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1 INTRODUCTION

To varying degrees, all tests of ability contain items that violate the assumption
of conditional independence on which much of present item response theory (IRT)
is based. If the association between pairs of items cannot be explained entirely by
their relationship with the underlying ability, conventional methods for evaluating
the likelihood of latent structure models become inappropriate and may produce
biased estimates of item-parameters and corresponding estimates of ability. Under
the assumption of conditional independence, the probability of subject i responding
in pattern @; = [z;1.Zi2..... Zin]. conditional on ability §; is

P(z = z,]6,) = []Ip;(8:)]7(1 = p,(8:)]' . (1)

J=1

where z,; is the jth item score for subject i (z;; = 1 if correct, otherwise z;; = 0),
and p;(8) is the item response function (IRF) that erpresses the probability that a
subject with ability #; will respond correctly to item j. The IRF may be obtained
from any one of several item-response models (e.g., one, two, or three parameter
logistic or normal ogive models). If the ability 8 under study does not account for
all of the association between items, the assumption of conditional independence is
not valid and the conditional probability cannot be expressed simply as a continued
product of the individual item-response probabilities.

Three general approaches to the problem of failure of conditional independence
are available. First, we can simply ignore the dependence and risk obtaining bias in
our estimates of item parameters and ability and corresponding estimates of preci-
sion. Stout (1987) has shown that if, for a fixed level of ability 4, the average item
covariance is “negligible” as test length grows, that is,

hmn—oo’—zl? ZZCOV(I,',I']' ‘ 0) — 0, {2)

1=1)=1

then the test is “essentially independent™ and the usual results for the locally inde-
pendent case apply (i.e., equation 1). As rigorous tests for essential independence
become available, this will provide the means for judging one’s confidence in selecting
this alternative.

Second, if we saturate the latent space with additional dimensions, we can at some
point achieve a conditionally independent solution. If the required dimensionality
is small, say 2 or 3, this may be feasible using the approach described by Bock
and Aitkin (1981), where the integration of the K-dimensional ability distribution
9(8) ~ N(0,1) is approximated using Gaussian quadrature formulae. There are two
potential drawbacks to this approach. First, if there are numerous “method” related
factors and a single primary ability factor, the dimensionality required to bring about
conditional independence may be too high for practical purposes. Second, if there
is a single method related factor and a single primary ability, it may be difficult to




find a two-dimensional solution that preserves this structure. Indeed, the orthogonal
solution will often divide the items based on the method related factor.

The third approach to this problem is to formulate a generalized IRT model
of dependence in which the simplicity of a unidimensional model is retained. In
the generalized model the conditional response-pattern probability is of the form
P(x = z;| 8,.%), where ¥ is an n X n symmetric inter-item covariance matrix. [t
should be clear that P(z = x; | §;,T) is equal to the right side of (1) only when T is
diagonal, which is only true under conditional independence. When ¥ has nonzero
off-diagonal elements, P(z = z; | 8;, L) becomes difficult to evaluate. and, in fact,
no closed form expression has been obtained for general ¥ beyond n = 3. The
result of our preliminary studies has been the development of an approximation of
P(x = ;| 6;, %) for general ¥ and n < 50. The focus of our current work is on the
development of a unidimensional IRT model of dependence that incorporates these
generalized probability estimates.

2 THEORETICAL BASIS FOR MODELS OF DEPENDENCE

Experimentally, failure of conditional independence can result from two general con-
ditions: item content and item presentation.

2.1 Item Content

If different items require different abilities, aptitudes or cognitive processes, then the
IRF must depend not only on the primary ability, but on the secondary cognitive
skills or method related factors as well. As a result, association among the residuals
is introduced and the assumption of conditional independence of a unidimensional
IRT model is no longer tenable.

For example, assume that the ability space is two-dimensional, where 8, repre-
sents a primary ability and 82 a secondary skill that is required for success on some
of the items. With respect to item j, the underlying response process (response-
strength variable) is:

y,~=/\j191+/\j202+£j (3)

Conditional on 8y, the variance of y; is:

V(yi [61) = V(; + Ajab2)
= V(g;)+ V(A)202)
= 1= =24, +25V(6y)
= 1-2A}4
)
This result follows because V(§,) = V(§;) = Conditional on 8¢, the residual

inter-item covariances are:

?of
ok F

ad

O
a

o

ton/

Av 11lablility Codes
~ |Avail end/or T

‘Dlst l Spoclul

N
o™y

T



cov(yi, ¥j | 01) = Aizdj2 (5)
or expressed as a residual correlation,
Ai2Aj2

r(y,,y,]@,) =
L=, /102

2.2 Item Presentation

In terms of item presentation, conditional independence implies, that for a fixed
level of ability, the probability of a correct response to item j is independent of the
examinee’s performance on all other items. However, in the context of adaptive
testing, the presentation of item j + 1, is in fact, conditional on the success or
failure on item j, where the items 1,2,...,j + 1 are ordered in terms of difficulty,
presumably along a single ability dimension of interest. In practical terms, this
assumption implies that the individual item response probabilities for subjects with
the same ability would be identical for all possible orderings of the items on the test.

