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ABSTRACT

Certain ORION missions may require three axis stabilization. Since ORION's

physical size severely limits its onboard fuel storage capability, passive stabilization

techniques warrant investigation. This paper shows the development of linearized

equations of motion and regions of stability with respect to gravity g-rJk- stabili-

tion. Gravity gradient stabilization by itself provides little yaw restoring torque; there-

fore, additional torque generating devices are necessary to augment the gravity gradient

effect. Control moment gyros, reaction wheels, and magnetic torquers will be investi-

gated as to their suitability for ORION.
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1. INTRODUCTION

A. BACKGROUND ON ORION
The philosophy behind the design and development of the Orion satellite is being

driven in part by economic considerations. Small, affordable, general purpose satellites

must be developed without sacrificing reliability. The preliminary groundwork on the

feasibility of the ORION concept and design is detailed in [Ref. 1].

Orion is currently being designed to be launched from a Get Away Special (GAS)

cannister aboard the Space Shuttle. The GAS cannister physically limits the size of

ORION to approximately 35" in height and 19" in diameter. Figure 1 shows the Get-

Away Special Cannister attached to the side of the shuttle bay.

Figure 1. N ASA Get-Aiway-Specil (GAS) Cannister IRef. 1, p. 301

The Get-Away-Special (GAS) Cannister is designed to launch its satellite

autonomously on command. A cross sectional view of the (GAS) Cannister is shown in

Figure 2 on page 2.

* ORION should be able to meet the requirements of standard or typical payloads.

Some of these requirements are listed by Reference 2 and given in Figure 3 on page 3.
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Figure 2. Cross section of GAS Cannister [Ref. 1, p. 421

1. Background on attitude control

The success of any satellite is dependent on its attitude control system. To be

mission capable, the vehicle must first acquire a desired or specified orientation in space,

and then maintain this orientaion within mission limits given such external factors as

magnetic fields, aerodynamic drag, solar pressure, gravitational effects, and other dis-

turbances. Deviations from desired orientations are detected through the use of sensors.

Considcrations for an attitude control system include:

c3 ahlhmq2



(1) pointing accuracy

(2) fuel consumpti9n

(3) thermal

(4) power constraints

(5) satellite lifetime

(6) response time

Mass 32 ibm
Volume 2.36 ft'
Power 34 watts
DataRate 5000 bits/sec
Orbit 200-800 nm circular
Inclination 0°-30" or 60"-120*
Instruments Particle counter or Lens

Figure 3. Sunmmary of t~pical Nay/STP payload requirements

The weight given to each of these considerations ultimately lies in the specific mission

requirements designated for each satellite. The direction of this thesis will be to inves-
tigate the feasibility of achieving sufficient performance utilizing a gravity gradient con-

trol system. The standard of + /- 1 degree for each axis will be used. This criteria is
suflicient to enable ORION to satisfy most STP (space test program) mission

requirements.jRef. 1, p. 93J

1o achieve stabilization, many methods of generating controlling torques have

been developed. These methods are divided into either active or passive categories. Each

of these categories has their relative advantages and disadvantages [Figure 4 on page 4

and Figure 5 on page 4).

In this study, the primary focus is on a gravity gradient stabilization augmented
by other torque generating devices to achieve the desired +/- I degree goal for each axis.

A discussion of the equations of motion and gravity gradient stabilization theory is

presented in Chapter 2. Disturbance torques and other torque generating devices are
discussed in Chapter 3. Chapter 4 presents the results of stabilization schemes derived

in Chapters 2 and 3. Observations and conclusions are discussed in Chapter 5.

3
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Figure 4. Passive Stabilization Methods lRef. 4, p. 19]
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1i. GRAVITY GRADIENT STABILIZATION THEORY

A. COORDINATE DEFINITION
Before beginning any discussion on attitude control a means of defining the coordi-

nate system is necessary. The standardized coordinate axes for gravity gradient systems
are as follows: the x axis points in the direction of satellite motion, the y axis is normal
to the orbit plane, and the z axis points towards earth's geocenter. These axes corre-
spond to the roll, pitch and yaw axes, respectively. Figure 6 from Reference 3 defines
roll (0), pitch (0). and yaw (,/') attitude errors as well as showing the standardized co-

ordinate system.

COORDINATE DEFINITION

(ROLL REFERENCE
AXIS .IN DIRECTION
OF MOTION) O

(PITCHI (ROLL
ATTITUDE ATTITUDE
E ()RROR) 0 7 ERROR1) ORBIT

jo OF ORBITAL MOTION

4 I) " (YAW ATTITUDE'
U {rllll) ERROR)

(PITCH REFERENGE I
A0,1 NORMAL T Z (YAW REFERENCE AXIS
ORBIT PLANE) ALONG GEOCENTRIC

LOCAL VERTICAL)

Figure 6. Coordinate Definition for Gravity Gradient Systems



B. COORDINATE TRANS FO RMATI ON
T he relationship between two coordinate systems is essential for attitude control.

There ire methods available to describe this relationship of which directional cosines,

quaternions, and Euler angles will be briefly discussed. Figure 7 on page 6 shows various
methods of coordinate transformations along with their respective advantages and dis-
advantages.

FARAMETE fRI ZAI IOU NO07AllON ADLVANT AGES DISAD VANT AGES COMMON APPLICAT IONS

OIRIECTION NO SINGULARITIES SIX REDUNDANT PARAMETERS IN ANALYSIS TO TRANSFORM
CGSINE. A -A I~ NO TRIGONOME TRIC FUNCTIONS VECTONS PROM ONI lREP gm.
MATRIX . CONVENIENT PRODUCT RULE INCE FRAME TO ANOTHERk

FOR SUCCESSIVE ROTATIONS

EULER CLEAR PHYSICAL INTERPRETATION ONE REDUNDANT PARAMETER COMMANDING SLEW MANEUVERS
AXISIANGLE ~*AXIS UNOEF INEO WHEN SiN 0-0

TRIGONOMETRIC FU4CT IONS
IULER NO SINGULARITIE9S ONE REDUJNDANT PARAMETER ONOOARO INERTIAL NAVIGATION

SYMMETRIAC lA.q 4  NO I RIGONOMETRIC FUNCTIONS NO 09VIOUS PHYSICAL INTLR.
PARAMETER CONVENIENT PRODUCT RULE FOR PRETAIION

IOUAYERNIONI Sol SUCCESSIVE ROIATIONS

G1995 NO REDUNDANT PARAMETERS INFINITE FOR I10.010 RIOTA. ANALYTIC STUDIES
VECTOR NO TRIGONOMETRI C ItUNC ,IO0S T IoN

CONVENIENT PRODUCT RULE FOR
SUCCESSIVE ROTATIONS

EULER NO REDUNDOANT PARAMETERS TRIGONOMETRIC FUNCTIONS AN4ALYTIC STUDIES
ANGLES 0.8.* PHYSICAL INTERPRETATION IS SINGULARITY AT SOME 0 INPUTIOLIFUY

CLEAR IN SOME CASES NO CONVENIENT PRODUCT RULE ONSOARO ArTITUOS CONTROL Or
I II F OR SUCCES SIVE ROTATIONS 3.AXlS STAUILIZED SPACECRAFT1

Figure 7. Coordinate Transformnation Methods [Ref. 4, p. 4121

1. Direction cosines method

The directional cosine method involves a 3 x 3 rotation matrix A, where

[All A12  A3 *-x X-y X-z1

A ii A2 1 A22  A2 1"X 1Y'Y 1Y'Z(

A>31 A32  A33 *x Z-y Z-z]

where

X *x =coso 0Cos /

A .y =cos 4? sin 0sino4 + sin 4? coso4

A'*z = sin 4? sino4 - coso4 sin 0coso4

)'-*x = - sin 4? cos 0

I *y = cos 4?cos 4? - sin 4? sin 0 sin 4
Y' -z = sin 4?sin 0 cos 4? + cos 4? sin 4
Z - x = sinl 0

Z -y = - cos 0 sin 4
z = cos 4 cos 0

6



2. Quaternions
The quaternion method or as it is sometimes called, the Euler Symmetric P'a-

raineter method, uses the Euler axis and rotation angle (a single rotation angle a about

a single axis E) method to describe tile relationship between two coordinate systems

[Figure 8 on page 71.

z Srstam A

Figure 8. Rotation about tihe Euler Axis

The quaternion is a four component vector containing the same information as the Euler

angle/axis transformation in which one coordinate axis is related to another and is of the
form

q =q,i, q2j, qsk, q4 I (3)

where

q,- E, sin -

q2= gy sin L

q= - E, sin Of
2

q4 - cOs -
2

The symbols i, j, and k satisfy the following conditions [Ref. 4, p. 7581

7



.2 .2 = 2

= -ji= k
jk = -kj= i

ki = -ik =j

and

2 2 2 2
q + q2 + q3 + q, = l

When used for control purposes, [Ref 5] defines the first three elements of the
quaternion (q1, q2 q ) as the respective roll, pitch, and yaw rotational errors:

