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Abstract (continued)

unforced case. The measured coherent Reynolds stresses were observed to
change sign in the neighborhood of the neutral point as predicted from

linear stability theory. The extent of the validity of linear stability
theory was investigated. The wake was also forced with a sinuous disturbance
of lower Strouhal number that was amplified over the entire range of
measurements. The linear and nonlinear evolution of the sinuous wave was
studied. A perturbation analysis was carried out to determine the interaction
of the fundamental wave with the mean flow and the generation of the first
harmonic. The measured mean flow distortion and first harmonic were
reasonably well predicted from the analysis.
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The varicose mode, which is often ignored because its amplification rates

are considerably less than those of the sinuous mode, was also investigated
experimentally. Combined model forcing experiments on the wake were
undertaken to study the interaction between modes. No nonlinear interactions
between the two modes seemed to be present, at least in the experiments
performed. An eddy viscosity model, coupled with the slowly diverging linear
equations, predicts the streamwise variation of both modes reasonably well
and describes the transverse distributions of the perturbation amplitudes

for both modes, but it fails to predict the distribution of phase for the
varicose mode.
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INTRODUC

The stability of free shear flows has been studied by many investigators
in the last several decades. The challenge of understanding the transition
phenomenon provided the initial incentive to apply the ideas of stability theory
to two-dimensional wakes. The laminar wake velocity profile has inflection
points and is dynamically unstable. The stability of the mean velocity profile
in a turbulent wake is of interest because it also contains inflectiosn points.
In the far wake flow field, the turbulent fluctuations are quite smwall in
comparison to the instantaneous streamwise velocity component, so the mean
velocity profile is very similar to that of the instantaneous velocity. The two-
dimensional turbulent wake flow is a good test case for examining the possible
link between the instability modes of the Orr-Sommerfeld equation and the large
scale coherent structures observed in fully turbulent wake flows.

The present work, in many respects, is a continuation of the work described
in Wygnanski, Champagne and Marasli (1986). The main objectives of the present
research were to experimentally study the response of a turbulent wake of a flat
plate to spatially traveling disturbance waves, to determine the applicability
of linear stability theory to describe the evolution of the disturbance waves,
and to attempt to describe the non-linear effects of mean flow distortion and
the generation of a harmonic using a perturbation analysis.

The Orr-Sommerfeld equation admits two solution modes for the two-
dimensional plane wake. These are the sinuous mode with antisymmetric streamwise
disturbances and the varicose mode with symmetric streamwise disturbances. The
varicose mode is often ignored because its amplification rates are considerably
less than those of the sinuous mode. OQur earlier measurements, presented in
Wygnanski et al. (see attached paper), were limited to one sinuous case with a
particular frequency and amplitude. 1In the present study, both sinuous and
varicose disturbances of various frequencies and amplitudes were introduced into
the turbulent wake of a flat plate. For details on the plate, see the attached
papers.

SINUQUS MODE

A 40Hz sinuous wave was first studied. The sinuous disturbance waves were
introduced into the wake by oscillating a small flap attached to the trailing
edge of the plate. The unforced (base) flow field was measured with the flap
at rest aligned with the axis of the plate. The 40Hz wave was chosen as a linear
stability analysis of the base flow indicated that this wave would be amplified
over the entire range of measurements. A triple decomposition was used to
determine the coherent (wave), random, and mean parts of any velocity component
signal. The forcing level, defined as (Grms/uo) max, where u, is the centerline
velocity deficit, was 15% at the initial measurement location, x = 10 inches.
U is the coherent or wave contribution to the streamwise velocity component.
This forcing level was termed low. The mean growth rate of the forced wake was
initially the same as that for the unforced wake, but as the introduced
disturbance wave amplifies as it moves downstream, the rate of growth of the wake
increases. The coherent Reynolds stress augments the turbulent Reynolds stress
which in turn can be related to the rapid divergence of the forced wake through
the time averaged streamwise momentum equation (see Marasli, 1989). In the range
of measurements considered, the nonlinear interactions are not strong enough to
affect the shape of the normalized mean velocity profile, but the initial effects




of nonlinearity are observed in the increased spreading rate of the wake.
Stability calculations to determine amplification curves for both the unforced
and forced cases were performed. The transverse distribution of the amplitudes
and phases of the streamwise and lateral velocity components of the perturbation
wave were computed from linear stability theory using the measured mean velocity

profiles. Both wviscous and inviscid calculations were made, but as the
eigenfunction shapes for the sinuous mode are relatively insensitive to Reynolds
number, only the inviscid results are required. Agreement between the

experiments and theory is excellent especially in the early stages where the
nonlinearity has not affected the flow significantly. Finally, a perturbation
analysis along the lines of that presented by Cohen and Wygnanski (1987) was
developed to study the interaction between the fundamental wave and the mean flow
and the generation of the first harmonic. The details of the analysis and
comparison with experimental results are presented in Marasli (1989). The
general features of the mean flow distortion and first harmonic were predicted
successfully by the analysis.

Sinuous disturbances at several amplitudes and frequencies were introduced
into the wake to attempt to control the growth rate of the turbulent wake behind
the flat plate. The Strouhal numbers of the disturbances were specially chosen
so that the downstream location of the neutral point (where the spatial
amplification rate obtained from linear stability theory vanishes) was well
within the range of measurements. The streamwise variation of the half width
of the wake and the centerline velocity deficit was dependent on the amplitude
level and showed dramatic deviations (starting from the neutral point) at large
forcing levels from the well known square root behavior of the unforced case.
The measurement coherent Reynolds stresses were observed to change sign in the
neighborhood of the location of the neutral point as predicted from linear
viscous theory. Data sets with similar amplitude of forcing but different
frequencies and free stream velocities collapse on one curve by a suitable
definition of Strouhal number. The extent of the validity of linear theory to
describe the problem is discussed in an attached paper titled "Effect of
Spatially Traveling Sinuous Waves on the Growth of a Two-Dimensional Turbulent
Wake". This paper has been accepted for presentation at the Fourth Asian
Congress of Fluid Mechanics to be held in Hong Kong this summer.

VARICOSE MO

In our earlier experiments reported in Wygnanski et al. (1986), we studied
the sinuous mode in the wake of the flat plate. Some aspects of the evolution
of the disturbance waves, like the local transverse profile shape of the
disturbance eigenfunction and the streamwise growth of the disturbance waves,
were predicted well by linear, inviscid stability theory. It is conjectured that
a combination of many waves of different frequencies, generated from the
instability of the mean velocity profile, eventually constitute the turbulent

field. The centerline streamwise turbulence intensity in a two-dimensional
turbulent wake is non-zero while the u-component of the sinuous mode is
identically zero on the centerline. Therefore, the sinuous mode alone was

thought by Wygnanski et al. to be inadequate to describe the turbulent field.
Thus the varicose mode was presumed to have some importance in the overall
picture, since the u-component of this mode has a maximum at the centerline.
Streamline calculations performed by Wygnanski et al. using a combination of the
two modes revealed structures that resembled the smoke wire picture taken in the
unforced wake of the flat plate. Further, flow visualization pictures taken in

—————

[

-~ t \w
/ n3103d
! .t

B




the near wakes of various bodies by several authors have shown flow patterns that
could be attributed to the varicose mode. Therefore, an experimental
investigation of the varicose mode was undertaken to clarify some of the above
points.

It should be pointed out that the presence of the varicose mode is not
necessary for non-zero turbulence intensity at the wake centerline. The
nonlinear interaction of a fundamental sinuous wave with itself generates a first
harmonic that has a symmetric u-component with a maximum at the centerline.
This would support the contention that the sinuous mode alone is in fact adequate
to describe the entire turbulent field.

The varicose mode was generated by oscillating two flaps 180° out of phase.
The flaps were placed symmetrically above and below the plate. The experiments
demonstrated that, although it is possible to generate a nearly pure symmetric
disturbance wave, it is very difficult to do as the flow is very sensitive to
the slightest asymmetries which might be present in the experiments. These
asymmetries are preferentially amplified, resulting in the eventual distortion
of an initially prominent symmetric wave. It was therefore necessary to
decompose phase averaged measurements of the streamwise component of the velocity
fluctuations into their symmetric and antisymmetric parts, and the results were
compared with the appropriate theoretical eigenfunctions from linear stability
theory. The lateral distribution of the amplitude and the phase of each mode
agree reasonably well with their theoretical counterparts from the Orr-Sommerfeld
equation. Slowly diverging linear theory predicts the streamwise variation of
the sinuous mode quite well, but fails to do so for the varicose mode. An eddy
viscosity model, coupled with the slowly diverging linear equations, predicts
the streamwise variation of both modes reasonably well and describes the
transverse distributions of the perturbation amplitudes for both modes, but it
fails to predict the distribution of phase for the varicose ode. Further details
can be found in the attached JFM paper "Model Decomposition of Velocity in a
Plane, Turbulent Wake".
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Modal decomposition of velocity signals in a plane,
turbulent wake

By B. MARASLL F. H CHAMPAGNE AND LLJ. WYGNANSKI

Department of Aerospace and Mechanical Engineering. University of Arizona.
Tueson. AZ 85721, USA

(Received 9 October 1986 and in revised form 3 March 1988)

The Orr-Sommerfeld equation admits two solution modes for the two-dimensional
plane wake. These are the sinuous mode with antisymmetric streamwise fluctuations
and the varicose mode with svmmetric streamwise fluctuations. The varicose mode
is often ignored because its amplification rates are considerably less than those of the
sinuous mode. An experimental investigation of the varicose mode in a two-
dimensional turbulent wake was undertaken to determine if this mode of instability
agrees as well with linear stability theory. as did the sinuous mode in previous
experiments (Wygnanski. Champagne & Marasli 1986). The experiments demon-
strated that. although it is possible to generate a nearly pure symmetric
disturbance wave. it is very difficult to do as the tlow is very sensitive to the slightest
asymmetries which might be present in the experiments. These asymmetries are
preferentially amplified. resulting in the eventual distortion of an initially prominent
symmetric wave. It was therefore necessary to decompose phase-averaged measure-
ments of the streamwise component of the velocity fluctuations into their
symmetric and antisymmetric parts. and the results were compared with the
appropriate theoretical eigenfunctions from linear stability theorv. The lateral
distribution of the amplitude and the phase of each mode agree reasonably well with
their theoretical counterparts from the Orr-Sommerfeld equation. Slowly diverging
linear theory predicts the streamwise variation of the sinuous mode quite well. but
fails to do so for the varicose mode. An eddy-viscosity model. coupled with the slowly
diverging linear equations. predicts the streamwise variation of both modes
reasonably well and describes the transverse distributions of the perturbatior
amplitudes for both modes. but it fails to predict the distribution of phase for the
varicose mode.

1. Introduction

Large-scale coherent structures in the small-deficit wake behind a flat plate were
observed by Wygnanski. Champagne & Marasli (1986) using combined hot-wire and
flow-visualization techniques.t Evidence was presented that these large-scale
structures. which resemble the Kdrman vortex street in appearance. can be described

t Note the tollowing corrections to Wygnanski ¢t al. (1986):

(i) In tabie 1. the value of 4 for the 6.35 mm diameter cvlinder at a Revnolds number of 3800
is 3.31 mm. not 2.64 mm.

(ii) Equation (2.3) should read :

PI‘EI)—PZ(E2)

Fiey=
(‘43.2_‘411)

Uiy=PEH)+4,, V.
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by linear stability theory. Theoretical calculations based on linear. inviscid stability
theory showed excellent agreement with the measured transverse distributions of
amplitudes and phases of externally imposed sinuous waves on the fully turbulent
wake behind the tlat plate. When the divergence of the mean low was incorporated
into the analvsis. the spatial amplification of the sinuous waves in the streamwise
direction was successfully predicted. Although the sinuous disturbances represent
the predominant mode of instability from linear theory. the possible importance of
the varicose disturbances (those that have a svmmetrical streamwise component
about the wake centreline) was considered. Varicose disturbances have relatively
smaller amplification rates and are usually neglected in stability analyses. The
varicose mode. however. may at times dominate the shape of the large structures
(Papailiou & Lykoudis 1974: Rockwell. Ongoren & Unal 19853: Williamson 1985)
and. even when the prevailing instability is mainly sinuous in nature. a small
varicose component was shown to alter the gross behaviour of the calculated
streakline patterns (Wygnanski ¢t al. 1983). The latter provided the initial motivation
for the present study. the purpose of which is to investigate the significance of the
varicose mode in two-dimensional. small-deficit. turbulent wakes. One should note
that the varicose mode has not been investigated experimentally in either laminar or
turbulent wakes. and its existence was by no means assured. particularly in a fully
turbulent environment.

2. Description of experiments

The wakes were generated in the University of Arizona's low-speed wind-tunnel
facility. The zero-pressure-gradient test section is nominally 61 by 91 cm in cross-
section and 6 m long. The speed in the test section was 7.5 m/s for the present
experiments. while the free-stream disturbance level in the streamwise velocity
component was .03 %. The tunnel is equipped with chilled water coils to maintain
the temperature of the flow constant. The flat-plate wake generator was a solid
aluminium plate 30 cm long. 61 cm wide. and 0.635 cm at its point of maximum
thickness. The leuding edge was rounded. and the trailing edge was tapered to | mm
thickness over the last 10 cm of the plate surface. Trip wires. placed 3 ¢m from the
leading edge. generated a turbulent boundary layer before the tapered section was
reached. The Reynolds number based on the momentum thickness. #. was
approximately 1400 for the present data.

In the previous experiments by Wygnanski et al. (1986). sinuous waves were
generated by oscillating a small flap (3 mm in length) hinged to the trailing edge of
the plate. For the present experiments. sinusoidal varicose disturbances. which are
svmmetrically distributed about the wake centreline. were generated by oscillating
two small Haps 180° out of phase. The flaps were placed symmetrically above and
below the plate. approximately 18 cm from the leading edge and just upstream of the
tapered trailing-edge region of the plate. as indicated by the sketch shown in figure
1. The insert shown in tigure 1 presents details of the flap arrangement. The dashed
lines show the maximum range of motion of the laps. which was set such that the
tlaps did not touch the plate. Scotch tape was used as the hinge to attach the flaps
to the ramps. Nvlon ribbons were used to connect the downstream edge of each side
of the laps to matched loudspeakers. which were located on each side of the plate
just outside the tunnel sidewalls. The forcing level is specified by the maximum value
of the measured r.m.s. of the streamwise component of the perturbation wave at
xr/f = 200, For the varicose mode. the maximum occurs at the centreline.
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FiGURE 1. Schematic of plate and wake defining the nomenclature. The insert shows the details
of the lap arrangemeant.