When item presentation is the result of a random process. the assumption of order
invariance may well be reasonable. However, when item presentation is systematic
and based on either progressive linear increases or decreases in difficulty (conditional
on a provisional estimate of examinee ability), it seems likely that the conditional
item-response probabilities would be affected. For example, if the initial ability
estimate is low, several items of increasing difficulty may be presented. If a sequence
of similar problems is presented, the probability of a correct response may be both
a function of the examinee’s primary ability and in addition the subject’s skill at
recognizing the sequence, level of expectation, and perhaps even learning.

At the very least, we must admit the possibility that random orderings and
systematic orderings of items have some impact on the response process and cor-
responding probability estimates. As an analogy, consider an auditory stimulation
experiment in which the lower bound of the subject’s hearing level is to be estab-
lished. If the volume of the tone is presented in uniform steps from loud to soft,
the resulting estimate of hearing level and corresponding estimate of precision (if
replicated) will clearly be different than if the volume of the tone is presented in a
random order. Clearly, the knowledge of the presentation pattern and expectation
of the degree of difficulty of the next discrimination task (i.e., tone versus noise) will
contribute to the likelihood that the subject will make the correct response. As will
be demonstrated, the consequence of ignoring this residual association will primarily
be an underestimate of the posterior standard deviation. Since the convergence of
an adaptive testing session is often based on the precision of the estimated ability,
on average, the result will be a premature conclusion of the testing session, and false
sense of certainty. :




3 Approximating Multivariate Normal Orthant Probabilities

In this section, we describe a general approximation for multivariate normal orthant
probabilities. Using a threshold argument, we show how the approximation can be
used to estimate the probability of any of the 2" possible binary response patterns
realized in a testing session.

3.1 The Clark Algorithm

Based on earlier work by Clark (1961), Gibbons, Bock and Hedeker (1987) developed
a very general approximation to the probability that n correlated random variables
drawn from a multivariate normal distribution are jointly non-negative; that is;

> o] x <
j[ ]/ "‘j[ 8, (21,220 . 2n)dz1,d2g,. .. dzn. (
0 0 0

Assuming that the underlying response process is multivariate normal and that
the correct responses to a series of items on a test are the result of exceeding a
threshold on one or more “latent™ continua @, our modified Clark algorithm can
provide probability estimates of any of the 2" possible binary response patterns
without any restriction on the form of the inter-item covariances after conditioning
on . An overview of Clark’s original formulae and our modification of the algorithm
is now presented.

Designating positive directions 1 and negative directions 0, we may represent
the probability of the positive orthant of an n-variate distribution by P(1,1,...,1),
that of the negative orthant by P(0,0,...,0), and that of any one of the other
2" — 2 orthants by inserting the appropriate pattern of 1's and 0’s. The Clark
algorithm provides a computing approximate for any orthant of a multivariate normal
distribution with arbitrary vector mean and covariance matrix. Clark (1961) derives
the following formulas.

Let any three successive components from an n-variate vector, y,, be distributed:

-1
~—

2

Yi Hi g;

yin1 [~V Higl | 5] FiTigl Pis+l 0,-2“ (8)
) , ) , o 2

Yis2 Hit2 TiTi42 Pi+2 Tigl Oit2 Pitli+2 OTi42

Let § = max(y:) = ¥. and compute the probability that y;+1 > §; as follows:

set Sz = (i = i)/ Gigrs
2 _ 24 .2 R
where CHor = 00+ 0y — 2000041 Piisr. (9)
Then Plyie1>§) = Plyis1—3>0)
= ®(-zi41)




the value of the univariate normal distribution function at the standard deviate
—Ji¢l i

Now let §;41 = max(y,, ¥i+1) and assume (as an approximation) that (yiy2. Ji+1)
is bivariate normal with means,

Wyig2) = Elyis2) = Wig2 (10)

Fis1) = E(Fiw1) = pi®(zie) + pin1®(=2i41) + G10(2i41),
variances -

Uz(yi+2) = g(yi2+2) = Eyipa) = a,-2+2,

&
o Gie) = EF) = EGim)s
where
E(G21) = o) B(zip )+l 02 ) B(= zip )+ (e F it 1)1 0 204 )(11)
and correlation

p(Fiats Binz) = oipiiv2®(zis1) + ‘7-i+1Pi+l.x+2‘I)(—zi_+_l_)‘ (12)
o(Yis1)

Then.,

P(yis2 = max(yi, Yi+1-¥i+2)) = P((gir2 = ¥ig1 > 0) N (gin2 — ¥ > 0)) (13)

is approximated by

Plyiva > gis1) = Plyisz — Jisr1 > 0)

