A REPORT SECURITY CLASSIFICATION LEFT E CTE Unclassification Authoms MAY 16 1989 Security CLASSIFICATION REPORT NUMBERS Security Classification Authoms May 16 1989 Security Classification Authoms May 18 Security Classification Authoms M	•	REPORT DOCL	IMENTA AD	-A207	940
22 SECURITY CLASSIFICATION AUTHORIX MAY 16 1989 3 DISTRUTION / AVAILABILITY OF REPORT 25 DECLASSIFICATION / DOWNGRAGENEXCHEDULE Unlimited 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 0001AD 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 0001AD 5 MONITORING ORGANIZATION REPORT NUMBER(S) 0001AD 6 NAME OF PERFORMING ORGANIZATION 65 OFFICE SYMBOL 10 MARY 16 1989 7. NAME OF MONITORING ORGANIZATION 10 SUBPREAM 001AD 6 NORE OF PERFORMING ORGANIZATION 65 OFFICE SYMBOL 11 MORE OF FUNDING/SPONSORING 65 OFFICE SYMBOL 12 DERSIG(GY, State, and 2/P Code) 7. ADDRESS (City, State, and 2/P Code) 13 DOTICE FUNDING/SPONSORING 85 OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 13 NOME OF FUNDING/SPONSORING 85 OFFICE SYMBOL 9. PROJECT TASK 14 DADRESS (City, State, and 2/P Code) 10 SOURCE OF FUNDING NUMBERS NONE 14 THELE Include Security Classification) Tack NO NO 15 TITLE Include Security Classification) Tack	Unclassified	ELECTE REAL		 	000
25 DECLASSIFICATION / DOWNGRAPMERGY HOULE UNITIMITED 4 PERFORMING ORGANIZATION REPORT NUMBER(3) 5 MONITORING ORGANIZATION REPORT NUMBER(3) 4 PERFORMING ORGANIZATION REPORT NUMBER(3) 5 MONITORING ORGANIZATION REPORT NUMBER(3) 6 ADDRESS (Chy, State, and ZIP Code) 5 MONITORING ORGANIZATION 6 ADDRESS (Chy, State, and ZIP Code) 0000 (AD 6 ADDRESS (Chy, State, and ZIP Code) 8 Monitory State, and ZIP Code) 7 ADDRESS (Chy, State, and ZIP Code) 8 OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-88-C-0717 8 NAME OF FUNDING/SPONSORING ORGANIZATION 8 DOFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-88-C-0717 8 ADDRESS (Chy, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM NO. PROCURE NO. NO. 11. TITLE (Include Security Classification) Technical Progress Report Number 4 10 SOURCE OF FUNDING NUMBERS PROGRAM NO. NO. NO. 13. TYPE OF REPORT 13b. TIME COVERED FROM BUJAND1 TO BUJAN31 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13. TILE (Include Security Classtrication) TES PROSONAL AUT	SECURITY CLASSIFICATION AUTHORIT			LABILITY OF REPORT	
a PERFORMING ORGANIZATION REPORT NUMBER(3) # 5. MONITORING ORGANIZATION REPORT NUMBER(3) KSC-TR-88-004 0001AD Sa NAME OF PERFORMING ORGANIZATION bb OFFICE SYMBOL (# applicable) 20. NAME OF MONITORING ORGANIZATION Ga ODRESS (Chy, State, and ZIP Code) bb OFFICE SYMBOL (# applicable) 20. NAME OF MONITORING ORGANIZATION Ga ODRESS (Chy, State, and ZIP Code) bb OFFICE SYMBOL (# applicable) 7b. ADDRESS (Chy, State, and ZIP Code) Ball Ading 36, 5701 E. Glenn St. Tucson, AZ 85712 Bb. OFFICE SYMBOL (# applicable) 7b. ADDRESS (Chy, State, and ZIP Code) Ba. NAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-88-C-0717 Ba. ADDRESS (Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM NO. SDID-W PROJECT NO. None None 11. TITLE (Include Security Classification) Technical Progress Report Number 4 10. SOURCE OF FUNDING NUMBERS PROGRAM None None None 13. TIME COVERED FROM 89JANO1 TO 89JAN01 TO 89JAN31 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 14. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. SIGNAL AUTHORIS, Signal Processing 15. SIGNAL AUTHORIS, Signal Processing 17. COSALI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by		SCHEDULE	Unlimited		
Ga. NAME OF PERFORMING ORGANIZATION Kensal Consulting Gb OFFICE SYMBOL (If applicable) 7a. NAME OF MONITORING ORGANIZATION Office of Naval Research Ga ADDRESS (City, State, and ZIP Code) Building 36, 5701 E. Glenn St. Tucson, AZ 85712 7b. ADDRESS (City, State, and ZIP Code) 800 North Quincy St. Arlington, VA 22217-5000 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-88-C-0717 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-88-C-0717 Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELIMENT NO. SDID-W None 11. TITLE (include Security Classification) Technical Progress Report Number 4 10. SOURCE OF FUNDING NUMBERS None None 12. PERSONAL AUTHORISS Kendal Prostess Report Number 4 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Target Detection, Cellular Automaton, Infrared, Signal Processing 15. PAGE COUNT Target Detection, Cellular Automaton, Infrared, Signal Processing 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and ident				NIZATION REPORT NU	MBER(S)
Kensal Consulting (// applicable) DDC9 Office of Naval Research 6c AODRESS (GN, State and ZIP Code) Building 36, 5701 E. Glenn St. Tucson, AZ 85712 ************************************	KSC-TR-88-004		- 0001AD		
