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ABSTRACT

This paper introduces the dual decomposition method for
determining the distribution of an optimal objective function
for a network problem. The objective function is *to minimize
the shortfall of demands to prioritized sinks for a four day
period over a network that is subject to interdiction. The
requirements of the model are that the upper and lower bounds
on the capacities of the arcs and nodes of the network and the
probabilities of interdiction are known. The dual
decomposition method is an iterative approach to enumerating
the possible instances of capacities in a capacitated network,
based oni the dual variables of the previous iteration. The
purpose of the procedure is to determine the distribution of
the shortfall of demands so that 1iogaistics planners can
predict the performance of a supply distribution system over

a short period of time.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases of
interest. While every effort has been made, within the time
available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. OBJECTIVE

The objective of this paper is to provide a method for
determining the approximate distribution of an optimal
objective function of a linear program that minimizes the
shortfall of supplies, over a period of several days, on a
network that is interdictable. The supplies flow through arcs
and nodes that have variable capacities to prioritized sinks.
The procedure that is used to determine the distribution is
the dual decomposition method. This procedure will be applied
to an example network and the results will be analyzed. The
result of the application of this method is that logistics and
fransportation planners can predict the performance of the
supply distribution system over a short period of time.

The dual decomposition method is an iterative process for
enumerating the possible flows through a network, based on the
dual variables of the previous solution. This method is an
attractive alternative in identifying the most 1ikely patterns
of performance of a network because complete enumeration is
not required. The model is easy to use and understand and can
be calibrated to meet the needs and capabilities of the

planner.




This method has obvious applications in the military
loyistics planning field. The logistics planners can use the
method as a tool for determining the stockage levels of
depots, the allocation of rear area protection forces to key
segments of the transportation system, and to forecast periods
of critical shortages. The predictive capability of the dual
decomposition method allows the military commander to make

more informed decisions on tactical matters.

B. GENERAL

The focus of this study is a military, land transportation
network that has a limited capacity and is interdictable. The
dual decomposition solution method can be applied to tactical
and strategic movement routes that are multimodal, however for
the purposes of this study the networks analyzed will be
ground, tactical movement routes. The ground transportation
system, whether it is highway, rail, or inland waterway,
carries the vast majority of the required tonnages to the
forward combat units. Therefore, it is the most important
system to the military transportation planner.

The transportation of supplies to military units involved
in combat is a vital requirement of the United States Army's
Air-Land Battle (ALB) fighting doctrine. The successful

execution of this doctrine, as stated in the Army's Field




Manual 100-5, will depend on four basic tenets: initiative,
agility, depth, and synchronization. [Ref. 1]

The intensity and speed of movements associated with the
ALB doctrine will require the transportation movements planner
and manager to be able to have fast, efficient tools to assist
in the movement of supplies to support the combat units. The
United States Army's Transportation Schools Field Circular 55-

16, Movements Control Officer's Battle Support Guide, states

that the planner must be able to maintain:

- Uninterrupted support in spite of unit relocations:

- Dispersion of supply activities;

- The movement of cargo despite enemy interdiction
throughout the theater and the depth of the battlefield.
[Ref. 2]

The requirements of the highly mobile, high-technology
weapon systems will be enormous. The timely receipt of
critical supplies will be wvital to the successful execution
of the ALB doctrine. The transportation community must be
able tu provide this uninterrupted support over networks that
are subject to interdiction.

Interdiction may be the result of sabotage by enemy
SPETNATZ troops, enemy airstrikes, enemy missile strikes, and
environmental factors, such as the weather. A high priority
target of the enemy's assets will be the 1lines-of-
communications (LOCs) and logistics facilities, such as depots

and transportation centers. The securing of these objectives




directly supports the Soviet concepts of surprise, mobility,
deep penetration, and rapid exploitation. The Soviets are
prepared to attack in considerable depth to destroy these
targets and to harass the rear area operations [Ref. 3]. The
transportation network may also be congested with the
movements of friendly units and noncombatants which, in
effect, interdict the network.

This problem 1is not new to transportation planners.
Considerable effort has been devoted to analyzing the problem
of +transporting supplies over a network that may be
interdicted. The next section will review work that has been
done in this ares.

Historical records indicate that military transportation
planners have used extraordinary measures to ensure that
critical supplies are delivered to units engaged in combat.
For example, 1in World War II the Red Ball Express was
developed to transport supplies to the combat units. The Red
Ball Express was a term given to the military motor transport
units that wer2 centralized under a command with the mission
of delivering critical supplies to the rapidly advancing
combat units The Red Ball Express was organized because the
existing railways could not meet the demands generated by the
armies’' advance beyond the Rhine River. These units travelled
on designated one-way roads so that there would be minimal

interruption of supplies to the forward units. Despite its




short life, the Red Ball Express was an effective method of
delivering priority supplies.

The Red Ball Express's accomplishments were impressive
and widely acclaimed. During its eighty-one days of operation
the transportation units carried an average of 5,088 tons per
day. Despite the accomplishments of the Red Ball Express, the
operation highlighted some serious deficiencies in the
movement of cargo in a wartime theater. Centralized control
of the movements was weak, the maintenance of the vehicles was
poor, critical supplies, such as gasoline and tires, were
consumed at an abnormally high pace, and it did not have
sufficient cargo-handling capacity for long terw operations.
[Ref. 4)

The Red Ball Express's average daily tonnage during its
operation may have been sufficient in World War II, however
today's modern weaponry and tactical systems require
substantially more support. For example, a mechanized
infantry division is expected to consume 20,000 tons of
supplies during a day of offensive operations.

It is necessary to capitalize on these lessons to prevent
the lack of transportation support in future conflicts. 1In
1946, Secretary of War Patterson said that in future wars the
most efficient means of transport will be required and that
"...changes in favor of speed and flexibility will make what

we now have seem primitive." [Ref. 5]




It is for this reason that military transportation
planners must be able to analyze a transportation network in
an effective and efficient manner so that the requirements
are satisfied on time. By applying the dual decomposition
method to a network the planner can determine the distribution
of shortfall of supplies to the combat units. From this
distribution the logistician arnd commander can analyze what
effect this shortfall will have on combat operations, if any.
This paper will illustrate one method that the planner can use
to help ensure that the transportation system is receptive to

the requirements of the modern battlefield.

C. LITERATURE REVIEW

The problem of analyzing the effects of interdicting
networks has been studied for several years. There have been
several different approaches to the analysis. One general
approach has been to use linear programming and network flow
theory and another approach has been to use stochastic methods
and simulations to describe the performance of a network. When
the arcs have variable capacities the different methodologies
rely on the enumeration of all possible routes through a
network.

Ford and Fulkerson [Ref. 6] developed the maximum flow -
minimum <cut theorem. This theorem establishes that the

maximum flow from a single source to a single sink is given




by the value of the minimum cut that separates these nodes.
This underlying theory forms a basis for developing more
sophisticated network flow algorithms.

Muster and McMasters [Ref. 7] developed an algorithm that
determined which arcs in a network were the most susceptible
to attack and how many of the available aircraft should be
allocated to attacking a particular arc. The method used was
a linear programming model that minimized the capacity of a
cut set of a network subject to constraints on the number of
available aircraft and the bounds on the capacity of the arcs
of the network. The algorithm used a linear relationship
between arc capacity and resource availability and was based
on the maximum-flow minimum-cut algorithm developed by Ford
énd Fulkerson. Their method can only be used on planar
networks that have a single source and single sink.
Additionally, the effect on the flow through the network is
for one point in time rather than over a several day period.

Preston and Howard [Ref. 8] developed a similar procedure
to assign the optimum allocation of aircraft against a
transportation network. Their method differed from Muster's
and McMasters' in that they used an exponential relationship
between arc capacity and resource availability in their
algorithm. The purpose of the algorithm was to determine how
to minimize the capacity of the network subject to aircraft

availability. They determined the allocation of the aircraft




against the network so that the incremental increase in number
of aircraft to a mission is exceeded by the benefit resulting
from disrupting the flow through the network. A limitation
of this model is that the cost function is a measurement of
the use of an aircraft versus the benefit of interdicting a
network. The cost function must be varied in accordance with
tactical considerations and is difficult to establish. This
algorithm also has the same limitations as the Muster and
McMasters paper. The algorithm is based on the minimization
of flow for one day and the network has a single source and
a single sink and was deterministic.

