shock generated by a wedge as shown in Figure 21. This case is of
considerable interest in view of the current emphasis on hypersonic vehicles. A flow

I
IWEDGE

FREESTREAMI _

FREE STREAM

I
Figure 21: Interaction of laminar flat plate boundary layer with skewed shock

with a laminar boundary layer is particularly useful for validating a Navier-Stokes
code since it removes the uncertainty caused by turbulence models.

I The skewed shock wave/laminar boundary-layer interaction flow field was inves-
tigated experimentally by Degrez and Ginoux[40]. The freestream flow had a Mach
number of 2.25 and a Reynolds number of 2.4 x 103 m-1 . The freestream temperature
and pressure were approximately 153 'K and 0.0195 atm. The boundary layer was
allowed to develop on the adiabatic plate for 6 cm upstream of the apex of the 8
degree wedge. This produced a boundary-layer thickness of - 1 mm. In the inter-
action region the boundary layer separates along a line that runs along the shock.

I47

I

The distance between the separation line and the shock is called the upstream influ- -
ence, which increases with distance from the wedge apex. The data indicates that
the laminar interaction has a great similarity with turbulent interactions. The sep-
arated interaction region forms a trapped vortex which carries the low momentum
fluid downstream along the shock.

Y I

z I

III I

I ~~I I 1t 1. LL JI

II

boudar laye i f

li IIllI

siFica portion of th intcionrgo.Teusra onaywspstoe

placed 5 ciedo I

muchdgreaer thn tetiknes of hel budr aenth lt.Tehih

ItI

30lsigiin th o-tnd z-etiosfrattaf4,0 interncinrgo.Teusral cells.dTh was note

Fre te -------- ------ 6-m-psr--o-h--de T ed wnte m o n ar a

Figur 2: 5m.The computational mesh Fiused 22, calcels the diokrein ad

Th comuttina doano the NS- calcularetions wo oa 500itra sels up i woaptr ao

I
I

I an extremely fine mesh, but it did allow the dominant features of the flow to be
modeled accurately. The 50 cells in the x-direction were divided such that 10 cells
were stretched from the wedge apex to the leading edge of the plate and 40 ceils were
uniformly spaced along the wedge. The cells normal to the plate (y-direction) were
stretched such that a minimum of 10 cells were in the boundary layer at the start of
the interaction region. The z-direction mesh was uniform.

I 8.2 Results of NS3D Calculations

I The NS3D calculation was performed on a CRAY2 computer, which provided the
speed required to obtain a solution in a reasonable amount of time. The Encore com-
puter would have required days of run time with eight CPU's to obtain a sufficiently
convcrged solution on a mesh with 45,000 cells. Figure 23 provides the calculated
pressure contours on the plate. The shock and upstream influence of the interaction

0.12 -Iz
0.10

0.08

0.06

0.04

0.02

0.00 -
0.00 0.05 0.10 0.15 0.20

IX
Figure 23: Surface pressure contours for the skewed shock/laminar boundary-layer
interaction

region are easily identifiable. The calculated separation line is shown in Figure 24
which provides the velocity vectors in the cell next to the wall and several stream-
lines. The streamlines coalesce to highlight the separation line. The streamlines
downstream of the separation line are evidence of the trapped vortex in the interac-
tion region which sweeps the lower part of the boundary layer towards the separation

I 49
I
U ._ _. . . =

line. Surface streaklines obtained experimentally [4 01, Figure 25,.show the samne trends
as the calculated streamlines. The calculated pressu-,re '-is, along the surface in the

0.12

0.10- -- -- ...-- - - - -

0.0 - -- ---------------------

0.04.I

0.00I
0.00 0.05 0.10 0.15 0.20

Figure 24: Velocity vectors and streamlines near the surface in the interaction region

FREESREAMI
DVWCTON

Figure 25: Experimentally obtained surface streaklines

interaction region is compared with the experimental data in Figure 26. The initial

50I

I
I
I

M =2.25
1.6 Re = 2.4x10' i' 0m 0 0 0 0 0 0 0

0

1.4
Calculated

PI* Experiment 0

1.2

I1.0

-100 -50 0 so 100
X sr . (mm)

Figure 26: Surface pressure distribution at 5 cm above the wedge symmetry plane

pressure rise due to the upstream influence and the rise at the shock show good agree-
ment. The calculated pressure distribution has a more pronounced dip upstream of
the shock. The relaxation after the shock to the inviscid level does not show up in
the calculated solution. This may have been due to the outflow boundary being too
close to the shock. In all the NS3D calculation compares well with the experimental
data.I
8.3 Efficiencies of Parallel Algorithms