Tucson, AZ 85712 Arlington, VA 22217-5000 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-88-C-0717 Bc. ADDRESS (Gry, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROJECT None None 11. TITLE (include Security Classification) Technical Progress Report Number 4 None None None 11. TITLE (include Security Classification) Technical Progress Report Number 4 None None None None 11. TITLE (include Security Classification) Technical Progress Report Number 4 None None None None 11. TITLE (include Security Classification) Technical Progress Report Number 4 Signal Processing Is. PAGE COUNT 12. PERSONAL AUTHON(S) Kendal Preston Jr. Is. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Target Detection, Cellular Automaton, Infrared, Signal Processing 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection endite. During the work period report to his project continued w		(If applicable)			
ORGANIZATION (If applicable) N00014-88-C-0717 B: ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROJECT TASK PROGRAM PROJECT TASK NOR ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS Non NOR PROGRAM PROJECT TASK NOR ACCESS Non None None None None 11. Title (include Security Classification) Technical Progress Report Number 4 12 PERSONAL AUTHON(S) Kendal Preston Jr. 13b TIME COVERED FROM <u>B9JANO1 to B9JAN31</u> 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 17/ COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Target Detection, Cellular Automaton, Infrared, Signal Processing 17/ COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17/ OS 01 19 ABSTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the reduction of nan optimum computing structures for use in target detection and to research i	ADDRESS (City, State, and ZIP Code) Building 36, 5701 E. Gle Tucson, AZ 85712	enn [®] St.	800 North Qu	incy St.	
PROGRAM ELEMENT NO. SDIO-W PROJECT NO. None TASK NO. None WORK ACCESS None 11. TILE (include Security Classification) Technical Progress Report Number 4 None None None None None 12 PERSONAL AUTHON(S) Kendall Preston Jr. AUTHON(S) Kendall Preston Jr. 14 Date OF REPORT (Year, Month, Day) 15. PAGE COUNT 13, TYPE OF REPORT Progress 13b. TIME COVERED FROM <u>B9JANO1</u> TO <u>B9JAN31</u> 14 Date OF REPORT (Year, Month, Day) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reports this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspec ratio. It-was concluded that, for the planar processor, the total processing time for a					ON NUMBER
ELEMENT NO. SDIO-W NO. None NO. None ACCESS None 11. TITLE (include Security Classification) Technical Progress Report Number 4 None None None 12. Pressonal authon(s) Kendall Preston Jr. 13b. TIME COVERED FROM B9JANOI to 89JAN31 14 Date Of REPORT (Year, Month, Day) 15. PAGE COUNT 13. Type of REPORT 13b. TIME COVERED FROM B9JANOI to 89JAN31 14 Date Of REPORT (Year, Month, Day) 15. PAGE COUNT 14. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Target Detection, Cellular Automaton, Infrared, Signal Processing 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period report this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable dat	ADDRESS (City, State, and ZIP Code)				
11. TITLE (include Security Classification) Technical Progress Report Number 4 12 PERSONAL AUTHOR(S) Kendal Preston Jr. 13a, TYPE OF REPORT 13b, TIME COVERED FROM <u>89JAN01</u> to <u>89JAN31</u> 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13b, TYPE OF REPORT Progress 13b, TIME COVERED FROM <u>89JAN01</u> to <u>89JAN31</u> 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. 17. 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. 17. 17. 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reported this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new stu			ELEMENT NO. NO.	NO.	WORK UNIT
Technical Progress Report Number 4 12 PERSONAL AUTHOR(5) Kendall Preston Jr. 13 TYPE OF REPORT TO SUB-COVERED FROM B9JAN01 to B9JAN31 14 DATE OF REPORT (Year, Month, Day) TIS TIME COVERED FROM B9JAN01 to B9JAN31 14 DATE OF REPORT (Year, Month, Day) TIS PAGE COUNT TIS TIME COVERED FROM B9JAN01 to B9JAN31 TIS PAGE COUNT TIS TIME COVERED FROM B9JAN01 to B9JAN31 TIS PAGE COUNT TIS COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) TArget Detection, Cellular Automaton, Infrared, Signal Processing V 17 O5 VIT 05 O1 TIS PASTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three-dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period report to this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our i	TITLE (Include Security Classification	n)	SUIU-W N	None None	None
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13. TYPE OF REPORT FROM	-				•