Wollmer [Ref. 9] presented two algorithms for targeting
strikes against a 1lines-of-communication network. His
algorithms attempted to make the cost of achieving a
circulation of flow between two points as large as possible
over time. This was done by increasing the arc-cost functions
and decreasing the arc capacities for a given period of time
given the effect of targeting strikes. His first algorithm
assumed the arc costs are linear functions of flow and his
second one treated the arc costs as piecewise linear functions
with one break point. The results of his algorithms enable
the user to determine the effects of single and multiple
strikes on the flow through a network for a point in time.
Wollmer concluded that arcs that have a variable capacity

based on the probability of interdiction can be replaced with




arcs that have capacities that are equal to the expected value
of the capacity. The conclusion that arcs with wvariable
capacity can be replaced with arcs that have capacities equal
to their expected value is incorrect. The expected value of
an arc's capacity is a central value and the flow through a
network is dependent upon the extreme values of the arc's
capacities. Wollmer's algorithms can be applied to planar
networks with one source and sink.

Other authors used stochastic methods to anzlyze the
effects of interdiction on networks. Four noteworthy papers
are described below.

Fishman [Ref. 10] described a Monte Carlo sampling plan
for estimating the distribution of maximum flow in a directed
network whose arcs have random capacities. His procedure
determined an estimate of the performance of a network as time
evolves given the joint distribution of the capacities of the
arcs in the network. The network can represent a multistate
system whose capacities are subject to random deterioration.
While his paper does not deal with the network being
interdicted directly, it does provide an estimate of the
probability of the maximum possible flow through a network and
the variance of this estimate.

Bellovin [Ref. 11] analyzed a stochastic transportation
network. He presented two related algorithms for analytically

determining the value of the reliability of a network and the




expected quantity of unsatisfied demand. The networks that
were ana’yzed had random demands and the arcs and supply nodes
were subject to failure with Known distributions. Bellovin's
algoritihm computed the shortage distribution of a stochastic,
small to moderately-sized, transportation network. His
algoraithm determined an expected quantity of the shortfall of
supply rather than a distribution of the shortfall.

Evans [Ref. 12] considered capacitated networks in which
the branch capacity is an independent random variable with a
known probability distribution. He investigated the
computation of the probability distribution of the maximum
flow in the network. His initial approach was to completely
enumerate the capacity state vectors. The probability that
the maximum flow has a specific wvalue was found by summing
the probabilities of all capacity vectors whose minimum cut
set wvalue equals the wvalue of the maximum flow. Evans
recognized that this approach produced computational
difficulties for large networks. He then illustrated how a
lattice structure can be used to reduce the computational
requirements. The lattice is a set of cut sets of the
network. Any two lattices that have comparable upper and lower
bounds can be expressed as a single lattice. This approach
may reduce some computations, but the number of cut sets

grows exponentially as the network size increases.

10




Wollmer [Ref. 13] authored another paper on an
interdiction model for sparsely traveled networks. He
presented an algorithm for choosing locations to place forces
in order to prevent the enemy from proceeding through the
transportation network. His model calculated the probability
of placing the force at particular arcs and nodes and the
expected number of forces that should be placed on the
network. His model used game theory as the approach of
placing protection forces against an infiltrator. This model
did not deal with the degradation of arc capacities because
of enemy attacks but it is wuseful in the assignment of

protection forces on a transportation network.

D. ORGANIZATION

Chapter II presents the formulation of the four day
logistics problem. The dual decomposition method will be
detailed in Chapter III. Computational experience will be
discussed in Chapter 1V. The conclusions of the research and
recommendations for further research will be addressed in the

final chapter, Chapter V.
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II. FORMULATION OF THE FOUR DAY LOGISTICS PROBLEM

A. INTRODUCTION

This chapter begins with an overview of network
preliminaries. The formulation of the four day 1logistics
problem for a combat setting and presentation of the model
will be presented in subsequent sections. This chapter will
provide the necessary background for the development of the
dual decomposition solution method which is presented in

Chapter III.

B. DESCRIPTICN OF NETWORKS

A graph, G = (N,E), is a set of elements, N, and a set of
unordered pairs of elements from N, E. The elements of the
set N are referred to as vertices or nodes and the set E is
the set of edges or arcs. The nodes are numbered by integers
and are normally denoted by i and j. Nodes of a graph are
numbered from 1 to n. Each edge is represented by (i,j),
where i is the tail node (where the edge originates from) and
j is the head node.

A network is a graph with additional properties,
parameters, or values associated with the graph's vertices

and edges.

12




In a network representation of a transportation system,
the nodes can represent supply depots, ports, transshipment
points, <c¢ritical road junctions, or a variety of other
distinguishable features. The edges on the network represent
the roads, rail 1lines, pipelines, or other avenues that
supplies can travel over. Normally edges have labels that
identify the edge's 1length, capacity, vulnerability, or any
other characteristic or combination of characteristics. Nodes
may also have properties and be labelled.

The movement of supplies over a transportation network is
analogous to a liquid moving through a pipe. The network, like
a pipe, has a finite capacity. This capacity can be
represented by such measures as vehicles per day, tons per
mile, or any other relationship which describes the limits of
the arc's ability to carry goods. A network which has
capacitated arcs is called a capacitated network. The capacity
of an arc may depend on the width of the road, the road's
surface, weather, or the configuration and capacity of the
vehicles that travel over the arc.

Nodes may also have capacities. For example, a supply
depot has a finite storage capacity. Again, these capacities
can be described in much the same manner as an arc's
capacities.

Other characteristics of a network include sources and

sinks. A source node is a node that originates flow and a

13




sink node 1is any node where flow terminates. In the
transportation network, a source node may be a supply depot
or port where cargo enters the network. A sink node may be
a unit who consumes the supplies or an intermediate supply
depot that stores supplies. Some algorithms only consider the
network to have a single source and sink node. If the network
being modelléd has multiple sources or sinks and the objective
function is the sum of flows, a super source and super sink
can be constructed. A super source and sink can be
constructed by adding dummy edges from the sink and source
nodes to the respective super nodes. These dummy edges have
infinite capacity.

The underlying graph of the transportation network is
assumed to be a sparse, planar, directed graph. A sparse
graph is a graph where the cardinality of the edges, (E|, is
proportional to the cardinality of the vertices, INI. A graph
is planar if it can be drawn in the plane with no arcs
crossing. A graph is directed if there is only one
orientation of the arc. That is, commodity flows can only
move in one direction along the arc.

The dual decomposition method does not require the graph
be sparse or planar, however these attributes of the graph
tell us about the performance of the method.

The performance of a network can be measured and optimized

by the application of 1linear programming methods. Some

14




reasonable objective functions of a linear program are to
maximize flow through a network, to minimize the cost
associated with the movement of supplies through a network,
or to minimize the time required to move supplies through a
network. The objective function that is considered in this
paper 1is to minimize the summed prioritized shortfall of

demand at the sinks.

C. MODEL DEFINITIONS

The following section will define the terms associated
with the model defined in the next section.

The supplies that travel through an arc (i,j) during a
time period, k, are indicated by f; ;. For the purposes of
this paper, the supplies are the requirements of the combat
units. These units require subsistence, petroleum and
lubricants, barrier material, ammunition, repair parts, and
major end items such as trucks and tanks.

If a demand is not satisfied at a sink a shortfall will
occur. The shortfall of supplies at a sink j during a time
period, k, is represented by sf;,. The supplies that do get
to a sink plus the shortfall equal the demand.

The maximum capacity of an arc that has not been
interdicted during a specific time period, k, is represented
by uﬂqyk. Each arc is vulnerable to interdiction by the

enemy. The wvulnerability of the arc can be expressed as a

15




probability that the arc will be interdicted and therefore,

have a reduced capacity, uﬂlyk. The probability that arc
(i,3) is interdicted on day k is represented by p,; , 4. The
probability an arc is not interdicted is 1 - p, j,x - The

capacity of an arc depends on the width of the road, the
road's surface, weather, the capacity of vehicles using the
arc, and whether the arc has been interdicted.