The effectiveness of the three parallel algorithms, which were implemented in the
NS3D code, for complex 3D flow fields was evaluated by running the above test case
on the Encore computer using a coarser mesh. For each algorithm the case was run
nine times. The first run was made using one processor to provide a benchmark.
Subsequent runs with a given algorithm were made with the number of processors
incremented by one until nine processors were running in parallel. For each run the
number of time steps was held fixed so that, the computational work was equivalent.
Since the speed of each processor on the Encore fultiniax is 2-3 orders of magnitude

I S

I

I

slower than the Cray 2, a computational mesh with 24x12x12 internal cells was used I
for these timing runs.

Each timing run was a two-step procedure. In the first step the computation was

advanced for a specified number of time steps (50 for the explicit algorithm). For the
second step the computation was rerun for just a few time steps (10 for the explicit I
algorithm). The run time for the second computation was then subtracted from the
first to produce a net run time. The net run times were then used to calculate the
relative efficiencies of the different parallel algorithms. The net run time removes the I
start-up time from the efficiency equation. The start-up consists of reading data and
mesh files, which can not be parallelized. Of course, as the number of time steps
becomes very large the start-up time becomes negligible in comparison to the total
time, but this was not possible in view of the large number of runs.

Figure 27 summarizes the results of the timing runs for each algorithm. The net
run time (elapse time) and efficiency are plotted versus the number of processors.
Clearly, as the number of processors increases, the run times initially drop dramati-
cally for all of the algorithms. The efficiencies of the algorithms are reasonably high
for up to four processors. It is also seen that the run time tends to flatten out fairly
quickly as the number of processors is increased. Of course this flattening must hap- I
pen since the incremental effect of adding one more processor becomes small as the
number of processors becomes large.

There are two other dominating effects that can be observed in the results. These
are load balancing and the fraction of the code that is parallelized. The influence
of poor load balancing is indicated most clearly by the sudden slope changes in the
efficiency curves. When the number of processors does not divide evenly into the
indexing range of the parallelized DO loops (i.e. the number of active cells in the
index range), some of the processors will be idle for a. portion of each cycle. Since
there were 24 cells in the i-direction, the runs with 5, 7, and 9 processors should be
affected by poor load balancing. This is readily apparent in the efficiency curves for I
the explicit and J-direction implicit algorithms, Figure 27. The Gauss-Seidel J-line
implicit algorithm is even more strongly influenced by load balancing since it uses a
three color {red - white - blue} scheme. Then the 24 must be divided by three. As a
result only the runs with 2, 4, and 8 processors, which are factors of 8, will have good
load balancing as demonstrated by the efficiency curve. It is important to note that
as the ratio of the number of cells in the parallelized index direction to the number of
processors become large the influence of load balancing becomes negligible since the
idle time fraction becomes small.

The fraction of parallelized code, a, has a lasting influence that limits the ef-

fectiveness of a parallel algorithm. This is more clearly observed by plotting the I

52 I
I

I
I

EXPLICIT ALGORITHM 100
o 3000Iz
0 90 >I.U z
IA2 2000 80

I LLI ° 1000 70•

< 60

w 0-J-

1 2 3 4 5 6 7 8 9NUMBER OF PROCESSORS

I J-IMPLICIT ALGORITHM
Cl, 100
o 5000z0 >0)4000 90
w z

w 3000 (
80

I -w 2 0 0 0 Uj

(O 70<1000

1 2 3 4 5 6 7 8 v

INUMBER OF PROCESSORS

I GS J-LINE IMPLICIT ALGORITHM
8000 100z

0 7000 90
80w 6000 7

A 5000 80 w

Iw 3000 60 W
C/)

2000 50I 1000 40

1 2 3 4 5 6 7 8 9
m NUMBER OF PROCESSORS

Figure 27: Run times and efficiencies versus number of processors for the three par-
allelized algorithms

I 53

I

run data as speed-up versus number of processors, Figure 28. The speed-up is de- I
fined as the run time divided into the single processor run time. The a = 1.0 curve
represents the ideal 100% parallelized algorithm. The other a curves represent the
speed-up calculated from Eqn. 7 using an a that best fits the run data. These curves
lead to the conclusion that the explicit algorithm is 96% parallelized, the J-direction
implicit algorithm is 95.3% parallelized and the Gauss-Seidel J-line implicit is 92%
parallelized.

