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AIRCRAFT CRUISE-DASH OPTIMIZATION:

PERIODIC VERSUS STEADY-STATE SOLUTIONS

Abstract

This paper conducts a comparitive study of periodic and steady-state solutions

for aircraft cruise-dash optimization. The solutions are in the point-mass model.

The cost functional is an average weighted sum of the fuel used and the time

taken. Previous work on cruise has determined that the steady-state solution fails

a Jacobi-type test, conducted in frequency domain. Periodic solutions have been

obtained for the same problem that use lesser fuel. The periodic solutions have

been shown to be locally optimal. Similar analysis is carried out in the current

effort for the cruise-dash problems that have non-zero weights on the time taken.

As the weight on the time is increased, the difference in the costs become less and

less. For all values for the weight on the time above a certain value, the steady-

state solutions are locally optimal. The structure of the periodic solutions become

intricate. The periodic solutions seem to "approach" the steady-state solution as
Aooession For

the weight on time is increased. NTIS GPA&I
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CL ................. Lift coefficient - AVP 6  '.'or

'Dist
f .................... Right hand side of vector state equation

g ....................Acceleration due to gravity (m/s/s)



H .................. Pseudo-Hamiltonion

h ................... Altitude (m)

j .................... Imaginary number, /-7

J .................... Cost functional (N/m)

L ................... Lift (N )

Q .................. Maximum fuel flow rate (N/s)

T ................... Maximum thrust (N)

u ................... Vector of controls

V ................... Airspeed (m/s)

W .................. Aircraft weight (N)

Wf ................. Fuel used (N)

X ................... Range (m)

Xf .................. Final range, wavelength (m)

z .................... Vector of states

Greek Symbols.

6 ................... Variation

n ................... Throttle setting

y .................... Flight path-angle (rad.)

................... Co-state vector

AX .................. Co-state variable

.................. Frequency test matrix

................... Weight in cost functional (N/s)

p ................... Air density (kg/cu.m)

a................... TSFC (N/N/Is)

2



co ................... Frequency (rad/s)

Introduction

In a historic paper, Speyer [Speyer] showed that for the cruise problem, the

steady-state solution fails a Jacobi-type test conducted in frequency domain. For

a band of frequencies, the second variation of the cost is negative, indicating that

certain oscillatory controls can achieve lower costs. These results are valid only

for trajectories in the vicinity of the steady-state solutions. Later investigations

revealed that periodic solutions in the point-mass model could, indeed, achieve

lower costs [Dannemil,Hsuang, Grimm]. An important point to be made here is

that the frequency of periodic solutions is exactly as prophesied by the frequency

test [Thesis]. This is at one end of the cruise-dash spectrum. At the other end, for

the dash or minimum-time problem, it is known that the optimal trajectory is a

full-throttle steady-state solution. So, somewhere in the cruise-dash regime, the

steady-state solution becomes locally optimal and the periodic solutions lose their

optimality. This paper investigates this behavior.

Steady-State Solutions:

A time invariant control is the simplest control that can be implemented. This is

the main reason for interest in a steady-state solution. Often the simplicity of

implementation supersedes any other requirement and the constant controls are

chosen over dynamically varying controls, even if it results in a non-optimal op-

eration of the aircraft.

The optimal control problem is to
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Min J f -' Q(1)
{Xf Co

subject to

V= g [P - sin Y,]
V cos y

V os (2)

h'= tan y

The steady-state solution requires that all the state-rates be zero. Hence,

V' = EP - sin y-] 0
V Cos y

Y _L L ]1 o (3)

h'= tan ) = 0

From these equations, it is readily seen that the solution must satisfy

y=0

L = W which gives CL (4)

D
T

Note that the drag is evaluated at lift equals weight. The altitude and velocity are

then chosen to minimize the cost functional with these constraints. Then

4



6J 0

(5)
6J =
6h

As all the states are constant, the cost functional reduces to

qtQ + 0 6/=- (6)
V

The final range, Xf is of no consequence. The conditions on the altitude and ve-

locity now become:

O [ijQ+O 1
0

0V V
(7)

O [77Q+e0
Oh V = 0

subject to L = W and tT= D

The steady-state solution is also a singular point in the state-costate space. This

implies that the rates of states and co-states are zero. Equations (5.1) hold. In

addition,

6H0H
-v = - -= 0
60V

'= -6H=0 (8)6y y

Ah' = AtH = 0

where,

5



H-?Q + 2 e- -L- -siny +
V cos Vcos Y V

(9)
A .[ L I] +).htan yY WV2  l cos y

In addition, the controls already obtained in (5.2) must satisfy the Pontryagin

minimum principle. Note that the throttle appears linearly in the state equations.

