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EFFECTS OF MAGNETIC AND COLLISIONAL VISCOSITY
ON THE E X B GRADIENT DRIFT INSTABILITY

I. INTRODUCTION

Much has been written in the recent past regarding the 'freezing'

phenomenon exhibited by ionospheric ion clouds. Recently the debate has

centered upon whether the explanation for the phenomenon is a 2- or 3-

dimensional effect. We shall not enter that debate here, but rather

investigate one of the more promising 2-D effects, proposed by Sperling

and Glassman (1985). They propose that collisional and magnetic

viscosities, n1 and O31 respectively, [Braginskii, 1965] suppress the

growth of the gradient drift instability at short wavelengths, and that

this effect can explain the 'freezing' phenomenon in both barium ion

clouds and nuclear plumes. The nonlocal stability analysis based on the

full stress tensor presented in Sperling and Glassman (1985) considered

only the asymptotic case of kL << 1 where k is a Fourier wavenumber and L

is the gradient scale length. The results presented in their paper were

quite intriguing and showed that n and n 3  can exhibit a strong

stabilizing effect on the gradient drift instability.

However, one must seriously question the applicability of the above

work to barium clouds or nuclear striations since the results are valid

only in the long wavelength limit which corresponds to L 4 0, and the

stress tensor itself is valid only for L >> pi where pi is the ion

gyroradius. What are the instability characteristics for finite L, and in

particular for kL - 0(1) as we expect it to be for some cases of interest.

This poses a difficult numerical problem, and has not henceforth yielded

to solution. However, we have recently developed numerical techniques

which allow us to solve the linearized equations for the full stress

tensor, and to investigate the applicability and validity of the long

waveleigth asymptotic results. We find that the gradient scale length L

does have a strong effect on the growth rate, and thus that long
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wavelength analysis is often inadequate for realistic parameters.

II. FUNDAMENTAL EQUATIONS

The equations describing a two dimensional plasma in a plane

perpendicular to an ambient magnetic field B have been given in many

places [e.g., Mitchell et al., 19851. What is new here is the presence of

terms which account for magnetic and collisional viscosity. As with

Sperling and Glassman (1985), we shall ignore all electron collisions. We

shall do this because we do not wish to address the effects of these

collisions (primarily diffusion) here, and because the diffusion induced

by these collisions precludes the attainment of a true equilibrium upon

which to perform a stability analysis.

Consider a two dimensional plasma consisting of ions and electrons,

embedded in a neutral gas and in a constant ambient magnetic field B

perpendicular to the plasma plane. If we neglect ion-electron collisions,

the momentum equation describing species a is

( v = - + -+ - (1)
(IF VL V c )J - Y n nm M m m

where the subscript m denotes the plasma species (i for ions, e for

electrons, for example), n is the species number density, Z is the species

fluid velocity, P, = n kBT is pressure, E is the electric field, K is the

gravitational acceleration, q is the species charge, van is the species

collision frequency with the neutral gas, Un is the neutral wind velocity,

c is the speed of light, k B  is Boltzmann's constant, m is the species

particle mass, and L is the "force" per particle due to the i and n3

terms in the Braginskii stress tensor. We can rewrite this equation as
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q

FB/m + - (xB= 0 (2)

where

t o' + %2 (v) (3)

Fx" qCE + m , + V an m U n -VP/n O (4)

F (v) *- ( " + v V)v m + L (v) - N nm vat (5)

If we place ourselves in a Cartesian coordinate system in which B is

aligned along the z axis then (2) yields

cv ( q F x e . (6)~a q B -a z

Strictly speaking, this equation only applies to the perpendicular

component of v a . We assume F -I m 0 so that v l 0 0. Note that (6) above

is actually an implicit expression for va, since F 2 is a function of v~a

Hence v is solved iteratively. We define-a

vFl x ez  (7)

and

Y,,2 - q c F a2(ymi) x e z (8

Then v can be approximated as

v = voa + v 2 (9)