3. Theoretical background
The instantaneous streamwise (u) component velocity signal is represented by

U=C+i+u. (1)
where [ is the mean or time-averaged part. i is the periodic wave contribution. and

u’ is the turbulent part (Revnolds & Hussain 1972). Another quantity that will be
referred to often is the total fluctuating signal.

u=a+u. 2)

Assume that the perturbation stream function for a wavy disturbance super-
imposed on a parallel flow U(y) has the form

U(X. p.t) = Re[P(y) e!>¥#]. 3

where X =x/Ly.n=y/Ly.p=2nfL,/U, is the non-dimensional frequency and
a2 = a,+ia, is a non-dimensional complex quantity whose real part represents the
wavenumber while its imaginary part represents the spatial amplification rate: x is
non-dimensionalized by L,. The growth or decay of such disturbances. as long as they
remain sufficiently small to permit linearization of the equations of motion. are
governed by the Orr-Sommerfeld equation which. in non-dimensional form. is given

) . ” 3 vt l N 3 g
R L eI ()

X
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where {'* = (/U Re is the Reynolds number of the basic flow. chosen here to be
U, Ly/v:U, is the free-stream velocity : L, is the wake half-width (see figure 1): and
v is the kinematic viscosity.

At large values of the transverse coordinate. i.e. p -+, {'*— 1, and U'*" =0,
equation {4) reduces to
¢ =[P (m+a’]g"+ a2ty é = 0. (3)

where y¥(n) = ia Re (['* — p/a) + a®. This equation has four independent solutions for
each side of the flow. which can be described by

1 4
=3 d,e"” as p->—x. dny= X B,e" as p—+x. (8)
n=l ne=i

2. Py =Ey(—
2. @3 =ty(+x)

where P =

I+ I+

N2 =

The disturbances must decay exponentially with increasing distance from the
centreline of the wake. and this decay leads to 4, = 4, = B, = B; = 0.

In order to satisfy these boundary conditions. a shooting technique described by
Betchov & Szewczyk (1963) is used for low Revnolds numbers (L', L,/v < 800). For
large Reynolds numbers, a Gram—Schmidt orthonormalization technique is used. as
described by Bellman & Kalaba (1983) and utilized by Wazzan. Okamura & Smith
(1968) and others.

The inviscid case is much simpler and the boundary conditions are

¢ tiag = 0. (7)

for p — £ . which requires the disturbance to decay exponentially on both sides of
the wake.

4. Generation of varicose mode

It was extremely difficult to generate purely symmetrical disturbances because
any lack of symmetry in the generating mechanism resulted in a combination of
modes. The results of one attempt to generate a pure varicose mode are given in
tigure 2. Data on the transverse distributions of @#*/ui for downstream locations in
the range 100 < r/6 < 1400 are shown. The flaps were driven 180° out of phase at
35 Hz. and a rake of nine hot wires was used to obtain the data. This excitation
frequency corresponds to a Strouhal number based on momentum thickness. St =
f8/0 .. of 0.0127. The maximum value of the r.m.s. of the u-component of the
perturbation velocity at x/68 = 200 was (& ,/%)max = 11.7%. The data indicate
that the flow is self- preserving, but the self-preserving distribution for this case
differs slightly from that for the unforced case (1'2/uf). which is shown in figure 3 for
comparison. The flow in both cases is fully turbulent and. in the forced case. only
~ 10% of the total fuctuations are coherent. which is also retlected by comparing
the maximum value of (d+ u)2/u? for the forced case and w«?/u} for the unforced
case. The ratio of @4, /it ,, is 0.76 for the unforced case and 0.80 for the forced case.
One should note that. in general. due to the presence of the artificially introduced
coherent motion. the flow is not expected to be as self-preserving as the unforced
case. The fact that it is should be attributed to the low level of forcing, which perhaps
justifies the application of linear theory.

The mean velocity distributions for each wake are self-preserving. although the
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FicURE 2. The measured distribution of #*/u4; for the varicose forced wake. Different syvmbols
represent different downstream locations in the range 100 < x/A < 1404).
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FicUrRE 3. The measured distribution of #%/u} for the unforced wake

wakes developed at slightly different rates in the downstream direction. The
streamwise development of the characteristic scales u, and L, can be expressed as

I, _x—r, ()
w, | AW

2 —

where W, and 4, are constants for a given self-preserving wake. The values of W, and
d, for the unforced wake are 1.68 and 0.304. respectively : while those for the varicose
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FIGURE 4. (@) The amplitude distributions of the u-component of the disturbance wave for f = 35
Hz: A. phase-averaged measurements: ——. theoretical varicose L, is the value of L, at r/0 =

1390. (b) The phase distributions of the disturbance wave: [J. phase-averaged measurements: ——.
theoretical varicose.

forced wake are 1.62 and 0.312. The mean field is therefore affected slightly by the
forcing. The virtual origin r, = 0 and the momentum thickness # = 2.9 mm for all
sets of data presented in this paper. The self-preserving mean velocity profiles are,
however. effectively identical for the two wakes. That is. plots of the self-preserving
function f(y). defined by
e A CA) :
f(r/)——u(—)——exp[ 0.637 9% —0.05671]. (10)
0

are representative of the profiles for the two wakes.

The distributions of the amplitudes and phases of the velocity perturbations
associated with the varicose waves are shown in figure 4(a. b) for five downstream
locations. The data. shown by the symbols. were obtained by recording the velocity
signal together with the sinusoidal signal activating the flaps. The velocity signals
were phase-averaged over 300 cycles of the flap motion. and the Fourier transform
applied on the phase-averaged data provided the amplitudes and phase estimates of
the spectral elements of the coherent velocity field. The subscript f denotes the
component at the fundamental forcing frequency. The abscissa in the figures is
dimensional y and the scaling is identical in all figur.s. The ordinate in figure 4(a) is
normalized amplitude and in figure 4(b) is relative phase shift. The results are
displayved in this form to indicate the downstream evolution of the wave. The solid
lines represent the theoretical results computed from inviscid. linear stability theory
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Ficere 5. The downstream growth of the centreline value of the «-component disturbance
amplitude. f =35 Hz. A. measurements: —. theoretical linear theory including effects of mean

How divergence.

using the local measured mean velocity profiles. The measured and theoretical
amplitude results are normalized by their respective maxima for each downstream
location. The disturbance wave remained symmetric for more than 1000 momentum
thicknesses before becoming contaminated bv asymmetries. There is reasonable
agreement between the experimental and theoretical results. even though the wake
is fully turbulent. Some of the tine details. such as the minor lobes closest to the
centreline shown in the theoretical curves. are not evident in the experimental
results. These lobes will subsequently be shown to be related in part to the use of the
inviscid approximation.

Another set of measurements was taken at a higher excitation frequency of 50 Hz.
St = 0.0179. which according to linear theory should evolve sooner. The forcing level
at the initial measuring station x/6 = 200 was (d,,,,/%y)max = 11.53%. Again. the
agreement between the experimental and theoretical amplitude and phase
distributions was satisfactory. In this case. the disturbance wave was not detectable
bevond &/6 > 700.

The success of inviscid linear theory ends for the varicose mode when the
streamwise growth of the disturbance is considered. A comparison between the
experimental and theoretical results for the 35 Hz case is shown in figure 5. The
theoretical prediction includes the effects of the divergence of the mean flow using the
analysis presented by Wygnanski et al. (1986). The theoretical results indicate a
monotonic growth of the amplitude of &, on the centreline of the wake. whereas the
measurements show a decrease. This discrepancy will be discussed in a subsequent
section.

The experiments demonstrated that it is possible to generate a nearly pure
symmetric disturbance wave. The difficulty encountered in doing so indicates that
the flow is very sensitive to the slightest asvmmetries which might be present in the
experiments. These asymmetries are preferentially amplified. resulting in the
eventual destruction of an initially prominent symmetric wave. It was therefore
evident that the total phase-averaged velocity signal should be decomposed into its
symmetric and antisvmmetric modes in order to study the downstream evolution
and interaction.
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FIGURE 6. (a) The transverse distribution of the amplitude and phase of the forced wave in polar
form. () As (a) but presented in terms of real and imaginary parts. Svmbols represent data. while
the solid lines represent the curve fit to data.

5. Decomposition procedure

To decompose the phase-averaged data into modes. we shall take advantage of the
fact that the sinuous and varicose modes have #-components that are odd and even
functions. respectively. of y. Therefore. if we separate the measured perturbations
into odd and even parts. we may have a means of separating the sinuous and varicose
modes. The amplitude and phase distributions of the separated parts would then
have to be examined and compared to the theoretical distributions of the sinuous and
varicose modes.

The decomposition procedure is given as follows. First. we measured the transverse
distribution of the phase-averaged u-component. i. using an array of nine hot wires.
Typically. 36 points were used to define a distribution. The phase-averaged data for
each y-position was Fourier transformed to determine &, the component of the
velocity perturbation associated with the forced wave at the forcing frequency. The
transverse distribution of the amplitude and phase (polar form) of &, are shown in
figure 6 (a) for some example data. The triangles and squares represent the data. The
same data are shown in figure 6(b) but in terms of their real and imaginary parts.
where the subscripts r and i represent real and imaginary. respectively. To obtain the
odd and even parts of these distributions. the centreline location was estimated
using the measured mean velocity profile. Then, as we generally did not have data
at exactly equidistant positions about the centreline. we fitted a curve to the
measured data. Fourier series in y (or 5) were used as a curve fit to the real and
imaginary parts separately. The fitted curves are shown for the example data by the
solid lines in figure 6(h). The curve fit to each was separated into its odd and even
parts. indicated in figure 7 (a. h) by the dashed lines and solid lines. respectively. The
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(@) (b) ()

B

n n
FicvrE 7. (2) The odd and even parts of the curve fit: ---. odd part. —. even part. () As in (a)
but expressed in polar form. (¢) —. superposition of odd and even parts: symbols represent original

data.

respective odd and even parts are expressed in polar form in figure 7(b). while their
superposition, which restores the original data. is shown in figure 7(c) by the solid
lines. The symbols in figure 7 (c) represent the original data. which agree well with the
estimated distributions obtained from the curve fits to the real and imaginary parts.
This agreement demonstrates that the curve fitting was done satisfactorily without
introducing any bias. Note. for the example data. that the amplitude distribution
has a large even component. although it is asymmetric. One should also recognize the
resemblance of the decomposed parts. shown in figure 7(b). to the sinuous and
varicose modes computed from linear stability theory.

6. Combined modal forcing of the wake

By applying a small phase difference to the relative motion of the two flaps. a
sinuous component was also introduced. This provides a means of simultaneousiy
forcing the wake with both modes to study their possible interaction. The results of
combined forcing at a frequency of 28 Hz (St = 0.0109) in terms of the lateral
distribution of #/u{ are shown in figure 8. The forcing level (&.mq/ o) max Was 12.0%
at x/6 = 200. The flow appears to be self-preserving. but the @* distribution is
asymmetric. The mean velocity profile retains its symmetry. and the mean spreading
rate is given by the values of W, and 4, equal to 1.61 and 0.312. respectively. Again.
the amplitude of the coherent fluctuations is small. and the wake maintains a nearly
self-preserving form.

The measured amplitude and phase distributions of 4, for five downstream
locations are shown in figure 9. The ordinate for each is the normalized amplitude of
4;. The abscissa is y and has the same scale for each plot. The wake growth with x
is evident. The amount of asymmetry changes initially with z but appears to remain
nearly constant in the far wake (x/6 > 750). The solid lines in figure 9 will be
discussed at the end of §7. These distributions were decomposed into their odd and
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FicURE 8. The measured distributions of @*/u? for the forced wave. Combined mode forcing.
f =28 Hz.
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FicURE 9. (a) The amplitude distributions of the u-component of the disturbance wave: A. the
measured phase-averaged results: ——. linear superposition of modes using equation (11). L, is the
value of L, at £/6 = 1310. () The phase distributions of the u-component of the disturhance wave:
0. measured: . superposition of theoretical modes.
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FicURrE (0. (a) The amplitude distributions of the antisymmetric component : A, measured: —,
theoretical sinuous. L, is the value of L, at r/6 = 1310. (b) The phase distributions of the
antisvmmetric component . [1]. measured: ——. theoretical sinuous.

even parts. The resulting odd part for each downstream location is plotted in figure
10(a). designated by triangles. The ordinate is the normalized amplitude and the
abscissa is y. again. The solid lines represent the normalized amplitude of the
theoretical sinuous mode computed from linear. inviscid stability theory using the
measured mean velocity profiles. The comparison between the theoretical and
measured phase distributions is shown in figure 10(h). The agreement hetween the
measured odd parts and the theoretical sinuous mode is excellent. Thus. the
measured odd part undoubtedly corresponds to the sinuous mode obtained from the
stability theory.

The amplitude and phase distributions for the even parts at each downstream
location are shown in figure 11 (a, b). The solid lines represent the theoretical varicose
distributions. The agreement is quite satisfactory. though it is not as good as for the
sinuous model. but the even part appears to correspond to the varicose mode of linear
stability theory.

The relative intensity of the two modes was obtained by integrating the amplitude
distributions across the flow for each mode and taking the ratio of the two. The
downstream evolution of the ratio is shown in figure 12. Initially. the amplitude of
the varicose mode is about twice that of the sinuous mode but. in accordance with
linear theory (parallel flow). the sinuous mode eventually dominates and an
equilibrium ratio of 4./.4, = 0.5 is reached for £/ > 800. at least for this particular
experiment. [t is surprising that a non-vanishing constant ratio is achieved. but the
generality of this intriguing result is vet to be established.
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FioURE 12. The relative ratio of the two modes.

The spatial growth of the maximum of the sinuous and varicose components of the
disturbance wave is shown in figure 13. The slowly diverging analysis presented in
Wygnanski et al. (1986) was used to obtain the theoretical prediction for each mode
represented by the solid lines. The growth of the sinuous mode is predicted quite well
by linear theory. as it was in the case presented by Wygnanski ¢f al. (1986). The
growth of the varicose mode is not well predicted. however. which was also the case
for the purely varicose forcing presented previously. An interesting point to note
regarding t 2 spatial amplification of the two modes is that. for the same mean tlow
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FicURE {3. The spatial variation of the maximum value of 4, for f = 28 Hz for (a) the sinuous
mode and (b) the varicose mode: A. measured: —. inviscid: --~. Re, = 30.

and frequency. the varicose mode is predicted to amplify more than the sinuous
mode. although the growth rates from parallel theory are much larger for the latter.
This point is confirmed by T. F. Balsa (private communication). who performed the
calculations independently. utilizing a different computational scheme. Apparently.
the divergence effects which inhibit the rate of amplification of a particular mode are
much more severe on the propagation of the sinuous mode than the varicose mode.
The experimental results. however. do not seem to support this theoretical
observation and some conjectures will be presented regarding this discrepancy and
its possible implications for the evolution of laminar near wakes. The dashed lines
will be discussed subsequently.

7. Superposition of modes

The agreement between the amplitudes and phases of the odd and even parts of the
phase-averaged data and the theoretical sinuous and varicose modes (figures 10 and
11) suggests that a proper superposition of the theoretical modes should agree well
with the experimental phase-averaged results.