[rolt, 6pitch, yaw-] 2[q, q2, q3]

= 2 E, sin in E -sin i E sn- (7)
2' 2' 2E,-a., o., .E, ]

The primary advantage of the quaternion method is that the computational time
can be reduced by more that 40% over the equivalent directional cosine matrix solution
in operations that require successive coordinate system rotations [Ref 51. The transfor-
mation from coordinate system A to coordinate system B can be described by the
quaternion q -- [qi, qjqk, q-1, and the second transformation from system B to C can

be described by q' = [q'ji, q'2j, q'3k, q'j]. The transformation from system A to system

C may be described by the quaternion q" = [q" Ii, q", q"3, q",] where

q" = qq' = (qi + q2j + q3k + q4)(q'ji + q'2i + q'3k + q'4) (8)

Multiplying out and substituting in the conditions stated above, the matrix form be-

comes

q q'1 l'2 '7 (9[q [q3 -4 4 q'2 q2/q"f3/ q'2 -q'I '4 q q (9)

L[q"4j -q' -q'2 -q'3 q'3 q7J

Because of the quatemion property of interchangeability, a total of 16 multiplications

and 12 additions are required to completely define the quaternion describing the trans-
formation from coordinate system A to coordinate system C. To accomplish the same

8



transformation using directional cosines would require multiplying two 3x3 matrices.

involving 27 multiplications and IS additions. The computational time savings for suc-

cessive rotations transformations becomes apparent. The major drawback for the use

of quaternions is that the numbers of the quaternion do not physically represent the

transformation from one system to another.

3. Euler angles method

The Euler angles utilize three different rotations (angles), defining the orien-

tation of a body with respect to an inertial reference frame. These angles are dc"ficld as

4 (about the x axis), 0 (about the v axis), and 0i (about the z axis). These axes, by es-

tablished convention, may also be referred to as I (for x), 2 (for y), and 3 (for z) axes,

respectively.

The 321 Euler transformation described below starts with the inertial coordinate
system XYZ. Figure 9 on page lO.a. shows the first rotation about the Z axis through

an angle ,/, which produces xyZ. Figure 9 on page 10.b. shows the rotation of 0 about

Y , producing xyz 1 Figure 9 on page IO.c., showing the rotation of 0 about x. produces

xyz. The rotation described in Figure 9 on page 1O.a. about the z axis produces

Figure 10 on page 10. The transformation from XYZ to xLyZ is

x, = X cos 0' + I" sin '

Y, = -Xsin 0' + Ycos V,

Z=Z

or written in matrix form

xl [cosV sinV, 0 X

KI sn 0 cosV 0 (11)

Z0 l-9Z



0 4,

zl z

YI I YI Y I

. y

xX xx
X I XlI

(A) (B) (C)

Figure 9. Euler Angles

sil 'l '

COS '1' I
I~I.

I ;'I sil l ,

Figure 10. Rotation about the Z axis through the Angle ,

Writing the transformations of Figures 9.b. and 9.c. in matrix form yields

sine 0 cosO J

10



and

X 0 0 x

= cos sin Y, (13)
_Z_ - sin o coso zl

Combining eqs(l 1-13) into one equation yields the complete 321 coordinate transfor-
mation from the inertial reference frame to the body reference frame

x 1 0 0 cosO 0 -sinO]Fcos 0 sin 0- 1

cos sin 0 1 0 -sin 0 cos 0 J
-sin 0 cos46 sinO 0 cosO 0 0 1-K

(14)

Cos 0Cos~1 cos 0sin' -sin0 ]X1
= -cososino+sinosin0coso cos 0 cos 0 + sin 0 sin 0 sin sin 4 cos Y

sin4 sinV'+cosOsin0cos 0 -sin4bcos +cos4sin0sin 0 cosckcos0 z

This is just one of the 12 different Euler coordinate transformations schemes available.

Figure 11 on page 12 lists all possible Euler angle combinations and their resulting
transformation matrices. It should be noted that eq(14) does not agree with the 321

Euler transformation matrix of Figure I1 on page 12. The 321 matrix of Figure 11 on
page 12 contains a error that interchanges 4 with 0 and 0 with 4.
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C. RIGID BODY EQUATIONS

The general motion of a particle and its corresponding momentum have been written

about extensively in various publications. A summary of the relevent derivations and

equations of motion from [Ref 6] are presented here.

1. Derivative of a Vector in a Rotating Coordinate System

The time derivative of a vector in a rotating coordinate system consists of the

rate of change of the vector relative to the moving axis and the rate of change due to the

rotation of the axis. Figure 12 shows a vector in a rotating system where XYZ represent

an inertial system and xyz are the set of axes rotating with angular velocity w relative

to XYZ. If unit vectors along the X, Y, and Z axes are ij, and k, respectively, the vector

r can be written in the form

r = xi +yj + zk (15)

7.
7

K

k

I 

I

Figure 12. Vector in a rotating system [Ref. 6, p. 1071

The time derivative of r is

=i+ xi +j +y + ik + zk (16)

From [Ref. 7], it has been shown that the time derivatives of the unit vectors are

I: = W x I (17)
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j =Wxj (18)

k = w x k (19)

Defining i,., as the time rate of change of r relative to xyz, eq(16) becomes

r krr + co x r (20)

2. General Particle Motion
Translational motion of a particle with references to two coordinate systems is

shown in Figure 13.

z k ------ F

I Y

t C J
KR

×I

Figure 13. Translational motion of a particle [Ref. 6, p. 1071

The position vector of a particle relative to coordinate system XYZ is

R = R,+ r (21)

where R, is the vector from the axis of the XYZ coordinate frame to the xyz axis frame

and r is the differential (position) vector in the xyz frame. The velocity of the particle

is the derivative of eq(21) with respect to time

v- R + r (22)
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The velocity at the origin R, = V, combined with eq(20) yields

V= VC + Vrl + co X r (23)

3. Momentum of a Rigid Body

A particle's momentum is the product of its velocity and mass. The linear mo-

mentum of the particle of Figure 13 on page 14 is

P = Lm V dm (4P=J~d~n(24)

where V is the particle's velocity and m is its mass. Recalling that V,,, is the time rate

of change of r relative to the xyz coordinate system, and assuming that the xyz axis is

centered in the rigid body, Voe = 0. Substituting eq(23) into eq(24) with V.,;= 0.

P=J (Vc+wxr)dm=mVc+wox Jrdm (25)

By choosing the center of mass of the rigid body as the center of the rotating coordinate

system, f r din = 0 by definition. This simplifies eq(25) to

P = MV c  (26)

where P is the linear momentum of the rigid body, m is its mass, and V, is the velocity

of its center of mass.

The angular momentum of a particle dm about point C is defined as the moment

about C of the linear momentum given by

hc =rx Vdm (27)

Substituting for V yields

Hc= fm r x Vdm= fmr x (Vc + co x r)dm (28)

Rearranging terms

15



Hc ('r din X I'+ r x ((o x r) din (29)

By choosing the center of mass of the rigid body as the origin of the rotating coordinate

system, eq(29) reduces to

i= fm, x (c, x r) dm (30)

Reducing the angular velocity vector Co into its components

CO = wOxi + coij + cozk (31)

Combining equations(15). (30), and (31) yields

H, = XCO~X - 1~q, - IX2C~zli
+ E -:. ,w + IYYUY -IY',Ai (32)
+ [ -lxzcox - ly coy +I,,,col k

where

Ic= &'.2 + z 2 ) din (33)

= J( (x2 + z2) din (34)

fro(x 2 +y 2 ) dm (35)

are the moments of inertia about the x,y, and z axes, respectively, and

Ix= fxy din (36)
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I,, J=m dm (37)

J = Jfyz dm (38)

are the products of inertia. Equation(32) written in matrix form becomes

H, IX - Ix ,xy- -I , Cox

H. V 1-Y'YY IY Wy(39)
tt, -IX, -1, 4, CO,

4. Equations of motion/Euler's Moment Equations

The derivation of the following Euler's moment equations are summarized from

[Ref 61. Recalling that angular momentum h relative to the point C is

hC = r x nz" (410)

its derivative with respect to time is

C= i x m + r x m" (41)

The moment of the force about a point C by definition is

Mc-= r x F (42)

Recall Newton's second law describing force:

F= ma = m, (43)

Substituting eqs(22) and (43) into eq(41) yields

AC= x m(Ac + i) + r x F (44)

Substituting eq(42) into eq(44) and rearranging terms yields the moment equation

17



"II
-.11, = HI + f (R, x i) dm (45

where H, is the angular momentum of the rigid body about point C, From eq(20) the

latter part of eq(45) can be written as

{Ax i dm= A x (rret+ (CO xj'r dm)) (46)

Noting that point C is the center of mass fr dm = 0 and r,,, = 0 for a rigid body, eq(46)

reduces to

(47)

The moment of external forces about the center of mass of a rigid body is equal to the

time rate of change of the angular momentum of the body about the center of mass [Ref.

