
RADC-TR-88-147
Final Technical Report
March 1989

AD-A207 877

BM/C 3 ALGORITHM MAPPING ONTO
CONCURRENT PROCESSORS

University of Connecticut

Sponsored by

Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained In this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of
the Strategic Defense Initiative Office or the U.S. Government. DTIC

ELECTE
MAY 16 1989

ROME AIR DEVELOPMENT CENTER 0 0 DAir Force Systems Command
Griffiss Air Fcce Baso, .etY 13441-5700

89 5 16 100

BM/C3 ALGORITHM MAPPING ONTO CONCURRENT PROCESSORS

Krishna R. Pattipati
Peter B. Luh
Rong-Tay Lee
Samir Shah
Somnath Deb

Contractor: University of Connecticut
Contract Number: F30602-81-C-0169
Effective Date of Contract: 4 May 87
Contract Expiration Date: 30 Dec 87
Short Title of Work: BMC3 Algorithm Mapping Onto

Concurrent Processors

Period of Work Covered: May 87 - Dec 87

Principal Investigator: Krishna Pattipati
Phone: (203) 486-2890

Project Engineer: Patrick J. O'Neill
Phone: (315) 330-2925

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was
monitored by Patrick J. O'Neill RADC (COTC), Griffiss
AFB NY 13441-5700, under Contract F30602-81-C-0169.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ,

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 0704-.0F88

l. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution
b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited.N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-88-3 RADC-TR-88-147

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL Ia. NAME OF MONITORING ORGANIZATION

University of Connecticut alab) Rome Air Development Center

&L. ADDRESS (City; State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Department of Electrical & System Engineeri'tg
Storrs CT 06268 Grifflss AFB NY 13441-5700

Ba. NAME OF FUNDING/SPON ORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic (If apilkabie) F30602-81-C-0169

Defense Initiative Office
8c. ADDRESS (Cty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
office of the Secretaty of Def ense ELEMENT NO. NO NO ACCESSION NO
Wash DC 20301-7100 63223C B413 0 P5

11. TITLE (lnlude Security Casification)
BM/C3 ALGORITHM MAPPING ONTO CONCURRENT PROCESSORS

12. PERSONAL AUTHOR(S)

Krishna R. Pattipati. Peter B. Luh, Rong-Tay Lee, Samir Shah, Somnath Deb
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) 15. PAGE COUNT

Final FROM May 87 TO Dec 871 March 1989 102
16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 1S. SUBJECT TERMS (Continue on reveore if necessary and identify by block number)

FIELD GROUP SUB-GROUP SDI Mapping Algorithms
12 07 BMC3 Algorithms Parallel Processing

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report is concerned with the mapping of large scale resource allocation algorithms
onto parallel computing architectures. The mapping problem is viewed as one of assigning
the nodes of a finite, directed, acyclic task graph (representing the logical and data
dependeacies among the tasks constituting the algorithm) onto the nodes of a finite,
undirected processor graph (denoting the parallel computing architecture). The objective is
to minimize the completion time of the algorithm such that the redundancy, processor memory
and security constraints are satisfied. The delays introduced by task queueing, message
transmission, message collision and precedence constraints are explicitly modeled. We
present four algorithms to solve the mapping problem. The first algorithm is a two-stage
heuristic that determines the order of task execution based on the critical path method
(CPM) and then employs a one-step optimization method to determine the task allocation.
The second algorithm employs the idea of pair-wise exchange on task execution order to

z0. C'STRMBUTIOM 'AVAILABIUTY OF &BSTRAC7 21. ABSTRACT SECURITY CLASSIFICATION
CZ UNCLASSIFIEDUNLIMITED E3 SAME AS RPT, C3 OTIC USERS UNCLASSIFIED

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2Zc. OFFICE SYMBOL
Patrick J. O'Neill (315) 330-2925 RADC (COTC)

D Form 1473. JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Block 19. Abstract (Cont'd)

improve the heuristic algorithm. The third algorithm is an optimal mapping
strategy using A* algorithm, wherein a lower bound on the cost-to-go is
obtained from the two-stage heuristic. Finally, an approximation algorithm
based on the idea of A* is dev1oed. Extensive cc pputationa! .-- on
hundreds of random graphs have shown that the heuristic algorithm prorides
optimal mapping whenever the ratio of computation/communication is ve'y bgh
or very small, and that the pair-wise exchange algorithm provides uniformly
good mapping for all values of the ratios. Hypothetical examples and
applications to weapon target assignment and multi-target tracking problems
are also included to show the effectiveness of the mapping algorithms. In
addition, the mapping algorithms have been integrated into an interactive
software package, termed MAPPER, for the analysis and performance evaluation
of alternative BM/C3 algorithms.

iccesriNon For

Iii UNCLASSIFIED

II

Table of Contents

Section 1 Introduction .. 1
1.1 Problem Significance .. 1
1.2 A Taxonomy of M apping Problems .. 4
1.3 Summ ary of Results .. 6
1.4 M apper Software Package .. 7
1.5 Organization of the Report .. 9

Section 2 Static Mapping Problem Formulation and Previous Approaches 10
2.1 Problem Form ulation .. 10
2.2 Relation to Previous Scheduling Techniques 14

2.2.1 Scheduling Independent Tasks .. 14
2.2.2 Scheduling Tree Task Structures .. 16
2.2.3 Previous M apping Approaches .. 17

2.3 Drawbacks of the Previous Mapping Approaches 22
Section 3 M apping Algorithm s .. 23

3.1 Key M apping Equation .. 23
3.1.1 M apping Equation without Constraints 23
3.1.2 M apping Equation with Constraints .. 26

3.2 Heuristic M apping Algorithm .. 27
3.3 Pair-wise Exchange Algorithm .. 31
3.4 Optim al M apping (A* and A,*) Algorithm s 34
3.5 Summ ary ... 42

Section 4 Com putational Experiments .. 44
4.1 Experiment 1: Hypothetical Examples .. 44
4.2 Experiment 2: Random Graphs .. 52
4.3 Experiment 3: Application to Weapon Target Assignment

Problem ... 56
4.4 Experiment 4: Application to M ulti-target Tracking 60
4.5 Sum m ary ... 70

Section 5 Conclusions and Future Research W ork .. 72
5.1 Conclusions ... 72
5.2 Future Research W ork .. 74

Appendix A .. 76
Appendix B .. 80
References .. 86

List of Figures

Figure 1-1: Overview of Algorithm-Architecture Mapping Problem 3
Figure 1-2: A Taxonomy of Mapping Problems .. 5
Figure 1-3: A Software Environment for Algorithm-Architecture Mapping

Problem ... 8
Figure 2-1: An Illustrative Example of Task and Processor Graphs 13
Figure 2-2: A Tree-structured Task System .. 17
Figure 2-3: Level Scheduling on Two processors for Figure 2-2 17
Figure 3-1: Task and Processor Graphs for an Illustrative Example 30
Figure 3-2: Concept of Pair-wise Exchange Algorithm ... 32
Figure 3-3: An Illustrative Example for A* Algorithm ... 40
Figure 3-4: State-space Search for A* Algorithm .. 40
Figure 4-1: Modified Independent Task Graph .. 44
Figure 4-2: Gantt Chart for the Example of Figure 4-1 ... 45
Figure 4-3: Modified Tree-structured Task Graph .. 46
Figure 4-4: Task Graph Example from Kasahara and Narita, 1984 46
Figure 4-5: Task Graph Example from Agrawal, 1986 .. 47
Figure 4-6: Control Flow Graph from Chu and Lan, i987 48
Figure 4-7: Modified Task Graph of Figure 4-6 .. 48
Figure 4-8: Task Graph Example from Stone, 1977 and its Modified Task

G raph ... 5 0
Figure 4-9: Task and Processor Graphs for a Hypothetical Example 51
Figure 4-10: Percentage of Optimal Mapping and Average Relative Error for

R andom G raphs ... 55
Figure 4-11: Overall Weapon Target Assignment Algorithm 57
Figure 4-12: Subalgorithm Level for WTA/TS Problem ... 57
Figure 4-13: Directed Flow Graph of Operations in One Scan of Tracking

A lgorithm .. 66
Figure 4-14: A Task Graph for Multi-target Tracking Algorithm 66
Figure A-I: A Screen Encountered in a Typical MAPPER Work Session 77
Figure B-l: Main Selection Window, Algorithm Selection Panel and

C -shell .. . 82
Figure B-2: Task Node Entry Window ... 84
Figure B-3: Processor Data Entry Window .. 85

List of Tables

Table 3-1: Definition of Variables .. 24
Table 4-1: Computational Results for Different Mapping Algorithms 52
Table 4-2: Definition of WTA Variables .. 59
Table 4-3: Completion Time versus Number of Clusters and Complexity of

Fire Control Sequencing Algorithms .. 61
Table 4-4: Definition of Multi-tracker Variables 63
Table 4-5 (a): Completion Time and Speedup versus Number of Targets for

3-cube M ultiprocessor System ... 68
Table 4-5 (b): Completion Time and Speedup versus Number of Targets for

2-cube M ultiprocessor System ... 68

-1-

SECTION 1

INTRODUCTION

1.1 PROBLEM SIGNIFICANCE

The recent advances in very large scale integration technology and communica-

tion networks have generated a great deal of interest in the study of multiple-

instruction, multiple-data stream (MIMD) multi-processor systems. These systems are

characterized by: (1) a number of autonomous processing elements interconnected by

a high-bandwidth communication network, (2) a distributed operating system, and (3)

highly concurrent computation brought about by the decomposition of an application

algorithm into several distinct, cooperating tasks [Kuhl and Reddy, 1986]. In addition,

the multiplicity of processing elements in a multi-processor system can be exploited to

improve system reliability, and to provide graceful degradation in the presence of

hardware and software faults. The modularity, flexibility, and reliability of these sys-

tems make them attractive to many areas of real-time applications, such as large scale

defense applications, flight control systems, transportation systems, and manufacturing.

These applications typically have enormous computational and storage requirements,

real-time processing constraints, fault-tolerance and data security requirements [Pat-

tipati et al., 1986].

One of the major issues in the efficient operation of a MIMD multi-processor is

the mapping of an application algorithm onto various constituent processors of the sys-

tem. In order to take advantage of concurrent processing, it is desired to achieve a

minimum execution time (completion time) of the algorithm with a minimum number

of processing elements via efficient algorithm-architecture mapping. There are four

important factors that contribute to the completion time of an algorithm on a MIMD

multi-processor: (1) task partitioning, (2) task allocation and sequencing, (3) the inter-

connection topology and the capacity of each communication link, and (4) the speed of

each processor. The partitioning problem refers to the selection of the level of

-2-

granularity used to represent the task of an application algorithm. Task partitioning

determines the amount of computation required by each task, the precedence relations

among the tasks of the algorithm, and the amount of data transmitted between each

pair of tasks. The allocation and sequencing strategy determines the assignment of the

set of tasks to member processors and the order of execution of the tasks allocated to

each processor. The inter-task communication is constrainted by the interconnection

topology, and the precedence relations among the tasks of the algorithm impose syn-

chronization requirements, i.e., a task can not begin executing until all the tasks

preceding it have been completed.

In this report, we are concerned with the problem cf mapping Battle

Management'Command, Control, and Communication (BMIC 3) algorithms for multi-

target tracking and weapon-target assignment onto a non-homogeneous MIMD multi-

processor to minimize the completion time (or equivalently, maximize speedup). We

view the mapping problem as one of characterizing a BMIC 3 algorithm and the multi-

processor system as graphs, and subsequently assigning and sequencing the nodes of

the algorithm graph to the nodes of the processor graph to minimize the completion

time of the algorithm, subject to reliability, storage, and security constraints. A flow

chart of the mapping process is shown in Fig. 1-1. A BM/C3 algorithm is partitioned

into tasks, and the communication among tasks is represented as a directed acyclic

graph. These graphs are termed task graphs, problem graphs, or computation flow

graphs. A multi-processor, on the other hand, is characterized by an undirected graph

that depicts the interconnection topology of the architecture. These graphs are termed

the processor graphs, system graphs, or computation resource graphs. In the BM/C 3

application, the task and processor graphs are time-varying due to: (1) the dynamic

nature of communication among tasks, (2) lack of a priori information on the data

dependencies among tasks, (3) thc stcc -at.i, nature of the time between the execution

of a given task, and (4) failures and/or on-line repair of the computational resources of

-3-

the multi-processor architecture. As discussed below, various assumptions on the time-

dependence of the task and processor graph parameters lead to static, quasi-static, and

dynamic mapping problems. The resulting optimization problem of allocating tasks to

processors, and sequencing the tasks on member processors is solved, and the perfor-

mance measures such as the processor utilization, completion time, speedup, and com-

munication delay are computed. If the results are not satisfactory, an alternative task

division or a new multi-processor architecture may be tried out, and the analysis

repeated.

ARLEZ BM/C 3 GORITHM

GENERATE 1 PARTITIONING
PROCESSOR GRAPH (TASK DIVISION)

TASK ALLOCATION GENERATE
AND SEQUENCING TASK GRAPHALGORITHM TS RP

PERFORMANCE
EVALUATION

DISPLAY REF-_3_ TS

NO

No

DONE

FIGURE 1-1: C" ERVIEW OF ALGORITHM-ARCHITECTURE
MAPPING PROBLEM

-4-

1.2 A TAXONOMY OF MAPPING PROBLEMS

The mapping problems can be classified based on the following two elements: (1)

the time-dependence of the task and processor graph parameters, and (2) the level of

information on the task graph parameters. For the multi-processor configuration, the

amount of task computation and communication among tasks can be stationary (static

or time-invariant) or dynamic. Dynamic behavior refers to a situation wherein the task

graph and/or processor graph parameters are time varying, while in the static case they

remain fixed. This in turn gives rise to static and dynamic mapping methods. The

dynamic manping methods are considerably more complex than the static mapping

problems, since they involve multi-stage optimization, wherein the effects of current

mapping decisions on all future changes in the task and processor graphs must be

considered. In some cases, the computation and communication vary slowly with time,

and, hence, can be assumed to be static over relatively long time intervals. We call

such task graphs quasi-static, and the corresponding mapping meth~ods are termed

quasi-static mapping methods. In this case, we solve a series of static mapping prob-

lems periodically by taking into account the migration cost incurred in changing the

current mapping to the next mapping. The quasi-static mapping methods are also use-

ful when the task graphs are relatively stationary, but the multi-processor system might

undergo configuration changes due to failures and recovery. In this case, we solve a

series of static mapping problems for each possible multi-processor configuration or a

small set of aggregated configurations. As mentioned earlier, the data dependencies in

BM/C 3 algorithms fall under the dynamic category, but can be approximated by a

quasi-static model.

The task parameters can be either deterministic or probabilistic. In the determinis-

tic situation, the amount of task computation, and the amount and frequency of data

transfers among tasks are perfectly known. On the other hand, the probabilistic

knowledge of the task graph parameters can assume one of two forms : "complete

--

- 5 "

information" or "partial information". Under complete information, the probabilistic

knowledge of the task parameters is represented by a known probability distribution

function with known parameters of the distribution. For example, if the amount of data

transferred between two tasks is exponentially distributed with a given mean, then the

information is considered complete. Under partial information, the form of the proba-

bility densities of the task parameters is known, but the parameters of the distribution

have to be estimated (learned) on-line. For example, we may know that the amount of

data transferred between two tasks is exponentially distributed, but the mean is unk-

nown.

The classification discussed above is summarized in Fig. 1-2. Our primary focus

in this report is on the static, deterministic mapping problem that explicitly considers

the precedence restrictions on task execution, data communication delay, and redun-

dancy, security, and storage constraints. Future research will address the quasi-static

and dynamic mapping problems.

TIME DEPENDENCE OF:
TASK AND PROCESSOR STATIC QUASI-STATIC DYNAMIC

PARAMETERS

TYPE OF TASK AND
PROCESSOR GRAPH DETERMINISTIC STOCHASTIC

PARAMETERS

LEVEL OF COMPLETE PARTIAL
INFORMATION INFORMATION INFORMATION

FIGURE 1-2: A TAXONOM OF MAPPING PROBLEMS

-6-

1.3 SUMMARY OF RESULTS

The static, deterministic mapping problem is NP-complete, i.e., the memory and

computational requirements of an optimal algorithm grow exponentially with the

number of tasks and the number of processors [Horowitz and Sahni, 1978; Garey and

Johnson, 1979; Bokhari, 1981]. Therefore, all practical algorithms involve the use of

heuristics to subdue the computational explosion of the optimal mapping algorithms.

