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PACKET-ERROR PROBABILITY ANALYSIS FOR UNSLOTTED
FH-CDMA SYSTEMS WITH ERROR CONTROL CODING

INTRODUCTION

. In frequency hopping (FH) systems, a code-division multiple-access (CDMA) capability can be
achieved where the FH patterns take on the role of codes. Since the codes usually are only quasi-
orthogonal rather than truly orthogonal, frequency hits occur and result in loss of data. In the
analysis of such systems, the time-slotted case is usually considered in which the packet length is
equal to the siot duration. In this case a packet transmission is subjected to a constant number of
interfering users throughout its duration. When Reed-Solomon (RS) error control coding is used and
all frequency hits are assumed to result in symbol errors, the packet-error probability can be evaluated
straightforwardly [1] as

Prlpacket error | k other users) = " [J pit - Pk)" (M
. l-7+l

where p, is the symbol error probability given k other users are transmitting simultaneously over the
same wideband channel, and 7 = |(n — v)/2] is the error correction capability of the RS(n,v)
code.

In this report we consider unslotted systems in which the level of interference varies throughout
the transmission of the packet because users may begin their transmission at any time. Consequently,
the symbol error probability also varies throughout the packet duration, and the analysis becomes
much more difficult. The problém is further complicated by the dependence of symbol errors within
the packet, since the interference levels experienced by the symbols of a packet are 10t only time
varying, but also they are dependent. In Ref. 2, Pursiey bounds the packet error probability of
unslotted FH-CDMA systems in which the interference level varies over the packet duraticn by the
packet-error probability of the system with the maximum interference level. Daigle [3] approximates
the packet error probability of an unslotted direct sequence CDMA scheme without considering the
~ effect of error control coding.

Often, because of the complexity of the exact analysis, a much simpler other-user interference
model is used in the context of CDMA systems. In this model, the probability of packet error is con-
sidered to be equal to one if the number of other transmissions throughout the packet duration is
greater than T, a threshold level, and equal to’zero otherwise. This step function channel model has
béen studied in Ref. 4 for fixed-length messages, and in Ref $ for exponenually distributed message

lengths.

In this report we present an exact analysis of unslotted FH-CDMA systems that use RS coding.
Fixed length packets are assumed. The computational task for this evaluation is enormous; thus it has
been possible to evaluate performance only for small codeword sizes. We have also developed upper
bounds and close approximations to the packet-error probability that permit the evaluation of more

Manuscript approved January 5, 1989,



TARR, WIESELTHIER, AND EPHREMIDES

practical systems. We have demonstrated, as a result of our analysis, that the bounds that are based
on the maximum number of interferers present during the pecket duration are rather loose, and that
threshold models do not provide a satisfactory characterization of system performance. A preliminary
condensed version of this analysis was preseated in Ref. 6, and a more detailed development can be
found in Ref. 7.

SYSTEM MODEL

.. A population of users transmits packets containing a fixed number of symbols on a wideband FH
channel consisting of ¢ orthogonal narrowband frequeacy bins.’ One M-ary symbol, representing
log, M bits, is transmitted per hop. The hopping patterns are assumed to be generated by a first-order
Markov process, so that the frequency bin for each hop is different from that of the previous hop, but
equally likely to be any of the other ¢ — 1 frequency bins.

This system-is completely asynckronous. It is asynchronous at the packet level in the sense that
packet transmissiot may begin at any time; consequently, packcts may overlap for a portion of their
duration. It is also asynchronous at the hop level; thus frequency hits may be present for only a por-
tion of the duration of the symbol. However, all frequency hits are assumed to result in symbol
errors, even if the interference is present for only a small fraction of the symbol duration. The result-
ing symbol error probability given that k other users are simultaneously transmitting over the channel
is, as discussed in Refs. 1 and 8, ‘

P =1—=(1 - 2/}0 = po), ' @

where p, is the probability of symbol error in the absence of other-user interference, i.e., the symbol
error probability caused by background noise.

