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ABSTRACT

Certain ORION missions may require three axis stabilization. Since ORION’s
physical size severely limits its onboard fuel storage capability, passive stabilization
techniques warrant investigation. This paper shows the development of linearized
equations of motion and regions of stability with respect to gravity gradient stabiliza-
tion. Gravity gradient stabilization by itself provides little yaw restoring torque; there-
fore, additional torque generating devices are necessary to augment the graviry gradient

effect. Control moment gyros, reaction wheels, and magnetic torquers will be investi-
gated as to their suitability for ORION.
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1. INTRODUCTION

A. BACKGROUND ON ORION

The philosophy behind the design and development of the Orion satellite is being
driven in part by economic considerations. Small, affordable, general purpose satellites
must be developed without sacrificing reliability. The preliminary groundwork on the
feasibility of the ORION concept and design is detailed in [Ref. 1).

Orion is currently being designed to be launched from a Get Away Special (GAS)
cannister aboard the Space Shuttle. The GAS cannister physically limits the size of
ORION to approximately 35" in height and 19" in diameter. Figure 1 shows the Get-
Away Special Cannister attached to the side of the shuttle bay.

Figure 1. NASA Get-Away-Special (GAS) Cannister [Ref. 1, p. 30]

The Get-Away-Special (GAS) Cannister is designed to launch its satellite
autonomously on command. A cross sectional view of the (GAS) Cannister is shown in
Figure 2 on page 2.

ORION should be able to meet the requirements of standard or typical payloads.

Some of these requirements are listed by Reference 2 and given in Figure 3 on page 3.
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1. Background on attitude control

The success of any satellite is dependent on its attitude control system. To be
mission capable, the vehicle must first acquire a desired or specified orientation in space,
and then maintain this orientaion within mission limits given such external factors as
magnetic fields, aerodynamic drag, solar pressure, gravitational effects, and other dis-

turbances. Deviations from desired orientations are detected through the use of sensors.

Cross section of GAS Cannister [Ref. 1, p. 42]

Considcrations for an attitude control system include:




(1) pointing accuracy
(2) fuel consumptign
(3) thermal

(4) power constraints
(5) satellite lifetime

(6) response time

Mass 32 lbm

Volume 2.36 il

Power - 34 watts

DataRate 5000 bits/sec

Oorbit 200-800 nm circular
Inclination 0°-30° or 60°-120"°
Instruments Particle counter or Lens

Figure 3. Summary of typical Navy/STP payload requirements

The weight given to each of these considerations ultimately lies in the specific mission
requirements designated for each satellitc. The direction of this thesis will be to inves-
tigate the feasibility of achieving suflicient performance utilizing a gravity gradient con-
trol system. The standard of +/- | degree for each axis will be used. This criteria is
suflicient to enable ORION to satisly most STP (space test program) mission
requircments.[Ref. 1, p. 93] '

To achiceve stabilization, many methods of generating controlling torques have
been developed. These mmethods are divided into either active or passive categories. Each
of these categories has their relative advantages and disadvantages [Figure 4 on page 4
and Figure 5 on page 4}.

In this study, the primary focus is on a gravity gradient stabilization augmented
by other torque generating devices to achieve the desired +/- 1 degree goal for each axis.
A discussion of the equations of motion and gravity gradient stabilization theory is
presented in Chapter 2. Disturbance torques and other torque generating devices are
discussed in Chapter 3. Chapter 4 presents the results of stabilization schemes derived
in Chapters 2 and 3. Observations and conclusions are discussed in Chapter §.
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1I. GRAVITY GRADIENT STABILIZATION THEORY
A. COORDINATE DEFINITION

Before beginning any discussion on attitude control a means of defining the coordi-
nate system is necessary. The standardized coordinate axes for gravity gradient systems
arc as follows: the X axis points in the direction of satellite motion, the v axis is normal
to the orbit plane, and the z axis points towards earth’'s geocenter. These axes corre-
spond to the roll, pitch and vaw axes, respectively. Figure 6 from Reference 3 defines
roll (¢), pitch (8). and vaw (y) attitude errors as well as showing the standardized co-
ordinate svstem.

(ROLL REFERENCE
o
A \ . X
- 5 ’
(PITCH (ROLL -
ATTITUDE ATTITUDE
ERROR) ¢ ¢ ERROR) <~ ORBIT
< DIRECTION
w, OF ORBITAL MOTION
> ¥ (YAW ATTITUDE
y (PITGH) ERROR )
e ﬂ
10
G PAne A s
LOCAL VERTIGAL)
-_EARIH

Figure 6. Coordinate Definition for Gravity Gradient Systems




B. COORDINATE TRANSFORMATION

The relationship between two coordinate systems is essential for attitude control.
There are methods available to describe this relationship of which directional cosines,
quaternions, and Euler angles will be briefly discussed. Figure 7 on page 6 shows various

methods of coordinate transformations along with their respective advantages and dis-

advantages.
PARAMETERIZATION! NOTATION ADVANTAGES OISADVANTAGES COMMON APPLICATIONS
DIRECTION NO SINGULARITIES SIX REDUNDANY PARAMETERS IN ANALYSIS 10 TRANSFOAM
COSINE Aata} NO TRIGONOME THIC FUNCTIONS VECTOHS FROM ONE MEF ER.
MATAIX b CONVENIENT PRODUCT AULE ENCE FRAME TO ANDTHER
FOR SUCCESSIVE ROTATIONS
ULER CLEAR PHYSICAL INTERPAETATION ONE AEDUNDANT PARAMETER COMMANDING SLEW MANEUVERS
AXISIANGLE ae AXIS UNDEF INED WHEN SIN ¢-0
TRIGONOME TRIC FUNCTIONS
CULER NO SINGULARITIES ONE AEDUNDANT PARAMETEA ONBOARD INERTIAL NAVIGATION
SYMMETRIC a,8y8y9, NO TRIGONOME TRIC FUNCTIONS NO OBVIOUS PHYSICAL INTER.
PAHAMETERS CTONVENIENT PRODUCT AULE FOR PRETATION
tQUATEANION) ol SUCCESSIVE ROTATIONS
Gines NO REDUNDANT PARAMETERS INEINITE FOR 100-DEGC AOTA- ANALYTIC STUDIES
VECTOR » ND TRIGONOMETRIC FUNCTIONS TION
. CONVENIENT PRODUCT RULE FOA
SUCCESSIVE ROTATIONS
EULER NO AEDUNDANT PARAMETERS TRIGONOME TRIC FUNCTIONS ANALYTIC STUDIES
ANGLES P PHYSICAL INTERPAETATION IS SINGULARITY AT SOME ¢ INFUT/OUTPUY
CLEAR 1M SOME CASES NO CONVENIENT PRODUCT RULE | ONSOARD ATTITUDE CONTROL OF
# OA SUCCESSIVE ROTATIONS 3-AKIS STABILIZED SPACECRAFY

Figure 7. Coordinate Transformation Methods [Ref. 4, p. 412]

1. Direction cosines method

The directional cosine method involves a 3 x 3 rotation matrix A, where

1““ A|2 A]J Xex X‘y Xez
Al]= AZ] A22 A23 = )"x Y'y ),‘Z (l)
1‘131 A32 A33 Zex Z‘_y Zez

where

Xex=cosfOcosy
Xey=cos ysin B sin ¢ + sin Y cos ¢
Xez=siny sin ¢ — cos ¢ sin 6 cos ¢
Yex=—sinycos@
Yey=cos¢cosy —sin ¢ sin 6 sin ¢
Yez=siny sinf cos ¢ + cos ¢y sin ¢
Zex=sin0

Zey=—cosOsin¢
Zez=cos¢pcosh




2. Quaternions
The quaternion methoa or as it is sometimes called, the Euler Symmetric Pa-
rameter method, uses the Euler axis and rotation angle (a single rotation angle a about
a single axis ﬁ) method to describe the relationship between two coordinate systems

{Figure 8 on page 7j.

%
System B.

Figure 8. Rotation about the Euler Axis

The quaternion is a four component vector containing the same information as the Euler

angle,/axis transformation in which one coordinate axis is related to another and is of the

form
q9="Lqii, 9, g3k, 941 (3)

where

The symbols i, j, and k satisfy the following conditions [Ref. 4, p. 758]




P=l=k=1

j=—ji=k
jk=—kj=1i
ki = —ik =

and
2 2 2
GH+a+a+ag=1

When used for control purposes, [Ref §] defines the first three elements of the
quaternion (q,, ¢., ¢;) as the respective roll, pitch, and yaw rotational errors:

[aroll’ Epitchr ayaw] = 2[‘71’ b)) q3]
=2 Esind Esin g E,sin % | (7)
x[2E,, oE, oF,]

The primary advantage of the quaternion method is that the computational time
can be reduced by more that 40% over the equivalent directional cosine matrix solution
in operations that require successive coordinate system rotations [Ref 5]. The transfor-
mation from coordinate svstem A to coordinate system B can be described by the
quaternion ¢ = [ 4,4, g4/, §:k, ¢, ], and the second transformation from syvstem B to C can
be described by ¢’ =[¢'\/, ¢'4, 9’3k, ¢'«]- The transformation from system A to system
C may be described by the quaternion ¢ =[¢""\i, ¢4, ¢"'3, ¢''«] Where

9 =99 =(q)i+ g+ gk+q)qg i+ qy+q3k+q,) (8)

Multiplying out and substituting in the conditions stated above, the matrix form be-

comes
q, 94 493 —92 91| D
| _| -9 94 41 92| 9
93 92 —q¢1 94 93|| %
(9] |~ —92 95 949

Because of the quaternion property of interchangeability, a total of 16 multiplications
and 12 additions are required to completely define the quaternion describing the trans-
formation from coordinate system A to coordinate system C. To accomplish the same




transformation using directional cosines would require multiplving two 3x3 matrices,
involving 27 multiplications and 18 additions. The computational time savings for suc-
cessive rotations transformations becomes apparent. The major drawback for the use
of quaternions is that the numbers of the quaternion do not physically represent the
transformation from one system to another.

