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MODELLING, INFORMATION PROCESSING, AND CONTROL I - 15 - 1989

FINAL SCIENTIFIC REPORT ON RESEARCH SUPPORTED BY AFOSR 85 - 0263

by David L. Russell

Principal Investigator

UW MIPAC Coordinator

Period Covered: September 30, 1985 through September 29, 1988

1. General Description of the Research Program. The subject grant

provided funds supporting research in a number of areas during
the period indicated. These include: control and identification

if distributed parameter systems, damping mechanisms in distribu-
ted elastic systems, modelling of large flexible structures, con-

trol of systems exhibiting nonlinear, self-excited oscillations
and control of nonlinear wave systems involving solitary waves.
Funds were used to support research activity by the principal in-
vestigator, visiting senior faculty researchers and graduate re-

search assistants, and also short term consultants and visitors.

In addition to salary support, funds were used to support scien-
tific computing relevant to the research program, domestic and

foreign travel by the principal investigator and one of his re-

search assistants, and to purchase needed supplies and equipment
related to operation of the UW MIPAC Facility.

Interim Scientific Reports detailing activities during the

first two years of the grant period have been filed earlier. We
adjoin copies of these reports as appendices to this report. In
the main body of the present report we detail scientific activi-

ties carried out during the third and final year of the period,
from September 30, 1987, to September 29, 1988.

Approved for publia release;

alstributiOl unlimited.
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2. Principal Results of the Research Program.

The main accomplishments of the research program supported

by the subject grant can be summarized as follows. First of

all, a total of five doctoral students were graduated during or

shortly after the grant period, all partially supported by the

grant.

Graduating_PhDStudent.s Suppqrted by the Program.

Dr. Katherine Kime (now Asst. Prof. at Case Western Res. U.)

Dr. Thomas Svobodny (Post Doc at Virginia Tech)

Dr. Robert Acar (Post Doc at Univ. of Oklahoma)

Dr. Khosro Shabtaie (current status unknown)

Dr. Scott W. Hansen (Post Doc at Virginia Tech)

As a result of the sponsored scientific research activity

noted above or carried out in previous years under earlier AFOSR
grants, a number of journal articles, reports and dissertations

appeared under UW MIPAC auspices during the reporting period.

Publications, Theses.

1. D. L. Russell: Frequency / Period Estimation and Adap-

tive Rejection of Periodic Disturbances, SIAM Journal

on Control and Optimization, 34 (1986), pp. 1276-1308.

2. D. L. Russell: A Floquet Decomposition for Volterra

Equations with Periodic Kernel and a Transform Approach

to Linear Recursion Equations, Journal of Differential

Equations, 68 (1937', pp. 41-71.

3. D. L. Russell: On the Positive Square Root of the

Fourth Derivative Operator, Quarterly of Applied

Mathematics 46, December, 1988.

. .-

iI_
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4. D. L. Russell: Some remarks on transfer function methods
for infinite dimensional linear systems, submitted to

SIAM Journal on Control.

5. D. L. Russell: On mathematical models for the elastic
beam with frequency proportional damping, to appear in
SIAM "Frontiers of Applied Mathematics" volume edited
by H. T. Banks, probably in 1989.

6. D. L. Russell: Mathematical models for the elastic beam
and their control-theoretic implications, in "Semi-

groups, theory and applications, Vol. II", #152 in
Pitman "Research Notes in Mathematics", Longman House,
Harlow, UK, 1986, pp. 177 - 216.

7. D. L. Russell: Spectral and asymptotic properties of
linear elastic systems with internal damping, to appear
in Proc. Conf. on Boundary Stabilization and Control,
Clermont-Ferrand, France, 1987, J. Simon, Ed.

8. G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne,

H. H. West and M. P. Coleman: .4nalysis, design and
behavior of dissipative joints for coupled beams,

to appear.

9. Katherine A. Kime: Boundary Controllability of Max-
well's Equations in a Spherical Region, Thesis, Univ-
ersity of Wisconsin, Madison, August, 1986.

10. Thomas J. Bridges: On the Two-Dimensional Periodic

Surface Waves Occurring in Rectangular Vessels: Theory
Versus Experiment, Technical Summary Report #2878,
Mathematics Research Center, University of Wisconsin-
Madison.

11. Thomas P. Svobodny: State reconstruction and dynamic
observers for nonlinear differential equations, Thesis,
University of Wisconsin - Madison, August, 1987.

12. Thomas P. Svobodny and D. L. Russell: Phase identifica-
tion in linear time-periodic systems, to appear in IEEE
Transactions on Automatic Control.
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13. Thomas P. Svobodny: Stability of nonlinear observers

for dissipative ordinary differential equations, to

appear in Int. J. Control.

14. Robert Acar: Identification of Coefficients in Elliptic

Systems, Thesis, University of Wisconsin - Madison,

August, 1987 (Submitted to SIAM J. Cont. & Opt.)

15. Khosro Shabtaie: State and Parameter Identification in

Elastic Systems, Thesis, University of Wisconsin -

Madison, August, 1987.

16. Scott W. Hansen: Frequency-proportional damping models

for the Euler-Bernoulli beam equation, Thesis, Univer-
sity of Wisconsin - Madison, December, 1988

17. W. Hereman, P. P. Banerjee and D. Faker: Construction
of solitary wave solutions of the Korteweg-de Vriess

equation via Painlev' analysis, CMS Technical Summary
Report =89-8, Center for the Mathematical Sciences,

University of Wisconsin - Madison, September 1988

18. P. P. Banerjee, W. Choe, G. Cao and W. Hereman: Stat-
ionary eigenmodes and their stability during wave pro-

pagation in a medium with quadratic and cubic nonlin-
earities without dispersion, CMS Technical Summary
Report #89-9, Center for the Mathematical Sciences,

University of Wisconsin - Madison, September, 1988

19. W. Hereman, P. P. Banerjee and M. R. Chatterjee: Deri-

vation and implicit solution of the Harry - Dym equa-

tion, and its connections with the Korteweg - de Vriess
equation, to appear.
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Report on Scientific Activities Supported by AFOSR 85 - 0263

Durina the Period September 30, 1987, to September 29, 1988.

I. Overview

During the indicated period the principal investigator, vis-

iting senior research faculty and graduate research assistants

connected with the UW MIPAC Facility carried forward a program of

research and experimentation in various areas of control theory

and related aspects of applied mathematics. Areas of particular

emphasis in this research program include:

(a) Control and stability of linear d4stributed parameter

systems, transform methods for input/output admissi-

bility and closed loop system analysis and description.

(b) Structural damping mechanisms in distributed elastic

systems;

(c) Control theory of nonlinear partial differential equa-

tions exhibiting solitary wave solutions.

These activities were pursued by the principal investigator,

three visiting senior research faculty, i.e.,

Prof. Willy Hereman, Van Vleck Assistant Professor,

University of Wisconsin - Madison (this is a

visiting position); active during entire report

period.

Prof. Partha P. Banerjee, Syracuse University; Spring

semester, 1988 (also supported in part by the

Department of Electrical and Computer Engineering)

Prof. Gunter Ilugering, Technische Hochschule, Darm-

stadt, Wpst Germany; October, 1987.

Prof. Jack Cart, Heriot - Watt University, Edinburgh;

partial support during spring semester, 1988.
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The services of a number of short term consultants were sup-
ported, including: L

Prof. G. Chen, Texas A. & M. University,

Prof. Ruth Curtain, University of Groningen,
Prof. Elena Fernandez, Virginia Tech.,
Prof. Luther White, University of Oklahoma.
Dr. K. D. Graham, Honeywell, Inc., Minneapolis

Equipment consulting services provided by MTS Corp., Minneapolis,
SMS Corp., Detroit, and Hewlett - Packard, Rolling Meadows, Illi-
nois, all in connection with MIPAC Facility equipment, were pur-
chased with grant funds.

In the next section we describe in more detail the research
areas listed as (a),(b) and (c) above, indicating the role played
ir these researches by the individuals indicated here.

In tho final section of the report we describe the Workshop
on Computational and Experimental Aspects of Control, convened
in Madison during May of 1988 with partial support from AFOSR,
and we briefly describe other aspects of the research program,
such as participation in scientific meetings, foreign and domes-

tic travel, etc.



II. Further Description of the Research Program.

Here we discuss in somewhat greater detail the particular

areas of research emphasis listed in the preceding section.

(a) Control and stability of-dislributed p~rametersystems

transform methods for inRut/outputadmissibility and.closed

loopsxstem analysis and_description.

This effort has consisted primarily in two parts. The first

part concerns the controllability of elastic beam models which

incorporate dissipation terms of such a nature as to cause the

model to exhibit frequency proportional, or asymptotically fre-
quency proportional, modal damping behavior. In this research

the principal investigator has worked closely with a graduate
research assistant, Scott W. Hansen, who received the PhD degree

in Mathematics from the University of Wisconsin in December of
1988, shortly after the end of the grant period. Mr. Hansen

received partial support from the subject grant which materially

assisted him in his research program. The thesis deals with so-
called bending rate damping, which in the Euler - Bernoulli con-
text is modelled by the partial differential equation

3w _2 33 w o 4w 0,
at2 aa2 a43t 3t~x +K 3x =O

along with modified boundary conditions to ensure energy dissipa-
tion, and with what has been called the spatial hysteresis model

a x+6

Paw - 2-Y L h+ - (32Wx(x,t)- aw (-,t) + El ')w 0,a 2 3 3tax atax ax

also equipped with appropriate boundary conditions. The thesis
involved examination of natural boundary conditions, estimates of
eigenvalues and eigenfunctions, comparison with the so-called

square root damping model

p w + 2- AL/a w + A w = 0,
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analysis of controllability with distributed and point actuators,

perturbation and resolvent methods to establish holomorphicity

of the related strongly continuous semigroup in the energy space,
and other related topics.

Stability studies were carried out by Prof. Gunter Leugering
of Technische Hochschule Darmstadt, who visited during October,

1988. He has been concerned with certain damping mechanisms in

elastic structures which are of viscoelastic type, involving

time delay, or memory, terms. The asymptotic stability proper-

ties of a number of models of this sort were studied using modi-
fied Liapounov methods. Prof. Leugering was supported in part by

the subject grant during his visit.

The 1980's have witnessed a resurgence of research interest in
the transfer function description of linear input - output systems.
These methods have a number of attractive properties, particularly

in regard to questions of robustness with respect to system varia-
tions, as developed, e.g., in the papers of Doyle and Stein, as well
as many others, too numerous to cite in any representative way.

The application of these methods, sometimes called H methods be-

cause of the boundedness property in a right half plane character-
istic of transfer functions of well-posed, nonanticipative linear
Rystems, has been extended to infinite dimensional ("distributed

parameter") systems oniy relatively recently. We cite the works of
Callier and Desoer, Curtain and Pritchard, Salamon, Francis among

others. Numerous references are cited in the well known text by
Francis and in a recent expository article by R. Curtain.

The majority of "H " studies for infinite dimensional systems
have been conducted in the context of systems possessing transfer

functions in the so-called Callier - Desoer class, which excludes
transfer functions important in a variety of applications, such as
undamped, or lightly damped, elastic systems described by partial
differential equations of hyperbolic type, neutral functional equa-
tions, etc.

Our recent research does not treat H control synthesis methods;
rather, it aims to develop certain properties of transfer tunctions
of some systems which do not belong to the Callier - Desoer class. It
turns out that transfer functions of systems such as those we have
treated have some rather unusual, one might even say disconcerting,



-9-

properties, particularly in relation to ronvergence questions with

respect to approximation via finite dimensional systems. In addition
to these approximation questions, we have studied the use of transfer

function methods to analyze closed - loop systems arising out of cer-
tain linear feedback laws, use of transfer functions to determine the

admissibility of input and output mechanisms, and a number of other,
related, matters. In the process we have developed a representation

of the semigroup in terms of its inverse Laplace transform which,

in its specific context, is less restrictive than the resolvent int-
egral representation in Dunford and Schwartz.

The present work is, for convenience, couched in the single in-

put - single output framework but most of the results obtained extend
rather directly to systems with a finite number of inputs and out-

puts. This is certainly not the case for H methods in general be-

cause of the non-commutativity of matrix multiplication, but that

noncommutativity plays a minor role relative to the topics of inte-
rest to us in our work so far, which is reported i1L detail in the

paper (4.) listed earlier in this report.

The primary motivation for this research may be summarized as
follows. The recent success of frequency domain methods virtually
guarantees that a large fraction of future distributed parameter con-

trol research will be carried out within this framework. That grant-
'd, At seems iriportant to us Lhdu the connections between frequency
don'ain representations and their state space counterparts should be
fully explored, with appropriate cautions posted where those connec-

tions appear to be somewhat tenuous. We are hupeful that the work
described here will represent a useful step in that direction. A

logical direction for future work is to develop H_ synthesis tech-
niques for systems of the sort just described, including co-prime

factorization techniques, etc., taking into account the properties

actually possessed by systems related to important application areas.

A copy of the paper in which this research is documented is attach-
ed as Appendix C, below.(a)

(b) atmugt.rgl damping-mgchanisms in distributed elastic_systems.

In this research we continued our efforts toward finding mo-
dels replicating observed damping phenomena in simple elastic



systems, the Euler and Timoshenko beam equations being used as

prime examples. A prime consideration was to obtain models based
on physical principles and thus defensible from that point of

view as well as from that of mathematical rigor and convenience.

Two mechanisms new in this context were introduced; namely, ther-

moelastic damping and shear diffusion damping. These mechanisms

are indirect in the sense that they involve the coupling of the

mechanical equations governing beam motion to related dissipative
systems with their own dynamics, resulting in an overall system

in which mechanical energy is dissipated.

Thermoelastic damping involves the heat diffusion process

)T (x,t) - k T(x,t) + K 'j3w- (x,t)
) t .) t. X 2

coupled with the familiar Euler - Bernoulli equation

3w El 4 - + L - 0
2 x

by means of the w term in the first equation And the T term in

the second. The complete system consists of these two equations

The complete system then consists of the two indicated equations
with appropriate boundary conditions, which we do not elaborate

upon here. The damping Action is explained in terms of differ-

ential heating of opposite sides of the beam in bending, with

subsequent heat conduction, resualting in a loss o" mechanical

energy.

We can replace the aiir of equations by a single equation by

differentiating the firs-; - -tuation twice with respect to x and

substituting into the -lpatlon obtained from the second by apply-

ing to it the operator )--- + k I, arriving finally at
) t

P ALw + Pk --a + tEI+ LK) a5w + Elk 14w = 0
3t3 t

a  
atax, 3x

4

Working with this equation we can see that the exponential damp-

ing rate versus frequency relationship is quadratic at low fre-



&

quencies, tending to asymptotically constant rates as the freq-
uency tends to infinity. This behavior is suspected to be accu-
rate for certain metallic beams in which thermoelastic effects
might be expected to be significant contributors to the overall
vibration damping effect.

The shear diffusion damping model begins with the Timoshenko
beam model which, written in terms of the lateral displacement w
and the shear angle P, becomes

32 2 2 (33# =
S+ + E W) = 0

1) t at 3x 3t a 3x ax

+ '33W J + K# - EI "2 + ')3) = 0
3~t 2 ")t 23x 13X2 3X3

In the second equation all terms except the first can be regard-
ed as shearing forces to which the shear angle 0 responds through
the action of the first term. In the shear diffusion model we

suppose that a further viscous force affects the evolution of 0:

+ 3w,2# a K# - EI[- ( '2 +6w
3t ' 3t 3x 3t t3x x

Most commonly we assume Ip to be very small relative to the other

constants present and we neglect the first term. What remains is
a diffusion process for 9, hence the name. After some manipula-
tion we eventually arrive at the single equation

2 2 p"w _ 3w 4w a ,w 4,

3 -E 3 + E J + p + El w W 0.
K x

2 2 4 ) t2 3X

It turns out that here the damping versus frequency relat-
ionship is cubic at low frequencies, tending asymptotically to a
linear relationship at high frequencies, asymptotically in agree-
menmt with many experimental studies of internal damping. By
combining thermoelastic and shear diffusion damping in different
ratios, a variety of behaviors corresponding to those observed
under various circumstances in the laboratory can be obtained.

The research reported under (a), carried out by Research

mm nowm
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Assistant Scott W. Hansen, insofar as it deals with mathematical
properties of partial differential equations modelling dissipa-

tion in elastic beams, is also in important component of the

research area being described here.

(c) Control Iheory_of nonlinear nartial differential equations

exhibiting_solitary wave solutions.

This research has been carried out in cooperation with Re-
search Associate, Dr. Willy Hereman, Visiting Assistant Professor

Dr. Partha P. Banerjee (Syracuse U.) and Research Assistant, Mr.

Zhang Bing - Yu, for whom a portion of this research will consti-
tute his doctoral dissertation. It concerns partial differential

equations such as the Korteweg - de Vriess (KdV) equation

3w + 3 w _w + "3w 0
13t 3x 3x a 3

other nonlinear partial differential equations, such as the Bous-
sinesq, modified KdV, and Harry - Dym equations which, like the

KdV equation, exhibit solitary travelling wave solutions, and au-
xiliary linear equations used in conjunction with these, e.g.,

-- + 3W = 0
;)t )X 3

and other third order linear equations are useful in studying the

KdV equation.

Professors Hereman and Banerjee have been working on the re-
lationships between the various partial differential equations
which exhibit solitary waves. With the aid of MACSYMA, rather
remarkable transformations have been discovered mapping, e.g.,
the KdV equation over into the Harry - Dym equation, at first

appearing to be quite dissimilar to the KdV equation. In fact,

a group of transformations connecting KdV, modified KdV and the

Harry - Dym equation has been discovered. These results are
significant because in control and other studies on these equa-

tions, which find applications in fluid dynamics, optical signal
transmission, neuron pulses, and many other areas, it will be



-13-

possible to concentrate studies on a single prototype model, pro-
bably the KdV model since its properties are well documented in

the literature.

