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Abstract

A major issue in any stereo vision system is the correspondence problem. In this report a feature-'
based stereo vision technique is described where curve-segments are used as the feature primitives in the
matching process. The local characteristics of the curve-segments are extracted by the Generalized Hough
Transform (R-table) representation of the curve-segment. The left image and the right image are first
filtered by using several Laplacian of a Gaussian operator _{VzG)Cof different widths (channels). Curve-
segments are extracted by a tracking algorithm and their centroids are obtained. At each channel, the
Generalized Hough Transform of each curve-segment in the left and the right image is evaluated. This is
done by calculating the R-table representation of each curve-segment using the centroid of the curve-
segment as the reference point. The R-table, is used as a local feature vector in representing the distinctive
characteristics of the curve-segment. Initial node assignments are formed between the left curve-segments
and the right curve-segments if they satisfy the epipolar constraint and their R-tables satisfy a similarity
measure. The epipolar constraint on the centroids of the curve-segment and the channel size is used to
limit the searching space in the right image. 4-- ./ -. * .( /

To resolve the ambiguity of the false targets (multiple matches) a relaxation technique is used where
the initial scores of the node assignments are updated by the compatibility measures between the centroids
of the curve-segments. The node assignments with the highest score are chosen as the matching curve.

Ksegments. This algorithm is believed to be an improvement of the Marr-Poggio-Grimson algorithm.

r
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APPLICATION OF MULTI-CHANNEL 1OUGI TRANSFORM
TO STEREO VISION

Dr. Nasser M. Nasrabadi

A major issue in any stereo vision system is the correspondence problem. In this report a feature-
based stereo visior technique is described where curve-segments are used as the feature primitives in the
matching process. The local characteristics of the curve-segments are extracted by the Generalized Hough
Transform (R-table) representation of the curve-segment. The left image and the right image are first
filtered by using several Laplacian of a Gaussian operator (V G) of different widths (channels). Curve-
segments are extracted by a tracking algorithm and their centroids are obtained. At each cthannel, the
Generalized Hough Transform of each curve-segment in the left and the right image is evaluated. This is
done by calculating the R-table representation of each curve-segment using the centroid of the curve-
segment as the reference point. The R-table, is used as a local feature vector in representing the distinctive
characteristics of the curve-segment. Initial node assignments are formed between the left curve-segments
and the right curve-segments if tiey satisfy the epipolar constraint and their R-tables satisfy a similarity
measure. The epipolar constraint on the centroids of the curve-segment and the channel size is used to
linit the searching space in the right image.

To resolve the ambiguity of the false targets (multiple matches) a relaxation technique is used where
the initial scores of the node assignments are updated by the compatibility measures between the centroids
of tkhe curve-segments. The node assignments with the highest score are chosen as the matching curve-
segments. This algorithm is believed to be an improvement of the Marr-Poggio-Grimson algorithm.

1. INTRODUCTION

. In applications, such- as robotics and automation, three dimensional information

about the environment is essential for the movement of robots and object inspection.

Depth information is important for the control of the robot arm as well as for object

modeling and recognition. The research proposed in this report concerns the develop-

ment of algorithms for obtaining the distance from the camera to the objects in the

scene using a pair of stereo images. The absolute or the relative depth information can

be obtained from vision techniques like monocular cues, motion parallex, stereo vision, IPY

structure light, and laser range finders. I

Monocular cues, for example structural texture [i], shading [2], shadow [3] and line ------

drawings [4], are ill-posed problems [41]-[43]. Solutions to these problems are very

difficult to obtain. In addition, these cues appear only in some images. Structure light -

[51 and laser range finders [61 are very effective in obtaining the depth, but their use is

also limited, to some particular environments. However, motion parallex [9] and stereo

vision are the most passive way, to acquire depth information. In this report, we are
y Codcs

Dist 3A -Ijcd
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only interested in stereo vision algorithms.

The major problem in stereo computation is to find the corresponding points in

the stereo images. The corresponding points are the projections of a single point in the

three-dimensional scene. The difference in the positions of the two corresponding

points in their respective images is called disparity. Disparity is a function of both the

position of the point in the scene and of the position, orientation, and physical charac-

teristics of the stereo cameras. The research proposed in this report concerns the

development of algorithms to solve the correspondence pioblem in a stereo vision sys-

tem.

Investigation into stereo vision algorithms is a significant research problem. There

has been a number of applications that use stereo vision systems, for example the three

dimensional inspection of VLSI chips by using a pair of Scanning Electron Microscope

(SEM) stereo images. Data obtained from a stereo system can be used in conjunction

with a robot arm to perform object manipulations. Recognition of objects in 3-D when

they are overlapping or touching is another research problem. Another application for

stereo vision systems is to create 3-D models of the work cell for robot arm trajectory

planning.

Stereo techniques have a number of applications in aerial photogrammetry [66]

(see Appendix lV). For example photogrammetrists use stereoplotters to obtain the

surface topography of the environment. These stereo plotters are operated manually

and 3-D information can only be obtained at a few interesting feature points where

correspondence is solved by the operator. There is a great need for an automated

stereoplotter and the solution is a stereo vision algorithm. In X-ray photogrammetry

[67], stereo X-ray images are used to obtain the location of foreign objects, such as bul-

lets in the body.

The camera's geometry [71-[8] in any stereo vision system is very important

because it is possible to constrain the search for matching pairs of corresponding image

points to one dimension. In this paper, it is assumed that the two cameras are

mounted such that their focal axes are parallel and the distance between the two cam-

eras (baseline), b, is fixed as shown in Figure 1. This is known as the parallel axis
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geometry. A detailed description of the camera's calibration is given in Appendix I.

Any point in the three dimensional world space, together with the centers of pro-

jection of the two camera systems, defines a plane called an epipolar line. In the

parallel axis geometry the epipolar lines are parallel to the scan lines. Thus the search

for finding corresponding points is unidirectional as shown in Figure 1.

Y z
P(X.Y.Z)

LEFT IMAGE PLANE/

Y, R)GHT IMAGE PLANE

1 //

LEFT I

FOCAL a

POINT RIGHT x

FOCAL

BASELINE POINT

Fig. 1. Parallel axes method, the cameras are set up such that their focal axes are parallel and the line
joining the focal centers '. p.vrpendicular to it [221.
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Consider the point P(X, Y,Z) in the world coordinate system that is imaged into point

P, and P in the right and left image coordinate plane respectively. The distance P',P

, where P', is the transformed location of P, in the left image plane, is known as

disparity. It can easily be shown [7]-[8] that the distance Z is inversely proportional to

the disparity. This is shown by expression

Z = b (1)

P',P'

where b is the distance between the origin of the cameras. Thus the points wh,-h sre

nearer to the camera will have a larger disparity than the points which are farther

away from the camera. Therefore once the location of the same target points P, and P,

are identified, the distance Z can be calculated.

In this report a high level stereo technique or structural matching technique is pro-

posed. In our proposed method, a global match between the left and the right image

curve-segments is achieved by using a graph matching technique [47]-[56]. The cen-

troids of the curve-segments in the left image form a graph that represents the

geometrical relationships of the left curve-segments, and portrays the structural infor-

mation about the object. A similar graph is formed for the right image. Sub-graph

isomorphisms are then obtained by using a clique finding technique [47] or a relaxation

technique [48].

The proposed technique is believed to perform better than line-based stereo tech-

niques because the iconic properties of each zero-crossing pixel are stored in the Gen-

eralized Hough representation of the curve-segment so no information is lost. Also the

ambiguity in identifying continuous long curve-segments in a pair of stereo images

should be much less than that in identifying short line-segments.

In this report, a review of the previous work on stereo vision algorithms is given in

Section 2. The proposed research is discussed in Section 3, and a detailed study is

given in the subsequent subsections. In Section 4, experimental results are presented.

Finally in section 5, conclusion is given.
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2. A REVIEW OF STEREO VISION TECHNIQUES

To solve the correspondence problem, one can divide the algorithms into the fol-

lowing categories:

[11 Cooperative algorithms [9] - [12].

[21 Area-based matching [13] - [15].

[31 Feature-based matching [161 - [23].

[4] Gradient techniques [24].

[5] Others [26], [32] - [33].

The human stereo vision system has been an interest to psychophysicists for a

number of decades [9]-[12]. The human visual system, (HVS), has several powerful

depth sensing cues. These cues can be classified into Monocular and Binocular cues.

One such binocular cue is stereopsis. This is based on" the geometrical fact that two-

dimensional projections of a three-dimensional object on the left and the right retina

differ in their horizontal positions. This horizontal shift between corresponding points

in the two retinal images is called retinal disparity. Other binocular depth cues are the

complex vergence control of the eye and correlative accommodation, (differential focus-

ing of two eyes) [10 pp.144], but these cues are not as powerful as stereopsis.

Monocular cues, such as gradient texture [9], perspective cues, shape from shading,

shadow, occlusion, line-drawings, and movement parallax are very important in depth

perception. Monocular movement parallax is a particularly strong depth cue. Its

action is very similar to stereopsis. The movement of the eye's position creates motion

disparities such that objects closer to the eye appear to have moved faster than objects

that are further away. These motion disparities will produce a depth sensation in the

human visual system.
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The binocular cues and monocular cues interact with each other in unknown com-

plex ways to produce the relative depth sensation. Julesz [101 set up an experiment

where the monocular depth cues were removed by using his computer generated

random-dot stereograms. Figure 2 shows a pair of random-dot stereogram images.

These images have identical random-dot textures. Certain areas of these textures are

identical and shifted relative to each other in the horizontal direction as though they

were solid sheets. These stereograms when viewed monocularly appear as random-dots,

but when the pair is seen through a stereoscope or crossing the eyes, a flo-ting square

in space above the plane of the background will be perceived t10 pp.1561. This proves

that binocular disparity alone can cause sensation of depth. There are also no monocu-

lar structures in the stereogram that can be matched by vergence control. Julesz also

performed experiments to investigate the range over which one can fuse two images,

the expansion and rotation of one stereogram with respect to the other, and the fusion

of the stereogram if it contains the same frequency components 110 pp.98].

Fig. 2. Random-dot stereograrn of 33x33 resolution, the center square is only 15x5 and displaced hv
a few p""e"s [10 PP. 156].
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Julesz proposed a magnetic dipole model where tiny compass needles were ima-

gined to be suspended at their centers so that the needles can rotate in any direction in

or out from a plane. Two networks of magnetic dipoles were arranged. One for the

left image and another for the right image. The two networks were overlayed and the

polarity of each needle, (North or South), was chosen according to the intensity of the

image, (black or white), at that location. The end points of neighboring needles on

each side were coupled together by springs to produce a global fusion or to satisfy the

continuity rule [10]. His model works by some random shift aligning of certain similar

dipole arrays, which are said to be interlocked. Searches are then made for other simi-

lar dipole arrays by performing horizontal shifts. The above cooperative model will not

be very useful in our robotics application because the objects that are viewed in the

robotics application have a lot of monocular cues that could be used for stereo fusion.