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13. TYPE OF REPORT FROM	2 PERSONAL AUTHOR(S)		····		
ProgressFROM _89JAN01 TO 89JAN3189FEB1516 SUPPLEMENTARY NOTATION17.17.17.17.18.17.17.11.17.17.11.11.12.13.14.17.11.11.12.13.14.15.16.17.18.18.18.19.19.19.19.19.10.10.11.11.12.13.14.15.15.16.17.17.18.19.19.19.10.11.11.11.12.13.14.15.17.17.17.18.19.19.19.10.11.11.12.13.14.15.15.16.17.17.18.19.19.19.19.10.11.12.13.14.15.16.17.17.18.19.19. <td>34 TYPE OF REPORT</td> <td></td> <td>14 DATE OF REPORT ()</td> <td>(ear, Month, Day) 15</td> <td>PAGE COUNT</td>	34 TYPE OF REPORT		14 DATE OF REPORT ()	(ear, Month, Day) 15	PAGE COUNT
17.COSATI CODES18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number Target Detection, Cellular Automaton, Infrared, Signal Processing17.11NoneSignal Processing19ABSTRACT (Continue on reverse if necessary and identify by block number)This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reported this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspec ratio. It-was concluded that, for the planar processor, the total processing time for a 512x51		<u> ROM_89JAN01</u> то <u>89JAN3</u>	1 89FEB15	<u> </u>	11
/ FIELDGROUPSUB-GROUPTarget Detection, Cellular Automaton, Infrared, Signal Processing11711NoneSignal Processing11705011119ABSTRACT (Continue on reverse if necessary and identify by block number)This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reported this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspect ratio. It-was concluded that, for the planar processor, the total processing time for a 512x5					
/ FIELDGROUPSUB-GROUPTarget Detection, Cellular Automaton, Infrared, Signal Processing11711NoneSignal Processing19ABSTRACT (Continue on reverse if necessary and identify by block number)This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reported this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspect ratio. It-was concluded that, for the planar processor, the total processing time for a 512x5					
V 17 05 01 ¹⁹ ABSTRACT (Continue on reverse if necessary and identify by block number) This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reported this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspec ratio. It-was concluded that, for the planar processor, the total processing time for a 512x5		ROUP Target Det	cection, Cellular .		
This project on subpixel target detection relates to research in the optimization of three- dimensional computing structures for use in target detection and to research in the reduction an optimum computing to an efficiently-designed silicon chip. During the work period reporte this project continued with additional work on the mathematical optimization of planar structures for executing cellular logic transforms. Optimization was based on the criterion of maximizing pixops (picture point operations) per device. Whereas our initial work had been based on a system which extracted data from a constant window size in a 512x512 field, this new study addressed the subject of variable data window size and variable data window aspec ratio. It-was concluded that, for the planar processor, the total processing time for a 512x5	<u>V 17 05 01</u>				
data field can be increased somewhat by enlarging the data window memory from 256 to 204 bits, but beyond this little or nothing is gained and, in fact, a great deal is lost in terms of extra silicon required.	This project on subpixel ta dimensional computing stru- an optimum computing to this project continued with structures for executing co- maximizing pixops (picture based on a system which of new study addressed the si- ratio. It-was concluded the data field can be increased bits, but beyond this little	arget detection relates actures for use in targ an efficiently-designed n additional work on t ellular logic transform point operations) per extracted data from a ubject of variable data hat, for the planar pro d somewhat by enlarg	to research in the get detection and to d silicon chip. Dur he mathematical of s. Optimization wa device. Whereas of constant window s a window size and pressor, the total p ing the data window	o research in the ing the work per- postimization of p as based on the our initial work ize in a 512x51 variable data w mocessing time for w memory from	e reduction of riod reported lanar criterion of had been 2 field, this indow aspect for a 512x512 256 to 2048
20 DISTRIBUTION/AVAILABILITY OF ADSTRACT 21 ABSTRACT SECURITY CLASSIFICATION IDUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS Unclassified					<u> </u>
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Keith Bromley 619-553-2535 7601T	UNCLASSIFIED/UNLIMITED				