The proposed superposition is as follows:

Pror (¥) = s Ply) +¢, &, (y). (1
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where @1,y = measured disturbance (#,). ¢; = theoretical sinuous eigenfunction,
¢, = theoretical varicose eigenfunction: and ¢, and ¢, are complex constants given
by

x

f Brord,dy

¢, =272 . (12)
i ¢ P, dy

f Bror &, dy
¢, = 5

and N = . (13)
p. o, dy

The composite theoretical curves. indicated by the solid lines. are compared with the

experimental data in figure 9 and. as expected, the agreement between the two is

quite good.

8. Effects of viscosity

The Reynolds number based on the free-stream velocity. the half-width of the
wake. and the molecular viscosity is about 10* for most of the data presented here
and, therefore, viscous effects are not expected to be of importance. However, if one
considers the appropriate velocity scale to be the velocity deficit of the wake, which
is typically 5% of the free-stream velocity. the ensuing Reynolds numbers are of the
order of 500. This motivated a brief study of the stability of the viscous wake. For
this purpose, the full Orr~Sommerfeld equation (4) has to be considered together
with the appropriate boundary conditions (presented in §3). The Orr—Sommerfeld
equation was solved numerically using the Gram—Schmidt orthonormalization
technique with double precision complex arithmetic, which provided valid solutions
for rather high Reynolds numbers.

The calculations were done using the mean-flow parameters corresponding to the
combined modal forcing experiment. Figure 14(a) shows the amplification rates
versus the non-dimensional frequency f of the sinuous mode for a constant value of
the velocity deficit u,/U, = 12.3%, which corresponds to the initial streamwise
location of the experiment. Three cases are presented. The solid curve represents the
inviscid solution. The dashed line corresponds to the viscous solution for Re, =
U, 8/v = 1400, and at this Reynolds number the difference between the inviscid and
viscous amplification rates is hardly visible. The Reynolds number based on 8 is the
appropriate choice for the experiments, as 8 is the proper lengthscale characterizing
the wake generator. Recall that § is a constant for the zero-pressure-gradient wake.
For this velocity deficit, the experimental excitation frequency 28 Hz corresponds to
B =0.282, and it is amplified. The third curve. which is indicated by the dotted-
dashed lines, represents calculations done at a much lower Reynolds number, namely
at Re,= 30, and the growth rates are more visibly lower than their inviscid
counterparts. The reason for the choice of this quite low Re will be evident in the next
section. Figure 14(b) shows the calculated growth rates using the parameters
corresponding to the final x-station of our measurements (u,/U, = +.5%). The
nomenclature is the same as in figure 14(a). At this location, f = 28 Hz corresponds
to 4 = 0.772, which is comfortably in the amplified region of all the cases presented.
The streamwise variation of the growth rate. —a,, for the sinuous mode is presented
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FiGURE 14. Amplification rates for the sinuous mode: (@) versus f.u,/U, = 0.123: (b) versus

B.uy/U, =0.045: (c) versus z/§: ——. inviscid: -~-. Re, = 1400: - - Re, = 30. Recall that z,
is non-dimensionalized by L,.

in figure 14(c). For the present case. the amplification rates decay almost linearly
with z. It is certainly evident that the viscous effects are negligible for this case. The
wavenumber a, and the phase speed are not shown as they are not significantly
affected by viscosity.

The varicose mode is observed to be affected more by viscosity. Figure 15(a. b. ¢)
depicts similar calculations for the varicose mode using the experimental mean-tlow
parameters. The nomenclature is the same as in figure 14(a. b, ¢c). The growth rates
at Re, = 1400 are approximately 10 % less than their inviscid counterparts. However.
this difference cannot explain the discrepancy between the experimentai results and
the inviscid predictions shown in figure 13(b). But. a dramatic difference is seen for
the Re, = 30 calculations - the disturbances are damped at this low Reynolds
number. Again. the phase speed and a, are essentially unaffected.

There is no significant change in the shape of the eigenfunction for the sinuous
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FiGrrE 15. Amplification rates for the varicose mode. (a) versus g.u,/U", = 0.123: (h) versus g.
ug/U, = 0.043: (¢) versus r/6: . inviseid: —~--. Re, = 1400: ~-—. Re, = 30.

mode when viscous effects are included. as can be seen from figure 16(a). The u-
amplitude distribution of the velocity perturbation for the inviscid case is compared
with the viscous solutions for Re, = 1400 and 30. The distributions are normalized
using their respective maxima. The parameters corresponding to x/8 = 400 of our
measurements were used in the computations of the presented cases (/U = 8.1%.
B = 0.428). The shape of the predicted varicose eigenfunction is more significantly
affected. as viscosity tends to eliminate the kinks occurring in the w-amplitude
distribution. as shown in figure 16 (b). The velocity gradients in the varicose mode are
much larger than those occurring in the sinuous mode. thus making the higher-
derivative terms in (4) of considerable importance. and the viscosity works towards

smoothing those large gradients.
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FicUre 16. The u-amplitude distibutions for {a) the sinuous mode and (b) the varicose mode
where u,/l7, =0.081 and g = 0.428: —— inviscid: ---. Re, = [400: ---. Re, = 30.

9. Effects of turbulence
The effects of the turbulent fluctuations on the spatial propagation of the
perturbation waves are completely ignored in the present model. As already
mentioned. all theoretical results are computed from linear stability theory using the
measured local mean velocity profiles. The base flow is fully turbulent rather than
laminar. The viscous effects. as discussed in the previous section. are estimated using
the same mean velocity profiles along with the molecular viscosity. We realize that
the wave propagation characteristics will be affected bv the turbulence. but we also
are unaware of any generally accepted method for accounting for such effects. If one
considers the dvnamical equation for 4 in the presence of turbulence. as presented by
Reynolds & Hussain (1972: equation 2.6). new unknown terms appear. such as the
time and phase average of u’»’. The simplest way to account for the effects of
turbulence is to use an eddy viscosity along with the turbulent base flow as done by
Tam & Chen (1979). Liu (1971). Potter (1971). and others. If we adopt a similar model
here and replace the molecular kinematic viscosity with an eddy viscosity in (4). this
approach leads to a possible explanation regarding the difference in behaviour of the
sinuous and varicose modes shown in figure 13(a. b). The magnitude of the eddy
viscosity was estimated from our recent Reynolds-stress measurements in the
unforced wake of the flat plate. These results indicate that the eddy viscosity is. on
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the average. 40 lines larger than the kinematic viscosity of the fluid. so the effective
Revnolds number for the present data becomes (Re,).r = 30. Therefore. if one wants
to lump the nonlinear effects stemming from the generation of Reynolds stresses
(whether coherent or random) into a model represented by an eddy viscosity. then
one should use an effective Re, which is based on vy. It is apparent from figure t4(c)
that. at this lower Revnolds number, the sinuous mode is still amplified. although at
a smaller rate. On the other hand. figure 15(c) shows that the varicose mode is
damped over the entire experimental domain in accordance with the experimental
results shown in tigure 13(b). The eddy-viscosity model brings improvement to the
prediction of the streamwise variation. especially for the varicose mode. Figure
13(a. b) shows the spatial development of the maximum of the two modes. The
dashed lines correspond to the calculation using the eddy-viscosity model with
Re, = 30. The transverse distributions of the i-amplitudes are also well explained. as
shown in figure 16(a.b). The dotted-dashed lines represent the eddy-viscosity
calculations using Re, = 39. A comparison with the measured distributions shows
that. although the general features of the amplitude distributions are predicted quite
well. the computed distributions are wider than their measured counterparts. This is
undoubtedly caused by the significantly higher values of viscosity used in the
Re, = 30 case. Also. although not shown here. the phase distribution for the varicose
case is not well predicted (see Marasli 1988). Summarizing these results. linear stabiity
theory predicts the local shapes of the eigenfunction distributions for both modes
fairly well. while slowly diverging linear theory does a reasonable job for the
streamwise variation of the sinuous mode. On the other hand. the eddy-viscosity
model predicts the streamwise variation of both modes reasonably well and describes
the transverse distributions of the perturbation amplitudes for both modes. but it
fails to predict the distribution of phase for the varicose mode.

The difficulty encountered in generating a varicose disturbance that survived in
the far wake is more understandable through this model. Recall. however. that the
slowly diverging analysis predicts larger overall amplification for the varicose mode
than the sinuous mode in a laminar base flow. For particular wake-generator
configurations. the near wakes in a laminar flow could be dominated by varicose
instabilities (see. for example. Williamson 1985. Rockwell et al. 1985: and Papailiou
& Lykoudis 1974). This does not mean that the varicose mode is the dominant
instability for the near wakes. For the varicose mode to have a chance. the Revnolds
number must be high enough to a avoid the viscous effects: on the other hand. the
flow must also be free of incoherent fluctuations to maintain a laminar base tow.

The eddy-viscosity model appears to be adequate for understanding some of the
features of travelling waves in a fully turbulent base flow : however. its shortcomings
have to be kept in perspective. In addition to its problems of describing turbulent
flows in general. the fact that turbulence reorgamzes itself by interacting with the
coherent motion (Hussain 1983: Marasli 1988) is an additional complexity which
cannot be described by this model. Nevertheless. a conceptual simplification of the
effects of incoherent turbulent fluctuations is provided by this model.

10. Conclusions

It is possible to generate a nearly pure varicose mode of instability in the wake.
The sensitivity of the flow to asymmetric disturbances. however. makes it a difficult
experimental task. Even the slightest asvmmetric disturbance can be preferentially
amplified. as the growth rates of sinuous disturbances are much larger than those for
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varicose disturbances. Therefore. contamination of the varicose mode by the sinuous
mode is ditficult to avoid. especially over large downstream distances.

A decomposition technique was developed to separate a phase-averaged
distribution into its symmetric and antisymmetric components. The measurements
show that these components agree well with their corresponding theoretical
counterparts. that is. the varicose and sinuous modes from linear stability theory.
The relative strength of the two modes at any downstream location can then be
determined by integrating the amplitude distribution across the flow for each mode
and taking the ratio of the two. The modal decomposition technique was applied to
a case of combined excitation. The relative-strength-ratio measurements show that,
initially. the varicose mode was twice as strong as the sinuous mode. but the sinuous
mode eventually became dominant because of the larger amplification rates. An
equilibrium ratio was approached in the far wake for £/6 > 1000.

Viscosity affects the varicose mode more than it does the sinuous mode. As
expected. the amplification rates were found to decrease with decreasing Reynolds
number and velocity deficit. but the phase speed of the disturbance remains
unaffected. An attempt to account for the effects of turbulence on the spatial
propagation of a perturbation wave was made using an eddy-viscosity model. Based
on this model. a possible explanation was obtained for the observed discrepancy
between the experimental results and the slowly diverging wake prediction for the
varicose mode.

This project was supported by the Air Force Office of Scientific Research under
contract no. 85-00148. We wish to thank Dr James M. McMichael for his efforts in
monitoring the project. We aiso would like to thank Dr T. F. Balsa for his
cooperation in determining the validity of some of our stability calculations.
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On the large-scale structures in two-dimensional,
small-deficit, turbulent wakes
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A syvstematic study of two-dimensional. turbulent, small-deficit wakes was carried
out to determine their structure and the universality of their self-preserving states.
Various wake generators. including circular cylinders. a symmetrical airfoil. a flat
plate. and an assortment of screens of varying solidity, were studied for a wide range
of downstream distances. Most of the generators were tailored so that their drag
coefficients, and therefore their momentum thicknesses, were identical, permitting
.omparison at identical Reynolds numbers and aspect ratios. The flat plate and airfoil
had a small. trailing-edge flap which could be externally driven to introduce forced
sinuous oscillations into the wake. The results indicate that the normalized charac-
teristic velocity and length scales depend on the initial conditions. while the shape
of the normalized mean velocity profile is independent of these conditions or the
nature of the generator. The normalized distributions of the longitudinal turbulence
intensity. however, are dependent on the initial conditions.

Linear inviscid stability theory, in which the divergence of the mean flow is taken
into account, predicts quite well the amplification and the transverse distributions
of amplitudes and phases of externally imposed sinuous waves on a fully developed
turbulent wake generated by a flat plate. There is a strong indication that the large
structures observed in the unforced wake are related to the two-dimensional
instability modes and therefore can be modelled by linear stability theory. Further-
more, the interaction of the two possible modes of instability may be responsible
for the vortex street-type pattern observed visually in the small-deficit, turbulent
wake.

1. Introduction

Turbulent. plane wakes generated by circular cylinders in the absence of a pressure
gradient have been the subject of numerous experimental investigations. the most
notable of which are those by Townsend (1947, 1949). The results of these studies.
along with results obtained in other free shear flows. led to the early ideas of
self-preservation and Reynolds number independence proposed by Townsend (1956).
It was postulated that. sufficiently far downstream from the cylinder. an asymptotic
self-preserving state is achieved for which the flow can be described by a single
velocity scale x, and a single lengthscale L, (see figure 1). That is. the transverse
distributions of mean velocity and Reynolds stress must be independent of the
streamwise coordinate r when normalized by these scales. One question under
investigation presently is to determine whether and where these scales can be
considered unique.

It has been well established (Townsend 1956 . Uberoi & Freymuth 1969: Symes &
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Fink 1977; Yamada et al. 1980) that far-awake flows are self-preserving and that the
velocity and length scales, u, and L,, vary as (x—x,)™} and (x—z,)i, respectively. as
predicted by the equations of motion and the momentum integral constraint. The
virtual origin, r,, is used to account for viscous or Reynolds-number effects.
Furthermore. Townsend (1958) indicated that at sufficiently high Reynolds number.
L,/d and u,/ U, are universal functions of z/d only, where d is the diameter of the
cylinder. The initial motivation for the present study stemmed from comparing some
early measurements describing the downstream variation of the streamwise
component of turbulence intensity. We observed large differences between our data
and data reported in the literature that could not be attributed to experimental
technique (figure 2). Large differences between the various results are evident. and
the trends in the data are quite different at large z/Cp d. where Cp is the drag
coefficient. At the time (ctrca 1970), most investigators used the cylinder diameter
for the purpose of normalization. Considerations based on the equations of motion
show that the momentum thickness, 6, should have been used as the normalizing
lengthscale for the small-deficit wake. That is, the drag force exerted on the fluid by
the cylinder should be used to define the initial low conditions. We will use 26 because
Cp d = 26. It can be shown that the normalized velocity and length scales should

vary as

G -(5) (3)~(59) Ly

2 28 ) \9 36 ) (1.

The data of Townsend (1958), Symes & Fink (1977), and Yamada et al. (1980) confirm
the above relations and show that mean velocity profiles observed by each investigator
are self-similar when scaled by their individual velocity and length scales. However,
comparison of the data indicates a possible lack of universality in the behaviour of
these scales: that is, different wakes developed differently with downstream distance.

