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OF TWO-STATE EXCHANGE INVOLVING SUBSURFACE STATES
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Temperature dependent properties of electronic states resulting from hydrogen adsorption on
Nb(100) surfaces have been studied by photoemission spectroscopy using synchrotron radiation.
The most prominent hydrogen induced feature in photoemission spectra exhibits a temperature
dependence that requires contributions from two distinct states. Analysis of the photon energy
dependent cross section of the hydrogen induced features suggests that hydrogen chemisorption
sites are located below the surface. These results have important consequences for kinetic models
that attempt to account for hydrogen uptake by Nb.

Hydrogen metal systems have served as a prototype of studying chemical
and physical processes at metal surfaces [1]. In group VB metals, Nb in
particular, the extremely high mobility of hydrogen in the bulk has stimulated
considerable interest in the role played by the surface in admitting hydrogen
into the Nb lattice [2,31. A number of theoretical 12-81 and experimental
[9-131 studies have attempted to account for the novel kinetic properties
associated with the transfer of hydrogen from the gas phase into the metal and
vice versa. Early uptake kinetic studies of Nb hydrogen systems [2,9] appear to
have established a correlation between the surface hydrogen coverage and the
concentration of hydrogen in the bulk. However, attempts to reconcile hydro-
gen uptake data and surface coverage results within a kinetic model which
assumed a dilute hydrogen phase on the surface in equilibrium with the
concentration of hydrogen in the bulk were unsuccessful [2]. Specifically, rates
of surface coverage determined by photoemission [10] were found to exceed
rates that could be associated with bulk concentrations assuming that the
dilute phase model described the surface and bulk "equilibrium" concentra-
tions.

The failure of the dilute phase model to adequately account for uptake
kinetics of hydrogen by Nb has lead to the suggestion of several alternate
models. One model is based on the (ad hoc) assumption that two different
hydrogen states exist at the surface [101. The two-state exchange model
requires both states to be strongly bound (because of the desorption tempera-
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ture for hydrogen of about 750 K) and the barrier for hydrogen exchange
between the two states to be small to permit reversible exchange of hydrogen
atoms at lower temperatures. Furthermore. the state that is populated at
higher temperatures is required to have an undetectable photoemission cross
section to account for the reversible appearance of hydrogen induced features
in photoemission spectra as the temperature is cycled. The two-state model is
decoupled from the bulk hydrogen concentration and is therefore capable of
providing the saturation values of surface concentration at low exposures that
are required to account for experimental uptake kinetics data. A second model
based on the assumption that a thin hydride layer forms at the surface has also
been proposed [11]. In this model, the probability that hydrogen dissociation
occurs at the surface is controlled by the concentration of hydrogen in the
surface hydride phase and the concentration of hydrogen at the metal surface.
In order to achieve reasonable agreement with uptake kinetics data, the
hydride model required an additional postulate related to the behavior of the
precipitated hydride phase during heating.

None of the kinetic models for hydrogen uptake by Nb appear to be
universally accepted, as indicated by recent papers expressing differing views
[6,7]. In addition, most of the ad-hoc assumptions required to formulate
microscopic mechanisms to account for hydrogen adsorption and uptake
kinetics have not been explored experimentally in sufficient detail to validate
them. The purpose of the present paper is to study selected microscopic
physical properties of hydrogen on Nb(100) that underlie kinetic models. In
particular, we address the location of the hydrogen atoms near the Nb
surfaces, and the temperature dependencies associated the hydrogen induced
electronic states.

Our experiments were performed at the Synchrotron Radiation Center,
Stoughton, Wisconsin. The single crystal samples were prepared using conven-
tional methods [12, 13], and characterized using Auger electron spectroscopy
and low energy electron diffraction (LEED). Fig. 1 displays normal emission
electron energy distribution curves (EDCs) for clean and hydrogen dosed
Nb(100) surfaces at various temperatures. The overall energy resolution in our
photoemission measurements is 0.25 eV. Hydrogen doses in our experiments
were measured using a standard Varian nude ion gauge (corrected for hydro-
gen by multiplying the gauge reading by a factor of 2.2). Our previous
photoemission studies [17] of clean Nb(100) have established the origin of
peaks labeled A1 and E, as a bulk state and a surface resonance state
respectively. Features labeled A, B, and C originate from hydrogen induced
states.

The primary hydrogen induced feature is labeled as though it consists of
two distinct states. The strength of this feature diminishes as temperature is
increased from 150 to 700 K, and the shape changes as the peak center moves
from - 5.1 to - 4.6 eV binding energy. The peak vanishes irreversibly for
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Fig. 1. Normal emission photoemission EDCs for clean Nb(100) and hydrogen dosed Nb(100) as a

function of temperature. Peaks labeled Al and (Al) are produced by bulk and (surface) electronic
states of Nb (ref. (15]). States labeled A, B, and C are induced by hydrogen adsorption.

tempe:,ture excursions beyond 750 K where hydrogen desorbs from the
surface. Curve fitting techniques were used to separate the two temperature
dependent contributions of peaks B and C. Several different background
subtraction models were used, but the results, displayed in fig. 2, were found
to be fairly insensitive to details of the assumed background.