Packet sizes are chosen so that each packet can be encoded as exactly one RS codeword. Each
packet consists of n = M M-ary symbels. An RS(r,v) code can correct any pattern of no more than
7= |[(n-v)/2] symbol errors in a codeword.*  We have considered extended RS codes of rate
172, i.e., (n,n/2) codes, whxch are capable of correcting any pattern of no more than = |n/4]
errors. .

PACKET-ERROR PROBABILITY: EXACT ANALYSIS

To determine the exact packet-error probability of the unslotted FH-CDMA system with RS cod-
ing, it is necessary to determine the time-varying level of other-user interference present throughout a
packet’s transmission. We consider the case when /, the total number of other active channel users
during the transmission of a particular packet, is given. To describe this time-varying interference
process, we partition the interferers into two groups: ‘“‘initial interferers’’ and ‘‘final interferers.’’ |

‘Consider a given. user, user 1, whese packet transmission begins at time ty and ends at 1o + T,

where T is the fixed packet duration. When this iransmission started, I; packet transmissions were

- already in progress. These /; channel users are the initial interferers. Each of these will terminate

transmission during the intervai (t,fop + 7). Now, during sser 1's packet transmission Iy users
begin transmission of their packets. These are the final interferers, who will still be transmitting when
user | ends its transmission (see Fig. 1). Clearly, [; + Iy = N.t

*Undertccted codeword er-or probability is less than 1/+!, which is negligible in many applications.

t1t is assumed that the interfering packets cannot arrive sirwitsneously with the tagged packet. Thus an interfering packet falls
unambiguousty into either the clasy of iitial or final interterers. .
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:ovz -y 2.0, t°+Tﬁ

Fig. 1 — ] initial and /, final interferers

Now define the dcparturc state j =(11,12,...,1,;), where j; denotes the number of initial

interferers that terminate transmission during the /th symbol duration. Note that E Ji = I;. Like-
I=1

wise define the arrival state k = ky, k3, ..., k), where k; denotes the number of final interferers

that begin transmission during the Ith symbol duration. Again, we have E k=1 For exampl
=1

for the case of n = 4 symbols per packet, N = 10 other channel users, and ; = 3 interferers already

transmitting when user 1’s transmission is siarted, one possible departure state is (0,1,0,2). That is,

one of the I; interferers finishes transmitting during the second symbol of user 1's packet transmis-

sion, and the remaining two interferers finish during the last symbol. In this example, I, is equal to 7,

.and one possible arrival state is (3,2,1,1). That is k; = 3 interferers start transmitting during the

first symbol of user 1’s transmission, k, = 2 start during the second symbol, k3 = 1 starts during

. the third symbol, and k4 = 1 interferer starts during the last symbol. Note that numerous possibie

departure and arrival state descriptions represent the departure of the the I; initial interferers and the
arrival of the Iy final interferers. Given J; and N, these states are determined by an exhaustive search.

We assume that each initial interferer is equaly likely to terminate transmission during any sym-
bol; and similarly, each final interferer is equa'ly likely to start transmission during any symbol. The
probability of the departure state j and the probability of the arrival state k, given I, and N, are then
given by the multinomial dxsmbunons,

Bamt
Prij| I, N} = —————
G4 Jiliale . a!
/)"
Fr[k[ l,, N} = —T—k’.—'— 3)
Let us define the interference state ¥ = (x;, x3, ..., Xx,) where x; denotes the total number of
interferers present during the /th symbol transmission. The value of x; is determined by
1-1
x,—l—21,+2k l=12,...,n 4)

v=] vl

since the total number of interferers present during the /th symbol is equal tn the total number of ini-
tial interferers /; less the number of initial interferers that terminated transmission during the first
(I — 1) symbols, plus the number of final irterferers that arrived during the first / symbols. For sim-
plicity we consider that an interferer is present during the entire symbol in which it starts or ter-
minates transmission, even though we do not require symbol synchronization. This is consistent with
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our carlier assumption that all hits result in symbol error even if the overlap is a small fraction of the
symbol duration. Thus, x; is actually the maximum number of interferers present during the /th
symbol. In the above example the interference state X that corresponds to the departure and arrival
states, j = (0,1,0,2) and k = (3,2,1,1), is ¥ = (6889) Notethatmanydxfferent; andkpmrs
may combine to produce the same interference state x.