Sreenivasan (1981) examined the manner in which wakes produced by a variety
of generators approached self-preserving states. He observed substantial differences
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FigURe 2. Centreline turbulence intensity for wakes generated by circular cylinders. O. Marasli
(1983). Re = 1360. AR = 384 l). Marasli, Re = 5900. AR = 128; &. Townsend (1956). Re = 1360.
AR = 240: ---. Townsend (1949); ——, Uberoi & Freymuth (1969). Re = 4320. AR = 192; %.
Yamada et al. (1980). Re = 4000, AR = 80: V. Champagne (1978). Re = 19000, AR = 32: A, Symes
& Fink (1977). Re = 6666. AR = 150. no ext. turb. added: A. Symes & Fink. with ext. turb. added.

in the way these flows evolved. even though each flow preserved the shape of the mean
velocity profile when normalized by its own characteristic scales. Sreenivasan &
Narasimha (1982) suggested that a unique self-preserving state exists for all plane
wakes and defined the characteristic constants stemming from their suggestion. We
felt at the time that their data did not fully support their conclusion. and the present
study compiles further evidence negating it.

A possible explanation for the lack of uniqueness is suggested by the results of
Symes & Fink (1977), who investigated the effect of free-stream turbulence on the
development of wakes. They showed that the relative scale of the external turbulence.
rather than the level of the turbulence intensity. was an important parameter
affecting the development of the wake. As each experimental facility has its own
characteristic free-stream disturbances. wakes generated in a particular facility may
be unique to that facility only. The lack of universality of various small-deficit wake
flows might be explained in terms of the instability of the mean velocity profile in
the wake. Related to this are the flow visualization results of Cimbala. Nagib &
Roshko (1981), which revealed that large coherent structures develop far downstream
from the wake generator and these are not necessarily related to the vortices shed
from the generator. This was sufficient evidence to suggest that the wake. like the
mixing layer. contains large-scale coherent structures which may have a wave-like
behaviour. Travelling, large structures were observed in both laminar (Freymuth
1966) and turbulent (Brown & Roshko 1974 Oster & Wygnanski 1982) mixing lavers.
and their behaviour was explained by an instability mechanism (Michalke 1965:
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Gaster, Kit & Wygnanski 1985). The similarity of the patterns occurring in both
laminar and turbulent states is not surprising in view of the fact that the instability
mechanism is principally inviscid and is controlled by the mean velocity profiles.
which are similar in both situations. Gaster et al. computed the amplitude distributions
and the phase speeds of travelling waves associated with large coherent structures
in the plane turbulent mixing layer. and they obtained very good agreement with
experimental results by accounting for the effects of mean flow divergence. The mean
velocity profile in the wake is also inviscidly unstable. and its shape is not affected
by transition from laminar to turbulent flow. suggesting that a similar analysis could
predict the evolution of the large-scale structures in this flow as well.

The stability and transition of a plane wake, generated by a thin plate placed
parallel to a uniform flow. was considered by many investigators (e.g. Sato & Kuriki
1961 ; Mattingly & Criminale 1972; Zabuski & Deem 1971). The analysis in these
investigations was always concerned with the immediate neighbourhood of the
trailing edge, where the veiocity deficit was greater than 60°, of the free-stream
velocity. Sato & Kuriki (1961) limited their analysis to a temporal evolution of the
instability at one location in the flow, and Mattingly & Criminale (1972) considered
the instability of the wake to natural disturbances in both time and space and
concluded that the spatial evolution of a travelling wave gives superior predictions
for the disturbance characteristics experimentally observed. The analysis invariably
assumed that the flow was parallel and was therefore limited to a preseribed
streamwise location in which the width of the wake was defined. The parallel flow
assumption represents a severe constraint on predicting growing disturbances in the
wake because, in addition to the local width of the flow, the characteristic velocity
scale must also change as a result of the divergence.

In contradistinction to the mixing layer, the plane wake is susceptible to both
symmetrical (varicose) and antisymmetrical (sinuous) modes of instability. The
varicose mode wns traditionally disregarded (e.g. Sato & Kuriki 1961) because
calculations based on the parallel flow approximations indicated that the most
strongly amplified disturbances were sinuous. Data obtained in this investigation
attribute the lack of universality of the self-preserving wake. at least partially. to
the interaction between the two modes. Certainly, if one is interested in examining
the wake over long distances, one cannot neglect the varicose mode of instability.

The scope of the present investigation is limited to the small-deficit wake starting
some 100 momentum thicknesses from the generator and extending to 2000 momentum
thicknesses downstr:am. The flow was always incompressible. with free-stream
velocities not exceeding 35 m/s and typical Reynolds numbers of a few thousand.

2. Experimental Arrangement

The wakes were generated in the University of Arizona wind tunnel facility. The
80-ft-long tunnel is a closed-circuit type built by Kenney Engineering of California
and is nearly identical to its counterparts at Tel Aviv University and the University
of Southern California. The test section is 2 ft wide. 3 ft high. and 20 ft long. The top
and bottom walls. which are adjustable in height. were adjusted to compensate for
boundary-layer growth and to obtain a zero streamwise pressure gradient. A 30 hp.
variable-speed motor with tachometer generator and a motor controller drives an
axial flow fan with variable-pitch blades. The blades were set to their minimum pitch
angle to minimize large-scale turbulence generation. In this configuration. the fan
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easily supplied the necessary range of speeds in the test section required for the
present study, that is. 2 to 35 m/s. The tunnel is equipped with chilled water cooling
coils just downstream of the diffuser section and an electric heating unit just upstream
of the fan to control the flow temperature. A Minco platinum resistance thermometer,
connected to a special bridge and digital panel display unit. allows measurement of
the mean temperature of the flow to +0.05 °C.

The plenum chamber contains 4-inch-thick hexcell honeycomb, five 20-mesh
stainless-steel screens. and a 4-ft stilling section. Following this section is the 10:1
contraction section with a fifth-order polynomial contour to ensure separation-free
acceleration of the flow to the test section. The wake generators were mounted
horizontally across the 2-foot span of the test section at a streamwise location 2 feet
downstream from the inlet. Measurements of the velocity profile at this plane
indicated that the low was uniform to +0.25°,. The free-stream disturbance level
in the streamwise velocity component is approximately 0.03 %;. The free-stream speed
was monitored using a pitot tube placed 1 foot below the wake generator and about
2 inches into the flow. The Pitot tube was connected to an MKS Baratron pressure
transducer unit.

Velocities were measured using a rake of nine Disa 55P01 hot-wire probes
connected to Disa 55M01 and 56C01 constant temperature anemometers. The rake,
which was 1.75 inches in total height. was used to measure the mean streamwise
component of the instantaneous velocity. The rake was mounted on an internal
traversing mechanism with a swept-forward, thin extension arm, placing the probes
upstream of any region of flow interference caused by the mechanism. The mechanism
permitted traversing in the streamwise and vertical directions with resolutions of 0.10
and 0.01 inch, respectively. The anemometer signals were conditioned using buck and
gain amplifiers and simple low pass RC filters with a 6-dB cutoff point at 10 kHz.
The conditioned signals were sent directly to the analog-to-digital converter in the
data acquisition system. An LS| 11/23 data acquisition/on-line computer system was
used for digital signal processing. The major components of the system include an
LSl 11/23 microprocessor, a 13-bit A/D converter with 10 channels of simultaneous
sample-and-hold circuitry; a dual-density. 125-ips. tape drive; a 160 M-byte hard
disk; 256 K-byte static memory: a printer/plotter: two Tektronix 4008 graphic
terminals: a Tektronix 4611 hard-copy unit; and a SKYMNK array processor. The
multiple channe] capability allows simultaneous. continuous sampling of up to 10
channels. with variable sampling frequency up to 10 kHz. The system can be used
as a data logger. i.e. to create digital tapes, or as an on-line computer for real-time
analysis.

For calibration. the hot wires were placed in the free stream, well outside the wake.
along with a Pitot tube which was mounted near the rake. The bridge voltage signals
and the output of the pressure transducer connected to the Pitot tube were sent to
the A/D converter. An nth-order polynomial, ' = P,(E), where the independent
variable £ is the conditioned bridge voltage. was fit to several calibration velocities
for each hot wire, thereby providing an overall calibration for each sensor. The wires
were calibrated only over the range of velocities to be measured in the wake. typically
0.80 U, to 1.05 I’ .. Whenever the velocity deficits exceeded 0.20 L' . a second-order
polynomial was used; whereas for u, < 0.10 ', a linear fit was adopted. speeding
on-line computations.

During the course of the experiments. the temperature of the flow was maintained
at +£0.10 °C of the calibration temperature. The hot wires were continuously checked
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for drift. The results were sensitive to any minor calibration changes because the
maximum velocity deficit was of the order of 5°,. Generally, 27-36 data points were
taken to define a mean velocity and turbulence intensity profile.

Lateral velocity component fluctuations were measured with a four-probe array
of symmetric X-wires. The X-wires were calibrated in the free-stream portion of the
wind tunnel using an anemometer response equation of the form

U—-d,;V=PFE) (j=12). (2.1)
where {"and I” are the calibration velocity components. E; is the anemometer bridge

voltage. and P; is a second-order polynomial given by
2

Pj(Ej) =X Anj Ejn- (2.2)

n=0
The X-wires were calibrated at 20 points (4 velocities and 5 vaw angles in‘the range
+10°) and the unknown constants 4,;. n =0. ..., 3 and j = 1. 2. were solved by

least-squares fit. The instantaneous velocity components {" and ¥ could then be

computed from

Pl(El)"'Pz(Ez)
dyady

Again, the wires were calibrated only over the range of velocities to be measured in
the wake.

The wake generators used in the present experiments are described in table 1. The
circular eylinders were steel, drill rods and the screens and solid strip were stainless
steel. The cylinder. screens. and solid strip were all mounted under adequate tension
to ensure that the generators were straight and rigid. The screens and solid strip were
specially constructed to have the same momentum thickness as the &-inch-diameter
(4.76 mm) cylinder at Re, = 4000. The aspect ratio & /d was approximately 240 for
the referred cases. To introduce controlled excitations into the wake, a small flap
(5 mm in length) was attached to the trailing edge of the flat plate and airfoil. Violin
strings were used to connect the downstream edge of each side of the flap to two
matched loudspeakers. one located on each side of the plate just outside the tunnel
sidewalls. The speakers were driven in phase at the desired amplitudes and frequencies
by an audio amplifier fed by a Krohn Hite function generator. The forcing frequency
and amplitude were monitored by a frequency counter and r.m.s. meter.

Viey = U) = B(E)—4,, V. (2.3)

3. Theoretical considerations

3.1. Similarity conditions
For a developing wake flow sufficiently far from the generator. the transverse
distributions of mean velocity and Reynolds stresses are assumed to be self-preserving.
That is. these distributions assume functional forms which are independent of x when
normalized by the velocity and length scales. u, and L, respectively. This can be
expressed in the form

U=U_—u,fn).
2= ugg, ().
Ut = uggy,(n). (3.1)

7 = ud goy(7).

w3 Gaa(7). /

b
0
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where » = y/L, and u, and L, are defined in figure 1. In general. ¥, and L, will be
functions of the following parameters:

Uy, Ly = fens (x.p.u. U . F. £ .d.geo. ugg, Ngg. others) (3.2)

where
Z = span of the wake generator,
d = characteristic width of the wake generator.

geo = geometry of the wake generator.
ups = amplitude of the free-stream disturbance level.
Nps = nature of the free-stream disturbance,

F = drag force on the wake generator per unit length.

others = magnitude and nature of any vibration of the wake generator.

The conditions under which self-preserving flow is possible can be obtained by
substituting the self-preserving distributions into the equations of mean momentum
and turbulent kinetic energy and examining the coefficients in the resulting equations.
For the small-deficit far wake in the absence of a pressure gradient. i.e. when
U/ U, € 1, Townsend (1970) obtains the conditions

Uy Loduy Uz dL,

uf dx u, dr (3.3)

The self-preserving functions are also subject to the momentum integral constraint
w7
plL -l T \UTT)Y
where 6 is the momentum thickness. In terms of the self-preserving function. f. this
becomes
F uy Ly ud L, P,

P56 T, 677110 o

X
where SIa= J. Lrindy (n=1.2), (3.6)

are constants for a given wake flow. However. (3.4)—(3.6) are only consistent with
(3.3) when u,/ U, < 1 and the second term in (3.5) is dropped. This places a constraint
on the product (u, L,) of the two scales, since in the absence of a pressure gradient.
F, 8, and U are constants independent of z. Dimensional reasoning, along with the
linear part of (3.5), indicates the variables, F, p, and U’ in equation {3.2) should
appear in the combination F/pU  [see also (3.4)]. It can be easily shown from (3.3)
and (3.4) that

ﬁ~[p F ]* [ 6 ]* 3.7

U, D (x—=z,) x—x,]" (3.7)
-}

and Lo~[%5°—)] ~ [6(z—1z,) 1. (3.8)

where z,, the virtual origin, is commonly assumed to depend on the Reynolds number
and geometry of the generator. This indicates that 0 is the appropriate normalizing
length scale.

If a universal self-preserving state exists independent of initial conditions. free-
stream disturbances, and other parameters, the normalized distribution functions f
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and gs are universal functions and u, and L,, the normalized velocity and length
scales, should vary as

T \2
(L—’E) = AX, (3.9)
U
d 2
and (%—") = Br. (3.10)

where ¥ = (r—x,)/26 and 4 and B are universal constants. The factor 26 is used to
normalize x because 260 = Cp, d. which is nearly equivalent to normalization by d since
for circular cylinders C'p = 1. Townsend (1956) and others used d in presenting their
cylinder data.

According to Sreenivasan & Narasimha (1982). (3.7) and (3.8) may be written in
the form

W EAT
=T, (0) @-10)

and 4 = Ly(x0)~% (3.12)

where W and 4 are universal constants, provided the small-deficit, equilibrium wake
is independent of initial conditions existing near the generator (see also Narasimha
& Prabhu 1972). These parameters are related to the slopes in the relations (3.9) and
(3.10) above. If we define W, and 4, by (3.11) and (3.12), where z is replaced by z-z,,
then 4 = 2/W? and B = 24%.

3.2. Linear stability analysis
The propagation of small-amplitude. wavy disturbances in a free shear layer was
considered analytically by Bouthier (1972), Crighton & Gaster (1976), and Gaster et
al. (1985). Since the analysis applied to the plane wake is identical to that presented
in the latter reference, only the governing equations and essential features will be
presented here.
The equation of motion considered is inviscid and has the following form

R QR

E*‘L—e;-'ﬁ' V@—O (3.13)
where £ is the vorticity and U" and V represent the velocity components in the -
and y-directions, respectively. Upon neglecting the nonlinear terms. which are
deemed to be small. and assuming that a given mean flow is parallel to the first order
of approximation, the solution for the perturbation equation has a general form

¥ = RP{g(y) exp [i(ax—pt)]}, (3.14)

where RP stands for the real part and the eigenfunction ¢(y) is defined by the inviscid
form of the Orr—Sommerfeld equation

[U(y)—g]w”—a%)—ﬂ'”(y)qﬁ =0, (3.15)

in which the primes denote differentiation with respect to y. The wave number x and
the disturbance frequency # are eigenvalues determined by the solutions of (3.13),
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which decay exponentially on both sides of the wake. Namely. the boundary
conditions are

P(txc)tap(+0)=0. (3.16)

Although the divergence of the mean flow may be partially controlled by the stresses
resulting from the interaction with the disturbances present. within the realm of the
linear approximation the slowly divergent mean flow is assumed to be prescribed by
equations (3.1). Since the mean flow is assumed to be known, the conditions of
self-preservation are not crucial to the analysis; the only requirement is that the
derivatives of the mean stream function i with respect to xr should be much smaller
than the derivatives with respect to y (i.e. the boundary-layer approximation
applies).