We develop four algorithms to solve the mapping problem: (1) greedy heuristic algo-

rithm, (2) pair-wise exchange algorithm, (3) optimal A' algorithm, and (4) e-optimal

A; algorithm.

The greedy heuristic is a two-stage algorithm. The first stage determines the order

of task execution/allocation, and the second stage chooses the best processor that com-

pletes each task in the sequence at the earliest possible time. The order of task execu-

tion is determined using the notion of a level of a node in the task graph. Intuitively,

the level of a node i in the task graph is the critical path length from the terminal node

of the task graph to node i. When the multi-processor is made up of processors with

different apeeds we assume that every task on a path from the terminal node to node i

is executed on the fastest processor. The execution order of the tasks is based on

decreasing node levels on the premise that the tasks with longer paths (or larger level)

should be completed as soon as possible [Hu, 1961; Kohler, 1975]. The results of

computational experiments on several hundred random graphs, the weapon-target

assignment, aiid the multi-target tracking algorithms have shown that the greedy

heuristic provides optimal mapping in over 75% of the test cases, but can be in error

by as much as 230% from tht optimal completion time in some test cases.

In order to improve the performance of the greedy heuristic, we developed a

second mapping algorithm using the concept of pair-wise exchange. In effect, the algo-

rithm exchanges the execution order of all possible pairs of tasks in the sequence,

while satisfying the precedence relations of the task graph. This algorithm has been

-7-

found to be optimal in over 85% of the test cases examined, and the average error in

completion time was less than 5% of the optimal for all the test cases. This is an

efficient and useful algorithm for large scale mapping problems, wherein an optimal

solution is hard or impossible to find in polynomial time.

The performance evaluation of the heuristic and pair-wise exchange algorithms is

accomplished using the optimal mapping algorithm, based on the heuristic A* algo-

rithm as a benchmark [Nilsson, 1980; Pearl, 1984]. The heuristic evaluation function

(HEF) required by the A* algorithm is the level of each node on the task graph. This

HEF can be shown to be admissible, i.e., it is a lower bound on the optimal cost-to-go,

which ensures that the A* algorithm provides an optimal mapping. However, for large

problems, the computational requirements of the A* algorithm are prohibitive.

In order to subdue the combinatorial explosion of the A* algorithm on large scale

mapping problems, we developed an A, algorithm that guarantees that the completion

time is within (1+) of the optimal completion time. The tradeoff between computa-

tional complexity and optimality of the A; algorithm is controlled by the choice of E.

1.4 MAPPER SOFTWARE PACKAGE

The mapping algorithms have been integrated into an interactive computer

software package, termed MAPPER, for the analysis and performance evaluation of

alternative BMIC 3 algorithms and multi-processor architectures. A functional structure

of MAPPER is shown in Fig. 1-3. It consists of four functional modules: a graphical

user interface, data translator, algorithm driver, and the algorithms. The user interface

provides a mouse-driven graphical environment for users to draw and edit task, pro-

cessor graphs, and enter their parameters. The results of MAPPER are displayed in the

form of a Gantt chart, along with other useful performance measures like the speedup

and the utilization of each processor. The data translator portion of MAPPER converts

the user's view of task and processor graphs into algorithm-level inputs. The algorithm

driver invokes the appropriate algorithm, based on the user's mouse-driven commands.

-8-

Finally, the algorithm portion of the MAPPER consists of the four mapping algorithms

discussed earlier: greedy heuristic, pair-wise exchange, A', and A; algorithms. The

MAPPER software is hosted on a SUN workstation.

GRAPHICAL USER * PROCESSOR GRAPH
INTERFACE 4 TASK GRAPH

- ALGORITHM EXECUTION
CONTROL PARAMETERS

DATA

TRANSLATION

ALGORITHM AORITHM
SELECTOR OUTPUTS

PAIR-WISE
SHEURISTIC E A AE
ALGORITHM ECAGALGORr~Mm ALGORmIM ALGORIT'HM

FIGURE 1-3: A SOFTWARE ENVIRONMENT FOR
ALGORiTHM-ARCHTECTURE MAPPING

-9-

1.5 ORGANIZATION OF THE REPORT

In section 2, we provide a mathematical formulation of the static, deterministic

mapping problem, and discuss its relation to previous scheduling techniques.

Specifically, we show that simplified formulations lead to the following problems: (1)

scheduling independent tasks on parallel identical processors, (2) scheduling tree-

structured task graphs on parallel identical processors wherein each task requires unit

processing time and zero communication delay, and (3) all previous mapping formula-

tions discussed in the literature. Also included in this section are the drawbacks of the

previous approaches, and the key features that distinguish our formulation from those

of the earlier approaches.

In sectica 3, we derive the key mapping equation that forms the basis of all the

four mapping algorithms developed in this report. We also derive the four algorithms

and illustrate their performance on a simple example.

Section 4 provides four sets of computational experiments to demonstrate the per-

formance of the mapping algorithms. The first set considers hypothetical examples

gleaned from the literature. The second set of experiments, which deal with several

hundred random graphs over a wide range of computation/ communication ratios, and

were used to critically assess the performance of the heuristic and pair-wise exchange

algorithms. The third and fourth set of experiments are related to the weapon-target

assignment and the multi-target tracking algorithms.

Section 5 provides a summary of the research accomplishments and future

research plans. Appendix A describes the design methodology for the user interface of

MAPPER software package. Finally, Appendix B contains a user manual for

MAPPER.

SECTION 2

STATIC MAPPING PROBLEM

FORMULATION AND PREVIOUS APPROACHES

2.1 PROBLEM FORMULATION

We formulate the problem of mapping a static task graph onto a static Processor

graph as one of minimizing the completion time of the task graph subject to (1) con-

straints on the memory available at each processor, (2) the replication level of each

task, and (3) security. The task graph (also termed a problem graph or computation

flow graph (CFG)) is a directed, acyclic graph, G, = (V, , E,), where V, =

{i : i = 1, 2, - • , N is the set of vertices (nodes) denoting the tasks of the application

algorithm, and E, = { <ij>: ii = 1,2..., N ;i *j) is the set of directed edges (arcs,

links) representing the inter-task communication between pairs of tasks i and j, and

the partially ordered constraint that task i must precede task j. Each node i of the task

graph is parameterized by the 3-tuple (s , mi , r), where si is the service demand of

task i measured in terms of millions of instructions, mi is the memory requirement of

task i measured in Kilo bytes (Kb) and ri is the replication level of task i for fault-

tolerance. Each directed edge <i j> of the task graph is parameterized by vj, where vi,

denotes the amount of data transmitted between tasks i and j measured in terms of

bits. We assume, without loss of generality, that the task graph G, consists of a start

(source) node and a terminal (sink) node, i.e., the task graph G, is such that each node

can be reached if we go forward from the start node or go backward from the terminal

node. If the task graph does not have a start node and/or a terminal node, a dummy

start node/terminal node can always be added to the task graph such that the number

of instructions of the dummy node and the data transmitted from the dummy node to

other nodes of the task graph (and vice versa) are zero. For notational convenience,

we assume that the terminal task corresponds to node N of the task graph, G.

In the same vein, the processor graph is an undirected graph, G., = (V. E,),

where V, = (p :p = 1, 2, M) is the set of vertices denoting the processors, and

= { (p. q): p, q = 1, 2 M; p * q) is the set of undirected edges depicting the

communication links among processors. Each node of the processor graph is

parameterized by the 2-tuple (gj, , Rp), where p. is the service rate of processor meas-

ured in terms of millions of instructions per second, and R. is the memory capacity of

processor p in Kb. Each edge (p,q) of the processor graph G. is parameterized by the

link capacity, c. measured in bits per second. We assume that the data communication

between a pair of processors (k,q) follows the shortest path (k , k*I. k2 , "" , kx, q)

where k , k , k2 , "- , k. , q are the nodes on the shortest path. We assume that the

task sequencing at each processor is nonpreemptive. Furthermore, we assume that each

node of the processor graph contains an execution processor and a communication pro-

cessor so that task execution and data communication can be serviced simultaneously

at the same node. The reliability constraint is modeled as a redundant execution of

each task i at r, (2a) distinct processors. Finally, the security constraint implies that

each task i can be executed only at a certain set of distinct processors, Si, i e V,.

Clearly, I S I a r, for all i e V,, where I S, I is the cardinality of Si. That is, the

number of distinct processors to which a task i can be allocated must at least equal the

replication level, ri.

Note that in the case without any constraint, i.e., no memory, security, and

storage constraints, the node parameter of the task graph can be represented by the ser-

vice demand of task i, si, while the node parameter of the processor graph can be

represented by the service rate of processor q, 94.

Formally, a mapping is a partition of the task set V, = (1, 2, ... ,N into M ordered

sets T2, T2 TM:

T,= q,, q2.'" .qk I k0. (2-1a)

and U. T, ,{l.2.N}. (2-1b)

12-

that satisfy the precedence relationships of the task graph. Note that the ordered sets

T,, T2. "- '' Tv are not disjoint due to redundant execution of tasks at multiple pro-

cessors. We find it convenient to define the complementary distinct element sets P,

via Pi = (q : i E T. and no element is repeated), i e V,. That is, Pi is the set of distinct

processors to which task i is allocated. In addition, let 3i denote the set of immediate

parents of task i in the task graph, G,. Then the static, deterministic mapping problem

can be stated succinctly as follows:

min .CTN2(T , T 2 ,TM), (2-2)

T, T 2 , ,TM

subject to:

I mi < Rq ; q E V,, (memory constraint) , (2-3)
i E Tq

I Pi I1= r; i£ V, (reliability constraint) , (2-4)

and Pi c Si , i E V, (security constraint) (2-5)

where CTN (T , T2., " , Tf) is the completion time of the terminal task N (or make

span) under the mapping (T, , T2 , ".. , TM). Note that the mapping must satisfy the

precedence constraints, viz., task i cannot begin executing on processor q, q E Pi, until

the data from each task of the parent set pi is available at processor q, i e V,. 'We will

provide a precise mathematical characterization of the precedence constraint in section

3.1.

Once the mapping (T, , T2 , , TM) is known, the speedup can be obtained via

speedup =[I risi] / [. CTN(TI , T2 , TM)] , (2-6)
ieV1

where pt is the service rate of the fastest processor. The processor utilization, U., is

obtained from

U,[]/CTN(Tl , T2 , .TH). (2-7)
i£Tq P'q

13 -

The utilization of links can be derived in a similar manner.

Illustrative Example:

To illustrate the problem formulation, consider the task and processor graphs

shown in Fig. 2-1. The task graph is represented by V, = (1, 2, 3, 4), E, = (<1,2>,

<1,3>, <2,4>, <3,4>). The node parameters are: (si , j, r1) = (1, 5, 1), (S 2 , , r2) =

(3, 10, 2), (s3 , M3, r3) = (4, 20, 1), and (s4 , M4, r 4) = (2, 10, 1). The edge parameters

of the task graph are: v12=1, V13=2, vu=2 , and v1,=l. Similarly, the processor graph is

represented by: vP = (1, 2) and E. = [(1,2)). The node parameters of the processor

graph are: (g1 , R,)= (1,100) and (g2 , R2)= (1, 200). Since there is a single link, the

edge parameter is: c12=1. Let the security constraint be S1=(1,2), Sf=(1,2}, S 3={2}, and

S 4={1,2). Then TI = {1,2) and T2 = (3,2,4) is a feasible mapping. With this mapping,

we have P,={11, P 2=1,2), P 3=(2), P4={2), and the completion time CT4(T,T2)=12.

The speedup for this mapping is, SP=1.08. The utilizations of the processors are:

Uj= 0.33 and U2 = 0.75.

(1,5,1)

2
(3,10,2) (4,20,1) (1,100) (1,200)

2 2

Q (2,10,1)

FIGURE 2-1: AN ILLUSTRATIVE EXAMPLE OF
TASK AND PROCESSOR GRAPHS

To illustrate the problem complexity, consider the case where there are no secu-

rity or memory constraints, i.e., each task can be executed on any processor. Then the

ri - 1
total number of different allocations for task i is n (M-l). The execution order of the

1---

- 14-

tasks is upper-bounded by N!. Therefore, the total number of different mappings in the

N ri-1
worst case is N! xt [nt (M-1)]. When ri=l, for 1 i < N, the total number of different

i---0 I--0

mapping in the worst case is N!MN.

Indeed, the mapping problem posed above is NP-complete [Horowitz and Sahni,

1978; Garey and Johnson, 1979; Bokhari, 1979], which means that an optimal algo-

rithm for the static, deterministic mapping problem with a run-time bound that is a

polynomial function of tasks and the number of processors exists if, and only if, all

combinatorial optimization problems, including the traveling salesman, maximum

clique, and the satisfiability problems can be solved in polynomial time [Cook, 1971;

Karp, 1972]. The evidence indicates that in all likelihood any problem which is NP-

complete cannot be solved by an algorithm of polynomial time complexity. Therefore,

all practical algorithms exploit the use of heuristics to reduce the computational bur-

den. In the following subsection, we discuss the relationship of the mapping problem

with previous scheduling problems in the literature in order to indicate its generality,

and to provide a basis for developing the heuristic and optimal mapping algorithms of

section 3.

2.2 RELATION TO PREVIOUS SCHEDULING TECHNIQUES

2.2.1 SCHEDULING INDEPENDENT TASKS

This problem is concerned with nonpreemptive scheduling of N independent

tasks on M processors. Thus, we assume that the task graph is a vertex graph (i.e., a

graph with isolated vertices and no edges) with no constraints on memory, reliability

and security. The execution time of task i on processor j will be denoted by tj (=-L)

yielding an N x M nonnegative matrix of processing times. Since there are no reliabil-

ity constraints, a schedule for M processors is a partition of the task set V, =

1, 2, 3,..., N) into M disjoint ordered sets T,, T2,. ...TM. It is shown that, for M > 2, the

15 -

problem of obtaining a schedule to minimize the makespan (completion time) or,

equivalently, tc maximize the speedup, is NP-complete [Horowitz and Sahni, 1978;

Gary and Johnson, 1979]. This puts added importance on the development of heuristic

algorithms.

An example of a heuristic algorithm for scheduling independent tasks on identical

processors (i.e., Ii. = p., j = I , 2 , .., M) is the list scheduling (LS) strategy. The LS

strategy sc-ee4,,les tasks according to a given priority list of tasks, and at each step the

first available task on the list is assigned to a processor with the currently earliest com-

pletion time. A natural question then is: how good are the solutions generated by the

suboptimal LS algorithm? Such a question is usually answered by assessing the worst

case accuracy of the suboptimal algorithm. It has been proved [Graham, 1966; Syslo,

Deo, and Kowalik, 1983] that the list scheduling algorithm generates a solution which

satisfies:

1

C.. (LS) < (2 - -)C 8, , (2-8)
M

where C,,,,(LS) is the completion time with the LS strategy, and C,, is the optimal

completion time. Thus, the completion time of the LS strategy can be worse by at

most a factor of two than the optimal completion time.

Another example is to form a priority list according to nonincreasing order of

processing times ti. The list scheduling algorithm applied to such an ordering is called

the largest processing time (LPT) algorithm. The LPT algorithm generates a solution

which satisfies:

4 1 •

C.. (LPT) - (- - 1')CL. (2-9)
3 3M

This means that the completion time of an LPT schedule is at most 33% worse than

that of the optimal solution.