The success of this procedure obviously depends on F L2 being small with

respect to Fl, i.e., v 2 << v 1.
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The reader will perhaps be disturbed by the absence of explicit

collision-frequency-dependent Pedersen and Hall mobilities. Indeed, the

above procedure is not the one usually followed, wherein the term v m v

is included in (2) rather than (5) (e.g., Zalesak et al., 1985). The

procedure used here is less accurate than this usual approach (e.g., Hall

currents due to electric fields are totally absent here). However, we use

this simplified set here for three reasons. First, it is accurate as long

as v in/9 << 1 and 1F.I << iFI; second, it is simple; and third, it is

the approach used by Sperling and Glassman (1985), with whom we wish to

compare our results.

We now list the additional assumptions we need to make in order to

recover the linearized equations of Sperling and Glassman (1985). Ve

assume that both the ion temperature T. and the electron temperature T1 e

are constants in space and time, neglect all electron collisions, neglect

gravity g, assume quasi-neutrality ( ni = ne = n ), assume singly changed

ions ( qi = - qe = e ), and assume that the electric field is

electrostatic (i.e., E - V*). The smallness of me, together with our

neglect of electron collisions, allows us to neglect all but the first and

third terms on the right-hand side of (1) for electrons. Thus

V = V rE + (kT/e)(n/n)l x e (10)
-e -el -B V Be -i) z

since Fe2 = 0.

The ion velocities are given by

=Til = erB eE + vinm.Un - kBTi7n/n x ez (11)

i2 - c [ " il "v ilmi + Li(vil) - inmieii x (12)
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V, = i + v 2(13)

Letting

4= - (kBTe/e) in n (14)

+ ( (kBTi/e) In n (15)

we get

VK B~(sx~ (16)

* -in i (17)
lil -B e n) ez

To solve for the evolution of the plasma, we shall need two equations:

(1) a continuity equation for electrons or ions, and (2) an equation for

current continuity and quasi-neutrality, i.e., V J = 0 where J is the

electric current en(vi - ye). We choose the electron continuity equation

for simplicity:

an (~
t= - V (nve) = nV( x e) (18)

The current density is given by

/ ~~V. /"T

J= ne vi - = ne U x e - k Ti T  n e (
e) \1 -t i2 Q. -n z B i e) nLxz) (91

thus

5



[n j = • e vi 2  x e J (20)
1

If we denote the x and y components of v iI as u and v, respectively, and

denote partial differentiation by subscripts, then we can write

L(v.1  D .(2o),x @lM) N).N - (ri1N)y n ( ~e.

n G- DJ (r13 N~ .- (rn1N). - (3 x1y (21)

vhere

D = u x v = 0 (22)x y

M = u -v = - 2 ((23)x y B kxy,

N = u y + v x = ' x (24

no - 0.96 0 (25)

- 1.2X 2 + 2.23 (26)
i1 . V1 X4 + 4.03X2 + 2.33

- 3 + 2.38X
113 . r X4 + 4.03X2 + 2.33

niKBT.
. (28)

2Q.

V -(29)
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2. _ eB (30)
1 m.c1

23.4 - 1.15 logl0(n i) + 3.45 logl0(T) 2"/2 ni

ii 3 x 10'7 T3/2
1

Here vii is the ion-ion collision frequency, A is the ion atomic mass,

and 2i is the ion cyclotron frequency [Braginskii, 1965, Sperling and

Glassman, 19851. T. in (31) is expressed in eV.

Noting that

V. m.
x e- B V in 1 U (32)

we obtain equations

c (v in e

!i2 TB a-t i  - ii. 'in J (Vp e - an)

L L(il) x ez (33)

and 9n 1 n ZI

- L• nmi ( + "in(, in1i (34)__ tV+vn 7p ve UnJ34

where

7. Jv 7. (n S iij xze'= + JB{ R
S= { [ (nIM) (nIN)x ]  L [(M)x - (nIN)y] (36)
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c2{
j- ~2ax [ni (Px ~xyy + 

2) ly ~xy 1x Ol('xx - YYJ]

a~ ri ~i('Yyy + P,)y - 2).*,y + o x - 4 } (37)