Now the probability of the_interfg_rencé state X is determined from the probabilities of all posei-
ble departure and arrival states j and k that combine to produce X. Given the state X, [;, and N, we
have

Prtfl IL,N = ¥ P I;.NlPrlklI:,Nl, ®
. j k t
where E, is the event that 1 and k satisfy, Eq. (4). The probabxlmes of the departure and arrival

' states j and k, given /; and N, are determined from Eq. (3).

Markov Analysis

A Reed-Solomon (n v) code can correct any pattern of no more thaa 7 = |(n — v)/2] n-ary

'symbol errors in a codeword. Thus the probability of packet error given the interference state X is

equal to the probability that there are more than 7 symbol errors:

Pripkt error | x}* = E Prik symbol errorsl x}. 6)

k=141,

A Markov analysis approach is used to determine the probability of k symbol errors given x, N, and
I;. We consider each symbol in the packet, one by one, starting with the first symbol. As each sym-
bol is considered, we determine the probability that the symbol is in error. We consider the provabil-
ity of the number of symbol errors in the packet thus far as the number of symbols consndered is
mcreasedfromwtow + 1for1 < w < n — 1. Thus we define

Pyii(| D) = ‘ )

Prih symbol errors in the first w + 1 symbols | | symbol errors in the first w symbols).

Obviously, the only possible transitions from ! symbol errors, when one more symbol is considered,
aretoh=1/and h =1+ 1. Now the transition from / to / + 1 symbol errors occurs if the (w + 1)th
symbol is in error. Given the interference state x, thé probability of the (w + l)th symbol being 1n
error is given as in Eq. (2),

P, {+1] ) = Pri(w+Dth symbol'in error| x}

1= (1 = 2/gY*'11 = po) ®)

*Note that *‘pkt’’ is used as an abbreviation for *‘packet” ml;oughout this report.
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and thus,

P, +1(| ) = Pri(w +1)th symbol correct| X}

= (1 - 2/g5"(1 - po). ®
Now define

Pu(h) = P=th symbol errors in the first w symbols | 3}, (10)
wherew=1,2,...,nand h =1, 2,..., n. Thus,
Puh) = Py(h| B) pu_y(h) + Py(h] h=1)p,_y(h-1) ' a1

with the initial condition po(0) = 1. The distribution for p,(h) is then evaluated recursively until we
obtain

pn(k) = Prik symbol errors | x}, (12)
from which it follows that
n
Pripkt error | X} = Y pa(k). (13)
kw4l

The probability of packet error given N and [;, is given by

Pripkt error | I;, N} = Y Pripkt error | X}-Pr{x| I:, N}

x

k=r+l

= E [ > Pn(k)J Pr(xl 1;, N} (14)
We assume that J; is uniformly distributed betwee;l 0 and N*. Therefore,

Pripkt error| N} = N+l EOE
X

[ ) pn(k)} PELLN. ()

k=r1+1

The computational .task for this performance evaluaiion is enormous. Two methods were used
for this performance evaluation. The first method, which did not nec memory, required more CPU
time than the second method that used memory. Howev:' cunt of memory required by the
second method for packet lei.gths greater than five symbe:s per packet was prohibitive. Calculations
were made, using memory, for packet lengths of n = 4 and 5, and without memory for n = 4, 5, 6,
7, 8. Table 1 summarizes the amount of CPU time required for these computations. Note that the
packet length of n = 6 does not correspond to a Reed-Solomon code. Calculation of the performance
for thns packet length was performed with an arbitrary value of 7 to establish the additional amount of

*This assumption is consistent with Poisson arrival stastics.