In spite of these worst-case bounds, LPT rule behaves very well on random prob-

lems. In one experiment [Coffman, Garey, and Johnson, 19781, thirty tasks, with task

16-

times chosen according to a uniform distribution between 0 and 1, were generated.

c , was estimated to be "i'O, and C,,,,, (LPT) is the length of the LPT schedule gen-

erated. The experiment was repeated ten times and the values of of the relative approx-

C7 ,l (LPT) - C .,.
imation error, CL. , were computed. The average error was found to be

0.074. In a second experiment [Coffman, Garey, and Johnson, 1978], task times were

C m81 (LPT) -C',
chosen according to a normal distribution. The average of the value,

was found to be 0.023. Indeed, it has been proved that if the processing requirements

of the tasks are identically distributed random variables, then as the number of tasks,

N, approaches infinity, the relative approximation error approaches zero (asymptotic

optimality) with probability 1 [Loululo, 1984; Bruno and Downey, 1986; Frenk and

Rinnooy Kan, 1987].

2.2.2 SCHEDULING TREE TASK STRUCTURES

From the preceding section, it is clear that the problem of minimizing makespan

on M (where M 2) processors belongs to a class of difficult combinatorial problems.

Nevertheless, in some cases, augmenting the problem with some restrictions converts it

into a simplified problem. Obviously, the problem will be trivial if all tasks have unit

processing time: the LS strategy is optimal. By introducing the precedence relations

among tasks, nontrivial problems can be formulated. Suppose we have N unit process-

ing time tasks with precedence relations in the form of a tree, which must be

scheduled on M identical processors. Hu [1961] and Sethi [1976] proposed an O(N)

optimal algorithm to solve this type of problem. Hu's idea was based on a LS strategy,

where the priority list is formed based on node levels. The level of a node i in the task

tree is defined as the number of nodes (including node i) on the path to the terminal

node. A priority list is then constructed according to nonincreasing node levels, and

then the LS scheduling algorithm is applied using the priority list.

- 17 -

For example, Fig. 2-2 shows a tree task structure with unit processing time on each

task. Task a should be assigned first since it has the highest level (i.e., 4). The next

task to be assigned is task c with its level equal to 3, and so on. Fig. 2-3 shows the

results of scheduling this tree task structure on a two-processor system. Since the

tasks are arranged in nonincreasing levels, we can also apply Hu's algorithm to solve

problems (with nonidentical task processing times and directed acyclic task graphs)

after minor modifications [Kohler, 1975]. The modification pertains to the definition of

a node level. In this case, the level of a node i is the length of the longest path from

node i to the terminal node, where the length of the path is measured in terms of the

processing time . Therefore, one can say that the task to be scheduled next is the one

that heads the current longest (critical) path in the precedence graph. Scheduling

according to this rule is termed the critical path (CP) scheduling: It is list scheduling

applied to a list of tasks arranged in nonincreasing longest paths.

M a c h g i
b C d e

2 b______________

g h 6

COMPLETION TIME = 6

FIGURE 2-2: A TREE-STRUCTURED FIGURE 2-3: LEVEL SCHEDULEING
TASK SYSTEM ON TWO PROCESSORS

2.2.3 PREVIOUS MAPPING APPROACHES

The mapping problem is similar to the previous scheduling problems except that

precedence relationships may exist among tasks. In addition, the data dependencies

among tasks induce a communication pattern among processors over limited capacity

18 -

channels (links). Several approaches with different optimality criteria have been sug-

gested to solve this type of problem: (1) network flows, (2) integer programming, (3)

branch-and-bound, and (4) heuristic methods.

1. Network Flows:

Stone [1977] studied a two-processor mapping problem assuming no precedence

restrictions on task execution. He used a modified intertask-communication graph by

adding the processor nodes to the task graph such that an edge between a processor

and each task of the original task graph. The weight on the new edge between a task

and a processor is the processing cost of the task on the other processor. A cut of the

modified graph separates the graph into two disconnected parts, each part representing

an allocation of tasks to a processor. The cost of the allocation is equal to the sum of

the weights on the cut and the minimum cut corresponds to the optimal mapping.

Stone used the modified Ford-Fulkerson maxflow-mincut algorithm [Ford and Fulker-

son, 1962] to minimize the sum of processing and communication costs. Since the

precedence relationships among tasks are neglected in his model, the mapping

(TI , T 2 , "'" , TM) can be represented by the binary matrix X=[x,] where xk= 1 , if task

i is allocated to processor k and xk=O otherwise. The cost function is then formulated

as:

2 N
cost(X)= Z E , x'k + Z Z c,, xk x11 (2-10)

k=li=l I<k j<i

where fk represents the processing cost for task i c.; processor k, and ci is the com-

munication cost between tasks i and j, when those tasks are assigned to different pro-

cessors. The first summation represents the processing costs, while the second term

represents the interprocessor communication cost between two-processors. Although

the approach is very elegant, it has several shortcomings. First, the approach is limited

to two processor systems. For a system where the number of processors is greater than

- 19-

two, the computational complexity soon becomes intractable. The second limitation of

the approach is the difficulty in incorporating precedence relationships among tasks,

and various constraints such as memory and redundancy into this model.

2. Integer Programming Approach

This method formulates the mapping problem as a binary 0-1 integer program-

ming problem. The processing costs of tasks are represented by an N x M matrix F

where f~i represents the processing cost when task i is allocated to processor j. The

interprocessor communication cost can be represented by a product of volume and the

distance. If we define V={vj, i = 1, 2,.., N, j = 1, 2,.., N, where v,, represents the amount

of data to be transferred between tasks i and j, and C=(ckI, k = 1, 2,.. M and

I = 1, 2,... M, is the distance matrix where ck, is a measure of communication cost

between processors k and 1, then the communication cost between a task i allocated

to processor k and a task j allocated to processor 1, is vjjr, Neglecting the precedence

constraints, we can formulate the objective function in terms of the allocation (assign-

ment) matrix X=[x, I as:

cost (X) F, F fkXi + W Vi1j XkJ X (2-11
l<kji l<i

The first summation term represents the processing cost for each task on its assigned

processor. The second term representz the sum of interprocessor communication cost.

The normalization constant w is used to scale processing and interprocessor communi-

cation costs and to account for any differences in units. In this approach, constraints

on memory and real-time processing can be easily added. A limited memory environ-

ment can be represented by

N in mx,k !5 Rk k k=1,2,,..,M , (2-12)

where m, represents the amount of memory required by task i and Rt represents the

memory capacity at processor k. The real-time constraint can be rep~resented by

- 20 -

N t_ k txi !5 dk , k=l1,2,....M X (2-13)
i=1

where t represents the processing time of task i on processor k and dk represents the

time limit for processing the tasks that reside in processor k. The equation states that

the time required to complete all the tasks assigned to a processor must not exceed the

time limit. The integer programming approach provides a good representation of the

task allocation environment. The constraints can be easily added or changed in the

model and is an appropriate representation of the appilcation algorithms. The approach

is usually limited to small size mapping problems, since the computational and

memory requirements grow exponentially with the problem size. In addition, the

approach ignores queueing delays at the communication links, i.e., whenever data com-

munication needs to take place between two processors, a path between two processors

is assumed to be free.

3. Branch-and-bound

Shen and Tsai [1985] employ a branch-and-bound method using the minimax

criterion to selec: an optimal task assignment. This has been shown to be isomorphic

to a graph matching problem termed weak homomorphism. The search for optimal

weak homomorphism corresponding to an optimal task assignment is solved via a state

space search. Due to weak homomorphism, neighboring tasks are always assigned to

neighboring processors. Their approach is a heuristic search similar to A* algorithm

and the objective function is rr Jre realistic than the previous ones. However, pre-

cedence relationships among tasks are neglected in their problem formulation.

4. Heuristic Method

Heuristic approaches provide fast and effective means to obtain suboptimal map-

ping solutions. Kasahara and Narita [1984] propose a heuristic method termed critical

path/most immediate successors first (CP/MISF) to minimize the completion time of

the terminal task. The level I, of task i used in CP/MISF method is defined to be the

-21 -

longest path length from the terminal node to the node i. Their approach consists of

the following three steps:

a. Determine the level of each task.

b. Form a priority list in nonincreasing order of node levels and the number of

immediate successor tasks.

c. Employ LS strategy on the priority list.

The method of CP/MISF is an improved version of critical path scheduling.

From the previous discussion on scheduling independent and tree structured tasks, the

worst case performance of this algorithm is given by the following equation.

CT, - CT
mx 1i - (2-14)

where CT,,,, is the completion time with CP/MISF method and CT ,,. is the optimal

completion time. After the CP/MISF method is applied to find a solution, another

method, termed depth first/immediate heuristic search (DF/IHS), is then employed to

improve the CP/MISF method by using the completion time of CP/MISF method as an

upper bound. In their approach, communication overhead among tasks is neglected.

Bokhari [1981A] formulated the mapping problem as one of maximizing the car-

dinality of mapping, i.e., the number of edges of the task graph that fall on the links

in the processor graph. The heuristic algorithm proposed by Bokhari involves the itera-

tive interchange of mapped nodes to increase the cardinality of mapping at each itera-

tion. There are several drawbacks to this approach. The processors and links are

assumed to be identical. In addition, the computation is assumed to be regular, i.e., all

tasks have identical processing times and the amount of data to be transmitted between

a pair of tasks is the same. Later Bokhari [1981B) employed a dynamic programming

method to minimize the sum of execution and interprocessor communication cost for

tree task structures. If the cost function involves time, this approach will minimize the

serial execution time, i.e., at most only one processor is active at any time.

- 22 -

Lee and Agarwal [1987] suggest a new objective function which takes the weight

of the task edges and the actual system distance into account to minimize the com-

munication overhead. The basic idea of their mapping strategy is that tasks communi-

cating more frequently than the others are to be placed closer. In their problem formu-

lation, the objective function can quantify the real communication among tasks more

accurately, but the computation time of tasks is neglected. Furthermore, a system node

can accommodate at most one task, which means that the number of processors

should be greater than or equal to the number of tasks.

2.3 DRAWBACKS OF THE PREVIOUS MAPPING APPROACHES

The previous mapping approaches, although varied in terms of solution techniques

used, have two major shortcoming. First, the optimality criterion involving the sum of

processing and communication costs neglect the synchronization delays due to pre-

cedence constraints, and assume that the communication delay in transferring data

between a pair of processors is independent of the data traffic between the processors.

In queueing parlance, the constant delay assumption is tantamount to modeling each

communication link by an infinitive server [Lavenberg, 1983]. Second, the approaches

that take into account the precedence constraints assume zero communication delays

[Kasahara and Narita, 1984], and those that consider communication delays neglect

synchronization delays [Shen and Tsai, 1985].

The mapping algorithms developed in this report overcome the drawbacks of pre-

vious approaches. The key features of our problem formulation include: (1) explicit

consideration of precedence restrictions among tasks and, hence, the synchronization

delays, (2) sequencing of data messages to account for queueing delays at communica-

tion links, and (3) the incorporation of storage, security, and fault-tolerance require-

ments. In the next section we develop both heuristic and optimal algorithms to solve

the general mapping problem formulated in section 2.1.

- 23 -

SECTION 3

MAPPING ALGORITHMS

3.1 KEY MAPPING EQUATION

In the general mapping problem formulated in subsection 2.1, the completion time

of a task i on an assigned processor q is a function of: (1) the service demand of task

i and the service rate of processor q; (2) the time at which the data from immediate

predecessor (or parent) tasks of task i is available at processor q; and (3) the time

when processor q becomes available. The delay due to data dependency accounts for

synchronization requirements and communication delays. The consideration of proces-

sor availability serves as a model for queueing delays due to previously assigned tasks.

In this subsection, we derive an explicit equation for the evolution of the completion

time as a function of mapping, which forms the basis for our mapping algorithms of

sections 3.2-3.4. For ease of exposition, we derive the mapping equation for the uncon-

strained and constrained problems separi,'ly. The mathematical notation used in this

section is shown in table 3-1.

3.1.1 Mapping Equation without Constraints

Consider the mapping problem without memory, security, and redundancy con-

straints. Let (T,, T2,..- Tq, .., TM) denote a partial mapping and let CTj (TI, T2, ..- TM) be

the corresponding completion time of task j, j c V,. Since there are no redundancy

constraints, the ordered sets T are disjoint. Suppose we want to assign a ready task i to

processor q so that the new mapping is (T, T2,..- Tq~i, ... TM). We would like to derive

an expression for the completion time of task i on processor q,

CT, (T 1 , T2 ... Tq.i, ... TM), given the partial mapping and the corresponding comple-

tion times.

- 24 -

term meaning
V, set of tasks in the task graph
v, set of processors in the processor graph
M number of processors = I V, I
N number of tasks = I V, I
si number of instructions of task i in millions
M, memory requirement of task i in Kb
ri redundancy of task i
vii amount of data transferred between tasks i and j in K bytes
pi set of immediate predecessor

(parent) tasks of task i
ai set of immediate successors of task i
11q service rate of processor q in millions of instructions per second (MIPS)
Rq memory capacity of processor q in Kb
cp capacity of link (p ,q)
Si set of processors where task i can be assigned due to

security constraints, i ev,
Tq set of tasks assigned to processor q, q eV,
Pj set of distinct processors to which task i is assigned, i ev,
CT,.i completion time of the a'h copy of task i, a=l, 2, ri; ieV,
CTi completion time of task i
I last task assigned to processor q
AM the available time of link (p ,q)
i [v.jaI j" earliest completed parent of task i. task yj is the corresponding

parent task, and a is the a' copy of y,, yje Pi and a = 1, 2, ... , ry., i e V,
Bjlj.. the time at which data from the Jil earliest parent of task i,

denoted by i [yj , a], is available at processor q, i e V,. q e V,
iul] j 't earliest completed parent of task i, j = 1, 2, ..., I Pi I

when redundancy ri = 1, i e V
Bj~jj the time at which data from the j' earliest completed parent of task i

is available at processor q when redundancy r1=l, i c V,. q e V,
Mi set of processors to which task i can be assigned

without violating the memory constraint
O latest time at which data from all the parents

of task i is available at processor q

TABLE 3-1: DEFINITION OF VARIABLES

As discussed earlier, task i can not begin execution on processor q until the data

from predecessors of task i is available at processor q, and until processor q completes

the execution of the end task in the ordered set, Tq. Let D'q denote the latest time at

which dsta from all the predecessors of task i becomes available at processor q, and

let I be the end task in the ordered set, Tq. Then, the start time of task i is

max[Dq, CT (T1, T 2,..- Tq, ..- TM) I and the completion time is given by

CTj (T1, T2.... Tqi.... Tm)= max [Dq , CTI (T1. T2... Tq Tu (3-1)glq

- 25 -

The latest time at which data from all the predecessors of task i becomes available at

processor q is:

Df= max Bit. (3-2)
j=1.2,.., 13i I

where B ,1 is the time at which data from the j earliest completed parent task of task

i becomes available at processor q and pi is the set of parents of task i. To compute

B:j , we make the reasonable assumption that the data communication from parent

tasks takes place in the order in which they are completed, i.e., the first completed

parent task sends its data first. The variables B:j can be computed via the following

algorithm.

Algorithm 3.1: Computation of Bt. Given the completion times of parent tasks of a

task i, CT 1i, 1 <j _< 13i I arranged in nonincreasing order, and the link available times

AN, the following algorithm computes B 1.

For j = I to I Pi I do

k0 := { p :iUI] e T.

If k0 -q then

Find the shortest path (k0, ki, ..,k., ..,q) from processor k0 to processor q

Akk, := max { Ak 1q, CTjUj) + V i l

q

For i = I to n do

Ah ik : -= max (Ak._k . A1k.k,) + V

Ck k-

end do

B~jj: Akk..

else

Bi. := CTdt,]

end if

- 26 -

end do

3.1.2 Mapping Equation with Constraints

The memory and security constraints simply restrict the feasible processor assign-

ments for a task. However, the redundancy constraint imposes additional synchroniza-

tion delays, since a task i can not begin execution until the data from all copies of the

parent tasks of task i is available at the assigned processor. Therefore, we must keep

track of the completion time of each copy of a task. In addition, the ordered sets Tq in

(TI, T2 ,..- Tq, ... TM) are not disjoint, since a task i must be replicated at multiple proces-

sors.