The throttle position is generally within the bounds and the control is singular.

The partial of the Hamiltonian with respect to the throttle must be zero. So,

6H_-= 0 and ---H =0 (10)

From H= 0, one obtains

g
AV Hcr

From 6H = 0, one obtains
6CL

V6 C D
AY = A)VV !E2 (12)

'5 CL

From A = 0,

AhV= - Avg (13)

Thus, at steady-state, y = 0 and CL, qj, AV, AY, 2h are known functions of altitude

and velocity. So only the altitude-velocity combination has to determined using

the following equations:

6



6V = (14)

Ah 6H =
6h

These are fairly well behaved functions and numerical solutions are easily ob-

tained. Figure 1 shows the average costs for steady-state as a function of the cost

weighting parameter, 0. Figure 2 shows the average costs against the average

velocity. As expected, as the average velocity goes up, the costs increase. Next,

the optimality of these solutions is considered.

The Frequency Test

Ref.[Speyer,1976] gives a second order Jacobi-type test for the optimality of the

steady-state solutions. The problem is:

Mi x LdX (15)

subject to the state equations:

i. = f(z, u, t) (16)

The Hamiltonian is defined as:

H = L + ).f (17)

Ref.[Speyer] shows that the the second variation of the cost in terms of the

Fourier transform of the control is given by:
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*1 p

47rjb'J f u -jwo)' 11(w) uuciw)dw (18)

where,

11(co) = G'( -jco)H.G(jw) + H'G('w) + G'( -jco)Hu + H, (19)

where

G(o) = iw -fA-1f.

Here, the matrices ff, , Hzz, H , and Hu are evaluated at the steady-state con-

dition.

Now, if the (2X2) matrix fl(w) is nonnegative definite for all frequencies, then

62J is nonegative Ref[Willems,71]. This is a necessary and sufficient condition.

Note that 62J is nonnegative for any neighboring control ( and not just oscillatory

variations ). Then the steady-state is a local minimum.

On the other hand, if, at some frequency, 11(co) is not nonnegative definite, an

oscillatory variation can be found that makes 62J negative. This implies that the

steady-state solution is not a local minimum. The definiteness of the matrix is

easily checked by finding the eigenvalues of 17H for all w. Figure 3 shows the

eigenvalues as a function of the frequency for the cruise problem, i.e., 0 = 0. It is

seen that for a range of frequencies, an eigenvalue is negative. This implies that,

for the cruise problem, the steady-state solution is not a local minimum. This

agrees with the results of Ref[Spever,76] which are obtained for a simpler drag

8



model. Figure 4 shows how that particular eigenvalue varies with frequency

when the cost weighting parameter is increased from 0 to 0.75 N/s. At the higher

end, it is seen that the eigenvalue is non-zero for all frequencies. For a simpler

drag model, it has been shown in RefIKarl,87], that for all values of the weighting

parameter above a certain value, the steady-state solution passes the frequency

test. Thus it can be inferred here that there exists a certain value of

6(< 0.75 N/s) above which, the steady-state solution is a weak local minimum for

the cruise-dash problem.

For the cases where the steady-state solution is not optimal, an oscillatory vari-

ation can be found that gives a lower cost. Going back through the transf-

ormations, the variational control history can be found. It is shown in

Ref[Speyer76], that these are composed of oscillatory and feedback terms.

It must be noted that these solutions are in the neighborhood of the steady-state

solutions. Nothing can be said of solutions far removed from these neighbor-

hoods.

in the next section, periodic solutions in the point-mass modeling are sought.

Point-Mass Periodic Solutions:

At low values of the cost-weighting parameter, theta, frequency-domain analysis

indicates that the steady-state solution is not optimal A control that is periodic

about the steady-state with a certain frequency can provide lower costs than the

steady-state control. However, at higher values of theta, when the emphasis on

time is higher, the steady-state control is locally optimal. Nothing can be said

9



about the optimality of a solution that is far removed from the steady-state sol-

ution. It may be that, even though the steady-state solution is locally optimal at

higher values of theta, a periodic control may still beat it. To investigate this,

periodic solutions to the cruise-dash problem in the point-mass model are sought

here. Rather than construct the periodic solutions suggested by the frequency test

( at least at low vales of theta ), the cruise-dash problem is formulated as a peri-

odic optimal control problem and the solution obtained from first principles.

Periodic solutions to the cruise problem for the aircraft model used here can be

found in the literature [Grimm]. The analysis is extended here to include cruise-

dash cases. The costs from the resulting solutions can then be compared with

those obtained from steady controls.

The point-mass model is used in this formulation. The equations of motion and

the boundary conditions for the cruise case can be found in Ref.[Grimm]. Along

the same lines, the equations of motion for the cruise-dash problem are derived

here.