By analogy with the parallel flow problem. the perturbation solution has the form

z

Y =RP {.4(x)¢(x.y) exp[ij :i(.t)dx—ﬂt]}. (3.17)

Lo
where z2(z) is a local wavenumber and the eigenfunction ¢(x. y) changes only slowly
with x. Since one expects the correction terms resulting from the slow divergence to
be small, 2(x) and ¢(z. y) at a given streamwise location are still determined locally
by (3.13), for which the mean velocity field U(x. y) is known, and the correction term

is defined by
TN
A(x) = 4, exp[—J. M((z)) dx]

x

where
Nz) =f {ﬂ[qsg;:wa%]»f L'[%—w%é—smz—;y
A S }
+¢ eI+( e—x+$[¢ a2 d)r fdy. (3.18)
and M(z) =jx 2286+ U[¢" —3atp]— @} & dy. )

where J(z. y) is the adjoint function of ¢(r. y) given by

[C'(.z:.y)—-g][q;”—a2¢]+2L"g5’ =0. (3.19)

with the boundary conditions presented by
$(+o)tad(+x)=0. (3.20)

When the mean velocity profile is symmetrical with respect to the line y = 0. the
inviscid Orr—Sommerfeld equation admits both symmetrical (varicose) and antisym-
metrical (sinuous) modes of disturbances. For parallel flow. one may take advantage
of the symmetry and substitute a boundary condition on the centreline for the
boundary conditions on one side of the wake.

$(0) =B(0)=1. ¢'(0)=¢'(0)=0. (3.21)
for the sinuous mode of disturbance, or
$0)=4(0)=0. ¢'(0)=¢(0) =1 (3.22)
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representing the varicose mode. By virtue of the symmetry. one may usually confine
attention to the semi-infinite interval (0. + xc) as in the parallel flow computations.

For a given real frequency g of the disturbance, the complex eigenvalues x2(r) and
eigenfunctions ¢(x. y) and @(z. y) were evaluated at each of the streamwise locations
of interest. provided the imaginary part x,(r) <0 (i.e. the disturbances in the
quasi-parallel flow approximation are amplified in the downstream direction). and
these solutions were used in determining A(x). The mean velocity field used in solving
(3 13). (3.18) and (3.19) was obtained experimentally and was expressed by the
exponential distribution

1~ exp[~0.637T52—0.0567"]. (3.23)
L < L x
where (" is the free-stream velocity and uy(x) and Ly(x) are the velocity and length
scales discussed. in §3.1. Despite the fact that the normalized shape of the velocity
profile. f(y). remained invariant for all wake generators considered. the eigensolutions
had to be re-evaluated for each generator separately since u,(x) and L,(x) are
dependent on the conditions at the generator. even for the small-deficit wakes.
Sato & Kuriki (1961) considered the temporal evolution of the small-amplitude.
sinuous disturbance at a single location in the flow at which (1 —u,/L ) = 0.692.
Mattingly & Criminale (1972) extended these calculations to both modes of instability
evolving spatially and temporally at five prescribed locations in the immediate
vicinity of the trailing edge of a flat-plate [i.e. for 0.44 > (1 —u,/L ) > 0]. Since these
computations are strongly dependent on u,/{" . the solutions obtained are of little
value in predicting the character of the amplified disturbances in the small-deficit
wake for which u,/U",, < 1. Furthermore. the assumption of parallel mean flow (i.e.
the constancy of 4,/ U, and of Ly/6) led to the general belief that the varicose mode
has a negligible effect on the flow because its rate of amplification (—a,) is smaller.
It will be shown later that even a superposition of the two modes of instability leads
to physically acceptable flow patterns associated generally with large coherent
structures contained in the wake. in spite of the presence of the turbulent fluctuations.
which was not considered in the calculations.

4. Experimental results
4.1. General

The mean flow field in the self-preserving region of a wake, the turbulence intensities.
and Reynolds stresses were measured for a variety of two-dimensional wake
generators. Data were obtained at distances ranging from 100 to 2000 momentum
thicknesses downstream of the generator. where typical velocity deficits on the
centreline of the wake varied from 0.15 U'_ to 0.03 U'.. The velocity at which the
measurements were done varied from 7 to 20 m/s. corresponding to a range of
Reynolds numbers based on the momentum thickness and the kinematic viscosity
of air of 650 to 3200. In most instances. the shape and the size of the wake generators
were tailored to provide a constant momentum thickness. The effects of Revnolds
number and aspect ratio were examined separately in wakes generated by circular
cylinders. Forced sinuous disturbances were generated in the wake of a symmetrical
airfoil (having a maximum thickness to chord ratio of 30 °;) and a flat plate (thickness
to chord ratio of 2°) by an oscillating, small flap mounted at the trailing edge. The
results are summarized in table 2.
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U, ] To
Wake generator (m/3) (mm) 26 W, A, W, x A,
fi in. Cylinder 14.5 2.33 -74 1.75 0.289 0.506
309, Solidity screen 14.5 2.31 58 1.82 0.279 0.508
459, Solidity screen 14.5 2.33 27 1.78 0.285 0.507
70°, Solidity screen 14.5 2.39 =21 1.67 0.302 0.504
Solid strip 100 %, 14.5 2.31 —64 1.88 0.270 0.508
solidity
Symmetrical airfoil 14.5 234 - 190 1.56 0.320 0.500
Flat plate 7.45 2.36 5 .71 0.297 0.508
Flat plate 7.45 2.36 48 1.48 0.344 0.509
flap freq. = 50 Hz
AMP =02V
Flat plate flap 7.45 2.46 61 1.32 0.382 . 0.504
freq = 50 Hz
AMP =03V
Flat plate flap 7.45 2.40 48 1.57 0.323 0.507
freq = 20 Hz
AMP=05V
#% in. Cylinder 20.7 2.54 - 100 1.74 0.288 0.501
(Chapman 1982)
1 in. Cylinder 21.4 0.737 —-170 1.77 0.285 0.504
&4 in. Cylinder 14.5 0.737 -130 1.74 0.287 0.500
TABLE 2.

4.2. The universality of the mean flow field in a small-deficit. plane wake

The wake investigated most extensively is that generated by a circular cylinder. and
therefore our investigation started with this wake generator. Some 400 momentum
thicknesses downstream, the velocity scale u, was indeed proportional to £}, and the
width of the wake L, was proportional to i, suggesting that similarity of the mean
flow was indeed attained. The mean velocity profiles were plotted in the similarity
coordinates and collapsed quite neatly onto a single curve described by the exponential
function

J(n) = exp[—0.63792—0.0567%], (4.1)

(figure 3). The exponential function traditionally used to describe the mean velocity
profile {i.e. f() = exp [—0.6937%]} overestimates the mean veloecity measured at the
outer edges of the wake and, therefore, the fourth-order correction term was added.
We expected the flow to be independent of Re when all lengthscaies were normalized
by the momentum thickness, and indeed the values of W, ana 4, were not affected
by changes in Re ranging from Re; = 1360 to Re, = 5900. The aspect ratio of the
cylinder was varied from 98 to 384 by changing the diameter of the cylinder and
keeping the span constant (i.e. the distance between the sidewalls of the wind tunnel).
The two-dimensionality of the mean flow field was checked at © = 430 by comparing
velocity and turbulence intensity profiles obtained at z/L, = 0+ 7.5 and was found
to be satisfactory. The values of W, = 1.75 and 4, = 0.287 fitted quite well all wakes
generated by a circular cylinder (the values were averaged over experimental points
with Z > 200). This result would give credence to the universal equilibrium concept
suggested by Sreenivasan & Narasimha (1982), except that the asymptotic values of
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FicUrE 3. The shape of the self-similar mean velocity profile. Data from 30°, solidity screen
for 200 < £ < 700.

the constants suggested by these authors were quite different. i.e. W, = 1.63 and
4, = 0.300. The present ‘iata on the downstream development of the mean flow tield
behind a circular cylinder agree quite well with those obtained by Symes & Fink (1977)
and Yamada et al. (1980). but only partially with Townsend's (1956) data. Our data
on the mean wake growth. Ly(x). agree with Townsend's but not the corresponding
data on u,y(z). It should be noted that there are very little data available on the mean
wake growth and uy(r). even for circular cylinders. and this is undoubtedly
attributable to the difficulty of obtaining such data.

The uniqueness of the mean velocity profile and the mean wake development for
circular cylinders in our facility could lead to the conclusion that either the
development of the plane. small-deficit wake is not susceptible to external disturbances
or the velocity-dependent external disturbances in our wind tunnel (like the fan-blade
passage-frequency. vibrations. etc.) are negligible within the range of variables
considered. To answer this question. we could take our cvlinders to other wind tunnels
and repeat our experiments. but such testing could introduce new uncertainties over
which we have no control. To avoid these difficulties. we addressed a related question.
That is, in a given facility. are the r development of u, and L, dependent on the n..ture
of the wake generator. holding all other controllable variables constant! We
proceeded. therefore, to investigate wakes produced by a variety of two-dimensional
generators. The first family of generators considered were screens with solidity ratios
ranging from 30 to 100 %, (a thin metal strip placed normal to the free stream). The
porous screens have numerous advantages: (i) there is no flow reversal in the vicinity
of the generator with all its ensuing experimental complications: (ii) the porous
screens do not generate vortices in the same way as the circular cvlinders do and.
therefore. their drag should not be as sensitive to Reynolds number: (iii) the roll-up
of vortices in the mixing layers generated in the neighbourhood of the screens is. in
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FicURE 4. The variation of u, and L, with F for three wake generators: []. airfoil: A, 70°,
solidity screen: Q. solid strip.

principle. predictable and dependent on the solidity (Gaster et al. 1985): and (iv) the
drag of screens having a different solidity can easily be equated by altering the size
of the screens. It was decided to maintain the momentum thickness of all four screens
constant in order to avoid any questions about the unknown effects of Revnolds
number or aspect ratio in the development of the plane. small-deficit wake. The
results show that the shape of the normalized mean velocity profile is identical to
that obtained for the circular cylinder in all cases considered. vet the values of W,
range between 1.67 for the 70°, solidity screen to 1.88 for the limiting case
representing the solidity of 100°;.

The value of W, decreases with increasing solidity of the screens, provided the
porosity suffices to prevent flow reversal in the lee of the screen: however. the value
of W, for the solid strip (which is regarded as a screen having 100 %, solidity) is higher
than the value of W, for the most porous screen investigated (solidity of 30 °,). This
result is attributed to the observed alternate shedding of vortices from the two
separation points on the strip. The determination of the threshold solidity bevond
which an alternate shedding of vortices starts to occur is not within the scope of the
present investigation.

In the absence of periodic forcing, the lowest W, measured in this experiment was
attained in the wake of a non-lifting. thick. sy mmetrlcal airfoil section. The mean
velocity tield in the wake of the flat plate was nearly identical to the velocity field
produced by the wake of a circular cylinder except for the location of th virtual origin
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xy. The introduction of periodic surging reduced the effective W, from 1.71 to 1.56
without affecting the overall drag experienced by the body (i.e. the product W, 4,).
The location of the virtual origin moved downstream with increasing amplitude of
the forced oscillations (table 2).

The product W, 4, represents the conservation of momentum within the context
of the linearization and. therefore. its constancy for all wake generators (W, 4, =
0.506 £0.002) reaffirms the suggestion that the normalized shape of the mean
velocity profile (figure 3) is universal for all the wake generators considered. Some
examples of the variation of (U, /u,)? and (L,/6)? with F are shown in figures 4(a)
and (b). respectively. establishing that the coefficients of proportionality 4 and B
[(3.9) and (3.10)] or W; and 4, depend on the wake generator.

The mean velocity in the wake obeys the similarity scaling for r > 400. The
different slopes of the lines drawn in figure 4(a) result in a diversity of estimates for
W, (tigure 3). varying between 1.5 and 1.9 depending on the wake generator. The
differences are large and are not attributable to experimental inaccuracy.

Only one value of x, was chosen for each wake generator. and it had to satisty the
dependence of both u, and L, on initial conditions. The choice of r, does not affect
the dependence of W, or 4, on the initial conditions, although the absolute values
of W, and 4, may vary slightly if improper values of r, were used. Figure 5
demonstrates this point. The open symbols refer to physical distances measured from
the trailing edge of the generator (i.e. x, = 0). and therefore the values of H; based
on these data define a sloping curve rather than a horizontal line. This effect is
particularly severe whenever r, is large. as it is in the wake of the symmetric airfoil.
It is apparent. therefore. that for the range of distances considered. the mean flow
in the plane. small-deficit. turbulent wake is dependent on the initial conditions set
up by the generator.

The preservation of momentum deficit in the wake produced by all the generators
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considered above is illustrated by plotting /L, versus u,/L . (figure 6). For similar
velocity profiles.
6 _ u ( Yy ) 9
L-T, 4 T, S AN (4.2)
with #, as defined in (3.6).

Equation 4.2 describes a parabola (a solid curve in figure 6). while the linear
approximation (6/L,) (U, /u,) = #, is drawn as a dotted line. The values of #, and
S, are 2.06 and 1.505, respectively. and are in excellent agreement with the data of
Sreenivasan & Narasimha (1982). Measured values of §/L, follow quite clearly the
parabolic curve for all u,/U", < 0.14. One can obtain an expression for /L, by
eliminating r from (3.9) and (3.10). which yields

0 1w, .

L™ W4T, o
The quantity (1/W, 4,) was found to be 1.97 as opposed to S, = 2.06. and therefore
(4.3) represents a better approximation to the data than does the linear approximation
to (4.2).

4.3. The lack of universality of the turbulent field

For a self-preserving wake (Townsend 1958). the transverse distributions of the
intensities and Reynolds stresses are given by (3.1). where the g functions are
supposedly universal functions analogous to f(r). In particular. the longitudinal
component of the turbulent intensity and the shear stress are given by

&= ulg, (n). (+.4)
uv = ulg,,(n). (4.3)
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represent the best fit to each data set.

The measured distributions of g,,(n) for the solid strip. 70 °, solidity screen. and the
symmetric airfoil are shown in figure 7. The data indicate that although each wake
is approximately self-similar. the function g,,(») depends on the nature of the wake
generator. To elucidate the differences in the measured * distributions. we plotted
a normalized function defined by

w = 'Enax 011(77)~ (+.6)

which is shown in figure 8 for the three data sets. A good measure in assessing the
lack of universality is the ratio ug} /%, (where the subscript CL refers to the centre
plane of the wake), which varies from 0.76 for the solid strip to 0.9 for the airfoil.
This ratio is correlated with the rate of spread of the wake or the decay of the mean
velocity on the centreline.