® ( Biv2 = B(Fiv1) )
\/":‘2+2 + 0% Jiv1) = 20i420(Fig1)P(Tis1, Yis2)

Assuming as a working approximation that y;4; is normally distributed with
the above mean and variance, we may therefore proceed, recursively from i = 1 to
i = n—-1, where yn41 is an independent dummy variate with mean zero and variance
zero (i.e. yYn4y = 0). Then,

P[yn+1 = max(yl-y'z----~yn+1)]
= Pl(ynt1 = >0)N(gns1—¥2>0)N .0 {(Yngy — yn > 0)]
= Pl(-y1>0)n(-p>0)N...N(—ya > 0)]

approximates the probability of the negative orthant of the specified multivariate
normal distribution. The probability of any other orthant can be obtained by re-
versing the signs of the variates corresponding to 1’s in the orthant pattern.




3.2 The Modified Clark Algorithm

In an earlier paper Gibbons and Bock (1987) noted that the accuracy of the Clark
approximation diminishes with increasing magnitude of the correlations. If we ap-
ply the Clark approximation directly to estimates of inter-item correlations, it will
generally yield biased results due to the size of correlations. This is true regardless
of whether the correlation matrix exhibits the property of conditional independence.
Alternatively, if we examine the residual inter-item correlation matrix at fixed points
on the ability scale, we will observe the identity matrix for conditionally independent
solutions or small residual correlations for those item pairs that are conditionally de-
pendent. In light of this, we evaluate the response function at several fixed points
on the ability scale using Gauss-Hermite quadrature, and correct these estimates
using the Clark algorithm. These corrections depend only on the residual inter-item
correlations, which in practice should be quite small. The modified Clark algorithm
proceeds as follows.

Step ! Obtain a factor solution of dimension K, using full information factor analysis
for binary data (Bock and Aitkin, 1981; Bock, Gibbons and Muraki, 1988).

Step 2 Using the estimated factor loadings for dimensions 2. .. K, compute the esti-
mated residual correlation matrix R*; that is, the residual correlations among the n
items conditioning on the primary ability dimension #,. For example, when A" = 2,

Ai2Aj2

- Vi- M /1-07

Step 3 Given the previous values of item thresholds v4; and primary item factor
loadings A;; compute the invariant item parameters a; (slope) and c; (intercept) as:

a; = AJI/\/1 - A?l

¢ = -7/ 1—’\31

T,'J' (14)

Step 5 At each point on the ability dimension (i.e. at each gquadrature node Y,
compute the value of the response function for each item as:

ij=C]+a]‘/\’k (13)

where X are the nodes of the Gauss-Hermite polyromial (see Stroud and Sechrest,
1966).

Step 6 At each quadrature point, substitute the values of z;; for the mean vector p
and R” for the covariance matrix ¥ and compute the Clark approximated probability




Ci(Xk). Accumulating these probabilities over all quadrature nodes for a given
response pattern (z;) yields the desired marginal probability estimate

h(z))

/_ Z CU(8)$(8)D(0)

qu Ci(Xk)A(Xk)
k=1

where A(X}) is the corresponding weight at quadrature node Xj.

We note that, in practice, the effect of assuming normality of the maximum of
two jointly normal variables, overestimates the probability in the tail of the distribu-
tion. To correct this, we apply an empirically based correction factor to probability
estimates that are less than 0.04;

Cr(Xi) = Ci( Xy )28 170og10(Ci(Xu))] (16)

This correction factor has been found to provide the necessary adjustment across
the entire quadrature space as tested on tests of length 5 to 40 items.

3.3 Simulation Studies

To simulate the desired response process, we began by constructing a two-dimensional
factor structure that might be encountered in a typical testing situation. For the
five-item case, we selected the factor matrix:

0

(17)

>
]
W e N

0
0
0
0
Assuming a correlation between the two ability dimensions of .5, the urthogenal

projection of this matrix (i.e., A(T~1)’ where T is the Cholesky factor of the 2z2
correlation matrix), is:

70 —.40
60 —.35

AT Y =] 350 -29 1N
40 -.23
.30 -.17J

For n = 10,20, and 40, the matrix was replicated 2, 4 and 8 times respectively.
Given this factor structure, the item-responses were simulated as follows.

Step 1: Obtain n + 2 random normal deviates. Call the first two 2; and 2, and the
remaining n, €,..., €.




Step 2: Simulate the primary ability of subject i (6;) as z; = (2 + 8)ay, where § and
09 are the mean and standard deviation of the generating ability distribution [i.e.,
N(8,03)). For studies of EAP ability estimates, z; is generally fixed at 0. 1. or 2.

Step 3. Determine the secondary ability of subject ¢ (8;) as =, ~ N (0. 1.

