AD"'AZO?’ 875 ORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS . .
7 oo

)

2e. SECURITY CLASSIFICATION AUTHORITY 3. CISTRIBUTION/AVAILABILITY OF REPORTY

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITQORING ORGANIZATION REPORT NUMBER(S)

~y
APOSR-TR. 89~V 617
6s. NAME OF PERFORMING ORGANIZATION 0. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(1f applicadle)
Un. v © P P‘\HS SHC_j\;\;g‘Hs Air Force Office of Scientic Research
6¢c. AOORESS (City. State and ZIP Code) 7b. ADORESS (City, State and ZIP Code)
7

Conpaden s Tatoamatien Scien e, Péuild ing 410
’ olling AFB, DC 20332 448
Poneest, MA CICO> 8

8s. NAME OF FUNDING/SPONSQRING 8b. OFFICE SYMB80L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabie)
AFOSR ks AFOSE - & - GO

8¢c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. .

: : PROGRAM PROJECT TASK WORK UNIT
Building 410 . ELEMENT NO. NO. NO. NO.
Bolling AFB, DC 20332-6448

11. TITLE (Inciude Security Clanlﬂcanon‘;ke(og./, 1, vg 3D Ocyectstrom 61102F 230 ¢! 277
-~ — n ,
D 2naccy Usine .F/rac/z.r.-o/ e /|’o/,x< Brtscod (Fere 1o [

12. PERSONAL AUTHORIS)
Allen R V\awson
13a TYPE OF REPQAT 13b. TIME COVERED 14, OATE OF RERORAT (Y7, Mo., Day) 1%, PAGE COUNT

\TNHL FROMZUC*&S 'ro"SI/’u;-."fAH

16. SUPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERAMS (Continue on reverse if necessary and identify by block number)
FIELD GRAOUP SUB. GR. .

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Model-based object recognition is an essential task for mobile robotics and assembly.
Given an image of a scene containing one or more objects from unknown viewpoints, the
goal is to efficiently recognize those objects for which there is sufficient evidence. At the
University of Massachusetts, we are developing a model-based object recognition system
which is capable of recognizing objects from a large data base of models and from arbitrary

viewpoints. DT ‘ C

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT T2+ ~8STRACT SECURITY CLASSIFICATIO q\) E

UNCLASSIFIED/UNLIMITED D SAME AS APT. G OTIC USERS : UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIOUAL 220 TELEPHONE NUMBER

tinclude Area Code/
De AGanham Cirmaen (202) 767- 297

DD FORM 1473, 83 APR €DITION OF 1 JAN 73 1S OBSOLETE.
~ o188
R

Final Technical Report

for the period 10/1/85 - 8/31/88
Grant Number: AFOSR-86-0021
submitted by
Principai Investigator: ~ Allen R. Hanson g
Co-Principal Investigator: LEdward M. Riseman ;
Computer and Information Science Department

University of Massachusetts
Ambherst, Massachusetts 01003

L5 3-866

Accession For

NTIS GRA&I E
DTIC TAB

Unannounced 0
Justification —

BY.
‘Distribq}{oni*_r
Availability Codes
Avail and/or
Dist Special —

Al

1. Overview

Model-based object recognition is an essential task for mobile robotics and assembly.
Given an image of a scene containing one or more objects from unknown viewpoints, the
goal is to efficiently recognize those objects for which there is sufficient evidence. At the
University of Massachusetts, we are developing a model-based object recognition system
which is capable of recognizing objects from a large data base of models and from arbitrary
viewpoints.

The first part of the recognition problem is extracting useful data from an image. If
one has a scene with controlled lighting or only a few types of objects, then this is easily
solved [LOWS85,HUT87]. However, in the domain of natural scenes, this is a much more
difficult problem and requires more sophisticated algorithms even to extract straight lines.
In Section 2. of this report, we present the results of an algorithm for extracting straight
lines. This algorithm demonstrates how the principles of perceptual organization can be
used to reduce the computation involved in this process.

The second part of the recognition problem is the acquisition and representation of
three-dimensional models. Only a small part of that problem is dealt with here. In Sec-
tion 3. we present a inathematical formulation of the problem of reconstructing a curved
surface from multiple views with known camera motion. An important issue in the rep-
resentation of objects is the relationship between different views of the same object. In
Section 4. we present a discussion of the construction of the viewing sphere of generic
views, which is the dual of the aspect graph [KOE76,G1G88,BOWS88|, for smooth surfaces.
In future work, we hope to combine the two ideas to produce a view sphere representation
of an object directly from a sequence of multiple views.

The third part of the recognition problem is reducing the complexity of the matching
process. For many applications, the number of objects could range from 100 - 1000, and
the number of distinct views for each object could range from 10 - 100; thus, we could be
faced with 1K - 100K different object views. This requires that the recognition process and
the representation be very efficient. This type of efficiency in processing can be achieved
by using the image features or tokens as an index into the model base to retrieve the most
likely candidates. In Section 5., an analysis of generic views or aspect graphs is used to
construct a prediction hierarchy which provides this index. Hypothesis generation using
the index is followed by a verification process in which the position and orientation of each
object is computed more precisely, and a more complete matching between model and data
is obtained.

2. Extraction of straight lines

This section presents a computational approach to the extraction of straight lines based
on the principles of perceptual organization. In particular we consider how local informa-
tion that is spatially distributed can be organized into large scale geometric structure in
a computationally efficient manner. Symbolic tokens representing line segments, and rela-
tions which are primarily geometric in nature, are used to control a iierarchical grouping
process. The relational measures on pairs of lines are based on collinearity, proximity, and
similarity in contrast.

The algorithm is implemented within a local, parallel, hierarchical framework for sym-
bolic grouping that involves a cycle of linking, optimization, and replacement steps. The
initial line segments are generated via gradients at the position of zero-crossing contours of
a Laplacian operator. The local linking process forms a line graph of tokens by applying a
set of relational constraints, to the line tokens in a neighborhood around each line token.
By controlling the constraints, the number of lines that must be examined as possible ex-
tensions of the given line can be filtered down to a much smaller number. The optimization
process uses a least-squares error measure to select the best straight line fit through all
sequences in a link graph of the remaining candidates. If the best line fit has sufficiently
low error, the participating tokens are used to form a new token in the replacement step.

As the grouping cycle proceeds, shorter line tokens are aggregated into longer line
tokens, creating a hierarchy of levels based on scale. Selection of appropriate values for
parameters in the grouping process are examined with respect to computational efficiency
and empirical analysis. Experimental results on a variety of natural scene images demon-
strate effectiveness of the filtering and optimization stages in the extraction of straight
lines. Issues in the development of a more general framework for symbolic grouping are
also discussed.

2.1 Introduction

It is clear that not all processing is or should be directly related to three-dimensional
interpretation. If early stages of two-dimensional processing are capable of producing sym-
bolic descriptors that are usable by higher level processes, a great deal of flexibility will
be gained in dealing with difficult problems in vision. In addition. there are varving goals
in visual perception. In navigation, one needs to know where objects are in space. not
necessarily what they are. However, for recognition, the case may be reversed; the viewer
usuaily does not need to know how far away each part of an object is to recognize it.
Moreover, the human visual system has no difficult in dealing with both tasks simultane-
ously. This suggests that it should be possible to use symbolic grouping mechanisms for
two-dimensional processing without the necessity of first constructing a three-dimensional
representation of the data.

This study seeks to bring together themes in intermediate level vision for the effective
extraction of a straight line representation of an image. While the principles of percep-

tual organization were described by Wertheimer[WER23] and have been discussed with
respect to computer vision|[LOW85,MAR82,R0S86], their importance has not been widely
recognized and employed. In particular, the ideas have not been fully translated into a
computational model. Our goal is to transform the Gestalt laws of perception into a com-
putational framework which supports the symbolic grouping of line tokens in a robust and
efficient manner.

An alternative view of the research presented here is that of an optimization process for
fitting long straight lines to subsets of short lines. Since the set of lines in an image is very
large — initially equal to the number of candidate short edges at the beginning of the process
~ the number of interesting candidate subsets that must be examined for global line fits is
impossibly large. The role of the grouping mechanisms is to apply geometric constraints
as filters and focus the optimization process on a small number of interesting candidates in
a hierarchical manner, in order to make the approach computationally feasible. From this
view, the evaluation of the grouping criteria should be based on the degree of efficiency
and the error of fit in the lines that are found (i.e. how close the grouped lines are to the
“best” straight lines that are extractable).

The algorithm that we develop in this paper will have the following processing char-
acteristics: it will be a locally parallel algorithm operating on a hierarchy of geometric
symbols, or tokens, that are associated with two dimensional image events. Groups of to-
kens at some level L in the hierarchy will be replaced by a single token at level L + 1, where
a level in the hierarchy corresponds to an iteration of the grouping process. The Gestalt
laws suggest relational constraints which can be used as filters in the search for groups
of line tokens that are likely candidates to form a longer straight line. These constraints
rely heavily on geometric relationships among tokens and are based on the computation of
relational measures, such as difference of orientation or percent of spatial overlap of pairs
of tokens. Repeated grouping leads to the description of image tokens at multiple scales.
Note that our use of the term “scale” differs from that of Witkin[WIT83!, where scale
was related to the size of the Gaussian function used to smooth an image. Here, we view
scale as the size of the area in the image which is being represented by each token. These
two notions of scale are independent; the former being related to the frequency spectrum,
while the latter can be described as symbolic. Stevens and Brooks [STE87] have presented
evidence from perceptual grouping of texture that symbolic grouping of discrete tokens
plays a significant role in human visual perception.

The idea of grouping line segments is not new. Nevatia and Babu INEV80! have
reported criteria for grouping edges; however, they only applied it locally and they did not
take into account more global context. Their system used thresholding and thinning to
reduce the number of edge pixels, then adjacent edge pixels were linked based on orientation
and location with respect to each edge pixel. (‘hains of a fixed length were approximated
by straight lines.

In the SCERPO system, Lowe[LOWS85.LOWB83| has used grouping to find collinear and
parallel lines for matching. He has tried to deal with the problem of how to determine
which scales contain the information needed to solve a specific problem. For example, if

one has a description of some objects which might be in a scene, and one does not know a
priori how large the objects are in the image, how can one determine at which scale to look
for evidence for those objects which are present? In his papers, he analyzes the problem of
segmenting a curve into straight and circular line segments. The solution he proposes is a
measure of meaningfulness based on probability. Events are considered meaningful if they
have a low probability of occurring when the scene does not contain the desired objects
and a high probability when they do. In the case of points lying on a curve, the former
probability is based on the assumption that edge points which do not lie on the same
straight or curved line will be distributed uniformnly in the image. Since this assumption
often will be violated in some cases, it might be possible to find a weaker assumption which
would still permit a mnathematical formulation.

McKeown and Pane [MCK85] have also devised rules which are similar to ours and
have applied them to the problem of linking elongated regions. They use the criteria that
regions a) must be close; b) must not overlap too much; ¢) must have similar orientations,
and d) must have small lateral distance. Thus, they implement the rules of collinearity
and proximity. A major difference between their approach and ours, however, is that while
they used the size of each region to determine its context, they do not use a hierarchy.
In addition. there is strong basis for the conjecture that region tokens are not as reliably
extracted with respect to the placement of their boundary, and therefore may not be as
effective in the grouping process.

Rosenfeld [ROS86) has described how many of the principles of perceptual organization
can be used by pyramid-based algorithms in order to achieve a hierarchical implementation.
In particular, Hong, Shneier, Hartley, and Rosenfeld [HONS83} describe such an implemen-
tation of a pyramid-based algorithm for grouping line segments. The single criterion used
by their algorithm for grouping lines, which are in adjacent cells in any level of the pyra-
mid, is that they have similar orientation. This differs from our algorithm in which a more
detailed analysis of collinearity and proximity is used.

It should also be noted that the grouping algorithm developed here fits within many
different larger frameworks for image interpretation. For example, the VISIONS sys-
tem at the University of Massachusetts is a general system for knowledge-based scene
interpretation[DRA89,HAN87,RIS86]. This leads to a three-level abstraction hierarchy as
the underlying conceptual model for image interpretation: the low (pixel) level, interme-
diate (token) level, and high (object hypothesis/knowledge) level. The construction and
grouping of tokens described here is part of the intermediate level of symbolic processing.

Section 2.2 of this paper discusses computational considerations in the development
of a symbolic line grouping process. We examine issues related to the use of symbols.
hierarchical processing, and efficiency. In Section 2.3 the algorithm for symbolic hierarchi-
cal grouping of line tokens is developed using relational constraints (primarily geometric)
between line tokens. Section 2.4 presents experimental results demonstraiing the effec-
tiveness of the algorithm in extracting straight lines, including long low-contrast lines. In
Section 2.5 we discuss how the computational framework can be generalized into symbolic
grouping of more complex and ahstract geometric structures.

Wt

2.2 Computational Issues for Symbolic Line Grouping

In this section we seek to motivate the general computational framework within which
our line grouping algorithm has been implemented. In particular, we must consider how
local information that is spatially distributed can be organized into large scale geometric
structure in a computationally efficient manner.

There is a gap in representation and in spatial scale between pixels at the low-level
and semantic contexts at the high level. A symbolic processing framework provides a
geometric basis for the grouping of related tokens in a way that pixel-level processing
cannot accommodate. By moving to a symbolic representation a singie token can represent
information from a large number of pixels. This begins to deal with the local-global spatial
issues for relating information.

Consideration of the following issues at the low intermediate levels of visual processing
are relevant:

1. integrating local information into consistent global structure,
2. data abstraction,
3. efficient performance,

4. multiscale geometric description of image events.

2.2.1 Integrating Local Information into Consistent Global Structures

Probably the key consideration is how to achieve consistent integration of unreliable or
ambiguous information across different and possibly large parts of an image. The image
events which provide evidence for objects are often not present in contiguous pixels, and
the contextual information that is relevant can appear at an arbitrary scale. While local
processing in a small neighborhood is necessary as the starting point, it is not sufficient.
Figure la-d shows some examples of distributed image events that need to be integrated
into global lines. In this figure each set of events are perceived as straight lines at some
scates, but not at others. Figures la and 1b show lines that are fragmented, but which
seem continuous when viewed from a distance. Figure 1c shows lines whose directions vary,
but when viewed from a distance they are seen as straight. Figure 1d shows a sequence
of dots that are perceived as a straight line. In fact the lines on this page ire composed
of dots. In each of these cases the evidence for a straight line is not present if processing
is restricted to a small window; there are gaps or the orientations are not aligned. If we
integrate the information present in a large number of these windows which are properly
aligned with what we perceive as the line, then the evidence is very strong. The use of
geometric context facilitates the process of integrating distributed information.

2.2.2 Data Abstraction

In low-level vision, we deal with enormous amounts of data. Obviously, the informa-
tion has to be organized in such a way that the essence, or an overview, of the image
structure is available, as well as a quick access to finer levels of detail. Among the ways
of “summarizing” the data are fillering and abstraction. Filtering reduces the amount of
data, but it may also throw away important information. In particular, filtering of line
tokens via constraints on attributes [DRA89,HAN87,RIS86] only removes tokens, and it is
often necessary to create new ones which are more likely to be significant.

Abstraction is more than data reduction; it involves organizing the information in a
way that makes it more accessible for further processing. Unlike filtering, the process of
abstraction involves replacing a group of tokens by a single token, or a complex object by a
simpler one. For example, consider the following geometric description of a checkerboard:
“the smallest meaningful units are squares; those squares lie on straight lines; the lines
form a regular pattern covering a certain area.” Note the increasing scale in size and
abstraction for the descriptions, which are all valid simultaneously. They are symbolic,
based on geometric relationships. Our goal in this paper is to create a hierarchy of symbolic
structures, where each level in the hierarchy has less data than the next lower level. The
process of data abstraction can be viewed as creating more abstract descriptions of larger
scale, rather than the process of reducing the spatial resolution of an image.

The control problem for the abstraction processes is still a difficult one. In general,
there may he many possible ways to represent the information present in an aggregate of
tokens; i.e. how does one choose the ‘hest’ abstraction? Leeuwenberg has formulated a
measurement of conciseness for representations of structural information; this seems to be
related to the ease with which humans perceive groups of lines as an object [LEE78]. Such
measures may be of use in evaluating specific abstractions.

In our domain of straight lines grouping, the representation will remain constant, i.e.
a straight line token will be used throughout the abstraction process. We will employ an
optimization procedure to choose those aggregations, among competing local candidates
for line grouping, which are best via a least-squares error criterion.