The degree to which each of the wakes approaches a self-preserving state can be
determined from figure 9, which shows the downstream variation of the square root
of it3,ax/us. For a self-preserving state. this statistic should be a constant. independent
of r. Notice that the wake behind the solid strip reaches a self-preserving state more
rapidly than the wakes behind the screen or airfoil. (Recall that the airfoil wake has
a large negative value of x,.) The self-preserving nature of ¢,,(7), the normalized shear
stress. for the airfoil can be determined from figure 10. where stress distributions at
8 downstream locations in the range 485 < £ < 800 are presented. Similar results were
obtained for the solid strip and 70 °;, solidity screen. These data were obtained at a
free-stream velocity of 7.5 m/s, rather than 14.5 m/s, because we had better control
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Figrre 10. The measured distributions of g,,(7) for the airfoil at eight downstream locations.

of the temperature of the airflow at the lower velocity. The temperature was
maintained to within +0.1 °C of the calibration temperature for the X-wire runs.
The corresponding Reynolds numbers, Re,, for the airfoil are 1260 and 1996.
respectively, and certainly no significant change in the flow structure occurs between
these Reynolds numbers. The function g,,(7) attains a self-preserving shape more
rapidly than does g,,(9) for all three wake flows.

A link between the variation in the spreading rate of the mean flow and g,,(») in
the self-preserving region can be obtained from the mean momentum equation. which
in linearized form is given by

2W, .
fHaf =—g (4.7)
0

This equation can be integrated to yield

4
Gual) = gy (4.8)

Note that 4,/2W, varies by 439, between the solid strip and the symmetric airfoil
and, therefore, g,,(7) must also differ by this amount, as f(7) is a universal function.
Reynolds stress distributions were measured at one downstream z-location for the
two wake generators. The downstream location chosen corresponds to # values of 614
and 733 for the solid strip and airfoil, respectively, well within the self-preserving
region for each wake. The Reynolds number for the measurements is the nominal
2000, the value used to obtain the 4, and W, data. Figure 11 shows the measured
values of %o /uj for the two generators. The solid lines represent the theoretical
prediction for each wake based on the linearized momentum equation and f(3). i.e.
(4.8). Note that the distribution for the airfoil definitely has larger values than that
for the solid strip. Similar data were also obtained for the 70 °; screen and the results
fell between those for the solid strip and airfoil, which is consistent with (4.8). The
agreement between the data and the linearized theory provides convincing evidence
for the lack of universality of the turbulent structure of two-dimensional far wakes.
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FiGCRE 11. The distributions of u7/u for the solid strip and the airfoil. The solid lines represent
the linearized theory prediction, equation (4.8). [, airfoil. £ = 733; @. solid strip, £ = 614.

Indeed. the lack of universality of @%, presented by various investigators for the
circular cylinder triggered the present investigation (figure 2). The peculiar shape of
(7,,(n). which has a local minimum at 7 = 0. is associated with a distribution of large
vortices about the centreline of the wake (see Sato & Kuriki 1961: Wygnanski. Oster
& Fiedler 1979). It was therefore anticipated that large coherent structures which
retain their characteristic shape and associated velocity perturbation are responsible
for the apparent dependence of the wake on the conditions at its origins.

4.4. Spectra and normal modes of instability

Spectra of the streamwise component of the velocity fluctuations were measured at
several I locations in the wake behind the flat plate. The measurements presented in
tigure 12 were taken on the centreline at 102 < £ < 587. while the spectra in figure 13
were measured along a curve representing the outer boundary of the wake. i.e.
at n = 3. Only the most significant decade of the spectra has been plotted. The
abscissa on these figures is frequency plotted on a logarithmic scale. while the ordinate
is fF(f) in order to represent the relative contribution to the streamwise component

of intensity at a given frequency f [i.e. #* oc J.F(f) df = JfF(f)d (log f)].

The spectra measured on the centreline of the wake (figure 12) have a shape which
is typically observed in any unbounded. turbulent. shear iow (Champagne 1978). The
spectral distribution is broad. and the frequency range associated with the most
energetic eddies gradually moves toward lower frequencies as the flow develops in
the downstream direction. The insert in figure 12 shows a log-log plot of the
normalized (to unity) spectra F(f). The frequency has been rendered non-dimensional
using the local length scale. L,, and (", . The similarity of the spectral distribution
indicates that the length scales associated with the energy-containing eddies
(A = " /f) are proportional to the width of the wake. L,, which is therefore an
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Fioure 12. Spectra of u fluctuations on centreline of flat-plate wake at various downstream
positions. Insert shows similarity of spectra when scaled by L, and U,

appropriate characteristic lengthscale for comparing the mean velocity profiles
generated by various obstacles.

The spectral measurements at » = 3, shown in figure 13. represent fluctuations
induced by the passage of the large turbulent structures in the wake since the
coordinate 7 = 3 is located outside the turbulent interface. The insert in this figure
shows that, as with the centreline spectra, these spectra also scale with the local width
L,. Note the shift of the spectral peaks toward lower frequency with increasing 7.

Equation (3.15) was solved for the prescribed local mean velocity field and
numerous real frequencies to obtain the variation of the spatial rate of amplification
(—ay) with increasing distance from the flat plate. The results of these computations
indicate that the maximum local amplification rate shifts toward lower frequencies
with increasing . Figure 14 shows the spatial amplification rates for different
frequencies. The value of Z for which a constant frequency line intercepts the Z-axis
(i.e. &y = 0) corresponds to the streamwise location at which a wave at that frequency
has undergone a maximum amplification according to locally parallel, linear, inviscid
stability theory. A plot of these intercepts versus frequency. shown also in figure 14,
represents the dependence of the expected predominant frequency in the wake on
the distance from the trailing edge of the flat plate. The measured predominant
frequency range. defined as those frequencies at = 3 whose amplitude is within 90°,
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FioURE 13. Spectra of induced u fluctuations at » = 3 in the flat-plate wake at various
downstream locations. Insert shows similarity of spectra when scaled by L, and [".

of the peak energy value, are plotted in figure 14 and compared with the computed
results. The dashed lines show the measured predominant frequency range determined
for » = 0. The good agreement between the measured predominant frequencies
associated with the passage of the large coherent structures and the most-amplified
frequencies calculated using line: r stability theory suggest that the large structures
observed in this flow may be related to the two-dimensional instability modes.

4.5. The amplification of imposed sinuous oscillations
Two-dimensional sinusoidal oscillations in the direction normal to the mean flow were
generated by the motion of a small flap hinged to the trailing edge of the flat plate.
The frequency of the imposed oscillation was matched to the expected most-amplified
fluctuations measured at 7 = 3 in the region of interest. A typical power spectrum
measured with and without excitation is presented in figure 15. Small-amplitude
oscillations do not affect the turbulent intensity in the wake nor do they affect the
shape of the spectral distribution. The two spectra presented in figure 15 are almost
identical, with the exception of the peak corresponding to the frequency of the
excitation.

In order to be sure that the instability mechanism in the wake is actually
responsible for the amplification of the imposed oscillations. measurements of spectra
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F1auRE 15. The effect of forcing on the measured u spectrum at £ = $00.
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Firetre 16. The effect of forcing frequency on the velocity spectrum at a fixed location in the
wake. I = 400.

were repeatedly taken at one location in the flow for a variety of forcing frequencies
while all other controlled variables were unchanged. Since the background turbulence
level is not significantly affected by the introdiction of forcing (figure 15), the ratio
of the amplitudes between the imposed wave and the background exhibits the
sensitivity of the wake to the imposed sinuous perturbations. The normalized
spectrum in the centre of figure 16 shows the ratio of amplitudes for the most-amplified
frequency at the location considered. When the frequency of forcing was either higher
or lower than the most-amplified frequency for the given location and flow conditions.
the ratio between the peak amplitude and the background diminished. In view of
the symmetry of the response around the most-amplified frequency (figure 16). which
was repeated at other flow conditions (and therefore other frequencies), the possiiility
of resonance of the mechanical flap system was discarded.

The amplitude and phase of an artificially excited sinuous wave at a frequency
corresponding to f8/U = 6.4 x 1073 (f = 20 Hz) were calculated for the wake of the
flat plate. The mean flow required for the solution of (3.15), (3.18) and (3.19) was
provided by (4.1) and table 2 (i.e. W, = 1.57, 4, = 0.323. %, = 48). These equations
were solved at intervals of £ = 10 for a rectangular window starting at r = 250 and
ending at ¥ = 750 and at intervals of 0.1 between —40 < y/260 < 40. For a given
frequency (8 = 2rtf (L) g . 150/ U ), the eigenvalues z(x) and eigenfunctions ¢(z. y) and



Figvre 17. Amplitude distribution of u fluctuations phase locked to the external sinuous
foreing signal. Z = 400.
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FIGURE 18. A comparison between the measured and predicted u perturbation amplitude
distributions at several ¥ locations in a sinuously forced wake. 4 is not A(zx) of theory.
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@(x. y) were evaluated at each of the 51 streamwise locations. These functions. their
derivatives with respect to both z- and y-coordinates, and the mean flow information
were used to determine the correction term for slowly divergent flow .4(z) {(equation
(3.18)). Only the streamwise component of the velocity perturbation was measured
and compared with the calculations.
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FioTrE 19. The variation of the computed eigenfunction with . U, = 7.4 m/s; 6 = 2.36 mm:
f=40Hz St =f6/U, = 0.0128.

A typical distribution of normalized amplitudes of the sinuous mode across the
entire wake is shown in figure 17. The solid line represents computed values, while
the triangles represent experimental results at £ ~ 500. The data were acquired by
recording the velocity, together with the sinusoidal signal activating the flap. The
velocity signal was phase-averaged over 300 cycles of the flap motion. and the Fourier
transform of these average records provided the phase and amplitude estimates of
the spectral elements of the velocity field. which were quite free from the random.
turbulent fluctuations present in the original signals. There is little doubt that the
artificially excited wavetrain can be described by an inviscid linear model, in spite
of the fact that the flow is fully turbulent. One may note that the measured amplitude
distribution in figure 17 is not exactly symmetrical about the centreline: the lack of
symmetry is partly attributed to interference between the probe holder and traversing
mechanism, to the large structures in the wake, and to the presence of the varicose
mode.

A detailed comparison between the predicted amplitude distribution of the forced
wave and measured amplitude profiles at eight streamwise locations is shown in
figure 18. In the bottom part of this figure, the velocities were normalized by their re-
spective maxima, which are replotted at the top. The computed maximum ampli-
tude at £ = 700 was assigned the value of unity, which is the only floating constant
in this comparison. The predicted and measured lateral distributions of amplitudes are
in good agreement with one another, as is the decay of the maxima with increasing
distance from the generator. It was surprising, at first, to note that the maximum
amplitude of the forced wave actually diminished with Z, in spite of the fact that
the quasi-parallel solutions based on (3.14) would predict amplification (a, < 0). The
reasons for the apparent anomaly stems from the fact that x, is a small negative
number in the range of distances considered. and it is outweighed by the shape of
the eigenfunction whose maximum amplitude diminishes with increasing Z (figure 19).
A similar observation for an axisymmetric jet was made by Strange (1982). The value
of the integral of the perturbation amplitude across the wake increases somewhat with
increasing ¥ because the width of the wake increases. In fact, the product of the
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FIGURE 20. A comparison between measured and predicted phase distributions in a wake.

maximum amplitude and the local width is nearly constant between 7 = 325 and
I = 700. This result could not have been predicted by the parallel low approximation
because it is sensitive to dL,/dx and to u,/U . The corresponding measured and
computed phase profiles are shown in figure 20.

The amplification of a forced wavetrain in a turbulent, plane wake agrees in
principle with similar observations made by Sato & Kuriki (1961) and Mattingly &
Criminale (1972) for the growth of small disturbances in a laminar wake. In fact. only
qualitative agreement was obtained by Mattingly & Criminale between experimental
measurements and the predictions of the linearized spatial stability approach, while
quantitative agreement is seen in the present case. Although improvements were
made in both theory (inclusion of slow divergence) and experiment (forcing a sinuous
mode), the type of agreement shown would not have been possible if the interaction
between the imposed two-dimensional disturbances and the small-scale, three-
dimensional turbulence in this flow was significant. Mattingly & Criminale attributed
the discrepancies they observed to the inviscid assumption and to the neglected
longitudinal gradients in the mean wake profiles; it seems to us that the inviscid
assumptions can be retained as long as one considers waves which would have been
growing spatially in parallel flow.

4.6. The amplification of natural disturbances in a plane, turbulent wake

Encouraged by a successful prediction of the propagation of imposed two-dimensional
perturbations in this flow and intrigued by the shape of the broadband distribution
of @* in the wake. we proceeded to analyse the propagation of two-dimensional
disturbances occurring naturally in a wake. In this case, the entire turbulent signal
was Fourier analysed, instead of the phase-locked average considered in §4.5. and
a particular spectral component corresponding to f8/U", = 1.3 x 10~? was examined
in detail. The frequency chosen (f = 40 Hz at [’ = 7.4 m/s) corresponded approxi
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Fioure 21. The amplitude distribution of the u component f = 40 Hz and f = 587 in the
unforced wake.

mately to the anticipated most-amplified sinuous mode in the range ot f considered.
A typical profile of (@})f in the wake of a flat plate corresponding to £ = 587 is shown
in figure 21. The resulting lateral distribution of amplitudes of (i}t is quite similar
to the broadband distribution of u? shown in figure 7. although the ratio
((#F)cL/ (%} )max] 18 generally lower than the corresponding broadband distribution.
Because the data are no longer phase locked. the actual amplitudes plotted are much
larger than for the imposed wavetrain. Since the calculated amplitudes do not vanish
on the centreline of the wake as predicted by the sinuous mode of inviscid
amplification. another mechanism has to be considered. A hint was provided by the
fact that the amplification rates (—a;) predicted on the basis of the parallel flow
approximation were overwhelmed by the presence of longitudinal gradients in the
mean flow (figure 17). It seems plausible that the same longitudinal mean flow
gradients may have enhanced the relative importance of the varicose mode. which
would contribute to the amplitude of the fluctuations on the centreline: otherwise.
nonlinear effects and secondary instabilities may have to be considered.