Marr and Poggio [11] proposed a cooperative algorithm where a parallel and inter-

connected network of processors were used to fuse a pair of binary stereograms. In

their algorithm, they introduced and implemented three rules [11 pp.115] as given

below:-

1) Compatibility: Black dots can match only black dots. •

2) Uniqueness: Almost always a black dot from one image can match no more

than one black dot from the other image.

3) Continuity: The disparity of the matches varies smoothly almost everywhere

over the image.

In Figure 3, continuous vertical and horizontal lines represent lines of sight from

the left and the right eye. The intersections of these lines correspond to possible dispar-

ity values. The dotted diagonal lines are lines of constant disparity. At each intersec-

tion, or node, a processor is placed such that all the processors at the nodes along each

vertical or horizontal line will inhibit each other, and connections along the dotted lines

in Figure 3 will exhibit each other. This network of processors is left to run iteratively

by first initializing it, (putting a 1 wherever two black dots match and 0 at all other

places). Each processor adds up the I's in its excitaory neighborhood, adds up the l's

in its inhibitory neighborhoods, and subtracts the resulting figures as represented by



the iterative relation,

,: E - OIzd+ Z,.; (2)
f ',y';d' f S(Z, ;dl z',y';d' f O(Z,y;d)I

where CtSz.d denotes the state of the call corresponding to position (z,y), disparity d,

and tth iteration. S(z,y,d) and O(z,y,d) are the local excitatory and inhibitory neigh-

borhoods respectively. CO represents the initial states, e is an inhibition constant, and

cr is a threshold function.

(3,,

Ohl

Fig. 3. The continuous verticil .id horizontal lines represent lines of sight from the left and the right

eye. The intersection. ,I the,e lines corespond to possible disparity values. The dotted diago-

nal lines are lines of con,.ant disparity [11.
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Marr-Poggio tested their algorithm on a pair of stereograms. The technique was

successful to fuse the stereo images after 14 iterations. The algorithm performs better

on the high density stereograms than on sparse stereograms, but it becomes very slow

as the number of nodes increases. The two cooperative algorithms mentioned above

are very successful in simulating binocular cues of the eye, but there are several other

cues that are important which could be used to improve the stereo vision algorithms.

The reason for proposing such a point-to-point cooperative matching technique

was that the human binocular vision system can easily fuse random dot stereograms.

Since these stereograms do not show any structural information before fusion, it is sug-

gested that the stereopsis is performed at a very low level such as point-to-point match-

ing of gray-level intensity of the image. However, Hubel and Wiesel [68]-[69] have

demonstrate that there are several different neuron cells (known as simple, complex and

hypercomplex cells) in the primary visual cortex that respond best to a specific direc-

tional stimuli, such as vertical or horizontal oriented light bars (see Appendix III).

Barnard [62]-[631 presented a stochastic optimization technique (simulated anneal-

ing) to fuse a pair of stereo images. It is now known [75) that a Markov Random field

(MRF) defined over a neighborhood is equivalent to the Gibbs distribution of the whole

system. There are stochastic techniques such as the simulated annealing [74] where glo-

bal minimization can be obtained proveded the system is a Gibbsian. Thus, a func-

tional (energy) similar to regularization theory introduced by Poggio [411-[43] is minim-

ized whose solution is the stereo correspondence. The functional energy is given by

E = I I 11(i,j) - I,(i,j + D(k)) II + X I IV D(k) II (3)
I,,

the first term in the summation represents the photogrammetric constraint and the

second term smoothness constraint.

Prazdny [61] introduced a parallel stereo algorithm allowing the disparities from

the neighboring point to give support if their disparities were similar. No inhibitory

score was allowed because if disparities are not similar they belong to a different physi-

cal object. He introduced the coherence constraint which states that the neighboring

disparities of elements corresponding to the same 3-D object must be similar. In his
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algorithm first he finds all potential disparities for each feature point (edges) in the left

image. Associated with each possible disparity is an activity cell whose value indicates

the amount of support the particular disparity receives from its neighbors.

The local support for each point i with a given disparity d, is calculated by

Id - di '2

2cli-jlV 12

where j is a neighboring point. For any feature point in the left image the maximum

local support from all the neighboring points are added together for each possible

disparity. After the support for all possible disparities at a given point has been deter-

mined the disparity with the largest support (the highest value in the associated

activity cell) is chosen as the most likely disparity at that point.

In area-based matching, cross-correlation is used to determine matches between

windows in one image with windows in the other. One major disadvantage of the

area-based stereo technique is the computation of the cross-correlation at each image

sample. To reduce the computatioli cost, cross correlation is applied only to pixels

with high local variance [27], or to edge pixels and their neighbors [28]. Multiresolution

cross-correlation or binary correlation can also be used [15]. Area based matching per-

forms well only when the scene is smoothly varying and continuous. But in applica-

tions, such as robotics where there are several objects at different depths as well as

occlusion, the area correlation does not perform well.

The correlation measures that are commonly used are

COR = E (X * Y,) (5)

which can be normalized by the means of the samples

CORl = (Xi - X) * (Y, - Y) (6)

or by the second moments of the samples

'V (X * y)

COR = * (7)

V i
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where Xi and Yi represent a pair of stereo image with means of X and Y respectively.

Rather than using correlation measures, difference measure can also be used such

as root-mean-square (RMS) error;

R/M (.Y. - y,2(8)
n

which can also be normalized by the means of the samples.

RMS V -1 E ( ( X - X)- (Y. - y) )2 (9)
n

Absolute difference is also used.

AD = A - yo (10)
n

It too can be normalized by the means

AD (i ) (11)
n

Feature based stereo algorithms are believed to be computationally less costly than

area-correlation and have better accuracy because features, such as edges, can be

detected to a sub-pixel accuracy. Two feature based methods have become very popu-

lar. One is by Marr-Poggio-Grimson [29]-[301, and the other by Baker and Binford [31].

Both of these techniques are edge matching methods. The major difference in the two

algorithms is the way in which the edges are matched.

In the Marr-Poggio-Grimson (MPG) matching algorithm, edge pixels that have the

same edge polarity, have approximately the same orientation, and lie on the same epi-

polar line in the left image, are matched with the edge pixels in the right image. The

matching process is done in several channels in order to use the coarse-to-fine strategy.

In coarse-to-fine strategy, coarse features are first matched, and then the results are
used to converge the matching of finer features (see Appendix II).

A major drawback of the MIPG algorithm is that the matching process in each

channel is performed locally between a zero-crossing pixel in the left image and a zero-

crossing pixel from the right image. This was pointed out by Mayhew and Frisby [23],
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and they proposed a modified MPG algorithm by including the figural continuity of the

zero-crossings. In their algorithm, a zero-crossing pixel in the !eft image is said to be

matched with a zero-crossing pixel in the right image provided that the neighboring

zero-crossing pixels lying on the same edge are also matched. They found that as the

number of neighboring matching points is increased as a constraint, the number of

zero-crossing mismatches is drastically reduced. The proposed algorithm in this paper

incorporates figural continuity because our matching primitives are curve-segments.

Therefore, the number of false targets or mismatches is expected to be much smaller

than that of the MPG algorithm.

Kim and Aggarwal [22] introduced a feature-based stereo algorithm with zero-

crossing as a matching feature. Figural continuity was incorporated into the algorithm

by using zero-crossing patterns. Each edge pixel with its 8-neighboring possible edge

points were classified into nine 3 X 3 patterns according to their vertical connections.

A relaxation technique is used with initial local probability obtained from the similarity

of matching patterns and the difference in intensity gradients. The probabilities are

iteratively improved by using the continuity of the disparity. No result for rcoetitive

scene patterns or scenes with occlusion is given.

Baker and Binford [31] proposed a similar algorithm. They incorporateJ the

coarse-to-fine strategy, but they used a modified Viterbi algorithm to match the e'iges

between each pair of the epipolar lines. The Viterbi algorithm is a recursive optimal

solution to the problem of estimating the state sequence of a discrete-time finite-state

Markov process. Baker and Binford assumed that no edge reversals occur in the image

plane. Therefore, in their assumption the same edge sequence in the left image will

occur in the right image plane. The Viterbi technique is different from the normal

search methods because it partitions the original problem into two sub-problems recur-

sively each of which can be solved optimally. The Viterbi algorithm is implemented by

an array of p(i , j) where i and j represent the ith and jth edges in the left and the

right image. Each entry in p(i , j) has associated with it a local score, a cumulative

score, and predecessor links. In the reduced resolution, the local score is evaluated

from edge point attributes, such as contrast about the edge, intensity difference about
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the edge, and interval compression ratio. In the case of the full resolution, orientation

of the edge and the reduced resolution correspondence probabiP ties are also included.

The problem with this technique is that it is computationally very expensive because at

each edge pixel the probability scores have to be evaluated.

Ohta and Kanade [731 extended Baker's method to include the inter-scan line

search in order to exploit the edge continuity constraint (figural continuity). A sub-

optimal global match is achieved by this technique although it is computationally very

intensive. One major problem with the Viterbi algorithm is that the order of edges in

the left and the right image must be preserved.

Recently Medioni and Nevatia [20] introduced a curvE-based matching technique.

In their algorithm local edges were extracted by using the 5X5 directional Nevatia-

Babu edge operators [38]. After thinning and linking the edges, edge boundaries were

segmented into piece-wise linear segments. For each linear-edge segment some local

features were extracted, such as the length of the edge, average contrast along the edge

and orientation of the edge segment. A measure of match between the left and the

right edge segments were evaluated within a window represen"ting t-he maximum dispar-

ity. This measure of match also incorporated a global match between all the possible

matches within this window. Therefore a global consistency between possible matches

was evaluated.

Ayache and Paverjon [57] introduced a similar technique where linear-edge seg-

ments lying within a window were considered for match. Local predictions for tenta-

tive matches were hypothesized between segments which intersect a common epipolar

plane, and whose disparity lies within a predefined window (maximum disparity). A

global verification is then perforned for each hypothesis in a recursive manner. This is

achieved by assigning new maciies between neighboring segments which intersect a

common epipolar plane whose filparity is close to the disparity computed between the

previously matched segments, .. hich verify some loose geometrical similarities.

Hwang and Hall [58] int.,),iiuvd a stereo matching technique where relational

tables for the left image and ri hirt image were formed for solving the correspondence

problem. Images were first segmented into regions. Edge segments and vertices were
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extracted and labeled. The structural relationships among these labels in each image

were tabulated in a relational table. A global match between the two relational table

were then formed.

In the gradient techniques, the stereo images are registered with each other by

using some numerical techniques, such as the Newton-Raphson iteration method or the

Hill Climbing iteration [45]. Spatial intensity gradient techniques have been used for

the measurement of optical flow [44]. One such method was proposed by Lucas and

Kanade [24]. Their algorithm starts with an initial estimate of the disparity, and it

uses the spatial intensity gradient at each point of the image to modify the current esti-

mate of the disparity. This process is repeated in a kind of Newton-Raphson iteration.

Problems with this technique are that a number of iterations have to be perfolmed,

and a good initial estimate for disparity is needed to start up the iteration. -However,

sub-pixel accuracy is possible with this technique. It would be very interesting if gra-

dient techniques and edge-based matching methods could be combined.