71. In terms of a rotating axis, the moment equation of eq(47) becomes

= Hkre + CO X (4S)

Substituting eq(39) in for H, the components of the moment equation can be written as

M.1- =Hlx + o cH- w2 tt (49)

M- =i +coxHt - coyH 2  (51)

where Af,, are the moment equations. In this study, an assumption is made that the

principle axes of the moment of inertia are the rotating axes x,y,z; therefore, the pro-

ducts of inertia (I,, I,,, 1,,) are equal to zero. The angular momentum components re-

duce to

/-= = .,x (52)
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Hy = 4y., (53)

ttz = .. ,m:(54)

Substituting eqs(52-54) into the moment equations yields Euler's moment equations

_1[x = Ix6x+ oCOOIZ - lyy) (55)

MY = Iyy6 y + CO ( Ix - I1z) (56)

M3 = I"6' + mxOYYYY - I,,/ (57)

Referring to the coordinate system shown in Figure 6 on page 5, the angular

velocities in terms of orbital rate c 0 and attitude error angles pitch(0), roll(k), and yaw

(Vi) from [Ref. 6, p. 130] are

o - sin 1 i1
coy 0 cos 4 cos 0sinb

OZ  -sinP cos0cosJ(

cos 0 sin V' 1
-0 cos 0 cos ' + sin 4 sin 0 sin ,'

-- sin 0 cos V, + cos 0 sin 0 sin qlt

When using small angle approximations, eq(58) reduces to

COY = b- o ( (59)

Note that the orbital rate is defined as

COO (60)
R

where u is the gravitational constant and R is the radius of the earth plus the satellite's

altitude. For the purpose of station keeping, the small angle approximations are valid.

Substituting eq(59) into the rigid body moment eqs(55-57) yields the linearized rigid

body dynamic equations
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:V!RB =IJ= + y- ")o- w0(/ + Iz- /,' (61)

"yRB = lyyO (62)

M1"ZRB l I ( - - o(Ix + I0z- l yy) (63)

D. GRAVITY GRADIENT EFFECT
Attitude control using gravity gradient stabilization works on the principle that

given an object with an asymmetrically distributed mass, the object will tend to align it-

self with its minimum moment of inertia axis along the local vertical towords the earth.

The force due to gravity on a mass element is

dF -- R (64)R 3

where

R =R 0 + r (65)

and

IAe = G.Me = geRe (66)

where G = universal gravity constant, M, = the mass of the earth, g,= gravity acceler-

ation at the earth's surface, and R, = the radius of the earth. Reference 8 shows the

torque generated about the mass center of the object is

/%dm
dMg = r x dF= -- r x R

R 3
uedm

Ra rx (Ro +r) (67)

_u dm
R3  rx&

Cubing eq(65) yields

R3  R3 1 + r 0+ " r(68)
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Noting that r4R, the higher order terms drop out. Inversion of eq(68) yields

1 1 (3r Rc (69)

Substituting eq(69) into eq(67) and integrating to find the moment yields

fg rd3nxRo+e (rx&)(r.&) din (70)

Given that the center of mass is the origin of the body frame, f.r dm =0, eq(70) reduces

to

31e
g 5ef (x &)(. &) dm (71)

In the reference system defined by Figure 14, the K (Z) vector is pointing towards

the earth; therefore, the vector R, in the reference coordinate frame is

Ror R K (72)

k"

zy K

Figure 14. Gravity gradient torque [Ref. 6, p. 1131
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Restating the Euler 321 rotation matrix described earlier

[I [1 0 0 ][cosa 0 -sinO][ cos /, sin 01f]
j=0 cos 0 sin 0 0 1 0 -sin, cos 0 J

-sin0 kcos0 -sin 0 cos 0 0 0 1

(73)

Cos 6CosV Cos 0sin/ -sinG '1
- cos 4 sin 4 + sin sin 0 cos cos cos, + sin 0 sin 0 sin , sin cos 0 J
sin 4 sin 0 + cos 0 sin 0 cos - sin 0 cos + cos 0 sin 0 sin /' cos cos 0 ]

Transforming R,, into the spacecraft's fixed coordinates i, j, and k:

FCos 0Cos, cos 0sini -sin 0 01
Ror -cos 0 sin sinsin 0 cos V1 cos 0 cos , + sin 0 sin 0 sin , sin 4cos 0L sin 0 sin 0 + cos 46 sin 6 cos ' -sin 0 cos4 + cos 0 sin 0 sin 0 cos cos 0_

which reduces to

ROr = R( - sin Oi + sin 0 cos Oj + cos 0 cos Ok) (75)

Substituting eq(75) into eq(71) yields the gravity gradient moment equations

(e(I,- Iy) sin 0 cos 0 cos 2 0

Ag I(I, - I,,) sin 9 cos 0 cos 0 (76)
(ly - I1,)sin 0 cos 0 sin 0

Replacing

COO __3 (77)

where co, is the orbital rate, and making the small angle approximations, the gravity

gradient moment equations become

(2 - 1
M, = 3W~ Q I I.,G (78)

L01
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Equation(78) clearly shows that by increasing the moments of inertia for I. and 1,

with respect to I,, the gravity gradient moments for roll and pitch will increase. By ex-

tending a point mass along the z axis, a sizeable increase in the moments of inertia along

the x and y axes is realized.

The magnitudes of the gravity gradient torques generated at different altitudes is

given by Figure 15.
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Combining the rigid body dynamic equations (61.63) with the gravity gradient

equation (78) yields the undamped linear dynamic equations for roll, pitch, and yaw:

Roll l44' + 4woo(ly - I4)4' - too(Jx + 4 - J,) --O (79)

Pitch I,,6+ 3wo (J-1I)6'=0 (80)
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Yaw I + - If/i + wo(I x + I=- Ip =0 (81)

Using Reference 9 notations for simplicity, the following variables are defined:

A = i (82)

B = (83)
IY

Iy-I
C = 6 x (84)

Substituting eqs(82-84) into eqs(79-81) yields the following second order differential

equations

0+4A2- (1- A)wo=0 (85)

C2 _

+ 3Bo0 -0 (86)

0+CO0 + (I - =0 (87)

Taking the Laplace transform of eqs(85-87) allows for frequency analysis. The results
are put into matrix form:

2 1
[S + 4Aow) 0 - (I- A)w0)S S+Bw 00~=~(80 S2 + 3B,) 2  0 = (88)

( - o s + Cg JJ

The determinant of the matrix is the system's characteristic equation. Using the middle
row to simplify calculations, the characteristic equation is found to be

(S' + (I + 3A + CA)Co 2S + 4ACWI)(S 2 + 3Bwg2) = 0 (89)

"Solution of the first term on the left yields the natural frequencies of roll and yaw,

repectively; the second term on the left defines the natural frequency of the pitch axis."

[Ref. 9, p. 9] Solving for the first term on the left (roll, yaw stability) by the quadratic
formula and dividing through by co yields

24



52l 22

s,I S - (1 + 3.4 + AC) ± \/(1 + 3A + AC) 2  16AC
2j - 2 2 (90)
0  

COO

For roll yaw stability the roots of eq(90) must be real and negative; therefore the fol-

lowing stability conditions exist [Ref. 4 p. 6111

1 + 3A + AC> 4iAC (91)

AC>0 (92)

Solving for the second term of Eq(89) and dividing through by COI yields

S2 c B
'Ptc 3(C - A) (3
2 =3B= I-CA (93)

-0

The condition for stability for the pitch axis is

A > C (94)

Convertin2 A. B. and C back into their respective moment of inertia relationships de-

fined by eqs(82-84). combined with the conditions for stability, yields two possible ori-

entations: I > I, > 1, and I, > I. > I,. Figure 16 on page 26 shows a summary of the

stability regions based on moment of inertia ratios. [Ref. 10 p. 204]
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III. ENVIRONMENTAL DISTURBANCES AND RESTORING TORQUES

A. ENVIRONMENTAL DISTURBANCES/TORQUES
The are four major environmental disturbances that affect an orbiting spacecraft:

aerodynamic, magnetic, gravity gradient, and solar radiation torque. Figure 17 lists

these disturbances and their relative regions of dominance.

souncE 'EPENOENCF ON DISTANCE REGION OF SPACE WHERE

FROM EAnIm DOMINANT'

AERODYNAMIC It ALTITUDES BELOW - SO0 km

MAGNETIC 1,3 500 I- TO 
- 

S.OO kn;

GRAVITY GRADIENT 10 i1 E.. OUT TO ABOUT SYNCHRONOUS ALTITUDEII

SOLAR RADIATION INDEPlINDENT INTEnPLANETARY SPA.E ABOVE SYNCHnONOUS

ALTITUDE

MICROMETEORITES LARnGELY INnEfENO)ENT; ItGi CONCENTRAION NORMALLY NEOLIGIBLE: MAY BE IMPORTANT IN

IN SOME REGIONS or 1tI4 SOLAR SYSTEM SOME SMALL REGIONS IINTERIOR OF SATUrN S
I $NOSI

ALTITUDES LISTED ARE ONLY REPRESENTATIVE: TIlE SPECIFIC ALTITUDES AT W1I4CH VARIOUS TOROUES DOMINATE ARE HIGHLY
SrACECnArT DEPENDENT.

