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ACOUSTO-OPTIC AND LINEAR ELECTRO-OPTIC PROPERTIES
OF ORGANIC POLYMERIC MATERIALS

INTRODUCTION

Currently, most acousto-optic and electro-optic devices
make use of inorganic crystals as their active medium.1~6 This
is due, in part, to the historical develcpment of device
concepts and the ease in theoretically modeling such effects in
crystalline versus amorphous or polycrystalline materials.
Although inorganic crystals are good acousto=-optic and electro-
optic device materials, the search for better materials
continues. It is in this spirit that we assess the use of
organic polymeric materials in such devices operating in the
GHz frequency range. The assessment is accomplished by
identifying and briefly discussing the important molecular
properties for enhanced acousto-optic and electro-optic effects
and then relating these to current polymeric materials.

ACOUSTO~-OPTIC MATERIALS AND DEVICES

Acousto-optic devices are based on changes in the optical
properties of materials due to traveling pressure disturbances
(acoustic waves) which produce regions of compression and
rarefaction in the material. Such density disturbances cause
modifications of the refractive index of the material and
thereby, cause the medium to respond as a phase grating. In
the thin grating limit,4/5/7 described by

2n)\L
<< 1 (1)
A2

where ) is the light wavelength, A is the acoustic wavelength
and L is the width of the interaction region, diffraction in

many orders will occur with the probe light at normal
incidence.4/5/7 However, at large values of L, the higher order
diffractions interfere with each other, completely destroying

the diffraction pattern. To achieve constructive interference

in a thick grat:L g the light beam must be set at the angle

g = sin~ 175/2a. The diffracted beam will be seen at this
same angle as lndlcated in Fig. 1. Note that there are not any

Manuscript approved january 24, 1989.
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Figure 1: Schematic diagrams of the two limiting cases of
diffraction from an acoustically generated phase grating. In (a)

the thin limit grating is diagrammed detailing the diffracted

waves’ respective phases; w is the frequency of the light and v is
the acoustic frequency. In (b) the thick limit grating is

diagrammed showing the Bragg diffraction angle, 4g. This figure
is adapted from Ref. 5.




higher-order diffracted beams. (This is commonly referred to as
Bragg diffraction due to its similarity to x-ray scattering
from atoms in crystals.)

Several figures of merit for Bragg diffracting acousto-
optic devices have been derived for use in comparing potential
materials and are given below: n is the refractive index; p is
the material's maximum photoelastlc coefficient, the parameter
of principle interest in device desxgn, e is the density; and v
is the acoustic velocity of the material.3~5:8,9

My = (n’p2/,v) (2)
My = (nbp2/,v3) (3)
M3 = (n7p2/,v?) (4)

M> is an experimentally measurable quantltsy which gives
information on the diffraction eff:.c:.ency +? The other
figures of merit, M; and Mj 3 involve considerations of the
bandwidth due to the shift in the Bragg angle with acoustic
frequency changes and the capacity (number of separable
positions) of the material due to the size of the interaction
region, respectively.3:4/8,9 In general, it can be seen that
the most important material properties for large acousto-optic
effects are a high refractive index and photoelastic constant
and a low acoustic velocity.

There are two additional properties that must be
considered in evaluating materials for acousto-optic
applications: optical and acoustic attenuation. Attenuation
refers to both absorption and scattering losses. Acousto-optic
materials must have simultaneously, reduced scattering and
absorption of both optic and acoustic waves.

ORGANIC MATERIALS

While data on indices of refraction and density of
polymeric materials abound, data on photoelastic coefficients,
acoustic velocity and acoustic attenuation in the GHz regime
are very limited. Therefore, the evaluation of many polymeric
materials for GHz acousto-optic applications will depend on
deriving appropriate theoretical values for these parameters.
Such values will be based, whenever possible, on extrapolations
of lower frequency data. For the discussions that follow, it
will also be assumed that the materials of interest are
isotropic.