To derive the mapping equation, let Mi denote the set of processors to which a

ready task i can be assigned without violating the memory constraints, i.e.,

M- q :mi+ F m. Rq (3-3)
j £Tq

and let Si be the set of processors to which task i can be assigned based on security

considerations. Then the set of feasible processor assignments, F, is given by

F, = { q : q e Mir Si } (3-4)

The completion time of (any copy of) task i on processor q, q e F. is given by:

CTi..(Tl, T 2,..- Tq .i, .., TM) = CTi(TI, T2 .. Tq .., T)

max (Di, CTt(T 1 , T 2,.., Tq, ..- TM)) +- (3-5)

where D: should be interpreted as the latest time at which data from all copies of the

parent set 5 becomes available at processor q. If we let i[Ly,, a] denote the j,1 earliest

completed parent task of task i where Yj is the identity of the parent task and a is its

copy (I s a < ry), then Df is given by:

Diq = max max Bj., (3-6)
yjeo13 -lar,

- 27 -

where Bi,,.,] is the time at which data from copy a of task yj becomes available at pro-

cessor q. For a feasible assignment of task i on processor q, the variables Bijj,, can

be computed as follows:

Algorithm 3.2: Computation of B$,,I. Given the completion times of each copy of

parent tasks, CTt,.,] arranged in decreasing order and the link available times, A,,, the

following algorithm computes Bi%..].

For each (y, a), yj e 3j and 1< a .y. do

k0 := assigned processor of the a"' copy of task y,

If k0 -q then

Find the shortest path (k0, k, k., q) from processor k0 to processor q

.ko t max Akk z I CTi,.i]}'

Fori = 1 to n do

vyj i

Ak A- := max (Ak 1k. Akiki.) + -

Ckiki.,

end do

Bi~y,j] : Akk..

else

Bij'a] := CTjisja

end if

end do

3.2 HEURISTIC MAPPING ALGORITHM

The heuristic algorithm consists of two-stages. The first stage employs the con-

cept of critical path to determine the order of task execution, while the second stage

sequentially allocates the tasks from the ordered list to processors so that the comple-

- 28 -

tion time of the tasks is a minimum. To determine the order of task execution, we

define the level of a task i as:

ii = max T s(
enk (37)

where .f = max gt is the service rate of the fastest processor, s. is the service demand

q eV,

of task j, and nk denotes the k' path from task i to the terminal task. That is, ii is the

length of the critical path from task i to the terminal task. By construction, ii is a

lower bound on the completion time of a task graph rooted at task i. Following the

level algorithm of Hu [1961] and Sethi [1976] discussed in section 2.2, the heuristic

algorithm is based on the premise that tasks with larger levels should be executed ear-

lier in the sequence. If several tasks have the same level, then the task with the greater

number of successors should be completed first. Thus, we construct the execution order

according to nonincreasing levels first, and nonincreasing successors next if all the

tasks have the same levels.

Once the priority list is constructed, we sequentially allocate tasks to processors

to minimize the completion time. In the case without constraints, task i is assigned to

processor q*, where

q" = arg min CTj (TI, T 2 .. T Ui,..,TM) (3-8a)
q

In the constrained mapping problem, we assign task i to ri distinct processors

qI. q; ..., q* that yield minimum completion time. That is, the assignments qk*(I . k < ri)

are such that:

CTi(T I, T2,., T_.)i, Tm) <5 CT(TI, T2 ... T,i, T14) < ..

C7(T 1, T2, Ui ... TM)

Th CT TI, T2e... Tu, piig art Tpd o (3-8b)

The heuristic mapping algorithm proceeds as follows:

- 29 -

Algorithm 3.3: Heuristic Mapping Algorithm. Given a directed task graph

G, = (V, , E,) with parameters (s , in, , ri . viq) and the processor graph G, = (V, , E,)

with parameters (tp ,R, , c,,), the heuristic algorithm computes the mapping

(T 1, T 2,... Tq, ... TM), where T, is the ordered set of tasks allocated to processor q.

Step 1: Determine the level of each task

z = (N)

Repeat until Z =

Select a task i of Z such that no successors of task i appear in z

Compute the level of task i, lj via: 1i = max (It) +
j cai Af

z = z - pi

end

Step 2: Construct a priority list [1] [2] ... [N] by sorting i in nonincreasing order.

Break ties on the basis of number of successors.

Step 3: For j = 1 to N do

i U]

Form the feasible set of processors Fp via Eqs. (3-3) and (3-4)

Find assignments qk (1 5 k ! ri) via Eq. (3-8)

Tq& = T11 U.. i ; k =1, 2, ri

Update the link available times via Algorithm 3.1 or 3.2 as appropriate

end do

Illustrative Example:

Suppose the task and processor graphs are as shown in Fig. 3-1. We use step I to

determine the levels of tasks, 11-105, 12=100, 13=50, 14=50, 15=100, 16=45, 17=45, 1s=0. The

priority list can be constructed by the nonincreasing levels, cr [1]=1, [21=2, [31=5,

[4]=4, [51=3, [61=6, [7]=7, and [83=8. We construct the set of feasible processor

- 30 -

assignments F, for task [1]=1 and have Fp = (q:q e MIUSI) = (1, 2). Since task [1]=l

can only be assigned to processors 1 and 2, we select processor 2 which has the ear-

lier completion time for task 1. Similarly, the set of feasible processor assignments Fp

for task [2] is Fp= (1, 2, 3, 4). Since task [2]=2 has a replication level of 2, we

assign task 2 to two different processors 2 and 4 with concomitant completion times of

60 and 70 time units. The set of feasible processor assignments Fp for task [3]=5 is

(2, 3, 4). Similarly, task [3]=5 has a replication level of 2, we assign task 5 to two

different processors 2 and 1 with corresponding completion times of 115 and 116 time

units. Fp for task [4]--4 is (I) so we assign task [4]=4 to processor 1 due to the secu-

rity constraint. Tasks [5] to [8] can be assigned in the same way. The completion time

of the terminal task, task 8, is 216 for this example.

(10,10,I) task number security matrix
1 1 100
2 1 1i1i
3 0111
4 1000

1 1 5 I1 1 1

(110,10,2) 1 6 1111
7 1101

(110,10,2) 8 1 1 1 1

1 101, 0(1,100) 4(2,200)

(90,10,1)
1 M 4

6 7 (9 0 , 10 ,2)

(2,200) 2 (1,100)

TASK GRAPH PROCESSOR GRAPH

FIGURE 3-1: TASK AND PROCESSOR GRAPHS FOR
AN ILLUSTRATIVE EXAMPLE

-31 -

3.3 PAIR-WISE EXCHANGE ALGORITHM

The performance of the heuristic algorithm can be improved by iteratively

exchanging the order of elements in the priority list, while satisfying the precedence

constraints. The following lemma defines a feasible exchange of tasks in a priority list.

Lemma 3.1:

If [1] [2]..U]..[k]..[N] is a priority list, then [1] [2]..[k]..U]..[N] is also a feasible

priority list only if all the successors of task U] are executed after task [k] and all

the parents of task [k) are executed before task j], i.e., atti c: ([k+1], [k+2],

[N]) and 5Lk] c ([1], [2], .., U-i]).

Proof:

We will prove this by contradiction. Since [1] [2]..U]..[k]..[N] is a feasible prior-

ity list, all the predecessors of task U] must be executed before task U] and all the

successors of task [k] must be executed after task [k], i.e., 5U c: f ([1], [2], .., U-l])

and atk1 c {[k+l] [k+2]..[N]). If any successor of , sk fil or any predecessor of

task [k] is executed between tasks U] and [k], then an exchange on the order of

execution of tasks U] and (k] will require the execution of at least one task prior

to its predecessor. That is, the new priority list will violate the precedence con-

straint, completeing the proof.

- 32 -

Note that the start and terminal tasks (i.e., tasks [1] and [N]) can not be

exchanged with any task. The basic idea of pair-wise exchange is illustra.ed in Fig. 3-

2. The pair-wise exchange algorithm considers all possible exchanges of the type illus-

trated in Fig. 3-2, and terminates when all feasible exchanges are exhausted. The

algorithm proceeds as follows:

TASK I TA K EXECUTION ORDER

PARENTS OF TASK J SONS OF TASK 1

i bsL 3EXCHANGE TASK 2 WITHbsL FROM THESE TASKS

+ I I I I I_ I I I i -
EXCIANGE TASK 3 WITH J s FROM THESE TASKS

Jbest2 i bes1 3

Jbcst2 Jbest3 2 3

EXCHANGE TASK 4 WIT 'Jbt FROM THESE TASKS

best4

FIGURE 3-2:: CONCEPT OF PAIR-WISE EXCHANGE ALGORITHM

- 33 -

Algorithm 3.4: Pair-wise Exchange Algorithm. Given a directed task graph

G, = (V, , E,) with parameters (s,, ", , r;, vj) and the processor graph G, = (V, , E,)

with parameters (, , R,, c), the pair-wise exchange algorithm computes the map-

ping (T1, T2,..- Tv, .. TM), where T, is the ordered set of tasks allocated to processor q.

Step 1: Same as step 1 of algorithm 3.3

Step 2: Same as step 2 of algorithm 3.3

Step 3: For j=2 to N-2 do

flag--O

For k=j+l to N-1 do

If tasks U] and (k] are exchangeable then

Initialize processor and link available times

Swap tasks U] and [k] to construct a new priority list

Use step 3 of algorithm 3.3 to find a new mapping

If the result is better then

k':= k

flag=1

Update the result

end if

Swap tasks U] and [k]

end if

end do

If flag=l then

swap tasks U] and [k']

end if

end do

In algorithm 3.4, the inner do loop finds the best task [k'] for the j" position of

the execution order and the outer do loop controls the value of j and then exchanges

- 34 -

the jp, position with the best task found, if it results in a better mapping. Since there

exists a start task and a terminal task in the task graph, it is obvious t.at [1']=[1] and

[N']=[N] and hence no other tasks are exchangeable with these two tasks.

Illustrative Example:

Consider task and processor graphs shown in figure 3-1. We construct the prior-

ity list [1]=1, [2]=2, [3]=5, [4]=4, [5]=3, [6]=6, [7]=7, [8]=8. Using the heuristic algo-

rithm, we have completion time 216. Now we exchange the priority list of tasks [2]

and [3], the new priority list becomes [1]=1, [2]=5, [3]=2, [4]=4, [53=3, [6]=6, [7]=7,

[8]=8. Now use step 3 of algorithm 3.3 to find a new mapping with its completion

time 205, so we keep this priority list and its corresponding mapping. We exchange

the the other pairs of priority list such as tasks [2]=2 and [4]=4, [2]=2 and [5]=3 and

find the completion time of the terminal task based on these priority lists is not earlier

than 205. Hence, we swap tasks [21 and (31, fix task [21=5, and get a new priority list

[1]=1, [2]=5, [3]=2, [4]=4, [5]=3, [6]=6, [71=7, [8]=8. We continue exchange tasks

[3]=2 and [4]=4, [3]=2 and [5]=3, and so on. Since we cannot find an earlier comple-

tion time than 205, so the output will be the priority list [1]=1, [2]=5, [33=2, [4]=4,

[5]=3, [6]=6, [7]=7, [8]=8, the corresponding mapping, and the completion time 205.

3.4 OPTIMAL MAPPING (A' AND A;) ALGORITHMS

Since the heuristic and pair-wise exchange algorithms do not guarantee an

optimal solution, we develop an optimal mapping (A*) algorithm which forms a bench

mark against which to evaluate the performance of two heuristic algorithms. The A*

algorithm employs the heuristic algorithm to find an upper bound (UB) on the comple-

tion time and then searches for optimal allocation from all possible combinations of

sequencing orders and allocations. The state space of the task allocation problem can

be conceptualized as a decision tree, wherein node n is parameterized by the 5-tuple

(i., P., f., ,CT., t.), where i. is the task at node n, Pi is the set of processors where

- 35 -

task i. is assigned to, f. is the cost constrained to go through node n, CT. is the max-

imum completion time of task i. at node n, and %r4 is the parent node of node n. The

heuristic evaluation function (HEF), also termed cost selection function f., used by A*

algorithm consists of three parts, g., h., and f., where g. = CTi., h. is the estimated

cost of those unassigned tasks at node n, and f.. is the cost of its parent node for node

n. Since a task graph may consist of several routes starting from the start task to the

terminal task, we may generate a node n with its task i. lying in a path while the

predecessor node %n with its task iT. lying in other paths. Once we visit node n, we

may use the information of HEF at node %t, f.,, as a reference if the value of g, + h.

is less than f,. The reason is due to the lower bound cost of going through node 't. is

f', so fA. is also a lower bound cost at node n. As explained in section 3.1, the level

ii of task i is a lower bound on the completion time of a task graph rooted at task i.

Since the processing time of task i, on processor set Pi. has been included into CT.,

the estimated cost of those unassigned tasks is equal to the level of task i., Ii, minus

the service time of task i, on the fastest processor, s II:f. In other words,

Si,

h.= , - (3-9)

The heuristic evaluation function (HEF, also termed cost selection function) f. is then

determined by:

f. = max (g. +hn ,f) (3-10)

The HEF, f., defined in this way is admissible, i.e., a guarantee for an optimal solu-

tion. We start from the start node (root node, node 0) with its estimated cost h0

evaluated to be:

N Mho = max (p)l,[sil/ gti] (3-11)
i=1 i--1

N
where ip, is the level of the start task, Z s is the total service demands of tasks,

i=1

- 36 -

M
1. is the service rate of the computer system. The estimated completion time is

i=1

known to be lower bounded by the level of the start task. Since the total service

demands of tasks, isj, divided by the service rate of the computer system, Yuj, is

another lower bound of completion time, h0 is taken from the larger of these two

values. The cost at node 0 is f0 = go + h0 = h0, since go = 0.

The ready task set at node 0 is the start task set ([1]) where [1] represent the

start task. We construct the feasible processor assignment set F. for task [1] and then

expand node 0 by assigning the start task, task [1], to processor set Pij] for every

P[IlcF, and evaluate the corresponding 5-tuple (i., Pi.,f., ,CT., ,) at each node n. If

the value of estimated cost at node n, f., is less than or equal to the upper bound of

completion obtained from the heuristic algorithm, we retain node n in the decision tree.

Otherwise, node n is "fathomed". Once a node has been expanded, we put that node

into a set CLOSED. We continue to select a node n for expansion whose f. is a

minimum among those unexpanded nodes. The ready task set at node n can be con-

structed from the path starting from node 0 to node n, P.-,, and the precedence rela-

tionships of the task graph. Once the ready task set is constructed, each task (element)

i in the ready task set at node n is again assigned to processor set Pi for every P, cF.

The number of new nodes generated by assigning tasks to processors is

CX . Among these new nodes, only those tuples whose f; is less

i E ready task set

than or equal to the upper bound (UP) need to be retained. We repeat this procedure

until we construct an empty ready task set at node 8. Note that every node expansion

will add new nodes to the decision tree. A complete path is the path starting from

node 0 to the goal node 8. All the other paths are incomplete. The priority list on each

processor, the completion of tasks and their corresponding allocations can be known

from the optimal path, n".. The completion time of the goal node, CT0 is the comple-

tion time of the optimal mapping algorithm. Let T,- be the set of tasks assigned to

- 37 -

processor q at node m, Z, be a set contains the ready task set at node m, and a,,

corresponds to the processor at node m. The A* algorithm is described in the follow-

ing:

Algorithm 3.6: Optimal mapping (A*) algorithm. Given a directed task graph

G,= V, , E,) with parameters (si. m , ri , i'Y) and the processor graph G, = (V, E,)

with parameters (p .R , c,,), the A* algorithm computes the optimal mapping

(TI, T2..., Tq, ... Tu). where T. is the ordered set of tasks allocated to processor q.