Step 4. Compute the residual disturbance for each item as ¢; = ¢;0;, where o; =

Step 5. Compute the response process for item j as:
Yi = Aj121 + Ajaz2 + € (19)
(Note: for conditional independence Aj; = 0).

Step 6: If y; > v; then the response to item j for subject i is correct (z;, = 1)
otherwise it is incorrect (z;; = 0).

3.4 Method for Study No. 1

Using the previously described method of simulating item-response patterns. we
computed the accuracy of several methods of computing item-response pattern prob-
abilities. These methods included the original Clark algorithm. the modified Clark
algorithm, the modified Clark algorithm with R* = I, one-dimensional Gaussian
quadrature (40 points), and two-dimensional Gaussian quadrature (1600 points).
We would expect similar results for the modified Clark algorithm and the two-
dimensional Gaussian quadrature, and similar results for the modified Clark algo-
rithm with R* = I and one-dimensional quadrature. The original Clark algorithm
shonld perform poorly throughout. The simulation study consisted of four condi-
tions; 5 and 10 items each with conditional independence and dependence. The
accuracy of these five probability estimators was evaluated by comparing them to
the corresponding Monte Carlo estimates obtained from one million simulates for 5
items and ten million for 10 items.

3.5 Results

The results of the first simulation study are displaved in Tables 1-4. Tables 1 and 3
display the probability estimates for the 5 and 10 item conditional independence case
and Tables 2 and 4 display results for the case of dependence. For independence. one
and two-dimensional quadrature results are identical as are the two modified Clark
algorithms. For five items and independence (Table 1), the results are virtually
identical for modified Clark and quadrature methods; whereas the original Clark
performed poorly as expected. For 10 items and independence (Table 3), the modified
Clark algorithm actually out performed the quadrature for the 14 selected patterns
and did slightly worse for the total number of patterns realized in the sample of ten

- - JEVER U NS [ R SOOI RO



million. Again, the original Clark algorithm performed poorly relative to the other
estimators.

For conditional dependence, on five items (Table 2). the modified Clark and
two-dimensional quadrature estimates were virtually identical. Similarly. when the
residuals are incorrectly assumed to be zero (i.e., R* = I), the modified Clark and
one-dimensional quadrature yielded virtually identical results as expected. Again,
the original Clark performed poorly. For 10 items (Table 4) similar results were
obtained.

4 Estimating Ability in the Presence of Conditional Dependence

Our next study was designed to determine the impact of conditional dependence
on estimates of ability. Again, we were concerned with the case in which both a
primary ability dimension and a method related dimension were both present in
tests of variable length, administered to samples of varying ability.

4.1 EAP estimates of Ability

Let z;; = 1 if item j is answered correctly by respondent i, otherwise z;; = 0. The
probability that item j is answered correctly bv a respondent with ability 8 is:

P(z;=1|8) = ®;(8) (20)

The likelihood of 8, given the response vector

:::,-=[:z1,:tg,...z,.], (21)
is
Li(0) = [T(®,(001[1 - &,(8)]' . (22)
=1

The EAP estimate of the ability of subject i. §;. given the item responses z,. is
approximated as

b VLX) W (XY

§; = =2 LB
S LN OW(X)

and the posterior standard deviation is

11Xk = 6,2 Li( X)W (X¢)
7::1 Li(Xk)W(Xk) ’

PSD(6;) = J (24)

where X is one of the ¢ quadrature nodes and W(Xy) is the corresponding normal-
ized quadrature weight.




4.2 EAP Ability Estimates via the Clark Algorithm

When the assumption of conditional independence is violated, the previous estimator
is no longer valid, because the continued-product probability requires all inter-item
residual covariances to be zero. If responses to a particular test are determined
both by a primary ability and by a method related dimension, the residual inter-
item covariances will be nonzero even if the primary ability and method related
dimensions are uncorrelated. In this case, the modified Clark algorithm may be
used to obtain the correct likelihood, C7(X}), which can be substituted for L;(Xy)
in the previous equations, and correct estimates of the mean and variance of the
posterior distribution can be obtained.

4.3 Method for Study No. 2

The conditions of the experiment included:
number of items (10, 20 and 40)
level of ability - § = 0,1,2
and conditional dependence

In all cases, 40 quadrature points were selected to fill a +:2 range about the generating
ability value. For the two-dimensional quadrature solution, the second dimension
was cvaluated using 40 quadrature points between —2 and 2, since 62 ~ N(0,1).
Item thresholds were selected as equally spaced points between —2 and 2. For
each condition, 500 examinees were simulated. EAP estimates were computed using
the modified Clark algorithm with R = R* and R = I, and by one and two-
dimensional quadrature solutions. The results were summarized in terms of the

mean and standard deviation of #;, the root mean square error (MSE), and average
PSD.