Photoelastic Coefficients

Photoelastic coeff1c1ents (Pi4kx1) relate the strain tensor
(Sx1) to the indicatrix ([l/n 1ij) wheren is the index of




refraction.3~5 That is, they describe the coupling of
mechanical strain to a material's optical properties.

3

a(1/n?)yjqy = &Z Pijkl Skl (5)

A=
The tensor notaticn is required because of the directiocnal
dependence of material properties. For an isotropic material
there are only two independent photoelastic coefficients. They
are related to the material properties along (longitudinal) and
perpendicular (transverse) to the direction of propagation of
the acoustic wave. The longitudinal photoelastic coefficient
is the one of interest in device design: it is much larger than
that in the transverse direction and, therefore is the only
one discussed in the sections that follow 3-6,8,

Determination of material photoelastic coefficients is
still essentially an empirical science and unfortunately, very
few polymeric material ghotoelastic coefficients have been
reported (see Table 1). The photoelastic constants of
inorganic crystals and glasses have been exten51vel investi-
gated and, in general, vary between 0.2 and 0.6.276,8-10 The
latter is the theoretical value of the photoelastlc constant
for an ideal material with a refractive index of 1.5,4/> the
refractive index value for nearly all carbon based polymeric
materials.

Theoretical discussions of the photoelastic effect often
cite Mueller's microscopic description.l2 This theory suggests
that photoelastic effects arise from refractive index changes
related to alterations in the material density and polarizabil-
ity under strain. For most solids, a decrease in
polarizability occurs when the material is compressed Because
of the increased orbital overlap and subsequent localization of
the optical electrons. However, interatomic repulsions are
also very important and can overwhelm the above coulombic
attraction effects. That is, the density and polarizability
effects may interfere constructively or destructively and it is
not possiple to predict the exact magnitudes of the respective
effects.4 1In other words, neither the magnitude nor the sign
of the photoelastic coefficient can be predicted and no
specific enhancing molecular properties can be identified.

Acoustic Velocities

The majority of work reported on acoustic velocities in
polymeric materials has involved MHz frequencies. However, a
number of GHz studies have also been published. A brief
compilation of reported longitudinal acoustic velocities is
given in Table 2.

The measured acoustic velocities in polymeric materials
fall between those of metals (3000-6000 m/s) and liquids (900-
1500 m/s) 13 and it has been qualitatively determined that, over
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Table 2: Acoustic Velocities in Some Common Organic Materials
at Room Temperature

MATERIAL" DENSITY LONGITUDINAL FREQUENCY REF
(g/cm”) VELOCITY v
(10~ m/s)
P4M1P 0.835 2.2 1.8 MHz 40
2.2 5-12 GHz 19
PMMA 1.191 2.7 0.6 MHz 38
2.7 1 MHz 41
2.7 6-30 MH:z 39
2.7 10-50 MHz 17
2.7 11 GHz 17
PvVC 1.386 2.3 1 MHz 41
2.3 10-90 MHz 17
2.4 10 GHz 17
ABS 1.022 2.1 0.6 MHz 38
2.0 1.8 MHz 40
Poly(styrene) 1.102 2.4 0.6 MHz 38
2.3 1 MHz 41
2.4 31 GHz 20
Poly(carbonate) 1.124 2.2 1 MHz 15
2.2 1 MHz 41
2.3 5 MHz 44
Poly(sulfone) 1.240 2.3 1 MHz 41
2.3 5 MHz 44
Poly (ether

sulfone) 1.373 2.2 5 MHz 44
OMTS-toluene 1.7-1.9 1.8-2.2 70 MHz 35

HMDS-styrene
EPON 828-2 1.202 2.7 1-3 MHz 43
* PAM1P = Poly(4-methyl-1l-pentene) ; PMMA = Poly (methyl

methacrylate); PVC = Poly(vinyl chloride); ALS = Poly(acrylonitrile
butadiene sytrene); OMTS = Cctamethytrisiloxane thin film; HMDS =
Hexamethyldisilozane thin film.




wide ranges, as_frequency increases the acoustic velocity
increases.t3~15 However, a brief examination of Table 2 shows
that for materials below their glass transition temperature,
the acoustic velocity dispersion is small over the MHz to GHz
frequency regimes.

