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To make shared-nAemory multiprocessors scalable. researchers are now exploring cache

coherence protocols that do not rely on broadcast. but instead send invalidation messages to
individual caches that contain stale data. The feasibility of such directory-based protocols
is highly sensitive to the cache invalidation patterns that parallel programs exhibit. In this
paper. we analyze the cache invalidation patterns caused by several parallel applications and
investigate the effect of these patterns on a directory-based protocol. Our results are based
on multiprocessor traces with 4, 8 and 16 processors. To get insight into what the invalidationi
patterns would look like beyond 16 processors. we propose a classification scheme for data
objects found in parallel applications and link the invalidation traffic patterns observed in
the traces back to these high-level objects. Our results show that synchronization objects
have very different invalidation patterns from those of other data objects. A write reference
to a synchronization object usually causes invalidations in many more caches. We point out
situations where restructuring the application seems appropriate to reduce the invalidation
traffic. and others where hardware support is more appropriate. Our results also show that it
should be possible to scale "well-written" parallel programs to a large number of processors
without an explosion in invalidation traffic. '-,

1 Introduction

One of the most critical issues in the design of shared-memory multiprocessors is the cache co-
herence strategy. Most multiprocessors rely on a shared bus and use a broadcast-based protocol
to keep the caches coherent [8,16.18,15.23]. However, such multiprocessors are not very scalable,
as the shared-bus soon becomes a bottleneck. As an alternative, researchers have started explor-
ing cache coherence protocols that do not rely on broadcast, the most common example being
directory-based protocols [2.4]. These protocols rely on the system having knowledge about
which caches contain a particular piece of data. On a write, invalidation messages are sent only
to these specific caches. The number of pointers in each directory entry determines how many
other caches can be kept track of. Determining the performance of directory-based protocols
requires the answer to several questions. We would like to know the distribution of the number
of remote caches that need to be invalidated on shared writes. WVe would like to know how these
distributions scale as the number of processors is increased. We are interested in knowing what
types of data objects in the applications result in what kind of invalidation patterns. This paper
attempts to answer some of these questions for directory-based protocols.

We analyze the patterns of invalidation traffic produced by a set of five application programs.
o -5 Three of the five applications selected are -real' parallel programs. in the sense that they solve

real-world problems and that a lot of effort has gone into obtaining good processor efficiency
0 with them. The remaining two applications are smaller. but the\- are still interesting in that

they could form the kernels of larger applications. Our study is based on memory reference
traces obtained for the applicdtions wheit simulating 4. 8. and 16 processors.' The traces were

Previous studie. (I.2] presented results using traces with only 4 processors. This study uses a more extensive

el of applications, a larger number of procesNorS. and goes more deeply into the causes of invalidations patterns.
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generated using software-traps on a 4-processor VAX-8350 and a VAX-3200 running MACH.
In addition to presenting the invalidation patterns as observed directly from the traces, the
paper links the invalidation patterns to the high-level program data structures (objects) that
cause them. A classification of such shared objects on the basis of their expected invalidation
behavior is given. Linking the invalidation patterns to the high-level objects helps us predict
how the invalidation traffic would change as the number of processors is increased. It is far more
accurate to extrapolate the behavior of each class of data object than to simply extrapolate the
composite behavior. For the application types we have considered. our results indicate that it is
quite possible to write parallel programs that do not create an enormous amount of invalidation
traffic. Thus directory-based schemes with just a few pointers per entry could efficiently execute
well-designed parallel programs.

The next section explains the methodology used in generating the traces and explains how
the traces were analyzed. Section 3 introduces the five applications used in this study and gives
a brief overview of their computational behavior. In Section 4 we present some basic trace
characteristics. In the next section we present the proposed classification of shared data objects
in parallel programs. Section 6 goes into a detailed analysis of the invalidation behavior of each
application and relates these patterns to specific data objects in the applications. Section 7
assembles the results from the various applications and presents conclusions.

2 Methodology and Assumptions

The traces were collected using a combined hardware/software method [7]. The process creation
is modified to have one master process, which controls the actual tracing. and a number of slave
processes. one for each -virtual processor". Once the desired start position for tracing is reached.
each of the slaves stops itself and is then single-stepped by the master. The stepping takes place
in a round-robin fashion. The stepping employs the UNIX ptrace system call which uses the
T-bit on the VAX. While stepping. the master process records data in the trace file. For each
reference, the type (I-fetch, read. or write), the address, and the CPU number are recorded.
Trace lengths used were 20Mbytes for 4-processor traces, 30Mbytes for 8-processor traces, and
50Mbytes for 16-processor traces. This corresponds to about 2.5, 4 and 7 million references
respectively, or around 0.5 million references per processor.