The demand at a sink node, j, for a time period, k,is
indicated by D, . This demand, measured in short tons and
gallons, can be determined by summing the requirements for
all commodities for that particular node or by standard
planning factors. Standard planning factors are guidelines
that provide the planner some rules of thumb on the expected
consumption rates of different commodities. They are based on
historical usage rates of the different supply commodities.
They can be used to estimate the requirements of a particular
type of wunit during the planning phase or when the
requirements are not explicitly known. These factors are

available in U.S. Army Field Manual 101-10-1, Staff Officers’

Field Manual, Organizational, Technical, and Logistic Data,

and Reference Book 101-999, Staff Officers' Handbook. It will

be assumed that the supplies entering the network are not
constrained by availability.
The inventory of supplies that is held at a depot node,

j, between time periods k-1 and k is denoted by I, . The

16




capacity of a node, j, for a time period, k , is denoted by
c, x- The capacity of a nocde can be restricted by the size of
the facility, availability of material handling equipment,
and a variety of other factors. The sum of the flows into a
node minus the sum of flows out must be less than the capacity
of the node during time period k. If the node is at its
maximum capacity and is not being interdicted the capacity is
denoted by clyk. The notation for a depot that is being
intzrdicted is indicated by czyk.

A weighting factor for a particular sink node and time
period is represented by w, . The weighting factor allows
the planner to prioritize the shipment of cargo to a
particular sink in accordance with the priority of support
determined by the commander. A large weighting factor implies
the node has priority and shipments should arrive in a timely
manner. Each sink has a different priority, weighting factor,
that corresponds to the priority established by the commander
of the forces receiving the supplies.

The set of nodes that represent the sinks is denoted by
T. The set D is the set of all depot nodes. The problem will
be solved for K days.

The objective function of the model is to minimize the
summed, weighted shortfall of the demand for each sink and

time neriod.

17




The variables used in the model are summarized below in

Table 1.

TABLE 1 SUMMARY CF LINEAR PROGRAM VARIABLES

f,;« - flow from arc i to arc j on day k
sf - shortfall of supplies at node j during day k
uli_j'k - the maximum capacity of an uninterdicted arc (i, j)

during day k

u’, ;, - the capacity of an interdicted arc (i,j) during
day k

Pi.j.x - the probability that an arc (i,j) is interdicted
on day k

D, x - the demand at node j during day k

I, - the inventory at node j between day k-1 and k

c]j..K - the uninterdicted capaéity of node j during day k

chk - the interdicted capacity of node j during day k

Wik - priority of sink j on day k

D. FORMULATION AS A LINEAR PROGRAM

The problem for the logistician and the movements planner
is to determine the distribution of the shortfall of supplies
so that some insight can be gained on the performance of the
supply distribution system over a period of time. The
distribution of the optimal shortfall involves minimizing the
shortfall of supplies to the prioritized sinks for each day.

The minimization is subject to the balance of flow in and out

of the depot nodes and the conservation of flow at non-depot

18




nodes. Additionally, constraints on the capacities
arcs and depot nodes exist.

The problem can be written mathematically as:

Minimize %" Y Wi, (sf)
j € sinks k=1,2,.... K
Subject to
E: ijm + stk = Dy y for all j € T
i €N k=1,2,...,K
- 2: fijk * Ijxa 2 O for all j € D
ieN k=1,2,...,K

> figwer t Iy — > figx — Iy 2 O
€N

i€N i
for all j € D
k =2,3,...,K
2 Lok - > £ 20
i€N i€N
for all 3 N - {D U T}
for k =1,2,...,K
0 < £k £ Y for all i,j € N
k=1,2,...,K
0 < Ik £ Cjx for all j € D

k=1,2,...,K

of the

Equation 1.1 is the objective function. The objective is

to minimize the shortfall of supplies at sinks according to

a certain priority or weighting factor for four time periods.
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Equation 1.2 is the constraint determining shortfall from
flows into the sink node. It states that the flow of supplies
into a sink plus the shortfall equals the demand.

Equation 1.3 states that the flow of supplies out of a
depot cannot be greater that the inventory of the depot. This
equation, and Equation 1.4, imply that supplies cannot move
directly through a depot node in one time period. These
equations ensure a proper time sequencing of the flow of
supplies through the network. A requirement of this model is
that depot nodes must not be greater than one time period away
from each other. The model is not 1limited by this
requirement, however. The time period can be defined in
whatever time increments that are suitable to the user. For
this paper the time periods will be in terms of days.

Equation 1.4 states that the flow of supplies into a depot
plus the previous day's inventory equals the flow out of a
depot plus the ending inventory for that day.

Equation 1.5 is a constraint on the non-depots. It states
the flow of supplies into a node during a time period must
equal the flow of supplies out of a node during the same time
period. This ensures that supplies are not stored at non-
depot nodes.

Equations 1.6 and 1.7 are restrictions on the arcs and
depots, respectively. The flow of supplies through an arc

and node must be less than its maximum capacity but larger
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than zero. The constraint on the 1lower bound of the
capacities ensures that arcs are one directional and that

depots can only ship supplies that are on hand.

E. NETWORK MODELLING TECHNIQUES

The 1linear programming problem described in the 1last
section can be transformed to a network flow problem. This
transfcrmation enables the problem to be solved using more
efficient and faster network solvers such as GNET [Ref. 14].
A network flow problem also produces solutions that are
integer. Another benefit of the transformation to a network
structure is that the physical characteristics of the problem
are better represented by a network flow problem and they are
more readily accepted by nonanalysts [Ref. 14: p. 2].

Some modelling technigues are required to transform the
problem from a linear programming model to a network flow
model. Artificial arcs are used to represent the flow of the
inventory of supplies stored at depot nodes from one day to
another. Artificial arcs are also required to maintain the
conservation of supply and demand. In a network model the
tonnage demanded must equal the tonnage supplied at the supply
node. In the linear programming model described in the last
section, a shortfall can exist at a sink. The objective
function value is the amount of the shortfall times a priority

factor. Since the objective of the network model is the same,
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an artificial arc is used to capture the shortfall. In a
minimum cost network flow problem the shortfall can be
determined by having costs associated only with the arcs that
carry the shortfall.

Another technique that is required for the transformation
to a network flow model is the addition of another arc and
node for every depot node. The depot node in the 1linear
programming model has capacity constraints. The network model
also requires constraints on <the capacity of the depot
inventory but only arcs in the network formulation can be
constrained. It is necessary to construct an arc that
represents the capacity of the depot node and another node to
link the arc to the remainder of the network. This arc does
not have the same physical interpretation as the other arcs
in the network, but it does allow the capacity of the depot
node to be constrained.

The next chapter discusses the dual decomposition method

and its application to a network that can be interdicted.
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III. THE DUAL DECOMPOSITION METHOD

A. INTRODUCT1iON

This chapter gives the conditions under which the dual
decomposition method can be applied to a network flow problem
and the steps of the dual decomposition method. Then the dual
decomposition method is applied to a simple example to

illustrate how the methodology works.

B. APPLICATION OF METHODOLOGY

The dual decomposition method can be applied to a network
where the arcs have known higher and lower capacities. The
higher capacity is the capacity of the arc when it is not
interdicted and the lower capacity is the capacity of the arc
when it has been interdicted. Generally, t.ie capacities are
expressed in terms of rates of flow, such as tons per day or
gallons per hour. The values of these capacities can be
determined from historical data, subject matter experts, and
some capacity values can be found in the DAMSEL network data
base [Ref. 15]. This data base has unrestricted capacity
values for the majority of the transportation networks in
Europe. A lower caracity of an arc may be zero but it bas
been determined from studies of network capacities in wartime

that an arc in the network normally has some positive value
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because the damage done by interdiction can be repaired in a
short amount of time [Ref. 16].

The probability of interdiction must also be known.
Again, the probability of interdiction can be determined in
the same manner and from the same sources as the arc
capacities. The probability of interdiction normally depends
on how the enemy perceives the tactical or strategic value of
the arc.