Research Assistant Mr. Zhang Bing - Yu has been studying the
control properties of the KdV equation with a boundary control

term. Results are still preliminary, but promising. Linearized
equations, which are of third order, have been investigated by a
variety of methods, including Laplace transform methods, and have
been seen to have controllability properties not very different

from the heat equation. Mr. Zhang is continuing his work under a
successor AFOSR grant.
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III. Other Activities Supported by the Grant.

Travel supported by the grant during the subject period in-

cluded:

i. A trip by the Principal Investigator to the December,

1987 IEEE/SIAM CDC Conference in Los Angeles, where a
paper on dissipation in elastic systems was presented.

ii. A trip by the Principal Investigator to Detroit, Michi-
gan, to confer with personnel of Structural Measurements,

Inc., on operator of MIPAc Facility software.

iii. A trip by Associate Investigator, Dr. Willy Hereman, to

the 1988 Summer SIAM meeting in Minneapolis.

iv. (As a result of a decision to carry out 1988-89 academic

year operations at Virginia Tech. ) A trip by the Princi-
pal Investigator to Blacksburg, Virginia to discuss and

carry out, in part, transfer operations.

During the period May 16, 17, 18, 1988, a Workshop on Experi-

mental and Computational Aspects of Control was convened in Madison
to review recent developments and techniques in this area. Several

speakers presented talks, including H. T. Banks, J. A. Burns, P. P.
Baneree, J. McLauhlin, L. White, A. Laub, J. S. Gibson, A. Littman.
While the majority of workshop expenses were covered by an INSF irant,

we are happy to acknowledge the partial support of the subject AFOSR
grant in helping to pay transportation costs and other expenses of

speakers and participants, as well as partial salary support for the

organizers during the period of planning for the workshop. We are
particularly gratified that Lt. Col. James Crowley of AFOSR was able

to be present at the Workshop and take part in its activities.
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APPENDIX A

Report on Activities Supported by the Grant During Year 1.
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Department of Mathematics
Univ, rsity of Wisconsin

Macdison, WisconsinM IP C53706

MODELLING, INFORMATION PROCESSING, AND CONTROL Decem'er 31, 1986

INTERIM SCIENTIFIC REPORT ON RESEARCH SUPPORTED BY AFOSR 85 - 0263

by David L. Russell

Principal Investigator

UW MIPAC Coordinator

Period Covered: September 30, 1985 through September 29, 1986

1. General. The subject grant supported research in control and

identification of distributed parameter systems, large flexible
structures, and nonlinear self-excited oscillations during the per-
iod September 30, 1985 through September 29, 1986. Funds were used
to support research activity by the Principal Investigator, several
graduate Research Assistants and visiting senior faculty from other
institutions who were supported here for short periods as consult-
ants in connection with various projects. In addition to salary
and visitor support, funds were used to support scientific comput-
ing relevant to the research program, to support domestic and for-
eign travel by the Principal Investigator and one of his Research
Assistants, and to purchase needed supplies and equipment related
to operation of the UW MIPAC Facility in two locations on the UW
Madison Campus. Below we describe these research activities in
greater detail and then adjoin appendices consisting )f several
recent research reports.
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2. Research Activities. During the subject grant period the Prin-

cipal Investigator, Research Assistants and Visitors connected with

the UW MIPAC Facility carried forward a program of research and ex-

perimentation in various areas of mathematical systems theory. Areas
of particular emphasis in this research include:

(a) Theory and implementation of distributed parameter systems

control;

(b) Parameter identification for distributed systems of eilip-

tic and parabolic types;

(c) Modelling, control and state estimation for nonlinear

systems with concentration on systems exhibiting self-

excited oscillations and those subject to periodic forcing.

(d) Control of wave processes governed by the Maxwell electro-

magnetic equations.

(e) Development of mathemtical models for structural damping
mechanisms in elastic structures.

These activities were pursued by the Principal Investigator,
a total of five Research Assistants, including:

Robert Acar,
Scott Hansen,
Katherine Kime,

Khosro Shabtaie,

Thomas Svobodny,

and by at least eight visiting Senior Consultants and other short

term visitors from other institutions, including
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S. Banda, Wright-Patterson Air Force Base,
Thomas Bridges, Worcester Polytechnic Institute,

G. Chen, Pennsylvania State University,
Joyce O"Halloran, University of Wisconsin - Milwaukee,
Willy Hereman, University of Ghent, Belgium,

D. L. Lukes, University of Virginia,
Luther White, University of Oklahoma,
Robert Wheeler, Virginia Polytechnic Institute.

The visit of Dr. S. Banda of Wright-Patterson AFB was extremely

helpful in opening up channels of communication with that facility
and the Air Force Institute of Technology in particular. While he
was on our campus, Dr. Banda gave a talk on robust control research
projects currently under way at Wright-Patterson.

Below we comment in somewhat greater detail concerning the re-
search areas listed above and we indicate the role played in furth-
ering this research by individual Research Assistants, Consultants
and Visitors.

In connection with areas (a)and (d) we are particularly grat-
ified to report completion of the PhD requirements by Katherine
Kime, who graduated in August, 1986. Subsequently, "Kathy" accep-
ted a rare opportunity granted by the government of France, in the
form of the Bourse Chateaubriand, which provided fundm for her tc
spend a post-doctoral year in France working with Prof. A. Blaqui-
f

ere and his group and with the Control Group at INRIA in Versailles.
It is anticipated that she will accept a tenure track, or further
post-doctoral, position in the United States at the end of her

visit to France. Her receipt of the Bourse Chateaubriand is quite
noteworthy as the total number of awards in the U.S. each year (not

restricted to mathematics) is on the order of twenty or so.

Kathy's thesis, an excerpt from which is attached as Appendix
A, is concerned with the control of electromagnetic fields in

three dimensional spatial regions by means of controlling currents
flowing on the boundary of that region. Earlier research carried
out by the Principal Investigator, and supported by AFOSR, estab-

lished field controllability in an infinite cylindrical region un-
der the assumption thet the fields and applied control currents
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were independent of the axial coordinate of the cylinder. In her

thesis Kathy extended this work to a cylinder of finite length,

the fields and controls being subject to periodic boundary condi-

tions at the ends of the cylinder and then went on to the far more

difficult task of analyzing the control problem in regions of arbi-

trary geometry. This work is particularly intricate because of the

necessity to study divergence-free solutions of the vector wave

equation, including the specification of the very special Hilbert

spaces, related to divergence-free solutions, which serve as state

spaces for these electromagnetic processes. The correct framework

for posing the control problem was developed in a general geometric

contextg and specific affirmative control results were obtained by

moment-theoretic methods in a three dimensional ball -s.haped region.

It is expected that parts of this work will appear in the SIAM Jour-

nal on Control and Optimization Rnd in the Proceedings (A) of the

Royal Society of Edinburgh.

Research in area (e), the modelling of structural damping mech-
anisms, advanced significantly during the subject reporting period.

The integro-partial differential equation model for structural damp-

ing described in the final scientific report on AFOSR 84 - 0088 one

year ago has been related, at least partially, to a physical damping
mechanism developed by Dr. Clarence Zener, a prominent physical and

engineering theoretician associated with Carnegie-Mellon, and desc-

ribed in his well known text Elasticity and Anelasticity. This, of

course, does not mean that Zener anticipated our mathematical model.

Rather, it means that our mathematical model is consistent with his
physical description, which is given in terms of thermoelastic ef-

fects and heat conduction within the elastic beam being studied.

These connections were discovered, almost accidentally, during a

visit to Carnegie-Mellon by the Principal Investigator.

The prototype mathematical model for structural damping is the

square root" model described the the Principal Investigator and G.

Chen of Pennsylvania State University in the Quarterly of Applied

Vathematics, 1974. The integro-partial differential equation mod-

el referred to in the previous paragraph is a rather naturai out-

growth of the work which was done to develop the square root model
which, abstractly, takes the form of a second order system in Hil-

bert space of the form
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P dt + 2Y A 1 /2 d + A w = 0
dt a  dt+Aw 0

where A I/2 denotes the positive square root of the positive self-
adjoint elasticity operator A. While mathematically appealing,

this model, applied to the elastic beam case, can be assignee a
definite physical interpretation in terms of damping forces pro-
portional to local bending rates only in those cases where the
boundary conditions on A, essentially the fourth order derivative
operator for the Euler - Bernoulli beam, are such that the positive

square root A1 / 2 coincides with the negative second derivative op-
erator. Conseq,,ently, we have felt it to be desirable to explore
the mathematical relationship between the negative second deriva-

tive operator and A 1 / 2 for those boundpry conditions where the two
do not coincide. Work largely carried out during the subject re-
porting period has shown that, with D denoting the negative second

derivative operator, we have

D = (I + P) A
1/ 2

where P is a bounded, but in general not compact, operator related

to the classical Muntz-Szasz theory of real exponentials. As a re-

sult it is seen that D has domain including that of A I / 2 in all
cases. Further work is directed toward determining in what sense,

if any, the operator P may be regarded as small in order to facili-
tate an appropriate perturbation theory.

Related work in this area is being carried out by Research
Assistant Scott Hansen, ',ho is exploring the structure of the vib-
rational modes for a variety of systems serving as structural damp-
ing models. This work has been well advanced during the period
and is expected to lead, eventually, to Mr. Hansen's PhD disserta-

tion.

Research area (b), parameter estimation for elliptic systems,
has received considerable &LLextion during the period. The Princi-
pal Investigator and Research Assistant Robert Acar attended the
University of Oklahoma Symposium, largely devoted to this topic,

during October, 1985, the former presenting a paper at the meeting
concerning results obtained with an equation error method based on

linear programming which shows considerable promise. Robert Acar
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has been developing, and is currently completing a PhD dissertation
on, an equation error method for computing an unknown coefficient

function p(x,y) in the elliptic equation

v pv = f

Mr. Acar's method uses a duality method in order to avoid having to

actually compute approximations to the Laplacian of the solution v.
All that is required is that the data should admit reasonably reli-
able estimation of the gradient of Q, Vq. Initial computational
tests of the method have proved encouraging and further tests of the
method are planned in the course of the completion of the thesis.
The visit to this campus of Professor Luther White of the University
of Oklahoma in August, in conjunction with the first MIPAC workshop
has resulted in continuing and significant contacts between Mr. Acar
and Professor White in this intriguing and difficult area.

Our efforts in research area (c), modelling, control and state
estimation for nonlinear systems, are being carried out by the Prin-
cipal Investigator and Research Assistant Thomas Svobodny. The lat-

ter is expected to complete a PhD dissertation on this subject and
graduate in June, 1987. The main interest focusses on a nonlinear
differential system which includes a two dimensional component whose

uncoupled representation takes the form

2 g(y,.d0X) + h(y) ft)
dt dt dt

In the unforced case, f(t) = 0, the main interest centers on self-

excited oscil. tions - periodic solutions with a minimum period T
which arises due to differing stability properties near the origin
as compared with the far field. Such oscillations occur in many
physical contexts, such as wing and fuselage flutter, panel flutter,
power plants under lean fuel conditions, etc. - far too many appli-
cations to do justice to here. We are primarily concerned with the

question of being able to identify the state y, dy, along with the

dt
state vector, x, of a coupled elastic system during operation of
the coupled system, usually on the basis of measurement of a limit-
ed number of components of the elastic state vector, x. In the

course of his work, Mr. Svobodny has developed methods originally
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designed for state estimation of periodic linear systems so that

they are now effective for use in the neighborhood of a periodic

solution of a nonlinear system such as we have exhibited here. We

have also carried out some work in connection with the forced sys-

tem, wherein f(t) is a periodic forcing function affecting the sys-

tem. Mr. Svobodny and the Principal Investigator were very much

the beneficiaries of the visit to the UW Campus of Professor D. L.

Lukes of the University of Virginia, which began in September of
1986 and which was partially supported by the subject AFOSR grant.

We feel it is also significant that some of the data used by Mr.
Svobodny in his work has been obtained from real aerodynamic sys-
tems with the aid of UW MIPAC equipment, acquired with the partial
support of AFOSR under the Universities' Instrumentation Program.

Other work in the nonlinear area has been carried out by Dr.

Thomas Bridges, a visiting Assistant Professor, now with Worcester

Polytechnic Institute. Dr. Bridges carried out extensive studies

of bifurcations of sloshing waves in a tank subject to a periodic
disturbance, comparing theoretical calculations with observations
made on a water-filled tank excited with UW MIPAC's Bruel & Kjaer

Vibration Exciter. Substantial agreement between theory and ex-
periment was recorded and documented in a report prepared by Dr.
Bridges at the end of his research.

Finally we report on work covered partly by research area (b)

above and by research area (a). The Principal Investigator and
Research Assistant Khosro Shabtaie have been studying identification
problems associated with the Euler - Bernoulli beam equation,

P w + E1 - = 0,
3ta 3x -

which may be regarded as being of parabolic type since the family

of characteristics is degenerate, along with similar equations

which incorporate various structural damping mechanisms, as descri-
bed earlier under (e). Shabtaie has been investigating on-line
parameter identification schemes, in particular a method newly dev-

eloped at UW MIPAC which we call the estimator predictor method.
It has some features in common with Y. Landau's model reference
method but appears to outperform it quite significantly on tests.
These tests have been carried out using real data obtained from a

beam in the UW MIPAC Analysis unit, the data being collected and
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analyzed with our HP 5451C System Analyzer from a steel beam set

into vibration with the Bruel and Kjaer electromagnetic shaker.

In this area the Principal Investigator has recently been in-

terested in identification methods based on frequency domain meth-

ods, including methods which rely entirely on the measured natural

frequencies of the above-displayed system to determine EI(x)/P(x)
and methods, now proving very interesting, for estimation of this

quantity from the trace cf the transfer function of the system on
the imaginary axis of the complex plane, the function most easily

observed using standard FFT techniques. The transfer function id-
entification techniques, in addition to showing promise for use in

applications, are highly interesting from the mathematical point of
view because of their relationship to Hilbert and Hankel transforms

We expect to present a paper on this subject at the forthcoming In-
ternational Conference on Industrial and Applied Mathematics in

Paris, scheduled for June 29 - July 3, 1987.
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3. Supporting Activities.

(a) Publicatjons. As a result of the scientific research activity

described above or carried on in previous years under other AFOSR

grants, a number of journal articles, reports and dissertations

appeared under UW MIPAC auspices during the reporting period.

These include the following:

1. D. L. Russell: "Frequency / Period Estimation and Adap-
tive Rejection of Periodic Disturbances." Appeared in

SIAM Journal on Control, Vol. 34 (1986), pp. 1276-1308.
Reprint enclosed with this report.

2. D. L. Russell: ",A Floquet Decomposition for tolterra

Equations with Periodic Kernel and a Transform Approach

to Linear Recursion Equations." 3ubmitted to, and accep-

ted by, the Journal of Differential Equations.

3. D. L. Russell: "On the Positive Square Root of the
Fourth Derivative Operator. Prepared as UW MIPAC

Report. Now being readied for journal submission,
probably to the Quarterly of Applied Mathematics.
A copy is attached as Appendix A.

4. Katherine A. Kime: "Boundary Controllability cf Mfax-

well's Equations in a Spherical Region". Thesis, ini-

ersity of Wisconsin, Madison, August, 1986. Appeared
in part as Mathematics Research Center Technical Slim-

mary Report, enclosed as Appendix B.

5. Thomas J. Bridges: "On the Two-Dimensional Periodic

Surface Waves Occurring in Rectangular Vessels: Theory
Versus Experiment." Mathematics Research Center Tech-

nical Summary Report '2878. A copy is attached as

Appendix C.

Additionally, some of the work of Prof. Dahlard L. Lukes, who
visited here over a period partially included in the reporting

period, is being written up as a MIPAC Report. It will be forward-
ed to AFOSR when available. Professor Goong Chen of Pennsylvania

State University is preparing a report on segmented elastic beams

which, in part, describes results on natural frequency distribution
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of such beams obtainpd with the use of UW MIPAC facilities.

(b) Educational. In addition to the standard educational activities

inherent in graduate education, thesis supervision, etc., UW MIPAC

is pursuing the idea of a Workshop on Mathematical Modelling and
Control Implementation. It is our hope to be able to offer this

workshop at least biennially, beginning in the academic year 1987-
1988. A proposal for partial NSF support to supplement our AFOSR

funds to this end has been submitted to the Applied Mathematics Div-
ision of NSF. A prototype workshop, to determine initial guidelines

for the operation of such a workshop was held at UW MIPAC in August,
1986. A series of five talks was presented by the Principal Inves-

tigator in the general area of Fast Fourier Transform analysis, with
emphasis on natural frequency identification, damping rate estima-

tion, recognition of nonlinear dynamics, and other topics in the
general area of mathematical modelling. Initial results were prom-

ising but did indicate definite problem areas which are currently

under study. Very careful attention to experiment preparation and
modes of display of graphic materials was strongly indicated by

prototype workshop experience.

(c) Travel. In May and June, 1986, the Principal Investigator tra%-

elled to Pakistan, partially supported by AFOSR funds, visiting and

giving lectures at Karachi University, Quaid-e-Azam University in
Islamabad, the capital of Pakistan, and Bahauddin Zakkariya _nixer-
sity of Multan. The reception of the .i;ht lectures presented was
most enthusiastic and significant scientific contacts were made.

The Principal Investigator was impressed with the scientific efforts
being made at the instilutions visited, in spite of generally small

nationwide numbers of scLentific personnel and severe deprivation

in the area of modern c mputing facilities. some efforts to allev-
iate the latter situation "ere evident during the %isit to Multan
where a new DZC VAX 11.30 ,as being installed.