3. Euler angles method

The Euler angles utilize three different rotations (angles), defining the orien-
tation of a body with respect to an inertial reference frame. These angles are Jdefined as
¢ (about the x axis), & (about the v axis), and ¥ (about the z axis). These axes, by es-
tablished convention, may also be referred to as 1 (for x), 2 (for v), and 3 (for z) axes,
respectively.

The 321 Euler transformation described below starts with the inertial coordinate
svstem XYZ. Figure 9 on page 10.a. shows the first rotation about the Z axis through
an angle ¥, which produces x3,Z. Figure 9 on page 10.b. shows the rotation of 8 about
41, producing x3,z,. Figure 9 on page 10.c., showing the rotation of ¢ about x. produces
xyvz. The rotation described in Figure 9 on page 10.a. about the z axis produces
Figure 10 on page 10. The transformation from XYZ to xy,Z is

x;=Xcosy + Ysiny
W=—AXsiny+ Ycosy

Z=27Z
or written in matrix form
X cosy siny Ol X
Ml=|—siny cosy O|f Y (ry
Z 0 0 1{l Z




(A) - (B) - (C)

Figure 9. Euler Angles

sinyr

cos

cos

sin ¢

v
—

e - e cm -

Figure 10. Rotation about the Z axis through the Angle ¥

Writing the transformations of Figures 9.b. and 9.c. in matrix form yields

x cos@ 0 —sind |[ x,
nlj=f 0 0 iy (12)
2, sin@ 0 cosf |LZ

10




and

x 1 0 0 x
y1=10 cos¢ sing ||y (13)
z 0 —sing cos¢ ||z

Combining eqs{11-13) into cne equation vields the complete 321 coordinate transfor-
mation from the inertial reference frame to the body reference frame

x 1 0 0 cos@ O —sin€ i cosy sy O [
y|l=10 cos¢ sing 0 1 0 —siny cosy O} J
z _0 —sin¢g cos¢ || sinf O cosé 0 0 1 K
(14)
[ cos 6 cos ¥ cos @ sin y —siné X
=|—cos¢psing +sinpsinfcosy cospcosy+singsinfsiny singcosh ||V
| singsiny +cos¢sinfcosy —sinpcosy+cosgsinfsiny cospcosb || Z

This is just one of the 12 different Euler coordinate transformations schemes available.
Figure 11 on page 12 lists all possible Euler angle combinations and their resulting
transformation matrices. It should be noted that eq(l4) does not agree with the 321
Euler transformation matrix of Figure 11 on page 12. The 321 matrix of Figure 11 on
page 12 contains a error that interchanges ¢ with ¥ and ¢ with ¢.
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C. RIGID BODY EQUATIONS

The general motion of a particle and its corresponding momentum have been written
about extensively in various publications. A summary of the relevent derivations and
equations of motion from [Ref 6] are presented here.

1. Derivative of a Vector in a Rotating Coordinate System

The time derivative of a vector in a rotating coordinate svstem consists of the

rate of change of the vector relative to the moving axis and the rate of change due to the
rotation of the axis. Figure 12 shows a vector in a rotating system where XYZ represent
an inertial system and xyz are the set of axes rotating with angular velocity w relative
to XYZ. If unit vectors along the X, Y, and Z axes are i,j, and K, respectively, the vector
r can be written in the form

r=xi+yj+zk (15)

-

+Y

Figure 12. Vector in a rotating system [Ref. 6, p. 107)

The time derivative of r is
F=xi+xi+gj+y +k+zk (16)
From [Ref. 7], it has been shown that the time derivatives of the unit vectors are

i=wxi (17)
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Jewxj (18)

k=uwxk (19)
Defining r,,, as the time rate of change of r relative to xvz, eq(16) becomes

Fr=rtg,g+wxr (20)

2. General Particle Motion
Translational motion ol a particle with relerences to two coordinate systems is

shown in Figure 13.

A
Prg——o—ou-»F
K dm
/y
)
y c
K
i
R,
X
O -y

Figure 13. Translational motion of a particle [Ref. 6, p. 107]

The position vector of a particle relative to coordinate system XYZ is
R=R.+r 21

where R, is the vector from the axis of the XYZ coordinate frame to the xyz axis frame

and r is the differential (position) vector in the xyz frame. The velocity of the particle

is the derivative of eq(21) with respect to time

V=R=R,+7+ (22)
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The velocity at the origin R, = V, combined with eq(20) yields
V=V, +V,ytwxr (23)

3. Momentum of a Rigid Body
A particle’s momentum is the product of its velocity and mass. The linear mo-

mentum of the partcle of Figure 13 on page 14 is

P=j Vdm (24)
m

where V is the particle’s velocity and m is its mass. Recalling that ¥V, is the time rate
of change of r relative to the xyz coordinate system, and assuming that the xyz axis is

centered in the rigid body, V,,, = 0. Substituting eq(23) into eq(24) with V_,,=0,

P=J(Vc+wxr)dm=ch+wardm (25)
m m
By choosing the center of mass of the rigid body as the center of the rotating coordinate
system, [ rdm =0 by definition. This simplifies eq(23) to
P=mV, (26)

where P is the linear momentum of the rigid body, m is its mass, and V, is the velocity
of its center of mass.
The angular momentum of a particle dm about point C is defined as the moment

about C of the linear momentum given by
h.=rx Vdm (27)
Substituting for V vields

Hc=frx Vdm=frx(Vc+wxr)dm (28)
m m

Rearranging terms




/

HC:(J' rdm)x I'C+}' rx(wxr)dn
m m

(29)

By choosing the center of mass of the rigid body as the origin of the rotating coordinate

system, eq(29) reduces to

Hc=jrx(wxr)dm
m

Reducing the angular velocity vector w into its components
W=+ wj+ wk
Combining equations(13), (30), and (31) vields

H = [l w, - Lo, - I,0,]i
+ [ —lyo+ o, —1,0.)
+ [ =0, — [0, +],,0,]k

where
. =J (_y2 + 22) dm
m

1yy=f (x> + 2%) dm

m

1, =j (.Jr2 +y2) dm

m

are the moments of inertia about the x,y, and z axes, respectively, and

Ixy=J xy dm
m
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(32)

(34)
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I, =j xz dm (37)

I,= j yz dm (38)

m

are the products of inertia. Equation(32) written in matrix form becomes

Hx "x.x "'Ixy "Ixz Wy
Hl=| Ly 1, -1.||o (39)
Hz _Ixz -Iyz Izz w,

4. Equations of motion/Euler’s Moment Equations
The derivation of the following Euler's moment equations are summarized from

[Ref 6]. Recalling that angular momentum A, relative to the point C is
h.=rx my (40)
its derivative with respect to time is
h.=Fx mv + r x mi (41)
The moment of the force about a point C by definition is
M,=rxF (42)
Recall Newton's second law describing force:
F=ma=my (43)
Substituting eqs(22) and (43) into eq(41) vields
ho=Fxm(R,+¢)+rxF (44)

Substituting eq(42) into eq(44) and rearranging terms vields the moment equation
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JQ=HﬁJ}&xHMn (43)
m

where H, is the angular momentum of the rigid body about point C. From eq(20) the

latter part of eq(43) can be written as

j&xi$n=&x(%ﬁ(wxjr@0) (46)

Noting that point C is the center of mass fmr dm =0 and r,, = 0 for a rigid body, eq(46)

reduces to
M,=H, (47)

The moment of external forces about the center of mass of a rigid body is equal to the
time rate of change of the angular momentum of the body about the center of mass [Ref.