The traces were gathered on a VAX-8350 with 4 processors and a VAX-3200 workstation,
both running the MACH operating system. MACH allows allocation of shared memory for
the processors. On the 8350 it takes about 24 hours to obtain 20Mbytes of trace, while the
VAX-3200 can gather about 50Mbytes in the same time.

Once the traces were gathered. they were used as input to a program that simulates multipro-
cessor cache behavior and gathers statistics. Infinite caches were used for simplicity of the cache
simulator. The cache coherence protocol used was an invalidation scheme similar to the Berke-
ley Ownership scheme [16]. For each potential invalidation, a record was written containing the
CPIT number. the data address. the most recent instruction address and the number of other
caches actually invalidated. The data and instruction addresses were later used to associate
the invalidation with the high-level language construct that caused it. Several post-processing
programs were used to gather statistics from the invalidation traces.

The main advantage of the software scheme of gathering traces is that we can get traces
for an arbitrary number of processors. which is not possible with hardware schemes like ATUM
[20]. lowever, there are some disadvantages too. For example. the ptrace call does not trace
operating system calls. but rather treats them as a single reference. This is not a major problem
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in this study. since there are not many operating system calls in the sections traced. Also.
each instruction takes one time unit to complete. regardless of the complexity of the instruction.
This is clearly an oversimplification, but there is no reason to believe that it significantly distorts
results.

3 Application Programs

In this section we describe the data structures and computational behavior of the applications.
This is important background for Section 6, where we relate invalidation traffic to high-lexel
objects. The applications used for tracing were selected to represent a variety of algorithms
used in an engineering computing environment. All of the applications were written in C. The
Argonne National Laboratory macro package [11.12] was used to provide synchronization and
sharing primitives. The synchronization primitives used include spin locks, as well as barriers
and distributed loops.

3.1 Maxflow

Maxflow [3] finds the maximum flow in a directed graph. This is a common problem in operations
research and many other fields. The program is a parallel implementation of an algorithm
proposed by Goldberg and Tarjan. The bulk of execution time is spent picking off nodes from
a task queue, adjusting the flow along its incoming and outgoing edges, and then placing its
successor nodes onto a task queue. Maxflow exploits parallelism at a fine grain.

Ma.xflow does not assign the nodes of the graph to processors statically. Instead, task queues
are used to distribute the load. Each processor has its own local task queue and need only go
to the single global task queue when the local queue is empty. Tasks are put onto the global
queue only when processes are waiting there. and onto the local queue otherwise. Note that the
task queues are made up of the nodes themselves, linked together with appropriate pointers. OTIC

Locks are used to serialize access to each node element, but contention for these is fairly low, as COPY
there are many more nodes than processors. In Section 6 we will see that most invalidations are INSPECTED

related to the global task queue and the migration of node data from one processor to another.

The traces were collected while solving Maxfiow for a set of nodes arranged as a 10-ary
2-cube. Tracing was started as the program entered the main loop after completing the initial
distance labeling. The implementation provides speedups of about 8 with 12 processors.

3.2 SA-TSP

SA-TSP (21] solves the traveling salesperson problem using simulated annealing [10]. A linear For
array contains the cities in tour order. At each step. a processor selects a pair of cities to swap. "
The swap is performed if it results in a shorter tour or if the increase in tour distance is within M
the margin prescribed by tfle cooling function. The tour is locked only during the actual swap. b
which means that errors occur when the tour has been modified between making the decision
and actually performing the swap. This trades off quality of solution for greater speedup. Note
that there is only one global lock for all the tour data. This becomes a major bottleneck as the
number of processors increases. In the initial annealing phase - which is the section we traced on/ ...
- most moves are accepted and contention for the lock is especially large. While the program ItY Coles
achieves an overall speedup of 7 with 8 processors. no more than 4 processors can be kept busy . and/or
during this initial portion.
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3.3 MP3D

MP3D [13.14) is a 3-dimensional particle simulator for rarified flow. It is used to study the shock
waves created as an object flies at high speed through the upper atmosphere. MP3D is a good
example of scientific code that is vectorizable and can be parallelized using distributed loops. A
version of MP3D that runs on the Cray-2 is being used extensively at NASA for research.