The calculation procedure outlined in §4.4 was repeated for f6/0 = 1.3 ~ 1072
and the appropriate mean flow parameters (table 2). The calculations were done twice:
once for the sinuous motion, then a second time for the varicose mode. By assuming
that, to the first order of approximation, one may simply superimpose the amplitucic<
of the individual modes of instability, neglecting any correlation hetween them, i\.e
resulting amplitudes were calculated. For the purpose of comparison between
computations and experiment, it was assumed that the initial amplitudes resulting
from both modes are equally important: namely. that the maximum amplitude of
the varicose mode is equal to the maximum amplitude of the sinuous modc at some
initial 7-distance from the generator. The results of these calculations are piotted in
figure 22 for 370 < 7 < 640: the symbols in the figure represent data calculated from
experimental results and filtered at f0/0, = 1.3 ~ 1072 There is a qualitative
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FicURE 22. A comparison between measured and predicted u amplitude distributions at several
F locations in an unforced wake. A is not A(x) of theory.

xx600
F1GURE 23. Large coherent structures photographed in the wake of the flat plate with no
forcing. £ =~ 500 and Re, = 600,

agreement between the predicted and measured lateral distributions of the i
amplitudes. indicating that both modes of instability are probably present and can
give rise to the peculiar profile of the u fluctuations in the wake. The agreement
between theorv and experiment in this case is not as good as for the forced sinuous
wave. suggesting that either the two-dimensional approximation is invalid or the
simple linear superposition neglecting the phase relation between hoth modes is
inadequate. Another possible error stems from the nonlinear terms neglected in the
present context.

In order to explore further the importance of the interaction between the two modes
of instability. we resorted to low visualization using a smoke wire. The wire was

3 riw 188
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positioned at & = 350. while the camera was located at f = 5300. The smoke patterns
were photographed at {"_ = 3.4 m/s (corresponding to Re, = 600). rather than at
U = 7.45 m/s to enhance the quality of the results. The smoke wire did not work
well at the higher velocity. Although 6 is approximately 20°, higher for the lower
Reynolds number. this case is representative for the larger Reynolds number case
(Rey = 1035) as the large-scale turbulence should be relatively insensitive to the
Revnolds number change used here. Large coherent structures are clearly visiisi- in
the wake of the flat plate (figure 23). even in the absence of any imposed oscillaticns.
These structures are similar in appearance to the Karman vortex street because they
seem to be comprised of vortices of alternating sign of vorticity. which are placed
in a staggered manner on both sides of the wake centreline. Therefore. neither the
varicose mode. which requires that the vortices appear in pairs distributed
symmetrically about the centreline. nor the sinuous mode. which requires vortices
whose centre coincides with the centreline. dominate this flow. Although the vortices
are large and coherent and have a prevailing wavelength. A, of approximately 10 cm.
there is sufficient irregularity in their shape. size. and position to cause the spectrum
of the induced fluctuation at the edge of the wake to be fairly broad (figure 13). The
introduction of periodic forcing did not have a significant effect on the shape and
scales of the large eddies visualized in this manner. For the unforced case. the
flow-visualization results indicate that A,/L, ~ 3 for Re, = 600. The theoretically
most-amplified wave can be determined from figure 14 to have a frequency of 75 Hz
corresponding to a wavelength of 9.9 cm for the higher velocity. Re, = 1035, case.
If one assumes that the normalized mean velocity profile is the same for both
Reynolds number cases. the frequency of the most-amplified wave would scale with
[ .. and therefore. the wavelength remains constantas A = ¢/f = " /f. To determine
L, for the Re, = 800 case. we assumed L,/6 is independent of Reynolds number in
the turbulent range considered. Then. using the measured results for Re, = 1035
(table 2). L, for the lower Reynolds number flow visualization case could be
determined. The theoretical prediction for Re, = 600 is A,/ L, = 3.5. which is in good
agreement with the flow-visualization results. Since the energv-containing eddies
have a scale of the order of L, to 2L,, the wavelength of the most-amplified wave
from linear stability theory is one to two times larger than the energy-containing
scales of the turbulence.

The degree of two-dimensionality of these structures was first estimated by placing
the smoke wire parallel to the circular eylinder but displacing it from the generator
in the lateral direction in order that the smoke would not be entrained by the wake
before r = 300. The resulting photo (figure 24) indicates that the large eddies have
a tendency to be two-dimensional. although the two-dimensionality is by no means
perfect. There appears to be a variation of amplitudes along the span of the wake.
as well as phase irregularities.

Coherence spectra calculated from u fluctuations sensed by two probes separated
in the spanwise direction provide a quantitative measure of the two-dimensionality
of the various scales. The two-point. cross-correlation function for stationary random
variables u,(x. t) and u(x+r. t+7) is defined as

Ry(x.r.m)= ux.t)uj(x+r.t+r). (+.9)

and the cross-spectrum.

x
ylx.r.f) = ﬁj Ry(x.r.r)yei®™ dr = e x fi—iQ,(x.r.f) (4.1
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x=600 i Flow x=400

FicURE 24. The spanwise coherence of the large eddies in the wake of a circular cylinder at
¥ = 600 and Re, = 600.

where C; is called the cospectrum and @,;. the quadrature spectrum. The coherence
spectrum is defined as

(%x.r.f)+Q%(x.r.f)

Cobilx o)) = g e Fpxrrify 10
where F;(x: f) and Fj(x+r: f) are the familiar (one-point) energy spectra. i.e.
}Hx) = J. Fyx:fidf. (+.12)
-x
The phase angle 6,; can be obtained as
Oyx.r.f) = tan“[%{l. (4.13)

o
The coherence spectrum is bounded. and its value must be between 0 and t. We will
consider the component Coh,,(x. Az: f). which represents the degree of spatial
correlation hetween the Fourier components of u (x. ¢) and u,(x+ kAz. t+7) at the
same frequency. where k is a unit vector in the z- or spanwise-direction.

A spanwise rake containing six hot-wire probes spaced from 1.1 to 2.534 ¢m apart
was used for the coherence data. Measurements were taken in the wake of the flat
plate. with and without excitation, at # = 430 and 646. with the rake located at p = 0.

3.2
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Fierre 25. The response of the wake to various sinuous forcing levels. ¥ = 646 and n = 0.6. @.
f=30Hz Az/Ly=10: O. f=50Hz. Az/L,=04: B. f=100 Hz. Az/L, = 10: (J. f = 100 Hz.
Az/Ly=0.4: A f=150 Hz, Az/L, = 10: A f = 150 Hz. Az/L, = 0.4.
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Fi6URE 26. Coherence spectra measured at F = 646. 5 = 0.6. and Az/L, = 0.4 in the wake of the
flat plate. Upper trace without forcing. Lower trace with forcing at 30 Hz.
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Fietrre 27. (a) Coherence spectrum measured at = 646. n = 0.6. and Az/L, = 10. with forcing
at 50 Hz. (b) Same as (a) except » = 3.

0.6. and 3. The lateral position » = 0.6 approximately corresponds to the location
at which u-fluctuations are most energetic. The response of the wake at £ = 646 and
n = 0.6 to various levels of excitation is shown in figure 25 for two Az spacings. 1.1
and 25.4 cm apart. The values of the coherence at the excitation frequency (50.0 Hz)
and its first and second harmonics as a function of amplitude are presented. All
amplitudes are scaled by the highest amplitude of oscillation. Where the relative
forecing amplitude was less than 0.25. the coherence spectrum responded in a linear
manner. For amplitudes in the range of 0.25 to 0.5, the value of the coherence at the
forcing frequency is nearly independent of Az in the range investigated. at least up
to Az/L, = 10. The relative amount of energy tied up with the forcing frequency can
be determined from the spectrum of the velocity fluctuations. In the case. the spectral
peak at 50 Hz was one order of magnitude above the "background' turbulent
fluctuations.

Figure 26 shows the coherence spectra measured at Z =646, » =0.6. and
Az/Ly = 0.4. with and without forcing. The forcing frequency was 50 Hz. correspond-
ing to the expected predominant frequency at this #, and the relative amplitude
of forcing was 0.25. The effect of forcing sharply enhances the value of the coherence
at the forcing frequency to 0.92, with little effect on the rest of the spectrum. The
corresponding data for Az/L, = 10 are shown in figure 27 (a). where only the data
for the forced case are presented. The coherence for the unforced case at this
separation vanished at all frequencies. For the forced case. the entire correlation is
contained in the spectral spike at 50 Hz. for which the coherence is 0.87. Similar
results were obtained at forcing levels as low as 0.05. where the peak correlation was
0.21 and 50 Hz. At » =3 (figure 27b). a much higher coherence at the forcing
frequency was measured (0.98). indicating that the large structure in the wake must
be highly two-dimensional to generate such a result for the large spanwise separation.
Az/L, = 10. For the unforced case. the coherence is nearly zero from 10 to 260 Hz.
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FiorrE 28. Streak-lines computed assuming spatial instability of parallel flow at ¥ = 300: (a)
sinuous, most-amplified mode: () varicose. most-amplified mode: (c) combined modes.

The results indicate that a slight amount of forcing generates a strong two-dimensional
wave in the wake at the forcing frequency.

Is the proposed model capable of explaining the large structures observed in
figure 23 ! For this purpose, some streak-lines had to be calculated. Sinece the calcula-
tions were aimed at a qualitative understanding of this phenomenon. a parallel flow
approximation was invoked locally. It was assumed that the particles were uniformly
released at £ = 300. where u,/U = 0.06. The prevailing wavelength from figure 23
was used to determine £ corresponding to the spatially most-amplified sinuous
wavetrain in this mean flow. Both u and v components of the perturbation velocity
were calculated across the entire wake. and the corresponding particle paths were
established from the equations

(;—;: = Ufz(t). y(t), ), % = V[x(t). y(t).t]. (+.14)
(For a detailed description of the procedure. see Michalke 1965.) The initial amplitude
of the u-component of the velocity perturbations was 0.025 " . This corresponds to
309 of u,, which is a constant in these calculations.

Five of the streak-lines calculated taking only the sinuous mode into consideration
are shown in figure 28 (a). The streak-lines have a sinusoidal pattern undulating about
the centreline of the wake. The amplitude of the undulations increases with increasing
distance from the source: at large distances. most of the particles congregate at the
outer edge of the wake.
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FicUre 29. Ntreak-lines from figure 28(c) plotted on larger scale to show staggered nature of
particle congregation.

The corresponding. most strongly amplified varicose mode has a perturbation
frequency equal to 2 of the frequency of the prevailing sinuous mode (not quite a
subharmonic frequency). The computed streak-lines for the varicose mode are shown
in figure 28 (h). The particles in this figure congregate in lumps. which are symmetrical
about the centreline of the wake. The streak-lines shown in figure 28(a) or (h) bear
no resemblance to the observed coherent structures seen in figure 23.

The streak-lines shown in figure 28 (c) represent the combined motion of both modes
of instability when the coefficient of the velocity perturbation is still maintained at
0.025. The initial ratio between the amplitudes of « and » in the varicose mode and
the sinuous mode was 0.7. (This number simply appeared because the eigenfunctions
were not normalized : changing the initial ratio by a factor of two made no substantial
difference in the pattern.) The initial phase relation between the modes was assumed
to be zero. (("hanging this number also had no effect on the basic pattern at some
distance downstream from the source location.) The phase velocities of the two modes
are not equal and differ by a few per cent.

The prevailing wavelength of the streak-lines (figure 28¢) still corresponds to the
prevailing wavelength of the sinuous mode. but the presence of the varicose mode
not only modulates the streak-lines but also contributes to an apparent chaotic
behaviour. Most important is the fact that these streak-lines. when replotted on a
larger scale. resemble the pattern observed in the smoke photographs (figure 23).
Namely. the particles congregate in a staggered manner ahout the centreline and the
large eddies are. at times. separated by deep incursions of * potential  Huid. Sometimes.
these incursions are narrow (marked by the letter "N~ in figure 29) and. sometimes.
they are wide (marked by "W). [t therefore transpires that only the combination
of both modes can successfully describe the low.

The distributions of vorticity for the three cases considered in tigure 28 were
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FiGrre 30. Vorticity perturbation contours computed for the three casex of streak-lines shown
in tigure 28: (2) sinuous. most-amplified mode: (h) varicose. most-amplified mode: (¢) combined
modes.

calculated directly from the eigenfunctions solved. because the vorticity perturbation
r” .
(t)(y) ——(h,:m¢ (4.15)
and the total vorticity
Q(x.y.t) = =" +0.015 RPlw(y) exp[i(ar—pH)]}. (4.16)

which is. of course. periodic in time. The vorticity contours plotted in figure 30 were
calculated for ¢t = 2x/4 and for 355 < f < 383. as in figure 29. (The shaded regions
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correspond to negative vorticity.) By neglecting either the varicose mode [figure 30a]
or the sinuous mode [figure 305], the resulting vorticity contours appear to be very
regular. The contours are either symmetrical or antisymmetrical about the centreline
and indicate intensification of vorticity with increasing . The vorticity contours
resulting from the combined two modes of instability [figure 30¢] are surprisingly
similar to the contours produced by the sinuous mode alone. One may notice.
however. that the intensity of the contours in figure 30¢ are modulated by the varicose
mode. even if they are not severely distorted by the addition of this mode. A simple
superposition of figure 30c on figure 28 leads to the conclusion that a congregation
of particles observed in a still photograph does not necessarily correspond to a
concentration of vorticity.

5. Discussion

The velocity and length scales in a plane. turbulent. and supposedly self-preserving
wake are dependent on inflow conditions and. therefore, on the shape and size of the
obstacle generating the wake. We could not prove that these scales will not become
universal functions of (z/6) at extremely large values of (x/6), but the distances at
which this may (or may not) occur may be so large as to have no practical impact
on the problem. The range of z/6 values in the present study extended up to 2000,
corresponding to u,/U" ~ 0.03. The dependence of the plane mixing layer on inflow
conditions was observed some years ago (Champagne, Pao & Wygnanski. 1976) and
traced to the presence of large coherent structures (Oster & Wygnanski 1982). The
existence of large coherent structures in a wake. however, was often confused with
vortex shedding, which was so ably discussed by Karman (1912) in the lee of a circular
cylinder at low Reynolds numbers. The large eddies proposed by Townsend (1956)
and Grant (1958) bear little resemblance to the structures observed presently.
although Townsend suggested that the large eddies present in fully turbulent free
shear flows might have been generated by hydrodynamic instability of the mean flow.

What is the cause for the apparent dependence of the small-deficit wake on the
shape of the generator?! The nature of the flow in the vicinity of the generator.
including any vortices shed by the generator. can provide a plausible explanation for
this phenomenon. The frequency. amplitude. and the predominant mode of the initial
perturbation vary from one geometry to another. For all geometries investigated. the
predominant mode of shedding was sinuous. but the presence of the varicose mode
was also detected in the vicinity of the low-solidity screens and circular cylinder. The
strongest sinuous oscillations were observed downstream of the thick symmetrical
airfoil because the initiation of separation from one surface changed the circulation
around the airfoil. moving the front stagnation point toward the separated surface
and therefore initiating a separation from the opposite surface. The amplitude at the
shedding frequency was three orders of magnitude stronger than the background
turbulence. The amplitudes of the oscillations generated by a circular cylinder and
by the screens were approximately two orders of magnitude above the background.
while the amplitude of the oscillations downstream of the solid strip held normal to
the flow was of the same order of magnitude as the background.