7). In terms of a rotating axis, the moment equation of eq(47) becomes

M, = Hpy+ o x H, (48)

Substituting eq(39) in for H, the components of the moment equation can be written as

M,=H + w,H, - w,H, (49)
M,=H,+ o,H, — oH, (50)
M,=H,+ o H, — w,H, (51)

where M, ,, are the moment equations. In this study, an assumption is made that the
principle axes of the moment of inertia are the rotating axes x,v,z; therefore, the pro-
ducts of inertia (1, 1,,, I,,) are equal to zero. The angular momentum components re-

duce to

H =1, 0w, (52)
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H). = I’V).(L)y (53)
H,=1_,w, (84

Substituting eqs(52-34) into the moment equations yields Euler's moment equations

M. =1, 0+ w),wz(lzz — 1).),.) (55)
M, = L0, + 00l — 1) (56)
M,=l,0,+ wxwy(lyy - Ix_x) (87

Referring to the coordinate system shown in Figure 6 on page 5, the angular
velocities in terms of orbital rate w, and attitude error angles pitch(8), roli(¢), and vaw
() from [Ref. 6, p. 130] are

W, 10 —sind ||
w, {=10 cos¢ cosfsing 6
w, 0 —sing cosfcoseo W
(58)
cos @ sin ¢
— wo| cos ¢ cosy + sin¢ sin O sin Y
— sin ¢ cos Y + cos ¢ sin 6 sin Y
When using small angle approximations, eq(58) reduces to
Wy d’ - wo'ﬂ
w, | =] 6-w, (59)
w, v+ wed
Note that the orbital rate is defined as
u
Wy = —_— (60)
0 R3

where u is the gravitational constant and R is the radius of the earth plus the satellite’s
altitude. For the purpose of station keeping, the small angle approximations are valid.
Substituting eq(59) into the rigid body moment eqs(55-57) vields the linearized rigid

body dynamic equations

19




Mgs = L + (L, — 1Yo — wol L + Ly — LY (61)
Mypg=1,0 (62)

-MZRB = lz:'./; + ngyy - Ixx)'l’ - wO(Ixx + Izz - lyy)d’ (63)

D. GRAVITY GRADIENT EFFECT
Attitude control using gravity gradient stabilization works on the principle that
given an object with an asymmetrically distributed mass, the object will tend to align it-
self with its minimum moment of inertia axis along the local vertical towords the earth.
The force due to gravity on a mass element is

dF = — “;f’;" R (649)
where
R=Ry+r (65)
and
pe=GM,= geRz (66)

where G = universal gravity constant, M,= the mass of the earth, g,= gravity acceler-
ation at the earth’s surface, and R, = the radius of the earth. Reference 8 shows the
torque generated about the mass center of the object is

dM,=rx dF = — “:1'" rx R
= ”"d rx (Ry+7) (67)
uedm r x Ry
Cubing eq(65) yields
3 3r? 3
R=p1s2Do, 2 o (68)
Ry Ry Ry
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Noting that r<R,, the higher order terms drop out. Inversion of eq(68) vields

3re
e (-2

Substituting eq(69) into eq(67) and integrating to find the moment yields

ROI:(;' Ry dm

Given that the center of mass is the origin of the body frame, f r dm =0, eq(70) reduces
to

(70)

m

3
Mg=—uejrdmeo+ “;J rx
R Jn

3
M, = —R‘;si Jm(r x Ro)(r + Ry) dm (1)

In the reference system defined by Figure 14, the K (Z) vector is pointing towards
the earth; therefore, the vector R, in the reference coordinate frame is

Ro, = RoK (12)

Figure 14. Gravity gradient torque [Ref. 6, p. 113]
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Restating the Euler 321 rotation matrix described earlier

i 1 0 0 cosf 0 —sin@ |} cosy siny O [

Ji=10 cos¢ sing 0 1 0 —siny cosy O] J

k |0 —sing cos¢ |{sinf O cosé 0 0 1|l K
[ cos 6 cos cos 6 sin
=|—cos¢psing+singdsinfcosy cos¢ cosy + sin ¢ sin 6 sin Y
_sin¢>sinw+cos¢sin0cosw —singpcosy +cosgpsinfsiny cospcosf || K

Transforming R, into the spacecraft’s fixed coordinates i, j, and k:

cos @ sin ¢
COs ¢ cos ¥ + sin ¢ sin 8 sin

cos 8 cos ¢

Ry, =| —cos¢singp + sin ¢ sin@ cos ¥

sin ¢ sin Y + cos ¢ sin 6 cos Y

which reduces to

Ry, = Ry( — sin 8i + sin ¢ cos §j + cos ¢ cos 6k)

(73)
—sin @
sin ¢ cos 6

—sin 6
sin ¢ cos 6

—sin¢g cosy +cospsinfsiny cos¢ cosd

(75)

Substituting eq(75) into eq(71) vields the gravity gradient moment equations

(I, —1,,)sin¢ cos ¢ cos’o

— (Ix = I,;) sin @ cos 6 cos ¢

3
M, = 2=

= (lyy — I,;) sin 6 cos 6 sin @
Replacing
2 He
wWa =
0 Rg

(76)

(77)

where w, is the orbital rate, and making the small angle approximations, the gravity

gradient moment equations become

(lzz - Iyy)d)
M, = 3wp| (I, = I8
0
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0
0
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Equation(78) clearly shows that by increasing the moments of inertia for /, and J,
with respect to /,, the gravity gradient moments for roll and pitch will increase. By ex-
tending a point mass along the z axis, a sizeable increase in the moments of inertia along
the x and y axes is realized.

The magnitudes of the gravity gradient torques generated at different altitudes is
given by Figure 15.
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Figure 15. Gravity Gradient torque Magnitudes vs Altitude [Ref. 3, p. 58]

E. DESIGN FOR STABILITY
1. Stability and Frequency Analysis
Combining the rigid body dvnamic equations (61-63) with the gravity gradient

equation (78) yields the undamped linear dynamic equations for roll, pitch, and yaw:
Roll I,¢ + dwg(l, — I)$ — wol(ly + I, — L)y =0 (79)

Pitch 18+ 3wi(l,~ [0 =0 (80)
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Yaw Ly + wj(l, = I + ool + L= L)p =0 (81)

Using Reference 9 notations for simplicity, the following variables are defined:

I-1
A= ’1 d . (82)
X
-1
B= ‘1 z (83)
y
1-1
C=—5— (84)
2

Substituting eqs(82-84) into eqs(79-81) vields the following second order differential

equations
¢ + 44wid — (1 — Awey =0 (85)
6 + 3Bwif =0 (86)
¥+ Copy +(1-C)p =0 (87)

Taking the Laplace transform of eqs(85-87) allows for frequency analysis. The results
are put into matrix form:

S+ 44w} 0 —(1=A)w,S |[ ¢ 0
0 S? 4 3Bw} 0 6l=]0 (88)
(1= CwS 0 S*+Cwd ||l v 0

The determinant of the matrix is the system’s characteristic equation. Using the middle
row to simplify calculations, the characteristic equation is found to be

(S*+ (1434 + CA)wS? +44Cwg)(S* + 3Bw) = 0 (89)

“Solution of the first term on the left yields the natural frequencies of roll and yaw,
repectively; the second term on the left defines the natural frequency of the pitch axis.”
[Ref. 9, p. 9] Solving for the first term on the left (roll 'yaw stability) by the quadratic
formula and dividing through by w} vields
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$2,  Shh —(1+34+ A0+ J(1+34+ ACF — 164C |
o C-Uz = 3 (90)
IR

For roll vaw stability the roots of eq(90) must be real and negative; therefore the fol-

lowing stability conditions exist [Ref. 4 p. 611]

1+34+AC>4/4C 91

AC>0 (92)

Solving for the second term of Eq(89) and dividing through by w} vields

Sy 3(C — A4)
pitch
———=3B=—"—7—- (93)
w? 1-C4
The condition for stability for the pitch axis is
A>C (94)

Converting A, B, and C back into their respective moment of inertia relationships de-
fined by eqs(82-84). combined with the conditions for stability, vields two possible ori-
entations: [,>1,>1 and I, >1 > 1. Figure 16 on page 26 shows a summary of the

stability regions based on moment of inertia ratios. [Ref. 10 p. 204]
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1II.  ENVIRONMENTAL DISTURBANCES AND RESTORING TORQUES
A. ENVIRONMENTAL DISTURBANCES/TORQUES

The are four major environmental disturbances that affect an orbiting spacecraft:
aerodvnamic, magnetic, gravity gradient, and solar radiation torque. Figure 17 lists
these disturbances and their relative regions of dominance.

sounce DEPENDENCE ON DISTANCE AEGION OF SPACE WHERE
FRADM EARTH DOMINANT *
AERODYNAMIC ' ALTITUDES BELOW ~ 500 km
MAGNETIC w? ~ 500 km TO ~ 35,000 km:
GRAVITY GRADIENT 'Ir’ €., OUT YO ABOUT SYNCHRONOUS ALTITUDE!
SOLAN NADIATION INDEFENDENT INTERPLANETANY SPAGE ABOVE SYNCHNONOUS
ALTITUDE
MICRNOMETEONITES LARGELY INDEPENDENT HIGH CONCENTRATION NORMALLY NEGLIGIBLE; MAY BE IMPORTANT IN
IN SOME REGIONS OF THE SOLAR SYSTEM SOME SMALL NEGIONS IINTERION OF SATUNN'S
- RINGS)
ALTITUDES LISTED ANE ONLY NEPAESENTATIVE; THE SPECIFIC ALTITUDES AT WHICH VARIOUS TONOUES DOMINATE ARE HIGHLY
SFACECAAFT DEPENDENT.

Figure 17. Environmental Disturbance Torques [Ref. 4, p. 17]

1. Aerodynamic disturbance
a. Drag
“For satellites near the earth the principle non-gravitational force is aero-
dynamic drag. Aerodynamic drag is a retarding force due to atmospheric [riction and is
in the direction opposite the space vehicles velocity vector.” [Ref. 4, p. 63)
The drag force is a function of vehicle velocity, air density, and surface area
of the satellite. The drag force is given by the following equétion:

pvicga

1=

(95)
where d is the drag force, p is the atmospheric density, v is the velocity of the satellite
along its orbital path, ¢, is the drag coeflicient, and a is the area of the satellite over
which the drag acts.
b. Aerodynamic torque
The collisions of air molecules of the upper atmosphere with the satellite
surface produces a torque about its center of mass. Aerodynamic disturbances are a
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function of the satellite’s altitude, velocity, and symmetry. A satellite with a relatively
low earth orbit may be significantly aflected by aerodynamic torques.