Barnard and Thompson proposed [26] an algorithm to solve the disparities

between two images caused by binocular or motion parallax. In their algorithm they

extracted a large number of distinct features using Moravec interest operator, (the

sums of the squares of the differences of pixels in four directions are computed over a

small area), in the left and the right image. For each potential candidate point in the

left image, an initial collection of possible matches from the right image that lie within

a given distance are established. A probability confidence based on intensity difference

around each match point is determined. The estimates are iteratively improved with a

relaxation labeling algorithm that uses a continuity constraint. Using the continuity

constraint, the candidate point will receive a support from its neighboring matched

candidate point if they have approximately the same disparity and are within a proxi-

mate distance. Barnard and Thompson demonstrated their algorithm on a stereo

image and showed that after 8-10 iterations almost all the candidate points in the left

match their corresponding points in the right image. This technique is only successful

if a large number of target points are considered. In order for the continuity constraint

to work, the target points have to be dense and close to each other.

........ . . . . .. - -- m nilHi Il • I I I N
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Recently a new technique was proposed [32] only for planer objects where no point

correspondence was used. Lin and Binford [33] also introduced a new technique where

junctions in a pair of stereo images were tried to be matched with a global constraint.

A correspondence is said to be obtained for a junction if the junctions connected to it

are matched, and the iconic properties of the curve joining the two junctions are

satisfied. In [80] Lin and Binford introduced a hierarchical stereo vision system. Bodies,

surfaces, curves, junctions, and edgels are used as feature primitives in the matching

process. In their algorithm, bodies are matched followed by surfaces and then junc-

tions, and then curve-segments joining them. Thus, high-level features are matched

first and the resulting constraint are used to match low-level features. Hoff and Ahuja

[77] have recently introduced a stereo vision algorithm where feature matching and sur-

face interpolation was integrated.

3. The Overview of the Proposed Curve-Segment Stereo Matching

In this report, a new stereo vision technique is proposed [34] to solve the

correspondence problem. Given a pair of stereo images, several Laplacian of a Gaus-

sian filters (V2G) of different filter size are applied to each image to extract features at

different frequency ranges (channels). For each channel the zero-crossings for the left

and the right image are extracted. A tracking algorithm is then used to split the zero-

crossings into curve-segments. For each curve-segment the centroid is calculated using

the coordinates of the edge points that form the curve-segment. The Generalized Hough

Transform (R-table) [46] of the curve-segment is evaluated using the centroid as the

reference point. Once the Generalized Hough Transform is evaluated for all the curve-

segments in the left and the right image, the matching process looks for instances of

the left curve-segments in the right image.

To obtain a global match, the structural information about the objects in the

scene must be used in the matching process. To achieve this a multi-channel graph

matching technique is proposed. At each channel a graph is formed from the curve-

segments in the left image, where the centroids of the curve-segments represent the

nodes of the graph, and the extracted information about the curves represents the local
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properties of the nodes. A similar graph is formed from the curve-segments in the

tight image. In a pair of stereo images the structural information about each indivi-

dual object is almost preserved, especially when the distance between the two cameras

is very small. Thus a graph isomorphism (clique finding) technique is used to find the

best subgraph match between the left and the right image graphs. Also a relaxation

technique [56] with the help of the epipolar constraint on the centroids is used to find

the corresponding nodes between the two graphs. Since each object in the scene can

have different disparities a pure graph isomorphism is not always possible. However,

the relaxation technique will find the best sub-graph in the left image that matches the

graph in the right image.

The matching process starts at the coarsest channel, and the matching procedure

is repeated for each channel. The disparity information from the coarser cbannels is

used to converge the correspondence for the curve-segments from the finer channels.

At the coarsest channel a "booting" disparity value is used to begin the process.

Once the curve-segment correspondence has been achieved, the pixel disparity is

evaluated by subtracting the x-coordinates of the edge pixels in the left curve-segment

from the x-coordinates of the right curve-segment (due to the camera's geometry, the

disparity is only a horizontal displacement in the x-direction). This pixel disparity

information is used to converge the matching process at the finer channels. In the fol-

lowing subsections we discuss the details of the proposed technique.

3.1. Edge Detection

The zero-crossings in the left image and the right image of a stereo pair are

detected by using a two-dimensional Laplacian of a Gaussian operator given by,

_i2_+i2)__ (i2 + j2)

V 2G(iJ) = (i2 )-] exp{ 2 2 } (12)

where the size of the operator and its spatial frequency characteristics are determined
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by the value of the constant cr . Following Grimson's representation [29], the central

width of this operator W is given by the following expression

IV = 2%/2 a (13)

The operator size is limited to a window size of 1.81Y, because the magnitude of the

coefficients falling outside this window is very small. Zero crossings are obtained by

scanning along each processed image line and locating pairs of adjacent elements of

opposite signs.

The orientation 9,y is calculated from the local gradients in the X and Y direction

of the convolved image. The orientation at each edge pixel is needed in the tracking

algorithm and in the Generalized Hough Transform evaluation. The local gradients in

the X and Y direction are calculated by the following operators:

BY -2 0 2
= 0 (14)

'0 '

1- -2 -1]

S 0 0 (15)

Then the orientation is given by,

0 tan -  8- (16)

Zero crossings are obtained by scanning along each processed image line and locating

pairs of adjacent elements of opposite signs. This edge detector is known as the Marr-

Hilderth operator [35] which is already simulated on the computer. Figure 4 represents

the zero-crossings extracted from a pair of stereo images and Figure 5 represents the

corresponding orientation of the zero-crossings. Figure 6 represents the original pair of

stereo images.

Two other techniques such as Haralick [36] and Canny [37] edge detectors were

investigated. Haralick proposed an edge detector, in which he suggested that the

underlying gray tone intensity around each image pixel can be approximated by a
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cubic polynomial. This cubic polynomial was decomposed into a set of discrete orthog-

onal polynomials. Edge pixels were detected when there was a zero-crossing of the

second directional derivative taken in the direction of the gradient. Canny studied the

desirable properties of an optimal edge detector, and his criteria were based upon the

efficiency of detection and reliability in localization. He designed an optimal edge

detector, (according to his criteria), which approximated to finding of maxima in gra-

dient magnitude of a Gaussian-smoothed image. Torre and Poggio (39]-[401 introduced

an edge detection technique based upon a regularization theory. In this method the

edge detection is considered as an ill-posed problem, and the solution was obtained by

finding a filter that minimize an appropriate functional.

3.2. Feature Primitive and Curve Tracking

We have chosen curve-segments as our matching feature primitive because of three

desirable characteristics. First, a curve-segment can still be identified even if it is par-

tially occluded. Also, the figural continuity constraint is automatically satisfied by

using curve-segments. Finally, the problem of finding a unique match for a curve-

segment is much less ambiguous than for a point target and should produce fewer

mismatches.

One advantage of using curve-segments as a feature primitive over edgels is that a

graph can be formed for each image to represent the local properties of the curve-

segments as well as the relational (structural) properties between the curve-segments.

Consequently, a graph matching technique (relaxation) may be used to obtain a global

match between the left image curve-segments and that of the right image curve-

segments. It is also important to note that the centroids of the curve-segments should

satisfy the epipolar constraint inposed on them by the camera's geometry.

To identify each curve-seg'nent, the Generalized Hough Transform representation

of the curve is evaluated. This represents the iconic properLy of the curve-segment and

is used to identify the instance of the same curve-segment in anothcr image. Other

image signatures such as Curvature vs Arclength or Slope Density Function [471 could

have been used to represent the iconic properties of the edge pixels. The Generalized
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Hough Transform can easily be extended to include other properties of the curve, such

as the average gray level, gradient, curvature, color, end point locations of the curve-

segment, or the type of junctions terminating the curve-segment.

A tracking algorithm [55] is used to segment the boundaries of the objects in the

scene into short curve-segments. Each curve-segment is labeled by a number, the loca-

tions of all the edge points forming the curve-segment are stored, and the centroids of

each curve-segment are calculated. The starting points for tracked curve-segments are

the edge pixels whose gradient magnitudes are above a pre-defined high threshold.

From each starting point the curve is tracked recursively in both directions by consid-

ering the magnitude and the orientation of the neighboring points. At any point on

the curve each of its 8-neighborhood points is included in the tracked curve if its gra-

dient magnitude is above a pre-defined low threshold, and its orientation does.not differ

by more than a pre-defined threshold, say 10', from the previously tracked point. If the

difference in the orientation between two tracked points exceeds the threshold, or if the

magnitude of the new point dips below the low threshold, then the curve is broken off.

Also as each curve is tracked, a record of the edge pixel locations is kept, as well as the

total length of the curve-segment; very short curve-segments are discarded. A set of

curve-segments is thus obtained for the left and the right image. For each curve-

segment its centroid is calculated which is given by

i - (17)N

ii- l

N, , (

where N is the length of the curve-segment and (x.,yJ) the coordinates of the edge pix-

els. The above information is then used in the Generalized Hough transform algorithm

to generate the distinctive R-table of each curve. Figure 7 shows the curve-segments

extracted from a pair of stereo images. The curve centroids are represented by cross-

marks.

More research is needed on the tracking algorithm, the simulated technique in this pro-

posal is not always effective and sometimes it will produce broken curve-segments. The
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parameters needed to obtain the same curve-segments for each image may be different.

We intend to investigate better ways of tracking and segmenting the zero-crossings.

For example, we could track curves and segment them at the points of high curvature.

3.3. The Generalized Hough Transform

To identify an instance of each left curve-segment in the right image we must

extract and use some distinctive features about the curve. We use the Generalized

Hough Transform [46] of the curve as a distinct property of the curve-segment. The

Generalizzd Hough Transform is used because it groups all the information about the

individual zero-crossings on the curve into a single table which uniquely represents that

curve-segment. The Generalized Hough Transform is very robust in finding a match

for a curve-segment even when some part of the curve is occluded, or when edge pixels

are noisy and point-to-point matching is not possible. A table called the R-table is

constructed for each curve-segment in the left and the right image. This is done by

calculating the orientation 0 of each edge pixel (ei e) of the curve-segment E' and the

vector distance between the centroid of the curve-segment C' = (c',c) and the edge

pixel location; this distance R' is given by (r.,ry) (c_-ec-e ). In the R-table these

(r.,r) are listed as a function of O.. This table is used to detect instances of the same

curve segment in the right image, with the additional constraint that the difference in

the locations of the matching centroids is only a horizontal shift. This difference in

location is a result of the parallel axis camera geometry. A curve-segment in the left

image is said to be matched with a curve-segment in the right image if their R-tables

are approximately the same. Other properties of the curve, such as the average gray

level, average gradient, average curvature of the edgels on the curve, or color of the

curve, may also be used to represent the local characteristics of the curve and be used

as constraints in the matching process.
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3.4. Matching Process

The tracking algorithm produces a set of curves with distinct local characteristics,

stored in the R-tables of the curves. The curve stereo matching problem may now be

considered as a point matching problem between a set of points from the left image

and a set of points from the right image. Since the number of centroids is much less

than the number of edge pixels, the matching is easier and faster. Also sophisticated

matching techniques exist in which the relationships among the curve centroids may be

used to obtain a global match between a set of centroids in the left and the right

image.