The objective is to find the controls CL (.) and ql(.) that minimize the cost func-

tional:

Xs Q + dX (20)

J Xf 0V Cos Y

The states are the velocity (V), the path-angle ( y ) and the altitude (h). The states

are governed by the differential equations given in chapter two:

10



V cos y W sin y]

_L L] (21)T/2 IT', Cos y

h' = tan y

The available controls are the lift-coefficient ( CL ) and the throttle ( r ). The

states satisfy the periodic boundary conditions:

V(O) = V(Xf)

y(0) = y(Xs) (22)

h(O) = h(Xs)

The wavelength, Xf, of the oscillations is unknown and has to be determined as

part of the control problem.

The variational Hamiltonian for the problem is defined in the usual way:

H- + [P - sin Y1 +
V cos y V cos y

(23)
_LV- [ L 1 I tany (3

Y V 2 W cos y +

The independent variable, X, does not appear in the right-hand sides of the

equations or in the integrand of the cost functional. Hence, the Hamiltonian is a

constant of the system.
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Setting the first variation of the cost to zero [Bryson] gives the governing

equations for the co-states:

6 V

S, Y OH(24)

6h

The analytical expressions for 6H 6H and 6H are given in Ref.[Thesis]. The

first variation condition also specifies the transversality conditions:

V() = )V(Xf)

2(O) = A,(Xf) (25)

).h(o) = h(Xf)

The boundary condition that determines the free wavelength is [Evans]:

H = = Q + e dX (26)
Xf Vcos y

The rank of the periodic boundary conditions ( equations (22) and (25)) is one

less than full, due to the periodic nature of the solutions. This is because the

boundary conditions can be satisfied any of a one-parameter family of solutions.

One member of the family has to be "tied" down. This can be accomplished by
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specifying the actual initial ( or final ) value of one of the variables (within their

limits). The following set of boundary conditions does just that:

V(O) = V(Xf)

(O) = 0

h(O) = h(Xf)

)A) ) (Xf) 
(27)

;.,(0) 2,(Xf)

) h(o) )= h (xf)

The fact that the Hamiltonian is the same on both ends (it is a constant) ensures

that the path-angle is zero at the other end ( to the order of accuracy of the nu-

merical method ).

The Pontryagin minimum principle determines the optimal controls. The lift-

coefficient appears nonlinearly in the Hamiltonian and so the optimal lift-

coefficient is given by:

6H aCD_6HY = - AvV- L_ = 0 (28)
6 CL -(8

with the second order sufficient condition:

- >0 (29)
cCL 

2  ' C CL 2

The Hamiltonian is linear in the throttle which makes this control bang-bang or

singular. The optimal throttle is given by:

13



?I = 0 for S>0

= 1 for S < 0 (30)

fromS=0 for S-0

Here, S is the throttle switching function 1L. As the solutions are periodic, one

expects an even number of switches in the trajectory. S - 0 is the condition for a

singular arc [Bryson].

Numerical Solutions:

The problem is obviously too complex for analytical solutions. So numerical sol-

utions are sought. Ref[Grimm] uses the multiple shooting algorithm [Bulirsch] to

find the numerical solutions for the cruise problem. The same algorithm was used

in this effort. With the solution of [Grimm] as a starting point, continuation

methods were used to find the solutions for the cruise-dash case ( 0 > 0). The

solutions were found for theta ranging from 0 to 0.21 N/s.

Ref [Grimm] shows that the cruise problem does not have a singular arc in the

solution. Based on this, singular arcs are not expected in the cruise-dash solutions.

Two switching points were assumed. However, the switching function was closely

monitored along the whole trajectory. Figure 5 shows the switching function

against the range normalized by the wavelength for theta varying from 0 to 0.21

N/s. This is an a posteriori justification of the two-switching-point assumption.

However, for the case 0 = 0.21 N/s, the switching function has a noticeably small

slope at the second switching point. This does not augur well for the bang-bang

control structure, but suggests a more interesting, though complex, bang-singular

arc combination to challenge the (now) garden-variety bang-bang periodic sol-

14



utions. Figure 6 confirms the best of hopes ( or the worst fears ). This is a can-

didate solution for the case 0 = 0.25 N/s. This was obtained with the bang-bang

assumption. The switching function actually crosses the zero axis at a few closely

spaced points. This is a suggestive indication of the presence of a singular arc.