Figure 17. Environmental Disturbance Torques [Ref. 4, p. 17

1. Aerodynamic disturbance

a. Drag
"For satellites near the earth the principle non-gravitational force is aero-

dynamic drag. Aerodynamic drag is a retarding force due to atmospheric friction and is

in the direction opposite the space vehicles velocity vector." [Ref. 4, p. 63J

The drag force is a function of vehicle velocity, air density, and surface area

of the satellite. The drag force is given by the following equation:

2

d= pv cda (95)2

where d is the drag force, p is the atmospheric density, v is the velocity of the satellite

along its orbital path, c, is the drag coefficient, and a is the area of the satellite over

which the drag acts.

b. Aerodynamic torque

The collisions of air molecules of the upper atmosphere with the satellite

surface produces a torque about its center of mass. Aerodynamic disturbances are a
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function of the satellite's altitude, velocity, and symmetry. A satellite with a relatively
low earth orbit may be significantly affectcd by aerodynamic torques.

Shown in Figure 18 is a cylindrical satellite with its center of mass (cm) and
center of pressure (cp). The offset between the center of mass (cm) and the center of
pressure (cp) is denoted by L,, L,, and L, respectively. The simplified aerodynamic dis-
turbance torques from Ref 8 may be computed by the following expression:

7a = P1aAa sin o. (96)

where T. is the torque due to aerodynamic pressure (ft-lbs), Po is the aerodynamic pres-
sure (lbsfi2 ), 1o is the distance between the center of mass and the center of pressure (ft),
A, is the exposed surface area (fi2) and c is the angle of attack (radians). For practical
purposes, the aerodynamic torque in the x direction is zero (sin a = 0 when a-0). The
conversion factor from ft-lbs to N-m is approximately 1.356. Figure 19 on page 29
shows aerodynamic pressure as a function of altitude.

Crn LX

h

: cpL

Figure 18. Aerodynamic effects for cylindrical satellite [Ref. 3, p. 581
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Figure 19. Aerodynamic pressure as a function of altitude [Ref. 8, p. 4561

The magnitude of the pitch and yaw aerodynamic disturbances for a one

inch cm-cp offset are shown in Figure 20 on page 30 for various altitudes. The magni-
tude of these torques decrease significantly with increases in altitude. "Proper control of
the satellites inertias to enhance gravity gradient torques can make aerodynamic dis-

turbances essentially insignificant for orbital altitudes above 300 nautical miles (480km).
On the other hand, in the 100 to 200 nautical mile (160-320km) altitudes aerodynamic

disturbances are 3 to 4 orders of magnitude greater than the gravity gradient torque from
a 1 slug-ft2 inertia difference and I degree attitude error. In the lower regions, very large

inertia difrerences are required for accuracy. [This leads to design considerations] where
proper configuration can make these aerodynamic torques work as restoring torques

instead of disturbance torques" [Ref. 3, p. 57].
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Figure 20. Aerodynamic torque for a 1 inch offset as a function of altitude.

2. Rigid Body Solar Pressure Torque

"The major factors determining the radiation torque on a spacecraft are the in-
tensity and spectral distribution of the incident radiation, the geometry of the surface
and its optical properties, and the orientation of the sun vector relative to the spacecraft"

[Ref. 4, p. 570].
Solar pressure torques are the disturbances produced by solar radiation pres-

sure and is a function of the offset of the center of pressure (cp) and the center of mass
(cm). Referring to Figure 21 on page 31, the center of mass-center of pressure offsets
are designated as L,. L,, and L,, respectively. The torques generated due to solar pres-

sure are given by [Ref. 8, p. 4541 as:

T, = PLA cos t (97)

T = 2PLsA, cos2C (98)

where T, = torque due to solar radiation (ft-lbs), P, = radiation pressure (lb/ft') and is

- constant at 9.65 x 10- lbi l2 for an earth orbiting vehicle, L, = center of mass center
of pressure offset (ft), A, = surface area of satellite normal to sun(ft2), and t = angle
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of incidence (degrees). Note, equation (97) is for an absorbent satellite body and

equation (9S) is for a reflective body.

R

h

I C,

Figure 21. Rigid body solar pressure torques [Ref. 3, p. 611

B. RESTORING TORQUES

As seen from chapter 2, the restoring torques of the undamped rigid body combined

with the gravizy gradient effects are considerably smaller for the yaw axis than for either

the pitch or roll axes. This is due to the necessity of large moments of inertia along the

pitch and roll axes, as compared to the yaw axis, for gravity gradient stabilization to

occur. The lack of adequate yaw restoring torque requires that additional yaw restoring

torque be provided for accurate 3-axis stabilization. A discussion of yaw restoring torque

methods follows.

1. Thrusters

Thrusters are an effective torque generating device; however, for the purpose

of this thesis, thrusters will not be considered for attitude control. Thrusters are neces-

sary for orbit maintenance and orbital transfer. Due to the physical size constraints im-

posed by the GAS cannister, ORION is severely limited in its fuel storage capacity to

approximately 71 lbs of hydrazine fuel [Ref 1]. An assumption that the launch platform

will place ORION in its final orbit is optimistic. Figure 22 on page 32 shows the fuel

required to go from one orbital altitude to another. Saving the onboard fu,! for orbit

maintenance and transfer and not for attitude control allows more fuel to be devoted

towards supporting the mission either by allowing greater orbital flexibility and/or a

longer lifetime.
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Figure 22. Fuel required for Orbit transfer based on a 2501b satellite. [Ref 2, p. 23]

2. Momientum Exchange Devices

The principle behind momentum exchange devices is that by changing the an-

gular momentum of the control device, the angular momentum of the vehicle will be

changed an equal and opposite amount. Recall that the rate of change of angular mo-

mentum is equal to the torque that is generated. The two basic types of momentum ex-

change devices are reaction wheels and control ,ioment gyros (CMG). "lhe basic

difference between the two is the method by which the change in angular momentum is

accomplished. The reaction wheel axis is fixed (generally along one of the axes of the

vehicle) so that the change in angular momentum is accomplished by varying the speed

of rotation of the flywheel. The C MG creates the change in angular momentum by tilt-

ing the contant speed flywheel with respect to the vehicle.
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a. Reaction wheels

"An axis may be controlled by varying the speed of the reaction wheel in

response to an attitude error [Ref. 6, p.149). The momentum of a system with a reaction

wheel is

H = H, + Hc (99)

where H, is the angular momentum of the system and

is the angluar momentum of the reaction wheel. Aligning the reaction wheels along each

axis, and substituting eq(99) into eq(4S) and adding the gravity gradient moments of

eq(7S) yields

Ib + 4wo(I - 1,)o - oo(I, + 12 - ) + (0 - oo) - + took)Hy + k,= Zx

Zb + 3 2(1- l,)O + +- + +,,t + Iily= ZTy (101)

1;i + to2(,- Ix)Oo + + ,- 1,)k + ( - woi)+ + woOO)H X + k",= ZT,

"Because H.,,H.,H., and co, are small, the coupling terms are small. If the coupling

terms are neglected, the equations of motion about the roll, pitch, and yaw axes become

independent, and hence, they can be controlled independently" [Ref. 6, pp. 149-150].

Dropping the coupled terms, the motion equations become

Ix + 4wa(ly- 12)k -oo(Ix + It lY)/ + H,= ETx (102)

I 0 ( x - I)O + ktwy (103)

/20 + CoO(Iy - I,)/ + COo(Ix + 12- IY)O + k", = ET (104)
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Allowing the momentum of the reaction wheel to be proportional to the attitude error,

then by differentiation, the reaction wheel control torques are equal to

Txrw -K(T + 4) (105)

TY,,, Ky(Tyo +0) (106)

Trw - Kz(rz + 0) (107)

and the control scheme would be as shown in Figure 23.

Yelwctronic
Pitch wheel

Figure 23. 3 axis reaction wheel control scheme [Ref. 6, p. 1491

The torque genterated by the reaction wheel is a function of the wheel's angular velocity

and its moment of inertia. This means that a small lightweight wheel at a high rate of

speed generates the same amount of torque that a large wheel at a low rate of speed.

Since ORION is designed for a relatively short lifespan, wear and tear on spinning parts

is not an overriding concern. It should be noted that continuous disturbance torques

that are not cyclical in nature will eventually saturate the reaction wheel, whereby, the

reaction wheel rotational speed will reach a maximum. Thrusters or some other method

of momentum removal must be used to reduce wheel speed. Disturbance torques that
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are cyclical in nature are easily olivet bv the reaction wheel as long as the disturbance

torque is such that it does not saturate the reaction wheel speed.