Step 1: Use algorithm 3.3 to find an upper bound (UB) on the completion time

Step 2: C=

n=0

Select a task i of Z such that no predecessors of task i appear in z

cost-to-go:= Ii -_
laf

Form the set of feasible processor assignments F, for task i via eqns 3.3 and 3.4

For every possible set P, such that IPj I=ri and Pi c F. do

For a=l to r do

q = a"' element of set Pi

Find CTi,(TIT2,.,Tqk,..,Tm) via equations 3-1, 3-2, and algorithm 3.1

end do

If (max CTi,(T,T 2,..,Tpi,..,TM)+cost-to-go < UB then
1 o a 5 ri

n=n+l

N M
f(n)= max(max CT,(,T2,..,Tq.i...TM)+Cost-to-go, (2 s,)I E (g,))

1< a ri n=1 m=1

€ a= q

end if

- 38 -

end do

Zo= z- i~Uv

Step 3: m = arg min f(i)
liign ji0C

If r.--O then

For q=l to M do

T" = TU[a.

end do

else

For i=1 to M do

T- =.-

end do

end if

Z. :=Z",,

C=C . (im)

Step 4: If z,.= output the result

Select a task i from Z. such that no processors of task i appear in Z,,

Z., =Z. - { i) ijc.

cost-to-go:= i -i

Form the set of feasible processor assignments F. for task i via eqns 3.3 and 3.4

For every possible set Pi such that [Pi I=ri and Pi c F, do

For a = 1 to r, do

q = a' element of set Pi

Find CT, (T'T',...TqM\i,...TZ) via eqn. 3-5, 3-6, and algorithm 3.2

end do

If(max C.i(T',T-,...Tq'"Ui,..T;)) + cost-to-go s UB then
1 <a < r

- 39 -

n=n+l

f(n)= max(max (CTi,(T'T,T',..,T')} + cost-to-go, f(r.))

1 <a <ri

T = Tq [i}

end if

end do

If Z,. = 0 then C=C- (m

Go to step 3

Illustrative Example:

Consider a simple example where task and processor graphs as shown in figure

3-3. We use the heuristic algorithm to find an upper bound, UB=15.5, on the comple-

tion time, then start the search process. The search steps can be constructed as figure

3-4. If we assign a task to a processor where the HEF is greater than UB, the 5-tuples

of that node will not be retained. Each time a leaf node with the lowest cost is selected

for expansion. The number of processors assigned to a task at a node is equal to the

replication number of that task. The cost at a node is taken from the maximum HEF

among the costs of the same task at different processors and its parent task. The com-

plete path from root node to the goal node corresponds to a mapping.

Although the A* algorithm provides us an optimal solution, the entire decision

tree is usually very large. For a problem where a large number of nodes must be gen-

erated before an optimal solution can be determined, the A* algorithm can not be used

to solve the problem due to the limitations of memory size and CPU time. Experience

shows that in many problems A* algorithm spends a large amount of time discriminat-

ing among paths whose costs do not vary significantly from each other. In such cases

the admissibility piop';rty becomes a curse rather than a virtue. It forces A* to spend a

- 40 -

(61,)(1.100) TASK SECURITY

(8,1.2) 1 1 21 1 1
(9 ~ 31 1

4 ~ (2,100) (2,100)3 111

TASK GRAPH SYSTEM GRAPH4 11

FIGURE 3.3: AN ILLUSTRATIVE EXAMPLE
FOR A* ALGORITHM

PROCESSOR SET18

COMLEIO TIMB 15.

3.3)2, ,3

FIGURED 3,(4: STTSAE ERC2ORA3AGRIH

-41 -

disproportionately long time in selecting the best among roughly equal candidates and

prevents A* trom completing the search with a suboptimai but otherwise acceptable

solution. The A, algorithm is similar to the A* algorithm and is developed to com-

pensate this drawback. In A, algorithm, e is a nonnegative value which determines the

deviation of the final solution to the optimal solution. In general, larger the value of e,

the less memory and CPU time is required to get the final solution. This value is used

to control the speed of getting a solution from the decision tree. The main difference

between the A* and the A; algorithms is the determination of node expansion order. In

A* algorithm, the leaf node for expansion must be a node with a minimum HEF

among the leaf nodes. In A; algorithm, the leaf node for expansion is a node with its

HEF within (I+e)HEF, , where HEFj. represents the minimum HEF value among the

leaf nodes. In fact, the A* algorithm is a special case when e--O.

Algorithm 3.7: A; Algorithm. Given a directed task graph G, = (V , E,) with parame-

ters (si ,mi , , vij) and the processor graph G, =(V,, E,) with parameters

(), , R , cp), the A; algorithm computes the E-optimal mapping (TI, T2,..- Tq TM),

where Tq is the ordered set of tasks allocated to processor q.

Step 1: Input e

Step 2: Same as step 2 of algorithm 3.5

Step 3: m = arg min f(i)

mincost= min f (i)

1. i.n C

Step 3.1: If we can find node m such that fm < (i+e)xmincost then

go to step 3.2

else

go to step 3

end if

- 42 -

Step 3.2: If ,. = 0 then

For q - to ii do

T""= qtJ[a.)

end do

else

For i=1 to M do

i= Tq-

end do

end if

Z.,:=Z%.

C=C } ()

Step 4: Same as algorithm 3.5 except go to step 3.1 instead of going to step 3

3.5 SUMMARY

In this section, we described the key mapping equations with and without con-

straints and the four mapping algorithms. The mapping due to task queueing, pre-

cedence relationships, data dependency among tasks, and message collision problems

are explicitly considered in the key mapping equation. The heuristic algorithm employs

the critical path method to determine a priority list of execution order and then uses

the one-step optimization method to find a solution of the mapping. The pair-wise

exchange algorithm is used to improve the solution of the heuristic algorithm by

exchanging its priority list on the order of execution. Since the heuristic and pair-wise

exchange algorithms do not guarantee an optimal solution, we develop an optimal

mapping (A*) algorithm by considering all possible combinations of task execution

order and allocation. A node with a minimum HEF is selected for expansion until a

complete path consisting of all tasks is found. The path corresponds to an optimal

mapping. The performance of the A* algorithm is limited by the required memory

and CPU time. In order to reduce the requirements of CPU time and memory for the

- 43 -

A* algorithm, A; algorithm is developed to find a solution whose cost does not

exceed the optimal cost by more than a factor -I-.

- 44 -

SECTION 4 COMPUTATIONAL EXPERIMENTS

4.1 EXPERIMENT 1: HYPOTHETICAL EXAMPLES

The first example involves the mapping of independent tasks onto identical pro-

cessors. The task graph is a vertex graph with isolated vertices and no edges. In order

to apply the mapping algorithms of section 3, a dummy start task, task 10, and a

dummy terminal task, task 11, are added to the graph, as shown in Fig. 4-1. The ser-

vice demands of these two dummy tasks are zero. The links between the dummy start

task and the independent parallel tasks are added to the task graph. Similarly, links

between the dummy terminal task and the independent parallel taskb ale added. The

amount of data transmitted between the dummy nodes and the other nodes is zero.

The procebbor graph is a 2-cube computer system with unit service rate and unit link

capacity. The levels of tasks are the same as the seivice dcmand in this example

except for the dummy start task. The priority list then is (10,1,2,3,4,5,6,7,8,9. 1). Thus,

scheduling independent tasks using the heuristic algorithm is equivalent to the LPT

rule. The completion time of the heuristic algorithm is 15, which corresponds to the

worst case mapping performance of the LPT rule. In the four processor case, the worst

relative approximation error, C CT,,, , .--0.25 If the pair-wise algorithm is used in
CTL.

this example, the completion time is improved to 13 and if the optimal mapping (A*)

algorithm is used, the completion time is 12. The performance of the three algorithms

is illustrated via Gantt Charts in Fig. 4-2.

10 0

7

1

1o . 1 in

TASK GRAPH PROCESSOR GRAPH

FIGURE 4-1: MODIFIED INDEPENDENT TASK GRAPH

- 45 -

The second example is related to the mapping of a tree-structured task graph with

nonidentical service demands as shown in Fig. 4-3. A dummy start task, task 8, is

added to the task graph. The links between task 8 and tasks 1, 2, 3, 4 are added into

the task graph as in the previous example. The levels of the tasks are (4, 5, 3, 5, 2, 6,

1, 6) and the priority list constructed by the heuristic algorithm is (8, 6, 2, 4, 1, 3, 5,

7). The mapping provided by the heuristic algorithm is: T, = (8, 6, 1, 3, 5, 7) and T2=

{2, 4) with the concomitant completion time for the heuristic algorithm of 9 time

units. If the pair-wise exchange algorithm is applied to solve this example the comple-

tion time is 8, which is an optimal mapping in this case. The optimal mapping is:

T1={8, 4, 1, 3, 5, 7) and T2=(2, 6). Application of the heuristic algorithm to tree-

structured tasks with arbitrary service demand for each task corresponds to critical path

scheduling.

P1 1 K\'9 7 5 9 7 8 9

P2 2 8 N 2 83 4

P3 3 5 2 654 4 6 4 N 1 6 'xN

67 li 15 4 67 9 1113 4 678 12

HEURISTIC ALGORITHM: PAIR-WISE EXCHANGE ALGORITHM: A* ALGORITHM:

COMPLETION TIME = 15 COMPLETION TIME = 13 COMPLETION TIME = 12

FIGURE 4-2: GANTT CHART FOR THE EXA,4PLE OF FIGURE 1

The third task graph is taken from Kasahara and Narita [1984] and is shown in

Fig. 4-4. It is assumed that the amount of data transmitted among tasks is negligible.

That is, precedence constraints among tasks are considered, but the communication

among tasks is neglected. The level of the start task (in this case 9 time units) forms a

lower bound for the completion time, i.e., no matter how many processors (with the

...E.=u ., =, ,,L.nnnnnnnl ln nllin un mlU l

- 46 -

service rate limited by the fastest service rate in the processor graph) are used to solve

this problem, the completion time must be at least equal to the level of the start task.

In this example, the completion time of the heuristic algorithm is 9 which is equal to

the level of the start task. This means that the heuristic algorithm provides the optimal

mapping in this case. If a completion time smaller than the level of the start task is

desired, it can be accomplished in one of the two following ways: further partitioning

of the tasks lying on the critical path into several parallel tasks such that the level of

the start task is reduced or replacing the fastest processor in the architecture with an

even faster service rate processor. However, decomposing a task into several subtasks

may result in additional communication among subtasks.

10

8 0

3

2 6

5Q65 O 2 9 82

01 10 0
TASK GRAPH PROCESSOR GRAPH TASK GRAPH PROCESSOR GRAPH

FIGURE 4-3: MODIFIED TREE-STRUCrURED FIGURE 4-4: TASK GRAPH EXAMPLE FROM
TASK GRAPH KASAHARA AND NARITA, 1984

The fourth example corresponds to a dynamic scene analysis algorithm and is

taken from Agrawal [1986]. The task graph, shown in Fig. 4-5, consists of data depen-

dencies and precedence relationships among tasks, a start task and a terminal task, and

hence can be directly applied to our model. We used three algorithms to solve this

problem. The completion time of the mapping with the heuristic algorithm is 23.60,

the pair-wise exchange algorithm provides a mapping with a compl, :ion time of

- 47 -

23.33, and the A; algorithm provides a mapping v,,tn the completion time of 23.06,

when e--0.01. The A* algorithm, when applied in this example, did not terminate even

after 4000 node expansions. Although we were unable to obtain the optimal solution

for this problem, we kncw that the solutions of the heuristic and pair-wise exchaige

algorithms are near the optimal solution, since the completion time of the mapping

provided by the A; algorithm, 23.06, with e = 0.01 is within 1% of the optimal comple-

tion time.

120

.3 .3

FIGURE 4-5: TASK GRAPH FROM ARGAWAL, 1986

The fifth example is taken from Chu and Lan [1987]. The control-flow graph,

consisting of AND and OR nodes, is shown in Fig. 4-6. Every branch of the AND

node should be executed. However, only one branch of the OR node is executed. The

probability of executing each branch of the OR node is shown in Fig. 4-6. The

control-flow graph can be converted into the task graph by computing the service

demand of a task as the product of the number of visits and the service demand of the

corresponding node in the control-flow graph. For example, the number of visits to

- 48 -

ENTRY

11 10

2 10002 1

0.5 .240 10

6250 2500

1 1 5 100 1

11000 000 1 7 8000 62500 1237500 6 72500 825000

1000 1000 150

1040

14 1000

14 100 1 1
0.81115

10 0
15 1000

1 2 1 31

EXIT PROCESSOR GRAPH TASK GRAPH

FIGURE 4-6: CONTROL FLOW GRAPH EXAMPLE FIGURE 4-7: MODIFIED TASK GRAPH
FROM CHU AND LAN, 1987 FOR FIGURE 4-6

- 49 -

node 2 in the control-flow graph is 1+0.2+0.22+0.23+.... =1.25. The service demand of

task 2 in the task graph is 1.25xi000=1250. Similarly, the service demand of task 3

in the task graph is equal to the number of visits, 1.25x0.50.625, times the service

demand per visit, 100, which is 62.5. After 100 arrivals, the task graph is shown in

Fig. 4-7. The link parameters are assumed to be 1400 or 1500. The completion time of

the mapping provided by the heuristic algorithm is 316250 which, again, is equal to

the level of the start task (or the minimum completion time) and is therefore optimal.

The sixth example shown in Fig. 4-8 (a) is similar to the task graph considered

by Stone [1977]. We modify the task graph into a directed graph such that a directed

edge starts from a lower numbered task to a higher numbered task as shown in Fig.

4-8 (b); note that task 7 is a dummy terminal task. The service demands and the

amount of data transmitted among tasks are the same as those in Stone's example.

Note that the computer system used by Stone is a heterogeneous system wherein the

processing time of tasks does not correspond to a uniform system. We assume that

the processors have identical service rates and the service demands of a task is

different on different processors. The level of a task is determined from the level by

taking the lowest service demand for each task. For example, the service demands of

task 1 is (5,10), which means the service demand is 5 when task I is assigned to pro-

cessor 1 and 10 when task I is assigned to processor 2. We take the service demand

of task I as 5 when computing the levels of tasks in the task graph. Similarly, take

service demand of task 2 as 2, 4 for task 3, 3 for task 4, and so on. The levels of

tasks 1 to 7 are (13, 8, 6, 5, 2, 4 , 0) and the priority list of the heuristic algorithm is

(1, 2, 3, 4 ,6 , 5, 7). The mapping provided by the heuristic algorithm is: T,={1, 2, 3 ,

4 , 5, 7) and T2={6). The completion time of the heuristic algorithm is 22. The com-

putation time plus communication time is 26+12=38, which is the same as Stone's

result.