The data point for the 8 processor run with the explicit algorithm appears to be an U
irregularity since it should have fallen on the a = 0.96 curve. However, as discussed in
Section 7.2 the explicit algorithm was highly parallelized in the J-direction. Since 8 is
not a factor of 12 (the number of interior cells in the J-direction), the load balancing
was not really optimal for all of the DO loops for this run. Thercfcre, the data does
exhibit the correct trend. The poor load balancing runs are otherwise very evident
in Figure 28.

While the a's for the three parallelized algorithms appear to be very good, Am-
dahl's law says that as the number of processors becomes large, the sequential coding
will ultimately limit the speedup. It is imperative that a -- 1 if the benefits of the
future MIMD machines with large numbers of processors are to be realized. This will I
be a primary concern during phase II of the research and development effort.

To demonstrate that the same trends apply to larger meshes, additional test case U
timing runs were made with the 50x30x30 mesh using the parallel J-direction implicit
algorithm with 1,4,5,6, and 8 processors. The results of these runs are summarized
in Figure 29. Up through six processors the efficiency of the algorithm is comparable
to results obtained with the 24x12x12 mesh. The non-optimal load balancing does
not significantly influence the 4 and 6 processor runs, which probably results from I
the small fraction of time that any processors are idle. The five processor run shows
a definite improvement over the coarse mesh results. This was anticipated since 5 is
a factor of 50 but not of 24. The eight processor run shows a strong influence of poor I
load balancing, which results in a substantial drop in efficiency. The speed-up curves
confirm that 95 - 96% of the algorithm is parallelized as indicated by the coarse mesh
results.

It was not possible to run any cases on the Encore Dual-Mu tmax LAmP computer,
since a parallel fortran compiler was not available during the period of performance
of the current contract. Had that computer been available, only one or two days of

effort would have been required to complete the desired runs. However, the results I
obtained on our Encore Multimax computer using up to nine processors have provided
sufficient data to satisfy our Phase I primary objective.

54 I
I I

EXPLICIT ALGORITHM
9I8 -a10a = 0.96

(L7

6Iw
31

2 __ _ _ _ _ _ _ _ _ _

1 2 3 4 5 6 7 8 9

* NUMBER OF PROCESSORS

I J-JMPLICIT ALGORITHM
9

/_ 075

4 2U 3D4ATA7 8

* NUMBER OF PROCESSORS

GS J-LINE IMPLICIT ALGORITHM
9

8 a 1.

IU 1

1 2 3 4 5 6 7 8 9

NUMBER OF PROCESSORS

Figure 28: Run speed-up versus number of I)Vocossors for the three parallelized algo-I rithms

* 55

I
I
U
I

100 Ia7000

8 6000 9I

ci) 5000 L J
"L [-4000 --- 80 LL

3000
< [70

2000

1 2 3 4 5 6 7 8
NUMBER OF PROCESSORS

8.0 c. 1.0

7.0

.. 6.0 0.955

5.0 R OATA

W 4.0
3.0

2.01.0 I

1 2 3 4 5 6 7 8
NUMBER OF PROCESSORS I

Figure 29: Run times, efficiencies, and run speed-up versus number of processors for
the parallel J-direction implicit algorithm with the 50x0x30 mesh.

II
56 I

I

I

3 9 Conclusions

I Computational Fluid Dynamics is one area where parallel computing will be
greatly beneficial.

I Using domain decomposition to create parallelism, a CFD code that solves
the 3D Navier-Stokes equations was implemented on the Encore Multimax.
Three different parallel algorithms were developed and benchmarked on a real
engineering problem (one explicit and two implicit methods). The benchmark
times indicate that between 92 and 96% of the code executed in parallel (the
remaining portion executed sequentially). WVith up to 9 processors speedups for
two different meshes closely follow Ware's relation, Eqtuation 7. This indicates
that inter-processor communication overhead was negligible. Variances of actual
speedups from Ware's relation are explained by poor load balancing caused by
"left over" tasks.

e We conclude from this preliminary work that by restructuring the NS3D code to
minimize interprocess communication overhead and the fraction of serial com-
putations, the NS3D code could achieve nearly 100% efficiency on the Encore
Multimax and be very applicable to MIMD computers with large numbers of
processors.