(d) .W_MPAC_Fcjlitx Equipment Augmentation-adResearch Planj.

As a result of a $220,000 grant under the 1986-1987 DoD Uni-
versities Instrumentation Program, UW MIPAC is installing addition-
al experimental equipment in its Model Development Unit at 1307



-26-

University Ave. in Madison. The new equipment includes a Hewlett-

Packard 3526 Fourier Analyzer, a HP 310 minicomputer and related
peripheral equipment, a DISA Laser Vibrometer and an MTS High Fre-
quency Vibration Test Facility. The first two are already in place,

delivery of the Laser Vibrometer is expected within the next few
weeks, and we expect the High Frequency Vibration Test Facility

(HFVTF henceforth) to be installed during spring 1987. The HFVTF
will enable us to study fairly large and complex flexible struc-

tures both in passive vibration and in the presence of external

disturbances and controls. The Laser Vibrometer will, for the

first time, enable us to make non-contact measurements on models
used for experiment. We will be making the facilities of UW MIPAC
widely available to other researchers, both on this campus and

elsewhere. Professor Goong Chen of Penn State has already used our

facilities for segmented beam studies, Professor Robert Wheeler of
VPI has checked some properties of beams with viscoelastic damping,

and Professor Luther White of the University of Oklahoma will be
visiting in March, 1987 to carry out experiments connected with

elastic modulus coefficient identification for aluminum plates.

The new DISA Laser Vibrometer and the MTS HFVTF will bp used by

Professor White to carry out scanning measurements of aluminum
plates in order to obtain data for identification computations con-

nected with algorithms which he has been studying as part of his

research program.
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APPENDIX B

Report on Activities Supported by the Grant During Year 2
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1. General.

During the period September 30, 1986, through September 29,
1987, which is the second year of operation of UW MIPAC under fund-

ing provided by the subject grant (hereinafter we will refer to
"the second grant year" to describe this period) a large variety

of scientific activities were undertaken with partial or complete
support from the subject grant. These activities include:

i) Research Pursued by the Principal Investigator;

ii) Research carried out by associates at the University of Wis-
consin or by visitors to UW supported in part by the subject

grant;

iii) Research carried out by research assistants and dissertators
supported in part by the subject grant; PhD graduates.

iv) Experimental Research carried out in the UW MIPAC Laboratory;

v) Joint experimental research carried out with UW MIPPAC visitors
partially supported by the subject grant;

vi) Installation and testing of new UW MIPAC equipment;

vii) Seminars, invited speakers;

viii) Documentation and bibliographical efforts;

ix) Scientific travel, lectures;

We proceed now to report in more detail, on the activities car-
ried out during the second grant year in each of these categories.
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i) Research Pursued by the Principal Investigator

During the second grant year the Principal Investigator has

been concerned with several areas of research.

A continuing interest has been that of damping mechanisms in

elastic structures; elastic beams in particular. While more realis-
tic models have been suggested in the interim, the original journal
article by the Principal Investigator and Prof. G. Chen, now Profes-
sor at Texas A & M University, which first set frequency proportional
damping on a firm mathematical footing, remains widely quoted. Its

main disadvantage has been that, for a wide variety of elasticity

operators A, the operator coefficient A'/a in the equation

x + 27 A1 / 2 x + A x = 0

has remained a poorly understood mathematical entity. To a degree

that mystery has been removed with the completion of the Principal
Investigator's paper on the positive square root of the fourth order
operator

A w -~

dx4

in the general case which includes all "natural" boundary conditions.
In this paper it is shown that in all of these cases

A1/a= (I + Q) D2 , D W = d aw

dx
2 '

where Q is a bounded, but in general not compact, operator. In the
case of "paired" boundary conditions, where the eigenfunctions of A
are purely trigonometric, D = 0. The proof of the main result just

indicated shows that A1 / 2 is always relatively bounded with respect

to Da but is not generally relatively compact with respect to that

operator. The companion result to the effect that

Da = (I + P) Al/a

where P is also a bounded operator, is also proved. In addition to



-31-

mathematical interest, these results are also important because they

impact the theory of other models, such as what has been called the
"spatial hysteresis model", to the degree that these other models are

perturbations of the basic square root model. These results will

appear in the Quarterly of Applied Mathematics.

Because experience with UW MIPAC Facility equipment has indica-

ted that information on the transfer function, or frequency response

function, is a readily available indicator of many distributed para-
meter system characteristics, the Principal Investigator, in his most

recent work, has turned to a study of transfer functions of distribu-

ted parameter systems and the uses to which they can be put. A paper

presented at the International Congress on Industrial and Applied

Mathematics (ICIAM) in Paris, France, July, 1987, demonstrates that

the values of the transfer function are often mathematically suffi-
cient in order to determine the coefficients of the elasticity opera-

tor - this is true, for example, in the case of a non-uniform string

and a non-uniform elastic beam. Other cases are under study. The
results also indicate, via the classical identity theorem of complex
analysis, that any finite frequency segment of the transfer function

is, in principle, sufficient to identify the coefficients. Naturally,
the problem of recovering the complete coefficient function from a

short transfer function segment is highly ill-conditioned. Efforts
are underway to investigate the computational implications of these

results.

Because of the increasingly evident importance of the transfer
function in distributed parameter control analysis, and because the
identification results just referred to make essential use of trans-
fer function properties as they relate to linear feedback in distri-
buted parameter systems, it has also seemed advisable to re-study
some of the properties of transfer functions in the context of dis-

tributed parameter systems, and particularly with reference to un-
bounded input elements, such as occur in the case of boundary value
control. We have not attempted to match the erudition in Salamon's
epic paper but, rather, we have focussed on transfer function pro-

perties which significantly affect potential distributed parameter
applications, such as indications for admissible inputs and admis-

sible feedback relations, as well as modal and finite element approx-
imations. A significant part of the work has been the elucidation
of an apparent paradox recently brought out in correspondence between
Prof. Ruth Curtain of the University of Groningen in the Netherlands
and Prof. G. Chen of Texas A & M University.
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Finally, we have begun to study certain problems connected with

the controlled initiation of solitary waves in certain nonlinear
wave processes. A significant part of this work has been the devel-

opment of a new, convolution-based, numerical algorithm which allows

solution of these nonlinear equations in a computationally economic

way so as to permit development of interesting system behavior on

readily available microcomputers, such as the IBM PC / AT. We will

have more to say about this research in later sections of this re-

port.

ii) Research Carried out by Associates at the University of Wis-

consin or by Visitors to UW Supported in Part by the SubJect

Grant;

The first part of this section is a short report on research

carried out by Prof. Willy Hereman, who has been supported, in part,
as a research associate under this grant. We were very fortunate

to have Professor Hereman join our group in the fall of 1987. He
is working in nonlinear and solitary wave theory, and in acousto-

optics. In the first area referred to, he has been assisting the
Principal Investigator in supervision of a student's PhD. thesis,
which address a problem of optimal control for nonlinear wave sys-

tems. His skills in the second area are particularly pertinent be-
cause of their relationship to laser vibrometer measurement process-

es, discussed further in § iv).

Professor Hereman's research work here in the UW MIPAC program

has been primarily concerned with the study of direct solution meth-
ods for nonlinear partial differential equations which describe sol-

itary wave propagation in various physical situations. The methods

studied, which are algebraic in character, apply to single equations,
such as those of Korteweg - de Vries or sine - Gordon type, and also
to systems of coupled equations of related types.

In collaboration with Prof. P. Banerjee of Syracuse University

Electrical Engineering Dept., Prof. Hereman has been investigating
the remarkable connectinns between the Harry - Dye, KdV and modified
KdV equations. The nonlinear transformations linking all of these
have been discovered and efforts are ongoing to derive new solutions
based on the properties of the transformations. The final goal is
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to give an overall heuristic guide for the modelling and solution of
nonlinear dispersive systems, using a variety of direct approaches.
These efforts are to be summarized in a forthcoming SIAM Review art-
icle now in preparation.

Professor Hereman, and also Professor M. Slemrod (supported by
another AFOSR grant, not reported here) are worKing with a graduate
student, Mr. B.-Y. Zhang, in a study of certain optimal control prob-
lems associated with nonlinear equations exhibiting soliton solut-
ions. The Principal Investigator has also been involved in this pro-
ject through his work in developing numerical solution methods suit-
able for approximate solution of equations of this type on UW MIPAC's
various minicomputers. The optimal control problem being studied
concerns the production of relatively "pure" soliton solutions, min-
imally corrupted by the presence of other solution forms, by means
of boundary inputs to the system.

Professor Dahlard L. Lukes, of the University of Virginia, vis-
ited UW MIPAC during Sem I, 1987 - 1988 as a Research Consultant,
supported in part by funds provided by the subject grant. Professor
Lukes carried out a program of research in nonlinear differential
equations and nonlinear control systems while here. The Principal
Investigator particularly wishes to recognize his valuable contri-
butions toward the successful completion of Thomas Svobodny's PhD.

thesis.

iii) Research Carried out by Research Assistants and Dissertators

Supported in part by the Subject Grant: PhD Graduates.

During the subject grant period three students graduated with
the PhD degree on the completion of theses supervised by the Princi-
pal Investigator. These are:

Dr. Tho-aas Svobodny (currently at Virginia Tech)

Dr. Robert Acar (currently at the University of Oklahoma)

Dr. Khosro Shabtaie
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All three of these graduates were supported in part as research
assistants under this grant and were also given additional support
in the form of domestic travel, scientific computation support,
and funds for thesis preparation. Both Svobodny and Acar also made
use of UW MIPAC experimental equipment to obtain data for their

thesis work.

Svobodny's thesis is concerned with state estimation, and to
some extent with system stabilization based on that estimation, for
a variety of nonlinear systems, particularly those which exhibit

limit cycles, or self-excited oscillations. Systems of this sort
are important in a wide variety of applications, including those
associated with the study of aircraft flutter problems, general
problems of fluid flow at high Reynolds number, etc. His work ex-
plores a number of state estimation schemes and establishes their
validity in the nonlinear oscillator context, with appropriate

assumptions, the most important of which is a dissipativity assump-

tion on the resulting system satisfied by the estimator error. A
number of examples are analyzed in detail, including the Van der Pol
equation and elastic systems coupled to disturbances generated by
a system of Van der Pol type. Actual data taken from an experimen-

tal airfoil was used in one section of the thesis.

Acar's dissertation is concerned with identification of the so-
called "permeability" or "transmissivity" coefficient p and the in-
homogeneous "source" term f in the elliptic equation

div (p.grad V) = f .

This problem is important in a wide variety of applied contexts, in-
cluding the study of groundwater flow, petroleum exploration and re-
covery enhancement, identification of elastic structures in space
applications, etc. Acar has developed in this thesis a weak formu-
lation of an equation error approach which has proved computation-
ally effective in many examples, a number of which were dealt with

in some detail in the thesis itself. Acar's thesis also treats cer-
tain cases where the function p may undergo jump discontinuities
along curves in the region of interest. Procedures to identify the
discontinuity curves were discussed, as well as modifications of the
identification procedure to allow estimation of the discontinuities

of p along such curves.

Shabtaie's work is concerned with identification of damping and
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elasticity coefficients in a structurally damped beam modelled by a
modified Euler-Bernoulli equation of the form

P(x) - aw  - 27 + e [ EI(x = (x) v(t)
at a 2 ata x 2  ax ax 2

where p is the linear mass density distribution, Y is the damping

coefficient, EI(x) is the bending modulus distribution, and v(t)
is an external excitation whose effect is introduced into the sys-

tem by means of the function, or distribution, g. A new procedure,
which we call the estimator - predictor technique, based on the

effectiveness of the model when incorporated into a state estimator
system, is analyzed in the thesis and used for computations. This
method accepts an output y(t), over an interval 0 1 t T and, using
an estimator based on the assumed coefficients in the loodel, attempts

to predict y(t) over the next interval T 9 t 9 2T through a generated
output prediction n(t). The coefficients are adjusted so as to min-

imize the error in the La norm. A modification of the procedure al-
lows for continuous, on-line, updating. The method was tested on
data obtained from a steel beam, excited by an electromagnetic shaker

in the UW MIPAC laboratory with excellent results. These results
were compared with a previously known, and closely related method,
the so-called "model reference" procedure, with comparisons quite

favorable to the new technique.

iv) Experimental Research Carried out in the UW MIPAC Laboratory.

The greater part of laboratory research carried out during the
subject grant period by the Principal Investigator has been done in
connection with damping mechanisms in elastic beams. A variety of
considerations; partial experimental results and certain proposed
mathematical models for the damping process, a resulting in a situ-
ation where our assumptions on the nature of the damping process

must be examined very carefully. In particular, intensive experi-
mental studies need to be undertaken to provide a basis for choice
between a strictly frequency proportional damping, as we have been

working with for some years now, and a more complex model, for which
we suggest the term modified Kelvin - Voigt damping, wherein the

rate of growth of damping relative to frequency is quadratic at low
frequencies, approximately linear in the intermediate ranges, and
asymptotically constant as the frequency tends to infinity. The
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latter model appears, from experiments carried out earlier, to ag-

ree with what we observe in longitudinal vibrations of steel bars

and agrees with the predictions of thermoelastic damping models.

Our present experiments are being carried out with very careful

attention to the elimination of external energy losses or, where

this is not possible, to estimation of the magnitude of those losses.

We are measuring the vibrations of the elastic bodies themselves with

a non-contact laser vibrometer, to eliminate accelerometer attachment

losses known to have occurred in earlier work with accelerometers

mounted on the samples. We have concluded that it is not practical
to attempt to avoid losses through propagated sound waves by placing

the sample in a vacuum. This would necessitate attachment of an ac-

celerometer or else a radio device, as used by some earlier experi-

menters in vacuum experiments, in order to record the vibrations.

Even if the vacuum chamber were supplied with a glass window for ob-

servation, it would not be possible to take laser vibrometer measure-

ments through the glass because of double - reflection problems en-

countered in such situations. Instead, we are directly measuring

the intensity of sound waves generated in the air by beam vibrations

with the use of very accurate microphones placed near the sample.

This appears to be feasible because it is not necessary, in general,

to determine the absolute degree of energy loss to the air; it is
only necessary to determine its dependence on frequency in order to

answer the questions which appear to be the most important ones to
ask at the present time.

v) Joint ExDerimental Research Carried out with UW MIPAC Visitors

Partially Supported by the Sub-iect Grant.

Joint laboratory experimentation has been carried out with two
visitors to UW MIPAC; Professor G. Chen, formerly with Pennsylvania

State University and now with Texas A. & M. University, and Professor

Luther White of the University of Oklahoma.

Professor Chen has been undertaking extensive studies of segmen-
ted beams, consisting of continuous sections of uniform length con-
nected at joints, which have different elastic and damping properties

as compared with the beam sections themselves. The periodic charac-
ter of these elastic structures is reflected in complementary period-

ic behavior of the natural frequencies and of the damping rates. In
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connection with a recent mathematical paper which Professor Chen and

co-authors, including the Principal Investigator, have prepared on

this subject, a variety of experiments were carried out with the use

of UW MIPAC facilities. These served to confirm, in large part, the

predictions of the mathematical theories presented in the; the exper-

imental results are reported along with the theoretical material in

the article for publication.

vi) Installation and Testing of New UW MIPAC Equipment.

The grant period being reported on is noteworthy, as far as

UW MIPAC experimental facilities is concerned, because it marked

the beginning of installation of new equipment funded under AFOSR

participation in the 1986-87 DoD Universities Instrumentation Pro-

gram. The new facilities include:

i) An MTS Systems, Inc., hydraulically actuated vibration test

platform;

ii) A Dantec laser vibrometer system;

iii) A Hewlett Packard 3562 vibration analyzer;

iv) An IBM PC/AT microcomputer with AD/DA conversion facilities;

v) A Hewlett Packard 310 microcomputer with modal analysis

software.

Together, these new facilities provide UW MIPAC with a badly needed

non-contact vibration measurement capability and the beginnings of

an active vibration control capability. In fact, all of the pieces

of the vibration control facility are now in place except AD/DA con-
version for the HP 310 microcomputer, which serves as the control

and monitoring unit for the control system based on the MTS vibration

test platform.

All units have now been installed and are now in the initial

test phase of operation. It is expected that the laser vibrometer

system will be used to a considerable extent in the forthcoming

May 1988 UW MIPAC Workshop on Experimental and Computational Aspects
of Control.
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vii) Seminars, Invited Speakers.

UW MIPAC has for some time sponsored a seminar on mathematical

modelling and control, which meets Wednesday afternoons during the

academic year. In addition to regular presentations by the Princi-
pal Investigator, associates and research assistants, a number of
visiting speakers from other institutions are invited, from time to

time, tu give guest lectures. During the period covered by this re-

port, guest lectures were given by

Ruth Curtain Univ. of Groningen, Netherlands

Elena Fernandez Virginia Tech
Gunter Leugering Technische Hochschule Darmstadt

Dahlard Lukes University of Virginia
Marshall Slemrod Rensselaer Polytechnic Institute
Eduardo Sontag Rutgers University

Robert Wheeler Virginia Tech

Luther White University of Oklahoma

These talks added greatly to the breadth and variety of the

UW MIPAC program.

viii) Documentation and Bibliographical Efforts.

Over the years the Principal Investigator, like almost everyone

else in this field, has accumulated a vast collection of reprints,

preprints, reports, etc. These contain a large quantity of potent-
ially valuable information, provided it can be identified and retr-

ieved. A relatively modest sum from grant funds has been used to
hire Miss Barbara Tavis to organize the scientific documents collec-

tion so as to make it accessible and usable. An efficient, compu-
terized system has been devised which enables location of manuscripts

quickly and efficiently by means of key words supplied to any one c
MIPAC's computers on campus.

ix) Scientific Travel. Lectures.