4.4 Results

The results for tests of length 10, 20, and 40 items are displayed in Tables 5-7. The
results are summarized as follows:

1. Both two-dimensional quadrature and the modified Clark algorithm produce
extremely similar average ability estimates for 10 and 20 item tests. at all three ability
levels, with and without conditional dependence. At 40 items. however. the modified
Clark algorithm produces a slight downward bias in the average estimated ability,
which is in turn responsible for increased MSEs relative to the two-dimensional
quadrature solution.

2. Asexpected, the variability in the uncorrected ability estimates (i.e., one-dimensional
quadrature and Clark with R = I) was consistently increased over the modified Clark

and two-dimensional quadrature solutions, but within each set were virtually iden-
tical.

10




3. As expected, the MSE of the uncorrected ability estimates (i.e., one-dimensional
quadrature and Clark with R = I) was consistently increased over the modified
Clark and two-dimensional quadrature solutions, but within each set were virtually
identical. The exception to this was the previously noted result for 10 items.

4. As expected, the average PSD of the uncorrected ability estimates (i.e., one-
dimensional quadrature and Clark with R = I) was consistently underestimated
relative to the modified Clark and two-dimensional quadrature solutions, but within
each set were virtually identical. This result was consistent for all simulated condi-
tions.

5 Estimating Item Parameters in the Presence of Conditional De-
pendence

By replacing P(x = z; | 8;) with P(@ = x; | 6;,L), we may, in theory, obtain consis-
tent estimates of item parameters and corresponding interval estimates, egardless
of the level of residual dependence that remains after we condition on #;. To do
this requires some estimate of £. Three general approaches are available. First.
as in the previous section, we may fit a K-dimensional model using the methods
described by Bock and Aitkin (1981) and Bock, Gibbons and Muraki (1988). then
compute ¥ based on the factor loading coefficients obtained from factors 2 through
K. Second, we may use the tetrachoric correlation matrix to approximate the total
association in the population and express the residual association as the difference
between the elements of the tetrachoric matrix and the expected correlation ma-
trix based on provisional estimates of the one-factor model on each iteration. In
this way, residual covariances are computed from the estimated item parameters
on each iteration. Third, we may directly model the elements of ¥, by assuming
that, once we condition on 6;, all that remains is a first-order autocorrelation among
the residual errors of measurement. This type of structure might be plausible in
the adaptive testing situation in which the presentation of future items is based
on the success of previous items. As an illustration of this approach, we applied
the second alternative to the well known 5-item LSAT section 7 dataset. Bock and
Lieberman (1970) showed that these data did not fit a unidimensional normal model
(G? = 31.59,df = 21,p < .05); however, Bock and Aitkin were able to fit a two-factor
normal model to these data with reasonable success (G? = 21.23,df = 17,p < .22).
In contrast, the unidimensional model of dependence. also fit these data reasonably
well (G? = 21.83.df = 16.p < .15).

Inspection of the parameters estimates in Table 3. for all three models. reveal
several interesting results.

1. The assumption of conditional independence is a convenience, but not a re-
quirement for estimating the parameters of IRT models.

2. The model of dependence identified a primary ability dimension represented
by all of the items and a few modest residual covariances:

11
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0.71
-.14 0.55
¥=1]-13 -.09 039 (25)

+07 —.08 —.05 083
+06 —.14 -.06 -0l 0.83 |

In contrast, the 2-factor model, was dominated by only 2 items, making the
dependence model a more parsimonious solution.

3. The improvement in fit of the model of dependence over the model of indepen-
dence was substantial.

4. Standard errors for the models of dependence are slightly larger than for the
model of independence, but considerably smaller than the 2-factor model. This
result may suggest that the 2-factor model is not completely identified for this
5-item test.

5. The iterative solution proposed here converged to the same solution from a
variety of starting values, which suggests that estimation of item parameters.
from which the residual correlations are computed, does not lead to an inde-
terminate solution. This is useful because it avoids “two-stage™ solutions.

6. In the present example, the sample tetrachoric solution performed quite well.
Alternatively, a model of higher dimension could be used to estimate the overall
sample correlation matrix R. In the present example, this leads to a fit statistic
of G2, = 23.96,p < .12 as compared to G%; = 21.83,p < .15 for the tetrachoric
solution, which suggests that the tetrachoric solution is quite adequate for this
purpose.

6 Summary and Conclusions

The results of this research reveal that it is quite possible to estimate accurately the
multivariate normal orthant probabilities for high-dimensional normal integrals with
no restriction on the form of the covariance matrix or mean vector. Prior to these
results, closed form solutions were only available for the trivariate normal distribution
and approximations of even quadrivariate normal integrals were available only for
special cases such as equa-correlation and *band matrices™ (Kendall. 1911: Moran.
194R%: McFadden. 1960: Abrahamson. 1964; Childs. 1967: Dutt. 1973: and Dart and
Lin. 1975).

Application of the Clark based method to problems in item-response theory seems
promising. Our results on Bayes estimation of ability, estimating item parameters.
and testing goodness of fit, clearly reveal that the modified Clark algorithm resolves
typical cases of conditional dependence and provides a statistical solution that pre-
serves the intended focus of the test.