It is also suspected that the lower the frequency of the shedding. the more
persistent the initial effects will be: in fact. the frequency of shedding downstream
of the symmetrical airfoil of a given thickness depends on the chord length. provided
the flow separates upstream of the trailing edge. The effects of frequency. however.
appear to be less significant than the effects of amplitude. A Jetailed investigation
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FiGURE 31. The measured predominant frequencies in the wake of: (a) @. a circular & in.
cylinder. Re, = 2000: () A. the 30°, solidity screen. Re, = 2000.

of the near wake has been undertaken in order to determine the effects of inflow
condition more precisely.

Cimbala et al. (1981) observed, with the aid of a smoke wire, the evolution of large
coherent structures in a wake of a circular cylinder up to Re; < 2000 and in a wake
of two screens at comparable Re. These structures became apparent some 200
diameters downstream of the cylinder and had a regular frequency two to three times
lower than the Strouhal frequency. They were unable. however. to corroborate their
results with spectral measurements for their high-Reynolds-number case and
attributed it to the high turbulence level in their tunnel. Some measurements of
spectra at the outer edge of the wake were carried out for two wake generators: (i)
a circular cylinder at Re, = 2500 corresponding to Re, = 3000 and (ii) a screen having
459, solidity. also at Re, = 2500. In the immediate neighbourhood of the cylinder.
the predominant spectral peak (not shown) corresponded to the shedding frequency
of the cylinder. i.e. at St; = 0.206 or St; = 0.10. At ¥ > 50. the predominant spectral
peak dropped quite abruptly to St; > 0.03. Thereafter. the evolution of the spectral
peak was rather slow and is hardly detectable on the scale shown in figure 31. The
spectral peaks associated with the screen tailored to produce the same momentum
thickness as the circular cylinder are similar to those mentioned above at ¥ > 250.
The big difference between the two tlows occurs at 30 < f < 250. where the
characteristic frequency of the spectral peaks generated by the screen decreases slowly
with £. At F> 150. one may detect the appearance of an additional peak in the
spectrum. which roughly corresponds to the spectral peak in the far wake of the
circular cylinder: this peak amplifies quickly and dominates the spectrum at & > 200.
It seems that the coherent structures in the near wake of this particular screen retain
some of their characteristics up to F = 250, while in the wake of the circular cylinder.
this transition is accomplished at ¥ = 50. [t is believed that the shear lavers generated
in the wake of the screen (see insert in figure 31) undergo an instability process
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reminiscent of the plane mixing laver (Gaster et al. 1985). generating eddies whose
characteristic frequency decreases in the direction of streaming. Whether these eddies
grow by entraining uid from the surrounding stream or by a process of amalgamation
remains to be seen.

Nince Cimbala et al. (1981) did not observe any vortex amalgamation in their
visualization experiments. one would be inclined to think that the gradual decrease
in the characteristic frequency stemming from an increase in the wavelength of these
eddies is caused by entrainment. In any event. once the scale of these eddies becomes
comparable to the width of the screen. an interaction between two shear lavers of
opposing vorticity has to occur before the wake will become *fully developed ™. It is
possible that a phase accommodation ensues. resulting in a slow evolution of the
typical large structures existing in the self-preserving region. The evolution of the
fully developed wake is currently being investigated. but the importance of initial
conditions is evident in tigure 31.

The mutual interaction between the large coherent structures and the mean flow
is outside the scope of the linear stability theory. However. the dependence of the
mean flow field on the initial conditions. and consequently on the large coherent
structures. poses precisely such a problem. The notion that the free-stream turbulence
and the shape of the generator may have an effect on the development of a
self-preserving wake was proposed by Symes & Fink (1977). These authors observed
that the wake generated by a rectangular cylinder did not evolve in the same manner
as the wake generated by a circular cylinder. but the most important observation
stems from the fact that the evolution of the wake was sensitive to grid turbulence.
whose integral scale was an order of magnitude larger than the scale of the generator.
This suggested that the externally imposed turbulence interacted with the flow far
downstream. where the typical scales in the wake and in the free stream became
comparable. [t also implied that an instability mechanism might be responsible for
this result. The present investigation confirmed this notion. although nonlinear terms
have to be considered in order to assess the interaction between the mean tlow and
the imposed oscillation. Perhaps. an integral approach similar to the one used by Ko.
Kubota & Lees (1970) might predict such an interaction through the Revnolds stress.
The concept of flow equilibrium and self-preservation has to be carefully reconsidered
in view of the present findings. in spite of the fact that the normalized shape of the
mean velocity profile was not affected. The dependence of the lateral distribution of
the turbulent intensities on the nature of the generator (tigure 7) and the relatively
poor collapse of the dimensionless data onto a single function for a given wake
generator raise the possibility that the flow is not in equilibrium. Although this
possibility was considered remote at the start of this investigation. a plot showing
the difference between the maximum intensity (i*),,, and the intensity on the
centreline of the wake (%), normalized by u} is shown in figure 32 for the wake of
the flat plate. If the flow was in perfect eqmllbrlum then (%) pmax — (@3)c1/ 43 should
have been constant at all ¥. Although this piot is very susceptible to experimental
inaccuracies and should be treated with due caution. the lack of constaney might have
been caused by a nonlinear interaction between the varicose mode and the sinuous
mode of instability. The possible interaction between the two modes will be
investigated in detail by forcing the wake simultaneously with a combination of
modes.

The assumption of parallel fow (3.2) makes the eigenfunction ¢(y) and the
eigenvalues z and g invariant with respect to streamwise distance from the generator.
Thus. for g = 0 (i.e. spatially amplified waves). only a single mode containing the
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Fictre 32. The variation of turbulent intensity defect on the centreline of the wake of a flat
plate.

largest | — 2,| need be considered. However. the amplification rates in the small-deficit.
plane wake are 30 small that one cannot disregard one mode of instability in favour
of another simply because its | —z,| is the largest. The long distances required for an
unstable wave to amplify increase the relative significance of the longitudinal
gradients in the mean velocity. By neglecting the varicose mode in favour of the
sinuous one. Sato & Kuriki (1961) had to resort to nonlinear effects in their attempt
to explain the cause for the generation of two rows of vortices. Mattingly & (‘riminale
(1972) offered an alternate explanation. which is based on the vorticity distribution
of the sinuous mode being superposed on the mean vorticity. The generation of a
vortex structure reminiscent of a Karman vortex street can quite easily be attributed
to the superposition of the two instability modes. keeping in mind that the most
unstable frequency of the varicose mode is only slightly higher than a subharmonic
of the most unstable sinuous mode. Sinuous forcing of the flow has little effect on
the shape of the large eddies visualized by smoke until the amplitude of the forcing
becomes high. In this case. the smoke pattern is more regular and the eddies are
located closer to the centreline than in the corresponding unforced wake.

6. Conclusions

It was experimentally observed that the characteristic velocity and length scales.
u, and L, when suitably scaled by the momentum thickness and the tree-stream
velocity. do not exhibit universal behaviour and do depend on the inflow conditions
and therefore on the geometry of the wake generator. The mean velocity profiles for
each wake. when normalized by theirown velocity and length scales. are self-preserving
and are also identical for all wake generators. The distributions of the turbulence
intensities normalized in the same manner are almost self-preserving. but thev are
dependent on the geometry of the wake generator.
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Linear inviscid stability theory. in which the divergence of the mean flow was taken
into account. predicts quite well the amplification and the transverse distributions
of amplitudes and phases of externally imposed sinuous waves in a fully developed
turbulent wake generated by a tlat plate. [t appears that the large. coherent. vortex
structures occurring naturally in a wake can be modelled to some extent by linear
stability theory. Furthermore. the interaction of the two possible modes of instability
may be responsible for the apparent Karman vortex street-type of structures
observed visually in the small-deficit. turbulent wake.
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EFFECT OF SPATIALLY TRAVELING SINUOUS WAVES ON THE
GROWTH OF A TWO-DIMENSIONAL TURBULENT WAKE

F. H. Champagne, B. Marasli, and I. Wygnanski

Department of Aerospace and Mechanical Engineering
University of Arizona, Tucson, AZ 85721, USA

The results of experiments to control the growth rate of a turbulent wake behind a flat
plate will be presented. Sinuous disturbances at several amplitudes and frequencies were
introduced to the wake by oscillating a small flap attached to the trailing edge of the plate.
The Strouhal numbers of the perturbations were specially chosen so that the downstream
location of the neutral point (where the spatial amplification rate obtained from linear
stability theory vanishes) was well within the range of measurements. The streani’,'\é’fiolution
of these perturbation waves end their effect on the growth of the turbulent wake was
investigated experimentally in a low turbulence level wind tunnel.

The flat plate is 30 cm long, 6.4 mm thick, and 61 cm wide. The leading edge is
rounded and the trailing edge is tapered. Trip wires were placed on the plate to ensure
that the boundary layers were turbulent. The flap is 5 mm long and is hinged to the trailing
edge of the plate. The free stream velocity, U,, was 7.5 m/sec and the resulting
momentum thickness, 8, was 2.3 mm. The momentum thickness is defined by

and is constant for the two-dimensional wake in a zero pressure gradient. The Reynolds
number, based on #, was 1000 and the wake was fully turbulent. Measurements of the
velocity field were made using a rake of five X-wires, The velocity signals were
decomposed into a mean part, f, a wave component, f, and a fluctuating turbulent
component, f’ [1]. Further details regarding the experimental facility can be found in
Wygnanski, Champagne, and Marasli [2].

The streamwise variation of the half-width of the wake, L;, and the centerline velocity
deficit, uy, are used to characterize the development of the mean velocity field. For the
unforced wake, the flow is approximately self-preserving with Ly ~ x/2 and uy ~ x-172,
Figure 1 shows LyU,/(up6), a nondimensional growth parameter, plotted versus x/29 for the
unforced case and for a forcing frequency, f, of 70 Hz at several forcing amplitudes. 6
remains effectively constant for these cases. The forcing levels are specified by the value
of U, /ug at a given downstream location from the plate, x = 25 cm. For the cases labeled
low, medium, and high amplitude, these values are 0.17, 0.30, and 0.89, respectively. The
streamwise variation of the individual parameters L, and ug' is similar to that of the
nondimensional growth parameter. The unforced case shows linear behavior, as the Ly/u,
ratio is proportional to x, while the behavior of the forced wake depends on the amplitude
level. .

The rate of growth of the forced cases is initially larger than that for the unforced case.
Depending on the level of forcing, however, the wake stops growing at some downstream
location and appears to be in a state of nearly parallel flow. In the high-amplitude case,
the wake even coniracted some and then resumed growing at a slower rate. . The
downstream location where the wake stops growing in each case roughly corresponds to
the location of the neutral point for that case. The exact location of the neulral point is
difficult to determine, as nonlinear terms are not negligible near the end of the amplified



F=70HZ VARIOUS FORCING LEVELS

300 T T T T T T T 252 ' i L T T T T
o 200 I 1 ) T T T ]
2 s | Wt A
W ] - A g ..
ézan- s otse bk ad AAM&@A“ N
' 2 L A J
z R 2
2 S tes |- .
: s L e
7: e r © UNFORCED 2 saf & J
d A LOU AHP, ‘ ] -," | ; |
- o nEDIUM ] - ace b ¢ T -
7 HIGH 9 L 1 1 1 1 1 1
. ] 1 1 1 L. [ ] 200 409 -"]] (-]
. 408 693 809 (X=X@) /(25 THETA)
X120 THETA)
; Fig. 2.  The downstream evolution of the
Fig. 1. The downstream development of the growth parameter for a medi-
the growth parameter for f = 70 um amplitude forcing and f = 80
Hz and various forcing levels. Downstream regions defined.

region. The variation in the growth rate of the wake is caused by the nonlinear interaction
of the perturbation wave with the mean flow. In the region upstream of the neutrai point,
the disturbances are being amplified and energy is transferred from the mean flow to the
disturbance. The wave-induced stress, UV, changes sign through the neutral point, so
downstream of the neutral point energy is transferred from the disturbance to the mean flow.
This demonstrates that the lateral rate of spread of the wake is closely linked with the
growth of the disturbance wave; amplification of the wave results in a transfer of energy
from the mean flow and a divergence of the mean flow. Further evidence to substantiate
this can be obtained by noting that the initial divergence of the wake increases with
increasing forcing amplitude. The contraction of the wake may be attributed to the transfer
of energy from the disturbance wave to the mean flow in the damped region beyond the
neutral point.

To consider some of the interesting features of the downstream development of a
sinuous wave, let’'s examine the case of a medium-amplitude 80-Hz wave. Figure 2 shows
the nondimensional growth variable LyU,/uys0 versus (x - x4)/26. The measured mean
velocity profiles for various downstream locations are presented in Fig. 3 in self-preserving
form. Figure 3a shows the profiles for the downstream region labeled a. These profiles
agree well with those for the unforced case shown by the solid curve, which represents a
curve fit to the unforced profiles. The profiles for the region b, located just past the neutral
point, differ from the unforced data, as shown in Fig. 3b. Farther downstream in region ¢,
the changes are more significant. The three regions defined in Fig. 3 correspond to the
amplified, neutral, and damped regions, respectively, in the context of linear stability theory.

Solution of the inviscid Orr-Sommerfeld equation using the appropriate measured mean
velocity profile gives the eigenfunction distributions typical for each region. The amplitude
and phase of the u and v components of the disturbance wave were computed. The phase
of the u component changes sign in the damped region, while the phase of the v component
does not change sign. Therefore, the sign of the wave-induced or coherent Reynoids stress
changes in the neutral region. The computed wave-induced or coherent stress distributions
are shown in Fig. 4. Four plots are presented for the neutral region showing the
downstream evolution of the change in sign of the wave-induced Reynolds stress. The
measured coherent, turbulent, and total Reynolds stress for the three regions are displayed
in Fig. 5 for comparison. The vertical markers above the data presented in Fig. 2 indicate
the measurement locations for the data shown. Three data sets are shown for the neutral
region, demonstrating the change in sign of the coherent siress. Each distribution has been




normalized by the maximum value of the total stress corresponding to that downstream
location, so the relative amount of coherent and turbulent stress can be determined. Figure
5a shows the measured stresses in the amplified region. Notice that the sign of the
coherent stress is the same as that of the turbulent stress, while its magnitude is roughly
twice that of the turbulent stress. In Fig. Se, the measured stresses in the damped region ¢
are presented. Note that the sign of the coherent stress has changed and its magnitude is
now only one-third of that of the turbulent stress.

Further experimental results will be presented, along with comparison with linear

stability theory predictions.
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Fig. 3. Measured mean velocity profiles
in the three defined regions: (a)
the amplified region; (b) the neu-

tral region; (c) the damped region.

Fig. 4.

COMPUTED REYNOLDS STRESS
FROM LINEAR THEORY
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Computed wave-induced Reynolds
stress distribution for amplified,
neutral, and damped regions for
linear stability theory. Four plots
are presented for the neutral
region.
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Fig. 5. Typical measured distributions of total, wave-induced or coherent, and turbulent
Reynolds stresses for the downstream locations identified in Fig. 2.
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