2.2.3 Efficient performance

When one considers the huge amounts of sensory data which must be procesced and
the large number of potentially significant image events which need to be detected for
typical visual tasks such as navigation and object recognition, issues of computational
tractability must be considered. The process of abstraction helps because the data trans-
formation involves grouping events which can be described more concisely as a unit, so
that there are fewer items to process. However, in addition to reducing the amount of
data, the abstraction processes themselves should be efficient, although not at the expense
of generality.
Generalized Hough transform techniques are one way of performing rapid scarch and are
capable of finding certain parameterized structures (e.g. lines, rectangles or circles)[BAL82,BAL83,D

b |

However, the Hough transform is not a general solution to the problem of line token ex-
traction. It ignores the spatial and geometric context in which the primitive is embedded,
like the distance between tokens, or the location of other tokens that lie between the tokens
to be grouped. To include all the significant geometric parameters in a generalized Hough
space would increase the dimensionality beyond a feasible level.

This leads us to the question, “What is the necessary scope in the image needed to
detect ‘the whole’?” Typically, it should not be necessary to examine the entire image.
On the other hand, the local view often cannot be restricted to just a pair of tokens (e.g. a
token and a nearby neighbor). Depending on the type of grouping, the amount of context
used will depend on the complexity of the new token to be formed and the computational
resources required to examine all of the combinations within this contextual area.

What does it cost to find a new geometric structure involving a symbolic token A? The
set of tokens around A which are examined in this search is called a neighborhood. Let
us assume we want to detect the best combinations of A with its neighbors which satisfy
specific criteria. The amount of computation for blind search would increase very rapidly
with the number of tokens: if we searched in areas with n neighbors around every token
and looked for combinations of m tokens, then the amount of computation would be of
the order ('(n,m), which grows as n™. How can the search space be reduced? One option
is to reduce m, the number of tokens which compose a new structure. This can be done
by building structures hierarchically. Another option is to reduce n, the number of tokens
examined. This can be done by locally filtering the set of tokens to be searched based
on token features, or searching only in appropriate directions or areas. These constraints
can reduce the number of combinations in the neighborhood. In addition, it is possible to
process neighborhoods in parallel, considerably reducing the time.

2.2.4 Multiscale geometric description of tokens

The hierarchical line grouping algorithm that we will present in the next section deals
with the issues of local-global construction, data abstraction, and computational efficiency.
All of these issues are related to hierarchical computation which will be achieved in our
formulation by organizing the processing of line tokens along geometric scales.

The term scale refers here to a range of sizes of symbolic tokens with respect to the
entire image. Computation involving a particular token will be restricted ‘o a neighbor-
hood whose scale can depend on the goals of the process and the tokens already fonnd.
This allows the processing of tokens of different sizes to have different parameters in the
grouping process. However, it also introduces the need for combining the information at
different scales in the hierarchy. For example, the final description of our checkerboard
example discussed earlier encompasses information at many scales. (N-‘c that the concept
of size scale. as used here, is somewhat independent of the concept of abstraction scale:
the description of the checkerboard has both multiple size scales and muitiple abstraction
scales.) The integration of distributed information in the image is accomplished in our
system by performing processing sequentially at multiple scales, and restricting the pro-

d).'ooo.cooooovoooc

Figure 1: Perceptual Integration of Distributed Image Events.
Each part is a group of events which can be perceived
as a straight line at a sufficiently large scale.

cessing at each scale to the output of processing at lower scales, (although the processing
at any scale can be spatially parallel). The reason for this ordering of scales is that our
approach is both hierarchical and constructive. Note that this is in contrast to Fischler
and Bolles FIS83l. who perform an analysis using multiple scales on curves which have
already been produced. so each scale can be processed independently. Revnolds and Bev-
eridge 'REYST7! also process all scales simultaneously by defining the neighborhood of a
line to be dependent on the length of the line and refer to this relational measure as spatial

proximity.

10

2.3 Applying Token-Based Abstraction to Straight Line Group-
ing

In this section we apply the principles of intermediate-level symbolic processing just
presented to the problem of grouping lines into longer, straight lines. The need for a
multiscale description suggests a hierarchy, which when combined with a symbolic repre-
sentation. facilitates the satisfaction of the other processing requirements. For hierarchical,
symbolic processing, neighborhoods at each level have a small number of image events, thus
the search space can be kept small. At the same time the neighborhoods at higher levels
cover a large part of the image, so integration of distributed events is also achieved. Having
explained why symbolic processing or abstraction would be useful for an intermediate-level
vision system, we now describe such a system. It consists of extracted image events called
tokens, and operations on tokens called abstractions which produce new tokens.

This is demonstrated on the images of natural scenes (see Figure 6) for which standard
line extraction techniques encounter significant problems due to noise or texture, or where
edge events have low contrast. Our goal is to show that the significant straight lines in
an image can be found using a geometric grouping algorithin via token aggregation and
replacement [WEIS86,WEIS85]. The results of this straight line grouping algorithm have
been used for the interpretation of natural scenes [DRAB9].

2.3.1 Image tokens and the Grouping Process

A token is a description of a set of image events or an aggregation of other tokens.
The goal is to create line tokens corresponding to those events which can be perceived as
a umi:. There are two ways to produce line tokens. They can be generated directly from
an image, e.g. by edge operators, or they can be generated from other line tokens, e.g.
straight lines can be grouped into longer straight lines. Since tokens which have a large size
may require several steps to construct, it will be necessary to have tokens of intermediate
size as precursors.

The major component of the algorithm is the hierarchical grouping process which has
three steps that are performed at each level: linking, optimization, and replacement. The
linking stage corresponds to the generation of hypotheses which satisfy a conjunction of
binary relations and the verification of the line hypothesis using a measure of straightness.
respectivelv. The binary relations are derived from rclational measures IRISRT . which are
general functions of the attributes of a set of tokens. based upon collinearityv. proximity.
and similaritv in contrast: the specific relational measures used are described in more detail
in Section ? There are manv different decision functions which can be used to combine
the relational measures into relations. These binarv relations are used only to filter tokens
while forming a line graph of locally related token paits. and thereby focus in the search
process when replacing aggregates of tokens by new tokens. Thus, the only requirement
is that these filters reduce the search space bui do not eliminate any likely candidates for
replacement.

Straightness is based on a least-squares optimization criterion, and will be applied to
line sequences of varying length, not just to pairs of tokens. Thus, we take the following
algorithmic definition of a straight line: it is composed of a sequence of line segments in
which consecutive pairs satisfy the relations of collinearity, proximity, and similarity of
contrast; the entire sequence has the least error locally among the candidate groupings;
and the error for the best sequence is acceptably low (i.e. passes a straightness test). All
of these criteria may depend on scale; long lines, for example, can be separated by a larger
gap than small ones and still be considered close.

For estimating the straight line that best fits the data, the line which minimizes the
mean square error is used. This is not the only possible candidate. Kamgar-Parsi and
Kamgar-Parsi{fKAM87| and I. Weiss| WEI86| have found algorithms for fitting straight lines
to clusters of data points in situations where there are a significant number of outliers or the
distribution of distances from the true line is not Gaussian. While the noise in the image
intensity values is not Gaussian, the errors in edge orientation seem to be approximated
reasonably well by such a distribution. It should be noted that in our method, because the
lines are filtered before straight line estimation is done, the likelihood of outliers is very
low. In particular, since the mean square distance is especially sensitive to outliers it is a
good metric for eliminating them, which is what is done.

2.3.2 Edge Detection

The input to the grouping algorithm is a set of line tokens together with a measurement
of the average intensity contrast from one side of the line to the other. Usually this is
produced by an edge detection algorithm applied to the image. The properties which an
edge detection process should satisfy are: 1) high positional accuracy of an edge, even with
aliasing, 2) good sensitivity to high frequency data, and 3) reduction of the data (many
pixels don’t produce edge points). The last of these properties, reduction of data, can make
a significant difference in the computation time. However, it is also important that the
algorithm be sensitive to low-contrast edges, so that the usual techniques of thresholding
edges of low gradient magnitude is not acceptable except at values that are clearly down
at the level of noise.

There are many possible edge detection algorithms which could be used. The two
algorithms which we have used for selecting initial edge locations are zero crossings of
the Laplacian operator and a directional edge operator hased on the work of aralick anl
Canny [HAR84,CAN86]. Although there may he algorithms which have better performance
in some cases, these two are representative of a class of algorithms; most of them are
expected to have the same types of problems which we encounter here [DAVT5]. The
Laplacian operator was chosen because in early experiments it seemed to be the better of
the two for our purpose, although no quantitative evaluation was performed.

First, the image is convolved with a 3 x 3 mask which approximates the Laplacian:

010
1-41
010

Next, zero crossings of the Laplacian image are detected and their positions determined
by linear interpolation. A zero crossing is a zero value of the Laplacian output, and
consequently is the location of a change in sign; it typically occurs within a pixel and
consequently requires subpixel interpolation in order to determine its spatial position.
Figure 7a shows that the zero crossing contours do not consistently follow the boundaries
of objects or other identifiable parts of the image (e.g. see the house roof). The reasons
why the contours are not necessarily a reliable indicator of the direction of an edge can be
understood by looking at some of the assumptions about edges and the Laplacian operator.
In Marr’s paper [MARS2| on the use of the Laplacian, he makes the assumption that the
intensity surface is planar in a neighborhood of the edge. Even for an ideal curved intensity
step edge this assumption will be violated, and the results in real images with aliasing from
the digitization process have serious problems. On the other hand, the gradient tends to
remain perpendicular to the edge. For this reason, we use the gradient direction at each
edge point for the edge orientation; in general, this will differ from the direction of the
zero-crossing contour. Figure 7b shows the gradient information for the edges in the house
roof scene.

The location of a zero-crossing point is computed by interpolation of the values at four
pixels which form the corners of a square. The gradient at that point is also computed
by interpolation. An edge is positioned with its center at the zero-crossing point, and the
orientation of the edge is perpendicular to the gradient. Each edge can now be viewed as a
line token with a contrast (the gradient magnitude), direction, a start point, an end point,
and is defined to have a length of one pixel.

The grouping algorithm that will be presented does not require that the input edges be
completely reliable, and it has produced very good results despite the variety of problems
encountered with the Laplacian operator. These problems include saddle points of the
Laplacian and anti-edges at local minima. When a zero-crossing point is a saddle point
of the Laplacian surface, then locally the contour will consist of a pair of hyvperbolas or
a pair of lines which cross. If these saddle points have low density, then they can be
ignored. If they have high density, then a different type of grouping needs to bhe applied
because the orientation at a saddle point is ambiguous (we do not consider that here.)
Some experiments were performed in which saddle points were considered as edges with
indeterminate orientation, and there was little effect on the results. Zero crossings of the
Laplacian also occur where the gradient magnitude has a local minimum. The current
implementation does not test for these anti-edges, and therefore they remain present in
the initial edge data.

The process of acquiring an image itself can introduce artifacts which complicate the
line grouping process. Subsampling of an image, quantization effects, and the presence of

noise can result in isolated pixels which have a high contrast with respect to their neighbors.
Subsampling is especially noticeable when the pixel size of the sensor is large compared with
the spatial period corresponding to the highest frequency of the intensity variations on the
image plane. As a result of the local extrema produced by these phenomena, zero-crossing
contours surround isolated pixels and produce a point-like structure. The line grouping
algorithm presented here is not specifically designed to handle this situation, which would
require the grouping of isolated points. In addition, noise can introduce numerous local
maxima in the gradient of the intensity, producing multiple zero crossings, and hence
multiple edges parallel to the visually significant one. Many of these problems could have
been solved by smoothing with different-width Gaussian masks, which has been explored
by Witkin and others [WIT83,YUI83,MARB82| using a scale-space approach. However, as
mentioned earlier, smoothing removes details which are essential for some structures. For
example, a very thin linear structure, even if it is long, will become undetectable if high-
frequency data are filtered out. Our approach, on the other hand, is to use the geometric
context to eliminate edges (due to subsampling, noise, anti-edges, etc) which do not form
lines in the image. However, we do present some experimental results using Gaussian
smoothing to provide some insight into these issues.

2.3.3 The Hierarchical Grouping Process

Our line grouping process uses geometric and nongeometric properties at multiple scales
to form long, straight lines from shorter segments. In general, a grouping cycle consists
of three steps: linking, optimization, and replacement. In the linking step pairs of line
segments are connected in a graph data structure based on binary relations. Here, lines
that are not likely to participate in straight line fits are filtered. In the optimization step,
sequences of linked line segments are tested for straightness, and then a single line segment
may be substituted for the sequence in the replacement step.

The issue is how to avoid searching and testing all combinations of line segments within
a large area. The first part of the solution is the construction of the link graph. If there
are V lines in the area to be searched referred to as the perceptual radius then there are
2V sets of lines which could combine to form a straight line. On the other hand, if the
density of lines, d, is uniform, and r is the perceptual radius, then N = drr?® . If [is the
average line length and L is the maximum number of lines in a sequence of linked lines
inside the perceptual window, then LI~ 27 . Thus.

so L = O(x V) . If the average branching of the link graph is G. then the complexity of
the search is only G, where G is usually less than 2.

The second way to reduce the computational complexity is to limit the number of
tokens in the area being searched. This is done by processing the lines hierarchically: lines

are repeatedly grouped into longer lines, which implicitly defines a scale-space hierarchy.
The search always remains local with respect to the current scale of processing, and there
are fewer long lines over larger areas of the image.
Geometric Constraints for Linking

Linking is the first step in the grouping process and is the means by which we can re-
duce the search space by filtering the number of tokens to be examined in the subsequent
processes. The linking step consists of a search for pairs of lines that satisfy the geomet-
ric and nongeometric relations which make them candidates for grouping. The criteria
are based on relational measures: difference in orientation, difference in contrast, relative
overlap, lateral distance, and distance between endpoints. Each of these is encoded in a
heuristic function. The relational measures provide a means of comparing pairs of tokens
via a continuous variable. Threshold parameters are used to convert each of these measures
into binary relations. A link in a graph is defined from one token to the next if the pair
satisfies all of the binary relations. Note that the thresholds defining these relations can
be set loosely to avoid removing lines that might participate in the optimum straight line
fit through the given line. Thus, while appropriate setting of these parameters is an issue,
they can be set loosely with the goal of making the optimization step more efficient but
not removing the best line fit. We will discuss the parameter settings later.

The geometric relationships that have been used are collinearity and proximity, and
the nongeometric relationship is similarity of contrast. Consider a line L, = (P, P;). A
Line L, = (Q,,Q,) is linked to L, if it fulfills the following five relational constraints:

1. Linking Radius. L, must intersect the circular area whose radius is defined as the
linking radius, R;, and whose center is P, on L, (See Figure 2a). This radius should
depend on the lengths of the lines and the density of line tokens. For computational
efficiency, this test is an initial coarse filter to select nearby line candidates and is
applied during the process of retrieving lines from the data base. Thus, the other
tests are only applied to a small fraction of the lines. A more restrictive test for
proximity is performed in step 3.

2. Collinearity. The lines must be approximately collinear. This relation has compo-
nents for similarity of orientation and lateral distance between lines. a) The difference
in the orientations of the two lines must be less than a threshold (See Figure 2b).
In particular, lines which are collinear, but have opposite contrast, are 180 degrees
apart and are not linked. This condition can be relaxed to allow such lines to be
linked. b) The lateral distance between the two lines must be less than a threshold.
The lateral distance is measured as the perpendicular distance from the midpoint of
the line Ly to L, (See Figure 2c).

3. Endpoints. The endpoints must be close. The projection of @; onto L must lie
within a specified interval, which is proportional to the length of L,. (See Figure

2d).

15

4. Overlap. The lines must not overlap too much. Let Py and P, define an order on L;,
P, being before P,. If @, projects onto L, between P, and P,, then the distance from
the projection of Q1 to P, is the overlap, and must be less than a fixed percentage
of the length of L, (See Figure 2e).

5. Contrast. The contrast of the lines must be similar. The ratio of the larger contrast
to the smaller one must be less than a threshold. Alternatively, the similarity of areas
adjacent to the lines could also be used. (See Figure 2f).

The same linking process is performed for all line pairs retrieved by the first constraint
above. It is applied separately for each pair of endpoints of a given line, and obviously can
be done in parallel. The result is a global, directed graph, called the link graph, in which
the set of vertices represent all the line segments in the image at a given scale and the arcs
represent the links. (See Figure 3a). The linking process effectively reduces the number
of combinations of lines that must be examined by the optimization step, which examines
paths in this graph and tests them for straightness (see Figure 3b).

Optimization

The second step in the grouping process is the optimization step, which consists of
examining all sequences in the link graph in an attempt to find optimum straightline fits
and replacing sequences of lines which are linked by a single line. In general, we want
to look at as much evidence as is computationally feasible when determining how and
whether a straight line should be fit to the data. The amount of geometric context used
is determined by the perceptual radius, which bounds the length of a sequence of lines
that is tested for straightness using a least squares fit. One should note, however, that a
very large radius would defeat the purpose of the hierarchical grouping process which is
intended to deal with combinatorics of the problem.