The dual decomposition method determines the distribution
of the optimal objective function of the minimum cost network
flow problem without having to enumerate all possible
combinations of arc capacities. This is especially critical
given that each arc has two possible arc capacities and there
may be hundreds of arcs in a network. If there are n arcs in
a network, the determination of the true distribution of the
optimal objective function by full enumeration will require
solving 2" minimum cost network flow problems. It will be
illustrated that the dual decomposition method can determine
an approximate optimal objective function with substantially
fewer problems being solved.

In deterministic optimization, the expected value of the
capacity of each arc is used. A single minimum cost flow
problem is then solved. The dual decomposition method also
precludes having to use an expected value for the arc's

capacity. The use of expected values for arc capacities does
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not provide an expected value of a minimum cost network flow
problem because the minimum cost flow depends on extreme
values of the arc capacities rather than central values. This
will be illustrated during the example problem later in the

chapter.
C. DUALITY AND THE MULTIDAY LOGISTICS PROBLEM

The multiday logistics problem presented in Chapter II may
be rewritten as:
Minimize cf = 2 3.1
Subject to Af =D
If < u
£> 0
The vector of flows is represented by £, ¢ is the cost vector,
and A is a K(!N! + |Di) by KIEl! matrix encapsulating the
constraint equations 1.1 through 1.5. I is a K(IDI + IEIl)
dimensional identity matrix. The vector of arc capacities is
denoted by u.

The dual to the above linear program is given by:
Maximiz2 b'v + u'w = Z 3.2
Subject to viA + w'I > ¢

w> 0
The vectors v and w are the dual wvariables of the problem.

A basic result in dualtiy theory is that, at optimality, the

objective function values of these two problems are equal.
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Let i« E, where E is the set of edges, then dz/du, = w,,
as evidenced by the objective function of 3.2. Hence, for a
given set of capacities the arc with the 1largest optimal dual
value can be seen to be the arc wvhich is the most crucial in
determining the value of the objective function, Z.

The network solver GNET was used to solve instances of the
minimum cost network flow problem represented by the linear
program given at 3.1. The GNET code was modified in order to
determine the vector w post optimally. This modification does

not significantly impact the performance of the GNET code.

D. THE DUAL DECOMPOSITION METHODOLOGY

As has been mentioned, we are interested in developing an
iterative approach to the decomposition of the stochastic
minimum cost network flow problem. The methodology involves
starting with all the arcs "free", that is, each arc may be
at its upper or 1lower capacity, the capacity being still
random. The set of free arcs will be referred to as the set
F.

The starting problem is called "problem O." At the
outset, F, = E. The subscript indicates the problem number.
Two minimum cost network flow problems are solved, subproblem
A has all arc capacities set to their lower bounds, while
subproblem B has all arc capacities set at their upper bounds.
After solving these two problems using the modified version

of GNET, the dual vectors w, and w,, as well as the objective
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function values Z, and Zy;, are determined. Recall from the
discussion of the dual of the multiday logistics problem that

for each arc i, w,; is the change in the objective function

.1
value for one unit of change in the capacity of arc i given
that all other arcs stay at their lower capacities. Thus the
arc i’ which maximizes W, ; is the arc of greatest influence in
subr~oblem A, while the arc j* which maximizes Wy, ; is the arc
of greatest influence in subproblem B. Among i* and j*, arc
k' is chosen which maximizes {w,; : i€¢ E} U {wg.; : Je E}. Arc
k* will be called the "pivot arc" for problem O. If we
condition on the capacity of arc k', we will gain significant
insight into the value of the objective funtion.

Let problem Ol have the capacity of arc k' set to its
upper capacity, while problem 00 has arc k' set to its lower
capacity. The free arcs for both problems are given by Fy =
Fopo = E - { k" }. We assign probabilities of occurrance to
each of these new problems. P, is the probability that arc
k' is set to its upper capacity. In the original problem
formulation, this corresponds to arc k' being unharrassed. Py,
is given by the probability that arc k' is interdicted,
implying its lower capacity prevails.

The next step in the process is finding values of Z, and
Z, for problems 01 and 00. For problem 00, both subproblems
have the capacity of arc k" (all the arcs in E - F) set to its

apper capacity. In problem 01 subproblem B, the free arcs are
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set to their upper capacity to find the new Z, value. In
problem 01 subproblem A, the free arcs are set to their lower
capacity. Note that, the new Z, value equals the Z, value of
problem O because the arc capacities for all arcs are the
same.

In problem 00 subproblem B, the free arcs are set to their
upper capacity to find the new Z, value, for subproblem A of
problem 00, the Z, value is found by setting the free arcs to
their lower capacity. Every arc in E - F, that is arc k" in
this case, is set to its lower capacity. The new Z; value
equals the Z, value of problem O because, again, the arc
capacities are identical. Thus in the first pair of problems,
we have only needed to solve two new subproblems.

In problem 01, the vectors of dual variables for both
subproblems are analyzed to find the new arc k' which
maximizes {w,; : 1€ E} U {wg; ¢ j€¢E}. This gives the pivot
arc for problem O01.

In problem 00, the same procedure is used. The vector of
dual variables is analyzed to find the arc k' which maximizes
{wp; ¢+ 1€E} U {wg; ¢ jeE} for problem 00. This yields the
pivot arc for problem 00.

We continue by generating problems 001 and 000 from
problem 00 and problems 010 and 011 from problem Ol.

The next step in the dual decomposition process is to

check the termination criteria for both problems 00 and O1l1.
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A problem can be terminated if it can be determined tha"
further decomposition of the problem will not produce
significant improvements in the approximation of the
distribution of the optimal objective function. The
termination criteria measures the absolute difference between
the problem's Z, and Z, values multiplied by the probability
that the nonfree arcs realized their prescribed values for
that problem. The equation for the termination check is
provided at Equation 3.3.

2, - Z, * p < threshold value 3.3
Where p = P,, for problem CO and p = P,;, for problem Ol.

The threshold value 1is determined by the user of the
methodology. The threshold value must be small enough so that
the approximate distribution of the optimal objective function
that results from the application of the methodology
adequately represents the actual optimal objective function.

The iterative process of constructing subproblems A and
B yielding Z, and Z,, respectively, checking for termination,
finding the pivot arc and probability, and creating the two
daughter problems continues until all problems terminate.

If the termination criteria is met, the wvalues of Z,, Z,,
and p are added to a SOLN set. The SOLN set is the set of Z,,
2,, and p values that will determine the approximate

distribution of the optimal objective function.
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The probability density function of the minimum cost flow
for the network may be constructed by plotting the values of
Z2,, Z,, and p from the SOLN set. For each terminated problem
we assume that the objective function value for a terminated
problem is wuniformly distributed between Z; and Z, with
probability p. The result of the combination of the
individual Z,, Z,, and p values is the approximate distribution

of the optimal objective function.

E. EXAMPLE PROBLEM

This section contains an example problem that illustrates
the dual decomposition method. For the purpose of
illustrating the methodology, a different, simpler model than
the four day logistics problem described in Chapter 11 will
be used. This linear program's objective is to maximize the
flow through the network. The only constraints are the
balance of flow constraints through the nodes and the capacity
constraints of the arcs. The model is described
mathematically below.

maximize f

such that
f if 1 =1
iy = Z Xjm = 0 if i = 1 or T
JEN mEN
-f if 1 =T
Xi.y £ Ci.j

X3 2 0
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The flow through the network is represented by f, the flow
through an arc (i,j) is represented by x; 4y, and the upper
capacity of arc (i,3j) is represented by c; ;.

The example is a simple network with four arcs and four

nodes. The example network is represented at Figure 1.

ARC A ARC C
(5,3,0.4) (6,4,0.8)
Source Sink
(8,6,0.3) (5,4,0.7)
ARC B ARC D

(high cap, low cap, prob of interdiction)

Figure 1. Example Network

The threshold wvalue cocf the termination criteria will
arbitrarily be set to 0.3 for this example.
The first step in the method is to solve the problem when

the arcs are at their lower capacities and find the objective
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value, Z;. The problem is then solved at the upper capacities
to find Z,. When all arcs are at their lower capacities, the
flow through the network, Z,, is 7 units because the flow is
restricted to the maximum capacity of Arcs A and D. The value
of Z, is 10 because Arcs A and D restrict the flow to 5 units
in each branch of the network. The probability, p, is 1 since
there is no pivot for the initial problem.