Shown in Figure 18 is a cylindrical satellite with its center of mass (cm) and
center of pressure (cp). The offset between the center of mass (cm) and the center of
pressure (cp) is denoted by L,, L,, and L, respectively. The simplified aerodynamic dis-
turbance torques from Ref 8 may be computed by the following expression:

T,=Pl,A,sino (96)

where T, is the torque due to aerodynamic pressure (ft-lbs), P, is the aerodynamic pres-
sure (1bs/f1?), [, is the distance between the center of mass and the center of pressure (ft),
A, 1s the exposed surface area (1) and « is the angle of attack (radians). For practical
purposes, the aerodynamic torque in the x direction is zero (sin a = 0 when ax0). The
conversion factor from ft-lbs to N-m is approximately 1.356. Figure 19 on page 29
shows aerodynamic pressure as a [unction of altitude.

v
N\
¥ K /_

Figure 18. Aerodynamic effects for cylindrical satellite [Ref. 3, p. 58]

28




NOTE: FROM ATMOSPIENIC DENSITY
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Figure 19. Aerodynamic pressure as a function of altitude [Ref. 8, p. 456)

The magnitude of the pitch and yaw aerodynamic disturbances for a one
inch cm-cp offset are shown in Figure 20 on page 30 for various altitudes. The magni-
tude of these torques decrease significantly with increases in altitude. “Proper control of
the satellites inertias to enhance gravity gradient torques can make aerodynamic dis-
turbances essentially insignificant for orbital altitudes above 300 nautical miles (480km).
On the other hand, in the 100 to 200 nautical mile (160-320km) altitudes aerodynamic
disturbances are 3 to 4 orders of magnitude greater than the gravity gradient torque from
a | slug-fr? inertia difference and 1 degree attitude error. In the lower regions, very large
inertia differences are required for accuracy. [This leads to design considerations] where
proper configuration can make these aerodynamic torques work as restoring torques
instead of disturbance torques” [Ref. 3, p. 57].
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Figure 20. Aerodynamic torque for a 1 inch offset as a function of altitude.

2. Rigid Body Solar Pressure Torque

“The major factors determining the radiation torque on a spacecraft are the in-
tensity and spectral distribution of the incident radiation, the geometry of the surface
and its optical properties, and the orientation of the sun vector relative to the spacecraft”
[Ref. 4, p. 570].

Solar pressure torques are the disturbances produced by solar radiation pres-
sure and is a function of the offset of the center of pressure (cp) and the center of mass
(cm). Referring to Figure 21 on page 31, the center of mass-center of pressure oflsets

are designated as L,, L,, and L,, respectively. The torques generated due to solar pres-
sure are given by [Ref. 8, p. 454] as:

Ty=PL A cose 97
T,=2P,L A, cos’ (98)

where T, = torque due to solar radiation (ft-lbs), P, = radiation pressure (Ib/fr?) and is
~ constant at 9.65 x 10-* Ib//#? for an earth orbiting vehicle, L, = center of mass center
of pressure oflset (ft), 4, = surface area of satellite normal to sun(f1?), and ¢ = angle
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of incidence (degrees). Note, equation (97) is for an absorbent satellite body and
equation (98) is for a reflective bod)-.
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Figure 21. Rigid body solar pressure torques [Ref. 3, p. 61]

B. RESTORING TORQUES

As seen from chapter 2, the restoring torques of the undamped rigid body combined
with the gravity gradient eflects are considerably smaller for the yaw axis than for either
the pitch or roll axes. This is due to the necessity of large moments of inertia along the
pitch and roll axes, as compared to the yaw axis, for gravity gradient stabilization to
occur. The lack of adequate yaw restoring torque requires that additional yaw restoring
torque be provided for accurate 3-axis stabilization. A discussion of yaw restoring torque
methods follows.

1. Thrusters

Thrusters are an eflective torque generating device; however, for the purpose

of this thesis, thrusters will not be considered for attitude control. Thrusters are neces-
sary for orbit maintenance and orbital transfer. Due to the physical size constraints im-
posed by the GAS cannister, ORION is severely limited in its fuel storage capacity to
approximately 71 lbs of hydrazine fuel [Rel 1}. An assumption that the launch platform
will place ORION in its final orbit is optimistic. Figure 22 on page 32 shows the fuel
required to go from one orbital altitude to another. Saving the onboard fu:! for orbit
maintenance and transfer and not for attitude control allows more fuel to be devoted
towards supporting the mission either by allowing greater orbital flexibility and/or a

longer lifetime.
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Figure 22. Fuel required for orbit transfer based on a 250Ib satellite. [Ref 2, p. 23]

2. Momentum Exchange Devices

The principle behind momentum exchange devices is that by changing the an-
gular momentum of the control device, the angular momentum of the vehicle will be
changed an equal and opposite amount. Recall that the rate of change of angular mo-
mentum is equal to the torque that is generated. The two basic types of momentum ex-
change devices are reaction wheels and control (:ioment gyros (CMG). The basic
difference between the two is the method by which the change in angular momentum is
accomplished. The reaction wheel axis is fixed (generally along one of the axes of the
vehicle) so that the change in angular momentum is accomplished by varying the speed
of rotation of the flywheel. The CMG creates the change in angular momentum bv tilt-

ing the contant speed flywheel with respect to the vehicle.
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a. Reaction wheels
“An axis may be controlled by varving the speed of the reaction wheel in
response to an attitude error [Ref. 6, p.149]. The momentum of a system with a reaction
wheel 1s

H=H,+H, (99)

where H. is the angular momentum of the system and

H,=

L

is the angluar momentum of the reaction wheel. Aligning the reaction wheels along each
axis, and substituting eq(99) into eq(48) and adding the gravity gradient moments of
eq(78) yields

Ix‘i’ + 4“)8(1); = L) —wly+ 1, - Iy)‘l’ + (0 - wO)sz - (¢ + w0¢7)Hwy + wa = ZTI
LB+ 33T, — )0 + (= & + wo¥) Hys + (J + 008) Hyg + Hy = D T, (101)

L + wi(l, — I + oL+ I, = L)d + (¢ — wgb) + (= & + o) Hyx + H,,, = ZTz

“Because H,,,H,,,H,,, and w, are small, the coupling terms are small. If the coupling
terms are neglected. the equations of motion about the roll, pitch, and yaw axes become
independent, and hence, they can be controlled independently” {Ref. 6, pp. 149-150].

Dropping the coupled terms, the motion equations become

Iih + 40l(1, — )¢ — wolly + I, = 1)V + Hux = D Ty (102)
1§ + 303, — 1)+ Hyy= ) T, (103)
L + ol = L) + ol + ;= [)é + Hyy= D T, (104)
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Allowing the momentum of the reaction wheel to be proportional to the attitude error,
then by differentiation, the reaction wheel control torques are equal to

Tow=—Ki(1:0 + ¢) (105)
Tyre = — K,(1,0 + ) (106)
Tyw=— Kz(fz'z/ + 'l’) (107)

and the control scheme would be as shown in Figure 23.

————¢—-> K,(r.@+¢) ‘%—» TACH Dcsa!ura_tion
electronics

Rolt wheel

Altitude 0 . . Desaturation
—| K, + ‘ . ‘
sensots o(re0 +6) 2 § 1 AC'.' electronics

Pitch wheel

L4 > K,(r,@ +¥) % TACH l)esatma.lion |
clectronics

Yaw wheel

Y

Figure 23. 3 axis reaction wheel control scheme [Ref. 6, p. 149]

The torque genterated by the reaction wheel is a function of the wheel’s angular velocity
and its moment of inertia. This means that a small lightweight wheel at a high rate of
speed generates the same amount of torque that a large wheel at a low rate of speed.
Since ORION is designed for a relatively short lifespan, wear and tear on spinning parts
is not an overriding concern. It should be noted that continuous disturbance torques
that are not cyclical in nature will eventually saturate the reaction wheel, whereby, the
reaction wheel rotational speed will reach a maximum. Thrusters or some other method

of momentum removal must be used to reduce wheel speed. Disturbance torques that

34




are cvclical in nature are easily ofTset by the reaction wheel as long as the disturbance
torque is such that it does not saturate the rcaction wheel speed.
3. CMG(s)

“A control moment gvro’s (either single or double gimbaled) angular mo-
mentum is due to the rotor which is spinning about the spin axis with a constant
angular rate. Because the spin axis is gimbaled, a commanded gimbal rotation causcs
the direction of the angular momentum vector to change, thus creating a control
torque parallel to the output axis. The magnitude of this torque depends on the
speed of the rotor and the gimbal rotation rate.” [Ref. 4, p. 200]

A control moment gyro scheme is shown in Figure 24.

Figure 24. Twin gyro controller with one drive motor [Ref. 8, p. 415]

Because of their expense and weight, CMG’s are only used on large spacecraft

[Ref. 4). For this reason, control moment gyros will not be addressed.