A multi-channel graph matching technique is proposed to obtain a global match

between curve-segments in the left image and those in the right image. In this tech-

nique, two graphs are formed in each channel where the graphs represent the structural

relationships and the local properties of the centroids of each image. Sub-graph iso-

morphisms are then obtained by a relaxation technique or a graph isomorphism method

(Clique finding) for each channel.

3.4.1. Multi-Channel Graph Matching

The input to the matching algorithm is the set of curve-segments extracted from

the left and the right image. Each curve-segment is identified by a number, the loca-

tion of its centroid, its R-table representing the properties of the curve-segment, its

curve-length, and the location of each edge pixel belonging to the curve.

Using the centroids and the R-tables of the curve-segments, a relational graph can

be formed for each image. The nodes of the graph represent the location of the cen-

troids of the curve-segments, and the arcs represent the relationship between the cen-

troids. The R-table of the curve-segment represents the local (iconic) properties of the

node and the distances between the centroids are used to represent the structural

characteristics of the objects in the scene.

Let graphs L( N, P, El' a ) and R( N,, P,, E,, a ) represent symbolically the left

and the right image respectively where N represents the number of nodes (curve-
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segments), P a set of local properties of the nodes, E a set of relations between the

nodes, and a representing the channel. In our matching algorithm, the R-table of each

curve-segment is the local property of the corresponding node, and the distances

between the nodes are the relational properties between the nodes.

If local properties P of a node N in graph L approximately matches, by a similar-

ity measure, the local properties P' of a node Ni in graph R, then this pair of nodes

(NPj,Nj) is said to form a node assignment, provided the epipolar constraint on the cen-

troids is also approximately satisfied. The measure of local similarity for node assign-

ment in our matching algorithm is given by the ratio

S(N,N) A (19)Lt'

where A' represents the Hough accumulator value obtained when the R-table of the

left curve-segment El' is compared with the R-table of the right curve-segment Ej and

LI' represents the curve-length. Two node assignments (N,Nj) and (Nr',N,") are said to

be compatible if their relational properties are satisfied. A compatibility measure

between them is given by the ratio

C(N,N]'; N,N,) - (20)
(dm -- dfl 2

1+ B

where dj"m represents the distance between the centroids of the i and the mth curve-

segment in the left image and d,"i that of the jth and the nth curve-segments in the

right image, B represents a constant say B = 10. The relational graphs obtained from

the left and the right image can be matched by a clique finding technique [28] or by a

relaxation technique using the node assignment and compatibility measures as discussed

below.

1) Epipolar constraint on the centroids: Starting at the coarsest channel for each

curve-segment El" in the left image a matching curve-segment Ej is sought in the right

image in order to form a node assignment. Due to the cameras' geometry, the location

(c',c') of the centroid of the left curve-segment will be displaced by a disparity

value in the right image. Ideally, the disparity value is simply a horizontal shift, i.e.,
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the centroids should be on the same epipolar line. AlLhough, due to the geometrical

distortion, imperfections in the tracking of the curves, and partial occlusion, the cen-

troids of the corresponding curves may not be exactly on the same epipolar line. How-

ever, for most of the corresponding curve-segments their centroids will fall within a few

scan lines of each other. The horizontal displacement between the centroid of the left

curve-segment and that of the corresponding right curve-segment is called the centroid

disparity.

2) Node Assignment: To find the node assignments for a given curve-segment El in

the left image all the nodes (centroids) that are within a search window

2W, x W,, 1.) around the point (c, + ',cy) in the right image are considered as can-

didates. Here, (ci,c') is the location of the node (centroid of the left curve-segment)

and ' is the average disparity around the curve-segment which is obtained from the

previous channel disparity buffer. An initial rough estimate of disparity is assumed for

the coarsest channel.

The R-table of each candidate is compared with that of the left curve-segment and

an initial score between the two curve-segments is calculated. To compare the R-table

of the left curve-segment with that of the right curve-segment, each 0' entry of the R-

table of the left curve-segment is compared with all the 03 entries of the R-table of the

right curve-segment. If the orientations are approximately the same 10'Y - 03 1 : 5°thntelcto i'+ ri " Y

then the location (( c Z  - r c) ,( r; - rl)) in the two-dimensional Hough

accumulator is incremented by one. Thus, if there is a similarity between the R-tables

there will be a Hough peak. Let the value A' represent the Hough peak (number of

matched points) at the location c. , c ') in the Hough accumulator obtained from the

curve-segment j. The local node assignment score is given by the expression (19). If

there is no candidate with a r,,o:,c .uqignment score satisfying

. ) - A'- 0.7
Ll' .(21)

then this left curve-segment -w. o o through a modified node assignment process

which is discussed below.

3) Node assignment for occluded and broken-distorted curves: Due to occlusion,
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imperfect tracking, and distortions in image formation, some of the curve-segments

extracted from the left and the right image do not have the same curve-length. This

can cause the centroids from the right image to fall outside of the search windows

described above, and can result in a failure to match the curve from the left image.

This problem is especially serious for the finest channel when the window size is very

small.

Any curve-segment in the left image may find a match with one or several curve-

segments in the right image, (i.e. broken curve-segments), and vice versa. For each of

these unmatched curves we perform a standard Hough Transform against all the

curve-segments in the right image. Any curve-segment j in the right image that gives

a peak value A' within a search window of size ( 2W0, x W,=,., ) around the displaced

centroid of the left curve-segment (c' + W',c') in the Hough accumulator buffer, is said

to be a matching curve and the node assignment is given by

S ( N , Nj) = A j (2
Minimum (Lt , L;) (22)

For each matching curve a new curve-segment is created with the location of the

Hough peak as its new centroid, and a new R-table based upon this centroid is formed.

If there are two matching curves with their centroids a few pixels from each other then

they are combined into one single curve-segment and one of the centroids is assigned to

it. Table 1 shows the centroid locations of all the curve-segments extracted and

created from the left and the right stereo images of Figure 9. Curve-segments #40 to

#72 were generated during the node assignment process.

There is a possibility that there is more than one node assignment for a given left

curve-segment within the searching window of size ( 2V ,, W, =1. 5 ) in the right image.

To resolve the ambiguity in false matches the structural compatibility between node

assignments has to be employed by a global matching technique.
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3.4.2. Clique Finding

The correspondence between two sets of nodes N, and N, obtained from the left

and the right image respectively can be considered as a point pattern matching or a

graph matching problem. To match two relational graphs we have to find the match-

ing nodes, two graphs are said to be isomorphic if there exits a one-to-one node assign-

ments which are also mutually compatible. Due to occlusion and noise a complete

match (isomorphism) between the two relational graph can not be found. But a sub-

graph of the left image graph can find a match with the subgraph of right image graph

this isomorphism is known as "Double" subgraph isomorphism". A well known tech-

nique to find all the matching subgraphs is the clique finding problem. A clique is a

subgraph that is totally connected (nodes are said to be connected if they satisfy the

compatibility measure). To match the two graphs first an association graph is formed.

An association graph is a graph with nodes consisting of an assignment of a pair of

nodes from the left and the right image graphs. The maximal clique of the association

graph will give the largest subgraph match between the left and the right relational

graph. A procedure to find the maximum clique is given in [47] and [50] which was

simulated to find the best corresponding points [90]. It was found that when there are

several objects with a large depth difference between them, the compatibility measure

between the objects will not be satisfied, thus resulting in a maximal clique of a very

small size. In the next section, a relaxation technique is introduced which will produce

more matches than the maximal clique finding approach.

3.4.3. Relaxation

Ranade and Rosenfeld [3.11 developed a fuzzy relaxation technique for point

matching where matching scores were updated by the expression

N, IV , N NS('+'(N,' Nj) =I , " MAV ccg . N'J ; N1- , Nn) S(r,(N,-, jN,)  (23

n NK m'n ni

where C(N1', N'; N', N, ) 1 if j = n and 0 otherwise. In this relaxation technique the

initial score S(N , N') is updated by the maximum support from neighboring pair of
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nodes. For each node N its node assignment score is updated; only the nodes that

form a node assignment and are within the neighborhood distance of K pixels from it

can contribute to its node assignment score. The pair of nodes that have the same

disparity will contribute significantly and the nodes that have different disparities will

contribute very little. As the iteration is performed the node assignment score is

decreased; however, the score decreases faster for the less likely matche han for the

most likely ones. Table 2 represents the initial and the final node assignment scores for

each of the left curve-segments shown in the Table 1. For each curve-segment, the

candidate with the maximum score after several iterations is chosen as the most likely

corresponding curve-segment. Table 3 represents the matched curve-segments for the

candidate curve-segments shown in Table 1 for the first channel cr = 6.0, the centroid

disparity is also given.

3.4.4. Size of the Searching Window and the false target

The decision on the size of the searching window (to avoid false targets) that is

allowed was investigated by Marr-Poggio in [25]. It was shown that the probability dis-

tribution of the interval between adjacent zero-crossing of the same sign depended on

the image characteristics and the filter characteristics.

The stereo images were convolved with bandpass Gaussian filter of central width

W., . For a given zero-crossing in the left image the probability of another zero-

crossing of the same sign in the right image was less than 5% if the disparity range

over which a match is sought was restricted to +IW . However, such a disparity2

range is very restrictive especially when there are several objects with large disparity

differences (it is very costly to use a larger filter size). Thus, Marr and Poggio investi-

gated a larger searching area of - TV,. However, this situation produced a probability

of false targets of about 50%7. Therefore, 50% of all the possible matches will be ambi-

guous that is they will have multiple matches.

In our algorithm for a given curve-segment in the left image the probability of

another curve-segment of the same sign and the same R-table in the right image within

................. . ... .=m ~ .. m mmm ll i mM E N
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a search window of + W_ is much less than 50%. This was pointed out by Mayhew

and Frisby (figural continuity constraint). So our search window of size +( W, x 7.5 )

or larger is appropriate. However, in situations where there are repetitive patterns and

occlusion of multiple objects the probability of a false target will increase. To resolve

the ambiguities in multiple matches, the relaxation technique uses the structural infor-

mation about the scene to find the match with the highest score.

3.4.5. Coarse-To-Fine Control Strategy

To bring the curve-segments obtained from the finer channel into correspondence,

the pixel disparities from the coarser channels are used. This is done for each curve El"

by finding the average disparity in a region (about 2 W, pixels width with the r of the

previous channel) around the curve-segment in the disparity buffer from th previous

(coarser) channel. The average disparity i' is used to find the center of the search win-

dow which is given by (ci + T;' c;) where (c/' c) is the location of the left curve-

segment centroid. We assume that disparity changes occur somewhat smoothly over

the object. At depth discontinuities the average disparity does not represent the true

disparity of the curve-segments since it is averaged over several curve-segments with

different disparities. A better coarse-to fine strategy is needed, such that it can find the

true average disparity at the depth discontinuities. One approach would be to perform

a surface interpolation using the disparity of the edges and then perform a segmenta-

tion of the disparity data to locate depth discontinuities.