The termination criteria is checked and since the value
is above 0.3 the decomposition begins.

The next step is to examine the dual variables of the two
solutions and determine which arc has the most negative
reduced cost. The arc with greatest impact on Z;, and Z, values
is Arc A.

The decomposition process begins with the problem being
pivoted on Arc A. Arc A is fixed at its lower capacity and
the problem is solved with the remaining free arcs at their
lower capacities and then again at their upper capacities.
The value of the objective function for the arcs at the lower
capacity is the same as Z, of the previous problem. The value
of Z, for this branch of the problem is 8.

Arc A is then fixed at its upper capacity and the problem
is solved with the remaining free arcs at their upper and
lower capacities. The value of Z, in this case is the same as
Z, of the previous iteration. The value of Z; for this branch

of the decomposition is 8 (see Figure 2).
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The termination criterion for both problem sets is checked
next. The value of the termination criterion for the problem
set with Arc A set its upper capacity is (8 - 101 * 0.6 =
1.2. The value of the termination criterion for the problem
set with Arc A set at its lower capacity is 0.4. Since both
problem set's solutions do not meet the termination criterion,

the decomposition continues on both branches of the problem.

ARC A 71 = B

72 =10
Zt - 22| *P =3

Figure 2. First Branch Diagram of Example Problem
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The dual variables for the problem pair that had Arc A
set to its upper limit indicated that the decomposition should
continue with Arc C being fixed. The decomposition generates
two additional problem pairs. The first problem pair is with
the upper capacity of Arc C fixed and the values of Z; and Z,
determined for the new branch. As in the first decomposition,
the value of Z, for this branch of the solution equals the
value of Z, from the previous solution, which was 10. The new
value of Z, for this problem set is 9.

The second problem pair has the lower capacity of Arc C
fixed and the new value of Z, is determined. The value of Z,
for this branch equals Z, of the previous solution. The new
Z, value is 8 and the value of Z;, from the previous solution
was 8 also.

The termination criteria wvalues for both problem pairs
are then calculated. The first problem pair had a termination
criterion value of 0.12 and the second problem pair had a
value of 0.0. Since both of these values are less than the
threshold value, the decomposition on this branch of the
problem is stopped. The values of Z;, Z,, and p for both
problems in this pair are added to the SOLN set. Figure 3 is
a branch diagram of the problem at this point in the

decomposition.
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721 =9
22 = 10
j2t =221 * P = 0.12

ARC C
(6,0.2)

ARC A

(4.0.9)

721 =8
722 = 10
lzt - 22| *P = 1.2 21

8
22 = 8

lz1 - 22| *P = 0.0

Figure 3. Second Branch Diagram of Example Problem

The analysis of the dual variables for the problem pair
that had Arc A set to its lower capacity determined that Arc
D should be pivoted on. The decomposition of the network
continues at this branch with Arc D being set to its upper
and lower capacity and two new problem pairs being generated.
These two new problem pairs are solved and the termination
criteria checked. If the termination criteria are not met the
decomposition process continues.

Since both branches of the problem met the termination
criteria the decomposition process ends. A branch diagram of
the final structure of the problem, with all remaining values

provided, is at Figure 4.

35




ARC C

ARC A

ARC D 71 = 8
72 = 8
|zt —z2l+ p =0
71 =7
72 = 7

Figure 4. Final Branch Diagram of Example Problem

The distribution of the optimal objective function is then
determined. The values in the SOLN set are plotted on an X-Y
axis. The X axis is the values of the network flows, 2, and
Z,, and the Y axis is the conditional probability. The Z; and
Z, values determine the upper and lower limits on the network
flow for that particular case. The probability density
function of the network flow for the example problem is

provided at Figure 5.
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Approximate Optimal Objective Function
for Example Problem

Probabilfty

00
0.8
0.7 1
0.6
051
0.4
0.3 1
0.2+

’] I
0

o T
= 1

Figure 5. Approximate Optimal Objective Function
for Example Probiem
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F. COMPARISON OF RESULTS OF DUAL DECOMPOSITION METHOD AND
OTHER METHODOLOGIES.

Determining the exact distribution of the flow for the
example network would require the complete enumeration of all
possible flow combinations, solving 2% = 16 minimum cost
network flow problems. The dual decomposition method only
required solving 6 minimum cost network flow problems.

The solution of the network flow problem by using expected
values for arc capacities only requires solving one network
flow problem, however the result 1s not an accurate
representation of the actual flow through the network.

Table 2 provides a summary of the comparison of the
different results.

TABLE 2. COMPARISON OF RESULTS OF EXAMPLE PROBLEM
BY DIFFERENT METHODOLOGIES

TABLE 2

COMPARISON OF RESULTS OF EXAMPLE PROBLEM BY
DIFFERENT METHODOLOGIES

Type ot Methodology Flow Problems Required

Full enumeration 8.02 16
(actual)

Dual Decomposition 7.9 6

Expected Value 8.7 1

The result of the problem by full enumeration is the

distribution of the actual flow through the network, however
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it requires solving 10 additional problems. The dual
decomposition method provides a suitable approximation to the
optimal objective function and only requires solving 6
problems. The solution by the expected value procedure is an
overestimation by 8.7% of the true flow and does not provide
an accurate representation of the flow through the network.
The variance of the full enumeration solution is 0.807.
Therefore, the solution determined by the expected value
method is not within one standard deviation of the actual
solution. The solution determined by the dual decomposition

method is well within one standard deviation.
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IV. COMPUTATIONAL EXPERIENCE

A. INTRODUCTION

The first section of this chapter presents the results of
a four day 1logistics problem when the dual decomposition
method is applied to a network representation of the problem.
The second section examines the effects on the approximate
distribution of the optimal objective function when the
threshold value of the termination criterion is varied. The
third section presents the structure of a computer program
that uses the dual decomposition method to determine the
approximate optimal objective function for a minimum cost
network flow problem.
B. RESULTS OF A FOUR DAY LOGISTICS PROBLEM DETERMINED BY THE

DUAL DECOMPOSITION METHOD

A 1logistics scenario was developed to determine the
approximate shortfall of supplies to two combat units. The
linear program that represented the scenario was transformed
into a minimum cost network flow model by using the techniques
described in Chapter II.

The network representation of the 1logistics problem
consisted of 57 arcs and 48 nodes. The objective of the
problem was to minimize the shortfall of demands to two combat

units over a four day period. Each unit had a priority of
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support that wvaried with each day. Each arc had a higher
capacity, a lower capacity, and a probability of interdiction.
The network had 12 depots, 12 non-depots, 8 sinks, and one
source. The network represented a fictitious highway network
with capacities, probabilities, priorities, and demands
established arbitrarily. The two combat units had a combined
demand of 3125 units of prioritized supplies during the four
day period.

The dual decomposition method was used to determine the
approximate optimal objective function of the minimum cost
network flow. The initial threshold value for the termination
criterion was 7.0. The determination of the approximate
distribution of the shortfall of supplies required solving 64
minimum cost network flow problems. After the termination
criterion had been met for each pair of problems, the
approximate distribution of the optimal objective function of
the problem was constructed. The probability distribution
function of the optimal objective function is in Figure 6.

It was determined from the probability distribution
function that the prioritized shortfall of supplies to the
two combat units for the four day period would have extreme
values of 1350 and 1730 units of prioritized supplies. The
mode of the approximate distribution was at 1550 units of

prioritized supply. This is the most probable value of the
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Approximate Optimal Objective Function
for a Minimum Cost Network Flow Problem
(Threshold Value = 7.0)

Probabllity

0.14

Q124

0.1 A

1350 1450 1550 1650 1750
Shortfall of prioritized supplies

Figure 6. Approximate Optimal Objective Function for a Minimum
Cost Network Flow Problem (Threshold Value = 7.0)
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shortfall of prioritized demand. There are several "spikes"
in the distribution, or local modes, between 1600 and 1680
units. The 1logistics planner can approximate that the
shortfall of demand will be between 1550 and 1650 units in
the shortfall of supplies 80% of the time.