Fig. 2 represents compelling experimental evidence that supports the two-
state or multiple-state exchange model for uptake kinetics by Nb(100). Re-
versible exchange of hydrogen between states B and C and other states occurs
in the temperature range 300 < T < 600 K. For temperatures above 450 K, it is
clear that both B and C states are depleted of hydrogen. The hydrogen
migrates to other near-surface states that are not clearly manifested in photo-
emission EDCs or in vibrational spectra. It is also possible that the hydrogen
enters the bulk Nb lattice, but the process is reversible. We have not investi-
gated the reversibility of hydrogen exchange between states B and C below 300



L716 B. -S. Fang et al. / I-vdrogen adsorption at ,Vb( 00)

HYDROGEN PEAK INTENSITY

16- Nb(100) + 2.2L H

14" PEAK 8

PEAK C

12-

.l-

:310

8

z
4-

2- TWO STATE BULK-SURFACE

EXCHANGE EXCHANGE

0

0 200 400 600 800

TEMPERATURE (K)

Fig. 2. Temperature dependence of the two peaks labeled B and C obtained by curve fitting of
data displayed in fig. 1.

K. There is some evidence in our experimental data suggesting that the
exchange between states B and C is not totally reversible in the lower
temperature range (below 300 K). This behavior is similar to that observed for
hydrogen chemisorption on (111) surfaces of Ni, Pd and Pt [14,15].

Our previous studies of hydrogen uptake by Nb(100) using electron energy
loss spectroscopy (EELS) (121 have suggested that the hydrogen atoms, after
dissociating at the surface, occupy tetrahedral sites just below the surface.
Features of the EELS results that support this structure model include: (1) the
vibrational frequency of hydrogen modes lie in a range around 132 meV, very
close to the value established for P-NbH in which hydrogen atoms occupy
tetrahedral sites in the Nb lattice; (2) the EELS spectra exhibit significant
inhomogeneous broadening of the hydrogen vibrational levels that we associ-
ate with inequivalent tetrahedral sites near the surface; (3) low inelastic
scattering cross sections are observed for H/Nb compared with corresponding
results for hydrogen on W(100) where it is well established that hydrogen
atoms occupy surface bridge sites; and, (4) LEED studies [12,16] have shown
that hydrogen atoms chemisorb in lattice locations with the same lattice
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Fig. 3. Photon energy dependence of EDCs for hydrogen treated Nb(100). The enhanced

photoelectron cross section of bulk states (ref. [151) and the hydrogen induced peaks around
hi = 25 eV arise from the enhanced electric field vector strength below the surface that occurs at

hi = wp.

structure as Nb. Our EELS results also clearly exhibited the reversible temper-
ature dependent effects described in the present paper, that have also been
observed in previous photoemission studies [10,13]. We now present additional
evidence based on the photon energy dependent photoemission cross section
that supports assigning the peaks labeled B and C to subsurface sites.

Fig. 3 displays normal emission EDCs obtained from hydrogen dosed
Nb(100) for selected photon energies ranging from 13 to 28 eV. These spectra
show that a significant enhancement of the photoelectron cross section occurs
at hp - 25 eV for all the three hydrogen induced peaks, again labeled A. B.
and C. Curve fitting of the itruttures labeled B and C was used to obtain the
reduced data displayed in Iv -1 %k c have recently studied the bulk and surface
electronic properties of \ h,, 1, w ,, ui ng angle resolved photoemission [ 171.
These experiments yielded .... ite .alues for the location of the A, bulk
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Fig. 4. Upper panel. photoemission cross-section obtained by curve fitting of data displayed in fig.
3. (and from ref. [15]), for the Al bulk state and the two hydrogen induced states (B and C). Lower

panel, calculated z-component of the electric field vector below the surface (refer to text).

bands (1-H direction of the three-dimensional Brillouin zone), and two 1
symmetry surface resonances. The photon dependent photoelectron cross
section for these states was also determined in these experiments. The cross
section for the bulk Al band is displayed in fig. 4. Note that the Al bulk band
cross section. and the cross section of the hydrogen induced peaks exhibit
similar enhancement around h, - 25 eV. Since no final bulk band states lie at
the correct energy above E F to explain the cross section enhancement based
on a final state resonance (18,191, we attribute this enhancement to an effect
based on the behavior of the electric field vector just below the metal surface
[17,201, The lower panel of fig 4 displays the calculated electric field vector
component perpendicular to the surface just outside the surface, and just
below the surface based on Fresnel reflection coefficients 121] and using
optical constants for Nh obtained by Weaver et al. (221. The enhanced
photoemission cross sections associated with bulk Nb electronic states is
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accounted for based on this model. The fact that a similar enhancement is
observed for all three hydrogen induced peaks suggests that the hydrogen
induced states are subject to the same internal electric fields, as the bulk (A)
states, i.e., that the hydrogen states are located below the surface.

In summary, we have studied the temperature and photon energy depen-
dence of hydrogen induced electronic states on Nb(100) surfaces. Two states
having nearly the same binding energy exhibit different temperature depen-
dent occupancy that is consistent with a two-state exchange model in a
temperature range below 400 K. Above 400 K, both states are depleted as
temperature increases, but the effects are reversible. This behavior is consistent
with a surface-bulk exchange model or a model that assumes other near
surface sites for hydrogen atoms that are not manifested in photoernission
spectra. The photon energy dependence of the photoemission cross section of
all prominent hydrogen induced features is similar to that for bulk electronic
states of Nb. The only model that appears to account for the cross section
dependence of hydrogen induced states and the A, bulk Nb state is based on
an enhancement of the electric field vector below the surface at photon
energies near the bulk plasma frequency. This interpretation requires the
hydrogen induced states to extend several layers in to the bulk and is
consistent with recent vibrational loss studies of the hydrogen Nb system
which also conclude that chemisorbed hydrogen atoms occupy tetrahedral
sites below the surface. These results also support the notion that the promi-
nent hydrogen induced states in metals that lie typically - 6 eV below EF

result from enhancement of direct transitions from bulk metal states [15,231.
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