4. Magnetic torquers

Magnetic torquers may be used to dampen the kinetic energy of the libration
motion as well as correcting attitude errors in any direction. The magnetic torquers
consist of three wire coil sets arranged perpendicularly to each other. This configuration
allows magnetic torque to be generated along any axis or in any direction as a result of
adding two or three different orthogonal torques. As shown in Figure 25 on page 36,
when a current is applied around the loop of a coil, it produces a magnetic dipole that
is normal to the plane of the coil and a magnitude which is proportional to the coil’s
enclosed area and ampere-turns.
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m=NiAn

m

)

Figure 25. Magnetic Moment Due to a Current Loop [Ref. 4, p. 204]

The magnetic moment M is defined as
M= NlAn (108)

where N is the the number of turns around the coil, 1 is the current in amperes, A is the
area enclosed by the loop, and n is the unit vector normal to the plane of the loop. Be-
cause of the relationship between N, 1, and A, many different combinations are available
to produce the desired magnitude ol the magnetic moment. Figure 26 on page 37 shows
three existing spacecraft with various combinations of number of turns and current
drawn. The torque generated by the magnetic torquer is

Typag = M x B (109)

where M is the magnetic dipole and B is the earth’s magnetic field. The earth’s magnetic
field for an equatorial orbit can be approximately modeled as a tilted dipole located at
78.3° north latitude and 69° west longitude as shown in Figure 27 on page 37.
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0s0-8

AE-3

COIL CONSISTS OF 260 TURNS. MAXIMUM
CURRENT IS 0.6 A AND MAXIMUM POWER
CONSUMPTION IS 10 W

COlL CONSISTS OF 360 TURNS. MAXIMUM
CURRENT 1S0.075 A

TWO COILS; EACH HAS 500 TURNS. MAXI-
MUM POWER CONSUMPTION IS 12 W

Figure 26. Some existing magnetic moment schemes [Ref. 3, p. 205]
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Figure 27. Earth’s magnetic field modeled as a tilted dipole [Ref. 6, p. 148]

The strength of the earth’s magnetic field for a circular equatorial orbit in component

form can be approximated by
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M
B.=— -R—§ sin(11.7) sin(281 — lam,) (110)

M,
By=—-—R3—cos(ll.7) (111)
Mg
B,= ?3— sin(11.7) cos(281 — lam,) (112)

where lam, is measured in degrees of right ascension from Grenich, M, is the strength
at the earth’s center which is approximately 8 x 10¥ Wb-m, and R is the distance in
meters from the earth’s center to the orbital altitude. With respect to the satellite, the
earth’s magnetic field is changing continuously as the vehicle moves along its orbital
path. Putting into component form both M and B, eq(109) becomes

Tnag—x = M:B, — M,B, (113)
Tynag—y = M B, — M,B, (114)
Tppag—s = M,B. — M,B, (115)

It should be noted that the earth’s magnetic field is not uniform and varies in
direction based on the satellite’s position. For accurate attitude control, the vehicle must
be able to exactly know both its position and the earth’s magnetic field at that position.
For low earth orbits, the magnetic field is well mapped and may be easily programmed
into the attitude control computer. For the purpose of this thesis, magnetic field ap-
proximations will suffice to demonstrate magnetic torquing as a viable attitude control
capability.
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1V. CHAPTER 4

A. GRAVITY GRADIENT STABILIZATION RESULTS
1. Attitude Control

There are three general attitude control phases with respect to gravity gradient
systems: gravity gradient capture, transition period, and steady state. Gravity gradient
from a tumbling mode occurs when angular velocity slows to one rotation per orbit or
less, allowing the minimum moment of inertia axis to align with the local vertical. The
transition period is the time from gravity gradient capture until a steady state has been
achieved. This period of oscillations will vary depending on the dampening scheme used
to reduce the amplitude of oscillations. Predominant throughout the satellite’s lifetime,
the steady state phase is the period in which the satellite’s errors are confined within
operationally acceptable amplitudes. Maintenance of the desired steady state requires
minimization of external disturbances and control of those which cannot be eliminated.

The following group of simulations assumes that a steady state phase has been
achieved and that the small angle approximations are in effect. For each of the simu-
lations, the following initial conditions are in effect: ¢, 6, and ¥ position error = 5°, and
@, 6 , and :// = 0.

2. Various results based on different configurations
a. Effects of extending booms
For Figure 28 on page 40, a 10 kg point mass is used and the mass of the
boom is assumed to be negligible. Extension of the boom increases the moment of in-
ertia in the x and y directions. This increases the restoring torque along the roll and pitch
axes although it does little to dampen the libration motion.
b.  Gravity gradient effect alone
The following figures show the gravity gradient effect on a satellite at an
altitude of 1000 km having moments of inertias as shown. As shown by Figure 29 on
page 41 and Figure 30 on page 42, stabilization along the roll and pitch axes would take
a prohibitively long time while the vaw direction would not stabilize. It is clear that
gravity gradient stabilization alone is incapable of acceptable three axis stabilization.
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Figure 28.  Effect of extending boom on moments of inertia
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c. Effects of Reaction Wheel(s)

One method of augmenting gravity gradient stabilization is through the use
of reaction wheels. Teldrix reaction wheel classes and corresponding technical data are
presented in Figure 31 on page 43.




Wheel diameloer om 20 26 k1 50 60°)

Angular momentum range Nis 18.65 5.0..20 14...80 50...300 | 200...1000

Max. reaction totue N 0.2 0.2 0.2 0.3 0.3-0.6

Speed***) min ! 6000 6000 6000 6000 6000

Loss torque at max. speed**) N =0.012 =<0.013 < 0.015 < 0.022 < 0.07

Power consumption:

- sleady stale (depending w 2.7 2.8 2...10 3...16 10...50
on speed)

— max. power rating w | =e0 =80 =< 100 = 150 < 500

Dimensions:

- diameter A mm 203 260 350 500 600

—heigin B mm 75 85 120 160 180

Weight kg 2.7.34 3.5..6.0 5.0..8.0 75..12 20..37

Environmental conditions:

- operating lemperalwe

~ vibration (sinusoidal) suitable for satellites compatible with launche: s

— vibralion {randoin) such as ARIANE or Space Shultle

- lincar acceleration

Figure 31. Teldrix Reaction Wheel Technical Data

Of the five diameter classes, the 20 cm diameter wheel is the most appropriate of the
classes listed for ORION. Reaction wheels also come in diameters smaller than 20 cm
diameter. Bendix Aerospace SP reaction wheel of Figure 32 on page 44 has a diameter
of 6 inches.

As illustrated in Figure 31 and Figure 32 on page 44, power consumption
values differ with dilTerent reaction wheels. For the 20 cm Teldrix reaction wheel, steady
state requires 2-7 watts with a maximum less than 60 watts. The Bendix SP reaction
wheel requires 2.5 watts at steady state with a maximum power consumption of 6.5
watts. Due to weight and power consumption values, the Bendix reaction wheel appears
to be the superior choice of the two.

The lollowing figures were generated by setting the reaction wheel torques
equal to eqs(107-109). The initial conditions are ¢ , 8, and ¢ position errors = 5°, and
¢ =0=y =0. For simulation purposes, the maximum reaction torque value of .2 N-m
from Figure 31 will be in eflect.

Figures 33-35 have moment of inertias I, =15, I, =18, and I,=3, with
K,=K =20, K,= 1.0, and 7, =1,=1,= 1.0. Figure 33 on page 45 shows ¢ (position
error), ¢ (velocity), and the restoring torque (T,,,) generated by the reaction wheel with
respect to time. Figures 34 and 35 show 6, 8 , T,,, and ¥, ¥ , T..,, respectively. With
the relatively small moments of inertias, stabilization of all axes within the + 1° criteria
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occurs within 40 seconds. Increasing the moments of inertias to /, = 95, 1,=98 , and
1, =3 while holding K,, K at 2.0, K, at 1.0, and 7,, 7, , and t, constant at 1.0, yields
Figures 36-33. As expected, the ¢ and 0 axes take longer to stabilized (approximately
160 seconds) than the above case with the smaller moments of inertia. Thé ¢ axis of
Figure 38 stabilizes much faster than either the ¢ or 8 axes. This is due to the relatively

small moment of inertia (/,) compared to the restoring torque generated by the reaction
wheel.

PROCRAM/UNIT HANME SP Reaction Wheel

UNIT TYPR NO. (REP)

% 3890003
RONEHTUN (PT-LD-SBC) ' 0.% § 1250 AFM
WEIGHT (LDS.) ' \9

s118

6.0" DIA. MAX x ).9" KIGH (excluding mounting
feet projection)

STALL TORQUE (O1-1IN)

1 2.2
PEAK PONBR (WATTS) : 6.5
MAX SFEED (RTN) ' 1350
KOTOR EXCITATION t

28Y, 0-Teak, Squarewave, W00 Wz, 2 FPhase

STEADY STATE POWER(WATTS): 2.5 ¢ 1350 AFN

TACHOMETER TYPE t P.R. Rotor, 2 Phase Wound Stator, Sinusoldal
Output, 1 Cycle/Rev/Phase, Amplitude varies
with epeed.

QUANRTITY BUILT H \2

COMNENTS

AC Squirrel Cage Induction Motor

FLIGHT WISTORY More than 20 of theee unite have (lown.

Unite vith operating time greater than S
years are presently functioning in-orbit,

Figure 32. Bendix Aerospace Reaction Wheel Technical Data.
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Figure 37, Gravity gradient effe

ct with 3 Rw (Y axis) Ix=9s Iy=
K;=2.0, 7,=1.0

98, Iz=3
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Figures 39-d1 have moments of inertia of /, =15, ], =18, and [, =3 with
K,=K =.2 K,=.1, and 1,=1,=1,= 1.0. The reduction of K,, K, and K, reduces the
reaction wheel torque generated.