The Principal Investigator, supported in part by g.
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travelled to Paris France, in June, July, 1988, to attend the First

International Conference on Industrial and Applied Mathematics. A

paper on coefficient identification from transfer function data

was presented by invitation of the conference organizers. Later
travel on this same trip allowed presentation of two lectures at

Karl - Franzens Universitat in Graz, Austria.

A paper on damping in elastic systems was presented at the 1987

Control and Decision Conference in Los Angeles. Grant funds were
used to support this trip.

In March, 1987, a trip was made to the State University of New

York, Buffalo, in order to confer with Professor Dan Inman and ins-

pect his control laboratory there. Valuable insights potentially

useable by UW MIPAC were obtained from this trip.

Other travel included trips to Virginia Tech., Blacksburg, VA,

Carnegie Mellon, Pittsburgh, PA, and the University of Nebraska, in

Lincoln, NE.
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SOME REMARKS ON TRANSFER FUNCTION METHODS FOR INFINITE

DIMENSIONAL LINEAR SYSTEMS*

by D. L. Russell**

ABSTRACT

This paper develops certain properties of transfer function
rppresentations of a class of distributed parameter systems gene-
rally lying outside the well known Callier - Desoer class. We are
particularly concerned with the question of representation of
closed loop semigroups in terms of the resolvent of the original
open loop generator and the closed loop transfer function, frequen-
cy domain criteria for input and output admissibility, etc. It dev-
elops that transfer functions of the distributed parameter systems
considered here, and their associated input - output operators,
may have undesirable properties with respect to approximations of
various types when insufficient dissipation is present in the sys-
tem; adequate dissipation mechanisms are studied in this connection.
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0.Introduction. The 1980's have seen a resurgence of interec in

the transfer function description of linear input - outpuL 'i Lems.

These methods have a number of attractive properties, partic,.arly
in regard to questions of robustness with respect to system v. ria-
tions, as developed, e.g., in the papers of Doyle and Stein ([ 6 ])
and many others, too numerous to cite in any representative way.

The application of these methods, sometimes called H* methods be-
cause of the boundedness property in a right half plane character-
istic of transfer functions of well-posed, nonanticipative linear
systems, has been extended to infinite dimensional ("distributed
parameter") systems only relatively recently. We cite the works of
Callier and Desoer ([ 2 ]), Curtain and Pritchard (C 5 ]), Pritchard
and Salamon ([ 15 ]),and Francis ([ 10 1). Extensive references are
presented in Curtain's expository article, ([ 4 ]), as well as in
Francis' book, already cited.

The majority of "H"' studies for infinite dimensional -ystems
have been conducted in the context of systems possessing transfer
functions in the so-called Callier - Desoer class (( 2 ],[ 3 1,.
and [ 4 ]), or to what Curtain identifies as the Pritchard - Sala-
mon class (C 4]). These classes both exclude transfer functions
arising from a number of systems important in applications, such as
undamped, or lightly damped, elastic systems described by partial
differential equations of hyperbolic type, neutral functional equa-
tions, etc.

The present paper does not treat H control synthesis methods;
rather, it aims to develop certain properties of transfer functions
of some systems which do not belong to the Callier - Desoer class. It
turns out that transfer functions of systems such as those considered
here may have some rather unusual, one might even say disconcerting,
properties, particularly in relation to convergence questions with
respect to approximation via finite dimensional systems. In addition
to these approximation questions, we will discuss the use of transfer
function methods to analyze closed - loop systems arising out of cer-
tain linear feedback laws, use of transfer functions to determine the
admissibility of input and output mechanisms, and a number of other,
related, matters. In the process we develop a representation of the
semigroup in terms of its inverse Laplace transform which, in its
specific context, is less restrictive than the general treatment of
that matter by Dunford and Schwartz U 8 ]). The primary motivation
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for the development of this article may be summarized in the follow-
ing way. The recent success of frequency domain methods virtually

guarantees that a large fraction of future distributed parameter con-
trol research will be carried out within this framework. That grant-
ed, it seems important to us that the connections between frequency
domain representations and their state space counterparts should be
fully explored, with appropriate cautions posted where those connec-
tions appear to be somewhat tenuous. We are hopeful that the work
presented here will represent a useful step in that direction. A

logical direction for future work is to develop H* synthesis tech-
niques for systems of the sort described here, including co-prime
factorization techniques, etc., taking into account the properties
which we develop here.

The present paper is, for convenience, written in the single in-
put - single output context but most results obtained here extend
rather directly to systems with a finite number of inputs and out-

puts. This is certainly not the case for H* methods in general be-
cause of the non-commutativity of matrix multiplication, but that
noncommutativity plays a minor role relative to the topics of inte-
rest to us here.
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1. Transfer Functions and Admissibility of Input and Output Elemgnta

Let us consider a controlled and observed linear system

x = A x + b u, (1.01)

y < x , c > c x, (1.02)

with state x in a Hilbert space X (norm 11 II, inner product ( , ) ),
u and y scalar (this is for convenience only; most of our results

extend immediately to u, y E Rm ). We suppose that the closed op-
erator A is the generator of a strongly continuous semigroup, S(t),
of bounded operators on X.

We assume there is a second Hilbert space, W, continuously and

densely embedded in X, which includes the domains of both A and A

We take W to be the dual of W relative to X (see E 16 1, e.g.) and
thus have the familiar inclusions

W C X C W . (1.03)

Each element of W is a continuous linear functional on W; relative
to the norm of X each such element will, in general, be an unbound-
ed linear functional. We will assume that W includes the domains

of both the generator, A, and its adjoint, A

We assume that b is an admissible input element for the system

(1.01), to be understood as developed in [ 11 ]. Thus we take b E W

in particular then, b is defined on the domain of A*. The value <x,b>

of the linear functional b at x , which we will also designate as b*x
for notational convenience, is defined when x is any element of W, in

particular any element in the domain, D(A of A The primary re
quirement for the admissibility of b as an input element for (1.01)

is that for each T > 0 the map BT : L2 [0,T] 4 X defined in a dualis-

tic manner by
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71* BT  u = fT (b * ST-tl*n)*uit)dt, n 6 D(A*), (1.04)

0

should correspond to a bounded operator. Sufficient conditions for
this - the Carleson measure criteria - were developed in [ 11 ].

If b is an admissible input element for (1.01), that system has
a unique "generalized" or "mild" solution x(t), continuous as a func-

tion from R1 to X, corresponding to each initie.l state x(0) = x E X

and each input function u E L2[0,T] for each T > 0 (i.e.r locally

square integrable). That solution is given by the formula

x(t) St) x0 + S(t-s) b u(s) ds (1.05)0

where the interpretation of the integral is just

S(t-s) b u(s) 6s = Bt u0

as discussed above.

An admissible output element (unfortunately that was not defined

in C 11 1) c is also defined in a duality framework; such an elem-

ent c is an admissible input element, as defined above, for the dual

system

• *

y = y + cv.

Thus c also lies in W and thus, in particular, is defined on the do-

main of A. The operator CT defined by

CT v = S(T-s)* c v(s) ds0

is then bounded for es.ch T > 0. Of more direct interest in the ob-
servation, or output, context is the fact that the dual operator,
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CT, defined pointwise for x E 1(A) by

y(t) = (CT x)(t) = c* S(t) x , (1.06)

extends to a bounded operator from X to La[O,T].

Defining the Laplace transforms of u(t) and y(t) in the usual way

for complex X, and denoting the transforms by , we have the relation

y(N) = T(X) u(X) , (1.07)

where, with appropriate extension of the domain of the resolvent op-

erator R(X) = (XI - A)-1, as will be discussed more fully in a later

section,

TM') = c* R(X) b • (1.08)

From standard Laplace transform theory (e.g.,[ 20 ]) it follows that
the convolution "input-output" operator

(Ju)(t) i c*S(t-s)b u(s) ds, (1.09)

0

where c *S(t)b, which may be a bounded measure rather than a function,
is defined as the inverse Laplace transform of T(X). It is familiar
that (1.09) defines a bounded operator

J L2 [0,-) - L2[0,_), (1.10)

where for each real p

L~[~m)= {f e L' 10O,-) J' 2Pt If(t)112 dt < },(1.11)
0

just in case T(X) acts as a bounded multiplication operator from the
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Hardy space Ha(C+) of the right half plane to H2(C ). the corres-

potuing space in the half plane Re X 1 p. This, in turn, is true
if and only if T(M) is a uniformly bounded analytic function in
that half plane. When these conditions obtain we will say that b
and c form a jointly admissible pair of input and output elements.
Another possible definition of joint admissibility of b and c rel-
ative to the system (1.01),(1.02) is that (1.09) defines a bounded
operator

JT:L2(0,t] + L2(0,T] (1.12)

for each T > 0. We will see below that, as one might anticipate,
this is equivalent to the definition already given. The input and
output elements b and c, rexpectively, may be jointly admissible
without being individually admissible as input and output elements.
We will say that b and c are totally admissible for the system
(1.01),(1.02) if they are jointly and individually admissible as
described above.

A very important special case occurs when the operator A is a
discrete spectral operator with a complete set of eigenvectors,

= I ( k I k = 1, 2 ,3 , ... } ,

with corresponding eigenvalues Xk of single multiplicity, forming a

Riesz basis (C 25 1) in X. This means that each x E X has a unique
X - convergent representation

x = (k (1.13)k=,t

and there are positive numbers m,M, independent of x, such that

m2 (1II2 <= .~k 2  lx

k * @

One may proceed then to show quite easily (see, e.g., [ 17 ]) that
there exists a unique dual Riesz basis in X;

9 = f I C = 1,2,3, ... }
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biorthogonal to f, i.e.,

( 9k ' ) =  ak '

consisting of eigenvectors of the adjoint operator A* corresponding

to its eigenvalues Xk" Assuming that lim IxkI = , the domain of A is

D(A) ={x ki fk ';k kIx 00 I

and, with this domain, A is clearly closed. The Hille - Yoshida con-
dition ([ 8 ]) implies there is a real number a such that

Re Xk 1 a, k = 1,2,3, (1.14)

Since D(A*) is assumed to lie in W we may define

kb*
bk = b k , k = 1,2,3, . . ,

and we may identify (made more specific in ( 11 ]) b with the series

00 
k ;

b = k~

k=,

We will refer to the bk as the input coefficients associated with b

and the system (1.01). If the state x(t) for (1.01), (1.05) is re-
presented as in (1.13) it may be seen that its k-th coefficient is

fk(t) = e k k,0 + bk ft xk(ts) u(s) ds

0

where the inital state xO has the representation, similar to (1.11),

00

x0 =k ,0 k "k*i



Cotasider now a solution x(t) of the homogeneous counterpart L

x = Ax (1.15)

of (1.01); the output via (1.06) i3 then just

00 Xkt
y(t) X e

k=,.c ,

where the output coefficients ck , k = 1,2,3, ... , are defined by

Ck -c (k

For the linear observed system (1.02), (1.03) with initial state
x(0) = 0 we have the output (cf. (1.06))

00 - t  Xk(t-s)
y(t) k e bk u(s) ds , (1.16)

at least formally. The transfer function, T(X), is the Laplace tran-
sform of the impulse response function

00 - NktI k bk e xk

k=l

and may be identified, under certain restrictions, with the series

cc bk

k=1 - k

concerning which we will have more to say later.

We have remarked that admissibility of the input and output ele-
ments b and c, by itself, fails to guarantee any sort of joint ad-
missibility. For instance, let us consider a system (1.01), (1.02)
having an orthonormal basis of eigenvectors Yk , k = 1,2,3, ... , and

eigenvalues
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k = -k, k = 1,2,3,.

An example of this type is given in [ 11 ]. We suppose an input ele-
ment b is used for which the coefficients, as described above, are

bk = ( 1 )k1 , k = 1,2,3

The Carleson criterion developed in [ 1 ] shows that such an input
element is admissible. By the same criterion, if we take c = b, so
that (1.02) becomes

y = c x = b* x

the coefficients ck are the same as the bk and, at least formally,

T(A) = z ck -- = X
k=1 X + k k=l X + k

As this series is everywhere divergent, b and c = b do not form a
jointly admissible pair of input and output elements in this case.

For the same input element, b, if we select c so that

ck = 1, k = 1,2,3,

then

k-1
T(N) = (-I)

k=1 X + k

Since

1 _ 2_L + .. __ 2
X+k-1 X+k X+k+l (X+k)((X+k)2 -1)

we may, by grouping, write T(X) as
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-)X+ l 1 X+2L-1 X+2f N+2t+l

- , +1
2(X+1) e:I (X+2L)(X+2t) 3 -l)

which converges uniformly in compact subsets of Re X Z 0 and is uni-

formly bounded by the value attained with X 0, i.e.,

t: (4L2-l)

t=l

Thus, unlike the situation which obtains for admissible input

and output elements, it would appear to be not feasible to find a
general growth condition on the Ibki and Icki stringent enough to

guarantee join. admissibility and yet wide enough in scope to admit
most of the systems studied in applications. Any adequate criterion
will have to take the signs of the coefficients into account and al-

low for conditional convergence of the series representation of the

transfer function T(M).

In the discussion above we have treated input output operators
in two different contexts; we have considered JT , as in (1.12), in

our "time domain" discussion and we have considered operators Ja de-

fined in a slightly different way in (1.10), related to the "freq-

uency domain" formulation expressed in terms of T(X). The following
theorem explores the equivalence of these operators.

Theorem 1.1 Let b and c be totally admissible and let eAt satisfy

the growth condition

Attliet1 1 < M eat , t 1 0,

for some real a. Then the operator JT defined by (1.12) is bounded

fokr each T > 0 just in case for every real P and every a I a the op-

era tor
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i L [0,_) La[0,-), p = max , (1.18)

also defined in terms of (1.09), is bounded.

Proof. Inferring the boundedness of JT from that of J is trivial,

as we see by restricting the support of u to [0,T], observing y only

on [0,T) also and noting that the space La[0,T] is equivalent to the

space L2 [0,T], for any real r, if the support of the functions consi-

dered is restricted to the finite interval [0,T] in question.

To Rhow that the boundedness of Jf, I as defined, follows from

that of JT' T > 0, we choose some T > 0 and then define n(t), t > 0,

to be the largest integer such that n(t)T < t. Then, with the inte-

grals below interpreted in the way stipulated earlier, we have

1t n ( t)_ 1 (n+ )Tx(t) = eA (t - s ) b u(s) ds = eA(t s ) b u(s) dsf0 n=0 rnT

ft eA(t - s ) b u(s) ds

n( t )T

(setting t = r + (n+1)T, s = a + (n+l)T)

n(t)-1 eA(t_(n+,)T) A (T - )  b u () da
n=O fO

ft eA(t - s ) b u(s) ds

n(t)T

where un(a) = u(a+(n+l)T) for each indicated n. Correspondingly,

y(t) = c*A(t-(n+i)T) fT eA(T - ) b un(a do

n=0 0
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t
+ c eA(t - s ) b u(s) ds

n(t)T

If we assume the boundedness of JT and the admissibility of b and c,

then for u E 20- the integrals in (1.19) represent points in the

Hilbert space X whose norms can be bounded in terms of the norms of

the un in L2[0,T], hence by a multiple of e nT. On the other hand

the norm of the operator c* eA(t-(n+l)T):x -+ L2 [mT,(m+l)TI, where

m+1 = n(t) for each t E (mT,(m+l)T], can be bounded in terms of
a(m-n)T

e , a a. Combining the two estimates with P = max (a,#),

we can bound the output y in L2 [O,_) in terms of the norm of u in

La[O,) and the proof is complete.
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2. Laplace Transform Representation of Solutions.

For the homogeneous system with given initial state,

x = A x , x(0) = X0 X , (2.01)

we have the familiar representation, for t . 0,

x(t) = S(t) x 0

where S(t) is the strongly continuous semigroup of bounded operators

on X generated by A. If we form the Laplace transform

R(X) = J e - x t S(t) dt

for Re X > a, as defined earlier, it is also familiar, and easily

seen, that R(X) is the resolvent of the operator A,

R(X) (XI - A)-"

Correspondingly, the Laplace transform of the solution x(t) deter-
mined by (2.01) is

^(X) = R(X) x o

If we formally apply the Laplace inversion formula, integrating
over the contour r. consisting of the line Re X = =, oriented in the

upward direction, we have, for a > a,

x(t) = _ _ e t R(\) x0  dX, (2.02)
2r pi j 

corresponding to



S(t) = _L_ f ex t  R(") dx. (2.03)

However, as Kato points out in [ 12 ], it is not generally an easy
matter to establish convergence of this integral in an appropriate
and usable sense. Indeed, we need to insist on actual convergence
of the integral (2.02) with respect to the norm of X, rather than
in some analog of the usual l.i.m. sense, in order to be able to
conclude, on the basis of this representation, that x(t) is a con-
tinuous vector function of t. Consequently we make the assumption,
which we will verify at the end of this section for some important
cases, that the integral (2.02) is the limit, with respect to the
norm of X, of corresponding integrals over r a,R' the restriction of

r. to lIm X1 1 R, as R ranges over some sequence of values tending

to infinity, and that the integral (2.03) converges, through the
same truncation process, with respect to the strong operator topo-
logy of bounded linear operators on X (the two are, of course, the
same notion).