Let us consider a given line token in the link graph. Each sequence of line tokens that
includes the given line is approximated by a straight line, and if the approximation is
sufficiently good, then the sequence will be replaced by a new single straight line token.
The algorithm performs the following steps:

1. Generate all paths of lines from the initial point P, and all paths from the final point
P, within the perceptual radius, including the paths of length zero.

2. Generate all paths which are combinations of paths from step 2 as follows: a path
to the initial point, the line itself, and a path from the final point. A path from one
of the endpoints can be null.

3. Fit a straight line, using the least squares method, to the set of endpoints of the indi-
vidual lines of a path from step 3, and calculate the following measure of straightness:

il

5 (n - 2)- 82

16

Linking Radius

0’ L
1
i

b)
!
3] !
L P2 """""""
|
d) L/ &_‘ Endpoint Distance
Q‘ Q,
L P2 ————— o
! }
8 T T
Q] 7),2 QOverlap
L -
() 4 2 \C’Z__‘ Contrast

) —

Figure 2: Criteria for linking (a)-(f) and grouping (g)-(h): (a) Prox-
imity: lines are linked with L, if they pass within the linking
radius R; from endpoint P,, where R, is related to the length
of L,; (b) Orientation: lines must have similar orientation;
(c) Lateral distance: lines must be close in the lateral di-
rection as measured by the distance of the midpoint of L,. |
perpendicular to the extension of L,; (d) Endpoint distance:
the endpoint P, must be close to the projection of the end-
point Q,; (e) Overlap: the lines must not overlap too much:
the distance from the projection of Q; to P; must be smnall
compared with the distance from P, to the projection of Q;;
(f) Contrast: the ratio of the contrast of L, to the contrast

17

(a)

L
L2 .__J,a Straightness

(b)

Figure 3: Replacement.(a) Link Graph: for each line there is a
candidate group of lines which are possible extensions
from each endpoint; (b) Straightness test: each sequence
of lines is tested and the straightest is selected if it passes

a threshold test.

18

where n is the number of endpoints, d; is the perpendicular distance from the i*"
endpoint to the approximating line, {; is the length of the line segment corresponding
to the i** endpoint, and s is the scale of the token, which is the distance from the
initial point of the first line segment to the final point of the last. The optimum
straight line fit on the set of endpoints of all sequences is selected.

4. If selected token sequences has an error less than a straightness threshold, replace
the set of line tokens by a new line token whose contrast is the average (weighted by
length) of those of its parts.

Replacement and Control of the Grouping Process

On each cycle, each edge or previously grouped line in the link graph is considered
for grouping and those sequences which pass the straightness test are replaced by a single
token. This is shown schematically in Figure 4. Since the grouping process is iterated
many times, some lines will begin to organize into longer lines, while some will remain
unreplaced. As new line tokens are formed, new attributes are formed with the contrast
computed as an average of its parts weighted by length. Since one would not like to
hallucinate lines, there is a requirement that a high fraction of each new line produced be
covered by the projection of the matching edges [HER84|. The coverage is computed for
each new line.

A key control issue arises if multiple representations involving the same line token are
allowed. This can arise in different ways. If the relational constraints that form the link
graph are made sufficiently loose, then it is possible that more than one path through the
graph is of interest. That is, multiple straight line fits involving the central token (around
which the link graph has been formed) could produce very different straight lines, each
of which has a low error and may be useful. Thus, multiple low-error line replacements
might be allowed if, for example, the lines have very different orientations. This could
occur when lines cross at a large relative angle.

If replacement is developed as a local parallel process around each line token, then it
would be likely that multiple line fits would involve the same token. Many would be very
similar in location and orientation since the link graph around adjacent lines would have
paths whose sequence of lines overlap considerably. Thus, token aggregations that are
replacement candidates would have to be examined for the presence of tokens in common.
The computation could become large and control become complex. C‘urrently a check is
made so that if a line is entirely contained in a l-pixel wide box around a longer line. it is
deleted.

We have implemented an algorithm where replacement of a token sequence will take
place before any other sequence that involves these tokens is considered. This can be purely
sequential. or partially parallel where disjoint subgraphs of the link graph are considered
concurrently. In these cases the order of token replacement could affect the result, but we
have not found this to be a significant issue.

The hierarchical representation

19

Figure 4: The hierarchical grouping process. Lines at the bottom
may be replaced by longer lines at the next larger scale.

The hierarchy used is very simple; it consists of levels, with the scale of the level
determined by the range of line lengths contained at that level. There are two important
reasons for using a hierarchy. First, the description of straightness is dependent on scale.
As was shown in Figure 1, a sequence of lines which is not straight at one scale can be part
of a longer sequence that passes the straightness test at a larger scale. Second, there are
computational advantages. In our implementation, the hierarchy contains multiple levels,
each representing a different scale. A level is a set of directed line segments, represented
by endpoints and ccntrasts. In the current implementation these ranges overlap, and the
linking and replacement process is repeated, thereby constructing levels of lines sequentially
from lower to higher.

The concept of scale can be described in terms of the grouping process. Edges are
computed from a 3 x 3 window in the image, and this window can be considered as a region
of support for the edge [BUR86]. As edges are linked and replaced, the new lines have a
support region which is the union of the support regions of the grouped line segments. The
diameter of the support region is the scale. The linking and perceptual radii are functions
of the scale and are multiplied by constant factors from one level of the hierarchy to the
next. The linking radius controls the retrieval of candidate lines from the data base. The
perceptual radius controls the length of sequences considered in the link graph. In order
to reduce the search computation during the linking step, each level of the hierarchy is
divided into a spatially uniform grid corresponding to the density of lines. Ideally, the
number of lines will decrease by a constant factor, since a certain fraction of aggregations
of line tokens will be replaced by single line tokens. If each line token were meiged with
another single line token during each cycle, then the number of tokens would be halved;
if at the same time the linking radius were muitiplied by the square root of two with each
cycle, the area would double and, assuming uniform density of lines, the number of tokens
to be searched would remain constant. In our experiments a multiplicative factor of 1.2
was used for the linking radii, and therefore we expect the computation to be reduced in
later cycles of grouping.

In order to take advantage of the hierarchy, it will be important to have further reduc-
tion in the number of the lines as one progresses to larger and larger scales. One might
consider removing all lines after each cycle which were not replaced; however, many of
them could be grouped in later cycles. Instead under our current grouping scheme, an
unreplaced line is copied to the next level up to four times. After that it will be deleted
for future cyvcles of grouping. As a result. lines at a single level will not all have the same
length; their lengths will lie within a range. and the ranges for different levels will overlap.
Linking Parameters and Evaluation

As noted above, there are a number of threshold parameters which are used and which.
in addition. depend on scale. The parameters that are of major concern are those associated
with thresholds on the relational measures to form relations in the linking or filtering phase.
If one filters too much, one may eliminate too many good solutions. If one doesn’t filter
enough, the computational cost will be too great.

In order to select the best parameters for this or any other algorithm, it is necessary to

21

have criteria for evaluating the resuits. Two aspects to the evaluation are the quality of the
output and the efficiency of the computation. There is often a trade-off between the two
measures, and what we have chosen is to find parameters which minimize the computation
subject to the constraint that near optimal results be obtained in the output.

In order to evaluate the results of the algorithm that is presented here, a cost function
has been defined to measure how well the resulting lines fit the initial edge data that is
extracted. We use the average of the mean-square error functions that was used in the
optimization phase, and which computes the sum of the squares of the distances between
the end points of the data edges and their projections on the line fit to the set of line
tokens. However, this cost function would be optimized by allowing no grouping of edges
and thereby achieving zero error. Therefore, in addition, a minimum number of significant
long lines must be extracted. These lines are selected by hand for each image before
the evaluation is carried out. One would expect that there will be critical values of the
linking parameters such that changing them beyond some value is inappropriate. For
example loosening a constraint might not decrease the mean-square error of the best fit
(i.e. a near optimum sequence was already included), but the computation would begin
to increase dramatically because there are so many more line tokens included in the link
graph. Conversely, tightening the constraint bevond a certain point will undoubtedly
prevent the degree of straight line grouping desired (i.e. a desired line will be fragmented).
If these critical points in varying the parameters are not identical, then values that balance
these tendencies have to be chosen. We have not defined a global cost function across these
measures, but that could certainly be done.

The parameters have been chosen so that the resulting cost function on a large variety
of images gives reasonable results that are close to optimal and a selected set of significant
lines have not been fragmented. Ordinarily one would expect that an algorithm having
a large number of parameters might be sensitive to the choice of these values and that
their variation would produce a complex behavior. However, the resulting lines from the
algorithm here are stable over a wide range of parameter values, which primarily affect
the amount of computation. We have determined with some examples that loosening the
parameters increased the computation time, but did not significantly improve the quality
of the resulting lines in terms of RMS error. For example, doubling the link radius {from
the optimal value did not change the RMS error, and only 2 out of the 290 resulting lines
were affected in a 64x64 image. On the other hand. the computation time was donbled.
Increasing the other thresholds on lateral distance. overlap. and relative orientation also
did not affect the RMS error, but increased the average branching of the link graph by a
factor of three. This means that lines were linked to three times as many other lines as
with filtering. In general, amount of computation will increase by a factor which could
be very large, depending on the length of seqquences tested for straightness as described in
Section 2.3.3.

22

2.4 Experimental Results for Hierarchical Line Grouping

The algorithm has been applied successfully to many natural scene and aerial images.
Four of these are shown in Figure 6. We illustrate the algorithm on a subimage of Figure
6a. Figure Ta shows the contours of the Laplacian zero crossings. There are several places
where the contour does not follow the boundary of the roof, but wanders off into the
texture of the roof or the texture of the trees. Figure Tb shows the initial edge segments
which are input to the grouping algorithm. Figures 8a — d show the stages of the geometric
grouping algorithm after two, four, and six cycles, as well as the final output by integrating
the results at all of the scales by only taking lines from each scale that were not grouped
at a higher scale. After the fourth cycle, the outline of the chimney is present, as are large
pieces of the boundary of the roof. After the sixth cycle, many of the shorter lines have
been dropped. Our geometric grouping algorithm performs very well on the long lines
because it integrates evidence from many parts of the image.

Restricting the algorithm to just the subimage containing the chimney, we illustrate
linking and replacement in more detail. Figures 9a and 9b show the lines after one and
two cycles, respectively, with links shown by circular arcs. In general, only pairs of lines
are merged. There are also many cases where linked lines do not pass the straightness test,
e.g. the trihedral vertex at the top. There are also cases where merged lines are able to
link with lines which were not linked at a smaller scale.

Filtering the resulting grouped lines by contrast or length is likely to retain many of the
perceptually significant lines, for example the boundaries of objects in the image. Figure
10 shows the resulting lines whose contrast is greater than 15 gray levels (out of 255); none
of the lines in the sky region are left.

As a basis for comparison, Figure 11 shows the filtered output of the Burns straight
line algorithm, which we consider to be one of the best straight line extraction algorithms
available [BURS86]. That algorithm is very successful in extracting many of the straight
lines, but some of the long ones are fragmented. This occurs because the Burns algorithm
uses a connected components algorithm to group pixels with similar gradient orientation
into an edge support region, and pixel data supporting an edge can be interrupted by
aliasing, texture on either side, or even the smallest occlusion. One of the other weaknesses
of the Burns algorithm is that the orientation of some lines is distorted because of the way
in which their position is determined. A plane is fit to the intensity surface of each edge
support region, and the support region may contain extraneous pixels. For example. if
there is surface shading perpendicular to an edge. the gradient orientation could remain
constant in the shaded and nunshaded areas, and if the shading is stronger at one end, the
line will be skewed toward the shaded area. This situation does not create a problem for
the geometric grouping algorithm because parallel edges do not influence each other and
the collinearity constraint would limit the orientation error.

Figure 12 shows the grouping algorithm appiied to the entire image of the house scene
with lines of length one pixel removed and no filtering on contrast. Removing lines which
are short or have low contrast makes it easier to examine the results as shown in Figure 13.

Lines corresponding to large parts of the entire roof boundary, telephone wires, and rain
gutters are connected. The only major problem which has been encountered is overmerging
of lines, particularly in textured areas where accidently collinear line segments occur (such
as in the lines 1n the roof of Figure 12 and Figure 13 unless the coverage constraint that
indicates the extent to which a line is supported by actual intensity variations extracted
from the image. If texture is present, then the size of the gaps and their total length
compared to the length of the replacement line become important. Thus, lines with gaps
(such as a dashed line) which are grouped into a new token will have a lower value of
coverage as the size of the gaps relative to the length of the lines increases. Figure 14
shows the effect of filtering by coverage; there is significant improvement in the textured
areas, but the problem is not eliminated. To the degree that the coverage relation is more
constraining. lines will not be formed in dense texture, but other lines will fragment.

More significantly, overgrouping is a two-dimensional problem, not a one-dimensional
one. Lines which are part of a texture pattern will have a high density of similar lines
surrounding them. but lines corresponding to a contour boundary often will not. This is
analogous to the example in Lowe and Binford [LOWS83|: groups of collinear points are
difficult to detect when they are embedded in a random distribution of points with the
same interpoint distance. Thus, the algorithm could be improved by using the density of
lines to inhibit linking when the density is high. In our implementation, the linking radius
depends on the scale, but it should also depend on the density of lines. If there is a high
density of lines with different orientations. we would only perceive a straight line if the
gaps between the fragments were very small. It is interesting to note that smoothing the
image with a Gaussian mask has the effect of removing most of the texture. This can be
seen in the roof of the house in Figure 15. Since the lines have low contrast and a high
density, when the image intensity is smoothed, the lines interact and the contrast is further
reduced. However, it is also clear in this image that significant structure is also removed
by smoothing.

We have performed a few tests to examine the effects of filtering to remove very low
contrast lines, which might be related texture (note, however, that these lines can serve as
a texture measure [BUR86,HANS87|). Figure 16 shows the resulting lines after filtering low
contrast lines of the road scene. Figure 17 shows results for the other images in Figure 6.

2.5 Generalization to a Symbolic Grouping Process

In order to extend our framework of perceptual grouping of straight lines to include
such events as texture and complex contours, it will be necessary to consider more complex
tokens as well as grouping and abstraction processes. A plausible token vocabulary might

be:
1. points (dimension 0): spots, corners, line endpoints, etc.;

2. lines (dimension 1): straight line segments, circular segments, quadratic curve seg-
ments. linked line segments, etc.;

3. areas (dimension 2): closed curves, parallel lines, rectangles, general polygons, tex-
ture patterns, etc.

If one were to approach this problem via a generalized Hough transform [1,2] each class
of geometric structures would need to be recognized separately. Considering the issues
mentioned earlier of the loss of spatial and geometric context, we believe that more
general symbolic grouping processes are needed.

There are two types of operations which we would need for our framework of symbolic
grouping. The first type involves forming token aggregates which are then represented by
a single token; this is called “grouping”. The second type occurs when we want to ignore
some of the information present in a token; this is called “abstraction”. Abstraction not
only reduces the amount of information which needs to be stored for a ioken, but also
allows a simpler grouping process to be applied. For example, an area which is not
elongated might be reduced to a point; several areas conld then be grouped by a
point-grouping process. An area which has a strong major axis can be reduced to a line
which approximates that axis; e.g. smoothed local symmetry [BRA84| or medial axis
transform [BLU73]. A line which has a short length can be reduced to its midpoint. In
all of these cases, the criterion for the abstraction process will depend on the relationship
between the size of the token, the scale at which processing occurs, and the goals of the
grouping process. As a more complex example of hierarchical grouping and abstraction,
consider Figure 5 and Table 1.

A general system which allows all possible abstractions will require a sophisticated
control structure to decide which abstraction to apply and when. If one were simply to
allow all abstractions and groupings to be instantiated. the number of tokens would
increase rapidly, resulting in a large increase in the processing time. It seems clear that
of some grouping processes are sufficiently general that they would be useful in almost all
domains, e.g. straight line grouping; it also seems likely that in other cases top-down
strategies would be useful as a way of limiting the types of grouping.

Let us assume that the most primitive detector finds gradients in the image, and the
token vocabulary consists of circular areas (spots), points, line segments (circular or
straight), and closed curves (circles). Some tokens represent a complete unit or ‘whole’ in
that they can be considered as primitives, i.e. they are not part of a larger aggregate

Token Abstractions
gradients group to | an area (spot) (‘whole’)
an area reduces to a point
points group to a curve segment
curve segments | group to | a circle (area) (‘whole’)
a circle reduces to a point
points group to a line (‘whole’).

Table 1: Example of grouping and abstraction for Figure 5.

Grouping (takes multiple tokens to one token)
dimension dimension description
of input tokens | of output tokens

0,1 1 points or lines group to a line
0 ; 2 points group to an area
1 2 lines group to an area, e.g.

texture, rectangles etc.

2 2 areas group to bigger areas

Abstraction(takes a single token to another onej

dimension dimension description
of input tokens | of output tokens
1 0 small line is replaced by a point
1 ! 1 rough line is smoothed
2 0 small region is replaced by a point
2 1 elongated region is replaced by a line

Table 2: Summary of token grouping and abstraction.

without first undergoing abstraction. A g .neral set of transitions for the token
vocabulary above is shown in Table 2.