Figure 39 shows ¢(position), d&(velocity), and reaction wheel torque (7,,,)
with respect to time. Figures 40 and 41 show 6, 6, T,,, , and ¥, ¥, T., , respectively.
Stabilization, within the + 1° criteria, occurs for all axes in under 200 seconds. Com-
parison of the magnitudes of the torque values of Figures 33-35 and Figures 39-41 for
the same moment of inertia values shows a decrease of roughly a factor of five.

Increasing the moments of inertia to I, = 95, I, = 98 and /, = 3, while hold-
ing K,=K =.2, K,=.1, and 7, = 1, = 1, = 1.0, produces Figures 42-44. This last group
of reaction wheel figures shows that 650 seconds are required to dampen the system
to the + 1° stabilization criteria. The tradeofls between the different reaction wheel
combinations are essentially time response against torque/power. The faster the desired
response, the greater the magnitude of the restoring torque, and ultimately, the more
power that will be consumed in achieving this response.
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d. Effects of Magnetic torquers

For the magnetic torquing simulations, the initial conditions are ¢, 8, and
¥ position errors = 5° | and é, 6, and ¥y = 0. The initial restoring torque is provided
by the gravity gradient effect combined with the rigid body dynamics. For the following
simulations, one of the two conditions must exist prior to energizing the magnetic coils
to generate magnetic torque:

1) position greater than .5° and velocity greater than 0, or

2) position less than —.5° and velocity less than 0. For the following figures,
the magnetic moment varies from 9.0427 to .5 Wb-m. At the maximum value of
9.0427W-m, N =400 turns, [=.5 amp, and A = =r? where r is the radius at .12m. Subse-
quent values are obtained by reducing the current drawn.

The magnetic field in component form for an equatorial orbit can be ap-
proximated by eqs(110-112). Since the earth’s magnetic field is highlv dependent on the
satellite’s position. ORION must have the capability to determine its position in order
to effectively utilize magnetic torquing. For simulation purposes, the satellite is assumed
to be directly over Greenwich at time t=0. The magnetic coils are turned on and off at
the specified strength as needed. Varving the strengths of the magnetic moments gener-
ated would enhance performance, but is bevond the scope of this thesis. The assumption
that magnetic torque may be generated in any direction due to vector addition is not
always valid; magnetic torque mayv not be generated in the direction of the magnetic
field.

Figures 45-47 utilized magnetic moments of m, =m, =m,=9.0427 with
moments of inertias [, =15, I, =18, and /,=3. For Figure 45 on page 60, the gravity
gradient restoring torque takes approximately 800 seconds before meeting a condition
necessary for energizing the magnetic coils. Due to the small moments of inertia, the ¢
restoring torque is needed for only a short time. Figures 46 and 47 show the 6 and v
axes essentially stabilized within the + 1° criteria after the the initial magnetic torque
pulse. For the 6 axis, this pulse occurs at the 1200 seconds and lasts for approximately
300 seconds. The @ axis has a lower frequency response and, therefore, takes longer to
to meet the condition necessary to energize the magnetic coils. Due to its relatively small
moment of inertia, the ¥ axis chatters slightly before stabilizing. A smaller magnitude
of restoring torque eliminates this problem.

Increasing the moments of inertia to [, =95, I =98, and /, = 3 while leav-
ing the magnetic moments m,, m,, and m, constant at 9.0427wb-m, produces Figures
48-50. As expected, more restoring torque is needed to stabilized the ¢ and 6 axes forc-
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ing the magnetic coils to remain energized for a longer period of time. The time needed
for all axes to be within the + 1° criteria is limited by the 8 axis. Stabilization occurs
within 2800 seconds while for the case with the smaller moments of inertias, stabilization

occurs at approximately 2100 seconds.
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Reducing the strength of the magnetic moments reduces the torque that is
generated and. thereby, slows the response time to stabilization. For Figures 51-36, the
magnetic moments m, =m,=m,= 1.0. Figures 51-53 have moment of inertias /, = 1§,
I, =18 , and I, = 3. Stabilization for the 6 axis occurs within approximately 3600 sec-
onds. Increasing the moments of inertias to [, =95, /, = 98, and I, = 3 produces Figures
54-36. Stabilization within the + 1° criteria for the 8 axis occurs at approximately 11000
seconds. The length of time that the magnetic torqgers are energized increases as the
strength of the moment decreases. Figures 57-62 show the effects of magnetic torquing
using a maximum magnetic moment of .5Wb-m for each coil. Figures 57-59 show that
for low moments of inertia (7, = 15, I, = 18, and I, = 3), stabilization occurs within the
+ 1° within 48CC seconds. Increasing the moments of inertia to /, =95, /, =98, and
I,= 3 holding the maximum magnetic moment =.5Wb-m, produces Figures 60-62. In
Figure 61, the @ axis may take a prohibitively long time.
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Figure S5. Gravity gradient with magnetic torquing (Y axis): Magnetic
moment=1.0W-m Ix=95, ly=98, 1z=3.
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Figure 57.

Gravity gradient with magnetic torquing (X axis): Magnetic
moment=.50W-m Ix= 15, ly=18, 1z=3.
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Gravity gradient with
moment=.50W-m Ix= 15, Iy=18, [z=13.
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Gravity gradient with magunetic torquing (Z AXIS):

moment=.50W-m Ix=935, I[y=98, lz=3.

78

Magnctic




3.  Gravity Gradient capture (from tumbling mode)

Increasing the inertia wiil reduce the tumbling rate by conforming to the con-
servation of angular momentum, /w, = /,w,. As the inertia increases, a corresponding
decrease in angular rate must be realized. This is useful in obtaining the initial gravity
gradient capture from a tumbling mode. Figure 63 on page 80 shows that for a slow
tumbling satellite, the change in the moment of inertia by extending the boom may be
sufficient to allow gravity gradient capture. The satellite 1s initially tumbling at a rate
of 5 rotations per orbit about the pitch axis. The extension of the boom increases the
moment of inertia about the v axis by a factor of 6; therefore, by the conservation of
angular momentum, the angular rate must decrease by a factor of 6. This reduces the
rotations per orbit to approximately 56 per orbit well below the one rotation per orbit
rate necessary to acheive gravity gradient capture. Figure 63a shows the initial tumbling
rate of 3 rotations per orbit. Figure 63b shows the corresponding decrease in the tum-
bling rate as the moment of inertia is increased. Figure 63¢c shows the increase in mo-
ment of inertia as the boom is extended with respect to time.

When an initial tumbling rate 1s higher than the rate that can be captured solely
through the extension of the boom, magnetic torquing may aid in gravity gradient cap-
ture. By creating torque in the direction opposite to that of the angular velocity, mag-

netic torquing can be used to slow the rate of the tumbling vehicle.
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V. CHAPTER S

A. CONCLUSIONS
1. Gravity gradient stabilization (only)

Gravity gradient stabilization alone is not a viable attitude control method for
ORION. This is due to gravity gradient effect providing little yaw restoring torque. In
addition, gravity gradient stabilization provides little dampening effect on the roll and
pitch axes. When augmented by other control schemes, gravity gradient stabilization
provides sufficient passive restoring torque to warrant its use.

2. Gravity gradient with 3 reaction wheels
a. Advantages
Gravity gradient stabilization augmented by three reaction wheels, each
aligned along the body’s axes, provides excellent attitude control results both in time
response and accuracy.
b. Disadvantages
Power consumption may be prohibitively high for this method. At steadv
state. each reaction may use up to 6 watts while drawing considerably more during the
acceleration or deceleration phase. If a steady state drain of 18 watts (6 for each re-
action wheel) is acceptable, then this method should be considered. The projected end-
of-life power budget for ORION is 60 watts [Ref. 1, p. 132]. Using this figure as an
estimate, a steady state draw of 18 watts leaves 42 watts available for mission support.
From Figure 3 on page 3, an average of 34 watts is required for mission sup~ort. The
size and weight of three reaction wheels may be prohibitivelv high as well. Another
disadvantage is that thrusters must be used to remove momentum when the reaction
wheel(s) become saturated.
3. Control moment gyro (CMG)
a. Advantages
Although not discussed in detail, control moment gvros are capable of
generating large restoring torques.
b. Disadvantages
The weight requirements for a control moment gyvro are prohibitivelv high

when compared to reaction wheels when relatively small torques are invoved. As a small
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multi-purpose satellite, ORION does not need the magnitude of restoring torque neces-
sary to warrant the use of control moment gyvros.
4. Gravity gradient with three magnetic torquers
a. Advantages
Three othogonally oriented magnetic torquers have the advantage of gen-
erating restoring torque in almost any direction based on vector addition. In this man-
ner, the corrective torque may be produced to counter any disturbance from any
direction as long as it is small enough not to tumble the vehicle. Another advantage for
magnetic torquing is that the torquers only draw power while providing restoring torque.
This amounts to a considerable power savings when compared to the reaction wheel.
The power drawn by the magnetic torquers during operations is based on the amperes
used. This allows for flexibility of design since doubling the number of turns and halving
the current drawn still provides the same magnitude of the magnetic moment.
b. Disadvantages
Magnetic torquers are altitude dependent. The magnitude of the earth's
magnetic field is a function of -;7 At high altitudes, magnetic torquing is not effective.
In addition, magnetic torquing is not always available in all directions. Recalling that
magnetic torque is T, = M x B, magnetic torque may not be generated in the direction
of the B field due to vector cross product relationships. Due to the continuously chang-
ing B field with respect to the satellite, this is a minor disadvantage. The desired restoring
torque can soon be generated as soon as the B field direction changes.
S.  Thrusters
a. Advantages
At high altitudes, thrusters and momentum exchange devices are the only
control methods available for accurate stabilization. In addition, thrusters are the most
effective method for stabilizing a vehicle with a high tumbling rate.
b. Disadvantages
Thrusters are necessarv for satellites; however, any fuel used for attitude
control or momentum removal is less fuel available for orbit transfer and maintainance.
For a small, ightweight satellite with limited fuel storage capacity, fuel resources must
be economized.
6. Overview
In the final analysis, the attitude control system employed will be based on

specific mission requirements. Onlv when the ORION mission is known can proper




weights be given to each of the attitude control system design factors, most noticeably,

power consumption, pointing accuracy, altitude, and desired lifetime.
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APPENDIX GRADIENT STABILIZATION PROGRAM