The overall computation of MP3D consists of evaluating the positions and velocities of
molecules over a sequence of time steps. During each time step, the molecules are picked up one
at a time and moved as governed by their velocity vectors. Collisions with the boundaries and
with each other are resolved. The simulator is well suited to parallelization because each molecule
can be treated independently at each time step. The work is spread over th. processors with
the help of a distributed loop. consisting of a lock and a global index variable. Eazh processor
obtains the lock, reads the index, increments it, and releases the lock. In this manner the
processes pick up the index of the next particle to be moved. The traces cover most of one time
step. i.e. each particle is moved once. No locking is employed in the various arrays that keep
track of the particles and space, because collisions are impossible in the particle arrays and very
rare in the space arrays. Thus. the distributed loop is the only synchronization seen in this
trace.

3.4 Distributed CSIM

Distributed CSIM [22] is a parallel logic simulator developed at Stanford University. It is an
interesting application based on the Chandy-Misra simulation algorithm [51. which is specially
designed for highly parallel machines - unlike event-based algorithms, this algorithm does not
rely on a single global time during simulation.

The primary data structures associated with the simulator are the logic elements (e.g.. AND-
gates, flip-flops), the nets (the wires linking the elements) and the task queues which contain
activated elements. Each processor has as many task queues as there are other processors.
This ensures that there is no contention when adding elements to some other processor's queue.
Each processor executes the following loop. It removes an activated element from one of its
task queues and determines the changes on the element's outputs. It then looks up the net
data structure to determine which elements are affected by the output change and potentially
schedules those activated elements onto other processors' task queues. Newly activated elements
are assigned to other processors in a round-robin fashion.

3.5 LocusRoute

LocusRoute [17) is a global router for VLSI standard cells. It is a real application in that it
is a part of a system that has been used to design real integrated circuits, and it has been
highly tuned to run well on a shared-memory multiprocessor. LocusRoute represents the class
of parallel programs that exploit fairly coarse grain parallelism.

The LocusRoute program exploits parallelism by routing multiple wires in a circuit concur-
rentlv. Each processor executes the following loop: (i) remove a wire to route from the task
queue: (ii) explore alternative routes: and (iii) pick the best route for the wire and place it there.
The central data structure used in LocusRoute is a grid of cc!ls called the cost arrmy. Each
row of the cost array corresponds to a routing channel for standard cells. LocusRoute uses the
cost array to record the presence of a wire at each point, and the congestion of a route is used
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as a cost functioin for guiding the placement of new wires. No locking is needed in the cost
array. which is accessed and updated simultaneously by several processors. because the effect of
occasional collisions is tolerable. Each routing task is fairly large grain, which prevents the task
queue from becoming a bottleneck.

4 Trace Characteristics

Table 1 gives an overview of the traces of the five applications. For each application, we give
the trace length in number of references and the breakdown in terms of I-fetches. reads and
writes. We also show the proportion of shared writes, and the average number of invalidations
caused by each shared write. In addition to absolute numbers. the columns also list the number
of references in each category as a fraction of all references in the trace.

Table 1: General Trace Characteristics.

num of refs 1-fetches reads writes I shared writes avg. invals
Application CPUs mill mill mill mill 7 thous (% per sh-wrt

4 2.62 1.21 46 1.06 40 0.3.5 13 73.6 2.81 0.30
Maxflow S 4.15 1.91 46 1.69 41 0.5.5 13 121.6 2.93 0.49

16 8.36 3.86 46 3.46 41 1.04 12 274.8 3.29 1.07
4 2.6.5 1.10 42 1.12 42 0.43 16 19.5 0.74 1.27

SA-TSP 8 4.16 1.84 44 1.88 45 0.44 11 37.3 0.90 2.29
16 7.11 3.30 46 3.37 47 0.43 6 77.0 1.08 2.93

4 2.53 1.57 62 0.80 32 0.17 7 83.7 3.31 0.68
MP3D 8 3.59 2.22 62 1.13 31 0.23 6 119.9 3.34 0.80

16 7.05 4.28 61 2.33 33 0.43 6 230.3 3.27 1.03

4 2.61 1.28 49 1.01 39 0.32 12 8.5 0.33 0.44
Dist CSIM 8 4.13 2.04 49 1.61 39 0.48 12 19.9 0.48 0.46

16 7.09 3.52 50 2.80 39 0.77 11 42.5 0.60 0.51
4 2.60 1.31 50 0.95 37 0.33 13 .5.6 0.22 0.56

LocusRoute 8 4.34 2.26 52 1.59 37 0.49 11 4.8 0.11 1.07
11 16 7.70 3.95 51 2.83 37 0.92 12 9.2 0.12 1.28

In all of the programs. with the exception of MP3D. about 45-50% of the references are
I-fetches. MP3D has a larger proportion of I-fetches because there are a lot of array references
which require several instructions to compute the effective address of the reference.