In this paper, we have discussed grouping of line tokens which are of the same type:
however, work on. grouping of tokens of different types. and the grouping of tokeus of the
same type to produce a token of a different 1vpe has also been started. Riseman et. al.
[RIS87] have examined regions and lines together in order to combine the information
available from different types of segmentation algorithms. This can be viewed in terms of
the above formalism as creating an area token that includes in its description the
attributes of the regions and lines grouped together, as well as several relational measures
based on their intersections. Reynolds and Beveridge [REY87| have grouped aggregates
of spatially proximate parallel, collinear, and orthogonal lines into area tokens and have
produced very useful results. They also discuss the problem of deciding which aggregates

26

N N N\ r
O O OO O

Figure 5: An example of a more general abstraction process: points
are grouped into curved lines, curved lines are grouped
into closed curves that define areas, areas are reduced to
points, and points are grouped into a straight line.

are most significant.

2.6 Discussion

We have outlined a hierarchical approach to symbolic grouping. Locally optimal straight
line fits to subsets of tokens are determined by using relational constraints of proximity,
collinearity, and similarity of contrast. Our methodology shows that heuristic rules for
filtering based on these constraints are effective in reducing the computation of
extracting straight lines. The hierarchy is used to represent objects at different scales,
and each level of the hierarchy has its own appropriate geometric context. The
hierarchical application of these constraints allows the search for the proper token
aggregations to be computationally feasible while integrating information over the entire
image. The algorithm has been tested on a wide variety of images, and the results
indicate very good preformance in extracting straight lines from complex images.

Since token-based grouping has been successful in this particular application of
straight lines. it is a good candidate for generalization to more complex and abstract
geometric structures, and we have outlined such an approach. It is currently being
applied to the simultaneous extraction of straight lines, curves, corners, and cusps
[DOL89]|. There are also ongoing efforts to extract rectilinear and polygonal structure via
the linking, optimization, and replacement cycle of grouping{BEV89.REY87]. Williams
and Hanson[WIL88] have applied this paradigm to grouping lines in the temporal
dimension. This has made it possible to track lines from moving objects over a sequence
of images, even when the lines undergo fragmentation and merging. Finally, it seems
likely that top-down strategies will be necessary to limit the types of grouping and
abstraction which are applied, and this also is under investigation [DRA89].

28

Figure 6: Digitized images of a) house scene, b)house scene, c)
aerial image of runway, d) road scene.

34

— i \ l ’ T -
S N BN N
1 [| . | ~_l 4 | . I O J|\l % Do /
: R T ’
. ;o= R A L b
. , ; PR S) o
; R - " v ISR) A 1 |
R o — N /’ \‘\ \‘
| SN e o o 4
/ } '\) Nl -~ \\ \' 4—‘—‘ | I) /
v v N\ | ‘ | h 1
Ly I sy
i _‘...\\‘\ /- \‘,/ l | I\L r//\ l \ /
T N N) NE——— _H‘*-__._.

\\, . v\ \ ’

j '/ s o . \"‘ -~ \/\ -

Ly \,,) TN // i \ [=17 \‘\\”\"
\

Nt //\ N\~ \“
- _/) o /// < N N /// Q\//// \\\ 7
T VN, L . /< 7\/ f——

N7 N il ““;: = C f\z‘ T——*
///,\/ N) ’/;J\ | \// ‘/V\\/\ \\ //l
A ¢ .
! \ 7\\ /*) —\\
\ \\\ (N, . //\ lf/ \

A - > \\'/'—/ ‘/\
\‘_\/’\/T/,/(N f// N ///'/
AN S SIS j CLNEN\S
PR :\ /\\‘\ > <\ \{ /\/\ -
N LA N N »L/,\ \ ' T~ 4 -
/ ’I,' - / i N \> \\ ~\ \\ 7 \
4 :\(\5/ ~ -/ - // arsiN7

e —4

Figure 8: Grouping algorithm after two cycles.

35

s e
T/ *7
/

@
/ \\/ /
—

\%b\g/r/g/ L
\\D—_N\O\g\/e_

—/
Tl T S e

Figure 9: Chimney subimage: the linking process is applied to the

output of the first cycle. Links are shown as circular
arcs.

36

T

Figure 10: Filtering on gradient magnitude removes low contrast

lines. The threshold was set at 15 (for a range of 255).

37

Figure 11: Output from Burns straight line algorithmn, filtered on

contrast. The locations of lines is similar to the group-

ing algorithm, but there is more fragmentation.

38

- — . g /l\)“ T
- . ~— -0 ' Ay T, T Y B R TR AV (B‘r—\h .
~ ° 7 .ij;\'\:\& Nl ‘/(__,\\ LR . NJ/ ¢ }/4‘ .
R \ N s : - e e 2t — - = -)
. s : o i
\ .

. B o N - " g j_,\\:{\‘_t v, Vo T -~
Lo - . AN ——— N N N
AAEAENY o - SR NS ,

NS Y - i, =~/

N> T S NN e

NTEO T AR UINT A \//—’/”.A N
DY (',\‘\34\"" S T - EDRCED N 2
e M AN I S L N :,}/\ ‘\vf\
Ve T ’/'-.\’/’7»"‘/%‘\'_ (*\/(‘, AN AP I
' N X e AN AL - — - ’c—- 4
N '\’,\\\\\‘ IS <, L, L= N

R &\\./ Pt A /(-/ 4 \\‘/

i/+ \\)/7_/~> \\(’;\ LS [L' J\)_ 17N\ 4\‘/—
s RN s \7‘)\1 7 ‘\ 2\
1 - '// L - N,

I/V 1 ’\l((/’ /;/rj ///-“ S e —————— v \(\‘IIY

. 14 /(‘/ ~L o T
S /}/ “ A<
< \// .
_.\l[Sy — VoS

v/ \> ‘r-\l/\)"\\ \/D}\ !

\\\\)-;'\,

A,]L‘\ ~L}(/,-\

— a7 =
[t?ﬂﬁ\/%—/ J’ AVA /;‘\
;‘\ /4,' . ‘\/v "’

i \%u("/\ l/\’ ()

\'/\\ g
\\\/\l'r

1\‘ \

f
‘,L;M/(\ AR - ﬁ-'"

—-\.,,_L—— =t —_—— \ —

N ‘/\\;\M =

[. \ ’ -— -
".\1" ”~ = T i\t\ NERN \ > x’x\/ \ >\\ —
W SR e T SN \;’

__* '~ > ,
r\z;—v\ m:@' R I

=N
=

Figure 12: Final output of grouping algorithm on entire image.
Lines of length one have been removed. Lines at all
scales are shown.

39

Figure 13: Final output of grouping algoritlun on entire image.
Lines of length less than 5 and contrast less than 5 have
been removed. Lines at all scales are shown.

40

Figure 14: Lines from the house scene with minimum coverage of
90 percent. Lines of length less than 5 and contrast less
than 5 have been removed.

23!

- \\\ \/\/
T N \\ﬁ\
< = 3\ EE ‘HH\\ ™ -
NN/ =
T —)
T AT TS
= / A\

Figure 15: Final output of grouping algorithm on image which has
been smoothed by a gaussian with ¢ = 1.5. Lines of
length less than 5 and contrast less than 5 have been
removed. Lines at all scales are shown.

42

el

Sl SR
S R e

el

(a) (b)

Figure 16: Lines in the road scene. a) Filtered to remove all lines
with contrast less than 5 (out of 255). b) Filtered to re-
move all lines with contrast less than 10. Note that con-
trast is measured by average gradient magnitude. and
lines with contrast greater than 30 are shown thicker.

—_—

Figure 17: OQutput of the geometric grouping algorithm for house
image in Figure 3, filtered on length.

¥

3. The View Sphere for Curved Surfaces

Finding a representation of three-dimensional shape which is both concise and complete
has important applications in computer vision. Every surface has a number of distinct
typical views. We construct a model based on these views and the transitions between
them. The result is a labelled graph on the viewing sphere. The label for each face is
itself a graph which qualitatively represents the outline of the object when seen from any
point on the interior of that face. For a generic smooth surface, the singularities which
occur in typical views, as well as all transitions between those views, can be described by
a known finite list of possibilities. We have worked out the models for a representative
selection of examples of generic and non-generic surfaces, including a sphere with a
bump, a rotationally symmetric and a twisted torus, and a surface with a furrow.

3.1 Introduction

One of the open questions in image understanding today is how to use the shape of an
object as one of the features by which it can be identified from an image. While there are
numerous techniques for representing three-dimensional objects, there does not seem to
be a general method for representing surface shape [BES86]. Our approach to this
question assumes that shape description should be based on the information which is
contained in the variety of viewpoints from which an object is seen. To begin, we have
concentrated on the apparent contour, or outline, which can be extracted from each of
these viewpoints. We have thus not yet incorporated information about surface
orientation (which might be deduced from shading or range data).

An object could be represented by all of its two-dimensional images as seen from a set of
predetermined closely-spaced viewpoints uniformly distributed around the object. This
representation can be made as comprehensive as we wish by packing the viewpoints
sufficiently close together. However there are several drawbacks. First, the representation
would be inefficient both in the space required to store a significant number of views and
in the time required to search for a match with a given image. Of course these problems
are multiplied as the number of objects to be represented is increased. Second, the
distribution of viewpoints takes no account of the shape of the object: in some directions,
the image of the object may change dramatically with a very small change in viewpoeint.
while in other directions there may be scarcely any change in the image over a wide
range of viewpoints. Third, this approach is not independent of scale.

The disadvantages of this straightforward approach led us to search for some other way
to represent an object by two-dimensional images of its surface. To be more useful, an
alternate approach would have to he more economical—minimal. if possible—and tied to
the geometry of the object, while remaining comprehensive. The model for describing
surface shape which we propose is intended to achieve these goals. It is comprehensive in
the sense that it contains an example of each topologically distinct image of a surface,
and minimal in that each distinct image appears only once. Finally, the viewpoints for

45

these different images are determined by the geometry of the surface, and the complexity
of the representation reflects the geometric complexity of the surface. For example, a
highly symmetric surface will have a simple description.

There are at least two ways in which this method of geometric representation might be
applied. First, it serves as a tool to identify objects by matching them with models.
Second, it offers a description of shape from which geometric properties such as the sign
of the curvature could be deduced. Such a description could be based on current work on
two problems: first, to construct a model of an object from a mathematical description;
and second, to extract a mathematical description of the outline and its characteristic
features from a real image.

The model we present here is derived from certain recent developments in the
mathematical theory of singularities of maps [ARN83,KER81,MCC80]. We wish to
acknowledge a special debt to the pioneering work on shape description done by Jan
Koenderink and Andrea van Doorn ([KOET78].

3.2 Viewing a surface

For the sake of definiteness, we assume the object we are considering has a smooth
surface and is transparent. In another paper we shall describe modifications needed to
handle smooth opaque surfaces. Non-smooth surfaces (such as ordinary polyhedra) are a
different matter. Some of the ideas carry over readily enough to this case, but the
mathematical theory which underlies our approach assumes smoothness, so no general
results are available.

Let Al denote a smooth surface in R®. For any unit vector v in R3, let L, denote the
plane in R® which is orthogonal to v, and P, : R* — L, the projection parallel to v. Then
P, projects M and each of its tangent planes to L,. See Figure 18. We say z in M is a
regular point of P, if P, projects the tangent plane to M at z onto L,, and a singular
point of P, otherwise. Generically, the singular points of P, form a curve X, on M. As it
happens, many of the results in this field do not hold categorically but only in typical, or
generic, situations. In the present case, “generic” means “for almost all directions v”. We
shall use the term frequently, in various contexts, in what follows. The image

C, = P,(%,) is called the contour of M in the viewing direction v or, more simply, the
view of M from v.

There is a view of Al from each point © on the unit sphere $2. We shall call S7? the
viewing sphere because the view of Al from any point » is what the eve would see if it
were placed at v and a small, scaled-down copy of Al translated to the center of S2. It
has been shown that a generic view of Al is a union of curves whose only singularities are
cusps and crossing points where two branches of the contour are transverse.
Furthermore, a generic view is one which. by definition, persists over an open set on the
viewing sphere. This means that if C, is a generic view and w is a point on the viewing
sphere sufficiently close to v, then C,, and C, “look alike”. More precisely, there is a
smooth map L, — L,, with smooth inverse which carries C, to C,,. While on any single

46

open set all views are qualitatively the same, between two adjacent ones the views must
differ qualitatively. That is, the number of cusps or the number of crossing points in the
view C, must change as the viewpoint v traverses the boundary between one open set
and the other. The complete boundary, which is the complement of the union of the open
sets, consists of a number of arcs meeting at vertices; in other words, the complete
boundary has the structure of a graph.

By definition, no view from a boundary arc or vertex is generic; however, all views along
a single arc look alike, just as they do on a single open set. Each boundary view
represents a particular transition between generic views. For arbitrary surfaces, there is
no limit to the number of distinct transitions. However, if the surface comes from the
special class of what are called generic surfaces, then only certain transitions are possible.
They are only a few dozen in number, and have been completely catalogued within the
last decade [KER81|. The technical definition of a generic surface need not concern us;
roughly speaking, it is one whose shape has no special features. We must keep in mind
the distinction between a generic view and a generic surface, though. As we shall see in
the examples below, a non-generic surface can have generic views; these are just the
views (of any sort of surface) which persist over an open set on the viewing sphere. On
the other hand, a generic surface can have non-generic views; these are just the
transitions between different generic views.

We can illustrate many of the ideas in the preceeding paragraphs by a simple example.
An ordinary torus has only three distinct generic views; they are labelled a, b, and ¢ in
Figure 19. (View d is special; we shall discuss it later on.) The open set on the viewing
sphere from which each of these views is seen has been labelled the same way. Note that,
because we are assuming the torus is transparent, antipodal points on the viewing sphere
share the same view. In particular, each zone carrying a generic view in the northern
hemisphere is copied exactly in the southern hemisphere.

As we can see, the only singularities in the generic views are cusps and crossings. Of
course, the contour may be completely smooth, as in the “polar” view a. The transitions
from a to b, and from b to ¢, happen to come from the standard catalogue. They are
called the swallowtail and the tangent crossing, respectively. The rotational symmetry of
the torus carries over naturally to the viewing sphere. One consequence is that there can
be no transitional vertices. The boundary graph (which separates the open regions of
generic viewpoints) consists entirely of disjoint closed loops which appear as “parallels of
latitude” on the viewing sphere. Another consequence of rotational symmetry is that the
swallowtail transition always occurs simultaneously at two different points on the
contour; hence the label double swallowtail. We should therefore consider that. in this
case, the corresponding transition curve on the graph consists of a pair of closed loops.
one lying directly on top of the other.

Finally, we turn to the equatorial view d. When seen from any point near the equator,
our torus has a “front half” and a “back half”. As Figure 20 shows, what makes d so
different from the other transition views is that the singular points from the front and
back halves appear to fuse together when the eye moves to the equator. Of course we

must expect different parts of a contour to cross at one or several points, and they may
even be tangent at some of those points. Entire segments will coincide, however, only if
the surface has a very special shape, that is, only if the surface is non-generic. So the
ordinary torus is non-generic. Actually, its shape is special in two ways: first, it is
rotationally symmetric, and second, a plane placed on top of it will be tangent to it along
an entire curve. We can make the torus generic by distorting it, as in Figure 20. This
breaks the symmetry and guarantees that no plane can be tangent to it except at isolated
points. The special view d disappears, but many new ones crop up. We shall get a
glimpse of them when we look at the viewing sphere of a generic torus in the final section.

3.3 The model

All the elements of our model for describing surface shape have now been introduced.
Beginning with any surface M—generic or not—we can associate a graph on the viewing
sphere. The faces of this graph, which we call the viewing graph of Al, are the open sets
which carry generic views of M, and its edges and vertices are viewpoints which carry
the non-generic transitional views. We define the viewing data of A to be its viewing
graph taken together with a view from each face, edge and vertex. Figure 19 gives the
viewing data of a rotationally symmetric torus. The viewing data of a surface is the
model we propose to use to describe the shape of that surface.

Viewing graphs are readily adapted to computer representation, and the individual views
can also be treated as one-dimensional graphs. The representation can be simplified in
certain ways if the surface is generic, as follows: since the transitions which can appear in
a view of a generic surface are all described and named in a catalogue of standard forms,
we can discard each view associated with an edge or a vertex of the viewing graph of Al
(i.e., each transitional view) and simply label that edge or vertex with the catalogue
name of the transition which occurs there. (In Figure 19, for instance, the double
swallowtail and the tangent crossing views are adequately described by their labels
alone.) This is not to say, however, that there is a reduction in the viewing data when a
non-generic surface is made generic: although the non-generic torus can be adequately
described by only six views, including all the transitional ones, its generic cousin needs
many more, even if we count only generic views.