3.4.6. Actual Pixel Disparity

To obtain the actual pixel disparities between the pixels of two matched curve seg-

ments, we simply subtract the x-coordinates of corresponding pixels, i.e., pixels that

have the same y-coordinates. There are two cases where it is difficult to form a one-

to-one pixel correspondence. The first is when part of the curve is occluded. The

second is when several pixels on a curve have the same y-coordinates as in horizontal

lines. In these cases, we set the pixel disparities equal to the curve's centroid disparity.

This is an advantage of the proposed technique compared to the local stereo matching
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techniques [301 - [31] where horizontal lines are ignored. All the computed pixel dispar-

ities are stored in a disparity buffer for each channel.

4. EXPERIMENTAL RESULTS

Results are presented for running the algorithm on a set of real images. The

stereo images were taken using a single camera which was translated horizontally to

obtain the left and the right images. Each stereo pair was of resolution 256 x 256 and

8 bits gray level. The zero-crossings were extracted after convolving the stereo images

with V2 G for three a values ranging between 1.5 to 6.0. This range for a does not

represent the actual size of the channels in the Human Visual System, but this range is

adequate for experimental demonstration of the algorithm.

Figure 9 shows stereo images obtained at three different camera position' when it

was translated horizontally. Figure 10 shows the zero-crossings for the left and the

middle stereo images. The curve-segments for the left, the middle and the right stereo

images are shown in Figure 11. The disparity between the left and the middle stereo

images as well as the disparity between the left and the right stereo images are shown

in Figure 12. In these stereo images there are three objects with different disparities

and there are partially or totally occluded curve-segments. Centroid disparity is

assigned to the horizontal curve-segments as well as to the regions of the partially

occluded curve-segments. In Figure 13 we have identified and labeled a few of the

curve-segments at a = 6.0 for the left and the right stereo images. For example the

curve-segment #9 in the left image will match with the curve-segment #49 in the right

image with a centroid disparity of d = 51 as shown in Table 3. From Table 2, it is

also found that the curve-segment #9 will form a match with the generated curve-

segments #50, #51. However after the relaxation process the node assignment scores

for these matches are smaller than that of the curve-segment #49, therefore these

correspondences are assumed to he rnismatches. Curve-segment #9 should have actu-

ally formed a node assignment with the curve-segment #9 in the right image, but

because the match criteria given by expression (21) was not satisfied three new curve-

segments were generated as possible candidates. These three new curve-segments #49,
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#50, and #51 were formed when curve-segment #9 in the left image was matched

against curve-segments #9, #25 and #34 in the right image respectively. Let us now

consider the curve-segment #6 in the left image, this curve-segment is almost com-

pletely occluded in the right image, following the discussion in section 3.4.1 the match-

ing process will try to find a match for this curve-segment by creating a new curve-

segment #44 from the occluded curve-segment #8 in the right image. This match will

result in a centroid disparity of d = 54 approximately the same as that of the curve-

segment #9 since they belong to the same object. The horizontal curve-segment #2 in

the left image will find a perfect match with the horizontal curve-segment #2 in the

right image with a centroid disparity of d = 68. Similarly the curve-segment #17 will

find a perfect match with the curve-segment #16 with a centroid disparity of d = 23.

It also generates a match with the curve-segment #10, but after relaxation process this

mismatch is identified and discarded. Figure 13 also shows the curve-segments #18,

20, 21, 22, 26, 28, 35, 14, 38, 10 and their corresponding curve-segments #20, 22, 26,

23, 30, 32, 36, 19, 37, 12 respectively. In Table 3, it is seen that curve-segments #2, 7,

11, 18, 20, 21, 22, 26, 27, 28, 29, 34, 35, 37, and 39 belong to the Diet Coke Can

located in the middle of the stereo images with an expected average disparity of

d = 70. Curve-segments #1, 4, 6, 9, 12, 13,14, 24, 25, and 38 belong to the Sunkist

Can located in the far left of the stereo images with an expected average disparity of

d = 52. Curve-segments #4, 12, and 25 belonging this object are not matched

correctly, because these curve-segments do not exist in the right image. Curve-

segments #5, 8, 10, 17, 19 belong to the Coca-Cola Can located in the far right of the

stereo images with an expected average disparity of d = 23. A pair of stereo images

with a repetitive pattern is shown in Figure 14. The zero-crossing, curve-segments and

their disparities are shown in Figure 15 16 and 17 respectively. Since a global match

was achieved by the relaxation technique stereo images with repetitive patterns can be

fused. Figure 7 shows the extracted curve-segments for the stereo images of Figure 6

for different channels, in this pair of stereo images there is a vertical disparity of three

pixels due to misalignment of the cameras. Figure 8 represents the disparity image.
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5. CONCLUSION AND DISCUSSION

A curve-segment based stereo vision algorithm has been presented. Curve-

segments are used as the feature primitives in our matching process. Uniqueness of

matching is enforced by the inherent figural continuity property of the curve-segment

and the disparity similarity between the curve-segments. The R-table of the Hough

Transform of each curve-segment in the first image is used to form node assignments

with all the possible candidates in the right image. The relaxation technique uses the

global consistency between the curve-segments (similarity in disparity) to disambiguate

the false matches.

The algorithm discussed in this paper is similar to the Marr-Poggio-Grimson stereo

vision technique. The difference is that curve-segments are used as the matching primi-

tive rather than zero-crossing points. Also, a relaxation technique is used to resolve

ambiguous matches rather than the pulling strategy proposed in the MPG stereo algo-

rithm.

The significance of the proposed algorithm compared with the current stereo vision

algorithms is that, the correspondence problem between edge pixels has been reduced to

that of finding correspondences between two sets of nodes (centroids). Since the

number of the target points, (the curve-segment centroids), is much less than the

number of the edge pixels, high level matching techniques can be used to solve the

correspondence problem. Geometrical properties of the curve-segments and the relation

among the centroids are used as constraints to guide both the local matching and the

global matching process in resolving the ambiguities in multiple matches.

The proposed algorithm can be considered as an improvement of the Marr-

Poggio-Grimson stereo algorithm; we have extended their edgel matching primitive to

curve-segments which drastically reduces the number of mismatches. Also the ambi-

guity in resolving multiple matches is solved by using the relational information

between the neighboring curve-segments. The disparity range allowed is also much

larger than that in the MPG algorithm this is discussed in section 3.4.4. Partially

occluded curve-segments can also be matched and the region on the curve-segment that

are occluded assume the centroid disparity of the curve-segment.
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The proposed algorithm is believed to improve the state of the current stereo

vision techniques. For example, local matching and global matching are incorporated

into the stereo system. It is a feature-based technique, and the figural continuity con-

straint is an inherent property of the algorithm. Apparent curve-segments, due to

illumination variation, will not find correspondence because they fail to satisfy the rela-

tional constraints. Using high level matching techniques, occluding and vanishing edges

can be identified.
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a=3

Fig. S. Orientation of the Zero-crossings at a 6, 3, 1.5.
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Fig. 14 A pair of stereo images with repetitive patterns of size 256x256.
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14A) Disparity at cr 4 .5. 13A) Curve-segments at cy4.5.

14B)'Disparity at c; 3. 13B) Curve-segments at y =3.

14C) Disparity at o 1.5. 13C) Curve-segments at a 1.5.
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Curve-seemcnts and thcir centroids for a = 6.0
Left Curve-Seements f Rieht Curve-Seemerts Generated Right Curve-Scomenos

Curve-# Yj XI  Curve-length I, Curve-# [ Yr X,. Curve-lenth II Curve-# Y, X,
0 36 5 71 0 33 [ 5 65 1 40 63 36
1 63 86 39 1 60 124 11 41 59 94

2 61 167 47 2 59 1 99 43 42 61 36

3 64 202 12 3 63 1 39 46 43 63 203

4 64 109 10 4 132 135 152 44 134 66
5 64 224 35 5 101 214 155 45 129 74

6 131 120 141 6 75 74 25 46 143 71

7 136 138 146 7 71 174 13 47 118 220

8 118 242 111 8 76 65 23 48 118 202

9 136 62 136 9 133 11 135 49 134 11

10 87 215 40 10 124 173 97 50 134 29
11 80 204 11 11 84 56 18 51 129 31

12 93 107 34 12 90 191 27 52 80 175
13 90 74 18 13 135 45 116 53 85 135

14 89 81 13 14 92 183 25 54 86 74

15 93 95 21 15 91 202 24 55 96 43

16 85 193 18 16 118 207 78 56 87 23
17 120 230 72 17 130 22 102 57 82 11

18 88 169 15 18 84 124 10 58 83 123
19 103 223 42 II 19 88 28 14 59 103 199
20 99 '60 19 1I 20 86 99 22 60 129 44

21 115 164 21 21 126 71 81 61 133 21
22 110 175 10 22 Q5 87 20 62 136 69
23 134 1 99 48 23 106 104 24 63 149 136
24 136 76 36 24 103 117 15 64 153 1?6

25 137 108 27 25 125 30 63 65 155 122

26 151 158 12 26 113 93 22 66 163 70

27 152 205 13 27 123 124 28 67 169 31

28 160 163 17 28 117 117 10 68 170 46

29 159 195 15 29 135 107 25 69 182 135
30 163 106 14 30 148 86 13 70 179 104

31 165 195 10 31 153 185 17 71 199 T 134

32 174 201 17 32 160 95 26 72 210 98

33 171 103 11 33 155 123 14
34 185 178 37 34 165 29 19

35 182 190 17 35 185 107 39

36 193 193 10 36 179 119 17 _

37 200 203 18 37 197 38 45 _

38 200 94 55 38 208 91 87 _

39 213 167 68 39 250 238 34 i

Table 1. It represents the curve-segments in the left and the right images as well as the generated right curve-segmcnts.
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Initial Score & Itcrativelv Relaxed Scores for O" = 6.0
Candidate Matchine Pairs I Initial. First and Final Relaxation Scores
ieft # right_# II initial 1st I 2nd 4th final (5th)

1 40 I1 0.8974359 0.0540064 _ 0.00000366
2 2 1i 1.0000000 0.1215373 _ 0.00012471
4 41 1i 0.2000000 0.0050000 0.00000001
4 42 1 0,8000000 0.0232967 0.00000009

5 43 1 0-5714286 0.0595047 0.00000324
6 44 11 0.1560284 0.0039007 0.00000001
7 45 I 0.1986301 0.0049658 0.00000001
7 46 11 0.2671233 0.0066781 0.00000001
8 47 I 0.9639640 0.0618637 0.00000326
8 48 1 0.1891892 0.0047297 0.00000001

9 49 0.6250000 0.0769739 0.00000570
9 50 0.0955882 0.0106103 0.00000018
9 51 0.1764706 0.0372678 0.00000134