H
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CPU time required when the packet length is increased by one symbol. When the packet length is
increascd by one symbol, a conservative time factor was determined from the computatiors with and
without memory. The CPU time required if infinite memory were available was projected based on
the amount of time required for n = 4 and 5, and this conservative time factor. Note that even if
infinite memory is assumed, the exact performance evaluation of the common packet length of
n = 16 symbols per packet is not feasible. Thus efforts were made to develop an upper bound and
approximation to the packet-error probability.

Table 1 — CPU Time Required for
Packet Lengths of n = 4, 5, 6, 7, 8,
and 16 Symbols with or Without
Memory. Projected CPU Time
Required Is Given for Computations

with Memory.
CPU Time Required (yr:h:min:s)
n | Memoryless | With Memory
4 | 00:00:00:59 | 00:00:00:13
5 | 00:00:05:60 | 00:00:00:58
6 | 00:00:24:40 | 00:00:04:24*
7 | 00:01:52:24 | 00:00:19:45*
8 | 00:05:46:35 | 00:01:28:51*
16 25:00:00:00*

*Projected CPU time required

UPPER BOUND ON THE PACKET-ERROR PROBABILITY

Au upper bound on the packet-error probability was developed to permit the ‘evaluation of sys-
tem performance when practical packet sizes are used. The approach nf the upper bound is described
in this report. The transmission interval was partitioned into halves, quarters, or eighths, each con-
taining clusters of n/2, n /4, or n/8 symbols respectively. It is assumed that the interference level is
corstant over the duration of the cluster and equal to the maximum level of interference actually
experienced by any symbol in the cluster. That is, this approximation mixes our exact analysis
approach with the approximation used in Ref. 4. Note that the smallest partition intcrval u.cd was
eighths, since the computation of the exact analysis indicated that the computational limit was eight
symbols per packet. The number of clusters in the packet for a given partition is defined as b, where
b = 2, 4, or 8. Each cluster then consists of n/b symbols. The new interference state
% = (%;.x3,...,%) describes the maximum number of possible interferers in the new clusters of the
packet, where x; denotes the maximum number of interferers in the ith cluster of the packet.

We must recognize that this new interference state x is simply e original interference state X of
the packet with b longer symbols. The length of the new symbols is equal to the length of n/b old
symbols. With this knowledge, we realize that the probability of x with n symbols per packet, and
n /b symbois per cluster, is equal to the probability of x with b symbols per packet, which is given in

Eq. (5).
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A Markov analysis, similar to that used for the exact analysis, has been developed. Here, for a
given partition of the packet, b clusters (b = 2, 4, or 8), containing n /b symbols each, we consider
each cluster of the packet, one by one, starting with the first. As each cluster is considered, we
determine the probability that / symbol errors are in the cluster. We consider the probability of the
number of symbol errors in the packet as the number of clusters considered is increased from v to
v+ 1lforl < v <n - 1. Thus we define -

Pyyith| i) = (16)
Pr{h symbol errors in the first v +1 clusters| i symbol errors in the first v clusters).

The only possible transitions from i symbol errors, when one more cluster containing n /b symbols is
considered, are to h = i + | symbol errors, where [ = 0, 1,..., n/b. Now the transition from i to
i + | symbol errors occurs if there are ! symbol errors in the v + Ith cluster. Given the new
interference state x, this is given by ' :

P, 41 +1] i) = Pr{l symbol errors in the (v +1)th cluster | %)

n/b ‘ ' '
= { ! J Pi,(l —Px,)"”’". (17),"

where bx‘ is the probability of symbol error given x; interferers given in Eq. (2). As before, let us
define '

pv(h) = Pr{h symbol errors in the first v clusters | x}, ' (18)

wherev =1, 2, ... ,bandh‘= 1, 2,..., n. Now,
A

pk) = TP, h —kp,_ih — k) (19)
k=0 .

with the initial condition po(O)‘ = 1. The distribution for p,(h) is theh evaluated recursively until we
obtain .