The proportion of read references varies from about 30%, in' MP3D to over 45% in SA-TSP.
In SA-TSP there are a lot of simple integer reads when determining the effect of a swap on tour
distance. The read fraction is low in MP3D because of the larger proportion of I-fetches.

Writes hover around 10-15(/( of all references. MP3D again stands out with a very low
write fraction, again due to frequent array references. The number of writes in SA-TSP stays
virtually constant even though the number of references increases greatly as we move from 4 to
16 processors. This is explainied b*y the fact that writes are only used when a swap is accepted.
Contention for the lock in the portion of SA-TSP traced is so large that no more swaps are
accepted in the 16-processor trace than ini the 4-processor trace. This portion of SA-TSP was



chosen to demonstrate the effects that a poorly written program segment may have on directory-
based coherence schemes. Details are presented in Section 6.2.

In our study, we define shared locations to be those that are referenced by more than one
process in the trace, and we define .shartd writes to be write references to shared locations. Note
that some locations that really are shared in the application are considered not-shared in our
study. because within the limited length of the trace multiple processes do not reference those
locations.

The second to last column in Table 1 presents the proportion of shared writes in the appli-
cations - it is important to study shared writes because they can cause invalidations in some
or all of the caches. There is a general trend towards an increasing percentage of shared writes
as the number of processors increases. One reason for this is larger contention over locks. The
locks are implemented as test-test&set sequences and thus cause additional shared writes when
several processors are contending for a lock that was just freed. Also. as more processors are
added. the chances of a data item being accessed by more than one process increases. 2 resulting
in a larger fraction of shared writes.

An important metric of invalidation traffic is the average number of invalidations per shared
write. The values are shown in the last column of Table 1. This parameter is the largest for
SA-TSP, mostly due to invalidation traffic caused by the single global spin-lock. In fact. the
average number of invalidations increases steeply with more processors due to the increased
contention for this global lock. The number of invalidations per shared write is the smallest
for distributed CSIM. and hardly goes up as the number of processors is increased. This is
mainly because there are no synchronization objects in the portion of distributed CSIM traced.
Averages. however, do not carry all of the interesting information. Consequently, the detailed
invalidation distributions and their analysis are presented in Section 6.

5 Classification of Data Objects

When trying to extrapolate invalidation behavior to a larger number of processors. it is important
to explain the invalidation patterns in terms of the underlying high-level structures which cause
the invalidations. We distinguish several types of shared objects on the basis of their significance
in parallel programs and their expected invalidation behavior [1]:

1. Code and read-only data objects.

2. Migratory objects.

3. Synchronization objects.

4. Mostly-read objects.

•5. Frequently read/written objects.

Code and read-only data objects obviously do not cause invalidations at all. and thus pose
no problem to any coherence scheme. A fixed database such as the matrix that contains the
distances between cities in SA-TSP is a good example of such read-only data.

2This is partly becau.e we get a longer trace for a run with more processors. and partly because with a larger
number of processors. there is a higher probability that subtasks sharing data get scheduled on different processors
rather tian on the same processor.
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Migratory data objects are those that are manipulated 1)y only a single processor at a time.
Shared objects protected by locks often exhibit this property. While such an object is being
manipulated by one processor. the object's data resides in the associated cache. When the object
is later manipulated by some other processor. the cache entry of the previous processor needs
to be invalidated. 3 Migratory data usually causes a high proportion of single invalidations. The
nodes in Maxflow are a good example of migratory data. Each node is evaluated by several
processors over the complete run. but there is only one processor manipulating each node at any
one time.

Synchronization objects such as locks can cause a very large number of invalidations if used
improperly. When locks are implemented as test-testk-set. and there are processors waiting on
a lock. invalidations are caused each time the lock changes hands. As a lock is freed. all waiting
processors fall through the test part of the test-test&set. They then attempt the testk-set. but
only one of them succeeds. causing invalidations in all other waiting processors' caches. It is
important to use locks in a manner that minimizes contention for them.

An example of mostly-read data is the cost-array of LocusRoute. Most of the time it is just
read, but every now and then. when the best route for a wire is decided, the array is written.
It is a candidate for large number of invalidations because many reads by different processors
occur before each write. Thus the data is cached by many processors, and a write causes many
invalidations. However. since only the writes cause invalidations and writes are infrequent, the
overall number of invalidations will be quite small.