Our model, whether applied to a generic or a non-generic snrface, has the following
features: first, it gives a complete two-dimensional description of a surface in space. in
the sense that it contains a copy of every distinct view of the surface; second. it gives a
minimal description in that it does not duplicate views which look alike, i.e., which nave
identical qualitative features; third, it is structured to reflect the shape of the object
being viewed. The first two features should be ciear from the discussion up to this point.
We will try to illustrate the third feature in the following section.

48

3.4 Some examples

Example 1: A sphere or a convex body.

A sphere looks the same from every direction. Its viewing graph therefore has only a
single face, carrying this one view, and no edges or vertices. A convex body is
qualitatively the same as a sphere; every view of it is a smooth closed convex curve.

Example 2: A bump on a sphere.

Raise a slight bump on a sphere. By this we mean distort the surface so that the
curvature becomes negative on a small annulus. The bump is this annulus together with
the small inner disk where the curvature stays positive. If the bump’s cross-section is a
circle, then the new surface still has rotational symmetry around a vertical axis, and it is
non-generic. Its viewing data is shown in Figure 21. We draw only the northern
hemisphere because the southern is a mirror copy. Also, for simplicity we draw only the
generic views. The non-genericity is reflected in the double swallowtail transition. If the
cross-section of the bump is now elongated, the surface becomes generic, two new generic
views are produced, and the augmented viewing data is shown in Figure 22.

Example 3: A bump on an arbitrary surface.

The pattern of rings we see running from the north to the south pole of the viewing
sphere in Figure 22 (viz.: lip, tangent crossing, beak-to-beak, braided swallowtails;
repeated in reverse order in the southern hemisphere) is characteristic of a bump, no
matter where it appears. This means that if a generic bump is raised on a positively
curved part of an arbitrary surface M with viewing graph G, the new viewing graph will
just be the set-theoretic union of G and the viewing graph of the generic bump shown in
Figure 22. We are referring here to the boundary elements of the viewing graph, i.e., its
edges and the vertices. Concerning faces and views, we can say the following: Each face
f of the new graph will be the intersection of one of the faces of G with one of the faces
of the bump’s graph, and the view from f will be a montage of the views (of M and the
bump, respectively) carried by the faces whose intersection produced f. We can
summarize these observations by saying that viewing date is “additive”.

Additivity creates a problem: the viewing graph of an object can be very complicated
because the surface has many small bumps. One solution to this problem is to create a
hierarchical representation based on spatial resolution. In order to use this representation
to identify objects in real images, it will be necessary to solve a few problems:

1. For each image the contours must be extracted. and the singularities located.

2. For contours which correspond to multiple views of the same surface, singular
points must be matched.

3. A high level viewing graph must be constructed from the multilple views

4. The high level viewing graph must be matched with a subgraph of the viewing
graph of the model.

49

W
l

It should be noted that the analysis need not proceed bottom-up from 1. to 4. For
example, one could look for cusps or crossings in a particular configuration which lie on
the same contour component. Also since there are only a finite number of types of
vertices in the high level graph, i.e. transitions, it is not necessary to be completely
accurate in steps 1 and 2 in order to get the correct result in step 3. In addition, since
there are several types of singularities, this will restrict the search in step 4.

Example 4: A furrow on a convex body.

This example was introduced by Koenderink and van Doorn {[KOET76]. Recently they
extended their analysis of the furrow to include what we are calling its viewing data.
They have describe ' some of their results to one of us; this is a report of that
communication.

A furrow is, like a bump, a particular sort of intrusion of negative curvature into a
positively curved regioa. The patch of negative curvature on a kidney bean or a sausage
is a furrow, but perhaps the best way to visualize one is through its viewing data. This is
given in Figure 23. Notice the distinctive hour-glass shape of the viewing graph,; it is
characteristic of the furrow, and will appear, by the additivity principle mentioned in the
last example, in the viewing graph of any surface which has a furrow. The new vertices
which appear on the viewing graph are the godron (“ruffle”) and the gouttiere (“gutter”™).
They are found in the standard catalogue and are also known there by the names gulls
and goose.

Example 5: A generic torus.

We iliustrate in Figure 24 the viewing graph of a generic torus. It is quite complicated
when compared with the non-generic torus (Figure 19). The double swallowtail
transition is resolved into a braided pair of single swallowtails, just as it was in the
bump. The equatorial view d (Figure 19) is also resolved, using the godron vertex which
appeared in the viewing graph of a furrow.

A further link between the geometry of a surface and the structure of its viewing data
can be found in the last three examples. Every region of negative curvature on a generic
M must reveal itself in the viewing graph by beak-to-beak and lip transitions along
certain edges which form the complete boundary of an open region on the viewing sphere.

3.5 Summary

What we have tried to do here is to present a representation of surface shape in such a
way as to show its relevance to computer vision. While several problems need to be
solved before this representation can be used in practical applications, it has the
advantage of being concise and complete, in the sense that it contains all the
qualitatively different views of an object.

waage of
Lamaent” plane |

Figure 18: A view of the surface M in the direction v. See text for details.

double swalowtail

’(avqﬂ'(croseing

Figure 19: The views of a torus, and their relations to the viewing
sphere of a torus.

thece preces of the contqur
fuse toaethér to jt\/f_’"

oy,

Figure 20: The non-generic torus (upper illustration) is twisted to
make it generic (lower illustration).

Figure 21: The viewing data for a sphere with a bump.

Figure 22: The modifications to the viewing data for a sphere with
a bump when the bump is mnade generic.

53

e "3"“3 %ro.rk

/1EN From the sde

O

flew {rom urderagath

Figure 23: The viewing data for a furrow on a convex body. The viewing sphere, in the
upper right hand corner, shows the complete viewing graph. The surface itself—which
looks like a kidney bean—is shown at the center of the sphere. The remainder of the
illustration is an enlargement of one quarter of the viewing graph. Within each open
region of this graph is found the view of-the kidney bean which is seen from this
viewpoint. Every generic view of the kidney bean is shown.

Figure 24: The viewing graph for a generic torus.

54

4. Reconstruction of surfaces from multiple views

This section presents an algorithm for computing a depth map for a smooth surface from
a sequence of images taken from known camera positions. It is assumed that the profiles
of an object are extracted from each image.

We can tell a lot about the shape of an object from a single profile, and with multiple
views we can often determine the shape uniquely. In this paper we analyze this
reconstruction process mathematically and derive an algorithm to produce a depth map.
For some applications it may not necessary to produce a depth map at all (for example in
recognition problems). The Gauss and mean curvatures may be sufficient by themselves
to solve this problem, and in any case it will be useful to decompose surfaces into patches
according to whether they are convex, concave, hyperbolic, parabolic, or planar (Besl and
Jain [BES86], Brady et al. [BRA84], Ferrie and Levine [FER85]). This gives a method
for describing surfaces of objects and a basis for matching with standard surfaces such as
spheres, planes, and cylinders. Koenderink and van Doorn [KOE84] have derived a
formula which could be used to compute the Gauss curvature from a sequence of
intensity images without depth. We have extended these results to produce formulae for
the mean curvature, principal curvatures, and principal directions.

The use of profiles for the recognition and description of surfaces has been explored by
many people (Koenderink and van Doorn [KOE84], Callahan and Weiss [CAL85],
Hoffman and Richards[HOF83]), but most investigations have not combined information
from multiple views. In general, there is no way to identify a point on one profile with a
corresponding point on a profile from a different view since for smooth surfaces they will
not have any points in common. In fact, most stereo algorithms which are based on
correspondence find the most similar point and assume it is the same. However, if the
camera motion is known, then there is a method to identify points on two different
profiles. In our work, we have restricted the camera to planar motion, so that planes
parallel to the plane of motion induce a correspondence between the profiles. However, it
is possible for the profile to change qualitatively between views, and in order to
understand this, we have analyzed the analogous problem for a curve in the plane. These
transitions create ambiguities in the reconstruction process. The criterion used to resolve
this ambiguity is that the most likely solution is the one which minimizes the change in
depth between adjacent views.

A mathematical approach to the reconstruction o surfaces is based on the fact that »
smooth surface without inflection points is the envelope of all of its tangent planes.
However, there are two problems with this: how to compute the envelope of a family of
planes and how to handle inflection points. With the assumption of planar camera
motion, we have been able to reduce the envelope of planes problem to that of computing
the envelope of a family of lines in a plane. which we were able to solve. The problem of
inflection points requires interpolation of the surface. We have a simple approach to this
which would work in most cases, and we plan to extend this to polyhedral surfaces where
every points is either an inflection point or a crease point (i.e. non-smooth).

In Section 4.1, we give the mathematical framework for discussing profiles. Then for
simplicity in Section 4.2, we take the case of reconstructing a plane curve. In Section 4.4,
this is generalized to surfaces. In Section 4.6, we present the experimental results using
simulated data.

4.1 The profiles of a surface

Let u be a unit vector in 3-space R® and let Ml be a smooth surface in R, We regard u
as defining a viewing direction. On the surface A there is a locus of points p for which
the tangent plane contains the viewing direction. This locus of points is called the critical
set corresponding to u. If this curve is projected parallel to u onto the viewing plane
which is perpendicular to u and passes through the origin, the image is called the profile
(Figure 1). For future reference we noie the following standard facts about critical sets
and profiles:

e The critical set is a smooth curve at p unless p is a parabolic point and u is the
asymptotic direction.

e The profile near q in the viewing plane arising from p on the critical set is a smooth
curve unless the viewing direction is an asymptotic direction.

e When the critical set is smooth at p, its tangent direction is parallel to the viewing
plane if and only if the viewing direction is a principal direction at p.

e When the nrofile is smooth at g, its tangent at g is always in the tangent plane to
the surface at p.

In addition, the Gauss curvature can be computed from the profiles. Consider a point p
of the critical set. The viewing direction at p together with the normal to the surface
there determine a plane, whose intersection with the surface is a smooth curve. The
curvature of this curve at p on the critical set is called the radial curvature. The
projection of p onto q lies on the profile, and the curvature of the profile at ¢ is called the
transverse curvature. Koenderink and van Doorn [KOE84| showed that the Gauss
curvature is the product of the transverse curvature and the radial curvature. Brady et
al. [BRAB84| has also given an independent proof of this fact. The curvature of the profile
can be computed directly from an image. and the radial curvature could be compnted
from a sequence of images.

a6

4.2 Reconstructing plane curves

Consider a smooth plai e curve C, which we usually take to be closed, so that it is given
by a parametrization y(t) = ({X(t), Y (t)) such that the derivative is never zero, i.e. X'(t)
and }'(t) are never zero for the same t. As shown in Figure 26, u is the viewing direction.
The viewing line is the line perpendicular to u through the origin. The profile in this
context is the set of points on the viewing line for which the tangent line is parallel to u.
The position of a profile peint can be expressed as w - (sin 8, —cos), where w is the
signed distance from the origin, O, to the profile point. For example, in Figure 26, there
are three points for which w > 0 and one for which w < 0. Note that if § produces a
value w, then 8 + 7 produces —w. Thus we restrict to 0 < § < w. The collection of all
profile points forms a curve in the plane classically called the pedal curve of C with
respect to O. If 8 changes in such a way that a pair of values of w is annihilated and
disappear, or a pair is c:2ated, then the pedal curve has a singular point (usually a cusp).
This happens when u passes through the direction of an inflexional tangent to C, as
shown in Figure 27. In a neighborhood of that point, w cannot be a smooth function of
. In general, there will be parts of C for which w is a function of 8 for some range of
values of #. Suppose C, is such a subset of C, then the following proposition states that
C, can be reconstructed from the function w = w(#). Any part of the curve which has no
inflexions satisfies this property. Another way to say this is that the Gauss map of C, has
an inverse, i.e. for each direction on the unit circle there is at most one point of C; whose
normal points in that direction. Such curves possibly with singularities have been studied
by Langevin. Levitt, and Rosenberg [ROS] and are called herissons (hedgehogs)

Proposition 1 1. The curve C, consists of points
¢ =wsinf + w' cos

y=-wcosf + w'sin b

and w' = dw/df is the distance from the profile point to the corresponding point of
Ci

2. The radius of curvature of Cy at the point corre:ponding to 8 is w + w". (Here C,
is oriented by increasing 6.)

proof: The line through the profile point u - (sin 8. cos) parallel to the viewing direction
u = (cos f.sin A) has the equation

((z,y) — (wsinf, —w cosh)) - (sinh. —casf) =0

le.
zsinf - ycosh = w (1)

57

The curve C; is the envelope of the lines obtained by eliminating # between equation (1)
and the following equation:
zcosf + ysinf = w' (2)

This gives the unique solution (z,y) in part 1 of the Proposition. Rewriting this as

(z,y) = w(sin f, — cos §) + w'(cos 4, sin 6)
proves that w' is the distance. The formula for the radius of curvature for a curve is
given by:

p = (1:12 + yrz)a/z/(m/yu _ l‘”y’)
Differentiating the equations in part 1 and substituting into the formula for p gives part
2 of the Proposition.

It is not possible for w + w" to be zero while C; is smooth: zero radius of curvature is
only possible at a cusp of a curve. On the other hand w + w” can tend to infinity, making
the curvature tend to zero (which is an inflexion). But at an inflexion w is no longer a
function of 4 so it is not in C;.

Examples of these two cases are w = §° and w? = 6° respecively (see Figure 28). For the
former, z = 36% +higher order terms, and y = 26%+ higher order terms. Thus C, has a
cusp and the pedal curve has an inflexion at § = 0. For the latter, ¢ = :f:gﬁ’/2+ higher

order terms. and y = £16%?+ higher order terms. Thus, C; has an inflexion and the
pedal curve has a cusp at § = 0.

In practice if we start with a curve C, and measure its profile data, i.e. for each viewing
direction u = (cos #,sin 8) for some range of values for # we obtain the various values of w
for the profile points. Some values of # will give more values of w than others, unless C
has no inflexions, in which case each value of # will have two values of w. Starting at
some value § = 6,5, we choose one of the corresponding values to be wy and increase 6
following w as a function of # until an inflexion is encountered. This is detected by a
change in the number of w-values. In fact 8y can be chosen so that it immediately follows
after an inflexion. It turns out that one only needs to consider the case when the number
of w-values decreases by two. The parts of the curve C lying between inflexions can be
reconstructed using part 1 of the Proposition. The computational problem to be solved is
this: having chosen wq for 8 = @,, what value corresponds to 8, + £07 It is not sufficient
to simply choose the closest value of w. Since it is possible for the pedal curve to have
crossings {See Figure 29), there is the danger of starting on one branch and switching to
the other. Note that we are approximating the function w = f(#) at discrete points, and
we have assumed that this function is continuous since C' is smooth. In addition, since w’
is the distance from the viewing line to the point of tangency on the curve, we also want
w’ to be continuous. This can be viewed as a constraint on choosing successive values of
w such that w” is minimized.

4.3 Perspective projection of curves

There is no essential difference in the mathematics of reconstructing curves from profiles
obtained from perspective projection. We derive the formulas here for completeness.
Assume that the curve C is contained in a circle of radius r. From each point A on the
circle we define the viewing line to be the line parallel to the tangent to the circle at 4
and a distance d away from it. Each tangent line to C through A will intersect the
viewing line at a profile point. (See Figure 30) The profile points are identified by their
distance w in a counterclockwise direction from the origin of the viewing line, which is
the closest point to A. The values of w for # and § + 7 are no longer directly related.

Proposition 2 For regions of the curve in which w is a function of 8,

rwdsin 8 + rw®cosd + rw'dcos 8
d* + w? 4+ dw’

rwdcosd + rw?sinf + rw'dsin 8
d? + w? + dw'

Thus in this case also the parts of C between inflexions can be recovered from a
knowledge of the function w. However, in this case the formula for the curvature is
rather more complicated.

4.4 Surfaces

We would like to reconstruct a surface from its profiles in a way analogous to the method
used for curves in the previous section. The situation for surfaces differs in two respects:
each profile is a curve and there is a two-parameter family of viewing directions which as
unit vectors are points on the sphere S2. We seek to find all the tangent planes to M, and
for this purpose, it is sufficient (and necessary) to know the profiles for a “great circle” of
viewing directions, i.e. all directions which lie in a plane. Consider the tangent plane to
M at p. The unit tangent vectors in this plane form a great circle on S?, and this circle
intersects the great circle of viewing directions. Hence some tangent line to M at p is in
the viewing direction u, so that p contributes a point ¢ to the profile for the viewing
direction u. Of course, for opaque surfaces the situation is complicated by occlusion, and
it is possible that for some points, none of the singular sets would be visible.