However, interesting as the problem is, the solution is very complex. As the air-

craft model is very intricate, the derivation of the singular control laws is very

difficult, but not out of reach. Unfortunately, due to time pressures, that part of

the investigation has not been carried out. The good news is that it provides an

opportunity for future effort. Breakwell [Breakwell,87] has used a quadratic ap-

proximation analysis that seems to work amazingly well in predicting the point-

mass periodic solution for the cruise case. This could be the road to take in trying

to find the bang-singular solutions.

Figure 7 shows the periodic solutions for the cruise-dash problem. Theta varies

from 0 to 0.21 N/s. Shown in that Figure is a cross-plot of the velocity and alti-

tude trajectories. The corners in the trajectories are the switching points where the

throttle jumps. At the lower altitude switching point, the throttle jumps from full

to zero. At the other corner, the throttle jumps from 0 to 1.

Figure 8 through Figure 13 show the states and co-states as functions of the range

normalized by the wavelength. This is shown for several values of theta ranging

from 0 to 0.21 N/s. Figures 8, 9, and 10 show the states, in order, velocity, path-

angle and altitude. Figures 11, 12 and 13 show their respective co-states. Figure

14 shows the lift-coefficient versus the normalized time.
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Figure 15 shows the costs for periodic controls as the cost-weighting parameter

theta is varied. Also shown, for comparison, are the costs for the steady-state

solutions. For better visual comparison, figure 16 shows the difference in those

costs versus theta, expressed as a difference percentage over the steady-state

costs. It is seen for lower values of theta ( including zero, verifying ReqlGrimm]

), the periodic control yields lower costs than the singular arc. However, as theta

increases, the gain decreases. Also, over the whole range of theta, the costs do

no differ by much. At e = 0, the periodic solutions are lower than the steady-state

costs by about two percent. At 0 = 0.21 N/s, the periodic solutions are about

half a percent lower.

However, this is not the complete picture. The real performance criterion is the

costs against average velocity. Figure 17 shows the two costs against average ve-

locity achieved. This shows that the disparity between the costs is higher. How-

ever, the difference is not very much even at lower average velocities. The

question whether the cost improvement is worth the complexity of the periodic

solutions is somewhat subjective and cannot be easily answered. An important

point to remember in this connection is that the steady-state solutions are locally

optimal at higher values of theta.

Based on figures 5,6 and 15-17, one can conjecture the form of the solutions for

values of theta higher than 0.21 N/s. It seems reasonable to assume that part of

the periodic trajectory is a singular arc. In figure 5, the amplitude of the switching

function is seen to be decreasing as the weight on the time is made higher. The

periodic trajectory costs seem to approach the steady-state costs (Figures 45-47).

Figure 7 shows that the amplitudes of the states keep decreasing. It is well known

16



that the optimal solution for the dash problem (0 - oo) is full throttle over the

whole trajectory. All this would scem to indicate that as the weight on time is in-

creased, the singular portion of the trajectory would increase, until the entire

solution is a singular arc ( degenerating into the steady-state solution ). In this

connection, it would not be amiss to mention that after some value of theta, the

steady-state solution is locally optimal. Ref.[Karl] has some preliminary results

for the related problem of approaching the steady-state solution from arbitrary

initial states in the neighborhood. This is a good first step in the investigation of

the bang-singular type of periodic solutions.

Optimality of the Periodic Solutions:

From the analysis conducted so far, a few general remarks can be made about the

optimality of the point-mass solutions.

First, for high values of theta, the steady-state solutions are locally optimal. For

lower values of theta, they are not optimal. So at some value of theta between 0

and 0.21 N/s, the steady-state solution definitely has a "conjugate" point. In-

deed, there may even be a "Darboux" point I[Ref ?], if it the steady-state is

globally optimal at higher values of theta.

Second, for low values of theta, the periodic solutions are locally optimal (

Ref[Grimm] has shown this to be true ). The steady-state solutions are not even

locally optimal. The periodic solutions at this end may be globally optimal. At the

zeroth order approximation, the relaxation oscillations have lower costs. No pre-

A solution loses its global optimality at a Darboux point.
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diction can be made about higher approximations. So the point-mass periodic

solutions may or may not have a contender. The optimality the periodic solutions

at higher values of theta can be considered only after finding the solutions. The

difficulty in determining the optimality is several orders more complex than

finding the solutions. It is only recently that a Jacobi-type test has been formu-

lated for the bang-bang type of periodic solutions [Evans].

To make the third point, the frequency of oscillation for the cruise problem is

indicated by a vertical line in Figure 2. It is very interesting that the frequency

of oscillations are in the range suggested by the frequency domain analysis of the

This seems to indicate that the control constructed from the frequency analysis (

Ref[Speyer,1976] describes how they are obtained ) is a good guess for the point-

mass solutions. If so, it would indicate that for high enough values of theta, the

steady-state is the periodic solution.
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