Finally. there is frequently read/written data.4 An example is the variable that counts how
many processors are waiting on the global task queue in Maxflow. Frequently read/written
data has the worst invalidation behavior. Unlike mostly-read objects, this data is written quite
frequently. Although each write may only cause 3 or 4 invalidations, this may exceed the number
of pointers per entry in a directory" scheme. thus causing frequent broadcasts. This type of data
object should be avoided if at all possible.

6 Application Case Studies

In this section we present the results of the detailed analysis of the invalidation traces produced
when running the cache simulator over the multiprocessor traces. For each application, we show
the overall invalidation patterns, the high-level objects causing the invalidations, the expected
broadcast behavior of directory-based cache coherency schemes [4.2], and the scalability of the
application beyond 16 processors.

The overall invalidation behavior is presented in terms of an invalidation distribution graph
as shown in Figure 1. The graph shows the fraction of shared writes that caused no invali-
dations. single invalidations and so on. Ideally these graphs will contain a large proportion of
small invalidations, as these can be handled efficiently by directory-based cache schemes. By
comparing the invalidation distributions for 4. 8 and 16 processor traces. we can begin to get a
feeling for how the invalidations scale with a larger number of processors. We would prefer to
see no change in the distribution as the number of processors is increased, but it is more likely
that a shift towards both more and larger invalidations occurs.

For each application, we also present another kind of graph that shows the fraction of broad-

casts required as a function of the number of pointers per entry in the directory (see Figure

Cherimon di.cii.es a programming model bassed on such objects. called "'orkforms" in [6).
'Frequently read/writ ten should be inlerpreted as both frequently read atnd frequently writtea.
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6). A directory-based scheme such as DiriB needs to use broadcast when a shared write is to
a location that is contained in more caches than there are directory pointers for that entry.
The data is plotted for directories with pointers varying from 1 to n, where n is the number of
processors in the trace. We do not show directory schemes with 0 pointers ab these require a
broadcast for every shared write. Obviously, a directory with n pointers can keep track of all
processors and broadcast is never required.

6.1 Maxflow

Figures 1. 2 and 3 show the invalidation distributions for Maxflow with 4, 8 and 16 processors
respectively. Note that the distribution shifts to larger number of invalidations as the number
of processors is increased. While at 4 processors only about 2%, of shared writes cause more
than one invalidation, this figure moves up to 18% with 16 processors. Analysis shows that the
bulk of this increase is due to synchronization traffic involving the global task queue. Figures
4 and 5 show the invalidation distributions broken down by global queue traffic and all other
invalidation traffic respectively. The global queue traffic includes all writes to the queue locks
as well as the count of the number of processors blocked and the queue head pointer. It is clear
that most of the spreading of the invalidation distribution is due to global-queue-related traffic.

A large fraction of the invalidations in Figures 1, 2 and 3 are single invalidations. They are
caused by the manipulation of nodes and edges. which are good examples of migratory data
objects. One processor picks up an active node and pushes flow through it. Later the node will
get re-activated, and some other processor will pick it up and start processing it.

Some parameters of the nodes. such as its distance label, behave like mostly-read objects.
Distance labels only get changed in the infrequent re-labeling steps. Between re-labeling, many
processors may read a node's distance label causing re-labeling to generate a large number of
invalidations. In the 16-processor trace, an average of 4.6 invalidations occur for each re-labeling
write. Although 4.6 invalidations per shared write is large, the effect of these writes on the total

number of invalidations is small since the writes are very infrequent.

The locks for the global task queue cause a large number of invalidations. Not only are they
accessed and written frequently, but they also cause an average of about 2 invalidations per
shared write in the 16-processor trace. The global queue is the major source of double or larger
invalidations and should be a primary target for efforts aimed at improving the program.

The per-node locks, on the other hand, work well. They are an example of a synchroniza-
tion object that causes few invalidations. There are so many more nodes than processors that
contention is very limited.

The count of how many processors are waiting for the global task queue is checked frequently
by all processors. It is also written frequently. namely whenever a process starts waiting on the
global task queue. It is thus often read and written and causes many invalidations. It has an
average of 2.8 invalidations per shared write and the highest number of shared writes to any
single data object except for the global task queue locks.

A pattern of double invalidations found in Maxflow is very common when dealing with queues
and is seen in several other applications. In Maxflow. one processor puts a node onto the global
task queue. a second one picks it off. and a third one may later place the node on another
queue, At first. the object is owned by one processor. When the node is picked up by the second
processor. it becomes read-shared. Finally. the third processor writes the object. causing double
invalidations in the link pointers. Many variations of this basic theme exist. Another example
was found in POPS [91. a parallel rule-based expert system. where a single buffer is used for a
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task queue. An item is written into the buffer by one processor and read by another. Later. a
third processor overwrites that item with some new data. thus invalidating the caches of both
previous processors.