Since an admissible input element b is, in particular, a linear

functional on W, which includes the domain of A

b R(X) * = b* (TI - A*) - '

is a continuous linear functional on X for Re X > a. Consequently
R(X) b represents, for each such X, an element of X. Taking X

with real part > a and using the resolvent identity we have

R(X)b - R(Xo)b = (X o  - X)R(X)R(X0o)b

Using the necessity of the Hille-Yoshida condition ([ 8 1) we can
bound the first two factors uniformly and we conclude that R(X)b

is uniformly bounded in each closed half plane C., > a. Similar

conclusions can be drawn in regard to c*R(X) and R(X)*c if c is an

admissible output element. If u G L2 [0,-) and u E H2(C + ) is its La-
place transform, then the Laplace transform of the solution xu(t)

of
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x = A x + b u, x(O) 0,

is easily seen to have the Laplace transform R(X) b u(X). In the
other direction it can be seen that a sufficient condition for ad-
missibility of the input element b is the boundedness of R(X)b
together with convergence, in the sense described above, and uni-
formly in compact intervals of t 0, of the inversion integral

xu(t) = _L.. ext R(\) b u(x) dX (2.04)27ri Jfro

with respect to the topology of X for each u E Ha(C+). It is not
clear, in general, to what extent this is a necessary condition.
However, since G. Weiss has established in C 22 1 the necessity of
the Carleson criterion (cf. [ 11 1) when the operator A has a Riesz
basis of eigenvectors corresponding to eigenvalues lying in a verti-
cal strip in the complex plane, it seems likely that the related
condition (2.04) will be found necessary under comparable conditions.
We will see in an example later in this section that just the boun-
dedness of R(M) b is not enough to guarantee that b is admissible.
The corresponding output via an admissible output element c is

Yu(t) e t c* R() b u d = _L C ext T(X) u(X) d\2'i fr 27Ti fr

For joint admissibility of b and c we require only that the output

be in some L[0,-), a fixed, for all u in L2 [0,-). This will be

true if the integral converges in the l.i.m. sense and this, in turn,
will be the case if the transfer function T(M) is uniformly bounded
for Re X 1 a, in agreement with our earlier discussion in §1. Para-
llelling the counterexample of §1, the boundedness of T(X) = c*R(\)b
cannot, in general, be inferred from the boundedness of both c*R(X)
and R(x)b.

Very much of what we do in §3 depends on the convergence, in the
space X, of the integrals (2.02) and (2.03). As we have already ob-
served, it is not always easy to guarantee this. Dunford and Schwartz
avoid this problem in [ 8 ] by replacing the integral (2.02) by
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x(t) Xt RIX)(uI-A)
2 dX

27Ti ( 3-Xla

valid for x 0 E D(Aa). The last restriction poses a problem for us

in this paper because the feedback operations we wish to study in
general change the domain of A. There may be some way to handle this
but we do not pursue that route here.

We examine first some special, but reasonably extensive, cases
wherein our convergence assumptions are satisfied for (2.02), (2.03).
We first consider the case wherein S(t) is a holomorphic semigroup on
X. Here the spectrum of A lies in a wedge shaped region

{ X I = a + r e , 4 + I l , 0 j r < } (2.05)

where w/2 < < r and c is a conveniently small positive number.
Then, as is shown in ( 12 ], for t > 0,

S(t) = -. f e 't  R(N) dX (2.06)

where

r, X + r e ,, 0 r < },

oriented in the direction of increasing imaginary part. Since it
is a familiar fact in the holomorphic case that, for some M > 0,

IIR(X)II X / IX , x eo,

it is clear that the integral converges, in fact, with respect to
the uniform operator topology. Cauchy's theorem, plus some fairly
easy estimates, then enable us to see that (2.06) remains true
with the path Fr,.V replaced by fr described earlier, the converg-
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ence remaining true in the uniform operator topology.

An example from this category shows that the boundedness of
R(X) b is not enough to yield admissibility of the input element b.
The example involves the one-dimensional heat equation

aw a = 0 ,t > 0, 0 < x <
at ax

2

with boundary conditions

w(0,t) = 0, w(Tr,t) = u(t).

The state space is X = L2 [0,w]. A detailed discussion appearing in

[ 1 1 identifies the input element b with the distribution 6 in

this case and demonstrates that b is not an admissible input ele-
ment. However, since the domain of

A = A* = 2
A)x2

is a closed subspace of the Sobolev space H2{0,n] consisting of w
which satisfy the corresponding homogeneous boundary conditions,

we can take W = H2 [0,-tI and then b E W . Hence, as shown earlier,
R(N) b is bounded - in this case for Re X a = > -1/4. Since the
convergence of (2.04) in X is sufficient for admissibility of b it
follows that this convergence cannot take place in this case for

all u C H(C

Thus to proceed further, even in the analytic case, we have to

introduce additional structure into our framework. It seems likely
that the restrictions thereby incurred can be relaxed, particularly
in the direction of making allowance for continuous spectra.

Accordingly, we now suppose that the operator A has a Riesz
basis ([ 24 ]) of eigenvectors

S 9{k < k <



-19-

corresponding to distinct eigenvalues Xk' indexed in the same way

and arranged so that the imaginary parts are nondecreasing as k in-
creases (modifications are easily made to allow for finite multipli-
city; we leave this to the interested reader). We further suppose
that there are real numbers a, b, a > b, such that for all k as ind-
icated,

b 1 Re Xk 1 a

and that there are positive numbers D o and DI such that the number,

N(yI,y 2 ), of eigenvalues Xk with y. 1 Im Xk Y. satisfies

N(y 1,y2 ) Do + DL(y 3 - y") (2.07)

whatever real values may be assumed by y. and Y2 > y1 "

As is well known ([ 17 1) there is a unique dual Riesz basis

= *k I ~< k < }
consisting of eigenvectors of A*, admitting a biorthogonal relation-

ship

*t * k ( P"k'*0L II kt , < kj <

The operator A has the representation

A = Xk WkVk (2.08)

and the resolvent and identity operators can be written

R(X)= k -.__k. k* I 9 (kkk=-- X -Xk @kk= I =
k -

the first converging in the uniform operator topology, the second
in the strong operator topology.
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Let be the contour in the complex plane consisting of the

lines

= {X~ Re X= > a }, fr = {X Re X P < b }

the first oriented in the upward direction, the second downward. The
restrictions on the distribution of the eigenvalues Xk are easily

seen to imply the existence of a sequence y Yn I - < n < } with

lim Yn = - ' lim Yn

n- - n- n

and such that, for some positive number G,

I Im k Yn I : G, -< k < , n < . (2.09)

For m < n, we define rm,n to be the rectangular contour consist-

ing of the intersection of r,,p with ym 1 Im X I Yn along with the

obvious segments of Im X = ym (yn)' the whole oriented positively.

The residue calculus shows that the operator valued integrals

_m__ f R(\) dX
2Pmn 2iFm,n

yield projections on A - invariant subspaces Xm,n C X and Pm,n con-

verges strongly to the identity operator, I, as m - -- and n 4 -.

In order to study convergence as m 4 -=, n - , we suppose that

x = E X.

Then

Pmn x = . R(X) x dX,n 2 i frm n
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On Im yn we can see that

IIR(X)x II ( 7 'k l k ak-* -k k=-- (P-;k)a + (yn-V~

where X = P + i Yn 0 x = Ak + i . We can use the Riesz propeL

of the Vk to see that

IIR(X)xl12 < I- < (2.10)
k=- ) k=- (Yn vk)2

and the sum on the right is readily seen to be bounded, uniformly
with respect to n, by using density bound (2.07) on the distribution
of the xk together with (2.09). But we can obtain a more refined es-

estimate than this. We let > 0 and let yn and nn be chosen so that

Xkn (2.11)
2

2 < V 1, n  > k I n 12. 2
(yn - Vk) 2

Since for all k

LIn < I'n- ki + Ik[

the two sets of indices described by (2.11) and (2.12) cover all
values of k, with some possible overlap, and we have

I )l2 Ixkl Ixkl

k=o (y n- vk k I 1nI ( n - vk) 1n-k 1-2n (yn Vk
2 2

ak=-- (yn - 'Vk) k=- IkI
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for some N > 0, which may depend upon the vector x. Since we can
make z as small as we please by taking yn sufficiently large, we see

that

lim sup IIR(X)xl = 0 (2.13)
n4+ Im X=y,

and we obtain a similar result on Im A = ym as m - -. Letting n -

and m 4 - , (2.13) is seen to imply that for all x E X

x = 1-i I R(X) x d).
2 FTi a

Thus

1= R(X) dX

the integral converging with respect to the strong operator topology
in the sense implied above.

If x E X and f(x) is a bounded holomorphic function on the union
of rfl and its interior one may in the same way define

f(A) x = 1 f(X) RCA) x dN

so that

f(A) = f(X) R(X) dx
27Ti

In particular, for any initial vector x. E X we have, for t 1 0,
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S(t) x0 = eA t x 0 = f f e t R() x. dX

lim -1f et R(X) x0 dXM- 0- 0 2-ri ,rm n

again with respect to the strong operator topology.

Fixing m and n, we observe from our earlier argument that the
bound (2.10) on IIR(X)xll is independent of f. So, using the decay
property of the exponential function valid for t > 0,

limra eXt R(X) x. dX e Xt R(X) x0 dX
9--0 r n  Frn

where the single index n indicates the line segment forming the upper

boundary of the rectangle Fm'P in the first instance and its exten-

sion toward Re X = - in the second. Then, using the estimate (2.13),
we have

lim rXt R(X) x0 dX 0 (2.14)

and a similar result applies on rm as m -

On the left hand side, rn of the rectangle we have X = +i -

and

Ile Xt R(X) x 011 < e - Pt IR(X) x0 I 15 (cf. (2.10))

<e-Ptm ~ ik a* 1 < r~ - t Ilxot
ma 1XkI2 10 2 N eL Oil11

k k=- (v - 2k)
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where N is independent of P. Hence we conclude that for t > 0

lim f ex t R(X) xo dx = 0. (2.15)
p400 f,n

Combining (2.14) and (2.15) we see that, still for t > 0,

S(t) x 0 = lim lim e2' R(e ) x0 dX }

f eXt R(X) x. dX,

i.e., we can write, for t > 0,

S(t) = - eXt R(X) dx

the integral converging in the strong operator topology.

We complete the present section with a discussion of the con-
vergence in X of the integral (2.04), corresponding to solutions of
the inhomogeneous solution with zero initial state, i.e.,

Xu(t) ex t R(X) b u(X) dX.

We first of all note that for systems having the properties indi-
cated in the discussion following (2.07) the Carleson criterion of
[ 11 1 is satisfied if the input coefficients ((1.14) ff.) bk are

bounded. In this case the convergence cf the iil. itLegral
can be established by contour integration quite similar to that
used above in connection with (2.03). There is no need for us to
pursue that here, both because the argument would be very similar
to the one already given and because the resulting admissibility
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criterion would add nothing to what is already obtainable from the
Carleson criterion. Instead we will present two examples in which
the present convergence criteriQn is used in a quite different way.

Consider first the almost trivial system

_w + -w = 0, 0 x , t 0,
at ax

whose action is simply that of right translation, with the boundary

condition

w(0,t) = u(t) , u 6 L 2 (0,_).

This corresponds to a system (1.01) wherein A = -L loe n
axThi coresond toa sste (101)wheeinA --- , a closed un-
ax

bounded operator on L 2 0,1] with domain consisting of those functions

in H'[0,1] vanishing at x = 0. So defined, it is well known that A
generates a strongly continuous semigroup. The element b in (1.01)

is easily seen to be just 6 (OP Traditional spectral analysis does

not yield the (almost obvious) conclusion that b is an admissible
input element because A has no eigenvectors; indeed, its spectrum is

empty.

It is a simple matter to verify that that if we can find the

unique solution of (1.01) corresponding to u(t) = eXt in the form

x(X)eXt, x(X) 6 X, then x(M) = R(X)b. Applied to the present case
we see that

R(X)b = w(x,X)

where w(x,X) is the solution of the boundary value problem

Xw + = 0, w(OX) = I
ax

That is, R(X)b is the element of L2[0,1] given by

(R(X)b)(x) = e- x
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Accordingly, then, admissibility of b ={0 } in this case involves

the convergence in La[0,1] of the integral

W ulx,t )  e _ _ eX tX ulxldX ,

for u E Ha(C+), a > 0 and fr as described before. The standard

theory of the inverse Laplace transform shows that for fixed t 0

the integral converges, as a function of x, in L2 [0,'), hence in

L2[0,1] in particular, to the function

S0, x > t

w(xt)u(t-x), x < t

Using the boundedness of the exponential function on rf and its

uniform continuity with respect to X and t on compact sets, an
easy applination of the Plancherel theorem shows the convergence,

in L2 [0,1], to be uniform for t in compact subintervals of [0,-).
Thus the admissibility of the input element is confirmed here as

an immediate consequence of standard Laplace transform theory.

Now we turn to a somewhat less trivial example, invulving the

partial differential equation

aWw + 0 , t 0, 0 x , (2.XI)
a t 73x 3

which is of some interest because it is the beginning of under-
standing for the far more challenging Korteweg - deVriess equation

3w + 3 w + - 0
at ax x3

We adjoin to (2.16) the boundary conditions



-27-

72w(O,t) + t w(Ot) = u(t) , u E L 2 [0,_) , 1 (2. 17)3

=W(r,t) 0 , w(n,t) = 0 • (2.18)

It may be verified that the operator A = , with domain consis-ax 2

ting of functions in H3 (O,n] satisfying boundary conditions which
are the homogeneous counterparts of (2.17), (2.18), is dissipative

with respect to the norm in L2 [0,n], the state space for the semi-
group known to be generated by A as a consequence of application of

the Lumer - Phillips theorem [ 14 ].

Here we compute R(\)b = w(x,x), where the latter function is
the solution of the boundary value problem

Xw +aw 0 , t 0, 0 1 x 1 , (2.19
ax3

(0 X) + 0 w(O,X) 1 (2.20)

-w(, ) 0 , w(,) 0 (2.21)

ax

Setting X )A 3 and defining p + i - 3  it may be verified that

R(X)b i [ 1( _-p)elT+P)e -lx (P

D ()A) e - 4( +l)e e

+ ;,(p+1)eM(P-)WepX ] (2.22)

where

D(O ) = ; p +1)e ( +-)-(P+l)eA(P-l) ( ap2+ )
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-(P-P)eP(P+P)T 3=] (2.23)

Since the expression on the right hand side of (2.22) is invariant

under perturbations on the set -1, p, p, it may be seen that R(N)b
is, indeed, an analytic function of X as predicted by the general
theory of the resolvent operator. It can be seen that the system

3eigenvalues (of which we make no use here) are numbers k =k
the Pk being zeros of D(A), asymptotically given by

k = - 3  + O(ka)

In order to investigate the behavior of R(X)b in the right half
X plane, it is sufficient, taking the symmetry relations already
noted into account, to examine the expressions (2.22) and (2.23) in
the sector larg ul T/6. In that sector the first two expcnentials
shown in (2.23) are bounded while the third is easily seen t: be

just eM'. Then, looking at the terms in (2.22) one by one, we can

see in the first term that e,(P+P) /D(p) is uniformly bounded in the

indicated P sector while e-'x is unifcrmly bounded for w in that sec-
tor and 0 x '. In the second and third terms, respectively,

ey (P- 1 ) r and em(P -1 ) are bouaded in the indicated P sectcr while

eJAPX/D(.u) and epPX/D(p) are bounded for those values of u and 0 1 x
T. Then taking the coefficients of the exponentials into account

in (2.22) and (2.23) we conclude that the L2 [0,r] norm of (2.22) is

bounded by some positive multiple of i/1,u1a uniformly for Iarg PI 1

r/6. Thus R(A)b has La(0,nl norm uniformli- bounded by a multiple of

IX12/3 Since this function is square integrable on r, , Re a > 0,

we see that (2.04), R(X)b as in (2.22), is convergent in L2[o,'],
uniformly in compact subintervals of t Z 0. We conclude then that
solutions wu(x,t) of (2.16), (2.17) and (2.18) are well defined and

strongly continuous in La(O,-], with respect to t. Accordingly, we
see that the input mechanism indicated in (2.17) is admissible.
We leave it to the interested reader to compute the distributional
form of the relevant element b.
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3. Admissible Feedback Relations and the Closed Loop Semigroup.

The system (1.01), (1.02) is in "closed loop" operation, with

feedback "gain" coefficient 1 if an affine relationship

u(t) = R y(t) + v(t) (3.01)

holds between the actual input, u(t), to the system, the output y(t),

and the supplied exogenous input, v(t), the equality holding in the

sense appropriate to the spaces in which these functions lie. In

terms of the corresponding Laplace transforms we then have

u(N) = % Y(X) + v(X). (3.02)

Substituting this relationship into (1.07) we have

y(X) =T(X)( R y() + v(X)

so that now

yR (X ) v() (x) = TR(\) v(X) (3.03)
1 - T(X)

We will refer to Ti(X) as the closed loop transfer function corres-

ponding to the gain coefficient R or, more briefly, as the C-transfer

function. We will say that R is an admissible gain coefficient if

there is a real number a1 such that TR(M) is holomorphic and uniform-

ly bounded for Re X 1 aR. Along the same lines, R is a totally admi-

ssible gain coefficient if it is admissible, as just described, and
the resulting closed loop system is well posed in the sense familiar

in the semigroup framework. One must not neglect to leave open the
possibility that some non zero value of R might be admissible in one

of these senses while R=0, corresponding to the original open loop

system, is not. That is, input and output elements b and c may well

be jointly admissible only for R in some subset of R1 , and that sub-

set need not necessarily include R = 0. As a consequence we see that
feedback transformations on an infinite dimensional linear input -

output system do not necessarily form a group as in the finite dim-
ensional case discussed in [ 24 1.
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The linear transformation defined for x in the domain of A and

with range in the space of linear functioxals defined on the domain

of A* given by

< x, c > b

will be denoted by bc* x . This operator plays an important role

in connection with the 9 - closed loop system

x = A x + (R y) b + b v , (3.04)

y = c* x . (3.05)

We will say that R is a generating gain coefficient if the closed-

loop system just described corresponds to a strongly continuous

semigroup, which we can then show to be equivalent to the system

x = Ag x = I A + R bc*)x, (3.06)

at the same time giving an interpretation of the operator Ag.