* As our experience and skills in parallelizing CFD algorithms increase, we expect
that CFD software (like NS3D) can take maximum advantage of future MIMD

i computers with hundreds or more processors.

* Current "optimal" sequential CFD algorithms can be effectively parallelized.
Research efforts should be directed in part at reordering and restructuring ex-
isting algorithms that are "optimal" on sequential computers.

* These results justify continuing the development of a 3D Navier-Stokes flow
analysis code for parallel computers in Phase 1I.

I
I
I
I

I 5

II

I
I
I
I
I
I
I
I
I
I
I
U
I
I
I
U
I

58 I
I

I

U References

[1] Peterson, V.L.,"The Impact of Supercomputers on the Aerospace Sciences," AIAA
24th Aerospace Sciences Meeting, Reno, NV, January 1986.

[2] Denning,P.J.,"Parallel Computation," American Scientist, Vol. 73, No. 4, July 1985,
pp322-323.

[3] Moore,R., Nassi, I., O'Neil, J., and Siewiorek, D.P.,"The Encore Multimax: A Multi-
processor Computing Enviroment.", Encore Technical Report No. ETR 86-004, Encore
Computer Corporation, Marlboro, MA, 1986.

[4] Nassi, I.,"A Preliminary Report on the Ultramax: A Massively Parallel Shared Memory
Multiprocessor," Encore Technical Report No. ETR 87-004, 1987.

[5] PeeryK.M., Imlay,S.T., and Katsandres,J.T.,"Real Gas Blunt-Body Flow Simula-
tions", AIAA Paper No. 87-2179, June 1987.

[6] Peery, K.M.,a~ad Imlay,S.T. "An Efficient Implicit Method for Solving Viscous Multi-
Stream Nozzle/Afterbody Flow Fields", AIAA Paper No. 86-1380, June 1986.

[7] Peery, K.M.,Pon ten,B.D, and 1oherts,D.\V., "Simulation

of Unsteady Two-Dimensional Inviscid Flow Fields Around Geometrically Complex
Objects", AIAA Paper 85-1273, July 1985.

[8] Imlay, S.T.,"Numerical Solution of 2-D Thrust Reversing and Thrust Vectoring Nozzle
Flowfields," AIAA Paper No. 86-0203, 1981.

[9] Imlay, S.T.,"A Solution Adaptive Grid/Navier-Stokes Solution Procedure," AIAA Pa-
per No. 87-2180, June 1987.

[10] Imlay, S.T.,"Implicit Time-Marching Solution of the Navier-Stokes Equations for
Thrust Reversing and Thrust-Vectoring Nozzle Flows," Ph.D. Dissertation in the Dept.
of Aero. and Astro., Univ. of Wash., Washington, 1986.

[11] Anderson, D.A., Tannehill, J.C., and Pletcher, R.11., Computational Fluid Mechanics
and Heat Transfer, McGraw-Hill, 1984

[12] Steger,J.L., and Warming,R.F., "Flux Vector Splitting of the Inviscid Gasdynamic
Equations with Applications to Finite-Difference Methods," Journal of Comp. Phys.,
Vol. 40, pp 263-29a3, 1981.

I [131 Roe,P.L.,"Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes," Journal of Computational Physics, Vol. 13, 1981, pp.357-372.

3 [14] Anderson, W.K., Thomas, J.L., and vanjlcer, 13.. "A Comparison of Finite Volume
Flux Vector Splitting for the Euler Equations," AIAA Paper No. 85-0122, 1985.

[15] Pulliam,T.H. and Steger,J.L.,"On Implicit Finite Difference Simulations of Three Di-
mensiona.l Flows," AIAA Paper No. 78-10, Jan. 1978.

I 59

I

U

[161 Vinokur,M. and Liu,Y.,"Equilibrium Gas Flow Computations II: An Analysis of Nu- U
merical Formulations of Conservation Laws," AIAA Paper No. 88-0127, Jan. 1988.

[17] Cooper,J.R. and Hankey, W.L. Jr.,"Flowfield Measurements in an Axsymmetric Axial
Corner at M=12.5," AIAA Journal, Vol.12, Oct. 1974, pp.1353-1357.

[181 Shang,J.S., and Hankey,W.L., "Numerical Solution of the Navier-Stokes Equations
for a Three-Dimensional Corner," AIAA Journal, Vol.15, No.11, November, 1977, pp.