How do we find the tangent plane to M at p? One line in that plane is, of course, the line
through g parallel to u. Another line is the tangent line to the profile at q (see Figure 31).
If the profile is singular at g then the tangent line is interpreted as a limit of tangent lines
at nearby smooth points of the profile. If the profile has a crossing at g, then both
branches will contribute a tangent plane to A but at different points p of M ([KOE84|,
[KERS81|, [CALSS)).

We shall now reconstruct M from the profiles corresponding to a circle of viewing
directions (except where the tangent plane is parallel to the plane of the circle of viewing
directions). The calculation which follows is local in that it assumes a parametrization of
profiles near each point.

Consider a family of viewing directions, u = (0, cos §,sin) and corresponding viewing
planes y cos @ + zsin § = 0. Each viewing plane will contain a profile of Al; we use
orthonormal coordinates (z,w) in the viewing plane, where the w-axis is in the direction
(0,sin 8, cos §) and the z-axis is the same for all of the planes. A point (z,w) in a viewing
plane then is the point

z(1,0,0) + w(0,sin 8, — cos) = (¢, w sin §, —w cos 8) (3)

in (x,y,z) space. In practice it is the numbers (z,w) which will be measured from an
image.

In general, the profile will be be a curve with isolated cusps, and we present the theory
for reconstructing the surface from smooth points of profiles. The case of those cusp
points is still under investigation. In practice. this should not be a problem since one can
compute the surface at points in a neighborhood of a cusp where the profile is smooth.
Assume that the profiles have the form w = w(z,8) over a range of values of § and «.
where w(z,) is a smooth function. Thus we assume that cver some range of values of ¢
and 8 the profiles are smooth and not tangent to the w-axis. So starting with a point on
a given profile of M, we choose an axis of rotation which is not parallel to the normal to
the profile at that point. It is intuitively reasonable that if the viewing direction remains
in the tangent plane, no additional information will be obtained.

60

Now consider a fixed = and 8, i.e. a fixed point on a particular profile curve. The tangent
plane to A determined by this z and § passes through (z,sin 8, —w cos) and contains
the directions:
(0,cos 6,sin 8) (the viewing direction)
(1,w. sin 8, —w, cos §) (tangent to the profile)
where w, = Ow/dz. The equation of the plane is therefore

w,X —sinfY +cosbZ = zw, —w (4)

where we temporarily use (X,Y,Z) as current coordinates in R® to avoid the double use
of z.

Remark: If the profiles are parametrized as z = z(t,6), w = w(t,8) for some parameter ¢,
then the tangent plane is

w X — z¢sinfY + z,cos0Z = zw, - T,w (5)

The surface M is the envelope of all the tangent planes described by (4), that is we
obtain the point (X, Y, Z) of M corresponding to (z,6) by eliminating z and # between
(4) and its derivatives with respect to z and 4, viz.

3/0c : WX = Wy (6)

0/00 : weX —cosbY —sinfZ = zw,g — we (

-~
—

This amounts to finding the intersection of three tangent planes given by (z,8),

(z + 6z,0), and (z,6 + 68). The intersection of these three planes will approach the point
on M in the limit as §z and 68 go to zero. This runs into problems when one or the other
direction produces a stationary tangent plane. According to equation (6), .\ = = (the
line through a profile point in a viewing direction is always in a plane X = a constant),
but (6) also indicates that if the profile has an inflexion (w,. = 0), then there will be
problems distinguishing one tangent plane to M from the “next”. This is similar to the
case for curves in which the envelope of tangent lines to a plane curve with an inflexion
contains the whole inflexional tangent line. In fact (4), (6), and (7) determine a unique
point (X,Y.Z) if and only if w,, # 0, namely the point

f(z,0) = (z.wsinf + wacosf. —w cosf + wysinf) = N (R)

Note that ws is the distance from a profile point to the corresponding point on Al

Remark In the general case where w is not always a function of r, we can parametrize the
family of profile curves as follows:

r = r(t,0)
w = w(t,§)

61

In this case, except where z; is zero, equation (8) becomes

—ToW; + T Wy

f(t,8) = (z,wsind, —wcos §) + () (0,cos 8,sin 8) (9)

Ty

and (—zsw; + z,wp)/x; is the distance from a profile point to a point on M.

The formula (8) tells us how to reconstruct M from its profile data, as long as w can be

expressed as a function of z and §. The condition for f to give a smooth piece of surface
(i.e. the condition that the differential of f has rank 2) is w + wgy # 0; note that this also
arose in the case of curves above.

On M at any point f(z,8), we have coordinate directions corresponding to:

0f/0z = fo = (1, w,sin @ + w g cos b, —w, cos § + w,4sin §)

where f; is in the direction of the critical set and fp is in the viewing direction so they are
not in general orthogonal. Nevertheless, they are conjugate with respect to the second
fundamental form (see Figure 32). Note that f, and fp will not coincide at a smooth
point of the profile. Geometrically, this means that with respect to the ellipse determined
by this quadratic form, each direction is tangent to the ellipse at the point of intersection
by the axis determined by the other. Algebraically, the matrix associated with the second
fundamental form is diagonal with respect to the basis of these two directions and (using

n = (—w,,sin 8, — cos §)/(1 + w?)/? as the unit normal to M) can be written as:

w:: 0
(T +wi)
0 w + wWeg

(1 + w2)'2

Thus, it is possible to derive simple formulae the Gaussian and mean curvatures of M in
terms of the profile data w. As noted above, the consequent formula for the Gaussian
curvature as the product of the radial curvature, k. and the transverse curvature, x4, was
known,but the mean curvature cannot be expressed in terms of only these two.

4.5 Relationship between sectional and surface curvatures

There are three curvatures which enter into the equations for the surface curvatures.
k. is the curvature of the profile or the radial curvature. Its formula is

Ke = Wae /(1 + wl)??

Kz is the sectional curvature of Al in the f, direction (the direction of the tangent to the
critical set). We find (see below) that

Ky = wz:/[(l -+ 1”.12.-)1/2(1 + ‘U): + waz.'@)]

62

k¢ is the sectional curvature of M in the fg direction, which is the viewing direction u
when w + wgg > 0 and —u when w + wgg < 0. This is also known as the transverse
curvature. We find (see below) that

ko = —1/[(1 + w2)"*(w + wap)]

Proposition 3 1. The Gauss curvature K and the mean curvature H of M at f(z,6)
are given by
K = —wn/[(l + wi)z(w + 'UJgo)] = K.Kg

P R R
2(‘(1) + wea) 2 Kz

2. wge = 0 if and only if the viewing direction is a principal direction on A at the

corresponding point. In this case f, and f4 are the principal directions, k. = k.,

and H = %(nc + Kg).

proof: The computation of the Gauss and mean curvatures from a local parametrization
f of M can be found in O’Neill [ONE66]. We can obtain f, and fs from equation (8) and

compute the first fundamental form as

1+ w2+ wly wee(w + wee))
weg(w + weg) (W + wes)

This together with the second fundamental form given above allows us to compute the
surface curvatures. Thus K and H can be expressed in terms of the curvatures k., k., Kg:
The shape operator, which is the derivative of the Gauss mapping, referred to the basis

f:nfo is:

1 wz:(w + woa) —WerWeh
(14 w2)(w + wes) \ weo(w + woe) —(1 +wl + wly)

The principal directions are the eigenvectors of this matrix. One can see that, given the
assumption that w + wge is nonzero, the matrix is diagonal if and only if w.s = 0. The
principal curvatures are the eigenvalues. and the Gauss curvature is the product of the
eigenvalues and the mean curvature is their sum. Thus. when the matrix is diagonal. [,
and f, are the principal directions and they are orthogonal.

When the profile has a cusp, the curvatures K and I{ will be the limits of the values of
the formulae at corresponding smooth points near it. However. A for example cannot be
expressed as k.Kkg, since k. is infinite and g is zero. Finding a formula to replace this is a
goal of current investigation.

63

4.6 Experimental results

In order to determine the potential accuracy of the algorithm for reconstructing curves,
several experiments were performed. Synthetic data was used to generate profile points
for the various values of §. Figure 4.7 shows a picture of a curve with two inflexions and
the pieces of the curve which are reconstructed from the data. The reconstruction
process stops at the inflexion points producing breaks in the curve. In addition, there is a
break in the curve where the reconstruction process started.

In principle. one could start with the profile data and trace the curve from start to finish,
reversing direction at inflexion points, always choosing the value of w which minimizes
w"”. However, there is no sure test on the values for w which will guarantee that a point
is an inflexion point. It is possible to find all of the tangent directions for the inflexion
points, which can be called flez directions. These are the directions at which the number
of tangent lines changes. We nse these flex dircctions to break up the profile data into
heurisson segments for which w is a function of the viewing direction. The current
algorithm constructs arcs corresponding to the heurisson segments between inflexion
points.

As a practical point, one can choose the place to start drawing the curve to be any w
value after a flex direction. Once the pieces of the curve between the inflexions are
drawn, they can be linked together with straight lines based on proximity of endpoints
(assuming one has started with a closed curve. In theory one would like to minimize the
integral of the absolute value of w”. In the current algorithm we only apply this criterion
locally to choose the values of w sequentially. It may be necessary to apply standard
relaxation techniques when dealing with real data.

The algorithm can be extended easily to surfaces, and we intend to apply this to the
problem of model acquisition from physical prototypes.

4.7 Discussion

We have given a procedure for reconstructing surfaces from a sequence of profiles. In
addition we have given a formula for mean curvature in terms of the profile data which
extends the similar result for the Gauss curvature. This makes it possible to compute
both of these curvatures without first computing a dense depth map. We have used this
algorithm on synthetic, noise-free data to reconstruct curves with a high degree of
accuracy, and we plan to test it on real data.

64

imaqe of

N
tangest plane p‘ (N
N e T,

Figure 25: The critical set £ and profile of the projection of Af. A
is oriented so that there is self occlusion which produces

a crossing and two cusps.

65

Ht)

fixed reference direction (z-axis)

viewing line

Figure 26: The profile of a plane curve is a set of points on the viewing line

1

Figure 27: An inflexion in C produces a cusp in the pedal curve

f
!

o}

Figure 28: Examples of pedal curves for a cusp and an inflexion

Figure 29: A point where the pedal curve crosses itseif

67

o A
ceco fof viewing (oot
o

tangent plane to M at p |

(] :
q\J\'—’ profile | I

N

N

tangent to profile |

Figure 31: The tangent plane at p contains the viewing direction

and a vector parallel to the tangent to the profile curve
at ¢

68

direction of minimum sectional curvature

Je

Figure 32: The viewing direction and the tangent to the critical
set are conjugate

69

e

Figure 33: a. A drawing of the limacon from initial data. b.

reconstruction of the limmacon.

The

5. Predictions and the Prediction Hierarchy Compiler

This section describes the design for an object recognition system (see Figure 34), based
on a prediction hierarchy compiler, which embodies two major aspects to our approach.
The first is that before recognition, in an “off-line” process, we precompile from the 3D
model base descriptions of the potential appearance of all the objects from all possible van-
tage points and thus act as an index into the model data base. (This is actually something
of a conceptual simplification: what is actually done will be described later.) These de-
scriptions constitute predictions about the 2D image appearance of the objects. By doing
this we avoid, at recognition time, the cost of the complicated 3D-to-2D transformations
between 3D models and 2D images. The cost of these computations in the general case
is one of the chief difficulties with ACRONYM [BROS81b]. In our approach the matching
at recognition time is reduced to a 2D-t0-2D problem. This precomputation of predic-
tions is possible because, while an object potentially has an infinitude of different exact
appearances, only a finite number of these are different in a qualitative sense [CAL85],
and for many objects, the number of these qualitatively different views (“generic views”)
is reasonably small.

Even so, the number of such views over a large model base can still be very great. This
leads to the seconc component of our approach, which is to organize these predictions into
a hierarchical structure based on PART-OF (aggregation) and 1S-A (specialization) links.
This way, the common aspects of the predictions are made explicit and represented just
once in the hierarchy. One advantage of this is that the set of predictions can thereby be
stored more compactly. But more important, predictions common to many objects need
be matched only once during the later recognition step, effecting a considerable economy
in matching. Ideally, the hierarchy should act like an efficient discrimination net, permit-
ting rapid indexing to an object-specific prediction. In this way our prediction hierarchy
provides a single, uniform mechanism for coping both with variation and similarity across
objects and across views of a single object.

In reality, these two operations, of prediction and organization, are not run separately,
but are intertwined. Predictions are generated and incorporated into the hierarchy in-
crementally, as needed. This has two related advantages. First is that a potentially
unmanageable, unorganized collection of predictions is never actually created; second is
that the predictions generated need only be elaborated sufficiently to ensure adequate
discrimination between objects (and distinct views). The full. detailed description of the
generic views of the objects normally need not be generated: only general predictions of
appearance sufficient to adequately discriminate object views one from another are needed.
Indeed, in the system as implemented, the concept of generic view does not appear at all.

Out of these twin processes of prediction and organization comes a prediction hierarchy.
which encapsulates in a directly usable form the knowledge needed to visually recognize
objects out of the 3D model base. Notice that. while the construction of the prediction
hierarchy may be a computationally expensive process, it need be done only a single time
for any given model base. Once the prediction hierarchy is compiled, it can be used over

and over again for recognizing objects out of that model base.

The actual recognition of an object in an image involves matching the hierarchically
organized predictions against perceptual features extracted from that image. In the pro-
totype system described here, matching takes place systematically from most-general pre-
dictions (shared by many objects) to object-view-specific predictions, thereby ensuring
effective indexing from the image data into the model base.

5.1 The Domain

Although our goal is the recognition of objects in natural scenes, for these experiments
the domain chosen is polyhedral objects with linear surface markings. Polyhedra form a
useful and rich class of objects for recognition experiments, while their 3D modeling and
rendering are fairly well understood. In particular, the edges and linear surface mark-
ings of polyhedra project into straight-line segments in an image, and good techniques for
extracting such straight-line features from images are readily available [BOL86,BURS6).
Note, however, that our overall approach is in no way restricted to polyhedra: in concur-
rent work at UMass, generating predictions for curved objects is also being investigated
[,DOL88, CAL 85].

The actual objects used to demonstrate the design are shown in Figure 3§ The ob-
jects have differences and similarities in various dimensions and part of the problem is to
take advantage of both. The similarities in their visual structure, such as occurrences of
parallelograms or of certain types of line junctions, must be utilized by the recognizer to
make the search for a match efficient. The differences in visual structure, such as height-
to-width proportions, must be utilized to discriminate between the objects. Additionally,
the variations in visual appearance caused by variations in the camera must be taken into
account while doing the structural analysis.

5.2 Predictions

For the construction of predictions our camera model is so-called normal perspective, fol-
lowing Brooks [BRO81b|. This is equivalent to orthographic projection with an additional
image scaling factor. [t provides a simple but useful approximation to true perspective
projection so long as the camera is not too close to the object. (Note that the use of
normal perspective for predictions does not preclude using true perspective for the pose
estimation and verification step.)

A prediction is a statement concerning some structural aspect of the image of an object.
For example, this may be as simple and general as an assertion that there exists a pair of
parallel segments in the projection; or as complex as a description of an image unique to
some object. A prediction is represented here as a relational graph; the elements in the
graph are projected straight-line segments. The relations associated with arcs in the graph
mutually constrain the relative orientations, positions and sizes of pairs of line segments.
For example, the relation parallel constrains two segments to having the same orientation.
The predictions can be viewed as conjunctions of these relations over formal segment
arguments.

The objects are expected in any pose, hence all predictions generated are invariant to
re-scaling, translation and rotation in the image plane. Because of this and the type of
projection assumed, there are only two degrees of camera variation that have a significant
effect on the projections being described by the predictions: the two angular components
of the viewpoint that sweep out a viewing sphere about the object.

Any given prediction may be satisfied by the projection of more than one object in the
model base and, in fact, it may be satisfied by the projection of more than one set of line
segments on the same object. This is especially true for simple structural statements, such
as the parallelogram prediction in Figure 36. For each such occurrence, or instance, of a
prediction, there may be a wide range of viewpoints for which the set of projected line
segments satisfy the prediction. For example, the projections of the 3D line segments a, b, c,
and d of the triangular prism model (Figure 36), satisfy the parallelogram prediction over
all the viewpoints for which these segments are simultaneously visible (half the viewing
sphere).

More specifically, we define a prediction instance as a one-to-one mapping from a set of
projected 3D model segments to the elements of the prediction’s relational graph and the
set of viewpoints (the view region) on the viewing sphere from which the prediction is valid
for these segment-element bindings. For a given model base, there is a set of such instances
associated with each prediction. During the compilation of the prediction hierarchy, it is
important to keep track of all instances of a prediction and their associated view regions.