Since the shortfall of supplies would be approximately
50% of the requirements, the logistics planner could recommend
to the combat units' commander alternative methods of
distributing the supplies and possibly how the shortfall could
be avoided by increasing the stockage levels of supplies at
the forward depots. The logistics planner could also
recommend that certain segments, arcs, in the transportation
network receive additional protection from interdiction
thereby decreasing the probability of interdiction.

If the problem described above had been solved by complete
enumeration of the arc capacities, the actual shortfall of
supplies could be determined. However, this would require
2%7, or approximately 1.4 x 10, minimum cost network flow
calculations. The number of solutions required by the dual
decomposition method is 27°' = 4.44 x 107'® of the total number
of solutions required by full enumeration.

The logistics planner normally only requires an
approximate value of the shortfall of supplies. The dual

decomposition method can accomplish this approximation by
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solving a very small fraction of the calculations that are

required by the full enumeration procedure.

C. EFFECTS OF VARYING THE VALUE OF THE THRESHOLD VALUE

If the threshold value of the termination criterion is
adjusted to 15.0, only 32 minimum cost network flow problems
must be calculated. This is a 50% reduction in the number of
calculations required when the threshold value is 7.0.

All branches of the final decomposition tree were the same
length. This will not normally be the case because the branch
with a low probability will satisfy the threshold criterion
earlier than the branch with a higher probability. In the
four day logistics problem the probability of interdiction for
each arc was normally 0.5 or 0.4. The probabilities for each
branch in the tree were similar so the threshold criterion was
satisfied at the same stage in the partial enumeration.

The approximate distribution of the optimal objective
function for the minimum cost network flow with a threshold
value of 15.0 is at Figure 7.

This distribution also has a mode at 1550 units of
prioritized supplies but has a relative mode at 1500 units.
The approximate distribution with the threshold value set to
15.0 is smoother than when it is set to 7.0. The logistics
planner can approximate that 80% of the shortfall of demand

will occur between 1490 and 1650 units of prioritized
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Approximate Optimal Objective Function
for a Minimum Cost Network Flow Problem
(Threshold Value = 15.0)

Probability
02’_)“1

1380 1480 1880 1880 17850
Shorttall of prioritized supplies

Figure 7. Approximate Qptimal Objective Function for a Minimum
Cost Network Flow Problem (Threshold Value = 15.0)
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supplies. This 80% confidence interval for the approximate
distribution is wider than when the threshold value is 7.0
but it still can be used to determine an approzimate shortfall
of supplies to the combat units.

The following table 1illustrates the results of the four
day 1logistics problem when it 1is solved using the dual
decomposition method and when expected values are used for
arc capacities.

TABLE 3. COMPARISONS OF RESULTS OF FOUR DAY LOGISTICS
PROBLEM SOLVED BY DIFFERENT METHODOLOGIES

TABLE 3

COMPARISON OF RESULTS OF FOUR DAY LOGISTICS PROBLEM
SOLVED BY DIFFERENT METHODOLOGIES

Dual Decomposition Method Arc Expected Value

Threshold Value

70 16.0
Mode 1650 185¢C -
Expecied 15668 1670 1430
Value
Std 140 1560 -
Deviation

The results illustrate that the solution of the method
that uses expected values for arc capacities overestimates
the capabilities of the network. The solution for this method

has a lower value for the shortfall of prioritized supplies
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than the solutions that used the dual decomposition method.
This lower value for the shortfall of supplies gives an
inaccurate and more optimistic prediction on the network's

capabilities.

D. DESCRIPTION OF THE COMPUTER PROGRAM
The steps in a computer program for solving the multiple
day logistics problem are provided below. The algorithm is
written in pseudo-code so that it can be implemented in any
programming language.
Read in the network characteristics

Construct the multiple day network flow representation of
the problem

Construct the head, tail, capacity, cost, and probability
arrays

Solve for 2,
Solve for Z,
IF( iZ, - Z, * P < threshold value) then
Record Z,, Z,, and p values
STOP
ELSE
100
Choose arc i to be pivoted on
Put a new problem on the queue with arc i set to
its upper capacity
Put a new problem on the queue with arc i set to

its lower capacity
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Take a problem off the queue
Set all free arcs to upper capacity
Call GNET
Record primal and dual variables
Set all free arcs to lower capacity
Call GNET
Record primal and dual variables
IF( 1Z; - Z,| * P < threshold value ) then
Record Z,, Z,, and p values
IF( the queue is empty ) then
STOP
ELSE

GO TO 100

The gqueue that contains the problems to be solved is a
first-in-first-out Qqueue. The array that represents the
problem to be put on the queue has values of Z, or Z, and p
from the parent problem pair. If the problem being put on
the gqueue is going to determine a new minimum cost network
flow for the arc set to its lower capacity, the Z, value is
recorded. This prevents having to solve for the Z, value,
for that problem pair, since it will be the same as the last
problem pair. The opposite holds if the arc is set to its

upper capacity. The Z; value is recorded since it is the same
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as the previous problem pair. The conditional probability for
the previous problem pair is also recorded since it will be
used to determine the new conditional probability. The array
that is stored on the queue also has a dimension that contains
a cell for every arc. If the arc is not free the
corresponding cell for that arc is marked so that when the
problem is taken off the queue, the arcs that are not free can
be set to their upper or lower capacity. The arcs will be set
to their upper or lower capacity depending on how they are
marked in the cell.

A FORTRAN program that uses the dual decomposition method
to determine an approximate distribution of the optimal
objective function for a minimum cost network flow problem is
provided at Appendix A. This program uses the network solver
GNET to solve the minimum cost network flow problem. The
program also constructs a multiday network representation of
the problem given the road network and depots.

The next chapter provides conclusicns on the use of this
methodology on network interdiction models and then provides
recommendations on areas of further research that should be

explored.
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V. SUMMARY AND FUTURE RESEARCH AREAS

A. SUMMARY

The dual decomposition method is an attractive alternative
to solving minimum cost network flow problems when an
approximation of the distribution of the optimal objective
function can be used. This method can determine a close
approximation of the distribution of the optimal objective
function by solving a fraction of the number of problems
required by full enumeration.

A close approximation of the distribution of the optimal
objective function is adequate for planning purposes in most
cases. The dual decomposition method allows this
approximation to be determined by solving fewer problems then
other methods, so it is more responsive to the time
constraints of the logistics planner.

The dual decomposition method is also preferred over using
expected values for arc capacity values. The expected value
approach overestimates the optimal objective function and does
not provide an accurate prediction on the capability of a
transportation network. This overestimation on capability
could produce unacceptable consequences if predictions on the
logistics support available to units engaged in combat are

tased on the results of this method.
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The dual decomposition method can also be used to make
policy decisions. If the results of the analysis of a
transportation network by the dual decomposition method
determines that the combat units will not receive adeqguate
logistical support, policies can be made to alleviate the
problems of support.

The stockage policy on the amount of supplies available
at forward supply depots could be changed to meet the demands
of the combat units. If the transportation network is
inadequate, stockage levels could be increased to meet the
demand. If the network is capable of carrying more supplies
and assets are available, the stockage level at forward depots
could be decreased to reduce the susceptibility of the depots
to enemy forces.

Policy concerning the amount of forces dedicated to the
security of LOCs could also be made. The assignment of more
security forces may decrease the probability of interdiction
and thereby, increase the flow of supplies to the combat
units. Security forces could also be distributed to different
segments of the transportation network based on the analysis

of the results determined by the dual decomposition method.

B. FUTURE RESEARCH AREAS
The dual decomposition method can be applied {0 other

stochastic combinatorial optimization problems. These
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problems find, from a finite set of alternatives, an
alternative that optimizes the objective function. Examples
of stochastic combinatorial optimization problems are
sequencing, scheduling, and routing problems with random job
durations or travel times. These problems require complete
enumeration of all alternatives to find the optimal solution's
distribution or moments. The dual decomposition method may
be used to decrease the computational burden by limiting the
number of alternatives that must be solved. This would allow
combinatorial problems to be used on a more practical basis
and without sophisticated computer resources.