TITLE 3 AXIS STABILIZATION WITH GRAVITY GRADIENT EFFECT
Fededededededodededededededededndelelededededolodedodoiodone ool deivideleledcledededodedoloiedeicieodicleiedok

DEFINITION OF TERMS

ALT=ALTITUDE OF SATELLITE (METERS)
R1=RADIUS OF EARTH (METERS)
R=RADIUS OF EARTH + SATELLITE ALT (METERS)
RO=DENSITY OF AIR AT THE ORBITAL ALTITUDE
WO=ANGULAR RATE OF SATELLITE WITH RESPECT TO EARTH
D=DRAG FORCE=1. 7E+14*(R0O/R)
PSI,THETA,PHI ARE ANGLES ABOUT THE X,Y,Z, AXES (RADIANS)
PSIC,THETAC,PHIC ARE ANGLES ABOUT THE X,Y,Z AXES (DEGREES)
PSID,TD,PHID ARE ANGULAR VELOCITIES ABOUT THE X,Y,Z AXES (RADS/SEC)
(B1),B(2),B(3) ARE THE ANGULAR ACCELERATION ABOUT THE
X,Y,Z AXES (RADS/SEC*¥%2)
IX,IY,IZ ARE THE MOMENTS OF INERTIA ABOUT THE X,Y,Z AXES (KG-M**2)
TX,TY,TZ ARE THE SUMMATION OF THE DISTURBANCE TORQUES AND
RESTORING TORQUES EXCLUDING GRAVITY GRADIENT EFFECTS
TMX,TMY,TMZ ARE MAGNETIC TORQUES ABOUT THE X,Y,Z AXES
TRWX,TRWY,TRWZ ARE REACTION WHEEL TORQUES ABOUT THE X,Y,Z AXES
TSX,TSY,TSZ ARE SOLAR PRESSURE TORQUES ABOUT THE X,Y,Z AXES
TAX,TAY,TAZ ARE AERODYNAMIC TORQUES ABOUT THE X,Y,Z AXES
LX,LY,LZ IS THE DISTANCE BETWEEN THE CENTER OF PRESSURE AND
CENTER OF MASS (M)
MX,MY,MZ=SPACECRAFT'S GENERATED MAGNETIC MOMENT WITH RESPECT TO
THE X,Y,Z AXES (WB-M) =NIA WHERE M=MAGNETIC MOMENT,
N=## OF TURNS, I=CURRENT (AMPS), AND A=AREA (M**2). FOR
THE MAXIMUM VALUE OF M=9. 0427, N=400,I=.5A,RADIUS=. 12M.
MG=STRENGTH OF EARTH'S MAGNETIC DIPOLE=8.0E15 WB-M AT R=0
BX,BY,BZ=EARTH'S MAG FIELD WITH RESPECT TO X,Y,Z(WB/M*¥*2)
LAMS=RIGHT ASCENSION FROM GREENWICH @ TIME=0, IN DEGREES(LONGITUDE)
dededeedeTrdededeTodeYedesedevedededese e e de e e devede e vede e oo Voo e e York Ve e e e ve e e e de e e e e e de e e e et
ARRAY B(3)
CONST ALT=1000E+03,R0=7.0E-10,R1=6378.E+03,...
IX=95., 1¥=98., 1Z=03.00, LAMS0=0,...
MX=9. 0478, MY=9.0427, MZ=9. 0427, MG=8.0E+15,...
KX=2., KY=2., KZ=1., TAUl=1l., TAU2=1., TAU3=1.,...
TSX=0., TSY=0., TS2=0., TAX=0., TAY=0., TAZ=0.

ok ok ok ook ook sk ook ook b ok ok b ook ok ooF ok % ok Ok b b b %

skosk ook ook

*
Yededededededesedededededodedededededeicdededodededededededodedededodededodedededodededededodedededededededededededededededededeiedededeok

*  PHI,THETA,AND PSI ARE INIT 5 DEGREES = .08725 RADIANS OF ERROR*
Fedededededodetodeioteieiodiodededeiededetedeieiedeieieivhdeieledoieiededododedededdoieiniodedeiciodeedolololoioioio ok ook

INCON ITHETA=.08725,IPHI=.08725,IPSI=. 08725,1LAMS=0,PHIC=5. ,...

THETAC=5. ,PSIC=5.
*

DERIVATIVE

R=R1+ALT
D=1. 7E+14*(RO/R)
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WO=SQRT(3. 987E+14/(R**3))

NOSORT
LAMS=LAMSO+WO*TIME*(57. 3)

10 IF (LAMS.GE. 360) THEN
LAMS=LAMS-360.

GO TO 10
ENDIF

*

*

Feverksedereart dede ek e st e veYedbde s rtale o sk e de st de vk ae b de e e s v dle s e s ke e e e db ke e ae e e ok
* THIS SECTION ADDS THE REACTION WHEEL EQUATIONS *
dedevedede e e dede e dereokalr e vk e Yotk e s v ak de st adle st e s e vt s ek ke e e v e db v e de ek ook
* TRWX=-KX*( TAU1*PHID + PHI)

* TRWY=-KY*(TAU2*TD + THETA)

%* TRWZ=-KZ*( TAU3*PSID + PSI)

deddeededeeddede*END REACTION WHEE Loesededestadededesedededededededrdededrdrsodededratrde
Fededededbdrdert ik desed e rdkak dede sk e dederb de e e e de v e dedb sl e de v sk e e ve s Y b ae b s e e etk

* THIS SECTION ADDS THE MAGNETIC TORQUE EQUATIONS *
* AND SOLVES AN EXAMPLE FOR THE EARTH'S MAGNETIC *
* FIELD (EQUATORIAL ORBIT ASSUMED) *

Fedevedkedrtevedesesedl e ve et de vk s dede e e e vk st dedeatdk ok s v vk de e e deab de vtk e e v abe e ot

BX=(MG/(R**3))*SIN(. 2042)*SIN(((LAMS*PI)/180)-5.0789)

BY=-(MG/(R**3))*C0OS(. 2042)

BZ=-(MG/(R¥**3))*SIN(. 2042)*COS(((LAMS*PI)/180)-5.0789)

TMAGX=(MZ*BY)-(MY*BZ)
TMAGY=(MX*BZ) ~(MZ*BX)
TMAGZ=(MY*BX) -(MX*BY)

Fedededdevedtdedesk e vede s vevedkdrdedt ok e vedk sk de st

* CONDITIONS FOR TORQUE GENERATION MET?
Fedede SedeedlevevedediedbavedesededeveYedededevede e dede e

IF(PHIC.GT..5) THEN
IF(PHID. GT. 0) THEN
TMX=-(ABS(TMAGX))
ELSE
TMX=0
ENDIF

ENDIF

IF(PHIC. LT. -.5) THEN
IF(PHID. LT. 0) THEN
TMX=ABS( TMAGX)
ELSE
TMX=0
ENDIF

ENDIF

IF(THETAC.GT..5) THEN
IF(TD. GT.0) THEN
TMY=-( ABS(TMAGY))
ELSE
T™Y=0
ENDIF

ENDIF

IF(THETAC. LT. -.5) THEN
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IF(TD.LT. 0) THEN
TMY=ABS(TMAGY)
ELSE
T™Y=0
ENDIF
ENDIF
IF(PSIC.GT..5) THEN
IF(PSID.GT.0) THEN
TMZ=-(ABS(TMAGZ))
ELSE
T™MZ=0
ENDIF
ENDIF
IF(PSIC.LT. -.5) THEN
IF(PSID.LT. 0) THEN
TMZ=ABS(TMAGZ)
ELSE
T™Z=0
ENDIF

ENDIF
Fedededredrdbseiodiookrie k" END MAGNETIC TORQING SECTION#irdidedtdededrdeiedrdededrededd

TX=TMX+TRWX+TSX+TAX
TY=TMY+TRWY+TSY+TAY
TZ=TMZ+TRWZ+TSZ+TAZ

FhkkkF*FOR GRAVITY GRADIENT EFFECT ONLY SET TX=TY=TZ=Q¥¥¥diicddrficdcdd

B(1)=-4%(WO**2)*( (IY-IX)/IZ)*PHI+WO*((IX+IZ2-1IY)/IX)*PSID+(TX/IX)
B(2)=-3%(WO¥*¥*2)*((IX-I1Z2)/IY)*THETA+TY/IY
B(3)=-(WO**2)¥((IY-IX)/IZ)*PSI-WO*{(IX+IZ2-1Y)/IZ2)*PHID+(TZ/1Z)