Before stating the next result let us observe that, from the

assumed properties of T(X), we may identify its inverse transform

with a distribution P, called the impulse response distribution, for

for which the associated convolution operation may be described by

y(t) = Ju(s) d P(t-s) (3.07)
0

Then let us note that, for I t 0,

T{(X) _ 1 (ST(X)-1) + 1I
1- T(X) + 1 -1T(X)

= II ~ -ii ~ UI() 1 J.(3.08)
9 1 -RT(X)

From this it is clear that TR(X) is holomorphic and bounded for
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Re X > ag if and only this is also true of UI(X). The latter pro-

perty, via the transformed equation

u(\) = U (X) v(X) , equiv.: u(X) = R T(X) u(X) + v(X), (3.09)

may be seen to be equivalent to the solvability of the convolution

equation u = A # u + v, '#' standing for the convolution operation

(thus (3.07) could also be written as y = p # u ) , that is, of

u(t) = t fu(s) d p(t-s) + v(t) (3.10)

in the L2 sense; i.e., if the inhomogeneous term v is in L 2 [0, e)

then there exists a unique solution u lying in L2 [0,-), where

max {a,p), for every a > ag. A further property of UR(X), which

will be developed more fully in the proof of Theorem 3.1 below

and in the work of §4 to follow, is that

y(X) = UR(X) y0 (X), Y0 (t) = S(t) x 0

describes, in the frequency domain, the mapping from the output

obtained from the open loop homogeneous system (2.01) with initial

state x0 , via (1.02), to the output obtained from the closed loop

system (3.06), with feedback gain R, via the same output relation.

With these preliminaries taken care of, we may state

Theorem 3.1. If b and c are totally admissible for the system (1.01),

(1.02), and if 9 is an admissible gain coefficient for that system,

then they are totally admissible for the closed loop system (3.04),

(3.05).

Proof. Let v e Lap[0,), that space being defined as in §1, and let

u be the solution in La[0,o), where 7 is now max (a,#) for some a >
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aR, of the convolution equation (3.10); an alternative approach con-

sists in letting u(X) be defined in terms of v(X) by means of the La-
place transform relation (3.09). Since b and c are totally admissible
for (1.01),(1.02), the input u to that system yields the output y

with y(X) = T(X)u(X) (equivalently, (3.07)). Then, since u obeys
(3.01), we conclude that the solution of (1.01) with the input u(t)
must be the same as that of (3.04) with the input v(t); thus y(t),
as a consequence, is also the output from (3.04) via (3.05). Since

v is an arbitrary element of L2[0,-) and the solution of (3.04),vP

being the same as that of (1.01) with the input u, has the same
properties as before, we conclude that b is also an admissible in-
put element for the system (3.04), (3.05).

Now consider the homogeneous counterpart of (3.04):

x A x + b y (,3.11)

with the same output relation (3.05). Clearly, if we let y(t) be
the solution of the convolution equation describing the open loop
output to closed loop output, i.e.

y(t) = * eAt x. + R y(s) d A(t-s) , (3.12)
0

the admissibility of c as an output element (cf. (1.06)) shows that

Y0 (t) c * eAt x0

lies in L2(0,_). Then the solution y(t) of (3.12), by the same argu-a2

ment used for u(t) in connection with (3.10), lies in L2[0,_), 7

= max{a,d}, 6 > aR, so c is an admissible output element for (3.10).

When the feedback relation (3.01) is applied with v(t) = 0 the

resulting trajectory, x(t), and the output, y(t), depend in a linear
homogeneous manner on the initial state x0 . Indeed, as we shall see,

there is a strongly continuous semigroup SR(t) of bounded linear op-

erators on X such that
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x(t) = SR(t) x0  (3.13)

In this section we will establish the existence of Sr(t), follow-

ing a procedure much the same as that presented in ( 19 1, we will
examine some of its important properties and we will discuss its
generating operator AR. We begin with the statement of

Theorem 3.2 Let b and c be totally admissible for the system (1.01),

(1.02) and let R be an admissible gain coefficient. Let x(t) be the
solution of (3.04),(3.05) corresponding to an initial state x O z X.

Then there is a strongly continuous semigroup of operators, SR(t)

such that x(t) is given by (3.13). Moreover, with appropriate in
pretation of domain, the generator of SR(t) is the operator AR shown

in (3.06).

Proof. We denote by S(t) the strongly continuous semigroup of bound-

ed operators on X generated by the operator A, i.e., S(t) = eAt, for
tZ0. Since c is an admissible output element, making the same growth
assumption on S(t) as made in Theorem 1.1 in §1, we conclude that

Yo(t) = c S(t) x0  r L2[0,-) , a > a

From the transfer function criterion for joint admissibility of $
we may solve for y(t) in

(Vr y)(t) _ y(t) - t JY(s) d A(t-s) = Y0 (t) (3.14)
u0

to obtain the closed loop output corresponding to the initial state
x0 . Since the closed loop input is given by

u(t) = 1 y(t) ,

as is already anticipated in (3.14), the familiar "variation of para-
meters" formula gives
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t

x(t) = S(t) x0  + R f S(t-s) b y(s) ds . (3.15)

The right hand side of (3.15) is, in fact, SR(t) x0 , but it is a

little bit awkward to display the form of this operator because it

involves the inverse of the Volterra - type operator VR appearing

in (3.14); specifically, we have

y(t) = VR c S(t) x 0  (3.16)

and so

t

x(t) {S(t) + R f S(t-s) b V R * S(s) ds} x0  = S (t) x0 . (3.17)

0

To demonstrate the strong continuity, we note that the admissi-
bility of c shows that y. is locally square integrable. The solva-

bility of (3.12) in L2 (0,T], T > 0, shows that y(t) is locally square
integrable and then the admissibility of the input element b shows
that x(t), as defined by (3.16), is continuous in t. Anticipating our
proof, in the sequel, that there is a semigroup SR(t) such that x(t)

= Sz(t) xo, for x 0 an arbitrary element of X, the strong continuity

of St(t) with respect to t follows. Since, as shown in [ i1 1, the

norm of

x(t) = S(t-s) b u(s) ds
0

b an admissible input element, can be bounded in terms of Iull L[0,t],

with uniform bound for any finite range of t, it easily follows that

lim X(t) = 0tI0
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We will subsequently indicate another way in which the strong

continuity property can be established.

The Laplace transform of the operator Sr(t), which we denote

by RR(N), is somewhat more symmetric and more tractible in computa-

tions. The corresponding transform of S(t) is well known ([ 8 ]) to

be the resolvent operator R(X) (XI - A)-'. Taking the transform of
of (3.15) we have

x(X) = R(X) x. + R R(X) b y()

and then, since (cf. (3.16)) y(X) = U (X) c R(X) x o (recall that

Ur(X) M (1 - R T(\))-  ) , we have

x(X {R(X) + R R(,\) b ,~(,\) c* R(,,) I x0,

and consequently the formula

Rs(N) = R(\) + R R(\) b Ur(X) c R(X) (3.1S)

Since it is equally true that y(t) = c*Sr(t)x o , it is also true that

RI(X) = R(X) + R R(\) bc* Rs(X) = R(X) I + R bc* R (X) ], (3.19)

which we save for later reference.

We remark, since we have already seen that Sg(t) is a strongly

continuous semigroup, that RR(M) must be the resolvent, (XI - A )- I ,

of the closed loop generating operator At for SR(t) and may, in con-

sequence, be expected to yield important information about the form
of that operator and the meaning of its expression in (3.06).

Finally, we must establish the semigroup property of Sq(t). To

this end we will make use of a lemma, stated and proved at the end of
the proof of the present theorem, to the effect that RR(X) satisfies
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the resolvent identity

R(x)=-- R(X) -A X I) ] . (3.20)

Assuming this, we prove the semigroup property of SR(t) in much the

same way as a parallel demonstration is carried out by Kato ([ 12 ]).
We let T, and T 2 be positive numbers and we let a > aa > aR, the

last as defined above for the admissible feedback coefficient 1. We
let ra  and r., be corresponding contours whose definition is the

L 2

same as that of r in the preceding section. Then we have

SR(T,) SR(T.) x0) = __ e XT2 R (X) Ssz(T,) x. dX
2,ri rf

2

a e X..T_ 2 Rr(X) e 1 RR(O) x. dp dx

2 1

4 2 fr_ a e XT 2 + uT RR(X) RRj() x o dM dX = (using (3.20))

2 1

47ra  r,, f a r-X (X R ,)) X m d

4 -r r., rt A - x

2

+ 2e XT f e T, RR(P) x. dA dx
4 a 71 r a ra Ct j - Xo

a 1

In the first integral, since Re p > Re X , we have

L-
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ji pT1  T

_- dp = 2ni e

Changing the order of integration in the second integral we have

I a e uT. R(p) x0 If e-_ dX dA

~2

But, since Re P > Re X, e and are both holomorphic in the
;A- X

closed half plane Re X < a and the familiar Jordan lemma argument

may be applied to show that the integral is zero. Thus we have

SR(T,) St(Ta) x0 = 1_f j eT 2 + ,TI RO(X) xo dX = St(T +T2 ) x0
2 2 r

a

and the proof of the semigroup property is complete, pending the
proof of the lemma which follows immediately.

Lemma 3.3 Let P and \ be distinct complex numbers with real

parts > al . Then R%(X) satisfies the resolvent identity (3.20).

Proof. First of all we remind ourselves that R(M), being the resol-

vent of the operator A, must satisfy its version of the identity:

_ . [ R(.X) - R(i,) 3 = R(P) R(.,). (3.21)

Then, using (3.18), we compute

Rr(X) R,(A) = R(X) R(A,) + R Ut(X) R(X) bc* R(X) R(p) +

+ R Ut(p) R(M) R(A)bc*R(p) + Ra U (X)UR(P) R(X)bc*R(X) R(M)bc*R(.)
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(using the resolvent identity (3.21) in each term and rearranging)

.1_ ( R(%) - R(p) + R Ur(X) R(N) bc* RM) - R UR(A) R(p) bc* R(P)

+ R2 (T(X)-T(P))Ur(X)U UL) - R U (X) + 1 UR(M)I R(U) bc* R({)

Using the formulae (1.08) and (3.08) for T(M) and Us(x), the term in

brackets {,} is easily seen to be zero. Then, noting (3.13) again,

the result follows.

We remark that the semigroup Sr(t) can also be represented by

S=(t) x e xt Rf(X) dx x 0

S---- e' t ( R(X) + 9 RM) b U(X) c* R(X) x0 dX . (3.22)

The integral converges in the topology of the space X; the first

term following the discussion at the end of §2, the second from the
uniform boundedness of Ur(X) for Re N > ai and the fact that the

admissibility of the input element c guarantees that c R(\) x 0 E

Ha(C + ) and our discussion, also in §2, of the integral (2.02). Once
we have the convergent representation (3.22), the strong continuity

of SR(t) with respect to t follows by replacing ext in (3.22) by the

difference e - e and treating the resulting integral by the

method already used in connection with (2.02) in §2, thereby provi-
ding a proof of that property independent from the one used earlier

in the proof of Theorem 3.2.

The strongly continuous semigroup SR(t) has (see, e.g.,[ 8 1)

a closed generator AI whose resolvent is the operator function Rr(\)

discussed above. We proceed now to use the form of RO(X) and its
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properties to identify the operator AR and its domain, D(AR). In

order to do this we have to make some further assumptions about the

original operator, A, and its relationship to the spaces X, W, W in-

troduced in §1. We have already assumed there that D(A) C W which is

densely and continuously imbedded in X. We now further suppose that

D(A) is a closed subspace of W defined by a finite number of linear

equations:

D(A) = w 6 W dk*w = 0, k = 1,2, ... , n (, 3.23)

where dk E W for each k and, following the convention introduced

earlier, dk*w is a convenient way to represent <w,dk>. Moreover, we

recall that b e W and we further assume:

i) The domain of R(X) can be extended from X to a closed sub-

space of W , which we will denote by D(R), which is indepen-
dent of X and includes the admissible input element b. So

extended, we have

R(X) : D(R) - X

for each X with Re X > a.

ii) R(X) b C W - D(A)

We remark that condition (i) is an agreement with a characterization

of admissible input elements (operators, in fact) obtained by Weiss
in [ 22 1.

Redefining the dk appropriately through formation of linear com-

binations of the original elements, we may assume that there is just

one of them, d n = d n(X) (the new dk may depend on X), such that

dn* R(N) b =1 (3.24)

while
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dk* R(X) b = 0, k = 1,2, ... , n-1.

From the formula (3.18) for RR(X) and condition ii) above we conclude

that for each x E X

w = Rr(X) x 6 W

Then, using (3.18) again, we have

w = R(X) x + 9 R(X) bc* Rr(X) x = R(X) x + R(X) bc* w .(3.25)

Since R(.) : X -+ D(A) C W , (3.23) and (3.25) yield

dn*W = dn* R(X) x + R dn* R(X) bc w = 0 + c w . (3.26)

We similarly find that dk *w = 0, k = 1,2, .. , n-1. It follows

that the range of RI(X), which is the domain of A5 , can be descri-

bed by

( ) = { w E W I dk*w = 0, k = 1,2,...,n-1, dn*- = c* w

If we agree to extend the definition of A beyond the original

D(A) so that

(XI - A) R(M) b = b, i.e., A R(X) b = R(X) b - b

then we find that, with x R(X) w,

(XI - A) w = x + R bc w (3.27)

so that, in this sense, it is true that

N XI - (A + R bc) w X

and thus, with the domain of A in W so extended, we see that R (X)

is the resolvent of
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AI= A + R bc*

To check the consistency of this, we note that if w E D(AR), as just

described above, then (3.27) is true and, since

c* R(X) x = dn* R(X) x = 0

we have

AR w = A R() x + 5 Ar R(X) bc* w

A R(X) x + R A R(X) bc* w + R bc* R(X) bc* w j

= A R(X) x + R I R(X) b - b + b ' dn* R(X) b 3 w

A R(X) x + R X R(X) bc * w E X

and so we see that

A- : D(AI) C W - X

as we should expect.

While we have used the representation (3.18) of Rz(\) here under

the assumption that b and c are admissible input and output elements,

respectively, and also that they are jointly admissible, actually this
representation remains useful for the discussion of systems subject

to linear output feedback even when some of these assumptions are not

satisfied, provided the integral (3.22) remains appropriately conver-
gent for each initial state xO • X. In the next section we provide a

significant example of , situation of this type. However, an addi-
tional difficulty arises here in showing that SR(t) is strongly con-

tinuous because we are not able to use the admissibility of b and c
along with (3.15) to establish that property as we have in the argu-

ment above.

We will say that the closed loop semigroup Si(t) is formally
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defined via R (X) if the formula (3.18) is valid, with appropriate

interpretation of the products involved, and yields a uniformly
bounded analytic operator valued function of X in some right half
plane Re X > ar for which the resolvent identity can be establish-

ed. Then we have

Theorem 3.4. Suppose:

(i) SI(t) is formally defined via R,(

(ii) The integral (3.22) remains strongly convergent, in the sense
already described above, to a bounded operator SK(t);

(iii) There is a dense subset D C X such that for each initial state
x ° E U a solution xq(t) of (3.06) is defined which is continu-

ous in t for t 0 and is given by the right hand side of
(3.22), i.e., xz(t) = S z(t).

Then S (t) is a strongly continuous semigroup of boundcd operators

for t C.

The proof is too routine to require detailed presentation here.
It will be used in a nontrivial way, particularly in regard to the
condition (iii), in a significant example to be presented in the
next section which includes, for all practical purposes, a proof
of Theorem 3.4.
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4. A "Non-Standard" Case Study.

Because of presumed applications to vibration stabilization in
flexible space structures, a variety of partial differential equa-
tions, and associated boundary conditions, modelling the motion of
elastic beams have been studied over the past few years. Here we
study certain aspects of the simplest, the so-called Euler - Bernou-
lli, model. We will suppose that units have been normalized so that
the equation can be written in the form

aw +&3 4 w = 0 , 0 < .: (4.01

and we will study the case wherein the beam is simply supported at

each end with a torque u(t) E L2 [0,-) acting at the end x = r:

w(00t) = 0 , (0,t) = 0 , w(rt) = 0, ( ',t) u(t). 4.0a x 2 x, . .

We will suppose that an observation, or output, y(t), is available

via

3 w
y(t) - (-,t) 4.93

3t3

The associated first order system involves a state

[ w(x t v(x t) = w (xt, , -- (x , 3 t }

and it is appropriate to take tne state space to be

X = H 2 [0,7' x L [. - 04

where the subscripts indicate that we impose on thie first component

the boundary conditions

w =) w(-, : 9J.
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We take W to be the space

w = Hi,0[O,n] x H2 , [0,7],

which includes D(A), where A is the generating operator

A = 0 o 1 1]I-D 4 0

We will use the inner product consistent with system energy:

( [ W2 ) )X (w" , wa) + (v , v2 ), (4.05)
v I L2[0,71[,]

which is equivalent to the standard (Sobolev) inner product in X as

defined in [ 1 ],e.g.. The sesquilinear functional relation < z , z >

between elements z E W and z E W is defined so as to reduce to this

inner product whenever z E X C W We can readily observe that 1)(A)
is the closed subspace of W characterized by homogeneous boundary
conditions on w and v of the form

w) : w = ) : w"(r) v(0 : v(") : 0

It can be seen, with the use of methods similar to those developed
in 11 1, that the input and output elements corresponding to (4.02)

and (4.03) are

b0 cb : c : I ,(4.06J

This, or a nearly equivalent, system has been cited by a number
of researchers (see, e.g., 1 19 ]) as an elementary example of physi-
cal interest for which neither the input element nor the output ele-
ment is admissible in the sense of our earlier definition. We will
also see that b and c are not jointly admissible in this case for
any value of (cf. §3).