A relation between a pair of projected segments used in the predictions is represented
by ranges of four relational measures, u, v. a and s (see Figure 37). Let us consider two
segments, s; and 3;. The vector (u,v) is the position of segment s, relative to s;: it is the
displacement of an endpoint of s, from an endpoint of s; measured along s, and normal to
sy, divided by the length of s,. The angle between them, o, is measured counterclockwise

from s; to s3; and s is the relative scale or length ratio of s, over s;. A relation is defined
as an eztent boz, i.e. intervals in u, v, a and s, in order to capture the variation over ranges
in viewpoint. For instance, projecting a pair of parallel object segments over all possible
viewpoints will generate a set of measurements that have a single value (zero) in the a
dimension, but some non-trivial extent in the others. Similarly, the family of projections
of a pair of object segments that share an endpoint can be represented by a relation that
has the value zero in both position components (u,v).

A relation between projected segments is considered useful if it is valid over a wide
range in viewpoints and its extent box is small in volume (for example, consider the two
view-invariant relations just mentioned). The latter property is important if the relation
is tc help in the indexing process; that is, to characterize an object’s projection with a
specificity sufficient to discriminate the object from a large number of other objects and
from chance arrangements of image segments. Although invariant relations are clearly
useful [LOWB8T|, alone they are not in general sufficient to fully characterize projections.
For instance, proportions are often strong characterizations of object structure, but the
length measurement ratios that represent them are often not strictly view invariant. For
example, the tall box in Figure 35 has a height to width ratio that is significantly different
from the cube over a large range in views and no other property can be used to differentiate
them.

Any given prediction in the prediction hierarchy has an associated relational graph, but
explicitly it is almost always represented as some combination or specialization of other
predictions (see Figure 38). A prediction is a spectalization of another if it can be described
by adding new relations or narrowing the extent boxes of existing ones (i.e., tightening the
constraints). For example, the rhombus can be described by adding a relation between the
bottom and side segments of the more general parallelogram prediction that constrains the
ratio of their length to be one. A prediction is a combination of other predictions if it can
be described as a conjunction of these other predictions. Predictions may be combined
in various ways, depending on the mappings between the relational graph elements of the
part predictions and those of the whole combination. Figure 39 shows an example of how
the nature of the combination prediction can change by varying these part-whole maps,
which are represented by the arguments passed into the part predictions and the ordering
of these arguments.

Note that, because of the combination predictions. the “hierarchy™ is actually a directed
acyclic graph, where the predictions are nodes. and the specializations and combinations are
successors of the nodes they are created from (their predecessors). For the prototype svstem
presented in this paper, the hierarchy compiler and matcher have only been developed to
use the combination process. A compiler that uses specialization will be presented in
forthcoming work [BURS89]. Also, the compiler currently generates combinations that are
limited to pairs of parts.

5.3 Prediction Hierarchy Compilation

In Section 5.2 it was shown that a prediction hierarchy is composed of predictions
that are combinations or specializations of other predictions. The primitive, or base-level
predictions of the hierarchy (those that all the other predictions are derived from) ought
to be those that are valid for very large numbers of objects and are essentially invariant to
viewpoint; such predictions are like the invariant binary relations discussed above and in
[LOWST]. The final or goal predictions ought to be valid for only a few objects and over a
narrow enough range of viewpoints that pose estimate refinement and verification can be
performed effectively.

A useful way to build such a structure is to start with a small set of simple, ubiquitous
predictions and then iteratively search for useful combinations or specializations, eventually
isolating predictions that characterize the projections of specific objects. This builds the
hierarchy in the direction in which the indexing process proceeds through it, generating
successors that seem most useful for discriminating the possibilities associated with each
current node.

Though the major concern of this work is the efficiency of the recognition process,
the pre-recognition compiler design should also avoid combinatorial explosions that, for a
fair-sized model base, would keep it running until the next century. By using this iterative
construction approach, we limit the combinatorial complexity, and hence processing time,
to a manageable level. This is because the system is never performing isomorphism analysis
over large graphs: it is always comparing combinations of small numbers of parts.

5.3.1 Criteria for Selecting Successors

In building the prediction hierarchy, it is important to understand which of the possible
combinations and specializations of simpler predictions are useful to explicitly represent
as nodes in the hierarchy. For maximum efliciency in the search for the exact object and
view, the hierarchy should be in the form of a binary search structure. To achieve this,
each new node added by the compiler should be satisfied by exactly half of the instances
of its prcdecessors (where instances are the possible segment-element maps of a prediction
described in Section 5.2). This would make the new node an ideal test in a binary search
process.

This is roughly what the compiler strives to build. though there is an additional con-
sideration that changes the picture somewhat. The ahsence of a match to a prediction is
not considered here as evidence for the presence of alternative objects or views. For each
alternative subset of possibilities (instances), there should be an associated successor that
requires additional positive evidence in the image in order to be satisfied, i.e., some new
image part that needs to be present. This is because the absence of a match could be due
to noise, instead of the absence of the object; and noise is more likely to prevent matches
than to create spurious matches to a non-trivial relational graph description. For example,
if the recognizer has reached node 8 in Figure 40 and is trying to decide whether the object
projected is a triangular prism or something else, the absence of the triangle match does

-]
(%11

not necessarily mean that it is a projection of some other object, but the presence of an
additional parallelogram in place of the triangle is strong evidence that it is indeed another
object.

Negative evidence is not used for discrimination. Instead, the compiler associates each
subset of instances with a distinct combination successor. The number of successors per
prediction (i.e., the branching factor of the hierarchy) should be kept low since large
branching factors can slow the match search process down. In addition, it is important
that every instance of a prediction be associated with some successor of this prediction.
Whenever there is a match to a non-goal prediction, there should also be a match to at
least one of its successors, so that there can be some path, via a sequence of matches, that
culminates in a goal prediction match. An instance is covered if there is a successor that
is also satisfied by the same object, same view and compatible segment-element bindings
(given the part-whole maps relating predecessor elements to successor elements).

In the ideal case then, there would be two successors per node, each with positive
evidence (such as the triangle or parallelogram above), and together they partition the
prediction instances exactly in half. This ideal case cannot always be met: there may not
be successors that are satisfied by half of the instances, but only by somewhat smaller or
larger fractions; and there may not be a set of successors that partition the instances into
disjoint subsets. Nevertheless, at each iteration the compiler should try to select as small
a set of successors as possible that still cover all the instances of the predictions generated
the iteration before.

5.3.2 Iterative Hierarchy Construction

For the experiment reported here, parallelism and endpoint coincidence are used as
the initial set of primitive predictions since they occur frequently in the objects studied
here, they can be rapidly matched and their combinations can be used to discriminate
between most of the objects and views. The iterative construction process stops when all
of the predictions without successors are either associated with single objects or, if they
are satisfied by projections of more than one object, there are no differences between their
projections that the compiler is capable of representing.

For each iteration of the combination process, the system isolates useful combinations
by (1) finding predictions that often appear together in the same projections, and then (2)
selecting a subset of these commonly occurring combinations that approximately satisfyv
the criteria discussed in Section 4.1

The co-occurrences between predictions are found by noting the amount of overlap
in the view regions of their instances. All instances of all predictions are stored in data
structures called visibility maps. There is a visibility map for each object; the maps are
arrays of cells indexed by the two viewpoint parameters, making a discrete sampling of
the view sphere about the object. Each cell lists prediction instances visible from the
associated viewpoint and object; and with each prediction is a list of cells that contain
it. To find frequent co-occurences between some prediction p and other predictions, the

76

system looks for predictions that appear in the same cells as p and accumulates the total
number of cells for each that do.

Besides visual co-occurrence, an additional constraint is added to the pairs of predic-
tions considered for combination. In order for the resulting successor prediction to a be a
spatially compact and connected structure (instead of corresponding to widely separated
parts of the projection of the object), only pairs that share at least one projected line
segment are considered. For example, the two parallelogram parts of the triangular prism
projection in Figure 38 share a segment.

After finding all commonly occurring combinations at the current level, the compiler
tries to select a small subset that collectively and efficiently cover the instances of the
predictions that they are successors of. The successors are iteratively selected in the
following way:

1. Select the successor that covers the largest number of previously uncovered instances.
2. Update the records of all the instances just covered by this new successor.

Note that this iterative selection process is an inner loop to the iterative process that
is building up the prediction hierarchy level by level. This inner loop works within a level
to select a useful set of successors at that level.

5.4 Example Results

The prediction hierarchy compiler was run on the model base of polyhedral objects
shown in Figure 35. Specialization was used in only a rudimentary way, to distinguish
the tall box from the cube at the very end. All the other predictions were formed by
combination.

The resulting hierarchy is shown diagrammatically in Figure 40. As can be seen, it
is a quite reasonable representation of visual knowledge about these objects, organized
for efficient recognition. Other prediction hierarchies are also possible given the objects
inodeled. For example, node 6 of Figure 40 could alternatively have been the combina-
tion of a triangle with a parallelogram, rather than the U-shaped structure. This might
actually be preferred for greater noise insensitivity, since the parallelogram could afford to
lose more line segments to noise and still distinguish the triangular prism from the other
objects. Since the compiler is a single-pass algorithm. only combining predictions that
have already have been generated, it noticed the triangle and {"-shape combination hefore
the parallelogram was constructed. 1t may be possible to add a post-processing step that
realizes more intelligent combinations than can be isolated in a single-pass system.

5.5 Matching

This section is a brief summary of the matching system currently under development.
The system tries to find matches to the object-specific goal predictions given a prediction

7

hierarchy and matches to the primitive, base-level predictions. Starting with these read-
ily found base-level matches, the basic idea is to repeatedly attempt to extend existing
matches into matches of more complex successor nodes until good matches to goal nodes
are achieved.

The following problems are being investigated in the process of designing this system:

1.

Missing straight-line segments in the image, or those “not seen” by the matcher
because they are mis-measured, can block match extensions that are steps towards
a goal node match.

For a given match, there may be a large tree of direct and indirect successors of
the node matched. The matcher should avoid exhaustively searching this tree for
matches to successors.

Because predictions are often represented as combinations of predecessors that may
themselves be large and complex, the attempt to extend a match to a successor
match can involve a costly search for the other predecessor. These searches should
be avoided, or methods of reducing their cost should be implemented.

. Image clutter can generate a lot of possible match extensions, potentially slowing

down the search for goal matches.

Symmetries in a node’s relational graph description can slow the search for matches
to its successors. There may be many possible locations to check for the match of the
other predecessor. There also can be ambiguities to resolve in the image-successor
match bindings, given the matches to the predecessors.

We believe that a system of the following basic design can handle these problems. It is
a set of asynchronous matching processes that are distributed spatially about the image.
Each process repeatedly attempts to jointly extend pairs of existing matches whose image
segments lie in a spatial zone associated with the process. The extension operation has
the following steps:

o Select a pair of existing matches whose image segments have some non-accidental

relationship, such as those discussed in [LOW8T7|, or matches that actually share an
image segment. Segment sharing can he considered a certain kind of non-accidental
relationship: the identity relation.

Search the prediction hierarchy for common - and possibly indirect - successors to
the pair of nodes matched. This is done using a marker passing and collision detection
scheme.

Attempt to complete a match to the common successor given the pair of predecessor
matches and the part-whole maps between their relational graph elements. The
completion process may involve a search for particular inage segments if the common
successor is indirect.

For typical images, a number of the expected straight-line segments are missing or
mis-measured. In spite of this incomplete information, the objects are often readily recog-
nizable. For a recognition system to detect objects in such data, it must have some ability
to find and accept good partial matches, where the quality of the partial match is some
function of the fraction of well-matched segments. Because the absence of segments may
prevent a good partial match of a direct successor, but not to an indirect successor, the
system should be capable of extending a node’s match to one of its indirect successors.
For example, extending the match of 4 in Figure 41 to a satisfactory match to B may be
impossible; but a match to D, an indirect successor of A, inay be good enough in spite of
the missing segments.

Each node may have a potentially large tree of successors, and matching to a successor
can be involved. Thus the attempt to find matches to direct or indirect successors should
not be an exhaustive search of the tree of possible successors. This is where the strategy
of attempting to jointly extend a pair of existing matches helps: it focuses the search
to intersections of the successor trees of the matched nodes. These intersections tend
to involve much smaller numbers of successors, and their matches are more promising
since fwo predecessors have already been matched. Joint extension of pairs of matches
is especially useful when the nodes have symmetries. In these cases, a thorough search
for a successor, given a match to only one predecessor, may involve checking many image
locations for the match of the other, missing predecessor.

Pursuing joint extensions of pairs of matches does help reduce the amount of effort
the matcher spends in the costly search for complex predecessor matches; but, for the
system to rely on joint extension, pairs of jointly-extendible matches have to be generated.
Also, both members of such a pair should be generated within a reasonable time frame
(i-e., there should not be a long delay between their creations). By following a simple
depth-first policy, the matcher may often attempt a large number of alternative matches
to roughly the same image data, and thus delay the generation of matches over other image
data. This is undesirable because predecessors of a node tend to represent parts of the
node’s relational graph description that are spatially distributed. In other words, jointly-
extendible matches may share some image segments, but they tend to occupy different
portions of the image. Thus, if matches are being attempted in different parts of the
image at roughly the same time and level in the hierarchy, there is a better chance for
jointly extendible pairs of matches to occur and hence a more rapid convergence to a goal
match. This can be done by explicitly allocating the system resources to matching in
distinct spatial zones distributed about the image. This should be done whether or not
the hardware is capable of doing these matching operations in parallel.

A fair number of matches to intermediate nodes may be generated in a complex, clut-
tered image during the pursuit of matches to goal nodes, and thus the number of possible
pairs of matches to which joint extension can be attempted could be large. The answer is
to restrict the joint extensions to pairs that are much more likely to be part of the same
object’s projection. In complex images, this could dramatically reduce the number of pairs
attempted, and these pairs have a much greater chance of being extended. A good heuristic

79

for doing this is to select pairs of matches whose image segments have what Lowe[LOW87]
describes as associations that are not likely occur by accident. For example, the matches
of A and C in Figure 41 share an image segment, which almost always occurs when the
matches are to projections of the same object.

5.6 Pose Estimation and Verification

In most applications of object recognition it is necessary not only to identify the viewed
object, but also to determine its pose (position and orientation) with respect to the cam-
era. Matching using the prediction hierarchy may only determine the approximate view
of an object. However, it does facilitate exact determination of object pose. The corre-
spondence between the matched prediction and the image features can be related back
through the prediction to the original 3D object model, giving a correspondence between
the image features and the object model. From this information can be determined the
parameters of the 3D-to-2D transformation that best matches the 3D object features to
their corresponding 2D image features. What is more, the approximate view associated
with the matched prediction can be used as a good starting point for iterative methods of
solution for the pose parameters, such as is used in Lowe’s SCERPO system [LOWS87].

The exact determination of pose also provides verification of the object identification
achieved by matching through the prediction hierarchy. This is important because it
means that the discriminations made by the prediction hierarchy need not be perfect. It
is sufficient that matching through the prediction hierarchy be conservative, that it not
rule out any true object identifications. Any objects and views erroneously indexed by the
prediction matching can be ruled out by the pose estimation and verification. Of course,
the more false indexing ruled out by the prediction matching, the less work there is to
be done by the pose estimation and verification, but there is clearly a trade-off involved
here. At a certain point it may be more efficient to take a matched general prediction and
verify the objects it implies one by one through pose verification, than to further extend
the match to an object-specific prediction. One advantage of our approach is that this
cut-off point could be determined during the prediction compilation. It is our belief that
normally this cut-off point is quite late, that is, the goal nodes of the prediction hierarchy
would be specific to an object-view, or at most to a few object-views.

Pose estimation for verification is related to Lowe's use of the viewpoint consistency
constraint|LOWST], although he uses it only in the context of single-object recognition.

5.7 Summary

We have described an approach to rapid object recognition from large model bases.
A structure called a prediction hierarchy is used to organize knowledge about the visual
appearance of objects in a form directly usable for rapid indexing of the model and general
view. We present a prototype implementation of the prediction hierarchy compiler and
show its results using a small model base of polyhedral objects. In addition, a recognition

80

system is proposed and discussed that can efficiently search for matches to the object-
specific goal nodes of the hierarchy.

Current work {[BURB89]| includes further development of the recognition system and a
prediction hierarchy compiler capable of specialization. Future directions for this research
include a multi-pass prediction hierarchy compiler that is more intelligent in its selection
of successor nodes and also the compilation of sophisticated control strategies into the
hierarchy.

81

PREDICTION
HIERARCHY
COMPILER

PREDICTION

HIERARCHY

IMAGE 2D MATCHER

DATA

PROMISING

MATCHES

VERIFICATION

AND POSE
REFINEMENT

RECOGNIZED
AND POSITIONED
OBJECTS

Figure 34: The basic recognition system.

82

%%%%%ﬂi&@w@@u@@@
230 f&@@@@ﬁﬁ@@@
=N\ F 22 QOLRHBAT
oo e o e OOy
= 99 ﬁvm OoOoOooomg |
é@ﬁﬁ%%y%@@®ﬁﬁ®®@
70 NS | QP BOOS
i B%“ OO0 000

I
GDQQ@%@@@D@@@

f

= 7

OO

@@@@O@ﬁw@ A0 noe

GEAEBESD SOL @@
OLANADDD 56
@a

YNYANVAY ARV B sl

DCOOANOGO 2
VOLORASOT DY
S£LOO0ADAD S5

NAVANVANR (.