" JR [- ()I 3N)y L3M)X]- - [(3N)x - (383M()

!R B. a 3a n (3 )]}
B 2{axE[3 (yyy + 3 +Pxy 

2 '3x'p'xy 3y ~3("xx - yy)j

-T~a [3(*~xx + ',,) - 2 .n3y'py + 3x ("'xx - (39

The final equations describing our plasma are then

an
- / x e 7n = 0 (40)

V"[.I$ nmi  Vil " 7 + N 7] = [ne N x el + V • JR

(41)

Note that we have dropped the small term V • [enUn v in /9 1 in (41) to be

consistent with Sperling and Glassman (1985). Note also that in the above

equations, electron and ion temperature can change the plasma evolution

only through n 1 and n3. This is a result of our assumptions of no

electron collisions, and of spatially uniform ion and electron

temperatures.

8



III. STABILITY ANALYSIS

We consider the following equilibrium condition, which we denote by

zero subscripts. We take no, and hence nI0 and n 3 0 to be functions of y

only, and U n to be constant and in the y direction

an0  a 10  an30
-- 0 (42)

x- = ax - = 0

Un = U e y(43)

This equilibrium configuration is characterized by

= 0 (44)

NJ. -
in U e (45)

-ilo - 2. nx
i

(The reader may have noticed that this appears not to be an equilibrium

since vi2 0 * 0; this is a consequence of errors introduced in the Sperling

and Glassman (1985) ordering. If the treatment had been the more accurate

classical one, a true equilibrium would be obtained.)

We introduce the perturbation quantities

n(x,y,t) = n0 (y) + n(y,t)e
ik x  (46)

- ikx
*(x,y,t) = '(y,t)e k  

. (47)

Linearizing (40) and (41) we find that

an
an ik = 0 (48)

9



0[,o c-,' + - L (L ik - Un)]
LYTPin ay a 

..R..1. + ik - 'E. Q. "ne i- "- R
in 1 1

(49)

where

n ce V in

pO - B 2. (50)

B 2 -[2ioy <xy + )

+ -' ,oyy(yy - <,)

+ 110("'xxxx + 2 Xy yy) (51)

c2

,7 R B 2r 2Y30y(;Jxxx + xyy)i - 2 r'30yy Xy (52)

The usual approach to stability analysis is to use the following

substitutions

ax
4ik (53)

a-+ i (54)

in (48) and (49); thereby eliminating either n or , and obtaining an

eigenvalue problem for a fourth order differential operator. This is the

approach used in Sperling and Glassman (1985), which yielded an equation

they solved only in the long wavelength limit. Here we solve the problem

with no approximations by treating equations (48) - (52) as an initial

10



value problem, using a random seed perturbation. All derivatives,

including temporal derivatives, are discretized using standard finite

differences. Assuming that there is a fastest-growing eigenmode, this

mode will emerge from the noise, eventually reaching a point where, on a

relative scale, it is virtually the only mode left in the system. At this

point both the fastest growing eigenmode and its complex eigenfrequency

have been isolated. Before we move on to these results, let us look at

two limiting cases for which solutions are somewhat easier to obtain: the

asymptotic cases of long- and short-wavelength limits.

IV. ASYMPTOTIC RESULTS: SHORT- AND LONG-WAVELENGTH LIMITS

A. Short-Wavelength Limit

We consider first the short-wavelength limit kL >> 1, where L a

no(anO/ay)- is the gradient scale length. We take the perturbation

quantities in (48) - (52) to be invariant in y. Making the substitutions

(53) and (54), (48) and (49) become

c an0
in= - ik _ (55)

B (55

-C pk 2  -I arO k 2 i + ik Un. = ?Y- Uneikn
in i i

2 2 4  2 $30yik3 (

V1 [~yk + r)10k + 2y k(56)

where I is a flag on ion inertia (I = 1 to retain ion inertia, I = 0 to

neglect it). Solving (56) for n, and substituting into (55) we obtain

11



i2 [ nin

pk2 _ i 2 + ik U.)