3. CNIG(s)

"A control moment gyro's (either single or double gimbaled) angular mo-
mentum is due to the rotor which is spinning about the spin axis with a constant
angular rate. Because the spin axis is gimbaled, a commanded gimbal rotation causes
the direction of the angular momentum vector to change, thus creating a control
torque parallel to the output axis. The magnitude of this torque depends on the
speed of the rotor and the gimbal rotation rate." [Ref. 4, p. 200]

A control moment 2vro scheme is shown in Figure 24.

-zz

€X

b

Figure 24. Twin gyro controller with one drive motor [Ref. 8, p. 415]

Because of their expense and weight, CMG's are only used on large spacecraft

[Ref. 41. For this reason, control moment gyros will not be addressed.

4. Magnetic torquers

Magnetic torquers may be used to dampen the kinetic energy of the libration

motion as well as correcting attitude errors in any direction. The magnetic torquers

consist of three wire coil sets arranged perpendicularly to each other. This configuration

allows magnetic torque to be generated along any axis or in any direction as a result of

adding two or three diffkrent orthogonal torques. As shown in Figure 25 on page 36,

when a current is applied around the loop of a coil, it produces a magnetic dipole that

is normal to the plane of the coil and a magnitude which is proportional to the coil's

enclosed area and ampere-turns.

35



m = NIA n

IT

Figure 25. Magnetic Moment Due to a Current Loop [Ref. 4, p. 204]

The magnetic moment IM is defined as

M = NIA1 (108)

where N is the the number of turns around the coil, I is the current in amperes, A is the

area enclosed by the loop, and h is the unit vector normal to the plane of the loop. Be-

cause of the relationship between N, I, and A, many different combinations are available

to produce the desired magnitude of the magnetic moment. Figure 26 on page 37 shows

three existing spacecraft with various combinations of number of turns and current

drawn. The torque generated by the magnetic torquer is

Tma = A x B (109)

where M is the magnetic dipole and B is the earth's magnetic field. The earth's magnetic

field for an equatorial orbit can be approximately modeled as a tilted dipole located at

78.3* north latitude and 69* west longitude as shown in Figure 27 on page 37.
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SPACECRAFT REMARKS

SAS-3 COIL CONSISTS OF 260 TURNS. MAXIMUM
CURRENT IS 0.6 A AND MAXIMUM POWER
CONSUMPTION IS lo W

OSO-8 COIL CONSISTS OF 360 TURNS. MAXIMUM
CURRENT IS 0.075 A

AE-3 TWO COILS; EACH HAS 500 TURNS. MAXI-
MUM POWER CONSUMPTION IS 12 W

Figure 26. Some existing magnetic moment schemes [Ref. 3, p. 2051

I I. r

II, I~~t Its ningtel IoIicl

Figure 27. Earth's magnetic field modeled as a tilted dipole [Ref. 6, p. 1481

The strength of the earth's magnetic field ror a circular equatorial orbit in component

form can be approximated by
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B., 3 sin(l 1.7) sin(281 - lares) (110)

R3

B = cos(l 1.7) (112)

B -- sin(l 1.7) cos(281 - lam,) (112)

where lam, is measured in degrees of right ascension from Grenich, M, is the strength

at the earth's center which is approximately 8 x l011 Wb-m, and R is the distance in

meters from the earth's center to the orbital altitude. With respect to the satellite, the

earth's magnetic field is changing continuously as the vehicle moves along its orbital

path. Putting into component form both M and B, eq(109) becomes

= M2 By - MyB, (113)

Tr,,...y = MB 2 - MBx (114)

Tmgz = MyB - M By (115)

It should be noted that the earth's magnetic field is not uniform and varies in

direction based on the satellite's position. For accurate attitude control, the vehicle must

be able to exactly know both its position and the earth's magnetic field at that position.

For low earth orbits, the magnetic field is well mapped and may be easily programmed
into the attitude control computer. For the purpose of this thesis, magnetic field ap-

proximations will suffice to demonstrate magnetic torquing as a viable attitude control

capability.
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IV. CHAPTER 4

A. GRAVITY GRADIENT STABILIZATION RESULTS

1. Attitude Control

There are three general attitude control phases with respect to gravity gradient
systems: gravity gradient capture, transition period, and steady state. Gravity gradient

from a tumbling mode occurs when angular velocity slows to one rotation per orbit or
less, allowing the minimum moment of inertia axis to align with the local vertical. The
transition period is the time from gravity gradient capture until a steady state has been

achieved. This period of oscillations will vary depending on the dampening scheme used

to reduce the amplitude of oscillations. Predominant throughout the satellite's lifetime,
the steady state phase is the period in which the satellite's errors are confined within

operationally acceptable amplitudes. Maintenance of the desired steady state requires

minimization of external disturbances and control of those which cannot be eliminated.

The following group of simulations assumes that a steady state phase has been
achieved and that the small angle approximations are in effect. For each of the simu-

lations, the following initial conditions are in effect: 4, 0, and 0 position error = 5, and

0 , 0,and f = 0.

2. Various results based on different configurations

a. Effects of extending booms
For Figure 28 on page 40, a 10 kg point mass is used and the mass of the

boom is assumed to be negligible. Extension of the boom increases the moment of in-
ertia in the x and y directions. This increases the restoring torque along the roll and pitch

axes although it does little to dampen the libration motion.

b. Gravity gradient effect alone
The following figures show the gravity gradient effect on a satellite at an

altitude of 1000 km having moments of inertias as shown. As shown by Figure 29 on
page 41 and Figure 30 on page 42, stabilization along the roll and pitch axes would take

a prohibitively long time while the yaw direction would not stabilize. It is clear that

gravity gradient stabilization alone is incapable of acceptable three axis stabilization.
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Figure 28. Effect of extending boom oni moments of inertia
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Figure 29. Gravity gradient effect only Ix = 15, Iy~ 18, Iz= 3
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Figure 30. Gravity gradient effect only Ix = 95, ly = 98, Iz = 3

c. Efects of Reaction Wheel(s)

One method of augmenting gravity gradient stabilization is through the use

of reaction wheels. Teldrix reaction wheel classes and corresponding technical data are

presented in Figure 31 on page 43.
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W1hel diameirr ril 20 26 35 50 60.)

Angular niomenluin lalqe Nms I 8...6.5 5,0...20 14...80 50...300 200... 1000
Max. reactiun totqeio Nm 0.2 0.2 0.2 0.3 0.3-0.6
Speed" ) rainl 6000 6000 600 600 6000
Loss toiclie at max. speed") Ni !< 0.012 < 0.013 -0.015 0.022 -0.07
Power consriptiori:
- steady sltale (dopendiiig W 2...7 2...8 2.10 3... 15 1 0...50

on speed)
-max. power rating W !5 60 C00 -100 - 150 5500

Dimonsio,,s:

- diameter A mm 203 260 350 500 600
- height B mill 75 85 120 150 160
Vg~ht kg 2.7...3.4 3.5...6.0 5.0....0 7.5... 12 20..37

Environmenlal conditions:

- operatinq lemperalti e
- vibration (.sinusoidal) suitable for satellites compalible wilh trim,,icfc
- vitx alion (random) such as ARIANE or Space Shuttle
- linear acceleration

Figure 31. TeldrLx Reaction Wheel Technical Data

Of the five diameter classes, the 20 cm diameter wheel is the most appropriate of the
classes listed for ORION. Reaction wheels also come in diameters smaller than 20 cm

diameter. Bendix Aerospace SP reaction wheel of Figure 32 on page 44 has a diameter

of 6 inches.

As illustrated in Figure 31 and Figure 32 on page 44, power consumption
values differ with diff rent reaction wheels. For the 20 cm Teldrix reaction wheel, steady

state requires 2-7 watts with a maximum less than 60 watts. The Bendix SP reaction
wheel requires 2.5 watts at steady state with a maximum power consumption of 6.5

watts. Due to weight and power consumption values, the Bendix reaction wheel appears

to be the superior choice of the two.

The following figures were generated by setting the reaction wheel torques
equal to eqs(107-109). Tihe initial conditions are 4 , 0, and 0 position errors = 50, and

6= = 0. For simulation purposes, the maximum reaction torque value of.2 N-m

from Figure 31 will be in effect.