10 12 0.5750000 0.0441748 0.00000217
11 53 11 0.8181818 0.0218434 0.00001368
12 54 0.1470588 0.0200906 0.00000033
13 55 i1 0.7777778 0.0194445 0.0000001
13 56 1 1.0000000 0.0872945 0.00000661
14 19 1I 0.6923077 0.0753094 0.00000564
16 58 11 0.1111111 0.1590943 0.00016946
17 10 1 0.75C000 0.0259375 0.00000045
17 16 17 0.8194444 0.0572730 0.00000309
18 20 i 0.8000000 0.1565279 0.00016516
19 59 11 0.3333333 0.0555156 0.00000313
20 22 ii 0.8421053 0.1220061 0.00010055
21 26 I1 0.8571429 0.1621467 0.00016728
22 23 1.0000000 0.1642163 0.00016601
24 60 11 0.7222222 0.0254085 0.00000069
24 61 0.7777778 0.0759626 0.00000573
25 62 11 0.2222222 0.0055556 0.00000000
26 30 11 0.9166667 0.1261140 0.00010634

27 63 0.2307692 0.0540056 0.00007407
27 64 0.2307692 0.0255596 0.00000169
28 32 1 0.8235294 0.0971956 0.00009697

29 65 1 0.2666667 0.0960830 0.00011155
34 69 [ 0.1891892 0.0182031 0.00003081
34 70 I 0.8108108 0.0800574 0.00007261

35 36 1 1.0000000 0.1559567 0.00016836
37 71 0.5000000 0.0455989 0.00006323
38 37 0.709o909 0.0544123 0.00 (0410
39 j 72 07352941 i 0.1396286 1 0.00014726

Table 2. It represents tc .:. . first and final scores for the
relaxation procc s
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Matched curve-,eements and their centToids for a = 6.0
Left Curve-Sezments I Right Curve-Seements I Centroid

Curve-# YI X 1 Curve-4 I Y, X, i disparitv _________

2 61 167 11 2 59 99 I 68 Diet Coke (matched)
7 136 138 1i 46 143 71 67

11 80 204 11 53 85 135 69
16 85 19311 58 183 123 70
18 88 169 1 20 86 99 70 "
20 99 160 22 95 87 73 "
21 115 164 26 113 93 71
22 110 175 11 23 106 104 71 "
26 151 158 17 30 148 86 72
27 152 2051 63 149 136 69
28 160 163 32 160 95 68 "

29 159 195 65 155 122 73 .. ..

34 185 17 8 70 179 104 74
35 182 190 36 179 119 71 "
37 200 203 71 199 134 69 _

39 213 16711 72 210 98 69

1 63 86 II 40 63 36 50 Sunkist (matched)
4 64 109 1 42 61 36 73 (mismatch)
6 131 120 44 134 66 54 1
9 136 62: 49 134 11 51 _

12 93 107 11 54 86 74 1 33 (mismatch)
13 90 74 56 87 23 51 (matched)
14 89 81 19 88 281 53

24 136 76 11 61 133 211 55
25 137 10811 62 136 694 39 (mismatch)
38 200 94 37 197 38 I 56 (matched)

5 64 224 17 43 63 203 21 Coca-Cola (matchcd)

8 118 242 47 118 220 22
10 87 215 12 90 191 24 "
17 120 230 11 16 118 207 23

19 103 2231 59 103 199 24 __

Table 3. It represents the matched curve-segments for a pair of
stereo images for the coarse channel T = 6.
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APPENDIX I

CAMERA GEOMETRY

1. Parallel Axis Method

The two cameras are mounted such that their focal axes are parellel and the dis-

tance between lie two cameras, (baseline), are fixed as shown in Figure 1. Any point

in the three dimensional world space, together with the centers of projection of the two

camera systems, defines a plane called an epipolar line. In the parallel axis geometry

the epipolar lines are parellel to the scan lines, thus the search for finding correspond-

ing points is unidirectional as shown in Figure 1. The point P(X, Y, Z) in the world

coordinate system is imaged to point P, and P, in the right and left image coordinate

plane respectively. The distance P',P, , where P', is the transformed location of P, in

the left image plane, is known as disparity. It can easily be shown, (see section 3), that

the distance, (depth), is inversely proportional to the disparity. Thus, the points which

are nearer to the camera will have a larger disparity than points which are further

away from the camera.

2. Intersecting Focal Axes

In some situations, the parallel axes method cannot be used because some part of

the left image will not be in field of view in the right image due to the lateral shift of

the camera. In order for the cameras to have the same field of view, they are rotated

about their y-axes such that their focal axes intersect at a point. This point is known

as the fixation point as shown in Figure 2 [2 pp. 303].

A point on the object will cast image points A and B in the left and the right

cameras. Associated with each image element is its angular displacement from the

optic axis as shown in Figure 3. If a, and a2 are the angular displacements to the two

image elements corresponding to the same object point, the disparity, d, of the object
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point is defined as d = al + a2 . The objects in front of the fixation point will have

positive disparities, (convergent), and objects behind the fixation point will have a

negative disparities, (divergent), as shown in Figure 3 and 4 respectively. Figure 5

shows a stereo pair where the fixation point is somewhere in the middle of the scene.

Looking at the right image, the blocks in front of the fixation point possess positive

disparities, and the blocks behind the fixation point possess negative disparities com-

pared to the left image.

Disparity values give a depth measure relative to the fixation point since the

fixation point has zero disparity. In order to obtain the absolute depth values, the

camera's orientation with respect to a fixed coordinate system has to be known as well

as the distance between the two cameras. The absolute depth is usually measured with

respect to the coordinate system of one camera.

3. CAMERA MODELLING

In order to obtain the relative orientation of the cameras, we have to know how

the image is formed in the first plane. Mapping of the world coordinate points into the

image plane is known as the perspective transformation. Consider that the camera can

be represented by a pinhole, thus, the distortion due to the lens can be ignored, and its

position is measured with respect to a fixed coordinate system known as the world

coordinate. Let the Cartesian components of vector C represent the coordinates of the

focal center as shown in Figure 6. Orientation of the camera is denoted by the unit

vector a, which is perpendicular to the image plane. We will use two more unit vectors
A

H and V, orthogonal to each other, and that are also orthogonal to the aiming unit

vector a. In terms of H, V, and a all the points in the image plane are described by

(- - fa + z'H + y'V) for different values of the scalar parameters u and v.

The ordered pair (z' , y') could be considered to be the coordinates of a point in

the image plane. The perspective transformation equations will relate image coordi-

nates (z' , y') to the object point P. Comparing the appropriate similar triangles we

obtain the following equations

X1 I a)
f D.d
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D V (ib)

where D = P - C as shown in Figure 6, is the vector from the camera focal center to

the object point. Its component along the axes is obtainable by taking the scalar pro-
-& / 9- A -V

duct about each axes, thus, the physical point P(X, Y, Z) = P(D.H, D. V, D.-d).

Consider the parallel axes camera geometry where optical axes are parallel to one

another and perpendicular to the baseline connecting the two cameras as shown in Fig-

ure 7. Let the world coordinate system (X, Y, Z) be placed midway between the lens

centers, and the image coordinates in the left and right image be (z', , y'l) and

(z'" , y',) respectively. Then

b 
b

2 and 2 while - Y-.--= (2)f7 z f7 z f f z 2

where I is the distance from the lens center to the image plane in both cameras and b

is the distance between the lens centers. Using the above three relationships we can

solve for the three unknowns z, y, and z.

X =b (' + (3)
X11 - ZO.

(y', + y',)/2-

Z = b (5)

z'I - '

where the difference in image coordinates (z', - Z',) is the disparity. From equation 5

it is seen that the accuracy of z measurement depends on the baseline and disparity

measurements. A larger baseline will give rise to a larger disparity and thus a better Z

measurement, but the disparity measurement is less accurate because obtaining the

corresponding points z',, z', is now more difficult.

Consider now that the cameras are set up such that their optical axes intersect at

a fixation point. In order to obtain the three dimensional coordinates of the object

points we have to know the relative orientation of the cameras with respect to the

world coordinate.
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Figure 8 [2 pp. 303] represents the coordinates of the two camera systems. The

transformation from one camera station to another can be represented by a translation

and a rotation. Thus, if r, = (z1 , yl, z r)T is the position of a point P in the left camera

coordinate system and r. = (r, yr, z) is the position of the same point P in the right

camera coordinate system, then

r, = Rr, + T (6)

where R is a 3 x 3 orthogonal matrix representing the rotation, while T is a vector

corresponding to the translation.

The rotation matrix can be decomposed into three components, a rotation about

x-axis (tilting), a rotation about y-axis (panning), and a rotation about z-axis (rolling)

as shown in Figure 9 and 10,

R = R.RYR ,  (7)

where

cos(1) 0 din(P1)(
R. = 0 1 0 (7a)

- sin(P1) 0 Cos(P 1)

R, = 0 os(032) si 1 (7b)

- smn (132) cos 02

[in (P 0 (7c)
0 0 1'

where 131, 132, 133 are the corresponding rotation angles about x-axis, y-axis, and z-axis

respectively.

T is a vector representing the distance between the two cameras which can be

decompared into

T = b T, T. 2  (8)

where b is a constant and T,1 , And T, 2 represents the direction of the vector T

[cos((l) 0 a())T., * n(l 0 1o 0d) (8a)

.... . . . . .= m n n m m ~ nm lll nusl n ~ l 0 I I I II
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T.2 = cos(a2) ai,(a2 (8b)

10 -iin(x2) ana2l I
al, and a2 are elevation and azimuth angles respectively.

In order to use the stereo system to obtain the absolute distance, the parameters

al, a2 l , 2, 33 and the focal length of the cameras have to be known. To obtain these

parameters, one takes a set of points where 3-D coordinates are known and a least-

square minimization technique is used to solve for the parameters.

In this report, we assume that the camera's paremeters are known, and then the

problem is to obtain the absolute distances or disparities. Once R and T are known,

one can compute the position of a point with known left and right image coordinates.

If (z',. y',) and (z',, y',) are these image coordinates, then from Equation 6 we have

S 12 ±" + r13
) Z1 + r,, -Z, (,a)

I' YI I ...

{r, II + r22±1" + r 23) Z1 + f24 Z, (9b)

(r3" 1  1 + -7-+ 33) Z, + r34 = Z, (9c)

where

[Ti. r12 r13 1r[141
R = r21 22 r23 T = r24

[731 r32 r331 J [34

and

Zit. Z,. Y"',- y,.

Wf t T sl f Z,

We can use any two of the above equations to solve for Z, and Z,.
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Fig. 1 Parallel axes method, the cameras are set up such that their focal axes are parallel

and the line joining the focal centers is perpendicular to it [22].

P

/DD

P P,.

D.