- 2 k2 + n k4 + 2=i ik ] ik an (57)

Noting that (9i/Vine) apo = (c/B)n0 , dividing through by this quantity,

and multiplying by U nk, we obtain

iW- k2 -_ Ik2 V'-i(iw + ik 'Uin U n) - c2 ap01 (r0yyk2

+ l10k
4 + 2130yik3J] = k2 1 an0 (58)

This is simply a quadratic equation for o of the form

Aw2 + Bw + C = 0 (59)

with

A -I 
(60)

B -i I I k InU C2 2 l0yy + Ok + 2 'ik (61)in 9 n B 2 POkly 10'2 3 0y, 3 ~

C n 0 Un  (62)

12



An instructive look at how the nf1  and 13 terms might contribute to

the stabilization of the gradient drift instability is obtained by first

dropping ion inertia (setting I = 0), and looking at the collisional

limit. Then

W = iU 1 an 0  . C 2  - 10yy + 10k2 + 2'30yik) (63)

The growth rate y is given by minus the imaginary part of w:

U~ L n0 2~ a. -p 1(r'Oyy + n.Iok')1
On n 0y I + ;2 PO y (64)

Y + 2 a_+)2 [ c2Ok1
2.~ pO (1'1yy + Y 2J [ 2 B poln3 yk

One can note that the 13 terms always act to stabilize the collisional

short-wavelength limit, but that the fl1 terms need not always be similarly

stabilizing.

In the limit of small v../P. (low electron density) (25) - (31) yield

ni kB Ti Vii 2i.

ri = 1.2 i 42.2 - 0.3 nkBT 21 (65)

1 1

r3 - iBii -~i_2 nkBTi/9i (66)

Since the mean thermal ion gyroradius pi is given by

2 kBTi
Pi 2 (67)

m. 2.

and since

c -i B c2  9 i c
2 p in nce B2 Vin Bne

13



then

2 5. i 21 an 02 -1 1 2 -c no i2 -jQn)p 2 3ri0  (69)2 pO 30y iN Bnoe 3y -I in na
B ~ in 0 i

Thus, if we let v../9. + 0 we getiI1

Uo0/L
SI+4/L 2(70)

I 2 2k2 .i in

where we have defined

n - 0 Pay-0) (71)

Recall that this expression is valid for the collisional, short

wavelength limit in the low electron density regime (vii,/9i 4 0). Huba

and Zalesak (1985) have shown that the long wavelength limit (kL << 1) can

often be obtained from the short wavelength limit by making the simple

substitution i/L 4 k(M - 1)/(M + 1), yielding

M - I] 1 (72)

Pi a F i (73)
in

Here M is the ratio of the electron densities on either side of the

discontinuity. This collisional long wavelength limit has been obtained

rigorously by Sperling and Glassman (1985). It is obvious that n3 effects

14



will strongly damp the instability whenever

kPi (Vin /9iJ I / 2  (74)

in this short wavelength collisional limit.

B. Long-Wavelength Limit

By the long-wavelength limit (kL << 1) we mean the solution to the

linearized equations (47) - (52) with

n< ; Y< Y0

nO(Y) = (75)

n> =Mn< ; > YO

The concept of the long wavelength limit within the context of the

stability of ionospheric ion clouds was introduced by Huba and Zalesak

(1983), and has become a standard analysis tool in the field. The logic

behind the use of the long wavelength limit rather than the older short

wavelength limit is that the clouds in question tend to steepen

considerably before structuring, making the analysis of a very steep

density jump a more plausible approximation than that of a smooth

exponential profile. One of the primary purposes of this paper is to

compare the long wavelength results with those of continuous, more

realistic profiles, in order to ascertain the applicability of the long

wavelength approximation for realistic clouds.

The equations describing the long-wavelength limit are derived in

Sperling and Glassman (1985), and we shall not repeat that analysis here.

Suffice it to say that the equations are easier to solve than the full set

15



(48) - (52), and that we have developed software which reproduces the

Sperling and Glassman (1985) results, for comparison purposes.