Figure 6 shows the proportion of shared writes that need to be broadcast for dirertory-based
schemes with a varying number of pointers per entry. Although a scheme with two pointers per
entry (Dir 2 B in [2]) only needs to broadcast 1.8%, of shared writes with 4 processors. this figure
jumps up to 15.9W for 16 processors. The invalidation distribution keeps spreading out as the
number of processors is increased, mostly due to the invalidations associated with the global
queue.

Let us now use the object classification to see how the invalidation distributions will change
as the number of processors is scaled. We expect little change in the invalidations produced by
migratory objects which will continue to produce single invalidations. Mostly-read objects will
have a slightly higher average number of invalidations per shared write because more processors
are likely to have cached the data. Note though. that the average number of invalidations per
write (4.6 for 16 processors) may already be beyond the number of pointers stored in the direc-
tory. so no additional broadcasts will result. Synchronization objects and frequently read/written
objects. on the other hand. are expected to have a higher average number of invalidations per
shared write. In addition. we expect to see more shared writes due to synchronization. Since
both synchronization objects with high contention and frequently read/written objects exist in
Maxflow. we will see a continued spread of the invalidation distribution towards larger inval-
idations per shared write. If the program is to be scaled successfully, we will have to reduce
synchronization contention and eliminate frequently read/written objects.

6.2 SA-TSP

Figures 7. 8 and 9 show the invalidation distributions for SA-TSP with 4, 8 and 16 processors.
Most noticeable is the hump in the invalidation distribution for 16 processors at around 12
to 13 invalidations. This hump is less obvious with 8 processors and does not appear with 4
processors. All of the invalidations that make up this hump in the 16-processor distribution are
due to the single global lock. In fact as many as 94% of all invalidations are due to that lock.

Figures 10 and 11 show the invalidation distribution for the 16-processor trace. broken down
into lock traffic and all other data traffic. These graphs show clearly that nearly all of the large
invalidations are due to the single lock. This is a good example of how a poorly-used lock can
flood a machine with invalidations. In the initial annealing phase (the portion that was traced),
most moves get accepted. Thus all of the processors want to update the global tour, which
requires the lock. This results in very high contention for the lock. WNe found that with 12 to 13
processors waiting for the lock to be released, this phase of the program could use no more than
about 4 processors. As the cooling function progresses, fewer and fewer moves are accepted,
contention for the lock subsides and the program achieves good speedup.

The invalidations due to the shared data range between 0 and about 8. All of these are
from the array that holds the order of the cities in the tour. The large average of shared-write
invalidations is due to the mostly-read nature of this data. A processor needs to look at two
cities and their four neighbors to determine whether a swap is to occur. and only if the swap
meets certain annealing criteria does it actually take place. This means that for each proposed
swap. at least four cities are only read. not written. Each successful swap thus invalidates a large
number of caches. The frequency of invalidations is due to the fact that there are relatively few
data object,, (36 in this case. as the program was solving a tour with 36 cities ). especially when
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compared to LocusRoute or MP3D. where there A,,e thousands of objects. Hence the chances of
some other processor caching an object before it is writlen are much larger.

Figure 12 shows that even directory schemes with large number of pointers per entry perform
poorly in the face of SA-TSP's invalidation traffic. After an initial lowering in tihe number of
broadcasts with increasing number of directory pointers, the graph basically flattens out until
we reach the hump. In the 16-processor case, a 10-pointer scheme would perform essentially as

poorly as a 5-pointer scheme.

Further scaling of the number of processors would result in even larger contention for the
global lock. This would move the invalidation hump to a larger number of invalidations per
shared write. Essentially no additional useful work would be accomplished. A distributed locking
scheme could reduce contention for the elements of the global tour. Even if the synchronization
traffic is eliminated. however, we will still have a fair amount of shared data invalidation traffic.
This is due to the fact that there are only a small number of data objects that are continuously
read and written by several processors.