- 50 -

5,1

(A): TASK GRAPH TAKEN0,FROM STONE
(B): MODIFIED TASK GRAPH PROCESSOR GRAPH

FOR FIGURE 4-8(A)

FIGURE 4-8: TASK GRAPH TAKEN FROM STONE, 1977AND ITS MODIFIED TASK GRAPH

The final task graph, shown in Fig. 4-9, has not been addressed in the literature.Note that the processors have different service rates and the links have different capa-cities. The level of the start task is the sum of the service demands on the criticalpath, 210, divided by the fastest service rate, 2, which is 105 in this case. The levelsof the other tasks can be derived from equation 3-7. The priority list of tasks is con-structed according to nonincreasing levels first, and nonincreasing successors, if taskshave the same levels. The execution order then is (1, 2, 5, 4, 3, 6, 7, 8) and thecorresponding levels are (105, 100, 100, 50, 50, 45, 45, 0). The highest level task, task1, is assigned to one of the fastest processors, processor 2, with a completion time of 5time units. The second task to be assigned is task 2 in this case. We assume that datacommunication takes place along the shortest delay paths. For example, suppose wesend one unit of data from processor 2 to processor 4. If the routing path is (2,3,4) thec 1 -th

C2231 C 3

-51 -

communication time will be + L = - + - = 1.25. Hence, the shortest routing path
C21 c 14 1 4

should be (2,3,4). If task 2 is assigned to processor 1, the completion time will be the

completion time of task 1 plus the communication delay from processor 2 to processor

+ 0 110 21 plus the service time of task 2 at processor 1, and is equal to 5"- "i' ' = 125. Simi-

1 1

larly, if task 2 is assigned to processor 2, then the completion time of task 2 will be

the completion time of task I plus the service time of task 2 at processor 2. That is,
110

the completion time of task 2 at processor 2 is 5 +-L.- = 60. We can compute the com-

pletion time of task 2 at processors 3 and 4 from equations 3-1 and 3-2 in a similar

manner. The best choice is processor 2. The next task will be task 5. Now if task 5

is assigned to processor 2 the completion time of task 5 will be the completion time of

the last task that is assigned to processor 2 plus the service time of task 5 at processor

2 which is 115. In other words, if we can find a processor such that the completion

time of task 5 on that processor is less than 115, we will assign to that processor. We

90 11
1102 3 0 0

8 0 2 23 1
q 2

TASK GRAPH PROCESSOR GRAPH

FIGURE 4-9: TASK AND PROCESSOR GRAPH FOR
A HYPOTHETICAL EXAMPLE

- 52 -

find that assigning task 5 to processor 4 will give the earliest completion time of task

5, so processor 4 will be the best choice. The results o, the mapping algorithms are

shown in table 4.1. The completion time of the mapping provided by the heuristic

algorithm is 153.5. The pair-wise exchange algorithm provides a mapping with a com-

pletion time of 115, which is an improvement of over 30% for this example. The A*

(optimal) algorithm provides a mapping with a completion time of 110.5. Intuitively,

the optimal mapping should allocate tasks 2 and 6 to processors 2 or 4, task 3 to pro-

cessors 1 or 3, task 4 to processor 3, and tasks 5 and 7 to processor 2. This assignment

will balance the processing time at different processors after task 1 has been com-

pleted. However, the heuristic or pair-wise exchange algorithms will not compute this

mapping.

pair-wisehegxisde exchange
algorithm algorithm algorithm

execution completion completion completion
order task # allocation time task # allocation time task # allocation time

1 1 2 5.0 1 2 5.0 1 4 5.0

2 2 2 60.0 2 2 60.0 4 1 107.5

3 5 4 61.0 5 4 61.0 5 2 61.0

4 4 2 110.0 6 2 105.0 2 4 60.0

5 3 3 110.5 7 4 106.0 7 2 106.0

6 6 4 115.0 4 3 110.5 6 4 105.0

7 7 1 153.5 3 1 115.0 3 3 110.5

8 8 1 153.5 8 1 115.0 8 4 110.5

TABLE 4-1: COMPUTATIONAL RESULTS FOR
DIFFERENT MAPPING ALGORTHMS

4.2 EXPERIMENT 2: RANDOM GRAPHS

In order to understand the performance of the heuristic and pair-wise exchange

algorithms, we performed an experiment on random task graphs. In this experiment,

- 53 -

the computer architecture is a 2-cube system with unit service rate at each processor

and unit link capacity. With this architecture, the service demand of a task and the

amount of data transmitted among tasks can be treated as the computation time of that

task and the communication time between tasks respectively. The task structure was

generated as follows:

Algorithm 4.1: Graph Generator Algorithm. Given the ratio p of computation time /

communication time, the graph generator algorithm generates random, directed, acyclic

task graphs with number of tasks in the range [1,12].

Step 1: Generate a random integer number N in [1,12]

Pick a start task j in [1,N]

CLOSE={j}

Step 2: For i=1 to N do

If ie CLOSE then

Flip a coin to determine whether ie a,

end if

end do

If lIaI--O then

go to step 2

end if

Step 3: Open := ay

Pick a task k in OPEN

CLOSE=CLOSE~k

For i=1 to N do

If i e CLOSE then

Flip a coin to determine whether iE ak

end if

- 54 -

end do

If lakI=0 then

a,=(N+l1

end if

Step 4: The node parameters are randomly selected in the range [O,p]

The link parameters are randomly selected in the range [0,1]

We define the ratio p as computation time/communication time, and vary p in the

range 0.001 to 1000. For each value of p, we generate one hundred random graphs as

the random task graphs, and solve the mapping problem with the heuristic, pair-wise

exchange, and A* algorithms. A notable result of the experiment is that the perfor-

mance of the heuristic, pair-wise exchange, and A* optimal mapping algorithms are

dependent on the value of p, i.e., the computation time/communication time. For large

values of p (10) the heuristic algorithm tends to assign tasks to the first available

processor. That is, the mapping tends to balance the work load on each processor. In

this case, the percent test cases for which the heuristic algorithm provides an optimal

solution is greater than 95%. As p decreases, the percent of test cases for which

optimal mapping is provided by the heuristic algorithm decreases to 75% at the value

of p=1 and then increases again. As p falls below 0.01, the heuristic algorithm provides

optimal mapping for all random test cases. That is, the worst case performance of the

heuristic algorithm occurs when p=1 (i.e., when the communication time is approxi-

mately equal to computation time). The pair-wise exchange algorithm provides optimal

mapping in over 95% of the test cases except when p is near 1, where it provides

optimal mapping in 85% of the test cases. The deviation of completion time of the

heuristic algorithm to the optimal mapping may be very large at a small value of p

(<0.01) because the communication time between a pair of tasks happens to be very

small, and then becomes very large for the other pairs of tasks as compared to the

computation time. Since the heuristic algorithm always assigns a task to a processor

- 55 -

that has the earliest completion time of the assigned task, a local optimal mapping may

result in large amounts of communication time when large amounts of data need to be

transferred between two tasks in certain test cases. As for the pair-wise exchange

algorithm, the deviation of completion time to optimal completion time is very small

(below 2%) for almost all the test cases. The percentage of optimal mapping, average

error versus different ratios of p are plotted in Fig. 4-10 . As for the optimal (A*)

algorithm, the number of generated nodes and number of backtracks are small for

small values of p (:50.1) or large values of p (>5). A* algorithm generates maximum

number of nodes and backtracks when p=I.

110-
HEURISTIC

100- PAIR-WISE

RATI

o O 2 EXCHANGE

90

.10

.80

o~ot 70'7000T g 30 2Z \ € 8'6 5 2'1l;)1

RATIO
(COMPUTATION/COMMUNICATION)

W 0.300
LU9 0.25 - HEURISTIC

0.20 4 PAIR-WISE 2.308

A0.15

0105

0.00~
1000 100 10 53 .'8 .7 .6 .5.25.1 .0 1.001

RATIO
(COMPUTATION/COMMUNICATION)

FIGURE 4.10: PERCENTAGE OF OPTIMAL MAPPING
AND AVERAGE RELATIVE ERROR

- 56 -

4.3 EXPERIMENT 3: APPLICATION TO WEAPON TARGET ASSIGNMENT

PROBLEM

This experiment involves the weapon target assignment and target sequencing

(WTA/TS) problem arising in the boost phase battle management. As shown in Fig.

4-11, the weapon target assignment can be decomposed into a four level optimization

problem by making use of the special features of the problem structure. The four lev-

els are: (1) grouping targets into clusters based on their proximity to one another and

the distinct launch tubes to which each target belongs, (2) determining the optimal

allocation of directed energy weapons (DEWs) to the target clusters defined by level 1,

(3) prescribing the optimal assignment of DEWs to individual targets within a cluster,

and (4) determining the optimal fire control sequence of each target for each DEW.

The first level (target cluster definition) problem is formulated as a cluster median

problem, which partitions the targets (both current and future expected) into groups

such that the total sum of distances (or equivalently, slew times) in a cluster to the

cluster median problem is minimized. The cluster median problem is a 0-1 integer pro-

gramming problem, which is solved using Lagrangian relaxation techniques. The

second and third levels (weapon-cluster allocation problem and weapon-target assign-

ment within a cluster) are formulated as mixed-integer linear programming problems

with the objectives of minimizing the leakage, balancing the allocation load among the

weapons, and minimizing allocations that require large slew (switch-over) times. The

problems, again, are solved via Lagrangian relaxation techniques [Korn et al., 1986].

Finally, the fourth level (target sequencing problem) is formulated as one of minimiz-

ing the weighted tardiness (i.e., value of leaked boosters) with sequence dependent

setup (i.e., slew) times. The problem is solved via an approximate polynomially com-

plete algorithm due to Ul!man [1975] and Sahni [1976].

There are at least three salient features of the multi-level WTA/TS algorithm that

are worth noting. First, the algorithm contains both serial and parallel subalgorithms.

- 57 -

TRACK FILE DATA PLANNING
PERIOD

CLUSTER
DEFINITION

NO A 6 1 ~ -2
TARGETMINUTES

NEW EQUIVALENT LEAKAGE FROMLANCES-"TARGETS ICLUSTERS IUE

ALLOCATION INCLUDING .4

M A FUTURE ARRIVALS MIGRATION OF

MIGRATON OF OALLOCATION T LEAKAGE TARGETS INTO
TARGETS INTO TO CLUSTERS FROM CLUSTERS CLUSTERS

CLUSTERS T KILL ASSESSMENT

+l i + I +

WEAPON-TARGET WEAPON-TARGET WEAPON-TARGET 1
ASSIGNMENT FOR **0 ASSIGNMENT FOR *e ASSIGNMENT FOR >30 SECONDS

CLUSTER I CLUSTER K CLUSTER NG -I MINUTES

TARGET LIST FOR TARGET LEAKAGE
EQCA WEAPON CKILL ASSESSMENT

EQUNCING FO SEQUENCING FOR SEQUENCING FOR 10-30

FIGURE 4-11: OVERALL WEAPON TARGET ASSIGNMENT PROBLEM

I

4- THIS COULD BE
2 ANOTH-ER TASK GRAPH

3. 3kN

4.1.1 4.1.M1 41k.1 4.k.MK 4.NG.1 4.NG.MNG

FIGURE 4-12: SUBALGORITI{M LEVEL FOR WTA/TS PROBLEM

For example, when viewed as a whole, the cluster definition and the weapon-target

allocation within a cluster and the target sequencing problems (i.e., levels 3 and 4) are

parallelizable. In addition, portions of the Lagrangian relaxation approach used to solve

the level 1 and level 2 problems are parallelizable. The key question then is: what con-

stitutes a task of the WTA/TS algorithm, i.e., is it a subalgorithm or part of the subal-

gorithm? It is our contention that tasks should be defined as (appropriate) portions of

subalgorithms to extract maximum parallelism. Second, the lower level subalgorithms

have to periodically communicate with the higher level algorithms. Third, there exists

time scale separation among the various levels, in the sense that higher level optimiza-

tion subalgorithms are executed less frequently than the lower level optimization subal-

gorithms. For example, the target cluster definition and weapon-cluster allocation

subalgorithms (i.e., levels 1 and 2) are executed every 1-2 minutes or whenever a new

launch occurs. The level 3 (i.e., the weapon-target allocation within a cluster) subalgo-

rithm is executed every 10-30 seconds to one minute, while level 4 target sequencing

subalgorithm is executed every 10-30 seconds. Consequently, lower level subalgo-

rithms impose more frequent workload on the fault-tolerant computer architecture than

higher level ones.

Fig. 4-12 shows a task graph for the WTAITS algorithm wherein each node

represents a subalgorithm. However each subalgorithm can be a task graph in itself, if

parallelism is exploited at a lower level of granularity. Once the level of granularity is

selected, each task (or node) of the task graph is characterized by the number of

instructions of each type of operation to be executed, and each link denotes the amount

of data (in bits) to be transferred between the tasks. We use the following notations in

the sequel.

- 59 -

term meaning

NT number of targets

NW number of weapons

NG number of clusters

NTk number of targets in each cluster

NWk number of weapons assigned to cluster k

NT. number of targets assigned to weapon w in cluster k,

k=1, 2, .. , NG; w=l, 2,.., NWk

ND number of dual iterations

TABLE 4-2: DEFINITION OF WTA VARIABLES

The service demands of tasks in the task graph can be approximated as follows:

task 1: ND*NT+4*NT (clustering algorithm)

task 2: ND*NW* (2*NG + 3) + (NG*NW) 2 (weapon target clustering allocation algorithm)

task 3.k: ND*NTk *NWk + (NTk *NWk) 2 k=1, 2, .., NG (weapon-target assignment

within a cluster)

task 4.k.w: (NT,)rdt" k=1, 2, .., NG; w=1, 2,.., Mk; order is the computational

complexity of the fire control sequencing algorithm

The memory requirement of each task in the task graph is as follows:

task 1 : 3*NT 2 + 2*NT

task 2 : 5*NT*NW

task 3.k : 4*NTk*NWk k=1,2,..,NG

task 4.k.w: 2 A'- for optimal solution

4*NTk for weighted shortest processing time rule

Approximate link parameters: volume of data transfers between tasks i and j, vij (meas-

ured in number of words) are:

-60-

edge <1,2> NG+4*NT+4*NT*NW

edge <2,3.k> : 4*NT *NWk+2*NTk+NWk ; k=1, 2, ... NG

edge <3.k,4.k.w>: 4*NTk, k=1, 2, .., NG; w=1, 2,.., NWk

We assume that the weapon target assignment algorithm parameters are as follows:

(1) number of weapons in each cluster is uniformly distributed in [1,5]

(2) number of targets for each weapon is uniformly distributed in [1,50]

(3) number of dual iterations, ND=lOU

The number of clusters and order of fire control computational complexity are variable

parameters. The processor graph is a 3-cube computer system with service rate and

link capacity taken from the real N-cube computer, i.e., the service rate at each proces-

sor is 0.5 Mflops and the link capacity of each link is 10 Mbits/sec. In order to under-

stand the dominant factors of the weapon target assignment, we made 35 runs with

the number of clusters in the range (1,71 and the complexity of fire control sequencing

algorithm as a function of the number of targets, NTA,, with a in [1,5]. The test results

are shown in table 4.3. It is clear from the results that the completion time increases

considerably as a changes from 4 to 5, which means that the maximum admissible

computation order of the fire control computational complexity should be less than or

equal to 4. Otherwise it will take several minutes to process a subalgorithm and will

not meet the real time requirements of the boost-phase WTA/TS algori:hm.

4.4 EXPERIMENT 4: APPLICATION TO MULTITARGET TRACKING

Ballistic Missile Defense and Airborne Surveillance require identification and

tracking of several hundred targets in real time. Multitarget tracking algorithms

designed for these problems demand large computational resources which geneially

can't be fulfi'led with conventional von Neumann types of processors. However, due to

the simultaneous tracking of several targets, the multitarget tracking algorithm will

contain several computational tasks which may be run in parallel. With the

-61 -

percentage of optimal solution using the heuristic
algorithmin in those thirty-five runs of randomly = 100 %
generatedweapon target assignment graph
.SM FLOPS; IOM BITS/SEC ; 3 CUBE

l 2 3 4 5 6 7

1 1.0000 1.0655 1.1477 1.1559 1.1830 1.4597 1.6944

2 1.0000 1.0917 1.1563 1.1669 1.1951 1.4774 1.7154

3 1.0000 1.6817 1.3221 1.4019 1.4462 1.7857 2.2555

4 1.0000 1.5700 1.7609 2.1274 2.2028 2.7994 3.0724

5 1.0000 1.3573 1.5676 1.9042 1.9440 2.4894 2.4726

SPEEDUP VERSUS # OF CLUSTERS
AND THE ORDER OF COMPLEXITY

COMPLETION TIME (SECOND)

NUMBER OF CLUSTERS
ORDER 1 2 3 4 5 6 7

T=31 T=96 T=208 T=241 T=278 T=355 T=456
W=l W=4 W=9 W=10 W=12 W=16 W=19
TASK=5 TASK=9 TASK=15 TASK=17 TASK=20 TASK=25 TASK=29

1 0.0167 0.1351 0.8003 0.8147 0.8356 0.8797 0.9342

2 0.0188 0.1361 0.8035 0.8179 0.8388 0.8828 0.9374

3 0.0885 0.1626 0.9380 0.9524 0.9733 1.0173 1.0719

4 2.33885 2.4063 6.4516 6.4660 6.4869 6.5310 10 1984

5 78.2874 78.3053 232.5121 232.5265 232.5474 232.5915 459.1290

TABLE 4-3:COMPLETION TIME VERSUS NUMBER OF CLUSTERS
AND COMPLEXITY OF FIRE CONTROL ALGORITHM

- 62 -

development of multiprocessor architectures, adapting multitarget tracking algorithms

to these new computer architectures poses several challenging problems including a

good selection of computer architecture, task partitioning, and task allocations.