Figures 33-35 have moment of inertias I, = 15, 1, = 18, and I,= 3, with
K, =/K, = 2.0, K = 1.0, and , = T, = T, = 1.0. Figure 33 on page 45 shows 46 (position

error), , (velocity), and the restoring torque (T,.) generated by the reaction wheel with

respect to time. Figures 34 and 35 show 0, 0 , T,.,, and g,, ' , T, , respectively. With
the relatively small moments of inertias, stabilization of all axes within the ± 10 criteria
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occurs within 40 seconds. Increasing the moments of inertias to I, = 95, 1, = 98 , and

1, = 3 while holding K,, K, at 2.0, K, at 1.0, and r,, rT, , and r, constant at 1.0, yields

Figures 36-31,. As cxpected, the (, and 0 axes take longer to stabilized (approximately

160 seconds) than the above case with the smaller moments of inertia. The 0, axis of

Figure 38 stabilizes much faster than either the 0 or 0 axes. This is due to the relatively
small moment of inertia (I,) compared to the restoring torque generated by the reaction

Wheel.

rROGRAN/UHIT HAME sr Reaction Wheal

UNIT TIrE MO. (Ia) 3890003

WOMSITUM (PT-LB-SIC) 0.N 1250 RPM

WuIGHiT (LBS.) .9

SIZE . 6.0' DIA. RAI 9 3.9' NIGH (excludin g mounting
feet projectinI

STALL TORQUE (OZ-IN) 2.2

PEAK POWER (WATTS) 6.5

KAIx SPEED (torM) , 1350

MOTOR EXCITATIO11 28Y, 0-reak, Squareuaie, 400 111, 2 Phase

STEADI STATE rOWEn(WATTS). 2.5 1350 urN

TACHOMETER TYPE t P.M. Rotor, 2 Phase lound Stator, Sinusoidal
Output, I Cycle/Rel/rhas, uplitu46e varies
with speed.

QUA1ITITI BUIIT %2

COMMENTS AC Squirrel Cage Induction Motor

FLIGHT HISTORY More than 20 or these units have flown.
Units with operating time greater than 5
years are presently functioning in-orbit.

Figure 32. BendLx Aerospace Reaction Wheel Technical Data.
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K , -= 2.0 , rr= 1.0
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Figure 35. Gravity gradient effect with 3 RW (Z axis) Ix= 15, ly 18, lz 3
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Figure 38. Gravity gradient effect with 3 RW (Z axis) 1x=95, ly-98, lz=3

K, = 1.0 T, = 1.0
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Figures 39-41 have moments of inertia of I, = 15, 1, = 18, andI, = 3 with

K, =K = .2, K, =. ., and T, = r, = r, = 1.0. The reduction of K,, K4 and K. reduces the
reaction wheel torque generated.

Figure 39 shows O(position), (velocity), and reaction wheel torque (T,.)
with respect to time. Figures 40 and 41 show 0, 0, T,, , and 0i, i, T,, , respectively.
Stabilization, within the ± 1 criteria, occurs for all axes in under 200 seconds. Com-
parison of the magnitudes of the torque values of Figures 33-35 and Figures 39-41 for
the same moment of inertia values shows a decrease of roughly a factor of five.

Increasing the moments of inertia to I. = 95, I = 98 and I, = 3, while hold-
ing K, = K, = .2, K, =.1, and T, = rT = T, = 1.0, produces Figures 42-44. This last group
of reaction wheel figures shows that _650 seconds are required to dampen the system
to the + 1" stabilization critcria. The tradeofrs between the different reaction wheel
combinations are essentially time response against torque'power. The faster the desired
response, the greater the magnitude of the restoring torque, and ultimately, the more

power that will be consumed in achieving this response.
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Figure 39. Gravity gradient effect wiith 3 RW (X axis) ix 15, ly=18, Iz=3
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d. Effects of Magnetic torquers

For the magnetic torquing simulations, the initial conditions are 0, 0, and

position errors = 5* , and , 0, and 0 = 0. The initial restoring torque is provided

by the gravity gradient effect combined with the rigid body dynamics. For the following

simulations, one of the two conditions must exist prior to energizing the magnetic coils

to generate magnetic torque:

1) position greater than .5' and velocity greater than 0, or

2) position less than -.5* and velocity less than 0. For the following figures,

the magnetic moment varies from 9.0427 to .5 Wb-m. At the maximum value of

9.0427W-m, N= 400 turns, I = .5 amp, and A = nr2 where r is the radius at .1 2m. Subse-

quent values are obtained by reducing the current drawn.

The magnetic field in component form for an equatorial orbit can be ap-

proximated by eqs(110-112). Since the earth's magnetic field is highly dependent on the

satellite's position. ORION must have the capability to determine its position in order

to effectively utilize magnetic torquing. For simulation purposes, the satellite is assumed

to be directly over Greenwich at time t = 0. The magnetic coils are turned on and off'at

the specified strength as needed. Varying the strengths of the magnetic moments gener-

ated would enhance performance, but is beyond the scope of this thesis. The assumption

that magnetic torque may be generated in any direction due to vector addition is not

always valid; magnetic torque may not be generated in the direction of the magnetic

field.

Figures 45-47 utilized magnetic moments of m, = m, = 9.0427 with

moments of inertias 1, = 15, 1, = 18, and I. = 3. For Figure 45 on page 60, the gravity

gradient restoring torque takes approximately 800 seconds before meeting a condition

necessary for energizing the magnetic coils. Due to the small moments of inertia, the 0

restoring torque is needed for only a short time. Figures 46 and 47 show the 0 and 0,

axes essentially stabilized within the + 10 criteria after the the initial magnetic torque

pulse. For the 0 axis, this pulse occurs at the 1200 seconds and lasts for approximately

300 seconds. The 0 axis has a lower frequency response and, therefore, takes longer to

to meet the condition necessary to energize the magnetic coils. Due to its relatively small

moment of inertia, the 0' axis chatters slightly before stabilizing. A smaller magnitude

of restoring torque eliminates this problem.

Increasing the moments of inertia to 1, = 95, 1, = 98, and I, = 3 while leav-

ing the magnetic moments rn, mY, and m, constant at 9.0427wb-m, produces Figures

48-50. As expected, more restoring torque is needed to stabilized the 0 and 0 axes forc-
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ing the magnetic coils to remain energized for a longer period of time. The time needed

for all axes to be within the + 1 criteria is limited by the 0 axis. Stabilization occurs

within 2800 seconds while for the case with the smaller moments of inertias, stabilization

occurs at approximately 2100 seconds.

59



.0

I qig,~I ~S li ,C 031 9"1Sl gl 1-.

Figure 45. Gravity gradient iitb magnetic torquing (X axis): Magnetic

moment = 9.0427W-rn Ix= 15, ly = 18, 1z =3.
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Figure 48. Gravity gradient wiith magnetic torquing (X axis): Magnetic

moment =9.0427W-rn Ix = 95, 1ly = 98, lz = 3.
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Figure 49. Gravity gradient with magnetic torquing (Y axis): Magnetic
moment = 9.0427W-rn Ix = 95, ly = 98, Iz = 3.
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Reducing the strength of the magnetic moments reduces the torque that is

generated and. thereby, slows the response time to stabilization. For Figures 51-56, the

magnetic moments m, = ni = =m 1.0. Figures 51-53 have moment of inertias I, = 15.

/1 = 18 , and 1. = 3. Stabilization for the 0 axis occurs within approximately 3600 sec-

onds. Increasing the moments of inertias to I, = 95, 4, = 98, and I, = 3 produces Figures

54-56. Stabilization within the + 1° criteria for the 0 axis occurs at approximately 11000

seconds. The length of time that the magnetic torqers are energized increases as the

strength of the moment decreases. Figures 57-62 show the effects of magnetic torquing

using a maximum magnetic moment of .5Wb-m for each coil. Figures 57-59 show that

for low moments of inertia (1, = 15, 1, = 18, and 1. = 3), stabilization occurs within the

+ 10 within 4800 seconds. Increasing the moments of inertia to I, = 95, 1, = 98, and

I. = 3 holding the maximum magnetic moment =.5Wb-m, produces Figures 60-62. In

Figure 61, the 0 axis may take a prohibitively long time.
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Figure 51. Gravity gradient with magnetic torquing (X axis): Magnetic
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3. Gravity Gradient capture (from tumbling mode)

Increasing the inertia wiil reduce the tumbling rate by conforming to the con-

servation of angular momentum, I0w0 -= I1w. As the inertia increases, a corresponding

decrease in angular rate must be realized. This is useful in obtaining the initial gravity

gradient capture from a tumbling mode. Figure 63 on page 80 shows that for a slow

tumbling satellite, the change in the moment of inertia by extending the boom may be

sufficient to allow gravity gradient capture. The satellite is initially tumbling at a rate

of 5 rotations per orbit about the pitch axis. The extension of the boom increases the

moment of inertia about the y axis by a factor of 6; therefore, by the conservation of

angular momentum, the angular rate must decrease by a factor of 6. This reduces the

rotations per orbit to approximately 5 6 per orbit well below the one rotation per orbit

rate necessary to acheive gravity gradient capture. Figure 63a shows the initial tumbling

rate of S rotations per orbit. Figure 63b shows the corresponding decrease in the tum-

bling rate as the moment of inertia is increased. Figure 63c shows the increase in mo-

ment of inertia as the boom is extended with respect to time.

When an initial tumbling rate is higher than the rate that can be captured solely

through the extension of the boom, magnetic torquing may aid in gravity gradient cap-

ture. Bv creating torque in the direction opposite to that of the angular velocity. mae-

netic torquing can be used to slow the rate of the tumbling vehicle.
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V. CHAPTER 5

A. CONCLUSIONS
1. Gravity gradient stabilization (only)

Gravity gradient stabilization alone is not a viable attitude control method for

ORION. This is due to gravity gradient effect providing little yaw restoring torque. In
addition, gravity gradient stabilization provides little dampening effect on the roll and
pitch axes. When augmented by other control schemes, gravity gradient stabilization
provides sufficient passive restoring torque to warrant its use.