6.3 MP3D

Figures 13. 14 and 13 show the invalidation distributions for MP3D with 4. 8 and 16 processors
respectively. The distributions are dominated by zero and single invalidations. As we increase
the number of processors. some invalidations of 2 or more start to appear. This effect is most
noticeable with 16 processors. Further analysis shows that the bulk of the double or larger
in-alidations are due to the monitor lock of the distributed loop. Figures 16 and 17 give the
invalidation distribution for the 16-processor trace. broken down into monitor lock traffic and
all other traffic. Here we note that shared data contributes very little to the invalidations of
2 or more. There are 0.02'X that we do not see in the graph, and which are due to occasional
collisions in the various data arrays. Unlike SA-TSP, where there are very few data elements.
the number of data elements is very large in MP3D and so we do not see any large invalidations.
The monitor lock traffic distribution, however, is seen to have significant portions beyond single
invalidations. The ratio of time spent doing useful work to time spent in the monitor was
found to have an average value of about 16. If there are fewer than about 16 processors. they
manage to stagger themselves in the first round of contention. Contention in subsequent rounds
is very limited because staggering has occurred. This means that with any more than about 16
processors. we will see a step-increase in invalidations for each processor added. In this manner,
a well-behaved program can suddenly produce a very large number of invalidations as it is being
scaled.

It is interesting to note that a much faster implementation of the distributed index is possible
with some hardware support. This would shift t he ratio of unlocked to locked time to a much
higher value and would enable the program to be scaled beyond 16 processors. A similar result
could be achieved by increasing the grain size - for example by letting each processor move 5
molecules instead of one at a time.

The monitor lock illustrates another phenomenon. When contention for a critical section is
low. the lock references cause few invalidations. As more processors are added. the critical section
becomes a bottleneck and contention for the lock increases. This in turn raises the number of
invalidations caused by lock references. By fixing the program to remove the bottleneck we can
also fix the problem of generating a large number of invalidations. In conclusion, synchronization
objects themselves are not a problem unless contention for them is high. Since distributed loops
anid barriers are usually built out of spilt locks, this coti-lusion applies to these synchronization

12
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objects as well.

Most accesses to shared data by MP3D consist of a read followed immediately by a write.
This will allow at most one other cache to be invalidated, unless two processors are accessing
the exact same portion of data at the same time. Chances of such a collision are very low and
their effect can be tolerated in MP3D. hence no locks are required for the shared data. Update-
type data objects such as the shared data of MP3D, can be considered to be a special case of
migratory objects. and their invalidation behavior is very similar. The only difference is that
each data object is kept for only a short period of time before it moves on to the next processor.

As Figure 18 indicates, directories with just two or three pointers per entry would do ex-
tremely well with MP3D. For 3-pointer directory schemes we reduce broadcasts to 2.1% of
shared writes, even in the 16-processor case. A re-coding of the distributed loop as suggested
above could hold the broadcast percentage to below 1%. even if the number of processors is
scaled to well above 16. For MP3D a broadcast fraction of 17, of shared writes corresponds to
0.33 broadcasts per thousand references. which is low enough to be supportable in fairly large
machines.

6.4 Distributed CSIM

Figures 19. 20 and 21 give the invalidation distributions of Distributed CSIM. We note that the
number of shared writes is a much smaller fraction of all references than in the previous three
applications. Furthermore, very few shared writes cause more than 2 invalidations. Note that
this trace covers a section of code that does not have any synchronization at all, and this is wh,"
we do not show a further breakdown of the 16-processor distribution. The distributions we see
are for shared data only. Most shared writes cause only zero or single invalidations.

The basic data objects of Distributed CSIM are the element and net structures. Some parts
of these structures behave like mostly-read data (e.g., the activation flags) and some parts like
migratory data (e.g., next input event pointers). The invalidation patterns vary accordingly.

The activation flag of an element is set as a processor changes one of the element's input
values. Many processors can check this flag to see if an element is activated. Later. the element
is evaluated and the activation flags are reset. While the setting of the activation flag causes
only one invalidation, the resetting can cause many because many processors may have read the
flag in the meantime. The resetting of the activation flags causes about 60% of the shared writes
that result in more than single invalidations.

The next input event pointers, on the other hand, are used when an element is being eval-
uated. and are thus only read and written by one processor while it is updating the element.
Hence we see mostly single invalidations - the pattern typical for migratory data.

Another factor that affects the number of invalidations is the connectivity of the circuit being
evaluated. Nets that are connected to many elements. clock lines for example. are more likely
to cause large invalidations when they are updated.

Figure 22 shows that Distributed CSIM is well suited for directory-based cache schemes.
A single-pointer directory captures 17% of broadcasts and a second pointer diminishes this
fraction to 3.2V. Further reduction of broadcasts could only he achieved if the program exploited
processor locality in some way.