Material properties that affect the acoustic velocity have
been investigated in the lower frequency range (< GHz) and a
strong correlation with the volume of the material has been
established.13-15 This relationship arises because of the
volume dependence of the intermolecular potential. For
example, replacing hydrogen atoms with fluorine atoms has the
effect of lowering the acoustic velocity since the larger
fluorine atoms will decrease the intermolecular attraction and
result in an increase in the material's volume. Using a more
common physical property to describe this effect, as density
increases, acoustic velocity will increase. This concept has
been successfully extended to copolymer and composite
systems,

Experimental studies have also shown that increasing the
rigidity of the mainchain backbone of the polymer by the
inclusion of ghenylene groups results in increased acoustic
velocities.l® This is due to the restricted conformational
changes that can occur. Thus, to minimize the acoustic
velocity and thereby maximize the figure of merit (M), a low
density, elastic material is desired.

Acoustic Attenuation

The acoustic attenuation of polymeric materials, which
involves both absorption and scattering, has received a great
deal of attention because of the potential use of these
materials in sonar devices.l3"15 The attenuatien cnefficient,
a, is defined by

a = (1/x) log(Ag/A) (6)

where x is the distance traversed and Ag and A are the initial
and final wave amplitudes, respectively. o is measured in
nepers/centimeter but commonly found expressed in terms of

dB/cm. Experimentally, it has been found that absorptions in
polymeric materials are either linearly or quadratically
dependent on frequency. 13-13 rinearly dependent absorption is
also known as hysteresis absorption and is expressed as o«/v =
constant (v = frequency). Hysteresis absorption has been
observed in the GHz frequency regime. >~

The microscopic description of the absorption processes
occurring at sub-GHz frequencies involves contributions from
molecular separations (a volume or density dependence) and
structural rearrangements. =+~ For acoustic frequencies in
the GHz regime, only limited structural rearrangements can




contribute to absorption as most materials can be regarded as
being in the glassy state. (The glassy state corresponds to a
large tensile modulus for the material.) 1In such cases, the
absorption mechanism can be viewed as amplitude losses through
the excitation of librations and/or rotations of mainchain side
groups and limited partial seqimental motions and reorientations
of the mainchain backbone.15-17

A limited number of results have been reported on the
acoustic absorption of polymeric materials in the GHz regime.
This is due, in part, to the experimental difficulties in
making these types of measurements: because of the high
frequencies involved, Brillouin scattering experiments (light
scattering from thermal phonons) are required. 17-24 Taple 3
lists the reported attenuation coefficients of several
polymeric materials measured at a number of acoustic
frequencies.

The theoretical explanation for acoustic absorption and
the results of experimental measurements (Table 3), indicate
that highly crosslinked or crystalline type polymers are best
at minimizing acoustic absorption. Note that this is the exact
opposite of the type of material properties desired for a high
figure of merit (M;). As is so often the case in materials
science, a compromise between competing material parameters
must be reached and depends on the specific nature of the
device design and application.

Scattering of acoustic waves is exactly like scattering of
light waves; it depends on the size of the inhomogeneity.
Therefore, choosing an acceptable optical material should go a
long way to insuring an acceptable acoustic material.

Organic Acousto-Optic Material Evaluation

In evaluating organic materials for possible use in
acousto~-optic devices, the first issue to be considered is one
of optical transparency. Polymeric materials can have excellent
optical properties in the visible and near infrared spectral
regions but will be absorbing in the infrared due to their
chemical composition. This is an inescapable feature of
organic materials, but one that can be mitigated by the use of
unique molecular designs such as fluoridation and also by the
use of thin £ilms. The optical properties of polymers are well
documented.ll:15 For the purposes of this evaluation, only
materials that are transparent in the visible spectral region
will be considered.