2. Gravity gradient with 3 reaction wheels

a. Advantages

Gravity gradient stabilization augmented by three reaction wheels, each

aligned along the body's axes, provides excellent attitude control results both in time

response and accuracy.

b. Disadvantages

Power consumption may be prohibitively high for this method. At steady
state, each reaction may use up to 6 watts while drawing considerably more during the

acceleration or deceleration phase. If a steady state drain of 18 watts (6 for each re-
action wheel) is acceptable, then this method should be considered. The projected end-
of-life power budget for ORION is 60 watts [Ref. 1, p. 132]. Using this figure as an
estimate, a steady state draw of 18 watts leaves 42 watts available for mission support.
From Figure 3 on page 3, an average of 34 watts is required for mission suFTort. The
size and weight of three reaction wheels may be prohibitively high as well. Another
disadvantage is that thrusters must be used to remove momentum when the reaction

wheel(s) become saturated.
3. Control moment gyro (CMG)

a. Advantages

Al'hough not discussed in detail, control moment gyros are capable of

generating large restoring torques.

b. Disadvantages

The weight requirements for a control moment gyro are prohibitively high

when compared to reaction wheels when relatively small torques are invoved. As a small
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multi-purpose satellite, ORION does not need the magnitude of restoring torque neces-

sarv to warrant the use of control moment gyros.

4. Gravity gradient "iith three magnetic torquers

a. Advantages

Three othogonally oriented magnetic torquers have the advantage of gen-

erating restoring torque in almost any direction based on vector addition. In this man-

ner, the corrective torque may be produced to counter any disturbance from any

direction as long as it is small enough not to tumble the vehicle. Another advantage for

magnetic torquing is that the torquers only draw power while providing restoring torque.

This amounts to a considerable power savings when compared to the reaction wheel

The power drawn by the magnetic torquers during operations is based on the amperes

used. This allows for flexibility of design since doubling the number of turns and halving

the current drawn still provides the same magnitude of the magnetic moment.

b. Disadvantages

Magnetic torquers are altitude dependent. The magnitude of the earth's

magnetic field is a function of-. At high altitudes, magnetic torquing is not effective.
In addition, magnetic torquing is not always available in all directions. Recalling that

magnetic torque is To, = A x B, magnetic torque may not be generated in the direction

of the B field due to vector cross product relationships. Due to the continuously chang-

ing B field with respect to the satellite, this is a minor disadvantage. The desired restoring

torque can soon be generated as soon as the B field direction changes.

5. Thrusters

a. Advantages

At high altitudes, thrusters and momentum exchange devices are the only

control methods available for accurate stabilization. In addition, thrusters are the most

effective method for stabilizing a vehicle with a high tumbling rate.

b. Disadvantages

Thrusters are necessary for satellites; however, any fuel used for attitude

control or momentum removal is less fuel available for orbit transfer and maintainance.

For a small, lightweight satellite with limited fuel storage capacity, fuel resources must

be economized.

6. Overview

In the final analysis, the attitude control system employed will be based on

specific mission requirements. Only when the ORION mission is known can proper
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weights be given to each of the attitude control system design factors, most noticeably,

power consumption, pointing accuracy, altitude, and desired lifetime.
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APPENDIX GRADIENT STABILIZATION PROGRAM

TITLE 3 AXIS STABILIZATION WITH GRAVITY GRADIENT EFFECT

* DEFINITION OF TERMS

* ALT=ALTITUDE OF SATELLITE (METERS)
* R1=RADIUS OF EARTH (METERS)
* R=RADIUS OF EARTH + SATELLITE ALT (METERS)
* RO=DENSITY OF AIR AT THE ORBITAL ALTITUDE
* WO=ANGULAR RATE OF SATELLITE WITH RESPECT TO EARTH
* D=DRAG FORCE=1. 7E+14*(RO/R)
* PSI,THETA,PHI ARE ANGLES ABOUT THE X,Y,Z, AXES (RADIANS)
* PSIC,THETAC,PHIC ARE ANGLES ABOUT THE X,Y,Z AXES (DEGREES)
* PSID,TD,PHID ARE ANGULAR VELOCITIES ABOUT THE X,Y,Z AXES (RADS/SEC)
" (Bl),B(2),B(3) ARE THE ANGULAR ACCELERATION ABOUT THE
* X,Y,Z AXES (RADS/SEC**2)
* IX,IY,IZ ARE THE MOMENTS OF INERTIA ABOUT THE X,Y,Z AXES (KG-M**2)
" TX,TY,TZ ARE THE SUMMATION OF THE DISTURBANCE TORQUES AND
* RESTORING TORQUES EXCLUDING GRAVITY GRADIENT EFFECTS
* TMX,TMY,TMZ ARE MAGNETIC TORQUES ABOUT THE X,Y,Z AXES
* TRWX,TRWY,TRWZ ARE REACTION WHEEL TORQUES ABOUT THE X,Y,Z AXES
* TSX,TSY,TSZ ARE SOLAR PRESSURE TORQUES ABOUT THE X,Y,Z AXES
* TAX,TAY,TAZ ARE AERODYNAMIC TORQUES ABOUT THE X,Y,Z AXES
* LX,LY,LZ IS THE DISTANCE BETWEEN THE CENTER OF PRESSURE AND
* CENTER OF MASS (M)
* M X,MY,MZ=SPACECRAFT'S GENERATED MAGNETIC MOMENT WITH RESPECT TO
* THE X,Y,Z AXES (WB-M) M=NIA WHERE M=MAGNETIC MOMENT,
* N=# OF TURNS, I=CURRENT (AMPS), AND A=AREA (M**2). FOR
* THE MAXIMUM VALUE OF M=9.0427, N=400,I=.5A,RADIUS=.12M.
* MG=S-TRENGTH OF EARTH'S MAGNETIC DIPOLE=8.0E15 WB-M AT R=0
* BX,BY,BZ=EARTH'S MAG FIELD WITH RESPECT TO X,Y,Z(WB/M**2)
* LAMS=RIGHT ASCENSION FROM GREENWICH @ TIME=O, IN DEGREES(LONGITUDE)

ARRAY B(3)
CONST ALT=IOOOE+03,RO=7.OE-10,RI=6378. E+03,...

IX=95., IY=98., IZ=03.00, LAMS0=0,...
MX=9.0478, MY=9.0427, MZ=9.0427, MG=8.OE+15,...
KX=2., KY=2., KZ=I., TAUl=., TAU2=l., TAU3=.,...
TSX=0., TSY=O., TSZ=0., TAX=0., TAY=0., TAZ=O.

* PHI,THETA,AND PSI ARE INIT 5 DEGREES = .08725 RADIANS OF ERROR*

INCON ITIETA=.08725,IPHI=.08725,IPSI=.08725,ILAMS=O,PHIC=5....
THETAC=5.,PSIC=5.

DERIVATIVE
R=Rl+ALT
D=1. 7E+14*(RO/R)
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WO=SQRT(3. 987E+14/(R**3))

NOSORT
LAMS=LAMS0+WO*TIME*( 57.3)

10 IF (LAMS. GE. 360) THEN
LAMS=LAMS -360.
GO TO 10
END IF

*THIS SECTION ADDS THE REACTION WHEEL EQUATIONS

* TRWX=-KX*(TAUI*PHID + PHI)
* TRWY=-KY*(TAU2*TD + THETA)
* TRWZ=-KZ*(TAU3*PSID + PSI)

***********END REACT ION WHEEL********************

" THIS SECTION ADDS THE MAGNETIC TORQUE EQUATIONS*
" AND SOLVES AN EXAMPLE FOR THE EARTH' S MAGNETIC*
* FIELD (EQUATORIAL ORBIT ASSUMED)*

BX=(MG/(R**'3))*SIN(. 2042)*SIN(((LAMS*PI)/180)-5. 0789)
BY=-(MG/(R**3))*COS(. 2042)
BZ=-(MG/(R**3))*SIN(. 2042)*COS(((LAMS*PI)/180)-5. 0789)

TMAGX=(MZ*BY) -(MY*BZ)
TMAGY=(MX*BZ) -(MZ*BX)
TMAGZ=(MY*BX) -(MXl*BY)

*CONDITIONS FOR TORQUE GENERATION MET?