Implementation of the multitarget tracking algorithm requires the use of Kalman

filters for updating target tracks and maintaining hypotheses corresponding to combina-

tions of likely target tracks. Multitracker [Kurien, 1986] uses the mathematical frame-

work of Hybrid State Estimation to formulate a solution methodology for the multitar-

get tracking problem. The general hybrid state model consists of continuous and

discrete-valued states. Using measurements related to the hybrid state, it is possible to

compute an optimal (minimum mean squared or maximum a posteriori) estimate of the

hybrid state. 1

One of the current approaches toward this problem is termed track-oriented

approach which provides a systematic methodology for constructing the optimal solu-

tion for multitarget tracking. However, for all practical scenarios which consist of

several measurements in each scan, the computational requirements (both processing

time and memory) will deplete the resources of any currently available computer. The

reason for this problem is that the optimal algorithm postulates and retains all possible

global hypotheses including the ones that are only remotely probable. In order to con-

struct a practical algorithm, all such unlikely global hypotheses have to be eliminated.

The key techniques incorporated in multitracker are (1) N-Scan Approximation, (2)

Gating, (3) Classification, (4) Classification of Targets, and (5) Clustering. Details are

discussed by Kurien [1986] .

Algorithm parameters are chosen on the basis of the anticipated scenario. For

example, the number of confirmed targets accommodated by the algorithm should

correspond to the maximum number of targets anticipated within the surveillance

I We are grateful to Dr. Thomas Kurien for providing the data and multi-tracker algorithm

of Fig. 4-13.

- 63 -

region; the number of tracks permitted for each target should take into account the

clutter density, the proximity of other targets, and the probability of detection for tar-

gets. Similarly, the number targets and tracks per target permitted for Intermediate,

Tentative, and Born targets should be based on target birth and death distributions and

clutter distribution.

The major computational effort in multitracker is confined to three functional

steps: (1) track predictions, (2) track updates, and (3) track pruning. The parameters

used in multitracker are defined in table 4-4:

term meaning

N, number of confirmed targets

Ni number of intermediate targets

N, number of tentative targets

Nb number of born targets

B, number of tracks per confirmed target

B, number of tracks per intermediate target

B, number of tracks per tentative target

N, number of returns per scan

NTC number of targets per connected cluster

NGII maximum number of global hypotheses

NS number of subclusters

NTS number of targets in each subclusters

NC number of connected clusters

n number of states modeled in the Kalman filter

m number of measurements in each return

TABLE 4-4: DEFINITION OF MULTI-TRACKER VARIABLES

The computational requirements of each step are as follows:

-64-

prediction step 1.5(n3 + n2) multiplications, and

1.5(n 3 - n) additions

gating step Nm + m(n2 +2n) multiplications, and

2mN, + m(n 2 + n - 1) additions

updating step 1.5(n3 + n2) multiplications, and

1.5(n3 - n) additions

clustering step NTS (NS (NS -1)) comparisons2

global hypotheses: min ((Be + 1) 'Tc , NGII I (NTC (NTC -)NSCANJ comparisons

6

u iX[(Bc + 1)1vTc , NGII I (NTC-I) multiplications

The operation count for pruning and promotion of targets, and for the creation of born

targets is negligible.

Communication requirement for multitracker are listed as follows:

prediction step : 32n2+48n+8 bits

gating step : 16(n 2+Nm)+32(n+m)+8 bits

updating step : 1((n 2+N,*m)+32(n+mn) bits

clustering step : 16N,*B,*(NSCAN+I) + 4(N,*B,) bits

global hypotheses: 16NTC*B,* (NSCAN+I)+36*NTC*B, bits

A directed task graph summarizing the steps executed in one cycle of multitracker is

shown in Fig. 4-13 . We assume the following requirements for arithmetic operations.

time for 32 bit multiplication 4 units

time for 32 bit addition 2.6 units

time for 16 bit comparison 1.3 units

Typical values for variables are:

n=4

m=3

- 65 -

N,=100

B, =6

R=1.5

Ni=20

Bi =3

N, =30

B,=3

Nb =N,=100

NTS =2

NS =50

NTC =4

NC =25

NGII = 106

NSCAN =2

N, =1.5

The associated computational requirements for various steps in Fig. 4-13 may then be

evaluated as follows:

predict confirmed tracks : 600* 714 time units

predict intermediate tracks : 60* 714 time units

predict tentative tracks : 90* 714 time units

predict born tracks : 100* 714 time units

gate confirmed tracks : 600*3196.2 time units

gate intermediate tracks : 60* 3196.2 time units

gate tentative tracks 90* 3196.2 time units

gate born tracks : 100*3196.2 time units

update confirmed tracks : 900* 825 time units

update intermediate tracks : 60* 825 time units

- 66 -

FORM
C-1 ORAL

hYPOTHEFSES
I PRUNE

PREDICT GATE UPDATE FORM ICONFIRM~ED
TRACKS MEAS. TRACKS CLUSTERS y TARGETS PRUNE &

TARGET PREDICT GATE UDT
TRACKS TRACKS MEAS. TAK

sc~> TcA REDIRCT GATE UPDATE BONSCANCYCL

FIGREC 4- MIETED FLW RAHS OFOPRETS-
r\TRAI, IN ONE..SCAN.OF.TRACKING ALGORITHM

10.) jljjjil 0 .

SCANCYCLFIGPRED4-T4:ATAS GRA FOR N ANNCYL

CLRATV XML

-67 -

update tentative tracks 60* 825 time units

update born tracks 90* 825 time units

clustering 3183 time units

global hypotheses generation: 25*16380 time units

The associated data to be transferred are shown as follows:

prediction step : 712 bits/track

gating step : 5288 bits/track

updating step : 576 bits/track

clustering step : 13200 bits/track

global hypotheses step: 2016 bits/track

With these parameters listed as above, we can vary the granularity of a task and

then using the algorithms described in section 3, we solve the associated mapping

problem. If each node of Fig. 4-13 is defined as a task, then the task graph can be

constructed as in Fig. 4.14. If we use 2-cube computer as the computational resource

graph and use the heuristic algorithm to solve the mapping problem, we find that the

completion time for one scan of the tracking algorithm is 3.5045 seconds and the

corresponding speedup is 1.3378. Note that the completion time of the heuristic algo-

rithm is equal to the level of the start task (or the maximum speedup is achieved), i.e.,

no matter how many processors are used to solve this problem, the maximum speed up

is limited by the level of the start task. Nevertheless, since the nodes of the prediction,

gating, and updating step are parallelizable (or can be decomposed into parallel sub-

tasks), we can vary the granularity of a task size to decrease the start task level in

order to get a better speed up. In order to understand the best task size for the multi-

tracker, we partition the parallelizable tasks into subtasks thereby constructing a vari-

able task graph. Heuristic and pair-wise exchange algorithms are employed to solve

the corresponding mapping problem. At the beginning, we define 50 targets as a task

- 68 -

#of confirmed heuristic algorithm pair-wise exchange algoritmn

target per task level completion time speedup completion time speedup

100 3.50 3.50 1.34 3.50 1.34

50 1.96 2.05 2.29 2.05 2.29

25 1.19 1.27 3.68 1.27 3.68

20 1.03 1.10 4.25 1.10 4.25

10 0.72 0.97 4.84 0.93 5.02

5 0.57 0.85 5.51 0.84 5.60

4 0.54 0.86 5.43 0.83 5.64

2 0.48 0.87 5.37 0.82 5.70

1 0.47 0.86 5.42 --.....

Table 4-5 (a): COMPLETION TIME AND SPEEDUP VERSUS NUMBER
OF TARGETS FOR 3-CUBE MULTI-PROCESSOR SYSTEM

#of confirmed heuristic algorithm pair-wise exchange algorithm

target per task level completion time speedup completion time speedup

100 3.50 3.50 1.34 3.5045 1.34

50 1.96 2.05 2.29 2.0466 2.29

25 1.19 1.27 3.68 1.2744 3.68

20 1.03 1.49 3.14 1.4171 3.31

10 0.72 1.26 3.72 1.2249 3.83

5 0.57 1.24 3.79 1.2212 3.84

4 0.54 1.23 3.81 1.2155 3.86

2 0.48 1.26 3.73 1.2120 3.87

0.47 1.23 3.83

Table 4-5 (b): COMPLETION TIME AND SPEEDUP VERSUS NUMBER
OF TARGETS FOR 2-CUBE MULTI-PROCESSOR SYSTEM

- 69 -

in the confirmed path with all the other conditions fixed, we find the speed up

increases by a factor of two. When 25 targets are defined as a task, the speed up is

3.68. If we continue partitioning the task size into smaller sizes (decrease the number

of targets per task), we find that the speed up is limited to be 3.85. It is obvious that

the speedup of a 4 processor computer architecture l at most 4. Therefore, we conjec-

ture that the speed up may be limited by the architecture. Due to this reason, we

change the architecture to a 3-cube computer architecture and make the same runs. The

definition of 10 targets per task resulted in a speedup of 4.85. As the task size become

smaller, the speed up curve levels off around 5.4. The detailed results are tabulated

in table 4-4. Finally, we upgrade the architecture to a 16 processor computer system

and repeat the partitioning experiment: the maximum speed up is 7.2.

The next experiment involves the selection of task size in every path to obtain a

maximum speed up, i.e., the task partitioning of four different paths and global

hypotheses simultaneously. If a 16 multiprocessor architecture is used, we find the

maximum speed up for any possible decomposition of task size to be about 11.44 for

the case when 5 targets make up a task in every path and 5 connected clusters form a

task at global hypotheses step. Since the utilization of the processors is 0.7, we con-

clude that increasing the number of processors will not improve the speedup consider-

ably. In other words, a multiprocessor architecture with 16 processors will be a good

choice for solving the multitarget tracking problem.

In order to increase the speed up, tasks on the critical path (in this case,

confirmed path) should be decomposed further. In this example, the decomposition of

the other paths will not have a significant effect on the speedup. However, if we

decompose the task to a very small size such that the critical path is no longer the

confirmed path, or the highest level of this path is almost the same as that of any other

path, then the decomposition of other paths may become important.

- 70 -

4.5 SUMMARY

In this section, we performed four experiments: (1) hypothetical example, (2) ran-

dom graphs, (3) application to weapon target assignment problem, and (4) application

to multitarget tracking. The first experiment involved the examples addressed in the

literature. These examples can be applied to our mapping algorithms and the

corresponding results showed that the heuristic mapping algorithm is a good methodol-

ogy. In the second experiment, hundreds of random graphs with different ratios of

computation time/communication time were generated for test examples. The test result

showed that the heuristic algorithm provides optimal mapping when the ratio of com-

putation time/communication time is large (>10) or small (<0.1). The worst test case

occurred when the computation time is approximately equal to the communication

time, wherein the heuristic algorithm provides optimal mapping in only 75% of the test

cases. The pair-wise exchange algorithm provided optimal mapping in over 95% for

almost all values of of computation time/communication time. In the third experiment,

the mapping of a tree-structured weapon target assignment problem was considered.

The service demands and amount of data transmitted among tasks were related to

number of clusters, number of weapons, number of targets, and fire control complexity

(a). The range of a in [1,5] together with the range of number of clusters in [1,7]

were studied in this experiment. The results showed that unless the fire control com-

plexity parameter, a, is less than or equal to four, it will not satisfy the real-time

requirements of boost-phase WTA/TS. The percent of optimal mapping provided by

the heuristic algorithm was 100% in these 35 runs. The last experiment involved the

multi-tracker algorithm for multitarget tracking. In this experiment, the granularity of a

task size and the selection of a computer architecture for the multi-target tracker prob-

lem were studied. The results showed that the critical path (confirmed path) dominates

most of the computation time and, hence, the size of granularity for a task on the criti-

cal path and an appropriate computer architecture should be carefully selected in order

-71 -

to achieve the maximum speedup for the multi-tracker algorithm.

- 72 -

SECTION 5 CONCLUSIONS AND FUTURE RESEARCH WORK

5.1 CONCLUSIONS

In this report, we formulated the mapping problem as one of characterizing a

BMIC3 algorithm and the multi-processor architecture as graphs and of assigning and

sequencing the nodes of the algorithm graph to the processor graph to minimize the

completion time of the algorithm, subject to reliability, storage, and security con-

straints. The formulation explicitly considered precedence constraints, inter-task com-

munication, security, storage, and reliability constraints. In addition, the processors are

assumed to be uniform with different service rates and link capacities. A directed,

acyclic task graph is used to denote an application algorithm whereas an undirected

processor graph is used to denote multi-processor computer architecture.

The mapping problem is NP-complete, i.e., the memory and computational

requirements of an optimal solution becomes intractable as the number of tasks and the

number of processors becomes large. Therefore, all practical algorithms incorporate

heuristics. In section 3, we derived four mapping algorithms viz., heuristic, pair-wise

exchange, optimal (A*), and A, mapping algorithms. The key mapping equations that

describe the evolution of completion time as a function of mapping are also derived in

this section. These equations form the basis of all four mapping algorithms. The

heuristic algorithm consists of two stages. The first stage employs the critical path

method to determine task execution order while the second stage sequentially allocates

the tasks from the ordered list to minimize the completion time. The pairwise

exchange algorithm improves the performance of the heuristic algorithm by iteratively

exchanging the order of elements in the priority list, without violating precedence

constraints. Since the heuristic and pair-wise exchange algorithms do not guarantee an

optimal solution, we developed an optimal (A*) algorithm. The A* algorithm searches

for the optimal solution from a decision tree. This tree is created by considering all

- 73 -

possible sequencing orders of execution and allocations. A path starting from the root

node and ending at the goal node corresponds to the optimal mapping and the task

sequencing at each processor. The completion time of the terminal task at the goal

node is also the optimal completion time of the algorithm. In order to improve the

search strategy of A* algorithm, the optimality criterion is relaxed in the development

of the A; algorithm. The A; is e-admissible, i.e., it always finds a solution with com-

pletion time that does not exceed the minimum completion time by more than (l+e).

The algorithms are extensively tested via a set of four computational experiments

in section 4. Experiment I was made up of hypothetical examples taken from the

literature. Experiment 2 was concerned with the performance assessment of the heuris-

tic and pair-wise exchange algorithms on random graphs. The test results showed that

the performance depends on the ratio of computation time/communication time. The

worst case performance of the heuristic and pair-wise exchange algorithms occurs

when the computation time is approximately equal to the communication time. It was

observed that the heuristic algorithm provides optimal mapping in 75% of the test

cases and the pair-wise exchange algorithm provides optimal mapping in over 85% of

the test cases in this case. When the ratio of computation time/ communication time is

high or low (_ 10 or 0.1), the heuristic and pair-wise exchange algorithms provide

optimal mapping in almost 100% of the test cases. Experiment 3 was related to the

application of the mapping algorithm to WTAiTS problem arising in the boost-phase

battle management. This problem can be decomposed into a 4-level optimization prob-

lem. The task graph constructed according to the 4-level optimization problem results

in a tree-structured graph. We varied the number of clusters in the range [1,7] and the

computational order of fire-control sequencing algorithm in the range [1,5]. We found

that the order of fire control sequencing algorithm should be less than or equal to 4.

Otherwise, it will not meet the real-time requirements of the boost-phase BM/C 3 . In

experiment 4 we applied the mapping strategy to a multi-target tracking problem. It

- 74 -

was observed that the completion time of the multi-target tracking algorithm is limited

to the critical path of the task graph in some test cases. In order to maximize speed

up, the granularity of a task should be carefully selected because inappropriate decom-

position of a task may cause additional communication problems. Furthermore, we

also discussed the issues of selecting a computer architecture for the multi-target track-

ing algorithm in this section.

5.2 FUTURE RESEARCH WORK

The future work involves: (1) quasi-static task allocation, (2) dynamic task alloca-

tion, and (3) task partitioning. The problem considered in this report was restricted to

static task allocation problem, where the task graph G,(V, , E,) and the processor graph

G.(Vp ,E.) are time-invariant. The quasi-static task allocation problem is concerned

with the mapping of a sequence of task graphs G,(V, , ., , .. tt, ti ... t) onto a

sequence of processor graphs GP(V, , E. , to , t_ , tj ,.. t'). The task graph may

change due to the completion of existing tasks or arrival of new tasks. The processor

graph may change due to the failures, and/or recovery of processors and/or communi-

catlon links. However, in a given time interval (i1_ , ti), i=l .., n, the task graph

G,(V, ,E,) and the processor graph G,(Vr , E,) are stationary. This problem can be

solved by solving a sequence of static mapping problems in intervals

(t , t.) , (tI , t2) ...(t , t)...(, 1 , t), while taking into account migration delays.