TECHNICAL PROGRESS REPORT

NUMBER 4

Topic Number: SDIO 88-10

Title: Three Dimensional Cellular Automata for Subpixel Target Detection Contract Number: N00014-88-C-0717

From: Kensal Consulting, Tucson, Arizona (Code: 0D9C9)

To: Dr. Keith Bromley, NOSC, San Diego (Code: N00014)

Project Description:

This project on subpixel target detection relates to research in the optimization of three-dimensional computing structures for use in target detection and to research in the reduction of an optimum computing structure to an efficiently-designed silicon chip.

Technical Progress:

During January this project continued with additional work on the subject matter discussed in Technical Progress Report Number 1, i.e., the mathematical optimization of planar structures for executing cellular logic transforms based on the criterion of maximizing pixops (picture point operations) per device. Whereas in our initial work optimization had been based on a constant window size in the 512x512 field, this new study addressed the subject of variable size and variable aspect ratio data windows. The purpose of the study is to obtain the most efficient use of silicon in designing a chip for target detection computations in conjunction with our subcontractor Visual Information Technologies (Texas).

In the studies undertaken in January, four configurations were studied. Since the equations treating these configurations are non-linear, arithmetic means were utilized in order to obtain optimization results (instead of employing algebraic equations and the differential calculus). The cases studied span the range from a configuration where the LUT memory was considerably larger than the data window memory to the opposite, i.e., where the LUT memory was considerable smaller than the data window memory. These four cases will be taken up separately. In all cases it is assumed that the chip is addressed in a byte mode with a byte load time (or unload time) of 0.1us. Also, in all cases, it was assumed that there would be four devices per memory cell and, of course, a continued assumption that the memory for the window data was triply redundant and the data field itself always 512x512.

Case 1

The first case considered had the following parameters:

Parameter

Value

LUT Memory	8x512x4 = 16,384 devices
Window Data Memory	3x256x4 = 3,072 devices
Total Load Time	$(256/8) \times 1E - 7 = 3.2 \text{ us}$

Since information from the window data memory used to address the LUTs must come from three rows, the minimum window height is 3. By the same token, using a byte-loaded device, the minimum window width is 3 bytes (24 pixels) in order to solve the border overlap problem in processing eight columns. The results for this case are given in the below tabulation which lists merely the number of rows loaded (window height), the pixop rate per device, and the total processing time for the 512x512 field. Note that the window width (in pixels) is simply the size of the window data memory (256 pixels) divided by the window height and adjusted to be an integral number of bytes.