Variations on the four day logistics problem presented in
this paper should also be explored. One variation is that if
an arc has several different capacities that are dependent on
the weather and the probability of each different weather
factor is known, the dual decomposition method could be used
to determine an approximation of the optimal objective
function's distribution for a maximum flow problem. Other
variations are that the demands could be random rather than
known and the arc capacities could be from a continuous
distribution rather than discrete. The dual decomposition
method could be applied to these variations as well to provide
an approximate distribution of the optimal objective function

without full enumeration.
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A major topic that requires further research is the
determination of how a threshold value of the termination
criteria should be established to provide a solution within
a required tolerance level. This will enable the user of the
dual decomposition method to be able to establish a threshold

value that is consistent with the requirements.
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APPENDIX COMPUTER PROGRAM

.......................................................................

? THTS FROGRAM GENERATES THE FOUR DA& LOCISTICQ PROBLEM IN NETWOFK
< FORMAT AND USES THE DUAL DECOMPOSITION METHOD TO DETERMINE
° AN AFFROXIMATE OPTIMAL OBJECTIVE FUNCTION

i IT USES THE NETGEN, BUBSRT, NODFAK,AND HEDLST SUBROUTINES
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CALL NETGEN
FUT

Iy

% ( gg?ﬁg?r%ﬁXARC ,MXNARC ,MAXDAY ,MXNNOD,

3 NIGM CAFL,CAYH,PINTER,DEFNUM,DCAFL ,DCAYH,DPINT , DAY, ANUM,
& NARC,LCAD ,HCAP,NH, PROB,

UTTUT FOR’'GNET

X MEOD,T,H,C

. COLDEN kg NETWORK, CREATE ARC CAFACITIES

o ax

Do 100 J=1,NARC
IF( T(J}.GT. 0. ) THEN
JX = JX + 1
T(Jx) = TSJ
ROy 7= “he P(J)
LDIF
100 CONTINUE
§ HARC = JX
K CREATE RHS INDUCE MAX FLOW FROM CAPACITIES TO LAST NODE
DO 110 1=1,MNO
NIy =0
110 CONTINUE
L5 120 J=H%MNOD),H£MNOD+1)-1
WAL= X(D) T CR(T)
120 CONTINUE
. X(150D) = -X(1)
3
DO 140 IH=1.MNOD
J1l = H§ IH)
J2 = H(IH+*1)-1
DO 130 J=J1,J2 *
120 CONTINUE
140 CONTINUE
IFRT = 0
WU = Oﬁ N 1
y +
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* SOLUTION OF THE MINIMUM COST NETWORK FLOW FROBLEM BY GNET

E‘THE DEST ARRAY IS THE QUEUE HOLDING THE PROBLhMS TO BE SOLVED
CALL GNET& IPRT IUU MNOD,NARC, T,H,C,LCAF, X, U,Y )
DO H NO

= D
Jl = EIH)
J2 = H{(IH + 1) - 1
Do %%KL{(B)J}’]Z 1H) U(T(J))
225 CONTINUE = Ut
274 CONTINUE
bo %%%CEJ-zclj AEC
226 CON$956E: TO&I +PR %
“ CALL GNET& IPRT,IWU, MNOD,NARC, T,4,C,HCAP, X, U,Y )
DO 33? _HH=Ié3MN0D
J2 = HEIH + 1) -1
Do %52L§(3)J}’1§1H) U(T(J))
325 CONTINUE B
374 CONTINUE
DO 326 J = 1 NARC
PRICE = c{J}) = %
TR T A
326 CONTINUE
CUR = 1
N}T : 1
IF(TEPI%TOTl IO%%T§ %gaﬁsg)THFN
ELSEGALL ENOSoRE
CSLL PIVOT(DUALL,DUAL2.PNTR,MXNNOD,NARC)
CalL DESTOR(PNTR.DEST DUALT.DUAL2 , NXT, CUR ,MXNNOD,TOT1,TOT2,
1ggbo¥g,PRoB "MXNABC,HCAP,LCAP, NARC )
L
111  CONTINUE
cuv = NOHADL( CUR_MQLONG , CUR)
IFi CUR. EQ. NXT)THEN
CALL NOMORE
EiCTr
i?&DEST(CUR.—l&.EQ.1;THEN
81305 T2
DUAngI 2 DEST&CUR 1)
IF(DEST CUR,I&.'T.O}THEN
ELSE CP(I) 2 DEST(CUR,I)
CP(I) = HCAP(I)
200 CORTINUE
ALL GNET& IPRT,IWU, MNOD,NARC, T,H,C,CP, X, U,Y )
DO 33? ;uH=IH)MN0D
J2 = HEIH + 1) -1
DO 335 3 = J1,J2
DUAL2(J) = U(IH) - U(T(J))
335 CONTINUE
334 BSNgggugJ = 1,NARC
PRICE = c&J) * Y& %
TOT2 = TOT2 '+ PRIC
336 EngONTINUE
TOT2 = DEST(CUR,-2)
DO 400 I = 1,NARC
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400 CONT

=
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SUBRCUTINE NETGEN

......................................................................................

INEU%ROUTINE NETGEN

% ( %ﬁXgEP&gAXARC ,MXNARC ,MAXDAY ,MXNNOD,

3 NIGM,CAFL.CAPH,PINTER,DEPNUM,DCAFL,DCATH,DPINT, DAY, ANUM,

A NARC.LCAP ,HCAP ,NH, PROB,

OUTPUT FOR GNET

X MNOD,T,H,C )
3 %?6% ESBROUTINE READS THE NETWORK AND CONSTRUCTS THE FOUR-DAY
* DEFINITIONS: (INPUT
* MAXARC = MAX NUMBER OF ARCS
- 1MaSDAY = MAX NUMDER OF DAYS
- MAXDEP = MAX NUMBER OF DEFPOQTS _
5 MYNARC = MAX NUNBRER OF AP"S IN TOTAL NETWORK
* MINNOD = MAX NUMBER OF NODES
a ( OUTPUT)
s NA = NUMBER OF ARCS
a NI = NUMBER OF NODES
f 1'DA = NUMBER_OF, DAYS
e BIGM = A "LARGE' CAPACITY
. CAPL = LOWER CAP CF ARC
¢ CAPH = UPFER_CAP OF ARC '
' PINTER = PROBABILITY OF INTERDICTION
% DEPNUM = DEPOT NUMBER
% DCAPL = LOWER CAP OF DEPOT
% DCAPH = UPPER CAP OF DEPOT
%* DFINT = PROBABILITY OF INTERDICTION (DEPOT)
% NH = HEAD
A T = TAIL
% DAY = CORRESPONDING DAY FOR THE ARC
% ANUM = ARCNUM FROM THE TABLE
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7]

1007

H HEAD ENTRY-FOINT ARRAY FOR GNET

INTUT

NGMBER OF NODES, NUMBER OF ARCS,

ARC #, LOWER CAP, HI CAF, PINTER
NUMBER OF DEFOTS
EPOT NUMBER, NODE NUMRER, LOWER
REAL DPINT(MAXDEP,MAX AY\.PINTER%MA
INTEGER NN.NA.NDA.NIGM,NDPT .NXTARC
CHEAD( 100 CAPL(200.200}.CAPH§200,20
CPEPNUM{ MAXDEP ,DEPNOD& 003. NUMSTHIE .
CDCAPL( 200,200 |DCAPH( 200,200 ) NH( M
CDAY%MANARC).AIUM%MRN.RC ,LCAPS3O g
INTEGER LENGIH.C\IT&QOO .Alg& 0), 3
Ca%(400),FRL,PRIOR{300,2300) ,SINK(20)
THTEGER I1.J,THMENOD(100),ARCNUM,DEMA
LOGICAL SNR&3JO)
NET OUTFUT DATA
INTEGER™4 M, T(MXNARC), H(MXNNOD+1l),
CALL EXCMS('FILEDEF 03 DISK NET DATA
CALL EXCMS( 'FILEDEF 04 DISK TH OUTE
READ(03,%*)NN,NA,NDA,NIGHM
DO 1000 I = 1,NA
DO 999 J =’1.NDA
READ( 03, )YARCNUM, TATL( ARCNU!) ,HEAD(
CCAPH ARCNUM. J) . PINTER{ ARCNUM, J)
CONTINUE
CONTINUE _
EAD&OB.*)ND
DO 1001'1°= l.NDPT
DO 998
READ( 03
CONTITUE
CONTILUE
AD(03,%) NUMSKK
Do 956 R s i
NP(I% = . FALSE
CONTILU
DO 997 I = 1, NUMSNK
READ({ 03, %N
smf(N& 2 TRUE
SIM% )y = 1
CONTINU
DO 1005 J = 1,NDA
DO 1004 I 2 1.NA
T(I_+ ( J-ll“NA =
NH{I + ((J-1)%A X =
ANUM&I + (&J:lg“J ))
DAY(I+((J-1)*NA)) =°J
4 CONTINUE
5 CONTINUE ]
NXTARC = (NDA*NA) 1
DO 1007 J = 1,(NA“NDA
THENOD(J) = (INT(T(J)/10))
CONTINUE
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NUMBER OF DAYS, BIGM
CAP, HIGHER CAP, DPINT
hARC,MA\DA&& PROB(lOO)
NARC.TAIL(100)