A scaling in the number of processors would result in a larger invalidation average per shared
write. but uot in more shared writes, since no synchronization objects are present ini this portion
of Distributed CSINI.
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6.5 LocusRoute

Figures 23. 24 and 25 show tile invalidation distributions for LocusRoute. It is noted that there
are very few shared writes per reference. This shows how a well-designed parallel program can
avoid excessive interprocess communication. Most of the invalidations are due to data objects.
The only synchronization object that shows up is a lock used to control the access to the shared
memory allocation routine (ShMalloc).

The single largest source of invalidations is the global cost array. It is a good example of
mostly-read data. It is frequently read while testing different routes for a wire. but is written
only when the wire route is decided. The average number of invalidations per shared write of
the cost array is about 2 with 16 processors, but some writes can cause up to 6 invalidations.
depending on how many processors have cached a given portion of the cost array (see Figure
27). Note that there are only 7400 shared writes to the cost array in the 7.7 million reference
16-processor trace.

Invalidations due to the ShMalloc lock axe very infrequent in this portion of the program
as the program keeps its own free lists and will have allocated most of its shared memory
requirement by the time the trace was gathered. As contention for the lock is non-existant, all
shared writes to the lock cause only zero or single invalidations (see Figure 26).

LocusRoute would be expected to scale well beyond 16 processors. The shared data is mostly-
read and shared writes are very infrequent. As more processors are added, the average number
of invalidations per shared write will increase slightly (because more processors are likely to have
cached a given portion of the cost array), but the number of shared writes is not expected to
increase.

7 Generalizations and Conclusions

We have proposed several classes of data objects that can be distinguished by their use in parallel
programs and by their invalidation traffic patterns. By merging the invalidation behavior found
in the applications discussed in the previous section, we can gain more general insights into the
invalidation patterns of certain high-level constructs. We also have the opportunity to predict
behavior beyond the 16 processor limit of the case studies.

Little needs to be said about code and read-only data. Since they are never written, they
never cause invalidations. Some directory schemes do not allow a memory location to be present
in more caches than there are entries (for example DirgNB schemes in [2)). This kind of scheme
is not suitable for shared code and read-only data.

Migratory data objects move from processor to processor as execution progresses, but they
are never manipulated by more than one processor at any one time. The node structures of
Maxflow and the global arrays of MP3D are good examples of this data type. Migration of the
data object causes at most single invalidations, because each processor writes to the object before
relinquishing control of it. Single invalidations are expected, even as the number of processors
is scaled. We note that a large number of these invalidations could be avoided if the processors
were smart enough to flush the data items out of their cache when they are no longer needed.
Hardware and operating system support for this feature seems desirable.

Synchronization primitives were found in all applications. In well-designed applications such
as Distributed CSIM and LocusRoute. contention for the critical sections protected by the locks
was minimized and this effectively reduced the invalidation traffic caused by the locks. It is seen
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then. that proper prograin design will allow the use of locks without a large volume of invalidation
traffic. As more processors are used. an ever increasing amount of effort will have to go into the
program design to avoid contention over locks. Alternatively. a separate mechanism for dealing
with synchronization traffic may be provided.

Mostly-read data such as the global cost array in LocusRoute has potential for causing a
large number of invalidations, since each write is preceded by a number of reads from various
processors. The average number of invalidations caused by each write is thus high. The good
news is that writes to this kind of data tend to be relatively infrequent and hence the total
invalidation traffic is not very large. With more processors. we expect an increase in the average
number of invalidations per shared write. because it is likely that more processors will have
touched the data object before a write to it takes place. Some of this effect may be mitigated
by taking advantage of locality. i.e.. assigning work in a local area of the problem to a relatively
small section of the processors available. We are currently exploring such issues of locality, which
we think will be critical in the design of highly scalable machines.

Frequently read/written data presents the largest problem in terms of invalidations. Not
only does each write cause several invalidations, but writes are also frequent. A good example of
this type of data is the variable in Maxflow that keeps track of how many processors are waiting
on the global queue. Frequently read/written data will show increased invalidations as more
processors are used. because more reads and more writes to the data item will take place. This
type of data object should be avoided for parallel applications with large number of processors.

In summary. in this paper we have presented data about the invalidation patterns of five
applications using 4. 8 and 16 processor traces. By classifying data objects, we are able to predict
invalidation behavior beyond the number of processors currently traced. Such extrapolation
suggests that directory-based cache schemes with just two or three pointers per entry can work
in scalable multiprocessors. if the applications are well-designed. In particular. effort has to be
put into limiting contention over synchronization objects and eliminating frequently read/written
data objects.
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