12
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The results of this work have application in other areas of statistics as well. As
an example, the modified Clark algorithm can be used to solve the problem of mul-
tivariate generalizations of probit analysis (Ashford and Sowden, 1970). Similarly,
the likelihood of multinomial probit models used for evaluating discrete choice prob-
lems with correlated choice alternatives (Daganzo, 1979), can also now be evaluated.
Furthermore, as demonstrated by Gibbons and Bock (1987), the modified Clark al-
gorithm can also be used to estimate the parameters of a random effects probit model
in which the errors of measurement exhibit first-order autocorrelation.
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Table 1

Conditional Independence

5 Items

Probability Estimates

pattern Monte Carlo  Clark  Mod. Clark Mod. Clark  Quadrature Quadrature
R=1 l-dimensional 2-dimensional
00000 .0092690 .0016769  .0058844 .0058844 .0049920 .0049920
00001 .0000310 .0000338  .0000166 .0000166 .0000270 .0000270
00010 0002670 0003293  .0001777 0001777 0002229 .0002229
00011 .0000010 .0000079  .0000003 .0000603 .0000014 .0000014
00100 0015670 .0010638  .0013925 .0013925 .0012793 .0012793
00101 .0000050 .0000229  .0000049 .0000049 .0000084 .0000084
00110 .0000840 .0002130  .0000427 .0000427 .0000701 .0000701
01000 .0082570 0022187 .0080510 .0080540 .0069502 .0069502
01001 .0000480 .0000484 .0000217 .0000217 .0000486 .0000486
01010 .0004120 .0004384  .0003050 .0003050 .0004077 .0004077
01011 .0000030 .0000108  .0000006 .0000006 .0000036 0000036
01100 .0023920 0014105 0024988 .0024988 0023838 .0023838
01101 .0000250 .0000311 .0000077 .0000077 .0000217 .0000217
01110 .0001780 .0002845  .0001162 .0001162 .0001846 .0001846
01111 .0000030 .0000072  .0000003 .0000003 .0000022 .0000022
10000 .0908200 0708713  .0869044 .0869044 0858275 .0838275
10001 .0008220 .0015482  .0007681 .0007681 .0008440 .0008440
10010 0069930 0071212 .0081681 .0081681 0072004 .0072004
10011 .0001080 .0004378 0000584 .0000584 .0000990 .0000990
10100 0429120 0384821 .0488560 .0488560 .0437355 .0437355
10101 000577 .0013366  .0005361 .0005361 .0006260 .0006260
10110 0051440 .0048301 .0056860 .0056860 0054192 0054192
10111 .0001000 .0004327  .0000593 .0000593 .0001080 .0001080
11000 3252630 3454604 3215043 .3215043 3339537 .3339557
11001 .0058970 .0103496  .0068320 .0068320 .0059707 .0059707
11010 0505540 0333977 .0589594 .0589594 0521171 0521171
11011 .0013330 .0034446  .0013598 .0013598 .0013324 .0013324
11100 3440720 3509381 3384136 .3384136 .3489993 .3489993
11101 .0099590 0128232  .0118505 .0118505 .0095529 .0095529
11110 .0891580 0840372  .0879184 .0879184 .0845265 .0845265
11111 .0037460 .0046399  .0036022 .0036022 .0030822 .0030822
average difference .0028954 .0012275 .0012275 .0010744 .0010744
maximum difference  .0201974 .0084054 .0084054 .0086927 .0086927