. pytk) = Prtk symbol errors in b clusters | X} .

= Pr{k symbol errors in packet | x}, - | 20)
" from which we can form
n
Pripkt error| x} = ¥ ppk). _ @n
‘ k=7+1 ) .
4
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The probability of packet error given /; and N, is thus bounded by

Prpkt error | I;, N} s LPripks error| 3)Priz| I, N)

sy L ¥ lm(lz)] Priz| I, N}, @)
z -yd
and thus'
Pripkt error| N} s —— N+l Eoz [& é ‘p;.(k)] Prix| I, N}, (23)
1= x -yd .

since I; is assumed to be uniformly distributed between 0 and N.
APPROXIMATION OF PACKET-ERROR PROBABILITY

An approximation to the packet-error probability can also be derived to permit the evaluation of
the packet error probability for longer packet lengths. In the exact analysis, for a given ; and N, we
evaluated the probability of packet error for each possible inerference state x for the transmitted
packet. Averaging over all possible X produced the packet-errur probability given /; and N. For the
approximation, given /; and N, we determine the expected value of symbol-error probability for each
symbol of the transmitted packet. Then, incorrectly asssuming that the symbol errors are indepen-
dent, we evaluate the packet-error probahnhty when the symbol-error probability for each symbol is
given by its expected value.

As before, we partition tte N other channel users inio I, initial interferers and [, final in‘erfer-
ers. Starting with the initial interferers, we consider each symbol in the packet starting with the first
symbol. Let us define '

= {number of initial interferers in the pth symbol}. - 4)

The probability that /; initial interferers are in the first symbol is equal to 1, i.e., Prii; = I;} = 1.0.
As in the exact analysis, we consider an interferer to be present during the entire symbol in which it
starts or terminates transmission; thus there must be /; initial interferers in the first éymboi. Now, the
probability that /;—k initial interferers are in the second symbol is the probability that k of the I; ini-
tial interferers ended their transmission during the first sy:nbol. That probability can be expressed as

] -k
P"'Iz—l"klll—ll (][] [n-i] . ' (25)

n

Now, in g=neral. the probability that / —k initjal interferers are in the (j +1)st symbol, given that /
initial interferers are in the jth symbol, is the probability that k of ! initial interfercrs ended their

transmission during the jth symbol, that 1s,
l | k n - j ~\ -k

PT{IJA.1=.'-k|II=”= k1
\.
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Now the probability that k initial interferers are in the (j +1)th symbol given /;, and N can be deter-
mined from

| s |
Prijsy = k| Iy N) = T Prlijsy =k| i =k +m Priymk + m| [, N @D

m=0

and the initial condition Pr{i, = l,] = 1.0. Thu yields the distribution of initial interferers in cach
syinbol given /;, and N.

To obtain the distribution of fmal interferers for each symool we lgnm consider each symbol
in the packet starting with the first symbol Let us define

L= [nwhber of final in:erferers in the pth symbol). 28)

Now, the probability tha: no final interferers are transmltnng prior to the first symbol is equal to 1.0,

We call this the probability that no final interferers are transmitting in the Oth symbol, i.c.,
Pri{fo = 0] = 1.0. Now, the probability that k final interferers are in the first symbol is the proba-

bility that k of the /, final mterfercrs started transmission during the ﬁm symbol. This can be ’

expressed as

T YA ) It ) .
P’:Ul = k' fO = ov ‘V- ,ll =. [:J [';l"] [1;-!') S ' (29)

In general, the pmbébility that ! + k final interferers are in the (j + hth symbol, given that / final
interferers -are in the jth symbol, is the probability that k of the I, — k final interferers started
transmission during the (j + 1)th symbol, that is, ,

.o ' , ~ 1 k—n—jA"l I -1~k
Prlj;+|-l+k|fj-1 N, I} = {li[n—j] [ n—J J . (30)

The probability that k final interferers are in the (j 4+ 1)th symbol, given [; and N, can be determined
by

Prlj_',-+| =k| l,',Nl =
k .
X Prifisy=klfi=k—-mN, L) Prif, =k-m| I, N} 31)
m=0 .
and the initial condition Pr{f, = 0} = 1.0. This yields the distribution of final interferers in each
symbol given /; and N.