Figure 35: 3D objects used to demonstrate prediction hierarchy

@@@@%

3

\ .
A

=h=lndu) Iu»

N
® 0
=i
A,
Q4
oo

83

\/

>Y 52

33

c = coincident endpoints
p = parallel

(define parallelogram (sl s2 s3 sd4)
(and (coincident sl-head s2-head)
(coincident s2-tail s3-head)
{coincident sl-tail s4-head)
({coincident s3-tail s4-tail)
(parallel sl-tail s3-tail)
(parallel s2-tail sd-tail)
)

Fig. 36: A parallelogram and its relational graph representation. In the internal
representation, the segments have arbitrary but fixed endpoint orderings (head/tail). This
is to differentiate the parallelogram from other, distinct structures such as a four-way

junction (which are otherwise identical).

814

€4

Relative measurements:

—— i —— . — ———————— — ———

u = displacement of p3 from pl in direction along sl,
divided by the length of sl

v = displacement of p3 from pl in direction normal to sl,
divided by the length of sl vaTHA

alpha = angle between sl and s2 measured €1ockwise from sl

s = ratio of size, length(s2}/length(sl)

Relation as extent box in measurement space:

- - —— - ——— ———— - — ———— T ———————

R(sl,s2) = (and (min-u € u € max-u)
(min-v € v € max-v)
(min-alpha € alpha € max-alpha)
(min-s € s € max-s)

)

Figure 37 Representation of image segment relations as an extent
box in space of relative position, orientation and sise
measurementas.

85

r(define parallelogram (sl s2 s3 s4)

(and (coincident sl-head s2-head)
(coincident s2-tail s3-head)
{coincident sl-tail sd4-head)
(coincident s3-tail sd4-tail)
(parallel sl-tail s3-tail)
{parallel s2-tail sd4-tail)
})

{define triangle (sl s2 s3)}

{and (coincident sl-head s2-tail)
(coincident s2-head s3-tail)
(coincident s3-head sl-tail)
))

(define triangqular-prism (sl s2 .. s8)

(and (parallelogram sl s2 s3 s4)
(parallelogram s5 s2 s6 s7)
(triangle s3 s7 s8)

})
(define rhombus (sl s2 s3 s4)

(and (parallelogram sl s2 s3 s4)
(same-size 1 2)

))

Figure 38 Predictions as specializations or combinations of other predictions.

R

Figure 39. A view

Y VWV
VYV
Y'Y VY

(a)

Y'Y VWV

(b)

of the tetrahedron that contains 12 instances of

the endpotnt coincidence prediction. The instances of two
of its derivatives, (a) snake and (b) trihedral junction, are

shown.

Both derivatives cover all coincidence instances,

but the trihedral junction prediction does so with much
fewer instances (4 instead of 12). The snake predic-
tion has three segments connected in a chain that is not
closed in a loop; and the trihedral junction has three
segments with each pair coincident. using the saime end-

points.

w

Y

tetrahedron

triangular
prism

sl/s2 > 2
or
sd4/s3 > 2

Figure 4() The resulting prediction hierarchy compiled from viov.u
of the objects in figure 4. The nodes represent P.l'“('ilf'
tions and arrows indicate combination and specnehm-
tion links. The predictions are represented graphvrally
by segments and dashed lines for parallel relationa.

R8

iteration = 2

iteration = 0 iteration « | prediction = 4

prediction = 1,2 prediction = 3

- 4q iteration = 5

iteration = 3 iteration v
prediction = 4

prediction = 4 prediction = ¢

iteration = 6 iteratio
2 C n =7
prediction = 7 Prediction - ¢

Figure 41. Example run of the matcher using the prediction hi- -

erarchy in Figure 12. The matcher is Initialized (itera-
tion=0) by finding all instances of the initial predictions
(coincidence and parallel). The matcher then iteratively
searches for matches between combinations and special-
izations of already matched predictions and the image.
A prediction unique to the triangular prism object was
matched to the image at iteration 7.

k9

REFERENCES

[ARN83] V.I. Arnold, “Singularities of systems of rays”, Russian Math. Surveys, 38:2, pp.
87-176, 1983.

(BAL82] D. Ballard and C. Brown, Computer Vision, Prentice-Hall, New Jersey, 1982.

(BAL83] D. Ballard and D. Sabbah, “Viewer independent shape recognition”, PAMI, vol
3, no 6, pp. 653-660, Nov 1983.

[BAR78] H. Barrow and J. Tenenbaum, “Recovering intrinsic scene characteristics from
images”, Computer Vision Systems, A.R. Hanson and E.M. Riseman, eds., Academic
Press, New York, pp. 3-35, 1978.

[BARS81] H. Barrow and J. Tenenbaum, “Computational vision,” Proc. IEEE, vol 69, no
5, pp. 572-595, 1981.

(BES86] P.J. Besl and R.C. Jain, “Segmentation Through Symbolic Surface Description”
Proceedings CVPR86, Miami, June 1986, pp. 77-85.

[BEV89] J.R. Beveridge, R.S. Weiss, and E.M. Riseman, forthcoming technical report.

[BIE85] I. Biederman, “Human image understanding: Recent research and a theory”,
Computer Vision, Graphics, and Image Processing, vol. 32, pp. 29-73, 1985.

[BLU73| H. Blum, “Biological shape and visual science”, J. of Theoretical Biology, vol 38,
pp- 205-287, 1973. :

[BOL86] M. Boldt and R. Weiss, “Geometric Grouping of Lines”, CVPR, pp. 489-495,
1986.

[BOLL82] R. C. Bolles and R. A. Cain, “Recognizing and locating partially visible objects:
The Local-Feature-Focus Method”, International Journal of Robotics Research, vol.
1, no. 3, pp. 57--82, 1982.

[BOWS88| J. Stewman and K. Bowver. “Creating the perspective projection aspect graph
of polyhedral objects”, IEEE Second Int. Conf on Computer Vision. Tampa. FL. pp.
494-500, Dec. 1988.

[BRA| M. Brady, J. Ponce, A. Yuille, and H. \sada. “Describing Surfaces”, Proceedings
of 2nd International Symposium on Robotics Research. Hanafusa and Inoue (Eds.).
MIT press, Cambridge, Ma.

[BRA84| M. Brady and H. Asada, “Smoothed local symmetries and their implementation™,
The First International Symposium on Robotics Research, M. Brady and R. Paul, eds.,
MIT Press, Cambridge, 1984.

90

(BRO81a] R. Brooks, Model-Based Computer Vision, UMI Research Press, Ann Arbor,
MI, 1981.

[BRO81b| R. A. Brooks, “Symbolic reasaoning among 3D models and 2D images”, Arti-
ficial Intelligence, vol. 17, pp. 285-348, August 1981.

[BURS6] J.B. Burns, A.R. Hanson and E.M. Riseman, “Extracting Straight Lines”, IEEE
Trans. Pattern. Anal. Mach. Intell., v.8, no.4, pp. 425-455, Jul. 1986.

[BURS8T7a| J. B. Burns and L. J. Kitchen, “An approach to recognition in 2D images of 3D
objects from large model bases”, Technical Report 87-85, COINS Dept, University of
Massachusetts, Amherst, MA 01003, August 1987.

[BUR8THL] Burns, J. B. and L. J. Kitchen, “Recognition in 2D images of 3D objects from
large model bases using prediction hierarchies”, Proc. [JCAI-10, 1987.

[BURS89] J. B. Burns, forthcoming Phd Dissertation, University of Mass., Computer and
Information Science.

[BURS83] P.J. Burt, C. Yen, and X. Xu, “Multi-resolution flow-through motion analysis”,
IEEE CVPR Conference Proceedings, pp.246-252, June 1983.

[CAL85] J. Callahan and R. Weiss, “A Model for Describing Surface Shape”, Proc. IEEE
Conf. Computer Vision and Pattern Recognition, San Francisco, June 1985, pp. 240-
245.

[CAN86] J. Canny, “A computational approach to edge detection”, PAMI, vol 8, no 6,
pp- 679-698, 1986.

[DAVT5] L. Davis, “A survey of edge detection techniques”, Computer Graphics and Image
Processing, vol 4, pp. 248-270, 1975.

[DOLS88] J. Dolan, “The Perceptual Organization of Image Curves”, Technical Report, in
preparation, COINS Dept, University of Massachusetts, Amherst, MA 01003, 1988.

[DOL89] J. Dolan, and R. Weiss, forthcoming technical report.

{(DRAS8T7| B. Draper, R. Collins, J. Brolio. J. Griffith. \. Hanson and E. M. Riseman. ~Toals
and Experiments in the Knowledge-Based Interpretation of Road Scenes™. Proceedings
of the DARPA Image Understanding Workshop. January 1987,

IDRA89| B. Draper. R. Collins. J. Brolio. J. Grifith. \. Hanson. and E. Riseman. “The

Schema System™. International Journal on Computer Vision. 2. pp. 209-250. 1989,

'DUD78! S. Dudani and A. Luk, “Locating straight-line edge segments on outdoor scenes.”
Pattern Recognition. vol 10, no 3, pp. 115-157. 1978.

91

[FER85] F.P. Ferrie, and M.D. Levine, “Piecing Together the 3D Shape of Moving Objects:
An Overview”, Proc. IEEE Conf. Computer Vision and Pattern Recognition, San
Francisco, June 1985, pp. 574-584.

'F1S83] M. Fischler and R. Bolles, “Perceptual organization and the curve partitioning
problem™, Proceedings [JCAI 1983, pp.1014-1018.

GIGS88| Z. Gigus, J. Canny, R. Seidel, “Efficiently computing and representing aspect

! g g 8
graphs of polyhedral objects”, IEEE Second Int. Conf on Computer Vision, Tampa,
FL, pp. 30-39, Dec. 1988.

[HAN87] A.R. Hanson and E.M. Riseman, “The VISIONS Image Understanding System”,
in Advances in Computer Vision, Chris Brown, Ed., Erlbaum Press, 1987.

[HAR84] R.M. Haralick, “Digital step edges from zero crossings of second directional
derivatives”, IEEE Trans. Pattern Anal. Mach. Intell., vol 6, pp. 58-68, 1984.

(HER84] M. Herman and T. Kanade, “The 3D MOSAIC scene understanding system:
Incremental reconstruction of 3D scenes from complex images”, DARPA Image Un-
derstanding Workshop, pp. 137-148, 1984.

'HOF83] D.D. Hoffman and W. Richards. “Parts of Recognition”, MIT AI Memo 732,
Dec. 1983.

'HON83| T.H. Hong, M.O. Shneier, R.L. Hartley, and A. Rosenfeld, “Using pyramids to
detect good continuation”, IEEE Transactions on Systems, Man, and Cybernetics,
vol 13. pp. 631-635, 1983.

[HUT87] D.P. Huttenlocher and S. Ullman, “Object recognition using alignment”, IEEE
Proc. First Int. Conf. on Computer Vision, London, pp. 102-111, June 1387.

[KAMS87| Behzad Kamgar-Parsi and Behrooz Kamgar-Parsi, “A Nonparametric Method
for Fitting a Straight Line to a Noisy Image”, University of Maryland Technical
Report, CAR-TR-315, 1987.

[(KANTT] T. Kanade, “Model representation and control structures in image understand-
ing,” Proc IJCAIL-5. August 1977.

'KER81! Y.L. Kergosien. “La famille des projections orthogonales dune surface ot «es
singularities”™, C.R. Acad. Sc. Paris. 292 | pp. 929-932. 198].

(KOET6] J.J. Koenderink and van Doorn. \.J.. *The singularities of the visual mapping”.
Biological ("vbernetics, 24, pp. 51-59. 1976.

'KOE81! Jan J. Koenderink, “What Does the Occluding Contour Tell Us About Solid
Shape?”. Perception, vol 13, 1984, pp. 321-330.

[LEE78] E. Leeuwenberg, “Quantification of ertain visual pattern properties: Salience,
transparency, similarity” Formal Theories of Visual Perception, E. Leeuwenberg and
H. Buffart, eds., John Wiley and Sons, pp. 277-298, 1978.

[LOWS82] D.G. Lowe, and T.O. Binford, “Segmentation and aggregation: An approach to
figure ground phenomena” DARPA Image Understanding Workshop, 1982, pp. 168-
178.

[LOWS83| D.G. Lowe and T.O. Binford. “The perceptual organization as a basis for visual
recognition”, Proceedings of AAAI-83, Washington, DC, pp. 255-260, 1983.

'ILOWS85] D.G. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic
Publishers, 1985.

[LOWS8T7] D. G. Lowe, “The viewpoint consistency constraint”, International Journal of
Computer Vision, vol. 1, pp. 57-72, 1987.

[MARS82] D. Marr, Vision, Freeman, San Francisco, 1982.

[MCC80] (. McCrory, “Profiles of surfaces”, preprint, University of Warwick, England,
1980.

IMCKS85] D.M. McKeown and J.F. Pane. “Alignment and Connection of Fragmented Lin-
ear Features in Aerial Imagery”, CMU Tech. Report CMU-CS-85-122, 1985.

[NEV80] R. Nevatia, and K.R. Babu. “Linear feature extraction and description”, CGIP,
v.13, pp. 257-269, 1980.

[ONEG6] B. O'Neill, Elementary Differential Geometry, Academic Press, New York, 1966.

[REY87] G. Reynolds, and J.R. Beveridge, “Searching For Geometric Structure in Images
of Natural Scenes”, UMASS COINS Tech. Report 87-03, 1987.

[RIS86] E.M. Riseman and A.R. Hanson, “A Methodology for the Development of General
Knowledge-Based Vision Systems”, UMASS, COINS Tech. Report 86-27, July 1986.

[RIS87] E.M. Riseman, A.R. Hanson, and R. Belknap. “The Information Fusion Prablem:
Forming Token Aggregations Across Multiple Representations™. UNASS COINS Tech,
Report 87-4.1. 1987.

[ROS] R. Langevin. G. Levitt, and H. Rosenberg. “Herissons et Multiherissons™, preprint.

iROS86] :\. Rosenfeld. “Pyramid algorithms for perceptual organization™. Behavior Re-
search Methods, Instruments, and ('omputers. vol 18, no 6, pp. 595-600, 1986.

SCO84| R. Scott, “Graphics and prediction from maodels”. Proceedings: I 7 Workshop,
pp. 98-106. 1981,

93

'[STA88| L. Stark., D. Eggert, and K. Bowyver, “Aspect graphs and nonlinear optimization
in 3-D object recognition”, IEEE Second Int. Conf on Computer Vision, Tampa, FL,
pp- 501-507, Dec. 1988.

[STE87T] K.A. Stevens, and A. Brookes, “Detecting structure by symbolic constructions
on tokens”, Proc. CVGIP, vol 37, pp. 238-260, 1987.

' THO87] D. Thompson and J. Mundy, “Three-dimensional model matching from an un-

constrained viewpoint”, Proceedings IEEFE International Conference on Robotics and
Automation, pp 208-220, 1987.

[TSO82; J. Tsotsos, “Knowledge of the visual process: Content, form and use,” Proc. 6th
International Conference on Pattern Recognition, pp. 6514-669, Oct. 1982.

‘'TSO86] J. Tsotsos, “Representational axes and temporal cooperative computation,” in
M. Arbib and A. Hanson (eds.), Vision, Brain and Cooperative Computation, MIT

Press. Cambridge, MA, 1986.

'WEI86]| I. Weiss, “Straight Line Fitting in a Noisy Image”, University of Maryland Tech-
nical Report, CAR-TR-231, 1986.

‘WEIS86! R. Weiss and Al. Boldt,“Geometric grouping applied to straight lines”, Proc.
IEEFE Conf. Computer Vision and Pattern Recognition, Niami Beach, pp. 489-495,
June 1986.

[WEIS85] R. Weiss, E.M. Riseman, and A.R. [lanson,“Geometric grouping of straight
lines”. Proc. DARPA Image Understanding Workshop, Miami Beach, FL, pp. 443-
447, 1985.

[WER23| M. Wertheimer, “Untersuchungen zur Lehrer von der Gestalt. II,” Psychologis-
che Forschung, vol 4, pp. 301-350, 1923.

[WIL88] L.R. Williams and A.R. Hanson. “Translating optical flow into token matches and
depth from looming,” Proc. Int. Conf. on Computer Vision, Tampa, pp. 441-448,
April 1988.

[WIT83] A. Witkin “Scale-space filtering™.Proceedings of 1JC AL pp. 101910210 kol
sruhe. 1983.

YUI83I A.L. Yuille. and T. Poggio. “Scaling Theorems for Zero-crossings™. MIT AL
Memo 730, [983.

91