Table 2

Conditional Dependence
5 Items
Probability Estimates

pattern Monte Carlo  Clark  Mod. Clark Mod. Clark  Quadrature Quadrature

R=I 1-dimensional 2-dimensional

00000 0132430 .0003325  .0086805 .0058537 .0049920 .0070033
00001 .0000230 0000102  .0000117 .0000160 .0000270 .0000210
00010 .0001820 .0000824  .0001344 .0001729 .0002229 0001637
00100 .0012020 0002234  .0012086 .0013689 0012793 .0009430
00101 .0000030 .0000068  .0000028 .0000046 0000084 .0000038
00110 .0000310 .0000562  .0000229 0000411 .0000701 .0000307
01000 0065430 0003425  .0071056 .0080097 0069502 .0052413
01001 0000270 .0000106  .0000121 .0000208 .0000486 .0000228
01010 .0002020 0000850  .0001486 .0002965 0004077 .0001849
01011 .0000010 .0000027  .0000002 .0000006 .0000036 .0000011
01100 0011580 .0002304  .0013144 .0024581 0023838 0010983
01101 .0000060 .0000070  .0000034 .0000073 0000217 .0000066
01110 .0000430 .0000581  .0000376 .0001120 0001846 .0000547
10000 0981450 0643565  .0939096 .0869296 0858278 .0921583
10001 0006680 .0009775  .0006281 .0007487 0008440 .0006757
10010 0056640 .0047805  .0066756 .0080588 0072004 0057416
10011 .0000580 0002493  .0000434 .0000560 0000990 .0000635
10100 0355610 0282723  .0421209 .0488300 0437357 0362899
10101 .0003900 0007558  .0004003 .0005209 0006260 .0004223
10110 0034520 .0026826  .0038756 .0055940 0054193 .0036949
10111 .0000660 .0002323  .0000378 .0000568 .0001080 .0000630
11000 3227360 3646366  .3181484 .3218323 3339569 .3342406
11001 0051340 .0094979  .0062500 0067287 0059707 .0053714
11010 0462420 .0509119  .0549946 .0589751 0521173 0479139
11011 0011850 .0032962  .0012766 .0013298 0013324 .0011967
11100 3468730 3639200  .3413597 .3387589 .3490006 3532162
11101 .0103010 .0124808  .0120872 0117273 0095529 .0098653
11110 0963190 0867242  .0953072 .0879407 0845268 .0906198
11111 0045420 004777 .0042022 .0035504 .0030822 .0036917

average difference 0050750  .0014122 .0025535 .0023840 .0014398

maximum difference  .0419006  .0087526 .0132690 0123172 0115046




Table 3

Conditional Independence
10 Items
Probability Estimates

pattern Monte Carlo Clark Mod. Clark Mod. Clark  Quadrature Quadrature

R=I I-dimensional 2-dimensional
0000001100 .0000001 .0000114 .0000000 .0000000 .0000001 .0000001
0000100001 .0000011 .0000082 .0000010 .0000010 .0000009 .0000009
0001010000 .0000118 .0001839 .0000053 .0000053 0000112 .0000112
0110010000 .0001329 .0006086 .0000856 .0000856 .0001406 0001406
0110100000 .0016666 .0013821 .0012122 10012122 .0014266 .0014266
1001100000 0027151 .0042885 0019134 0019134 .0024568 0024568
1010000600 0067213 0079889 0055955 .0055955 .0058672 .0058672
1011000000 .0089667 .0111335 0085417 .0085417 .0085844 .0085844
1100000000 0146445 .0186212 0131084 .0131084 .0134876 .0134876
1101000000 .0220419 .0296640 0227618 .0227618 .0218673 .0218673
1110000000 0462991 .0617006 .0463947 0463947 .0466949 .0466949
1110100000 0477081 0625243 .0501873 .0501873 0490546 .0490546
1111000000 .0968781 1280707 .0959419 0959419 .0998421 .0998421
1111100000 Jd177844 .1480838 1172587 1172587 1223589 1223589
average difference .0078048.  .0006538 0006538 .0008825 .0008825
all patterns .0007246 .0001281 .0001281 .0000643 .0000643
maximum difference .0311926 .0024792 0024792 0045745 .0045745
all patterns 0311926 .0066958 .0066958 0045745 0045745

oo st srem e



Table 4

Conditional Dependence
10 Items
Probability Estimates

pattern Monte Carlo  Clark Mod. Clark Mod. Clark  Quadrature Quadrature

R=I l-dimensional 2-dimensional

0000001100 .0000001 .0000139  .0000000 .00000600 .0000003 .0000000
0000100001 .0000009 .0000046  .0000008 .0000010 .0000009 .0000009
0001010000 .0000023 .0000667 000021 .0000053 .0000112 0000026
0110010000 .0000328 0001205  .0000301 .0000856 .0001406 .0000337
0110100000 .0013382 0002668  .0010167 0012122 .0014266 0011223
1001100000 .0028129 .0033192  .0020223 0019134 .0024568 0025560
1010000000 0077306 0065970  .006-4644 0055955 .0058672 .0068002
131100C000 0088950 0078380  .0077004 .0085417 0085844 .0084590
11000000060 0176867 0209829  .0162748 0131084 0134876 .0164043
1101000000 .0240336 0305718 0246059 0227618 .0218673 .0238656
1110000000 0517423 0713735 .0521337 0463947 0466949 .0523689
1110100000 .0506626 0678296  .0527083 .0501873 0490546 0523895
1111000000 .1033206 1465492 11029978 .0959419 .0998421 1073350
1111100000 .1212253 1645829  .1208567 1172587 .1223589 1274467
average difference 0097958  .0006206 0018991 .0014349 0011343

all patterns 0008163  .0001337 0002247 .0002245 .0000912
maximum difference 0433576 .0020457 0073787 .0050474 .0062214