Table 4 is a 1isting of several optically transparent
polymeric materials and their important acousto-optic
parameters. The density and refractive index entries are
representative literature values. 11,15,25 The table entries
for the acoustic parameters are either the reported GHz values
found in Tables 2 and 3 or have been estimated as discussed




Table 3: Acoustic Attenuation Factors for Some Common Crganic
Materials at Room Temperature

a

MATERIALS* LONGITUDINAL FREQUENCY arv ** REF
ATTENUATION v (dB-s(gm)
(dB/cm) (10°7)
P4M1P 1.4 2 MHz 7.0 15
i.4 1.8 MHz 7.8 40
PMMA 1.4 2 MHz 7.0 15
1.8 2.2 MHz 8.1 16
3.7 5.5 MHz 6.7 16
5.0 6 MHz 8.3 39
7.7 10 MHz 7.7 3
12.7 18 MHz 7.1 39
12.6 20 MHz 6.3 39
19.6 30 MHz 6.5 3
2.1 x 10% 11.3 GHz 18.5 17
pPveC 5.7 1.5 MHz 37.8 17
11.3 S MHz 23 47
16.1 10 MHz 16 47
3.4 x 104 10.2 GHz 33.3 17
ABS 1.8 2 MHz 9.0 40
Poly(styrene) 0.4 0.5 MHz 8 55
1.9 S MHz 3.8 47
3.8 10 MHz 3.8 47
5.6 15 MHz 3.7 47
5.8 20 MHz 2.9 47
Poly(carbonate) 21.7 5 MHz 43.4 4
52.1 15 MHz 34.7 44
86.9 25 MHz 34.7 44
Poly(sulfone) 8.7 5 MHz 17.4 44
21.7 15 MHz 14.4 44
34.7 25 MHz 13.9 44
60.8 35 MHz 17.4 4
Poly(ether
sulfone) 8.7 5 MHz 17.4 G4
26.0 15 MHz 17.3 44
52.1 25 MHz 20.8 44
65.0 35 MHz 18.6 44
Poly(ethylene) 3.3 2 MHz 16.5 15
20 10 MHz 20 16




Table 3: Acoustic Attenuation Factors for Some Common Organic
Materials at Room Temperature (cont.)

24
MATERIALS " LONGITUDINAL FREQUENCY a/v % REF
ATTENUATION v (dB-s/gm)
(dB/cm) (10~ ")
OMTS~-toluene

HDTS-styrene 0.4 70 MHz 0.06 35
EPON 828-Z 4.1 1 MHz 41.0 43
(EPOXY) 7.1 2 MHz 35.5 43
10.5 3 MHz 35.0 43
*  paM1P = Poly(4-methyl-l-pentene); PMMA = Poly(methyl

methacrylate); PVC = Poly(vinyl chloride); ABS = Poly(acrylonitrile
butadiene sytrene); OMTS = Octamethytrisiloxane thin film; HMDS =
Hexamethyldisilozane thin film.

**calculated using table entries.

10
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below. The dispersion of acoustic velocities between MHz and
GHz freguency regimes has been experimentally shown to be very
smalll? (see Table 2) and therefore, in the absence of a
reported GHz value, the highest MHz value is used. With regard
to acoustic attenuation, table values are calculated assuming
hysteresis absorption using the constants found in Table 3.
Based on the results reported for PMMA and PVC, 17 such values
are certainly correct to within an order of magnitude.
Unfortunately, only a very limited number of photoelastic
coefficients have been reported for polymeric materials and no
clear method for estimating such values is available. Reported
values (Table 1) are used where appropriate and an assumed
value of 0.30 is used in the remaining cases. The assumed
value choice is based on the observation that although the
materials in Table 1l are widely different, p, the photoelastic
coefficient, is essentially constant.

The figures of merit listed in Table 4 are calculated
based on the corresponding table entries.