0),

NARC)

HCAFSjcoe
(400),A3(400),

ND.DEM( 300)
C(MINARC)

AL') ,
UT Al (LRECL 130 PERM")

ARCNUM) ,CAFL( ARCNUM,J),




f 1,NDPT

D: Y(NXTA C%

NhTARC +
ANUMSNXTARC

S --TNg 3
Sl Ty

NXT

{ I
ANUM NXTARC + 1)y =3
NXTARC = NXTARC + 2
994 F]CONTINUE

E:DIF
995  CONTINUE
NARC = NXTARC - 1
CALL BUBSRT(MXNARC,NARC, NH T, NH DAY, ANUM)
CALL NODPAK( MXNARC,NARC, NH|T }
DO J1 J=1,NARC
21 CONTINUE
CALL HEDLST
1 ( MXUNOD,MNOD., MXNARC.NARC,

T,NH,
O%TPUTHAR\AX "OF ENTRY POINTS BY HEAD 'NODE
DO 23 1=1,MNOD

.............................................................................................................................

.....................................................................................................................................................................................................
.......................................

DO zooo J=1,NARC
IF({DAY J .cr.ox.AND.(ANUM(JA GT. 0. AND. (DAY(J).LE.NA)))THEN
CAF(J) = 'C PL&ANUHSJ).D ¥(J
HCAP{J) = CAPH{ANUM( &,DAY(J)
ELSE I S AY(J%.LE.O)THE
LCAP = NiGH
HCAP(J) = NIGHM
ELSE 1F D_Y(J&.GT.NA)THEN
LCAP(J) = CAPL{ANUM(J),DAY(NA
HCAP(J) = CAPH(ANUM({J).DAY({NA
END IF
2000 CONTINUE
DO 2010 J=1,NARC ] l
IF((ANUMgJS.LT.O‘.AND S ANUM JB LE. NDPT))THEN
LCA =" DCAPL *ANUM AY
ND I?CAP J = DCAPH( - 1"*"ANUM , DAY J
ARSI eo1 0 9 911

f READ IN DEMAND FOR EACH DAY
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= 1,NDA
01 J_ =
AD(03,%)PRI
PRIOR(I,J) = PRI
2201 CONTINUE
2210 CONTINUE
DO 2205 I = 1.NA
IF(DAY&I) LT & THEN
C(1) = FRIOR(-1%DAY(I).SINK(ANUM(I)))
ELSEC 1) = 0
END 1%
2205 CONTINUE .

..................

P9 3000 T = 1,NARC
IF((DA&gIJ.GT.Og AND. $ANUW I).GT. Of AND. (DAY(I).LE.NDA))THEN
FROB(I) = FINTER(DAY 8 NUHS 4
ELSE %gggbig(;)ocr NDAJ. OR.(DAY(I).LT.0))THEN
ELSE If(ggNUH(I).L' 0), AND. (ANUM(I).GT.NDA))THEN
. FROB(I) = DFINT(<1¥ANUM(I),DAY(1))
" PROB(I) = O
END IF
3000 CONTINUE
RETURN
¢¢¢¢¢¢¢iQ?BQ&II§§n§Q§§RI£d2§éHQVEESQIHVQRlIvAl"éﬁléﬁwéé) ............................... .

é%hTﬁgFip%%NGTH CRIT(MANARC),AL(MXNARC),A2(MANARC), A3(anARc),
Ady X NAR !
IN%EGER COPY(300),1I,J,TEMP1,TEMP2 ,TEMF3,TEMP4, TEMPC

DO 1000 I = 1 LENGTH

COPY{1) = CRIT(I)

1000  CONTINUE

DO 1001 I = 1,LENGTH

0 1002 J = 1+1,.LENGTH
IF(COPY(J).LT. COPY(1I))THEN
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1?).EQ.1 ) THEN




CURIDY = 2
CURNGD = H4(1)
FEEFJ = 1
, 111 TIRST = .TRUE.
DO 1001 J=KEEPJ,MARC
IF( NH(JJT.EQ CULNOD ) THEN
IEMFH{J) : CURLDX
ELSE
» IF(_FIRST ) THEN
FIRST = .FALSE.
KEEPJ = J
ENDIF
ENDIF
1001 CONTINUE
DO 1002 J=1,NARC
IF( _T(JY.EQ.CURNOD ) TEMPT(J) = CURIDX
1002  CONTINUE
IE( TEHPH%NAPC) EQ. 0 ) | THEN
CURIDX = CURIDX +
CURKOD = NH(REEPT)
GOTO 111
1F
010 J=1,NARC
()] TEJPT(J3
fHL\% = "TEMPH(J)
LU
URN

SUBROUTINE FIVOT&RCl nC2 I}L MENNOD,NARC)
INTEGER RCliMXNN D), RCI(MXNNOD)
> IN1EGER PTRL,BIG
RIG = O
b %9? iBZ(%ClN%RC GT BS .GT.BIG))THEN
' St :‘MA%(Kgé(RC ’3) AB (ﬁcL S
FIRL = 1
E
I

%UFPODII\JE DESTQK P\ITR DEQT PCl RCZ N T‘CUP M}\NNOD TOII 'IO’Z,
1M0LONG , PROB, HMANARC,HCAF,LCAP.NA
INTEGER PNTﬁ NXT,CUR, PClgHXNAPCX 2 N‘N\PCR

RC CAP({HXENARC) ,NARC

INTEGER TOTL.TOT2,NKT1.HCAP(HXN
REAL DEST HOIOWG. !2 MZNARC) , PROB( MANARC
UAT = NOHADL(NXT,MOLONG,CUR
NETl= NOHADL({NXT. ULONG CUR
DEST(NET pur\g = "LCAF PNLRg
DEST NXTI,PNT\z = HCA ( PNTR)
DO 100 172 1.NARC
IF(DEST&CUR I).GT.O)THEN
DESTE XT i% = DES'&CUR 1%
DEST(NXT1,1) = DESI(CUR,1)
, ELSE
DEST(NXT 1% = Rclglz
DEST(NXT1,1) = RC2(1)
END IF
100 CONTIHUR ,
DEST{NXT,0) = PROB(PNTR)*DEST(CUR,0)
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DEST(NXT1,0) = &l-PROB(PNTR))*DEST(CUR.O)
DEST(NXT, 1) =
EST(hxTl,-1) =
EST(NXT 2%
EST(NXTL,-2)
NXT = HXT
ETUR}
ND

NCTION NQHADL(NRG,MQLONG,CUR)
UR, TCUR

CUR

EQ. MQLONG ) THEN
NQHADLZ 1

G
(HQHADL = KRG + 1
NQHADL. EQ, TCUR)THEN ,
FRINTY,"QUEUE OVERFLOW AND NRG =',NRG
STOP
IF
URN

A

T

T

U
(NR
S

D

(

S
N
.

S

LOGICAL FUNCTION TERM

.............................................................................................................................................................................

10N TERM(TOTL,TOT2,P,THRES)
] T1,TOT2
REAL F,THRES _
IF( (ABS(TOT1-TOT2)*P).LT. THRES )THEN
TFRM_= . TRUE, ‘ , , , ,
~ _WRITE(O&,*)"foTl = ',TOTL!,' TOT2 = ',TOT2," P = ',P
ELSE
TERM = .FALSE.
END IF
REIURN
__EID
SUBROUTINE HOMORE
EnD
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