all patterns 0433576 .0059526 0117328 .0116041 0062214




Results of Simulation

Table 5

EAP Ability Estimates

10 Items

| Condition Mean SD | MSE { PSD
Independence
=0
Quadrature -.0123 | 2694 { 2697 { .4670
Clark -0165 | 2768 | 2772 | .4624
g=1
Quadrature 7876 | 2415 | 3218 | 4557
Clark 7831 | 2498 | 3309 | 4483
8=2
Quadrature 1.5720 |} 1582 | 4566 | 4179
Clark 1.5692 | 1652 | 4618 | 4150
Dependence
=0
Quadrature 1D | -.0189 { .3044 | .3050 | .4586
Clark R=I -.0239 | 3148 | 3157 | .4525
Quadrature 2D | -.0154 | .2638 | 2643 { 4775
Modified Clark | -.0191 | 2674 | 2681 | .4765
g=1
Quadrature 1D | 7974 | .2665 | .3365 | .4516
Clark R=l 7915 | .2769 | 3467 | .4437
Quadrature 2D | 7753 | .2255 | .3185 | .4648
Modified Clark | 7703 | .2291 | .3246 | .4609
8 =2
Quadrature 1D | 1.5754 | .1699 | 4578 | 4174
Clark R=1 1.5735 | .1785 | 4628 { .4143
Quadrature 2D | 1.5560 | .1432 | 4669 | .4185
Modified Clark | 1.5568 | .1507 { 468% | 4173




Results of Simulation

Table 6

EAP Ability Estimates

20 Items
Condition Mean SD | MSE | PSD
Independence
=90
Quadrature 0125 | .2881 | .2883 | .4200
Clark -0244 | 2953 | .2963 | 4231
g=1
Quadrature 8285 | .2784 | 3271 | 4147
Clark 7934 | 2791 | 3474 | 4132
=2
Quadrature 1.6600 | .2414 | 4172 | .3992
[| Clark 1.6434 | .2543 | 4383 | .3926
|
i| Dependence
|
=90
Quadrature 1D | -.0104 | .3588 | .3589 4036
Clark R=1 -0366 { .3641 | .3659 | .4052
Quadrature 2D | -.0070 | .2766 | .2767 4551
Modified Clark | -.0359 | .2799 | .2822 | .4642
=1
Quadrature 1D | .8222 | .3385 | .3824 4004
Clark R=I 7879 | .3374 | .3986 | .3966
Quadrature 2D | .7819 | 2522 3336 | 4418
Modified Clark | .7445 | .2525 | .3594 | 4410
=2
Quadrature 1D | 1.6745 | .2879 | 4348 .3933
Clark R=I 1.6585 | .2971 | .4529 | .3876
Quadrature 2D | 1.6077 | 2092 | .4449 .4095
Modified Clark | 1.5932 | .2193 | 4625 | .4095




Results of Simulation

Table 7

EAP Ability Estimates

40 Items
Condition Mean | SD | MSE | PSD
Independence
=0
Quadrature .0025 | .2985 | .2985 | .3515
Clark -.0845 | .3336 | .3442 | .3595
=1
Quadrature 8730 [ .2927 | .3191 | .3521
Clark .7809 | .3375 | .4024 | .3520
=2
Quadrature 1.7406 | .2664 | .3720 | .3565
Clark 1.6729 | .2990 | .4434 | .3525
Dependence
6=0
Quadrature 1D | -.0354 | .4224 | 4239 | .3285
Clark R=I -.1038 | .4123 | .4252 | .3392
Quadrature 2D | -.0254 } .2906 | .2917 | .4329
Modified Clark | -.1318 | .3230 | .3489 | .4351
=1
Quadrature 1D | 8612 | .4229 | .4452 | .3266
Clark R=I 7786 | 4195 | 4744 | 0273
Quadrature 2D | .7909 | .2851 | .3537 | 4175
Madified Clark | 6602 | .3129 | 4622 | 3991
=2
Quadrature 1D | 1.7585 | 3850 | 4546 | .3369
Clark R=I 1.6973 | 3973 | 1997 | .3336
Quadrature 2D | 1.6272 | .2428 | .4453 | .3917
Modified Clark | 1.5462 | .2671 | .5269 | .3883




Table 8

LSAT Section 7
Models of Independence and Dependence

Independence Dependence
ftem 1-Factor 2-Factor I-Factor
17} ) 1) Ay ) 0 A ;
1 -.95 (.07) 49 (.10) | -94 (.72) T (1.07) 14 (40) | -1.08 (.09) B4 (.1])
2 -.41 (.05) 55 (.10) | -.41 (.06) 21 (.15) 48 (.19) | -45 (.07) .67 (.14)
3 - 74 (.11 70 (.18) | -.73 (.42) 23 (40) T8 (.87) ) -82(.18) .78(.26)
4 -.27 (.05) .42 (.08) | -.27 (.05) 32 (.15) .26 (.11) | -.30 (.05) .42 (.07)
5 -1.01 (.06) .38 (.09) [ -1.01 (.07) .32(.14) .22 (.09) { -1.17 (.08) .41 (.10)
% 3171 21.17 21.83
daf 21 17 16
p< 06 22 13
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