IF(PHIC.GT. .5) THEN
IF(PHID. GT. 0) THEN
TMX=-(ABS(TMAGX))
ELSE
TMX0O
ENDIF

END IF
IF(PHIC. LT. -. 5) THEN

IF(PHID.LT.0) THEN
ThX=AB S (TMAGX)
ELSE
ThX=0
ENDIF

END IF
IF(THETAC.GT. .5) THEN

IF(TD. GT. 0) THEN
TMY=-(ABS(ThAGY))
ELSE
TMY=O
ENDIF

ENDIF
IF(THETAC. LT. -. 5) THEN
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IF(TD. LT.O0) THEN
TMY=ABS(TMAGY)
ELSE
TMY=O
ENDIF

ENDIF
IF(PSIC.GT. .5) THEN

IF(PSID.GT.O) THEN
TMZ=-(ABS(ThAGZ))
ELSE
TMZ=O
END IF

END IF
IF(PSIC.LT. -.5) THEN

IF(PSID.LT.O) THEN
TMZ=ABS (TMAGZ)
ELSE
Thz=o
ENDIF

ENDIF
*********************END MAGNETI C TORQ ING SECTI ON********************

TX=TMX+TRWX+TSX+TAX
TY=TMY+TRWY-ITSY+TAY
TZ=ThZ+TRWZ+TSZ+TAZ

*******FOR GRAVITY GRADIENT EFFECT ONLY SET TX=TY-TZ=O**************

B( 1)=-4*(WO**2)*((IY-IX)/IZ)*PHI+WO*((IX+IZ-IY)/IX)*PSID+(TX/IX)
B(2)=-3*(WO**2)*((IX-IZ)/IY)*THETA4TY/IY
B(3)=-(WO**2)*((IY-IX)/IZ)*PSI-WO*((IX+IZ-IY)/IZ)*PHID+(TZ/IZ)

PHID=INTGRL(O. ,B(1))
TD=INTGRL(O. ,B(2))
PSID=INTGRL(O. ,B(3))

CPHI=INTGRL(O. ,PHID)
CTHETA=INTGRL(0. ,TD)
CPSI=INTGRL(0. ,PSID)

PHI=IPHI+CPHI
THETA=ITHETA+CTHETA
PSI=IPSI+CPSI

*PHITHETAPSI ARE = TO INITIAL CONDITIONS AS ANNOTATED WITH AN f"I"
*PRECEDING VARIABLE+CALCULATED VALUES AS ANNOTATED WITH THE "C" IN FRONT

PHIC=PHI*57. 3
THETAC=THETA*5 7*3
PSIC=PSI*57. 3

*USE FOLLOWING IF GRAVITY GRADIENT EFFECT ONLY
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*ONTRL FINTIM=2OOOO,DELT=200.
'*RINT 200. , PHIC, THETAC, PSIC, PHIDC, TDC, PSIDC
*AVE 200. , PHIC, THETAC, PSIC, PHIDC, TDC, PSIDC
*kRAPH (Gl,DE=TEK618) TIME(UN=SEC) ,PHIC(UN=DEGREES)
*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GG@1000K) IX=95 1Y=98 1Z=3.O0
*RAPH (G2,DE=TEK618) TIME(UN=SEC) ,THETAC(UN=DEGREES)
*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GG@1000K) IX=95 1Y=98 10=3.00
*RAPH (G3,DE=TEK618) TIME(UN=SEC) ,PSIC(UN=DEGREES)
*ABEL (G3,DE-TEK618) PSI(DEG) VS TIME (GG@1000K) 1X=95 IY=98 IZ=3.00
*RAPH (G4,DE=TEK618) TIME(UN=SEC),PHIDC(UN='DEG/SEC')
*ABEL (G4,DE=TEK618) PHID VS TIME (GG@1000K) IX=95 1Y=98 IZ=3.OO
*RAPH (G5,DE=TEK618) TIME(UN=SEC),TDC(UN='DEG/SEC')
*ABEL (GS,DE=TEK618) TDC VS TIME (GG@I000K) IX=95 1Y=98 1Z=3.00
*RAPH (G6,DE=TEK618) TIME(UN=SEC),PSIDC(UN='DEG/SEC')
*ABEL (G6,DE=TEK618) PSIDC VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
********~****END GRAVITY GRADIENT ONLY GRAPHS**********

* USE THE FOLLOWING IF REACTION WHEELS ARE USED*

*ONTRL FINTIM=400 ,DELT=5.
*RINT 100. , PHIC, THETAC, PSIC, TX, TY, TZ
*AVE 5. , PHIC, THETAC, PSIC, TX, TY, TZ, PHID, TD, PSID
*RAPH (G1,DE=TEK618) TIME(UN=SEC) ,PHIC(UN=DEGREES)
*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G2 ,DE=TEK6 18) TIME( UN=SEC) ,THETAC( UN=DEGREES)
*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.0O
*RAPH (G3,DE=TEK618) TIME(UN=SEC) ,PSIC(UN=DEGREES)
*ABEL (G3,DE=TEK618) PSI(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.00
*RAPH (G4,DE=TEK6 18) TIME(UN=SEC) ,TX(UN=NM)
*ABEL (G4,DE=TEK618) TXRW VS TIME (GG@1000K) IX=95 IY=98 10=3.00
*RAPH (G5,DE=TEK618) TIME(UN=SEC) ,TY(UN=NM)
*ABEL (G5,DE=TEK618) TYRW VS TIME (GG@1000K) IX=95 IY=98 1Z03.00
*CRAPH (G6,DE=TEK618) TIME(UN=SEC) ,TZ(UN=NM)
*ABEL (G6,DE=TEK618) TZRW VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G7,DE=TEK618) TIME(UN=SEC) ,PHID(UN='RAD/SEC')
*ABEL (G7,DE=TEK618) PHID VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G8,DE=TEK618) TIME(UN=SEC) ,TD(tJN='RAD/SEC')
*ABEL (G8,DE=TEK618) TD VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G9,DE=TEK618) TIME(UN=SEC) ,PSID(UN='RAD/SECt )
*ABEL (G9,DE=TEK618) PSID VS TIME (GG@1000K) IX=95 IY=98 IZ=3.O0
********************END REACT ION WHEEL GRAPHS**********************~

* USE FOLLOWING GRAPHS IF MAGNETIC TORQUING IS UTILIZED*

*ONTRL FINTIM=4000. ,DELT=5.
*RINT 100. , PHIC, THETAC, PSIC, WO,B(1),B(2),B(3),LAMS
*AVE 5. , PHIC, THETAC, PSIC, LAMS, TX,TY,TZ,BX,BY,BZ,PHID,TD,PSID
*RAPH (Gl,DE=TEK618) TIME(UN=SEC) ,PHIC(UN=DEGREES)
*ABEL (G1,DE=TEK618) PHI(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G2,DE=TEK618) TIME(UN=SEC) ,THETAC(UN=DEGREES)
*ABEL (G2,DE=TEK618) THETA(DEG) VS TIME (GG@1000K) IX=95 IY=98 10=3.00
*RAPH (G3,DE=TEK618) TIME(UN=SEC) ,PSIC(UN=DEGREES)
*ABEL (G3,DE=TEK618) PSI(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.O0
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*RAPH (G4,DE=TEK6I8) TIME(UN=SEC) ,LAMS(UN=DEGREES)
*ABEL (G4,DE=TEK618) LAMS(DEG) VS TIME (GG@1000K) IX=95 IY=98 IZ=3.OO
*RAPH (G5,DE=TEK618) TIME(UN=SEC) ,TX(UN=N-M)
*ABEL (G5,DE=TEK618) TX VS TIME (GG@1000K)
*RAPH (G6 ,DE=TEK618) TIME(UN=SEC) ,TY(UN=N-M)
*ABEL (G6,DE=TEK6l8) TY VS TIME (GG@lQOOK)
'*RAPH- (G7,DE=TEK6l8) TIME(UN=SEC) ,TZ(UN=N-M)
*ABEL (G7,DE=TEK618) TZ VS TIME (GG@lOOOK)
*RAPH (G8,DE=TEK618) TIME(UN=SEC) ,BX(UN=W-M)
*ABEL (G8,DE ITEK6l8) BX VS TIME (GG@lOOOK)
*RAPH (G9,DE=TEK6l8) TIME(UN=SEC) ,BY(UN=W-M)
*ABEL (G9,DE=-TEK6l8) BY VS TIME (GG@1000K)
*RAPH (GlO,DE=TEK618) TIME(UN=SEC) ,BZ(UN=W-M)
*ABEL (GlO,DE=TEK618) BZ VS TIME (GG@lOOOK)
*RAPH~ (G11,DE=TEK6l8) TIMLE(UN=SEC) ,PHID(UN='RAD/SEC')
*ABEL (G11,DE=TEK6l8) PHID(RADSEC) VS TIME (GG@1000K) IX=95 IY=98 1Z=3.OO
*RAPH (G12,DE=TEK61.8) TIME(UN=SEG) ,TD(UN='RAD/SEC')
*ABEL (G12,DE=TEK6l8) TD(RADSEC) VS TIME (GG@lOOOK) IX=95 IY=98 IZ=3.OO
*RAPH (G13,DE=TEK618) TIME(UN=SEC),PSID(UN='RAD/SEC')
*ABEL (G13,DE=TEK6l8) PSID(RADSEC) VS TIME (GG@lOOOK) IX=95 IY=98 IZ=3.OO
END
STOP
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