The distributions of initial interferers and fina! interferers in each symbol are independent (given
I; and N); thus the distribution of the total number of interferers in each symbol can be obtained by

k : : .
" Pritj=k| I,N} = ¥ Priij=m| I,N) Prif,=k — m| 1, N} (G2

m=0

where ¢; is defined as the total number of interferers in the Jth symbol.

§
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We can now determine the expected valie of the probability of symbol error of the jth symbol,

Py = z": Prisymbol error | m interferers) Prit; = m). 33)

m=0
Let us define an averﬁge symbol errcr probability state
ﬁ .¢lvﬁ2-'°-oﬁn)v . . (34)

. where p; is the expected value of the probabnhty of symbol error of the ith symbol. Assuming
independence of symbol errors, we can determine the probability of packet error given the average
symbol error. probabitity state p as in the exact analysis. As mentioned above, this assumption is
incorrect; since the symbol errors are not independent, this results in only an approximation to the
packet-error probability. Now, we need to ccnsider all possible occurrences of k errors in the code-
word  and form the error stte e = (e;,€5,...,¢), and the correct symbol state
d=(d,d,,... -1) where ¢; denotes the symbol number of the ith incorrect symbol, and d,
denotes the symbol numbcr of the ith coirect symbol.

Now, the probability of ¢, given N, I, and p, is given by

. " L . a-k " .
Prie{ N. I, p} = TT p., TIC1 = p4), (35)

=] y»i

and thus the probability of packet error given N and /; can be approximated by

"
" Pripkt error | NI} = 35 Y Prie| N, [}

kwrsl é¢E,

: L [ A-n-k - .
= ¥ L |Ir. ITu-p)|. (36)

kmrt| ek, L=l vel

where K, is the set of all ¢ states corresponding to k symbol errors, and the RS code used has an .

error correction capability of 7 symbol errors. Now,

1
N+-l

an

Pripkt error| N} =

n L .
Y L ir. IIG-=-p)

O kerdl Z,p Ul vel

i t‘}‘z

since all partitions of M are equally likely: that is, 7; is assumed to be uniformly distributed between 0
and N (again consistertly with the assumption of Poisson arrivals).

_Another approximation to the packet-error probability; can be developed by calculating the

expected number of interferers tranzmitting during cach symbol from the probability distribution of

the total number of interferers in cach symbol. That is, given Frit; = k| 1, Ny, calculate,

N "
Y omPrit, = mi I, Nl (33)

m=~0
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Then the probability of symbol error of the jth symbol, given the expected number of interferers in
the symbol, could be determined as,
Py = Prisymbol error | 3,interferers) ' (39)

=1 - (1 -2/g%Q - po).

Substituting p; for p; in Eq. (37) yields the second approximation.
SYSTEM PERFORMANCE

Packet-error probability, given N, was evaluated for several rate 1/2 RS codes as N was varied
between | and 10. In all cases the number of frequency bins was ¢ = 50, and a noiseless channel
(i.e., po = 0) was assumed. Exact performance results were obtained only for ths RS(4,2) and
RS(8,4) codes. Upper bounds and approximations were obtained for these codes as well as
RS(16,8) and RS(32,16) codes. . ‘