Figure 2 is a plot of the figure of merit, My, versus
attenuation, for a variety of inorganic materials and those in
Table 4. From this plot we see that polymeric materials,
although having a high figure of merit, also possess a very
large acoustic attenuation in comparison to inorganic crystals.
That is, present organic materials cannot compete with current

Although the potential for polymeric materials looks
bleak, new materials with novel properties are constantly being
developed. One area that has yielded unique materials is the
study and development of materials having large nonlinear
optical properties. Several materials with large delocalized
r electron systems have been synthesized. Such materials have
large polarizabilities and therefore may yield enhanced
acousto-optic properties. One group of these nonlinear
optical polymers, known as rigid-rod or ladder polymers, is
especially interesting. These polymers (Fig. 3) are composed
of interlocking phenylene rings with a 1limited number of side
groups; features which should lead to reduced acoustic
attenuation but relatively high acoustic velocity. Coupling
the reduced attenuation with the increased polarizability (the
» electron conjugation) suggests that these materials may have
interesting acousto-optic potential. Unfortunately, little
more can be said due to the lack of a means for estimating the
photoelastic coefficient: material properties need to be
measured.

With regard to other types of polymeric materials such as
liquid crystals, acousto-optic measurements have been reported
but involve complex effects due to shear induced structural
reorientations (transverse wave effects).2/~3

12
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Finally, polymeric materials are finding increased use in
surface acoustic wave (SAW) devices as thin films.34,35 saw
concepts36/37 may prove useful in a variety of applications and
should be investigated. However, that is beyond the scope of
this work.

LINEAR ELECTRO-QPTIC MATERIALS AND DEVICES

The application of an electric field (E) induces a change
in the polarization (P) of all materials and can be described
by the following tensor equation.48 (The tensor coefficient
subscripts are understood.)

P =Py + x(L)eE + x(2)EE + x(3)3EEE + ... (7)

Po is the material’'s intrinsic polarization and the x's are
known as the material susceptibilities. The first term, (1)
is used to describe usual linear optical phenomena such as
absorption, reflection and refraction. The latter two terms,
X(Z) and x(3) , are known as the second=-order and third-order
susceptibilities, respectively, and are used to describe
nonlinear optical effects such as the electro-optic effect and
third harmonic generation.

Another notation for describing the effect of an electric
field (E) on the optical properties of a material makes use of
the index of refraction (n) directly.l/4

(1/n2) = (1/ng2) + reE + hIEE + ... (8)

ng is the index of refraction at zero field and r and h are
known as the linear and quadratic electro-optic coefficients.
This type of notation is popular for describing effects in
inorganic crystals.

The linear electro~-optic effect, also known as the Pockels
effect, is characterized by the second-order
hyperpolarizability, x(?), or the linear electro-optic
coefficient, r, and is only possible in noncentrosymmetric
materials, i.e., materials which do not have centers of
inversion. This also happens to be the symmetry requirement
for the linear piezoelectric effect.}r4/3 (The piezoelectric
effect is the production of an electric field in a material by
the application of a stress or strain.) The majority of work
conducted on linear electro-optic materials has focussed on
inorganic crystals. 1,4 However, organic/polymeric materials
have been receiving increased attention because of the
potential for large electro-optic effects coupled with better
mechanical processing and design flexibility. Below, a brief
description of the important molecular and material properties
for enhanced electro-optic effects in organic materials is

15




presented. This is followed by a review of recent research
efforts in material development with respect to applications at
high modulation frequencies.