Window Height	Pixop Rate/Device	Processing Time	
3 4 5	5.1E2 7.5E2 7.7E2	26 18 17 (optimum)	tury Styringe
8 10	7.7E2 5.2E2	17 25	. εβ1/οτ α1.:Σ

2

The Processing Time is given in milliseconds. Results are plotted in Figure 1.

Case 2

The second case considered assumed a 2048-bit window data memory leading to the following parameters:

Parameter	Value
LUT Memory	8x512x4 = 16,384 devices
Window Data Memory	3x2048x4 = 24,576 devices
Total Load Time	(2048/8)x1E-7 = 25.6us

These parameters led to the following results:

Window	Height	Pixop Rate/Device	Processing Time
4		4.9E2	-
7		6.1E2	-
14		7.3E2	8.8 (optimum)
25		6.8E2	-
42		6.0E2	-
64		4.3E2	-
85		2.8E2	-

In the above tabulation only the optimum processing time is shown. All other results are displayed in Figure 2. It can be seen that for this case more than one graph is shown, namely, graphs for c=1, c=2, etc. The symbol "c" represents the number of reentrant recirculations of the data. In Case 1, recirculation was infeasible. As can be seen, recirculation by two cycles (c=2) yields a somewhat higher pixop rate and, therefore, improved processing time, than no recirculation (c=1). Improvement, however, is not particularly dramatic in comparison with the improvement in optimum processing time from 17ms to 8.8ms.

3

Case 3

In the third case, the window memory was enlarged to 8192 bits leading to the following parameters:

Parameter

Value

LUT Memory	8x512x4 = 16,384 devices
Window Data Memory	3x8192x4 = 58,304 devices
Total Load Time	(8192/8)x1E-7 = 102.4us

In this case load/unload time dominates. The pixop rate per device decreases. Since, however, there are significantly more devices, one might expect the processing time to further improve. However, this is not the case as is shown in the below table. (Again, only the optimum time is shown.)

Window Height	Pixop Rate/Device	Processing Time
16	3.2E2	-
31	3.1E2	7.4 (optimum)
56	2.8E2	-
102	2.4E2	-
170	1.7E2	-
256	1.2E2	-
342	0.9E2	-

Results are plotted in Figure 3. As in Figure 2, recirculation was studied for the values of c=1, 2, 4, and 8. Due to the fact that the window data memory was considerable larger, recirculation by eight cycles caused improvement in the total pixop time per device and, therefore, would improve the total time per field. Once more, the improvement is by a relatively small factor.

Case 4

The final case studied enlarged the window data memory even farther to

32,768 bits. This yielded the following parameters.

Parameter

Value

LUT Memory	8x512x4 = 16,384 devices
Window Data Memory	3x32768x4 = 393,216 devices
Total Load Time	$(32768/8) \times 1E - 7 = 409.6 $ us

Analysis of this case led to the following results.

Window Height	Pixop Rate/Device	Processing Time
64	8.7E1	7.4 (optimum)
120	7.8E1	-
240	6.4E1	-
409	4.9E1	-
512	7.1E1	-

This case is of interest since, as shown in Figure 4, the values of both c=1 and 2 show an initial drop in pixop rate per device as the window width is increased from 64 to 120 followed by a recovery as window height is further increased. The overall processing time is essentially the same as for both cases 2 and 3, indicating that there is literally very little value in placing large window data memories on chip.

Conclusion

The conclusion of this parametric study is quite simple. At least for the planar processor, the total processing time of a 512x512 data field can be increased somewhat by enlarging the window data memory from 256 to 2048 bits. Beyond that little or nothing is gained and a great deal is lost in terms of the extra silicon employed. These results have been transmitted to Visual Information Technology and we are now studying the implication of these results as regards the three-dimensional track detection processor described in Technical Progress Report Number 2.

5

memory=256

.

Pixop Rate per Device

Window Width

Figure 1

memory=2048

Window Width

Figure 2

Pixop Rate per Device

.

memory=8192

•

•

Pixop Rate per Device

Window Width

Figure 3

 10^{4}

memory=32768

Window Width

Figure 4

Pixop Rate per Device

· • • •