Fig. 2 The images, P', and P',, of a point P in the environment must lie on corresaonding

epipolar lines [2 PP. 3121.
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Fig. 3 An object point possesses convergent disparity when it lies in front of the fixation

point [59].
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Fig. 4 An object point possesses divergent disparity when it lies in behind of the fixation

point [591.
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ight image

left image

Fig. 5 Stereo pair of a block scene with the fixation point some where in the middle of the

scene.
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V
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PAN ANGLE 1

~TILT ANGLE

PARALLEL PRINCIPAL AXIS

SECOND CAMERA

Fig. 9 Shows the pan and tilt angles.

fFIRST IMAGE PLANE-ORIGINAL
S - ., ORIENTATION

ROLL ANGLE

I CAMERA BASELINE
_I_j

FIRST IMAGE PLANE
ROTATED TO PARALLEL
ORIENTATION OF SECOND
IMAGE PLANE

SECOND IMAGE PLANE

Fig. 10 Shows the rolling angle.
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APPENDIX H

Marr-Poggio-Grimson Stereo Algorithm

1. Introduction

The basic problem, as mentioned before, in binocular fusion is the correspondence

problem. This is because of the abundance of matchable features in the stereo pair

image and the disparity range over which matches are sought. The Marr-Poggio-

Grimson algorithm [291 is a multi-channel stereo technique. They suggested the idea of

matching coarse, widely separated features first, and then with the information so

obtained, repeat the matching process at successively finer scales of resolution. Coarse

channels are expected to control the vergence movements, that is to cause fine channels

to come into correspondence. The coarse-to-fine strategy will decrease the false targets

as well as reduce the searching time. This algorithm has been simulated by the princi-

pal investigator and results are presented in the following subsections.

Marr-Poggio suggested the use of zero-crossings, labelled by the sign of their con-

trast change and their rough orientation in the image as good candidate points for

matching.

2. Marr-Hilderth Edge Operator

Marr-Hilderth suggested the use of a orientation-independent operator combined

with a Gaussian filter. They chose the Lapacian operator as given below:

V2 = _2(1)
az 2  dy 2

which is equivalent to the mask

V2 = -4 (2)
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The gaussian filter is given by

G(z,y) = a 2 exp{(i22+j) } (3)

Figure 1 shows an ideal edge. The first derivative will give rise to a peak and the

second derivative to a zero-crossing. This zero-crossing, the place where the value

changes from positive to negative is the location of the edge. First images have to be

Gaussian filtered then the effect due to noise is reduced. It is also possible to detect

coarse and then fine edges by using different filter size.

We can combine the Lapacian filter with the Gaussian filter by obtaining the

second derivative of Equation 3, and with respect to x and y we get

= (i + j2{ 2 -_( 2 + 2) }(4)

Figure 2 shows the impulse response of this filter for different values of the con-

stant which also determines the size of the filter.

The operator is really a band-pass filter which can also be shown to approximate

the difference of Gaussians (DOG) [35]. This operator has several important features.

It is oriented invariant, thus, there is no need for several edge masks as in most edge

detectors. It is possible to operate at different bands, thus large filters can be used to

detect blurry shadow edges, and small ones to detect sharply focussed fine detail in the

image. Figure 3 and 4 show for example the edge detected images at different a = 1.5,

3, and 6 for two SEM images. It is clear that for feature extraction and interpretation

several channels are required. The stereo algorithm discussed in the next section is

based on this multi-channel edge detector.

3. Matching Process

One important parameter in multi-channel stereo algorithms is the size of the

channel. From equation 5, the primal sketch operator, it is seen that the distance

between the first zeroes on either side of the origin is given by

W2 , = (5)
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By convolving the image with a primal sketch operator or width WZD, we have

ensured that most zero-crossing contours will be at least W 2 D apart from one another.

Thus the maximum disparity, d, should be equal or less than the largest filter in the

multi-channel stereo technique.

The matching process is assumed one dimenionsal, thus, images are assumed to

have no or very little vertical disparities. All the candidate points in the search neigh-

borhood that represent the same sign change, and the same zero-crossing-orientations

are considered to be potential matches. Of all the potential matches, we assume that

only one is a true match. All others will be considered to be false targets. Occlusion is

also ignored.

The human visual system is known to possess five different channels for disparity

calculation. The values of W 2 D for these channels are approximately 63, 35, 17, 9, and

4 pixels. Here a pixel here is meant to be the size of a foveal receptor, one such recep-

tor corresponds roughly to an angular interval of 0.4 of the arc. Therefore, if we digi-

tize a visual angle of 4 on the side into a 650 x 650 matrix, we will match the sampling

capability of the foveal of the human eye.

4. Implementation

The primal sketch operator of the largest size is applied on the stereo image. The

location as well as the contrast change of each pixel is stored in a buffer for each image.

The orientation for each pixel is obtained by estimating the ax and By components of

the local gray level gradient

8z = (A3 -2A, + A6 ) - (A, + 2A8 + A,) (6)

and

By ( , - .2A2 + A,) -- (A7 + 2A6 + A 6) (7)

where Am'a are the eight nei'.,,: pixels surrounding the central pixel as shown

below

A 2  A 3

A ( , y) A 4  (8)A7-i As A6
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The direction, 0, of the gradient is then determined from the following relationship,

0 tan-' ()
8z

This angle is then classified into six intervals of 30 . Given the location of a zero-

crossing and its attribution in the left image we will limit the research neighborhood to

an interval of WID on either side of the same location of the right image. If there is

only one potential match, then that match is accepted and the disparity associated

with this match is computed and assigned to the candidate point in question. If there

is more than one potential match, the following procedure is used for disambiguity

between them. All the potential matches within the search neighborhood are divided

into three pools. These pools consist of two larger convergent and divergent regions

and a smaller one lying centrally between them. If more than one potential match is

found in any of the three pools, then no match is assigned to the candidate point. If

more than one pool contains a potential match, then the candidate pixel is considered

to have ambiguous matches. The ambiguity is resolved by using what is known as the

pulling effect, (continuity), which consists of examining the unambiguous disparities

within the neighborhood of the candidate point in question of the potential matches

avai!able by choosing one that is dominant within the neighborhood.

The above matching process is then repeated for the finer channel. The disparity

values from the coarser channel is used to bring image regions within the range of

fusion of the finer channel. This is done on a region by region base, an average dispar-

ity is evaluated around each candidate point using coarser channel disparity values. In

human visual systems this is equivalent to the change in the fixation point.

5. Results Obtained with a Three Channel Stereo Algorithm

Simulation of the stereo a!gorithm using three channels is discussed. The constant

- 1.5, 3. and 6 pixels will provide the primal sketch operation of width W 2D = 4, 8,

and 17 pixels.

Two stereo pair images are displayed in Figure 5. The output of the primal

sketch operator for a = 1.5, 3, and 6 for the two stereo image pairs are shown in
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Figure 6 and 7. Note the sign of the contrast change of the edge is gray level coded to

gray or white.

Figure 8 and 9 shows the orientation using equation 9. The values are gray level

coded.

The disparity values are shown in Figure 10 and 11. The output of each channel

is also shown. Consider the disparity of the paperwad stereo. The points which are

nearer to the camera have larger disparities than the points which are further away.

The paperwad stereo image is a very good example since it has information at different

frequencies. As seen from Figure 11, the disparities of coarse features are first obtained

and then fine features are matched.
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Fig, 3 Zero-Crossings of an SENT image of a VLSI chip, for a =1.5, 3, and 6, a threshold of
T=50 [601.
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Fig. 4 Zero-Crossings of an SEM imiage of a VLSI chip, for a =1.5, 3, and 6, a threshold of

T=60 [601.
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Fig. 5 Shows stereo images of a boy and paper-wad, images, are of size 256*256 and 8 bits.
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Fig. 6 Zero-Crossings of the box stereo image, for a - 1.5, 3, and 6, a threshold of T=20

[601.



Fig. 7 Zero-Crossings of the paper-wad stereo image, for a =1.5, 3, and 6, a threshold of

T=20 [60].



Fig. 8 Gray level coded re.prsentation of the zero-crossing's orientation of the boxt stereo

image, for a = 1.5, 3, and 6 [60]



Fig. 9 Gray level coded representation of the zero-crossing's orientation of the paper-wad
stereo image, forac = 1.5, 3, and 6 [ 601.
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Fig. 10 Shows disparity values of the box image for each channel, disparities are displayed
as gray level (601.



- 79 -

Fig. I I Shows disparity values of the paper-wad image for each channel, disparities are

displayed as gray level [601.
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APPENDIX I

Vertebrate Binacular Vision System

In this appendix we study the human visual system in order to unravel the

mystery behind perception of objects. There are a large number of unsolved

questions, especially the mechanism and synaptic contacts (connection) between

neurons in the visual cortex. However, in recent years advances have been made

on the understanding of visual pathways and identifying specific cells in the

visual cortex [681 - [721. In this appendix we review the mechanism of the human

visual system and the experimental results, based upon neurological findings,

about the visual cortex of monkey and the cat.

1. Primitive Retina

The vertebrate retina consists of five distinct neuron cells: rod and cone

photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells.

Each of these cells perform a specific task. Figure 1 is a simplified illustration of

the eye and the retina. The human retina contains two types of photoreceptors,

rods and cones. Cones detect form and color, and are responsible for day vision.

Rods mediate night vision and respond to stimuli that are too weak to excite

cone receptors. These photoreceptors are distributed over the retina non-

uniformly. For example, at the fovea of the retina, which defines the visual axis

of the eye, the receptors are mainly cones and are packed very close by to each

other. They are responsible for highly detailed and exact vision. At the peri-

phery there are many more rods than cones and distribution is not as packed as

in the fovea.

Figure 2 shows the synaptic contact between the photoreceptors and the

next level of neurons. Both rods and cones make direct synaptic contact with a

class of interneurons called the bipolar cells. There are two types of cone bipolar
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cells, on-center and off-center, each of which responds differently to the same

transmitter response by a single cone. The on-center bipolar cell is depolarized

(excited) by direct illumination of the cone, and the off-center bipolar cell is

hyperpolarized (inhibited) by direct illumination of the same cone. The rods are

connected to the rod bipolar cells and are not directly connected to the ganglion

cells, but they make indirect connection with the help of amacrine interneurons.

The on-center and the off-center bipolar cells are directly connected to the

corresponding on-center and off-center ganglion cells. There are three distinct

ganglion cells present in the retina, these are known as X, Y, and W cells. The

X cells have medium-sized cell bodies and small dendritic fields (postsynaptic

region of a neuron conducting impulses), and participate in high-acuity vision.

The Y cells, have the largest cell bodies, a large dendritic fields, and rapidly con-

ducting axons (the process of a neuron conducting impulses). The Y cells

respond only to large targets and are important in the initial analysis of crude

form. The W cells have small cell bodies and large dendritic fields; these cells

project to the superior colliculus and are involved in head and eye movements.

The ganglion cell do not convey information about absolute level of illumination,

but rather, they measure differences within their receptive fields by comparing

the degree of illumination between the center and the surround (contrast).

In summary, there are two independent channels: the on-center and the

off-center. Each of these in turn is sub-divided into X and Y channels. The Y

channel responds transiently and only to large targets, particularly moving ones.