The dynamic task allocation problem involves the mapping of a task graph

G,(V, , E, . t) onto a processor graph G,(V; , Et, , t) where task and processor graphs are

time varying. The time varying feature of the processor graph is associated with

automatic fault-detection, isolation, and reconfiguration strategies. To solve this prob-

lem, we must consider the effects of current mapping decisions at time t on all future

assignments and processor configurations. This multi-stage optimization problem can

be approached via approximate dynamic programming.

- 75 -

Task partitioning is related to the granularity of tasks and domain decomposition.

The partitioning of a task into several parallel subtasks may increase or decrease the

speed up of an algorithm due to the parallelism and the communication among those

subtasks. The best task partitioning should provide us a task graph that maximizes the

speedup on a given computer architecture.

- 76 -

APPENDIX A

A.1 MAPPER USER INTERFACE

MAPPER is an interactive graphical environment to analyse task allocation in

multiprocessor systems. It is a design tool which allows the user to evaluate alternative

partitioning and mapping strategies onto various computer architectures in a sys-

tematic, intutive and interactive manner.

MAPPER is a user-friendly package. The user sketches the task graph (computa-

tional flow graph - CFG) and the processor graph (computational resource graph -

CRG) using the mouse. Then, the user can configure the program, by selecting

appropriate alogrithms and perform the mapping of CFG onto the CRG. The

MAPPER displays the results in the form of a Gantt chart along with other perfor-

mance measures (speed-up, completion time and processor utilization).

MAPPER is hosted on the SUN workstation and can be executed in Suntools

environment. The user interface for the MAPPER conforms to any suntools application

program (iconedit, mailtool etc.).

A.2 DESCRIPTION

MAPPER is a flexible design environment that allows the user to switch back and

forth through different functions. Specifically the program has backtracking and editing

c¢pabiliesthereby allowing the user to fine-tune a particular problem rapidly without

having to leave the environment.

MAPPER is like any suntool application. It is made up of six overlapping windows.

1. Main Command window.

2. Task graph window.

3. Proces:;or graph window'.

., Algorithm s-'ctor " ' ,,!!1,Jo)

-77 -

2 2 3 1

3 1 H

2 8 .82
18

4 3 6.88

1.89

ot Como.utatloo Flow Graph (7alk Graph).
2 ,,~ Co,'out t on Resource Graph'

3 R~n Program.
E.It

^hool* 1. 2 , 3. rd
Itsn~5 c.'e"duao r's,0t.rqtol I lpr_______________________________

FIGURE A-1: A SCREEN ENCOUNTERED IN A TYPICAL MAPPER WORK SESSION

- 78 -

5. C-shell.

6. Results window.

A typical screen encountered in a MAPPER session is shown fig. A-i. The figure

shows the Task Graph window, the top part of the Processor graph window, part of the

C-shell and the Results window in the foreground.

The MAPPER works as follows. After invoking the program the user clicks on

the main selction panel to open the task graph window. The task graph can then be

drawn on the screen using the mouse. The data-entry window pops up automatically

whenever a node or a link data is required. The task graph window has editing features

(add nodes, links; delete nodes, modify numerical data, destroy the whole graph). The

processor graph window is functionally identical to the window described above except

that the user has a choice of either opening this window in a bus-architecture or a link

architecture mode.

The main selection has LOAD/SAVE features for both the graph windows. This

feature is particularly useful to create a library of processor graphs. Standard architec-

tures can be loaded when required instead of having to draw them each time the pro-

gram is used.

The algorithm selector window configures the mapping algorithms to operate in

the "with constarints mode" or the "without constraints mode". After the selection is

made, the user can specify the algorithm to be ued to perform the task allocation.

MAPPER computes the task allocation and presents the results in the C-shell window.

The visual display can be invoked by clicking on the main selection panel. The

final result is displayed as Gantt chart for each processor with the relevant perfor-

mance measures.

The user can cycle through the stages described above interactively. This couplcd

with th- editing ",-atures allows the user to compare, analyse and evaluate the mapping

- 79 -

by incrementally modifying CRGs, CFGs or by using different mapping algorithms.

A.3 SOFTWARE DESCRIPTION

MAPPER is written as a two-level program.

1. Mathematical algorithms

2. Graphical interface.

The mathematical algorithms consist of Heuristic, pair-wise exchange, A-star and

approximate A-star mapping algorithms and are implemented in FORTRAN. These

algorithms can operate independently of the graphical interface with a keyboard-screen

based I/O or input through ASCII datafiles. This algorithm program forms the basis of

MAPPER.

The graphical interface is a Sunview based graphical shell written in C. The

graphical program enables the user to access the mathematical algorithms in an interac-

tive mode. Instead of inputting the data in numerical format, the user can draw the

CRG and the CFG. The interface converts these drawings into an ASCII datafile,

which is read by the FORTRAN program. Similarly the result file from the algorithm

program is read by the graphics program and converted into graphical results. The

graphical program also serves to make the whole package into an environment where

the user can work interactively.

- 80 -

APPENDIX B

USER'S MANUAL:

MAPPER is a mouse-driven, window based suntool application. The reader of thi

appendix is assumed to have working knowledge of any suntool application like

Dbxtool or Iconedit etc.

Section B. 1 describles the compilation procedure for the source code. This would

be required only if the source code is modified. Section B.2 desribes theusage of the

program including the definition and function of all the panel buttons.

B. 1 COMPILATION

The source code can be compiled as follows,

cc -o mapper mapper.c -Isunwindow -lsuntool -Ipixrect -lm

B.2 PROGRAM DESCRIPTION

Run the program from suntools by typing mapper.

Make sure that the algorithms program "alloc.out" is in your directory.

Associated with each screen is a panel displaying choice buttons. The user can

activate a particular function by clicking on the corresponding choice button.

Choice Button functions: a) Main selection window:

1. TASK-GRAPH: Clicking on this button opens the task graph (CFG) win-

dow. The graph can be drawn on this canvas-window. The edit, delete and

draw button acivate the respective modes of mouse operations. QUIT closes

the window and CLEAR destroys the window and the data associated with

it.

2. PROCESSOR-GRAPH LINKS: opens the processor graph window. This

window is to be used to draw message passing architectures. The functions

are identical to those of Task graph window.

-81 -

3. PROCESSOR-GRAPH BUS: is a similar window used to draw bus-

architectures.

4. RUN: generates the files required for the algorithm program and displays the

algorithm selection panel.

5. DISPLAY: clicking on this opens the display window and displays the

mapping results. This window should be opened after the mapping program

alloc.out has terminated.

6. SAVE CRG/ save CFG: saves the CRG/CFG screens and the data. Make

sure that you enter the CRG filename and CFG filname before invoking this

function.

7. LOAD CRG/ LOAD CFG: performs the corresponding retrieval of the CRG

and the CFG screens/data from the named files.

8. QUIT: destroys all the windows and exits to suntools. All data is lost if not

saved prior to QUIT.

The main selection panel and the algorithm selection panel are shown in fig. B-1.

B.3 DRAWING GRAPHS:

The procedure to draw the task graph and the processor graph is similar.

On entering the particular window (task, processor) make sure that the draw but-

ton is highlighted that is you are in the draw/add mode.

Clicking the MIDDLE button of the mouse draws a node (circle) at the mouse-

pointer. The data-entry window pops up. The user has to enter data and click on OK

before proceeding.

After drawing more than two nodes a link can be drawn by clicking on the LEFT

button at the two nodes to be linked. Enter the data as usual and close the data win-

dow by clicking OK.

-82 -

o2 withou~It conrit

(Oapprox setoc:

ougstsaswir)Wd: cre
aceendumo I resfit~lertoI I ipr -V

FIGURE B-1: M4AIN SELECTION WINDOW, ALGORI'HM

SELECTON PANEL AND C-SHELL

- 83 -

EDIT mode is meant to modify data associated with tither a node or a link. On

entering this mode (highlight edit button by clicking on it), click the MIDDLE button

at a node. The data entry window pops up. Modify required entries and close the pop-

up window. Clicking the LEFT button at two nodes will make the data-entry window

associated with that link to pop-up. Modify entry and close the pop-up window.

The data entry window for the task node is shown in fig B-2 and for the proces-

sor node in fig B-3.

DELETE mode is used for modifying the graph by deleting nodes. After entering

this mode (by clicking on delete), clicking the MIDDLE button at a node results in the

deletion of that node and the links associated with it. The node indices are renum-

bered.

ALGORITHM SELECTION PANEL: This panel allows the user to select the

mapping algorithm (with or without constraints)and finally execute it by clicking OK.

The C-shell window allows access to UNIX commands without having to leave

the environment. The way to invoke other suntool applications while in MAPPER is to

run the other application as a background process. For example to invoke the text edi-

tor type "texteditor &" in the C-shell window. The editor will be overlayed over the

MAPPER window.

The screendump (hardcopy of the screen) can be made by entering the follwoing

command in the C-shell. (note: make sure that the screen does not change during this

process)

screendump I rasfilter8tol I lpr -v

-84 -

CFG file.,amo PROCESSOR GRAPH
CRG filename:. * acreate *.dlt (Odelets CM7
IASK GRAPH

2create jedit Odelotil rc=a =u

sericedemnd I .86OO

199

FIGURE B-2: TASK NODE ENTRY WINDOW

-85 -

CFG fh?.~maoo PRMCSSOR GRAPH
CRG fioae 93aes.to M.dit Odeloe. ~ Q

TASK GPAPM

Zcroate Bodit Odohete t-T-ar

IMod
2.N~sp:

181 186y .090

FIGURE B-3: PROCESSOR DATA ENTRY WINDOW

- 86-

REFERENCES

Agrawal, D. P., Janakiram, V. K., and Pathak, G. C., "Evaluating the Performance

of Multicomputer Configurations," IEEE Computer, Vol. 19, No. 5, May 1986,

pp. 23-37.

Bokhari, S. H., "On the Mapping Problem," IEEE Trans. Computer, Vol. C-30,

Mar. 1981, pp. 207-214.

Bokhari, S. H., "A Shortest Tree Algorithm for Optimal Assignments across

Space and Time in a Distributed Processor System," IEEE Trans. Software Eng.,

Vol. SE-7, No. 6, Nov. 1981, pp. 583-589.

Chu, W. W., Holloway, L. J., Lan, M. T., and Efe, Kemal, "Task Allocation in

Distributed Data Processing," IEEE Computer, Nov. 1980, pp. 57-69.

Chu, W. W., "Optimal File Allocation in a Multiple Computing System," IEEE

Trans. Computers, Vol. C- 18, Oct. 1969, pp. 885-889.

Chu W. W.,and Lan, L. M-T, "Task Allocation and Precedence Relations for

Distributed Real-time Systems," IEEE Trans. on Computers, Vol. C-36, No. 6,

June 1987, pp. 667-679.

Coffeman, E., Garey, M., and Johnson, D., "An Application of Bin-packing to

Multi-processor Scheduling," SIAM Computing, Vol. 7, No. 1, 1978, pp. 1-17.

Cook, S. A., "The Complexity of Theorem-proving Procedures," Proceeding of

the Third ACM Symposium on Theory of Computing, 1971, pp. 15 1-158.

Ford, L. R., Jr., and Fu'kerson, D. R., "Flows in Networks," Princeton University

Press, 1962.

Frenk J. G. B., and Rinnooy Kan, A. H. G., "The Asymptotic Optimality of the

LPT Rule," Math. Oper. Res., Vol. 12, No. 2, May 1987.

Garey, R. M. and Johnson, D. S., "Computers and Intractability," W. H. Free-

man Co., San Francisco, 1979.

- 87 -

Graham, "Bounds on Timing Anomalies," SIAM J. on Applied Math., 17 (2), pp.

416-429, 1969.

Horowitz, E. and Sahni, S., "Fundamentals of Computer Algorithms," 1978.

Horowitz, E. and Sahni, S., "Exact and Approximate Algorithms for Scheduling

Nonidentical Processors," Journal of ACM, Vol. 23, No. 2, April 1976, pp. 317-

327.

Hu, T. C., "Parellel Sequencing and Assembly Line Problem," Operations

Research, Vol. 9, Nov. 1961, pp. 841-848.

Karp, R., "Reducibility among Combinatorial Problems," Complexity of Computer

Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York,

1972, pp. 85-104.

Kasahara, H. and Narita, S., "Practical Multiprocessor Scheduling Algorithms for

Efficient Parallel Processing," IEEE Trans. Computers, Vol. C-33, No. 11, Nov.

1984, pp. 1023-1029.

Kohler, W. H., "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Trans. Computers, Vol. 24,

1975, pp. 1235-1238.

Korn, J., Papastavrou, J., James, R. M., and Pattipati, K. R., "Coordinated

Many-on-Many Weapon Assignment Algorithms," TR-306, Alphatech, Inc., Bur-

lington MA, Sept. 1986.

Kurien, T., Allen, T. G., Washburn, R. B., and Jr., "Parallelism in Multi-target

Tracking and Adaption to Multi-processor Architectures," Proceedings of the 9"

MIT/ONR Workshop on C3 Systems, December, 1986, pp. 45-51.

Lavenberg, S. S., "Computer Performance Modeling Handbook," Academic Press,

Inc., 1983.

Lee, S. Y. and Aggarwal, J. K., "A Mapping Strategy for Parallel Processing,"

- 88 -

IEEE Transactions on Computers, Vol. C-36, No. 4, April 1987, pp. 433-442.

Loulou, R., "Tight Bounds and Probabilistic Analysis of Two Heuristics for Paral-

lel Processor Scheduling," Math. Oper. Res., Vol 9, 1984, pp. 142-150.

Ma, P., "A Model to Solve Timing-critical Application Problems in Distributed

Computer Systems," IEEE Computer, Vol. 17, No.1, Jan. 1984, pp. 62-68.

Ma, P., Lee, E., and Tsuchiya, M., "A Task Allocation Model for Distributed

Computing Systems," IEEE Trans. Computers, Vol. C-31, No.1, Jan. 1982, pp.

41-47.

Nillson, N., "Principles of Artificial Intelligence," Pato Alto, Calif. Tiogo, 1980.

Pattipati, K. R., Kastner, M. P., Dunham, S. R., Teele, J. L., Decker,J. C.,

"Fault-tolerant Computer Architecture Modeling and Analysis," TR-305,

ALPHATECH, Inc., November, i986.

Pearl, J., "Heuristics," Addison-Wesley, 1984.

Polychronnopoulos, C. D. and Banerjee, U., "Processor Allocation for Horizontal

and Vertical Parallelism and Related Speedup Bounds," IEEE Transactions on

Computers, Vol. C-36, No. 4, April 1987, pp. 410-420.

Sahni, S. K., "Algorithms for Scheduling Independent Tasks," Journal of ACM,

Vol. 23, No. 1, Jan. 1976, pp. 116-127.

Sethi, R., "Scheduling Graphs on Two Processors," SIAM J. Computing, Vol. 5,

1975, pp. 73-82.

Shen, C. C. and Tsai, W. H., "A Graph Matching Approach to Optimal Task

Assignment in Distributed Computing System Using a Minmax Criterion," IEEE

Trans. Computers, Vol. C-34, No. 3, Mar. 1985, pp. 197-203.

Stone, H. S., "Multiprocessor Scheduling with the Aid of Network Flow Algo-

rithms," IEEE Trans. Software Eng., Vol. SE-3, No. 1, Jan. 1977, pp. 85-93.

- 89 -

Syslo, M. M., Deo N., and Kowalik, J. S., "Discrete Optimization Algorithms

with Pascal Programs," Prentice Hall, Englewood Cliffs, NJ, 1983.

Ullman, J. D., "Polynomial Complete Scheduling Algorithms," Journal of Com-

puter Science, Vol. 10., No. 3, Jan. 1975, pp. 384-393.

MISSION
Of

Rome Air Development Center

RADC plans and executes research, development, test and selected
acquisition programs in support of Command, Control, Communicationts

and Intelligence (dl) activities. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of &I systems. The areas

* of technical competence include communications, command and control,

battle management, information processing, surveillance sensors,

* intelligence data collection and handling, solid state sciences,

electromagnetics, and propagation, and electronic, maintainability, and

_* compatibility.