The RS(4,2) and RS(8.4) codes have error-correction capabilities of + = | and 2 symbol errors
respectively. These are not realistic packet lengths since they permit the transmission of only very lit-
tle information and since the upper bound on undetected codeword error probabilities for the RS(4,2)
and RS(8,4) codes are equal to 1.0 and 0.5 respectively. However, the computation of the exact
packet-crror probability of the system with the short packet lengths is very useful; it allows com-
parison with the upper bound and approximation to the packet-error probahility. Computational limits
. prevent the exact evaluation of the packet-error probability for longer packet lengths as ciscussed car-
lier. The upper bound, with n/b symbols per cluster, b= 2, 4, and 8, was computed for the RS
codes mentioned above, as well as the RS(16,8) and RS(32,16) codes having errarcorrection capabili-
ties of 7 = 4 and 8 symbol errors respectively,

Figure 2 shows the results for the unsiotted FH-CDMA system with RS(4,2) code. Note that

the approximation is etremely close to the exact packet-error probability. When the number of
_interferers transmitting during the packet N is greater than or equal to 3, the approximation is within

5% of the exact packet-error probability, whils it is within 1% for N 2.7, '

The upper curve in each of the figures represents a slotted system in which all ¥ interfercrs are
present during the entire packet transmission.

Figure 3 illustrates the performance of the unsiotted FH-CDMA syuem with the RS(8,4) code.
As before, the approximation closely resembles the exact packet-error probability. When N = 4 the
approximation is within 10% of the exact packet-crror probability, while it is within 3% when

N = 7.

For the system parameters considered, the approximation provides excellent agreement with the
exact results. It appears that the proportional difference between the exact packet-crror probability
and the approximation decreases as N increases.  Also note that the packet-error probability as a func-
tion of N does not resemble a step-function, thus indicating *hat a threshold model does not provide a
good indication of system performance, as demonstrated in Ref. 9.

Figures 4 and 5 illustrate the upper bound and approximation. of the performance for the cases in
which the exact performance is not computable. Figure 4 shows the performance of the unslotted
FH-CDMA system with the RS(16.8) code. Figure S illustrates the approximation and upper bound
«if the packet-error probability of the system with the RS(12,168) code.

I
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It is of interest to compare the packet-error probability of the system with time-varying interfer-
ence to that of the system with constant interference. Table 2 contains the number of constant interfer-
ers that produce the same probability of packet error as 10 interferers whose transmissions start or
stop within the packet duration, where we ignore the fact that this number must be an integer. The
comparison is given for RS(4,2), RS(8,4), RS(16,8), and RS(32,16) codes and ¢ = 50 and 100 fre-
quency bins. For packet lengths of # = 16 and 32 symbols, the approximate packet-error probability
for N = 10 partial interferers was used for the comparison. Note that this number appears to
approach 5 as the code length increases.

Table 2 — Comparison of Time-Varying
Interference to Cor_tant Interference

‘Constant Interference Level
‘Corres‘ponding to 10 Partial Interferers
Code qg=350 q = 100
RS®4,2) 6.1 6.3
RS(8,4) 55 5.6
RS(16.8)* 5.15 5.15
RS(32,16)* | 5.1 5.1

*Approximate packet-error probability for ¥ =10
partial interferers used for comparison. .

CONCLUDING REMARKS

The packet-error probability performance of unslotted FH-CDMA with RS error control coding
is evaluated exactly for small packet lengths. Computational limits prevent the exact evajuation of
packet-error probability for longer packet lengths, and thus an upper bound and approximation to the
packet-error probability are derived and computed. The upper bound calculations are also limited
(though not quite as severely) by computational considerations, but the approximation is easily
evaluated for large codeword sizes. '

In all cases considered. the packet-error probability as a function of the number of other
transmitting users does ot resemble a step function. Thus detailed models that reflect channe! charac-
teristics and. coding properties are needed to provide an accurate evaluation of system performance.
Our previous observation [9] that the step-function channel model does not reliably predict perfor-
mance of spread spectrum multiple access systems is further confirmed by this study.
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