The X channel responds to small targets and is involved in the detailed high-

resolution analysis oi the visual image. These channels are believed to be respon-

sible for the coarse-to-fine fusion of a binacular pair of images. The receptive

field of a cell is defined as the area of the periphery on the retina whose stimula-

tion influences the firing of a neuron. The characteristics of these receptive fields

are discussed in the following sections.
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2. The Visual Pathway

Figure 3 shows the projection of the visual world onto each retina. Each

retina is represented by two halfs: the nasal hemiretina and temporal hemire-

tina. The left half of the visual field projects on the nasal hemiretina of the left

eye and on the temporal hemiretina of the right eye, and a similar process hap-

pens for the right half of the visual field. The overlapping visual field that is

perceived by both eyes is known as the binocular zone of the visual field. These

binot--lar views are combined by the brain to provide us with the ability of

stereoscopic depth perception. At the periphery there is no overlap and only

monocular vision is possible.

Figure 4 shows a simplified block diagram of the visual pathway. The right

visual hemifield is projected onto the temporal hemiretina of the left eye and the

nasal hemiretina of the right eye. The fibers from nasal hemiretina crosses to the

opposite side at the optic chiasm and make connections with the left lateral geni-

culate nucleus. Thus, the left optic tract contains a complete representation of

the right hemifield of vision and the information about the left visual hemifield is

conveyed by the right optic tract.

As shown in Figure 4, about 20% to 30% of the fibers in the optic nerve

connect to the superior colliculus (for eye and head movement controls). How-

ever, a large number of them are connected to the lateral geniculate nucleus; also

fibers from other parts of the central nerous system converge to it.

In primates, the lateral geniculate nucleus consists of six layers of neurons

separated by interviewing layers of axons and dendrites. As shown in Figure 5

the layers are numbered from 6 most dorsally to 1 .ost ventrally. Each layer

receives input from one eye only: lbers from the contralateral nasal retina con-

tact layers 6, 4, and 1; fibers from the ipsilateral temporal retina contact layers 5,

3, and 2. Thus there are six maps of the contralateral visual hemifield in vertical

register. The cells in the lateral geniculate nucleus are Nery similar to the retinal

ganglion cells, with concentric receptive fields, with cell characteristics of on-

center and off-center, and with X and Y cells properties. The only major
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difference between cells in the lateral geniculate nucleus and those in the retina is

that the antagonisms between the surroundings and the center are slightly

enhanced in the geniculate ceils. The axons from the geniculate cells make

synoptic contacts with the cells in the primary visual cortex.

3. Primary Visual Cortex

From the lateral geniculate nucleus, neurons project via the optic radiation

to the primary visual cortex. Figure 6 shows a schematic diagrams of the visual

projections from the retina to the various visual areas of the cerebral cortex.

Experimental results are available on area 17 of the visual cortex of the cat and

the monkey which are discussed in this section. The cells in the retina and the

lateral geniculate nucleus have two distinct receptive fields: on-center and oft-

center. Experimental results indicate that both types of neurons respond

optimally to light contrast. Kuffler [71] found that the receptive fields of the

retinal ganglion cells are roughly circular and vary in size across the retina. The

on-center cells have receptive fields with a central excitatory zone and an inhibi-

tory surrounding. Shining a spot of light on the ceuLer of the field causes an

increase in the spontaneous firing of an on-center cell. In contrast, a light

stimulus that encircles this central zone inhibits the cells' firing. Thus, the most

effective excitatory stimulus for this cell is a spot of light on the center of its

receptive field, and the most effective inhibitory stimulus is a ring of light on the

surrounds of the receptive field. The off-center cells have inhibitory center and

excitatory surround, and their response to illumination is shown in Figure 7.

The fibers from lateral geniculate nucleus make synaptic contacts with the

cells in area IV of the visual cortex. The layers V is divided into three subre-

gions (a,b,c). Most of the fibers from the lateral gniculate nucleus terminate at

the lVc. The cells in layer Vc are very similar to the cells encountered in the

lateral geniculate and the retina. However, Hubel and Wiesel [69] have identified

cortical cells in area 17 that lie above or below layer IVc that have receptive

fields that are stimulated by directional line or bar of light. They found that
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there are several cells know- as simple and complex cells with receptive fields

that have distinct characteristics. For example, Figure R qhnws a simple cell, the

best stimulus for this cell is a vertically oriented light bar in the center of its

receptive field. Other stimulus with different orientation are less effective or

ineffective in exciting this cell. The complex cells are usually larger than those of

simple cells but also have axis of orientation. The position of the stimulus within

the receptive field is not crucial because there are no clearly defined excitatory or

inhibitory zones. There is another complex cell which is better known as hyper-

complex cell which are prominent in area 18 of the visual cortex but can also be

seen in area 17. These hypercomplex cells respond best to stimulus such as

corners or a line that stops.

Hubel and Wiesel have also discovered that the primary visual cortex, like

the somatic sensory cortex, is organized into narrow columns Figure 9. Each

column contains cells in layers IVc with concentric receptive fields. Above and

below there are many simple cells and complex cells with almost identical retinal

positions and identical axis of orientation. Detailed mapping of sets of adjacent

columns by Hubel and Wiesel, using tangential penetrations with micro-

electrodes has revealed a very precise organization with an orderly shift in axis of

orientation of about 10 degrees from one column to the next. There are also a

number of other columns with different functional properties.

4. Binocular Interaction between Neurons

In the visual cortex the input from the two eyes are combined into one

image, the exact processes is not completely known. However, it is believed that

the fusion is performed by binocular complex cells. The cells in the retina,

lateral geniculate nucleus, and a majority of simple cells in layer IVc are monocu-

lar, that is, they receive stimulation from exactly one of the two eyes. But about

half of the complex cells in deeper layers of visual cortex are binocular, in that

they can be influenced independently by both eyes and are beleived to be respon-

sible for fusion of binacular images see Figure 10.
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APPENDIX IV

Stereoscopic Photogrammetry

Photogrammetry is defined as a technology for obtaining and interpreting

photographic images [66]. Photographs are mostly aerial (taken from an airborne

vehicle) or terrestrial photos (taken from earth-based cameras). Aerial photogra-

phy is commonly classified as either vertical or oblique. Vertical photos are

taken with the camera axis directed as nearly vertical as possible. Figure 1

shows a vertical aerial photograph. Oblique aerial photographs are exposed with

the camera axis intentionally tilted away from vertical. Figure 2 is an exampre

of a high oblique photograph.

Vertical aerial photographs are usually taken along a series of parallel

airflight passes called flight strips. The photographs are normally exposed in

such a way that each successive photograph overlaps by about 50 to 65 percent

of the previous photo. This lapping along the flight strip is called end lap as

shown in Figure 3. The pair of photos is called a stereopair, an example of

which is shown in Figure 4. Stereo images are extremely important to photo-

grammetist because 3-D information about the topography can be accurately

measured.

A large number of instruments, such as terrestrial stereo cameras, aerial

cameras, stereoscopes and stereo plotters have been developed by photogram-

metrists to obtain stereo photos and to interpret them. In this appendix we are

only interested in aerial stereoscopic images.

1. Cameras

The essential requirement of any photogrammetric aerial camera is a lens of

high geometric quality. They must be capable of exposing in rapid succession a

great number of photographs to exact specifications. Aerial cameras may be
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categorized as single-lens frame cameras, multi-lens frame cameras, strip cameras

(used for continuous photography of a strip of terrain), and panoramic cameras.

Figure 5 is an example of a two single-lens frame cameras mounted together and

operated simultaneously. A pair of stereo images can be obtained by this cam-

era. Terrestrial cameras are employed to obtain stereo images usually in special

situations such as deep gorges or rugged mountains that are difficult to map from

aerial photography. Figure 6 shows a terrestrial stereometric camera with 120

cm fixed baseline.

2. Stereoscopes and their Applications

It is very difficult to view photographs stereoscopically without the aid of an

optical device. An instrument called stereoscope can be used to perceive a pair

of stereo images in 3-D stereo model. The simplest stereoscope consists of two

convex lenses mounted on a frame as shown in Figure 7.

The spacing between the lenses can be varied to L.commodate various eye

bases. Stereoscopes are used to locate the conjugate point (same targets on the

two images) and when the appropriate disparity is obtained, the X and Y and Z

coordinates of the target can be calculated (see Appendix I for equations). Figure

8 illustrates a packet stereoscope.

To locate the conjugate points on a stereo model, two small identical marks

etched on clear glass called half marks are placed over the photographs, one on

the left p'uoto and other on the right photo, as illustrated in Figure 9. Viewing

through a stereoscope the spacing of the half marks (parallex of the half marks)

is varied by moving one of the halfmarks until a single floating mark appears to

rest exactly on the terrain. By noting the locations of the half marks the dispar-

ity can be calculated and then the actual coordinates can be obtained.
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3. Stereoplotters

Stereoscopic plotting instruments have been designed for a number of years

in order to be able to obtain accurate object point positions from their

corresponding image positions in a stereo pair. The basic concept for stereo-

plotter is that transparencies (diapositivesi) obtained from a pair of stereo images

are placed in the two stereoplotter projectors as shown in Figure 10. Light rays

are projected through them, and when rays from corresponding images on the

left and right diapositives intersect below, they create a stereomodel. Some

adjustment has to be performed in order to bring the pair of stereo images into

correspondence.

A stereoplotter is said to consist of three major components: a projection

system, a viewing system and a measuring (or tracing) system, which enables

measurements of the stereomodel to be made and recorded. The most important

part of the stereoplotter is the tracing system. To calculate the position of any

point in the stereomodel, a reference mark in the center of a "platen" (white disk

mounted on the tracing table) is brought into coincidence with model points

This is done by adjusting the X, Y, and Z coordinates of the platen until the

reference mark appears to rest exactly on the desired point in the stereomodel.

A pencil point which is vertically beneath the reference mark is then lowered to

record the planimetric position of the point on the map. In some stereoplotters

the X, Y, and Z coordinates are recorded automatically but adjustment of platen

is done by the operator. In more complicated automated stereoplotters, image

correlators are used to perform stereoscopic measurements with no human opera-

tor adjusting the floating mark. The image correlator is used to obtain the

corresponding conjugate points on the stereo images. Research is needed to

develop more accurate stereo vision techniques than just a simple image correla-

tor which at some image points will perform very poorly.
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4. X-Ray Stereo Photogrammetry

X-ray machines have been used for a number of applications such as in med-

ical professions and industrial applications. Objects may be viewed stereoscopi-

cally from stereopairs of radiographs [67]. The exact 3-D location of foreign

objects in the body such as bullets, pins, or tracks can be located from stereo

radiographs.

Figure 11 shows a stereoradiograph of human skull and Figure 12 represents

a side view of the geometry of an X-ray stereoradiograph. In industry, X-rays

have a host of applications including examination of radioactive fuels, castings,

and locating pipes and wires in buildings.
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Fig. 1 Shows a vertical aerial photograph [66 PP. 61.

Fig. 2 Shows a high oblique aerial photograph [66 PP. 9].
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Fig. 3 End lap of photographs in a flight strip [66 PP. 101.

Fig. 4 A pair of jeria stereo images (66 PP. 5161.
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Fig. 5 A convergent aerial camera to obtain stereo images [66 PP. 67).

Fig. 6 A terrestrial stereometric camera [66 PP. 483].
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Fig. I1I A stereoradiograph of a human skull [66 PP. 504].
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Fig. 12 A side view of the geometry of an x-ray stereoradio graph [66 PP. 5051.