V. NUMERICAL RESULTS

A. Long-Wavelength Comparisons

All of the results we report here are for an atomic oxygen plasma (mi

- 16.0 mp), Ti .0.1 eV, and use the following profile for no

n 0= n<[l . 2 1+ tanh ( L 0 o) (76)

n< - 105 cm- 3 , M = 1000, and yo is the center of our computational domain

in all of our problems. Three different values of vin a-e used, meant to

span a wide range of altitudes: v. = 10 sec -  (160 km altitude), vn 1in in 1

sec-1 (250 kn altitude) and v = 0.1 sec -  (500 km altitude). The

neutral wind velocity Un was taken to be Un = - 100 m/s in all cases.

Since our primary goal in this paper is to examine the applicability

of long wavelength asymptotic theory to realistic situations with finite

gradients, we shall compare calculations in which only L0 changes in (76).

Note that the long wavelength limit corresponds to L0 4 0.

-1Figure 1 shows results for the case vin m 0.1 sec -  Displayed is a

plot of y vs. k for L0  0 0, 20 m, 100 m, 250 m, 500 m and 1000 m. Figures

2 and 3 show results for the cases v. = 1 sec -  and 10 sec -1in

respectively. The solid curve is for L0  = 0 m and is based on the exact

asymptotic dispersion equation; the curves labelled A, B, C, D, and E are

for L0 = 20 m, 100 m, 250 m, 500 m, and 1000 m, respectively, and are

based on numerical solutions to (48) - (52). Missing data corresponds to

cases where convergence to an unambiguous fastest-growing eigenmode could

16



not be obtained with the present code.

It is obvious from Fig. 1-3 that the value of L does substantially

affect the growth rate y. There are two equally important aspects of this

issue which bear on our discussion here. First, there is the absolute

effect of L on y, all other parameters being held fixed. From a look at

Figs. 1-3, the reader can see that the growth rate for a finite L is

always smaller than that for L = 0, and that, in general, increasing L

decreases y, all other parameters being held fixed. The degree to which

this reduction takes place does seem to be a function of the ion-neutral

collision frequency, with the effect being largest for large Vin' and

smallest for small v.
in

The second, perhaps more important, aspect of the effects of finite

L, is the degree to which L affects the k for which y(k) maximizes, kmax

We shall also be interested in the degree to which the curve y(k) is

sharply peaked about kmax* Both of these issues are highly relevant to

the freezing models which have been proposed [Glassman and Sperling, 1987,

Zalesak et al., 1988]. Again referring to Figs. 1-3, the reader will note

that the effect of increasing L is to make kmax smaller. Since kmax is in

fact the freezing scale for many freezing models, this is a very important

effect. The effect of increasing L on the degree to which the curve y(k)

is sharply peaked is more difficult to describe. As L is increased from 0

to 20 m. the curve becomes more sharply peaked, which is a desirable

attribute for the freezing model of Zalesak et al. (1988). However, it is

clear that as L is further increased, the curve eventually becomes less

sharply peaked with increasing L. Thus larger values of L may make some

freezing models which depend on y(k) being sharply peaked about kmax less

desirable.

17



B. Short-Wavelength Comparisons

Having compared true growth rates with long-wavelength asymptotic

results, and found the asymptotic results lacking to some degree,

especially at short wavelengths, it is natural to assume that perhaps the

short-wavelength limit, (58) - (62), might be a fairly good approximation

in this regime. However, it is not clear how to apply (58) - (62) to our

profile (76), since the spatial derivatives of no, nip and n3 are

functions of y. We have chosen to evaluate y(y) as given by (58) - (62)

at every point in y of the profile (76), and to take

YSWL = max y(y), - - < y < + - (77)

In Fig. 4 we compare ySWL with the numerically computed solution for

the case L = 1000 m, for all three values of v . (0.1, 1.0, 10.0 s- ).in

Note that there is excellent agreement for kL > 10, but that there can be

substantial disagreement for kL 1 1. In Figs. 5-7, we show the same

comparison for the cases L = 500 m, L = 250 m, and L = 100 m,

respectively. Again, note that kL must be considerably larger than I to

obtain good agreement between the curves, and that there are substantial

errors in YSLW for kL - 1.