To compute T(X) and R(\)b we assume an input u(t) = e, for
some complex number X, and we look for a solution of (4.01), (4.02)
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X t^
of the form w(x,t) e w(x,x), leading to replacement of (4.01) by

=w + !L 0 (4.07)
3x*

and the boundary conditions (4.02) by

2 2

w 0,X) 0,(0,X) 0 , w(T,X) = 0, ax (7,X) = 0 (4.08)

The observation becomes y(t) = e t y(\) with

y() X -w(- 7,) (4.09)ox

Setting X = i 2 we can readily compute that

w x i 2) = I_. sinh cx sin .x .1
( 2 4. 2 1 -

-  (4.sin10

when w is not a real or imaginary integer. When X = 0 we have

w(x,0) x 3  - - x

6-7 6

The observation beIng y(t) = e y (\), where cf. 14.09)

y(i A ) 2 [ coth - cot L

we conclude that this is also the transfer function for the system;

T(X) = T(i~A) = y(i ) F coth - cot -j , (4.11)

the poles of which are easily seen to lie on the imaginary axis of

the X plane at X = ±ik 2 , k = 1,2, .... We may examine the beha-
vior of this transfer function on vertical lines A = a + i., -, (

< ,by ooking at T(i a ) on the hyperbolic curves
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( d = p + i ), c = a (4.12)2 p

lying in the second and fourth quadrants of the complex ; plane.

From the formula (4.11) it is clear that T(iwA) does not remain
bounded on curves (4.12) as I'' ", so we conclude that b and c, as
specified above, are not jointly admissible for f = 0, i.e., for the

open loop system. Since e XtR(X)b is the exponential solution (ex-
pressed as an element of the state space (4.04) corresponding to the

input u(t) = e , we can use (4.10), and its special case correspon-
ding to w = 0, as we have already noted, to compute

R(i;.a) b = wx~ ia) (x i -) sinh c.x - sin v .: (4.13)
i xiw J21 i sinh ;; sin -r

As i'm along curves of the form (4.12), the real and imaginary

poles of (4.13) are approached at a distance ( ( [-*) and, from this
it can be seen that (4.13) does not remain bounded on such curves,
hence R(X) b is not bounded on any of the lines Re X = a, a > 0.
But we have seen, in §2, that such boundedness, for a sufficiently
large, is a necessary condition for admissibility of the input ele-
ment b. As a result we conclude that b, as described by (4.06), is
not an admissible input element for the system (4.01), (4.02). We
similarly conclude that c = b is not an admissible output element.

* i2 : * .2a
Next we want to study the form of c R(i, ) b R(i

For z 6 X, this is given by the formula

0

(since A is antihermitian relative to the inner product (4.05)

< ( z0, J' e i- t S(-t) b dt > < z. ,  (-i-
2 1 + A) -1  b >

0
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= - < Z 0, (i l - A) b >

Taking the formula (4.13) and the form of the inner product into ac-

count, we conclude that, expanding z0 now as o

b*R(i)( ) o iaf w(x,-i.A)v,(x) dx 2 w(x_- )w (x) dx0° 0 0o 3/.

(since -i 2 = i(i )2 and the formula (4.10) shows that w remains

invariant when w is replaced by i;)

jf w(x,i 2 )Vo(X) dx - 3f W (x'iA)w 0 (x) dx

0 0

= fIsinh cjx sin vx iv(x) dx
sinh n sin wx

J [ sinh wx + sin x w 0 (x) dx

2d0 sinh c. sin r

Thus we can see that that the resolvent difference used in Theorem

3.2 here becomes the operator valued function defined by

-f R( i - 2 bb* R(i U2 ( i-2 V0

o -

0 vo 0

where R(x,e,i.a) is the 2 x 2 matrix kernel given by

(x, ,i ) =(4.14)

(414
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I Isinh w-i sin ;Yrl _sinh wt + sin , i sinh ,_ sin wt.
4 | sinh wx sin wx| Isinh w sin wn sinh wr sin w )

Isinh cw sin '

Since the norm associated with (4.05) is just the L [0,7] x L2 [0,- ]

norm of ( W ], w = w, in order to study the closed-loop resolvent

we need only examine the operator 6RZ(iw2) given by

6R(icW2 ) v = -f. (x, ,iA) UR(iW2) w 0") d,
0 VOM

where

R(xficA) (4.15)

(sinh wx + sin x
I Isinh u sin w [_)sinh "- + ina;t] ifsn - sin i .

4 [ _ r sinh ' sin inh sin I
Isinh wn sin w d

Let us note that the output feedback relation (cf.(' 02),
(3.01)), applied to the present instance, becomes

u(t) = -R a -- (7 t) + %'(t) = -F y(t) + V(t) (4.16)
a tax

For v(t) = 0 we have the homogeneous boundary condition

3aW( ,t) + $ a w t 0 (4.17)
ax atax

It is easy to see that the system consisting of (4.01) and (4.02),
with the last condition of (4.02) replaced by (4.17), is dissipative
with respect to the norm associated with the inner product (4.05)
when R > 0. Applying the Lumer - Phillips theorem ([ 14 ]) we can see
that the indicated feedback relation results in a closed-loop system
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corresponding to a contraction semigroup. So, although neither the
input element b nor the output element (also b in this case) are ad-
missible, and even though they are likewise not jointly admissible,
for the open loop system (R = 0), it is nevertheless true Lhat %

is a totally admissible gain coefficient (cf. §3) for R > 0 (for
all values of I, in fact).

As noted in §3, TR(M) is bounded in the closed half plane

Re X Z 0 just in case UR(X) is, and in the present case (cf.(3.08)),

with X = i 2

U (i-2a) = 1(4.18)

1 + R i [ coth -cot 32

The poles can be shown to lie in the first and third quadrants of
the c plane. The second and fourth quadrants of the Q plane corres-
pond to the right half X plane. On the real axis the boundednesr of
U (X) is evident because the term in parentheses is real. Replacing

j by iw and use of trigonometric identities establ_
sult on the imaginary axis. Carefully examining the functi.-..
restriction to the second (or fourth) quadrant of the lines Re k,
Im w = k and using growth and periodicity properties along with tV'
maximum principle we can obtain boundedness in the rectangles

0 Im k, -k 1 Re 0

in the second quadrant and their counterparts in the fourth, the

bound being independent of k. The boundedness of UL(\), and hence

of Tg(M), in the closed right half X plane follows and we conciuae

the admissibility of positive gain coefficients I.

Now we ask if, for a particular gain 5, we can establish total
admissibility, i.e., the existence of a strongly continuous closed

loop semigroup, by the methods of §3, notwithstanding the non-admis-
sibility results cited above which prevent the use of Theorem 3.2
Further, can we do this without the assumption that r is positive'
To answer this we define Rj(\) as in §3 and note that we must exam-

the properties of the resolvent difference
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6RI(X) = RI(X) - R(X) = UICX) R(X) bb* R(X)

between RC(X) and the original resolvent operator. At issue is the

conditional strong convergence and t - continuity of the integral

1L j ext 6Ra(x) dX (4.19)

for > 0 and t > 0 and the strong convergence of this integral to

zero as t 1 0, the latter equivalent to showing that

lim Ss(t)x 0  = lim _ __ ext R (X) d\ x. , (4.20)
tIO tiO 2-Ti f r

which can, in turn, be seen equivalent to the completeness of the

eigenfunctions of the closed loop semigroup generator.

Since

lim coth 1,

and since an elementary analysis of the denominator in (4.18) shows

that its zeros, which are the poles of the closed loop transfer
function, are given to first order in 1/1 j as I-'Il by

Cd k + + 4i + 0( 2 ), k ( , . . 4.21)k =Z ( ++L k (
(421

corresponding to

i2 £ k;L2 _8'i
Xk = k  (k; - + O( k)

we suspect that the closed-loop semigroup may, in fact, be a group.
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Replacing t by -t, the equation (4.01) is invariant while the closed-

loop boundary condition (4.17) becomes

F)2W (71,t) - R a2w (7Y t) : 0
ax a 2t0x

So we conclude that the semigroup is actually a group if we can est-
ablish the semigroup property for an arbitrary real C rather than

just for R 1 0 as must be assumed for application of the Lumer -

Phillips theorem, as noted above.

Before getting into the proof proper, we require a definition
and a lemma. A bounded sequence of vectors, f = {k} C X, a Hilbert

space, will be said to the uniformly t2 _ convergent if the operator

Tf : Ea  + X

defined for 1 = , 3 ... } Z 
2  by

T ~ k ~k
k=1

is a bounded operator, so that, for some B ,

i T 112 1 B I t
k=1

For later use we also note that, for fixed x E X,

(x,T x) ( k) k
k=l

is a bounded linear functional on Z and therefore k  2

Then we have the following lemma.
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Lemm&a.1 If I (as shown earlier) and 41 = { } are uniformly L2 -

convergent sequences in X, then an operator series

C = 7 'k Ik " k (4.22)
k= 1

with bounded ck converges strongly to a bounded operator C on X.

Further, if a sequence (CL} of such operators is defined with the

corresponding sequences Ictk} uniformly bounded with 1im C k = 0
E-0

for each k, then the sequence C. converges strongly to 0.

Proof. For the first part of the proof we may, w.l.o.g., replace

the indicated coefficients ck by 1, absorbing the coefficients in

one of the sequences 4 or P without changing the convergence proper.
ty. We then need only note that the adjoint of T is the operator

defined by

T x {(X,Pk)X }  = 9k 1 'k Qk x, k - 1,2,3,...

to see that the series is really TT and hence represents a bounded

operator since Tp and TI, hence T$*, are bounded operators. Let us

denote the corresponding truncated operators by a superscript N,
e.g.,

N N
2- tk "kk=1

Then it is easy to see that

Tj (TT N TN N (T*

So, for x E X,

N TT% T# X k Pk x : TIP T@k Tf
k=1
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and the fact that

lim T,; - T T4* x = 0, x 6 X,

follows from the assumed t2 - convergence property of the sequence

P. Thus the series (4.22) converges strongly to TP T, To estab-

lish the second result we let x be a fixed vector in X and take r>0.

Since (XPk) E L2 and the cgk are uniformly bounded, we can find

K such that

II k=K (x'qk) ctk 'k 11 < 2

uniformly for all t. Then we need only find L such that for E > L

K-I
II k ' ctk *k 11 < f

k=1

which follows trom the boundedness of the (x,Qk) and the assumed

convergence to 0 of the clk as E - ', and we see that the proof is

complete.

Having obtained this result, we return to the main question,
that of establishing the convergence of the integral in (4.19).

To this end we first replace F by

a r U r

oriented positively, and then replace the two parallel lines of C,

Nby a sequence of closed rectangular contours C. , N = 1,2,3,.....
N

where, for rN to be described subsequently, CO consists of the seg-

ments of Cc lying in IIm X1 rN together with the connecting seg-

ments of Im X = ± rN ' Under the change of variable X i;- the

straight lines F±a are transformed into hyperbolae (u = p + io)



-54-

2P

hence the rectangles CN are transformed into contours KN as shown in

Figure 1.

i
. 2

-31 -2 -1 .- 1I L

- 3' - -jiu 2 32 .1

.2
/

Figure I.

NThe "end segments", LC , are portions of the conjugate hyperbolae

p 2 _ oa = t rN

NTraversing K. once, C. is traversed twice since - is, of course, id-

entified with -w under \ = iud

From the formula (4.15) we see that 6 R(\) is a 2 x 2 matrix of

operators; the individual entries are much the same except for signs

and their treatment, insofar as convergence of (4.19) is concerned,

is virtually identical. We will treat only the "1,1" operator entry

here, which is described by the kernel



+[sinh sin sinh 4 + in1
4 sinh cT sin -r Isinh sin -J

(4.23)
1 + (coth n - cot - ]

acting via integration with respect to t on functions w(E) E L [0,-].
Poles occur at the real and imaginary integers in the c plane (actua-

lly, these poles of &Rr(X) simply cancel, by subtraction, the corres-

ponding poles of R(X), but we make no special use of that here) and
at the zeros of the denominator in (4.23), which are the complex num-
bers ± ;k' ± i k ' 4k as in (4.21). It is clear that all of these

poles will lie inside K if a > 0 is chosen sufficiently large, what-

ever the sign of F may be. Since the k and .k are uniformly separa-

te ,r-N in lu e k, -k Zk, -ik,
ted, rN may be chosen so that KN includes k, -k, k, -k k

idk, i.juk , k 1 N (for sufficiently large k, at least), and so that
-N

KN remains uniformly bounded away from all of these points for all N.

We carry out the multiplication indicated in the numerator of
(4.23) and multiply numerator and denominator by sin -7 sinh .- to

obtain

R [ sinh -x sinh d s sin + sinh x sin

j sin Ch sn

+ sin wx sinh + [sin x sin sinn 14.24'

sin 7 sinh - + cosh 4 sin -sinh cos

Let us first consider the "(sin x sin ';)/sin -" term. The expres-

sion is used in the partial integral obtained from (4.19), with F

replaced by C , by the change of variable \ i (dX =2i d-),



-56-

eiia t sin c.x sin 4 w sinh w dw
sin wr7

2-ri fKN cosh wn sin wr - sinh wn cos '] -(2i/)sinh ' sin '

(4.25)

Computation of the residues at the real integers w = k, -k, yields

a e ik
2
t sin kx sin k. (4.25)

The "(sinh 'x sinh wt)/sinh L.7" term will have similar residues at
the points ±ik.

The other poles of the integrand in (4.25) come from the zeros
ki k of the denominator. Again treating only the sin wkx sin zkf

term, we see that the residue has the form

Wk sinh wkw e k sin wkx sin w (4.27)

sin ej7 D'((k)

where D(w) denotes the denominator just referred to. An easy com-
putation, using (4.21), shows that as k -

Wk sinh ukr - 1
sin wk7 D'( Ok)

and thus (4.27) has the form

iwt

dk e sin cjkx sin k , dk - (4.28)
7T

The other terms in (4.24) are treated in much the same way except
that wherever sinh wkx or sinh ukt occurs the expression is rearran-

ged so that the term actually used is sinh wkx / sinh wkn , etc.

This results in residues at the points wk with the forms
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i sinh kx sinh it sinh kx sin wkkk ex ,n bk e; kak sinha  k ' k sinh ck

(4.29)
ie 2 t sin wkx sinh wk,

ck esinh

with each of the coefficients ak, bk, ck tending to i/n as k

An entirely similar situation occurs at the points -k' ±i4ik, ex-

cept that the roles of the sin and sinh functions are reversed at

the pints ±i4k as compared to ±tk" Noting that

sin k4 = sin wkf

and treating sinh wkt similarly, we may invoke Lemma 4.1 repeatedly

to obtain the strong convergence of the operator series corresponding

to each of the expressions shown in (4.28), noting that the appropri-

ate uniform 2 - convergence property 3f the sin kx functions is well

known, for the sin 4kx (or sin 4kko) may be obtained from [ 7 1, and

for the functions sinh kx/sinh wkr (or sinh c;kt/sinh Z.k) may be ob-

tained by the methods developed in [ 17 1. From this we conclude,
N Ntherefore, that the integrals over KC, and hence over C., converge

strongly as N 4 -. The operator integrand (4.23) can be seen to be

uniformly bounded with respect to N on the end segments LN of KN

and therefore, since the lengths of these segments tend to zero as

N 4 -, the integral over KQ , equivalently over C,, is strongly con-

vergent, provided the integral over the infinite contour is approxi-

mated via integrals over the contours obtained from KN or CN by de-a (X

leting the end segments. This restriction has to be imposed because
the operator integrand (4.23) does not tend to zero, nor, for that

matter, even remain bounded, as we move out to - along the contours
K,, due to the path of integration moving ever closer to the poles

at the points ±k, ±ik, ±ik' ±i.Dk' The convergence i -pIite strictly

conditional on the precise sense of convergence we have indicated
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here in our choice of location of the L .

Once we have the strong convergence of the integral over C., as

explained in the preceding paragraph, the integral over r-, can be

shown to be equal to zero for t > 0 in the same way already develop-
ed in §3. The semigroup property also follows in the same way as we
indicated there. Strong continuity for t!0 of the integral in (4.20)

follows from uniform continuity of e t with respect to t for X in any
compact set, the uniform boundedness of this function for bounded t
and X in a fixed vertical strip in the complex plane, and applica-
tion of the second result of Lemma 4.1 to the operator series ob-

tained from the integral in (4.20) with eXt replaced by the differ-
ence eX(t+ d t) - eXt.

The putative closed loop semigroup now has all of the desired
properties save one. It is conceivable that the Sr(t) might just be

the image of the actual closed loop semigroup under the action of
a projection operator P which commutes with A. To show that any

such P must, in fact, be the identity operator, it suffices to show
that (4.20) holds for any x0 (i.e., w0 , v0 in the present case) in

the system state space. It is here that we use the boundedness of
UR(X), equivalently that of TRCX), in a very essential manner, to

establish strong continuity via an argument along the lines laid
down in Theorem 3.4.

Let us consider, first of all, the homogeneous open loop sys-
tem, (4.01), (4.02) with u(t) = 0, and solutions w(x,t) correspon-

ding to certain initial states. Specifically, we consider initial
states

w(x,0) = WO(X), aW(x,0} = VOW, (4.30)

at

with (wovo) e D(A2), so that wo E Ha[0,n], vo E H[0,r] and the

boundary conditions

WO(0) = WOO) = -(iv)(0) = (v)(0) = 0 (4.31)
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. vi)() w (v ) = 0 , (4.32)

v (0) = "(iv)( 0 ) = 0 , (4.33)a 0

V(iv)(7 T) = 0 , (4.34)

are all satisfied. Then we impose the further conditions

W(v)(?r = 0, v0( -) = 0 .(4.35)

Since the state space is (4.04), it is readily seen that the set D

of all initial states (w0 ,vo ) just described is dense in that space.