Organic Material Development

To achieve response times on the order of GHz, the optical
processes occurring in solid materials must be mainly
electronic in nature, i.e., vibrational and rotationaly motions
are too slow. Thus, from a molecular point of view, enhanced
electro-optic effects will be demonstrated by
noncentrosymmetric molecules with easily polarized molecular
electric fields. This latter condition is readily met in
unsaturated organic molecules with highly conjugated » electron
systems. The addition of substituent groups that induce a
charge asymmetry, i.e., strong electron donor and acceptor
groups, will also greatly enhance the electro-optic effect by
making it easier to polarize such molecules. Great success has
been achieved in synthesizing molecules of this type (second-
order nonlinear optical molecules) using the above
criteria.49-53

The incorporation of the active species into a macroscopic
sample is also an area of current research; noncentrosymmetry
with respect to molecular orientation must be maintained in
order to observe electro-optic effects. Additionally, the more
ordered the material, the greater the electro-optic effect. The
two most popular and successful methods for ordering molecules
in materials are electric field poling and Langmuir-Blodgett
£ilm deposition. Detailed descriptions of both of these
ordering methods can be found elsewhere.54~57

Most of the recent research involving second-order organic
materials for use in electro-optic devices has focussed on
liquid crystal side chain polymers and guest/host type
materials. Guest/host materials are prepared by dispersing the
active molecules in a polymeric host material while liquid
crystal side chain polymers are formed by attaching the active
molecule to the polymer mainchain using spacer groups to
decouple motion of the side chain from the backbone (See Fig.

4) . Inboth cases, electric field poling is used to orient the
material.

Comparison with Inorganic Materials

Table 5 contains several organic and inorganic electro-
optic materials and parameters describing the magnitude of the
reported electro-optic effect. The most common techniques for
measuring these parameters are second harmonic generation
(x(2)) and modulated phase waveguiding (r). When comparing
values, it is important to note that second harmonic generation
can only arise from electronic contributions while electro-
optic measurements can include contributions from molecular
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vibrations and rotations.>8/59 Therefore, an organic material
with the same x(2) as an inorganic material (as measured by
second harmonic generation) will probably have a smaller
electro-optic coefficient (r), a consequence of the important
contributions of lattice phonons to the electro-optic
coefficient of inorganic crystals. In other words, the
electro-optic effect in organic materials arises mainly from
electronic contributions (polarizations of the loosely bound =«
electrons) while in inorganics the main contribution is from
phonons (distortions of the nuclear framework and it's tightly
bound electrons) .60-62

The delocalized electronic nature of organic materials
results in other material properties that are very important to
electro-optic effects. One of the most important involves
modulation frequency.>5:57,

The response time of electro-optic devices depends on the
dielectric properties of the material and favors lower values:
the bandwidth per modulatlng power (Av/P) of a guided-wave
modulator is given by35/57

bv/P x [1/(1 + (e/€g))] (9)

%e for a traveling wave modulator the rise time is described
I

\l

Ya,
tr @« {(e/€g) = n (10)

where ¢ is the static dielectric constant. The dielectric
constants of organic materials are, in general, substantially
lower than those of inorganic materials and are

nondispersive. 63 The dielectric losses (tan §) in organics are
also generally low and nondispersive (See Table 6). Therefore,
organlc materials should allow higher modulation frequenc:Les

(than inorganics) for the same voltage (Fig. 5). This is a
consequence of the "disassociation" of polarizable electrons

from nuclei in organic materials.

Experimentally, a variety of device designs are used to
measure the electro-optic properties of materials; the two most
common are diagrammed on the following pages. MHz modulation
of a variety of organic materials has been amply demonstrated
using these types of devices.®64:65 wWith regard to higher
frequency modulation, phase modulation of a liquid crystal side
chain polymer, in one arm of a Mach-Zender interferometer, at
one GHz has been reported but not published.®4 A theoretical
calculation has also been reported, but not published, that
indicates poleymeric materials could be modulated up to 20 GHz
(See Fig. 8).
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In conclusion, organic and polymeric materials have
several advantages over inorganic materials for use in electro-
optic devices: ease and flexibility in mechanical processing,
high optical damage thresholds, low modulating voltages, low
dielectric constants and large electro-optic coefficients. (The
largest known electro-optic coefficient was measured for the
organic crystal methylnitroaniline, 67 pm/V).66,67 GHz
modulation in organic polymeric materials has been observed and
research is underway to extend this to higher frequencies.
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