1575-1582. n

[191 Mason, M.L., Putnam, L.E. and Re, R.J., "The Effect of Throat Contouring on Two-
Dimensional Convergent-Divergent Nozzles at Static Conditions," NASA TP-1704,

Aug. 1980.

(201 Johnson,G.M.,"Parallel Processing in Fluid Dynamics", ASME Fluids Engineering
Conference, Cincinnati, Ohio, Junel4-18, 1987.

[211 Johnson,G.M.,et al.,"Multitasked Embedded Multigrid for Three-Dimensional Flow

Simulation", Tenth International Conference on Numerical Methods in Fluid Dynam-

ics", Beijing, China, june23-27, 1986.

[22] Johnson,G.M.,and Julie M. Swisshelm, "Multigrid for Parallel Processing Supercom-
puters", Third Copper Mountain Conference on Multigrid Methods, Copper Mountain, I
Colorado, April 6-10, 1987.

[23] Patel,N.R., Struek,W.B., and Jordan,H.F., "A Parallelized Solution for Incompressible 5
Flow on a Multiprocessor", AIAA Paper No. 85-1511, July, 1985.

[241 Ortega, J.M. and Voight, R.G., Solution of Partial Differential Equations on Vector
and Parallel Computers,SIAM, 1985.

[25] Evans, D.J., "Parallel S.O.R. iterative methods," Parallel Computing, Vol 1, 1984,
pp3-18. I

[26] Lomax, H. and Pulliam, T., "A Fully Implicit Factored Code for Computing Three-

Dimensional Flows on the flliac IV," Parallel Computations, Academic Press, NY, I
1982.

[27] Eberhardt, S.D. and Baganoff, D., "Multiple Grid Problems on Concurrent Processing

Computers," NASA TM 86675, Feb. 1986.

[28] Gibbons, A. and Wojciech Rytter, Efficient Parallel Algorithms, Cambridge Univ.

Press, 1988. I
[29] Patel, N.R. and Jordan, H.F., "A Parallelized Point Rowwise Successive Over-

Relaxation Method on a Multiprocessor," Parallel Computing, Vol 1, pp207-222, 1984.

[30] Harding, A.F. and Carling, J.C., "The Three Dimensional Solution of the Equations of
Flow and Heat Transfer in Glass Melting Tank Furnaces," Supercomputer and Parallel

Computation, elited by Paddon, D.J., Calarendon Press, Oxford, 1984.

60 I
I

I

1 [31] Mandel, D.A. and Trease, II.E. , "Parallel Processing a. Real Code-A Case History,"
LA-UR 88-1836, DE88-014456, 1988.

[32] Gropp, W. and Smith, E.B., "Computational Fluid Dynamics on Parallel Processors,"
Yale Univ. YALEU/DCS/RR-570, Dec 1987.

[33] Fox, G.C., "What Have We Learnt from Using Real Parallel Machines to Solve Real
Problems?," Third Conf. on HIypercube Concurrent Computers and Applications, Jet
Propulsion Lab., Jan 19-20, 1988.

[34] Hiromoto, R.E., Lubeck, O.M., and Moore, J., "Experiences with the Denelcor HEP,"
Parallel Computing, Vol 1, ppl97-206, 1984.

[35] Linden, J., Steckel, B., and Stuben, K., "Parallel Miltigrid solution of the Navier-
Stokes equations on general 2D domains," Parallel Computing, Vol 7, pp461-475, 1988.

I [36] Fatoohi,R., "Multitasking on the Cray Y-MP," Report No. RNR-88-001, NAS Applied
Research Office, NASA Ames Research Center, Dec. 1988.

[37] Schultz, M.IH., Blackie, J.C., and McBurney, I.C., "Supercomputer Algotecture Anal-
ysis," ESD: THE Electronic Sysetm Design Magazinc, pp53-57, April 1989.

[38] Catherasoo, C.J., AMETEK Computer Research Divison, Monrovia, California. Per-
sonal communication. April 1989.

[39] Keyes, D.E., "Domain Decomposition Methods for the Parallel Computation of React-

ing Flows," NASA-CR-181719, Sep. 1988.

[40] Degrez,G. and Ginoux,J.J., "Surface Phenomena. in a Three-Dimensional Skewed Shock
Wave/Laminar Boundary-Layer Interaction," A IAA Journal, Vol.22, No. 12, December
1984, pp. 1764-1769.

[41] Ware, W., The ultimate computer, IEEE Spect.. 10. 3, 1973, pp.89-91.

I

I

I
I

I 61

I
U-