Since such an initial state lies in B(A 2 ), the resulting solution
w(x,t) has this property for all t 1 0, i.e.,

w(- ,t) E Hs(O,",r Iw( *,t) E HO[0,],
at

and, in addition, boundary conditions parallelling (4.31) - (4.34)
are satisfied. Since the system is conservative and the norm used

is equivalent to system energy, we know that

in particular the norm on the left is uniformly bounded. The norm
used here is, of course, the one associated with the inner product

(4.05). Moreover, we know that A2 ( w ) is continuous with

respect to t, t 1 0, in the state space (4.04). Since point evalu-

ation of the (n-l)-st derivative is continuous on Hn( I ), where I

is any closed interval of R', the output from the solution w(x,t)

via (4.03), y0 (t), is such that its second t-derivative,

d3 3
0 (t) = 6-jv (7,t) = v ( "t)

dt 2t ax FxJ5

is continuous and uniformly bounded for t Z 0. Further, we can see
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from (4.35) and (4.01) that

(O) a: W (7T,O) v (') :0,

0 ~ 5tax

a3y(0) S _(V)
YO(,0) (',0) = -w ()= 0

at 2x ax0

From this it follows that y0 (X), the Laplace transform of y0 (t),

is such that Xy2(Y ) E H2 (Ca) for any a > 0. But we have seen

earlier that if we take ai sufficiently large, so that it lies to

the right of any poles of Ur(X) in the right half plane (these, of

course, occur only for 9 < 0) , then Uj(X) is uniformly bounded for

Re X Z at. Therefore, if we set

yg(M = Ug(M YOMx

we shall also have X2 yI(X) E H 2 (Ca). Letting uR(t) denote the

inverse Laplace transform of ug(X), we clearly have

ug(0) = u (0) = 0 (4.36)

and uR(t), u;(t) and u"(t) all lie in L2 [0,_).

Now, following a procedure originally introduced by Fattorini
H 9 1), we make the transformation

wR(x,t) = zg(x,t) + <(x)uR(t) , (4.37)

wherein wr(x,t) is to be a solution of the system (4.01), (4.02)

with u(t) replaced by ug(t) and (x) is the solution of

4..(x) = 0
dx(
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satisfying the boundary conditions

<10) : (0) : <l(T) 0 , < (7?) : 1

i.e., x) = x + We find then that zt(x,t) is a solution of

+ + <xu()(4.38)
5 74

at 2 ax4 (~j~)(.8

satisfying the homogeneous boundary conditions

zR(Ot) = 0 , 2 (0,t) = 0 , zR(7?,t) = 0, - ( t) = 0. (4. 39

The solution wr(x,t) is to satisfy the same initial conditions as

w(x,t) discussed above, i.e., (4.30; through (4.35), so we shall

have

az (
zR(x,O) w0 (x) , ( x,O) v0 (x) , (4.40)

at

since ut satisfies (4.36).

Now the system (4.38), (4.39) is of the form

= A x + g v

with

g ? EX

X denoting the state space (4.04) here, and v = uz locally square

integrable. For such a system, with initial state (4.40) in X,

it is well known (see [ 11 1 e.g.) that the resulting solution zR

exists, is unique and is continuous in X, assuming, also continu-
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ously as t 1 0, the given initial state. It follows that (4.37)

provides a solution wR(x,t) of (4.01), (4.02) with the same proper-

ties, u(t) -eplaced by uR(t). The rapid decay properties of uR(X)

as Im X * allow one to see that the transform of wR(x,t), vR(x,t)

is

wrlx,'X)( :~2 =R(X) ( Vo ) + R(A) b x~~ (4.41)

and that the inhomogeneous part of wR(x,t) can be recovered from the

second term via an inversion integral of the form (206). But it is

equally true that

ulX) = R yRM = R UR(X) y0(X) = R UZ(X) b* RX) I o ) (4.42)v0

and, substituting (4.42) into (4.41) and comparing with the form of

RR(X) shown earlier, we conclude that it is also true that

What we have shown, then, is that there is a set of initial

states x. = (w0 ,v0 ), dense in the state space, for which (4.20) is

true. Since we have shown the operators SR(t) to be uniformly

bounded on any bounded t - interval, we conclude that (4.20) must,

in fact, be true for all initial states in the state space (4.04).

We have, therefore, proved

Theorem.2 The closed loop system consisting of the equation

(4.01), the first three equations of (4.02), and the boundary con-
dition (4.17), corresponds to a strongly continuous group of oper-

ators S (t) on the state space (4.04) for every real value of R.

The arguments given here also provide, in essence, the omitted
proof of Theorem 3.4.



5. Approximation of Input - Output Operators.

No analysis of transfer function methods for distributed para-

meter systems can be considered complete if it does not address the

question of approximation. In other words, if we have a sequence of

finite dimensional systems

xn = An Xn + bn u, (5.01)

Yn = Cn xn I n = 1,2,3, ... , (5.02)

approximating (1,01),(1.02 in some appropriate sense (in particular,

we would expect the sequence of approximating generators A n to obey

the Trotter - Kato conditions, as set forth in [ 12 ],[ 21 ], and if

we define

Tn() = Cn*[ )In [ A. n

as the corresponding approximating transfer function, then what can
we say about the convergence of the Tn( ) to T(X), and hence the

convergence of the approximating input-output operators J n,p to the

input-output operator (1.10) associated with the complete system

(1.01),(1.02):

J : L [0,_) 4 L2 [0,_), p 1 7 = max {a,0} ?

Here a is defined with reference to A as in §1 and, for any p Z 0,

La2[0,_) is defined as in (1.11). The reader will recall that total
p

admissibility of the input - output pair b,c implies that the opera-
tor Jp, as defined here, is a bounded operator for some p > a, where

a is as defined in Theorem 1.1.

In this paper we consider primarily modal (eigenfunction) ap-
proximations, corresponding to replacement of the standard series

representation of T(N),
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T(X) 7. Ckbk
k- i X - Xk

(assuming T(X) has distinct eigenvalues Xk and an associated Riesz

basis of eigenvectors { 9k } as discussed in §3 above), by increasing

partial sums Tn(X) (by increasing we mean that all terms in Tn(X)

are strictly inclided in the next partial sum Tn+i(x) , n 1,2,3,...)

converging uniformly to T(X) in compact subsets of Re A - p. Asso-
ociating with each Tn (X) the corresponding input - output operator

J : La[0,) + La[0,0), we will say that the sequence [Tn (Jnp})
(weakly, strongly, uniformly) approximates T (Jp) according as the

operator sequences converge to the indicated limit in the (weak,
strong, uniform) operator topology. The basic result is

Theorem 5.1 Let b and c be admissible input and output elements for
the system (1.01),(1.02) which are also jointly admissible, i.e., b

and c are totally admissible for (1.01),(1.02). Then {Tn} (tJn,p)),

as described above, strongly approximate T (Jp), for a given p >- 0,

if there is a positive number such that

ITn( )I . , Re X I p , n = 1,2,3,... (5.03)

(Of course the same bound will then be satisfied by T(M-).)

Further, if p = 0 and (5.03) is not true, or if for p > 0 there is
a 6 > 0 and points an such that

lim inf {IT (P+ia)I} = (5.04)
n.

then the indicated strong approximation result definitely does not
hold.

Remark. It seems likely that (5.03) is necessary for the strong ap-

proximation whatever the value of p > 0 but, since the present result
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is adequate for our present purposes, we do not pursue such a theorem

here. If the bk and ck are uniformly bounded, p > 0, and the \k have

a maximum density as described in §3 then the failure of (5.03) imme-

diately gives (5.04) because the derivatives Tn (X) may then be seen

to be uniformly bounded (even though the Tn(X) are not). These re-

sults are reminiscent of and, of course, related to the Trotter -

Kato ([ 21 1) and Lax - Richtmeyer ([ 13 1) results.

Proof. If the Tn(X) satisfy uniform bounds (5.03) and converge uni-

formly to T(X) on compact sets, it is quite simple to see that, for

any 9 E Ha(C+), the Hardy space on the half plane Re X 1 p, the seq-

uence {Tn(X)Y(X)} converges to T(X)M(X) relative to the norm in that

space. This yields the strong convergence of the Tn to T, which, in

turn, also gives the strong convergence of the operators Jn,p to J p

since the Plancherel theorem implies that strong convergence of the

Tn(X), interpreted as multiplication operators from H2 (C+ ) to H (C )

to T(X) is equivalent to strong convergence of the corresponding con-

volution operators Jn,p to J . So the sufficiency part of the theorem

is proved.

The necessity part for p 0 is quite direct. If the indica-

ted uniform boundedness does not hold, the maximum principle shows

that it cannot hold on Re X = 0. Then by looking at functions

= r r 1 0 (5.05)
rtr-io

one can readily see that the norm of Tn( ) as a multiplication op-

erator is equal to the maximum of its modulus on Re X = 0 and hence

tends to - as n + -. The Principle of Uniform Boundedness then

shows that the Tn(N) cannot converge to T(X) in the strong topology

of bounded operators on H 2 (C+). The Plancherel theorem immediately
extends this negative result to the input output operators Jn,p' Jp"

The proof for p > 0 is much the same except that the functions
(5.05) cannot be used as shown. Instead we fix r > 0 and for a
given a we form
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'r, X( ) = (5.06)

X+r-io

which has the value 1 at ' = p+io and has modulus < 1 everywhere

else on the line Re X = p. Then we find N = N(6) such that the

function

Vr,a(X) r,a(X)N

satisfies

o 6 ~r~(P+i-)l a d- Z [V
2 r, , 1 2c-6

Then the Vr,an are uniformly bounded in H (C+ ) but it is quite dir-

ect to see that the functions Tn ) r,a M) have norms tending tor~n

infinity in H2 (Ct). The negative result then follows as in the pre-pre

vious proof for p = 0 and the theorem is proved.

We proceed now to show that the strong approximation property of
the operators Jn,P is, in fact, a rather delicate business, depending

on very particular properties of the system being studied.

We consider a uniform stretched string of length r with endpoint
fixed at the end x = 0 and a free endpoint, subject to a laterally
directed force at the end x = n. The complete system may be taken to
be

'32w aw = 0, (5.07)

at 2  a

w(Ot) = 0, aw(7r,t) = u(t) . (5.08)

ax

Further, we define an output
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y(t) = A av ,t 5.09)at

and we study the input - output operator

JP: L2[0,-) 4 L2 [0, - ) , p > 0

In this case we have the transfer function relation

(N)= T(X) uM)

an exercise similar to, but even simpler than, that in §4 showing

that

T( = tanh(7x) =± + 1 ,(5.10)
k= X - (k-) i X + (k-a)i

the series, as grouped here, being uniformly convergent in compact

subsets of either the right or left half plane. It is an elementary

exercise (see [ 11 1 for details) to check that the input element and

the output element are admissible here. Joint admissibility is a di-

rect application of the material in §2.

If we use a modal approximation to the system (5.07), (5.08),

(5.09) based on the first n natural modes of vibration we obtain a

system whose transfer function is

TnX) n 1 +
k=1 X - (k-k)i + +

Each of these transfer functions is bounded for Re X p > 0 but, as

we will see, they are not uniformly bounded and, by the argument giv-

en above, the associated input-output operators J n,p cannot converge

strongly to the operator J corresponding to the transfer function

T(X). To see that this is the case, we let P be a complex number
with Re u 1 p and we consider the values

T ((n- 1 )i + P) , n = 1,2,3,
n a
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We have

ks( ; + (n-k)i p + (n+k-l)i

2n-1 1 2 [ C x + Elpin)

j=0 + ji I pi - k

i4 log(pi) - log(.i-2n) + E(Ai,n) ,

where E(ui,n) is the familiar error term incurred in replacing the
sum by the integral. Since that error term is well known (C 23 J)
to be uniformly bounded for all n and for ; as described, we con-
clude that

lim I Tn((n-L)i + A) I =

for any such ;. Since the Xk satisfy the bounded density property

(quite trivially) in this case the negative result as regards strong
approximation of T (Jp) by the Tn (Jn,p) follows from the remark made

following the statement of Theorem 5.1.

The conclusion, that the operators Jn,p do not converge strongly

to the input - output operator J. associated with the infinite dimen-

sional process, must be regarded as implying a serious limitation of
the modal approximation process as it applies to this energy conser-
ving system. It will be straightforward for the reader to verify
that this situation is unchanged if the equation (5.07) is replaced
by

a- + 27- Y 0,

representing a vibrational or wave propagation system with so-called
"viscous" damping.

Now, taking
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A = a

ax

with DWA) determined by homogeneous boundary conditions compatible
with (5.08), we consider the system with "square root" structural
damping

w + 27 A1 / 2 w + A w = 6. u(t) , y > 0 , (5.11)

or, in first order form with v z w

d t t w] = A 1 . w + u 0 u(t)v -A -27A1 /  v 6 7

where A is the positive square root of the positive self-adjoint op-
erator A. This corresponds to the admissible input element (see

11 1, e.g.)

b = ib

whirh is just another way of describing the input process indicated
by the second equation in (5.08). The output process is again (5.09)
which corresponds to the admissible output element

C b = 0 6

just as in the case of the beam example of §4 except that 6,. there

is replaced by 6,7 here.

After some calculation, which need not be exhibited here, it may
be seen that, with

wk k-i k=1,2,3,

the transfer function for this system is
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J-1 X2 - 2 wk X cos 1, + Wk

i* - X ]-i* (5.12)
kz! 2 sinh iv X - wke - ke

where 9 is the angle (between V/a and r) such that

- cos * = Y .

The transfer functions corresponding to modal approximation
are then

n [ _ _i _ -_i_ _
T7 Xn -) = e i X - ' -iV

k=l 2 sinh i* . - ke k

It is again easy to verify uniform convergence of the Ty,n(X) to

T7 (X), as n -+ , in compact subsets of Re X Z 0. But now we can

show more; we can show that the TY,n(X) are also uniformly bounded

for Re X 0, so that, as multiplication operators from H2 (C+ ) to

H (C ), p 0, the T (X) do converge strongly to T (X), with the

Plancherel theorem then implying the same conclusion with regard to

the corresponding input-output operators J,n,p I J,', from L[0,_)

to L(O,). To establish the indicated boundedness property it is

clearly enough to study the functions

k= X- ke i  - Cke

To study the sum of the first terms indicated, we let A& = e- i

and observe that this sum becomes
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n dx

I + E(IA,n)
k=1 ' - (k-) _ As-x

a

where E(p,n), the error term, may be seen to be uniformly bounded
for Re X 1 0 and all positive integers n. Clearly

2+L n2

nx log (x - log ((n+) - ) - log (L - )
A, - X

= log ((n+i)e i* - X) - log (Lei* - X)2 2

Similarly, the sum of the second terms reduces to a comparable error
term plus

log ((n+)e - i  ) -log (2e-
i -

Subtracting the second from the first we see that

T n(X) = log - ) - log
(n+-L)e - i* l e -

+ E(e-''X,n) - E(eilV,n)

The last three terms are uniformly bounded for all n and Re X 0;
we need only consider the first. Since the argument of the quotient
is bounded, it is only necessary to show that

(n+4)eLV -
a e 

(5.13)
(n+ le -i  -*

is bounded and bounded away from zero uniformly for positive integers
n and Re N Z 0. For Im X a 0 this magnitude is clearly 1 1 so we on-
ly need to show that it is bounded away from zero. A very easy geo-
metric argument shows that it is enough to do this for Re X = 0. So,



referring to Figure 2, we let X iv, v 0,

(n+-L)e il

2 +b" t

/

(nL e -

Figure 2.

and we consider the ratio, reciprocal to (5.13),

Qn (v) = E-(n,')/ +(n,v) (5.14)

This is clearly a continuous function of ', the value at v 0 is 1
and

lim Q (v) = i.

So the maximum of the ratio (5.14) occurs at some finite vn > O,
since there clearly are v for which the ratio exceeds 1. It can
be seen that

> (n+)sin
n

and, in fact, occurs at the point where, now referring to Figure 3,
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(n+-)eiy o
\ (p

/

/
/ /

//
I/

/

Figure 3.

+= , i.e., +0 =
22

Since for r, R > 0

r e i i - iv R e i 1 - i(R/r)v R e - ij

r e -v IR e1  i(R/r)v R e1~ iv

the maximum value of n (v) (though not the point where it is assumed)

is independent of n and we conclude, therefore, that the approximat-
ing transfer functions TY (X) are uniformly bounded for all positive7,n

integers K and Re X 1 0 and Im X Z 0. An entirely similar argument

establishes the same result For Re X Z 0 and Im X 1 0. Combining
this uniform boundedness with the uniform convergence of the TY,n(X)

to T7 () it is elementary to show that the Tn(M) converge strongly

to T7 M) as multiplication operators from H a(C) to HS(Cp) for pO.

The corresponding result for the Jy,n,p and J,, then follows by ap-

plication of the Plancherel theorem as noted earlier.

For the simple wave equation dealt with here it seems unlikely
that the results presented here will have any great bearing on ap-
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plications. But these results will continue to be true, in slight-
ly modified form, for any system having a Riesz basis of eigenvec-
tors for which the corresponding eigenvalues Xk are distributed

with uniform density in some strip of the complex plane parallel
to the imaginary axis. In particular, the results proved here can
also be demonstrated to obtain in the case of boundary control of
the Timoshenko beam (E 17 ]) with output consisting of the measured
velocity at the point where the lateral boundary force is applied. I
We see then that great care must be taken in dealing with conserva-
tive systems in regard to drawing conclusions about the input - out-
put relations applying to the continuous model on the basis of exp-
erience with finite dimensional approximations.
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