%

PHID=INTGRL(O. ,B(1))
TD=INTGRL(O. ,B(2))
PSID=INTGRL(0. ,B(3))

b
CPHI=INTGRL(O. ,PHID)
CTHETA=INTGRL(O. ,TD)
CPST=INTGRL(O0. ,PSID)

PHI=IPHI+CPHI

THETA=ITHETA+CTHETA

PSI=IPSI+CPSI
Fedededededeiedeieioteirivivielolnioioiiviolololoiniofe ool doioieledeloloioofolololoiofedololoieededoleloioinkededoleiniielolohedoio
*PHI,THETA,PSI ARE = TO INITIAL CONDITiONS AS ANNOTATED WITH AN "I"

*PRECEDING VARIABLE+CALCULATED VALUES AS ANNOTATED WITH THE "C" IN FRONT
Fevkdeskerierieardedededert e et ak ke v v s re vtk st at bt ak sk s e e s v v e s v vt v sk a v b sk dk b s sk ok s s ke s s s beabeok

*

PHIC=PHI*57. 3
THETAC=THETA*57. 3

PSIC=PSI*57.3
¥

Fodededededededededededededededededededekdededeedrrieiedrintseeddediededededededeieiefol etk dedeodededeokeoke
* USE FOLLOWING IF GRAVITY GRADIENT EFFECT ONLY *
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Fededederedededededede e dededertdertdeertdededede it ve s v vk e deatede e s derb e de e e v dede e sk e vk b e v e st e e e e

*ONTRL FINTIM=20000,DELT=200.

*RINT 200., PHIC, THETAC, PSIC, PHIDC, TDC, PSIDC

*AVE 200., PHIC, THETAC, PSIC, PHIDC, TDC, PSIDC

*RAPH (G1,DE=TEK618) TIME(UN=SEC),PHIC(UN=DEGREES)

*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GG@1000K) IX=95 IY¥=98 I1Z=3.00
*RAPH (G2,DE=TEK618) TIME(UN=SEC),THETAC(UN=DEGREES)

*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GGR1000K) IX=95 IY=98 IZ=3.00
*RAPH (G3,DE=TEK618) TIME(UN=SEC),PSIC(UN=DEGREES)

*ABEL (G3,DE=TEK618) PSI(DEG) VS TIME (GGR1000K) IX=95 1Y=98 IZ=3.00
*RAPH (G4,DE=TEK618) TIME(UN=SEC),PHIDC(UN='DEG/SEC')

*ABEL (G&4,DE=TEK618) PHID VS TIME (GGR1000K) IX=95 1Y=98 IZ=3.00
*RAPH (G5,DE=TEK618) TIME(UN=SEC),TDC(UN='DEG/SEC')

*ABEL (G5,DE=TEK618) TDC VS TIME (GG@1000K) IX=95 1Y=98 1Z=3.00
*RAPH (G6,DE=TEK618) TIME(UN=SEC),PSIDC(UN='DEG/SEC')

*ABEL (G6,DE=TEK618) PSIDC VS TIME (GGE@1000K) IX=95 1Y=98 I1Z=3.00
Yesrdedededrabdesede e END GRAVITY GRADIENT ONLY GRAPHS #ievrdededededededrdvdededededededd

¥

Yook e ot Yo db T o ok e s b vk s b el o sl s b ok sk e s sk s e sk de db sl s b de e ek e ek skl

*  USE THE FOLLOWING IF REACTION WHEELS ARE USED *
Fedkskakakrbskdrak kol s e s e dedesesb e e v sk sk dbe s e de s e s e ab e vt e vk sk vt ek ks ak bk ke ek

*ONTRL FINTIM=400,DELT=5.

*RINT 100., PHIC, THETAC, PSIC, TX, TY, TZ

*AVE 5., PHIC, THETAC, PSIC, TX, TY, TZ, PHID, TD, PSID

*RAPH (G1,DE=TEK618) TIME(UN=SEC),PHIC(UN=DEGREES)

*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GG@1000K) IX=95 IY=98 I1Z=3.00
*RAPH (G2,DE=TEK618) TIME(UN=SEC),THETAC(UN=DEGREES)

*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GGE@1000K) IX=95 1Y=98 I1Z=3.00
*RAPH (G3,DE=TEK618) TIME(UN=SEC),PSIC(UN=DEGREES)

*ABEL (G3,DE=TEK618) PSI(DEG) VS TIME (GGE1000K) IX=95 IY=98 IZ=3.00
*RAPH (G4 ,DE=TEK618) TIME(UN=SEC),TX(UN=NM)

*ABEL (G&4,DE=TEK618) TXRW VS TIME (GGE1000K) IX=95 IY=98 IZ=3.00
*RAPH (G5,DE=TEK618) TIME(UN=SEC),TY(UN=NM)

*ABEL (G5,DE=TEK618) TYRW VS TIME (GG@1000K) IX=95 IY=98 I1Z=3.00
*RAPH (G6,DE=TEK618) TIME(UN=SEC),TZ(UN=NM)

*ABEL (G6,DE=TEK618) TZRW VS TIME (GGE@1000K) IX=95 1Y=98 I2=3.00
*RAPH (G7,DE=TEK618) TIME(UN=SEC),PHID(UN='RAD/SEC')

*ABEL (G7,DE=TEK618) PHID VS TIME (GGE100CK) IX=95 1Y=98 IZ=3.00
*RAPH (G8,DE=TEK618) TIME(UN=SEC),TD(UN='RAD/SEC')

*#ABEL (G8,DE=TEK618) TD VS TIME (GG@1000K) IX=95 I1Y=98 1Z=3.00
*RAPH (G9,DE=TEK618) TIME(UN=SE[),PSID(UN='RAD/SEC')

*ABEL (G9,DE=TEK618) PSID VS TIME (GGQ1000K) IX=95 1Y=98 IZ=3.00
Fededededededtldededrdtdededde ek * Y END REACTION WHEEL GRAPHSFrrsrstdededoabodeorabaesirbabdedrbstodes
% ¥*
Fededefesededevidldtle st s sl e s v de vtk e ve e e v e s vk staldb s sk sk sk sk e e el e e s de de de v v S v de de s de v s v v sk ae skt sle e
*  USE FOLLOWING GRAPHS IF MAGNETIC TORQUING IS UTILIZED *
Fedededededevt e dedt i dedk b dedb b de v sk ae e vt devedb sk v vk de v v de v e de e et s e o b s e sk ake s e e ke e e b ket
*ONTRL FINTIM=4000. ,DELT=5.

*#*RINT 100., PHIC, THETAC, PSIC, wW0,B(1),B(2),B(3),LAMS

*AVE 5., PHIC, THETAC, PSIC, LAMS, TX,TY,TZ,BX,BY,BZ,PHID,TD,PSID
*RAPH (G1,DE=TEK618) TIME(UN=SEC),PHIC(UN=DEGREES)

*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GGR@1000K) IX=95 1Y=98 I1Z=3.00
*RAPH (G2,DE=TEK618) TIME(UN=SEC),THETAC(UN=DEGREES)

*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GG@1000K) IX=95 IY=98 1Z=3.00
*RAPH (G3,DE=TEK618) TIME(UN=SEC),PSIC(UN=DEGREES)

*ABEL (G3,DE=TEK618) PSI(DEG) VS TIME (GG@1000K) IX=95 IY=98 I1Z=3.00
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*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
*RAPH
*ABEL
END
STOP

(G4 ,DE=TEK618)
(G4 ,DE=TEK618)
(G5 ,DE=TEK618)
(G5 ,DE=TEK618)
(G6 ,DE=TEK618)
(G6,DE=TEK618)
(G7,DE=TEK618)
(G7,DE=TEK618)
(G8,DE=TEK618)
(G8,DE=TEK618)
(G9,DE=TEK618)
(G9,DE=TEK618)
(G10,DE=TEK618)
(G10,DE=TEK618)
(G11,DE=TEK618)
(G11,DE=TEK618)
(G12,DE=TEK618)
(G12,DE=TEK618)
(G13,DE=TEK618)
(G13,DE=TEK618)

TIME(UN=SEC),LAMS(UN=DEGREES)
LAMS(DEG) VS TIME (GGE@1000K) IX=95 IY¥=98 12=3.00
TIME(UN=SEC) ,TX(UN=N-M)
TX VS TIME (GG@1000K)
TIME(UN=SEC) ,TY(UN=N-M)
TY VS TIME (GG@1000K)
TIME(UN=SEC),TZ(UN=N-M)
TZ VS TIME (GG@1000K)
TIME(UN=SEC) ,BX(UN=W-M)
BX V8 TIME (GGE1000K)
TIME(UN=SEC) ,BY(UN=W-M)
BY VS TIME (GGE1000K)
TIME(UN=SEC) ,BZ(UN=W-M)
BZ VS TIME (GG@1000K)
TIME(UN=SEC),PHID(UN='RAD/SEC')
PHID(RADSEC) VS TIME (GGR1000K) IX=95 IY=98 IZ=3.00
TIME(UN=SEC),TD(UN='RAD/SEC')
TD(RADSEC) VS TIME (GGR1000K) IX=95 IY=98 IZ=3.00
TIME(UN=SEC),PSID(UN='RAD/SEC")
PSID(RADSEGC) VS TIME (GG@1000K) IX=95 IY=98 I1Z=3.00
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