We introduce some bit of mystery here. The reader may note by

comparing curve D (vin 0.1) of Fig. 4-7 that ySWL seems to be

asymptoting to a y independent of L for large k in this highly

collisionless case. We do not as yet have an explanation for this

phenomenon.

18



C. Relative Effectiveness of nI and n 3

Finally in this section we wish to give the reader a feeling for the

relative effectiveness of the nI and ri3 terms on the growth rate of y. In

Fig. 8 we show a plot of y vs. k for the case L0 = 20 m, and all three

values of vin (0.1, 1.0, and 10.0 s-l), but with n1 = V13 = 0. In Fig. 9

we show an identical plot, but for n3 = 0 (with n1 taking on its actual

values). In Fig. 10 we show a plot with both n and n3 set to actual

values. Note that the achievement of peaked values of y(k) came only when

r13 terms were taken into account, making it the primary piece of relevant

physics for freezing models based on a k max . This is verified by Fig. 11,

where we show a similar plot with n1 = 0, and only n 3 terms "turned on".

We do not as yet have an explanation for the turning up of y(k) for vin =

0.1 at very large k in Fig. 11. (We find that making L smaller makes the

turning up vanish, in agreement with the true L = 0 result.)

VI. CONCLUSIONS

We have examined the role of magnetic and collisional viscosity (the

M3 and i1 terms, respectively, in Braginskii's stress tensor) on the E x B

gradient drift instability, paying special attention to the degree to

which the gradient scale length L affects curves of y(k). In particular,

we wished to know the size of the error introduced by assuming L to be

zero (the long-wavelength limit). We conclude that in addition to

affecting y in an absolute sense, increasing L to a finite value decreases

kmax, the k for which y(k) maximizes, and also affects width of the peak

of y(k) at kmax* Both of these results have large effects on freezing

models. We have also examined the applicability of the old short-

wavelength limit, or local analysis, and found that significant errors

would be made unless kL is very large (- 10).
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Fig. 1 Plot of y vs. k for the case of n<= 105, M = 1000, U = - 100
5

m/s, using a hyperbolic tangent density p-ofile and vin = 0.1 s

Curves A, B, C, D, and E refer to L = 1000 m, 500 m, 250 m, 100 m,

and 20 m, respectively. Missing data corresponds to cases for

which our code could not converge to an unambiguous fastest-

growing eigenmode. The solid unlabeled curve is the long-

wavelength limit (L = 0).
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Fig. 2 As in Fig. 1, but for vI in 1.0 s-
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Fig. 3 As in Fig. 1, but for v in 10.0 s-i
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\ d

100 2  
LK IKMI- I

Fig. 4 Plots of y vs. k for the case of n < 1 O5 , M 1000, Un  -100

m/s, using a hyperbolic tangent density profile, and L = 1000 m.

Curves A, B, and C refer to v. in = 0.1, 1.0, and 10.0 s- 1,

respectively. Curves D, E, and F refer again to v in = 0.1, 1.0,

and 10.0 s 1, respectively, but are generated using the short-

wavelength asymptotic limit (77), (58)-(62).
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Fig. 5 As in Fig. 4, but for L =500 mn.
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Fig. 6 As in Fig. 4, but for L =250 m.
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Fig. 7 As in Fig. 4, but for L 1 00 m
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M = 1000., EL 20.M, UO = -i00.M/S
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Fig. 8 Plots of y vs. k for the case of n<= 10 5, M = 1000, Un = - 100

mis, using a hyperbolic tangent density profile, and L = 20 m.

Both the collisional viscosity I and the magnetic viscosity 3

have been neglected. Curves A, B, and C refer to vin = 0.1, 1.0,

and 10.0 s-1, respectively.
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Fig. 9 As in Fig. 8 but only the magnetic viscosity n has been

neglected.
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Fig. 11 As in Fig. 8, but only the collisional viscosity n,~ has been

neglected.
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